Sample records for dynamical processes responsible

  1. Analysis of dynamic system response to product random processes

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1978-01-01

    The response of dynamic systems to the product of two independent Gaussian random processes is developed by use of the Fokker-Planck and associated moment equations. The development is applied to the amplitude modulated process which is used to model atmospheric turbulence in aeronautical applications. The exact solution for the system response is compared with the solution obtained by the quasi-steady approximation which omits the dynamic properties of the random amplitude modulation. The quasi-steady approximation is valid as a limiting case of the exact solution for the dynamic response of linear systems to amplitude modulated processes. In the nonlimiting case the quasi-steady approximation can be invalid for dynamic systems with low damping.

  2. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  3. Early enhanced processing and delayed habituation to deviance sounds in autism spectrum disorder.

    PubMed

    Hudac, Caitlin M; DesChamps, Trent D; Arnett, Anne B; Cairney, Brianna E; Ma, Ruqian; Webb, Sara Jane; Bernier, Raphael A

    2018-06-01

    Children with autism spectrum disorder (ASD) exhibit difficulties processing and encoding sensory information in daily life. Cognitive response to environmental change in control individuals is naturally dynamic, meaning it habituates or reduces over time as one becomes accustomed to the deviance. The origin of atypical response to deviance in ASD may relate to differences in this dynamic habituation. The current study of 133 children and young adults with and without ASD examined classic electrophysiological responses (MMN and P3a), as well as temporal patterns of habituation (i.e., N1 and P3a change over time) in response to a passive auditory oddball task. Individuals with ASD showed an overall heightened sensitivity to change as exhibited by greater P3a amplitude to novel sounds. Moreover, youth with ASD showed dynamic ERP differences, including slower attenuation of the N1 response to infrequent tones and the P3a response to novel sounds. Dynamic ERP responses were related to parent ratings of auditory sensory-seeking behaviors, but not general cognition. As the first large-scale study to characterize temporal dynamics of auditory ERPs in ASD, our results provide compelling evidence that heightened response to auditory deviance in ASD is largely driven by early sensitivity and prolonged processing of auditory deviance. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling

    PubMed Central

    Liang, Katharine J.; Lee, Jung Eun; Wang, Yunqing D.; Ma, Wenxin; Fontainhas, Aurora M.; Fariss, Robert N.; Wong, Wai T.

    2009-01-01

    PURPOSE Microglia in the central nervous system display a marked structural dynamism in their processes in the resting state. This dynamic behavior, which may play a constitutive surveying role in the uninjured neural parenchyma, is also highly responsive to tissue injury. The role of CX3CR1, a chemokine receptor expressed in microglia, in regulating microglia morphology and dynamic behavior in the resting state and after laser-induced focal injury was examined. METHODS Time-lapse confocal imaging of retinal explants was used to evaluate the dynamic behavior of retinal microglia labeled with green fluorescent protein (GFP). Transgenic mice in which CX3CR1 signaling was ablated (CX3CR1GFP/GFP/CX3CR1−/−) and preserved (CX3CR1+/GFP/CX3CR1+/−) were used. RESULTS Retinal microglial density, distribution, cellular morphology, and overall retinal tissue anatomy were not altered in young CX3CR1−/− animals. In the absence of CX3CR1, retinal microglia continued to exhibit dynamic motility in their processes. However, rates of process movement were significantly decreased, both under resting conditions and in response to tissue injury. In addition, microglia migration occurring in response to focal laser injury was also significantly slowed in microglia lacking CX3CR1. CONCLUSIONS CX3CR1 signaling in retinal microglia, though not absolutely required for the presence of microglial dynamism, plays a role in potentiating the rate of retinal microglial process dynamism and cellular migration. CX3CL1 signaling from retinal neurons and endothelial cells likely modulates dynamic microglia behavior so as to influence the level of microglial surveillance under basal conditions and the rate of dynamic behavior in response to tissue injury. PMID:19443728

  5. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    Treesearch

    Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...

  6. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  7. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  8. Synaptic dynamics contribute to long-term single neuron response fluctuations.

    PubMed

    Reinartz, Sebastian; Biro, Istvan; Gal, Asaf; Giugliano, Michele; Marom, Shimon

    2014-01-01

    Firing rate variability at the single neuron level is characterized by long-memory processes and complex statistics over a wide range of time scales (from milliseconds up to several hours). Here, we focus on the contribution of non-stationary efficacy of the ensemble of synapses-activated in response to a given stimulus-on single neuron response variability. We present and validate a method tailored for controlled and specific long-term activation of a single cortical neuron in vitro via synaptic or antidromic stimulation, enabling a clear separation between two determinants of neuronal response variability: membrane excitability dynamics vs. synaptic dynamics. Applying this method we show that, within the range of physiological activation frequencies, the synaptic ensemble of a given neuron is a key contributor to the neuronal response variability, long-memory processes and complex statistics observed over extended time scales. Synaptic transmission dynamics impact on response variability in stimulation rates that are substantially lower compared to stimulation rates that drive excitability resources to fluctuate. Implications to network embedded neurons are discussed.

  9. The response dynamics of preferential choice.

    PubMed

    Koop, Gregory J; Johnson, Joseph G

    2013-12-01

    The ubiquity of psychological process models requires an increased degree of sophistication in the methods and metrics that we use to evaluate them. We contribute to this venture by capitalizing on recent work in cognitive science analyzing response dynamics, which shows that the bearing information processing dynamics have on intended action is also revealed in the motor system. This decidedly "embodied" view suggests that researchers are missing out on potential dependent variables with which to evaluate their models-those associated with the motor response that produces a choice. The current work develops a method for collecting and analyzing such data in the domain of decision making. We first validate this method using widely normed stimuli from the International Affective Picture System (Experiment 1), and demonstrate that curvature in response trajectories provides a metric of the competition between choice options. We next extend the method to risky decision making (Experiment 2) and develop predictions for three popular classes of process model. The data provided by response dynamics demonstrate that choices contrary to the maxim of risk seeking in losses and risk aversion in gains may be the product of at least one "online" preference reversal, and can thus begin to discriminate amongst the candidate models. Finally, we incorporate attentional data collected via eye-tracking (Experiment 3) to develop a formal computational model of joint information sampling and preference accumulation. In sum, we validate response dynamics for use in preferential choice tasks and demonstrate the unique conclusions afforded by response dynamics over and above traditional methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accountedmore » for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.« less

  11. Dynamic Sensorimotor Planning during Long-Term Sequence Learning: The Role of Variability, Response Chunking and Planning Errors

    PubMed Central

    Verstynen, Timothy; Phillips, Jeff; Braun, Emily; Workman, Brett; Schunn, Christian; Schneider, Walter

    2012-01-01

    Many everyday skills are learned by binding otherwise independent actions into a unified sequence of responses across days or weeks of practice. Here we looked at how the dynamics of action planning and response binding change across such long timescales. Subjects (N = 23) were trained on a bimanual version of the serial reaction time task (32-item sequence) for two weeks (10 days total). Response times and accuracy both showed improvement with time, but appeared to be learned at different rates. Changes in response speed across training were associated with dynamic changes in response time variability, with faster learners expanding their variability during the early training days and then contracting response variability late in training. Using a novel measure of response chunking, we found that individual responses became temporally correlated across trials and asymptoted to set sizes of approximately 7 bound responses at the end of the first week of training. Finally, we used a state-space model of the response planning process to look at how predictive (i.e., response anticipation) and error-corrective (i.e., post-error slowing) processes correlated with learning rates for speed, accuracy and chunking. This analysis yielded non-monotonic association patterns between the state-space model parameters and learning rates, suggesting that different parts of the response planning process are relevant at different stages of long-term learning. These findings highlight the dynamic modulation of response speed, variability, accuracy and chunking as multiple movements become bound together into a larger set of responses during sequence learning. PMID:23056630

  12. Stability of Mixed-Strategy-Based Iterative Logit Quantal Response Dynamics in Game Theory

    PubMed Central

    Zhuang, Qian; Di, Zengru; Wu, Jinshan

    2014-01-01

    Using the Logit quantal response form as the response function in each step, the original definition of static quantal response equilibrium (QRE) is extended into an iterative evolution process. QREs remain as the fixed points of the dynamic process. However, depending on whether such fixed points are the long-term solutions of the dynamic process, they can be classified into stable (SQREs) and unstable (USQREs) equilibriums. This extension resembles the extension from static Nash equilibriums (NEs) to evolutionary stable solutions in the framework of evolutionary game theory. The relation between SQREs and other solution concepts of games, including NEs and QREs, is discussed. Using experimental data from other published papers, we perform a preliminary comparison between SQREs, NEs, QREs and the observed behavioral outcomes of those experiments. For certain games, we determine that SQREs have better predictive power than QREs and NEs. PMID:25157502

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Schenter, Gregory K.

    To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find thatmore » the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  14. The Response Dynamics of Recognition Memory: Sensitivity and Bias

    ERIC Educational Resources Information Center

    Koop, Gregory J.; Criss, Amy H.

    2016-01-01

    Advances in theories of memory are hampered by insufficient metrics for measuring memory. The goal of this paper is to further the development of model-independent, sensitive empirical measures of the recognition decision process. We evaluate whether metrics from continuous mouse tracking, or response dynamics, uniquely identify response bias and…

  15. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    PubMed Central

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  16. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    PubMed

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-07-14

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.

  17. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-07-24

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.

  18. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions

    PubMed Central

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-01-01

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708

  19. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dynamic response analysis of structure under time-variant interval process model

    NASA Astrophysics Data System (ADS)

    Xia, Baizhan; Qin, Yuan; Yu, Dejie; Jiang, Chao

    2016-10-01

    Due to the aggressiveness of the environmental factor, the variation of the dynamic load, the degeneration of the material property and the wear of the machine surface, parameters related with the structure are distinctly time-variant. Typical model for time-variant uncertainties is the random process model which is constructed on the basis of a large number of samples. In this work, we propose a time-variant interval process model which can be effectively used to deal with time-variant uncertainties with limit information. And then two methods are presented for the dynamic response analysis of the structure under the time-variant interval process model. The first one is the direct Monte Carlo method (DMCM) whose computational burden is relative high. The second one is the Monte Carlo method based on the Chebyshev polynomial expansion (MCM-CPE) whose computational efficiency is high. In MCM-CPE, the dynamic response of the structure is approximated by the Chebyshev polynomials which can be efficiently calculated, and then the variational range of the dynamic response is estimated according to the samples yielded by the Monte Carlo method. To solve the dependency phenomenon of the interval operation, the affine arithmetic is integrated into the Chebyshev polynomial expansion. The computational effectiveness and efficiency of MCM-CPE is verified by two numerical examples, including a spring-mass-damper system and a shell structure.

  1. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Photochemical tools to study dynamic biological processes

    PubMed Central

    Specht, Alexandre; Bolze, Frédéric; Omran, Ziad; Nicoud, Jean-François; Goeldner, Maurice

    2009-01-01

    Light-responsive biologically active compounds offer the possibility to study the dynamics of biological processes. Phototriggers and photoswitches have been designed, providing the capability to rapidly cause the initiation of wide range of dynamic biological phenomena. We will discuss, in this article, recent developments in the field of light-triggered chemical tools, specially how two-photon excitation, “caged” fluorophores, and the photoregulation of protein activities in combination with time-resolved x-ray techniques should break new grounds in the understanding of dynamic biological processes. PMID:20119482

  3. An advanced technique for the prediction of decelerator system dynamics.

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Morris, W. D.; Whitlock, C. H.

    1973-01-01

    An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.

  4. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  5. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.

  6. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    PubMed

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  7. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals

    PubMed Central

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-01-01

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process. PMID:28590456

  8. Long-Term Pavement Performance Ohio SPS-1 and SPS-2 Dynamic Load Response Data Processing

    DOT National Transportation Integrated Search

    2015-03-01

    The dynamic load response (DLR) Study Team reinterpreted 4,290 Ohio Specific Pavement Studies (SPS)-1 (asphalt concrete pavements) raw traces and 9,240 Ohio SPS-2 (portland cement concrete pavements) raw traces, correcting the data issues identified ...

  9. The Magnetospheric Constellation Mission. Dynamic Response and Coupling Observatory (DRACO): Understanding the Global Dynamics of the Structured Magnetotail

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Magnetospheric Constellation Dynamic Response and Coupling Observatory (DRACO) is the Solar Terrestrial Probe (STP) designed to understand the nonlinear dynamics, responses, and connections within the Earth's structured magnetotail, using a constellation of approximately 50 to 100 distributed vector measurement spacecraft. DRACO will reveal magnetotail processes operating within a domain extending 20 Earth radii (R(sub E)) across the tail and 40 R(sub E)down the tail, on spatial and time scales accessible to global circulation models, i.e., approximately 2 R(sub E) and 10 seconds.

  10. Exploiting single-cell variability to infer the dynamics of immune responses

    NASA Astrophysics Data System (ADS)

    Höfer, Thomas

    Cell division, differentiation, migration and death determine the dynamics of immune responses. These processes are regulated by a multitude of biochemical signals which, at present, cannot faithfully be reconstituted outside the living organism. However, quantitative measurements in living organisms have been limited. In recent years experimental techniques for the ``fate mapping'' of single immune cells have been developed that allow performing parallel single-cell experiments in an experimental animal. The resulting data are more informative about underlying biological processes than traditional measurements. I will show how the theory of stochastic dynamical systems can be used to infer the topology and dynamics of cell differentiation pathways from such data. The focus will be on joint theoretical and experimental work addressing: (i) the development of immune cells during hematopoiesis, and (ii) T cell responses to diverse pathogens. I will discuss questions on the nature of cellular variability that are posed by these new findings.

  11. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    PubMed

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Software life cycle dynamic simulation model: The organizational performance submodel

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  13. Keep Away from Danger: Dangerous Objects in Dynamic and Static Situations

    PubMed Central

    Anelli, Filomena; Nicoletti, Roberto; Bolzani, Roberto; Borghi, Anna M.

    2013-01-01

    Behavioral and neuroscience studies have shown that objects observation evokes specific affordances (i.e., action possibilities) and motor responses. Recent findings provide evidence that even dangerous objects can modulate the motor system evoking aversive affordances. This sounds intriguing since so far the majority of behavioral, brain imaging, and transcranial magnetic stimulation studies with painful and dangerous stimuli strictly concerned the domain of pain, with the exception of evidence suggesting sensitivity to objects’ affordances when neutral objects are located in participants’ peripersonal space. This study investigates whether the observation of a neutral or dangerous object in a static or dynamic situation differently influences motor responses, and the time-course of the dangerous objects’ processing. In three experiments we manipulated: object dangerousness (neutral vs. dangerous); object category (artifact vs. natural); manual response typology (press vs. release a key); object presentation (Experiment 1: dynamic, Experiments 2 and 3: static); object movement direction (Experiment 1: away vs. toward the participant) or size (Experiments 2 and 3: big vs. normal vs. small). The task required participants to decide whether the object was an artifact or a natural object, by pressing or releasing one key. Results showed a facilitation for neutral over dangerous objects in the static situation, probably due to an affordance effect. Instead, in the dynamic condition responses were modulated by the object movement direction, with a dynamic affordance effect elicited by neutral objects and an escape-avoidance effect provoked by dangerous objects (neutral objects were processed faster when they moved toward-approached the participant, whereas dangerous objects were processed faster when they moved away from the participant). Moreover, static stimuli influenced the manual response typology. These data indicate the emergence of dynamic affordance and escaping-avoidance effects. PMID:23847512

  14. Keep away from danger: dangerous objects in dynamic and static situations.

    PubMed

    Anelli, Filomena; Nicoletti, Roberto; Bolzani, Roberto; Borghi, Anna M

    2013-01-01

    Behavioral and neuroscience studies have shown that objects observation evokes specific affordances (i.e., action possibilities) and motor responses. Recent findings provide evidence that even dangerous objects can modulate the motor system evoking aversive affordances. This sounds intriguing since so far the majority of behavioral, brain imaging, and transcranial magnetic stimulation studies with painful and dangerous stimuli strictly concerned the domain of pain, with the exception of evidence suggesting sensitivity to objects' affordances when neutral objects are located in participants' peripersonal space. This study investigates whether the observation of a neutral or dangerous object in a static or dynamic situation differently influences motor responses, and the time-course of the dangerous objects' processing. In three experiments we manipulated: object dangerousness (neutral vs. dangerous); object category (artifact vs. natural); manual response typology (press vs. release a key); object presentation (Experiment 1: dynamic, Experiments 2 and 3: static); object movement direction (Experiment 1: away vs. toward the participant) or size (Experiments 2 and 3: big vs. normal vs. small). The task required participants to decide whether the object was an artifact or a natural object, by pressing or releasing one key. Results showed a facilitation for neutral over dangerous objects in the static situation, probably due to an affordance effect. Instead, in the dynamic condition responses were modulated by the object movement direction, with a dynamic affordance effect elicited by neutral objects and an escape-avoidance effect provoked by dangerous objects (neutral objects were processed faster when they moved toward-approached the participant, whereas dangerous objects were processed faster when they moved away from the participant). Moreover, static stimuli influenced the manual response typology. These data indicate the emergence of dynamic affordance and escaping-avoidance effects.

  15. Response of DP 600 products to dynamic impact loads

    NASA Astrophysics Data System (ADS)

    Clark, Deidra Darcell

    The objective of this study was to compare the microstructural response of various DP 600 products subjected to low velocity, dynamic impact tests, typically encountered in a car crash. Since the response of steel is sensitive to its microstructure as controlled by the alloying elements, phase content, and processing; various DP 600 products may respond differently to crashes. The microstructure before and after dynamic impact deformation at 5 and 10 mph was characterized with regards to grain size, morphology, and phase content among vendors A, B, and C to evaluate efficiency in absorbing energy mechanisms during a crash simulated by dynamic impact testing in a drop tower.

  16. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event

    NASA Astrophysics Data System (ADS)

    Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping

    2013-03-01

    Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.

  17. Community and individual effects on SOD intensification in California redwood forests: implications for tanoak persistence

    Treesearch

    Richard C. Cobb; Joao A. N. Filipe; Ross K. Meentemeyer; Chris A. Gilligan; Shannon C. Lynch; David M. Rizzo

    2010-01-01

    Processes operating across different spatial scales (for example, individual, community, landscape) influence disease dynamics. Understanding these processes and their interactions can yield general insights into disease control, disease dynamics within communities, and community response to disease. For Phytophthora ramorum, pathogen establishment...

  18. Wild salmon response to natural disturbance processes

    Treesearch

    Russ Thurow; John M. Buffington

    2016-01-01

    Dynamic landscapes are shaped by a variety of natural processes and disturbances operating across multiple temporal and spatial scales. Persistence of species in these dynamic environments is also a matter of scale: how do species dispersal and reproductive rates merge with the scales of disturbance?

  19. Coordinated Approaches to Quantify Long-Term Ecosystem dynamics in Response to Global Change

    USDA-ARS?s Scientific Manuscript database

    Climate change and its impact on ecosystems are usually assessed at decadal and century time scales. Ecological responses to climate change at those scales are strongly regulated by long-term processes, such as changes in species composition, carbon dynamics in soil and by big trees, and nutrient r...

  20. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  1. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  2. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  3. Cellular Decision Making by Non-Integrative Processing of TLR Inputs.

    PubMed

    Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş

    2017-04-04

    Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    USGS Publications Warehouse

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  5. Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Sendra, H.; Murialdo, S.; Passoni, L.

    2007-11-01

    This proposal deals with the technique for detection of motile response of Pseudomonas aeruginosa using dynamic laser speckle or biospeckle as an alternative method. The study of bacterial displacement plays an essential role in biocatalysts processes and biodegradation. Hence, some biodegrading enzymes are benign catalytic that could be used for the production of industrially useful compounds as well as in wastewater treatments. This work presents an experimental set up and a computational process using frame sequences of dynamic laser speckle as a novel application. The objective was the detection of different levels of motility in bacteria. The encouraging results were achieved through a direct and non invasive observation method of the phenomenon.

  6. Development of Envelope Curves for Predicting Void Dimensions from Overturned Trees

    DTIC Science & Technology

    2014-07-01

    transport due to tree root throw: integrating tree population dynamics, wildfire, and geomorphic response (Gallaway et al. 2009...Johnson. 2009. Sediment transport due to tree root throw: Integrating tree population dynamics, wildfire and geomorphic response. Earth Surface Processes...environment, but not vegetation (Peterson and Leach 2008) ............................................................ 17 4.7 Pedologic and geomorphic impacts

  7. Prediction of Time Response of Electrowetting

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Hong, Jiwoo; Kang, Kwan Hyoung

    2009-11-01

    It is very important to predict the time response of electrowetting-based devices, such as liquid lenses, reflective displays, and optical switches. We investigated the time response of electrowetting, based on an analytical and a numerical method, to find out characteristic scales and a scaling law for the switching time. For this, spreading process of a sessile droplet was analyzed based on the domain perturbation method. First, we considered the case of weakly viscous fluids. The analytical result for the spreading process was compared with experimental results, which showed very good agreement in overall time response. It was shown that the overall dynamics is governed by P2 shape mode. We derived characteristic scales combining the droplet volume, density, and surface tension. The overall dynamic process was scaled quite well by the scales. A scaling law was derived from the analytical solution and was verified experimentally. We also suggest a scaling law for highly viscous liquids, based on results of numerical analysis for the electrowetting-actuated spreading process.

  8. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation

    DOE PAGES

    Li, Peng -Cheng; Sheu, Yae -Lin; Jooya, Hossein Z.; ...

    2016-09-06

    Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories aremore » dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. As a result, it also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.« less

  9. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation

    PubMed Central

    Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z.; Zhou, Xiao-Xin; Chu, Shih-I

    2016-01-01

    Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse. PMID:27596056

  10. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation.

    PubMed

    Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z; Zhou, Xiao-Xin; Chu, Shih-I

    2016-09-06

    Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.

  11. Oscillatory dynamics in the dorsal and ventral attention networks during the reorienting of attention.

    PubMed

    Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wiesman, Alex I; McDermott, Timothy J; Wilson, Tony W

    2018-05-01

    The ability to reorient attention within the visual field is central to daily functioning, and numerous fMRI studies have shown that the dorsal and ventral attention networks (DAN, VAN) are critical to such processes. However, despite the instantaneous nature of attentional shifts, the dynamics of oscillatory activity serving attentional reorientation remain poorly characterized. In this study, we utilized magnetoencephalography (MEG) and a Posner task to probe the dynamics of attentional reorienting in 29 healthy adults. MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Voxel time series were then extracted from peak voxels in the functional beamformer images. These time series were used to quantify the dynamics of attentional reorienting, and to compute dynamic functional connectivity. Our results indicated strong increases in theta and decreases in alpha and beta activity across many nodes in the DAN and VAN. Interestingly, theta responses were generally stronger during trials that required attentional reorienting relative to those that did not, while alpha and beta oscillations were more dynamic, with many regions exhibiting significantly stronger responses during non-reorienting trials initially, and the opposite pattern during later processing. Finally, stronger functional connectivity was found following target presentation (575-700 ms) between bilateral superior parietal lobules during attentional reorienting. In sum, these data show that visual attention is served by multiple cortical regions within the DAN and VAN, and that attentional reorienting processes are often associated with spectrally-specific oscillations that have largely distinct spatiotemporal dynamics. © 2018 Wiley Periodicals, Inc.

  12. Breaking down barriers in cooperative fault management: Temporal and functional information displays

    NASA Technical Reports Server (NTRS)

    Potter, Scott S.; Woods, David D.

    1994-01-01

    At the highest level, the fundamental question addressed by this research is how to aid human operators engaged in dynamic fault management. In dynamic fault management there is some underlying dynamic process (an engineered or physiological process referred to as the monitored process - MP) whose state changes over time and whose behavior must be monitored and controlled. In these types of applications (dynamic, real-time systems), a vast array of sensor data is available to provide information on the state of the MP. Faults disturb the MP and diagnosis must be performed in parallel with responses to maintain process integrity and to correct the underlying problem. These situations frequently involve time pressure, multiple interacting goals, high consequences of failure, and multiple interleaved tasks.

  13. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  14. Nonrandom Acts of Kindness: Parasympathetic and Subjective Empathic Responses to Sadness Predict Children's Prosociality

    ERIC Educational Resources Information Center

    Miller, Jonas G.; Nuselovici, Jacob N.; Hastings, Paul D.

    2016-01-01

    How does empathic physiology unfold as a dynamic process, and which aspect of empathy predicts children's kindness? In response to empathy induction videos, 4- to 6-year-old children (N = 180) showed an average pattern of dynamic respiratory sinus arrhythmia (RSA) change characterized by early RSA suppression, followed by RSA recovery, and modest…

  15. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change

    Treesearch

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh

    2017-01-01

    The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...

  16. Navigating a Way through Plurality and Social Responsibility

    ERIC Educational Resources Information Center

    Gall, David A.

    2008-01-01

    Teachers need to have a clearer understanding of the dynamic process effecting change in culture and identity if they are to overcome fears about teaching diversity. This article draws on Eastern and Western insights on culture to clarify its dynamic process. In particular, teachers need to be aware of the two phases of culture: in one it appears…

  17. Dynamic response and transfer function of social systems: A neuro-inspired model of collective human activity patterns.

    PubMed

    Lymperopoulos, Ilias N

    2017-10-01

    The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability

    PubMed Central

    Reich, Steven

    2014-01-01

    Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693

  19. Estimating drought induced tree mortality in the Amazon rainforest: A simulation study with a focus on plant hydraulic processes

    NASA Astrophysics Data System (ADS)

    Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.

    2017-12-01

    The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.

  20. Dynamic pupillary exchange engages brain regions encoding social salience

    PubMed Central

    Harrison, Neil A.; Gray, Marcus A.; Critchley, Hugo D.

    2008-01-01

    Covert exchange of autonomic responses may shape social affective behavior, as observed in mirroring of pupillary responses during sadness processing. We examined how, independent of facial emotional expression, dynamic coherence between one's own and another's pupil size modulates regional brain activity. Fourteen subjects viewed pairs of eye stimuli while undergoing fMRI. Using continuous pupillometry biofeedback, the size of the observed pupils was varied, correlating positively or negatively with changes in participants’ own pupils. Viewing both static and dynamic stimuli activated right fusiform gyrus. Observing dynamically changing pupils activated STS and amygdala, regions engaged by non-static and salient facial features. Discordance between observed and observer's pupillary changes enhanced activity within bilateral anterior insula, left amygdala and anterior cingulate. In contrast, processing positively correlated pupils enhanced activity within left frontal operculum. Our findings suggest pupillary signals are monitored continuously during social interactions and that incongruent changes activate brain regions involved in tracking motivational salience and attentionally meaningful information. Naturalistically, dynamic coherence in pupillary change follows fluctuations in ambient light. Correspondingly, in social contexts discordant pupil response is likely to reflect divergence of dispositional state. Our data provide empirical evidence for an autonomically mediated extension of forward models of motor control into social interaction. PMID:19048432

  1. Key Process Uncertainties in Soil Carbon Dynamics: Comparing Multiple Model Structures and Observational Meta-analysis

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.

    2016-12-01

    Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over decadal time scales. This suggests that more long-term soil experiments may be necessary to resolve important process uncertainties related to soil C storage. We also suggest future experiments examine how microbial activity responds to warming under a range of soil clay contents and in concert with changes in litter inputs.

  2. Dynamics of assembly production flow

    NASA Astrophysics Data System (ADS)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  3. Correlated receptor transport processes buffer single-cell heterogeneity

    PubMed Central

    Kallenberger, Stefan M.; Unger, Anne L.; Legewie, Stefan; Lymperopoulos, Konstantinos; Eils, Roland

    2017-01-01

    Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system. PMID:28945754

  4. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb

    PubMed Central

    Carey, Ryan M.; Sherwood, William Erik; Shipley, Michael T.; Borisyuk, Alla

    2015-01-01

    Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks. PMID:25717156

  5. Identification of a novel dynamic red blindness in human by event-related brain potentials.

    PubMed

    Zhang, Jiahua; Kong, Weijia; Yang, Zhongle

    2010-12-01

    Dynamic color is an important carrier that takes information in some special occupations. However, up to the present, there are no available and objective tests to evaluate dynamic color processing. To investigate the characteristics of dynamic color processing, we adopted two patterns of visual stimulus called "onset-offset" which reflected static color stimuli and "sustained moving" without abrupt mode which reflected dynamic color stimuli to evoke event-related brain potentials (ERPs) in primary color amblyopia patients (abnormal group) and subjects with normal color recognition ability (normal group). ERPs were recorded by Neuroscan system. The results showed that in the normal group, ERPs in response to the dynamic red stimulus showed frontal positive amplitudes with a latency of about 180 ms, a negative peak at about 240 ms and a peak latency of the late positive potential (LPP) in a time window between 290 and 580 ms. In the abnormal group, ERPs in response to the dynamic red stimulus were fully lost and characterized by vanished amplitudes between 0 and 800 ms. No significant difference was noted in ERPs in response to the dynamic green and blue stimulus between the two groups (P>0.05). ERPs of the two groups in response to the static red, green and blue stimulus were not much different, showing a transient negative peak at about 170 ms and a peak latency of LPP in a time window between 350 and 650 ms. Our results first revealed that some subjects who were not identified as color blindness under static color recognition could not completely apperceive a sort of dynamic red stimulus by ERPs, which was called "dynamic red blindness". Furthermore, these results also indicated that low-frequency ERPs induced by "sustained moving" may be a good and new method to test dynamic color perception competence.

  6. Dynamic Testing of Analogical Reasoning in 5- to 6-Year-Olds: Multiple-Choice versus Constructed-Response Training Items

    ERIC Educational Resources Information Center

    Stevenson, Claire E.; Heiser, Willem J.; Resing, Wilma C. M.

    2016-01-01

    Multiple-choice (MC) analogy items are often used in cognitive assessment. However, in dynamic testing, where the aim is to provide insight into potential for learning and the learning process, constructed-response (CR) items may be of benefit. This study investigated whether training with CR or MC items leads to differences in the strategy…

  7. A method for the analysis of nonlinearities in aircraft dynamic response to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1976-01-01

    An analytical method is developed which combines the equivalent linearization technique for the analysis of the response of nonlinear dynamic systems with the amplitude modulated random process (Press model) for atmospheric turbulence. The method is initially applied to a bilinear spring system. The analysis of the response shows good agreement with exact results obtained by the Fokker-Planck equation. The method is then applied to an example of control-surface displacement limiting in an aircraft with a pitch-hold autopilot.

  8. Empirical evaluation of sufficient similarity in dose-response for environmental risk assessment of a mixture of 11 pyrethroids.

    EPA Science Inventory

    Chemical mixtures in the environment are often the result of a dynamic process. When dose-response data are available on random samples throughout the process, equivalence testing can be used to determine whether the mixtures are sufficiently similar based on a pre-specified biol...

  9. How Does a Divided Population Respond to Change?

    PubMed

    Qubbaj, Murad R; Muneepeerakul, Rachata; Aggarwal, Rimjhim M; Anderies, John M

    2015-01-01

    Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics is used to investigate the complex transient dynamics of the population response. Though simple, our modeling approach exhibits a surprisingly rich and diverse array of dynamics. Our results highlight the critical roles played by diversity in strategies and the magnitude of the shift. Importantly, it allows for a variety of strategies to arise organically as an integral part of the transient dynamics--as opposed to an independent process--of population response to a regime shift, providing a link between the population's past and future diversity patterns. Several combinations of different populations' strategy distributions and shifts were systematically investigated. Such rich dynamics highlight the challenges of anticipating the response of a divided population to a change. The findings in this paper can potentially improve our understanding of a wide range of socio-ecological and technological transitions.

  10. The Dynamics of Germinal Centre Selection as Measured by Graph-Theoretical Analysis of Mutational Lineage Trees

    PubMed Central

    Dunn-Walters, Deborah K.; Belelovsky, Alex; Edelman, Hanna; Banerjee, Monica; Mehr, Ramit

    2002-01-01

    We have developed a rigorous graph-theoretical algorithm for quantifying the shape properties of mutational lineage trees. We show that information about the dynamics of hypermutation and antigen-driven clonal selection during the humoral immune response is contained in the shape of mutational lineage trees deduced from the responding clones. Age and tissue related differences in the selection process can be studied using this method. Thus, tree shape analysis can be used as a means of elucidating humoral immune response dynamics in various situations. PMID:15144020

  11. Nonrandom Acts of Kindness: Parasympathetic and Subjective Empathic Responses to Sadness Predict Children’s Prosociality

    PubMed Central

    Miller, Jonas G.; Nuselovici, Jacob N.; Hastings, Paul D.

    2016-01-01

    How does empathic physiology unfold as a dynamic process, and which aspect of empathy predicts children’s kindness? In response to empathy induction videos, 4–6 year-old children (N = 180) showed an average pattern of dynamic respiratory sinus arrhythmia (RSA) change characterized by early RSA suppression followed by RSA recovery, and modest subsequent suppression during positive resolution of the empathic event. Children’s capacity for this pattern of flexible RSA change was associated with their subjective empathic feelings, which were concurrently associated with more sympathetic and prosocial responses to others. Conversely, only children’s dynamic RSA change longitudinally predicted prosocial behavior two years later. These findings have implications for understanding the dynamic and multifaceted nature of empathy, and its relation with prosocial development. PMID:28262932

  12. Hydrologic processes and nutrient dynamics in a pristine mountain catchment

    USGS Publications Warehouse

    F. Richard Hauer,; Fagre, Daniel B.; Stanford, Jack A.

    2002-01-01

    Nutrient dynamics in watersheds have been used as an ecosystem-level indicator of overall ecosystem function or response to disturbance (e.g. Borman.N et al. 1974, WEBSTER et al. 1992). The examination of nutrients has been evaluated to determine responses to logging practices or other changes in watershed land use. Nutrient dynamics have been related to changing physical and biological characteristics (Mulholl AND 1992, CHESTNUT & McDowell 2000). Herein, the concentrations and dynamics of nitrogen, phosphorus and particulate organic carbon were examined in a large pristine watershed because they are affected by changes in discharge directly from the catchment and after passage through a large oligotrophic lake. 

  13. Unaltered emotional experience in Parkinson's disease: Pupillometry and behavioral evidence.

    PubMed

    Schwartz, Rachel; Rothermich, Kathrin; Kotz, Sonja A; Pell, Marc D

    2018-04-01

    Recognizing emotions in others is a pivotal part of socioemotional functioning and plays a central role in social interactions. It has been shown that individuals suffering from Parkinson's disease (PD) are less accurate at identifying basic emotions such as fear, sadness, and happiness; however, previous studies have predominantly assessed emotion processing using unimodal stimuli (e.g., pictures) that do not reflect the complexity of real-world processing demands. Dynamic, naturalistic stimuli (e.g., movies) have been shown to elicit stronger subjective emotional experiences than unimodal stimuli and can facilitate emotion recognition. In this experiment, pupil measurements of PD patients and matched healthy controls (HC) were recorded while they watched short film clips. Participants' task was to identify the emotion elicited by each clip and rate the intensity of their emotional response. We explored (a) how PD affects subjective emotional experience in response to dynamic, ecologically valid film stimuli, and (b) whether there are PD-related changes in pupillary response, which may contribute to the differences in emotion processing reported in the literature. Behavioral results showed that identification of the felt emotion as well as perceived intensity varies by emotion, but no significant group effect was found. Pupil measurements revealed differences in dilation depending on the emotion evoked by the film clips (happy, tender, sadness, fear, and neutral) for both groups. Our results suggest that differences in emotional response may be negligible when PD patients and healthy controls are presented with dynamic, ecologically valid emotional stimuli. Given the limited data available on pupil response in PD, this study provides new evidence to suggest that the PD-related deficits in emotion processing reported in the literature may not translate to real-world differences in physiological or subjective emotion processing in early-stage PD patients.

  14. Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings

    DTIC Science & Technology

    2012-09-30

    maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be

  15. Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of "dose-response" curves for finger opposition.

    PubMed

    Berns, G S; Song, A W; Mao, H

    1999-07-15

    Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.

  16. Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate. Tree growth responses to North Atlantic Ocean dynamics

    NASA Astrophysics Data System (ADS)

    Ols, Clémentine; Trouet, Valerie; Girardin, Martin P.; Hofgaard, Annika; Bergeron, Yves; Drobyshev, Igor

    2018-06-01

    The mid-20th century changes in North Atlantic Ocean dynamics, e.g. slow-down of the Atlantic meridional overturning thermohaline circulation (AMOC), have been considered as early signs of tipping points in the Earth climate system. We hypothesized that these changes have significantly altered boreal forest growth dynamics in northeastern North America (NA) and northern Europe (NE), two areas geographically adjacent to the North Atlantic Ocean. To test our hypothesis, we investigated tree growth responses to seasonal large-scale oceanic and atmospheric indices (the AMOC, North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) and climate (temperature and precipitation) from 1950 onwards, both at the regional and local levels. We developed a network of 6876 black spruce (NA) and 14437 Norway spruce (NE) tree-ring width series, extracted from forest inventory databases. Analyses revealed post-1980 shifts from insignificant to significant tree growth responses to summer oceanic and atmospheric dynamics both in NA (negative responses to NAO and AO indices) and NE (positive response to NAO and AMOC indices). The strength and sign of these responses varied, however, through space with stronger responses in western and central boreal Quebec and in central and northern boreal Sweden, and across scales with stronger responses at the regional level than at the local level. Emerging post-1980 associations with North Atlantic Ocean dynamics synchronized with stronger tree growth responses to local seasonal climate, particularly to winter temperatures. Our results suggest that ongoing and future anomalies in oceanic and atmospheric dynamics may impact forest growth and carbon sequestration to a greater extent than previously thought. Cross-scale differences in responses to North Atlantic Ocean dynamics highlight complex interplays in the effects of local climate and ocean-atmosphere dynamics on tree growth processes and advocate for the use of different spatial scales in climate-growth research to better understand factors controlling tree growth.

  17. Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2011-04-01

    Among the many significant advances within the field of supramolecular chemistry over the past decades, the development of the so-called "dynamers" features a direct relevance to materials science. Defined as "combinatorial dynamic polymers", dynamers are constitutional dynamic systems and materials resulting from the application of the principles of supramolecular chemistry to polymer science. Like supramolecular materials in general, dynamers are reversible dynamic multifunctional architectures, capable of modifying their constitution by exchanging, recombining, incorporating components. They may exhibit a variety of novel properties and behave as adaptive materials. In this review we focus on the design of responsive switchable monolayers, i.e. monolayers capable to undergo significant changes in their physical or chemical properties as a result of external stimuli. Scanning tunneling microscopy studies provide direct evidence with a sub-nanometre resolution, on the formation and dynamic response of these self-assembled systems featuring controlled geometries and properties.

  18. Development of dynamic Bayesian models for web application test management

    NASA Astrophysics Data System (ADS)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  19. Enhanced subliminal emotional responses to dynamic facial expressions.

    PubMed

    Sato, Wataru; Kubota, Yasutaka; Toichi, Motomi

    2014-01-01

    Emotional processing without conscious awareness plays an important role in human social interaction. Several behavioral studies reported that subliminal presentation of photographs of emotional facial expressions induces unconscious emotional processing. However, it was difficult to elicit strong and robust effects using this method. We hypothesized that dynamic presentations of facial expressions would enhance subliminal emotional effects and tested this hypothesis with two experiments. Fearful or happy facial expressions were presented dynamically or statically in either the left or the right visual field for 20 (Experiment 1) and 30 (Experiment 2) ms. Nonsense target ideographs were then presented, and participants reported their preference for them. The results consistently showed that dynamic presentations of emotional facial expressions induced more evident emotional biases toward subsequent targets than did static ones. These results indicate that dynamic presentations of emotional facial expressions induce more evident unconscious emotional processing.

  20. Characterizing Feedback Control Mechanisms in Nonlinear Microbial Models of Soil Organic Matter Decomposition by Stability Analysis

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.

    2014-12-01

    Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.

  1. Processing of Spontaneous Emotional Responses in Adolescents and Adults with Autism Spectrum Disorders: Effect of Stimulus Type

    PubMed Central

    Mitchell, Peter; Chapman, Peter; Ropar, Danielle

    2015-01-01

    Recent research has shown that adults with autism spectrum disorders (ASD) have difficulty interpreting others' emotional responses, in order to work out what actually happened to them. It is unclear what underlies this difficulty; important cues may be missed from fast paced dynamic stimuli, or spontaneous emotional responses may be too complex for those with ASD to successfully recognise. To explore these possibilities, 17 adolescents and adults with ASD and 17 neurotypical controls viewed 21 videos and pictures of peoples' emotional responses to gifts (chocolate, a handmade novelty or Monopoly money), then inferred what gift the person received and the emotion expressed by the person while eye movements were measured. Participants with ASD were significantly more accurate at distinguishing who received a chocolate or homemade gift from static (compared to dynamic) stimuli, but significantly less accurate when inferring who received Monopoly money from static (compared to dynamic) stimuli. Both groups made similar emotion attributions to each gift in both conditions (positive for chocolate, feigned positive for homemade and confused for Monopoly money). Participants with ASD only made marginally significantly fewer fixations to the eyes of the face, and face of the person than typical controls in both conditions. Results suggest adolescents and adults with ASD can distinguish subtle emotion cues for certain emotions (genuine from feigned positive) when given sufficient processing time, however, dynamic cues are informative for recognising emotion blends (e.g. smiling in confusion). This indicates difficulties processing complex emotion responses in ASD. Autism Res 2015, 8: 534–544. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:25735657

  2. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Whittaker, A. C.; Cowie, P. A.; Roberts, G. P.

    2008-09-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width depends on a number of parameters, including channel slope, and is not solely a function of drainage area as is commonly assumed. The present work represents the first attempt to investigate the consequences of dynamic, gradient-sensitive channel adjustment for drainage-basin evolution. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic perturbation, using, as a template, the topography of a well-documented catchment in the footwall of an active normal fault in the Apennines (Italy) that is known to be undergoing a transient response to tectonic forcing. We show that the observed transient response can be reproduced to first order with a simple detachment-limited fluvial incision law. Transient landscape is characterized by gentler gradients and a shorter response time when dynamic channel adjustment is allowed. The differences in predicted channel geometry between the static case (width dependent solely on upstream area) and dynamic case (width dependent on both drainage area and channel slope) lead to contrasting landscape morphologies when integrated at the scale of a whole catchment, particularly in presence of strong tilting and/or pronounced slip-rate acceleration. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the relative uplift field is nonuniform.

  3. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations.

    PubMed

    Revilla, Eloy; Wiegand, Thorsten

    2008-12-09

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.

  4. In situ health monitoring of piezoelectric sensors

    NASA Technical Reports Server (NTRS)

    Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  5. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.

  6. Sustained neural activity to gaze and emotion perception in dynamic social scenes

    PubMed Central

    Ulloa, José Luis; Puce, Aina; Hugueville, Laurent; George, Nathalie

    2014-01-01

    To understand social interactions, we must decode dynamic social cues from seen faces. Here, we used magnetoencephalography (MEG) to study the neural responses underlying the perception of emotional expressions and gaze direction changes as depicted in an interaction between two agents. Subjects viewed displays of paired faces that first established a social scenario of gazing at each other (mutual attention) or gazing laterally together (deviated group attention) and then dynamically displayed either an angry or happy facial expression. The initial gaze change elicited a significantly larger M170 under the deviated than the mutual attention scenario. At around 400 ms after the dynamic emotion onset, responses at posterior MEG sensors differentiated between emotions, and between 1000 and 2200 ms, left posterior sensors were additionally modulated by social scenario. Moreover, activity on right anterior sensors showed both an early and prolonged interaction between emotion and social scenario. These results suggest that activity in right anterior sensors reflects an early integration of emotion and social attention, while posterior activity first differentiated between emotions only, supporting the view of a dual route for emotion processing. Altogether, our data demonstrate that both transient and sustained neurophysiological responses underlie social processing when observing interactions between others. PMID:23202662

  7. Partitioning strategy for efficient nonlinear finite element dynamic analysis on multiprocessor computers

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1989-01-01

    A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.

  8. Dispersion of Response Times Reveals Cognitive Dynamics

    ERIC Educational Resources Information Center

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2009-01-01

    Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and…

  9. Nonlinear dynamics of cortical responses to color in the human cVEP.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  10. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  11. Tracking single Kv2.1 channels in live cells reveals anomalous subdiffusion and ergodicity breaking

    NASA Astrophysics Data System (ADS)

    Weigel, Aubrey; Simon, Blair; Tamkun, Michael; Krapf, Diego

    2011-03-01

    The dynamic organization of the plasma membrane is responsible for essential cellular processes, such as receptor trafficking and signaling. By studying the dynamics of transmembrane proteins a greater understanding of these processes as a whole can be achieved. It is broadly observed that the diffusion pattern of membrane protein displays anomalous subdiffusion. However, the mechanisms responsible for this behavior are not yet established. We explore the dynamics of the voltage gated potassium channel Kv2.1 by using single-particle tracking. We analyze Kv2.1 channel trajectories in terms of the time and ensemble distributions of square displacements. Our results reveal that all Kv2.1 channels experience anomalous subdiffusion and we observe that the Kv2.1 diffusion pattern is non-ergodic. We further investigated the role of the actin cytoskeleton in these channel dynamics by applying actin depolymerizing drugs. It is seen that with the breakdown of the actin cytoskeleton the Kv2.1 channel trajectories recover ergodicity.

  12. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  13. Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments

    PubMed Central

    Seaton, Daniel D; Krishnan, J

    2016-01-01

    Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131

  14. Engine dynamic analysis with general nonlinear finite element codes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1991-01-01

    A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.

  15. The Temporal Dynamics of Visual Search: Evidence for Parallel Processing in Feature and Conjunction Searches

    PubMed Central

    McElree, Brian; Carrasco, Marisa

    2012-01-01

    Feature and conjunction searches have been argued to delineate parallel and serial operations in visual processing. The authors evaluated this claim by examining the temporal dynamics of the detection of features and conjunctions. The 1st experiment used a reaction time (RT) task to replicate standard mean RT patterns and to examine the shapes of the RT distributions. The 2nd experiment used the response-signal speed–accuracy trade-off (SAT) procedure to measure discrimination (asymptotic detection accuracy) and detection speed (processing dynamics). Set size affected discrimination in both feature and conjunction searches but affected detection speed only in the latter. Fits of models to the SAT data that included a serial component overpredicted the magnitude of the observed dynamics differences. The authors concluded that both features and conjunctions are detected in parallel. Implications for the role of attention in visual processing are discussed. PMID:10641310

  16. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    NASA Astrophysics Data System (ADS)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  17. Nonlinear dynamics analysis of the spur gear system for railway locomotive

    NASA Astrophysics Data System (ADS)

    Wang, Junguo; He, Guangyue; Zhang, Jie; Zhao, Yongxiang; Yao, Yuan

    2017-02-01

    Considering the factors such as the nonlinearity backlash, static transmission error and time-varying meshing stiffness, a three-degree-of-freedom torsional vibration model of spur gear transmission system for a typical locomotive is developed, in which the wheel/rail adhesion torque is considered as uncertain but bounded parameter. Meantime, the Ishikawa method is used for analysis and calculation of the time-varying mesh stiffness of the gear pair in meshing process. With the help of bifurcation diagrams, phase plane diagrams, Poincaré maps, time domain response diagrams and amplitude-frequency spectrums, the effects of the pinion speed and stiffness on the dynamic behavior of gear transmission system for locomotive are investigated in detail by using the numerical integration method. Numerical examples reveal various types of nonlinear phenomena and dynamic evolution mechanism involving one-period responses, multi-periodic responses, bifurcation and chaotic responses. Some research results present useful information to dynamic design and vibration control of the gear transmission system for railway locomotive.

  18. Where do we stand after twenty years of dynamic triggering studies? (Invited)

    NASA Astrophysics Data System (ADS)

    Prejean, S. G.; Hill, D. P.

    2013-12-01

    In the past two decades, remote dynamic triggering of earthquakes by other earthquakes has been explored in a variety of physical environments with a wide array of observation and modeling techniques. These studies have significantly refined our understanding of the state of the crust and the physical conditions controlling earthquake nucleation. Despite an ever growing database of dynamic triggering observations, significant uncertainties remain and vigorous debate in almost all aspects of the science continues. For example, although dynamic earthquake triggering can occur with peak dynamic stresses as small as 1 kPa, triggering thresholds and their dependence on local stress state, hydrological environment, and frictional properties of faults are not well understood. Some studies find a simple threshold based on the peak amplitude of shaking while others find dependencies on frequency, recharge time, and other parameters. Considerable debate remains over the range of physical processes responsible for dynamic triggering, and the wide variation in dynamic triggering responses and time scales suggests triggering by multiple physical processes. Although Coulomb shear failure with various friction laws can often explain dynamic triggering, particularly instantaneous triggering, delayed dynamic triggering may be dependent on fluid transport and other slowly evolving aseismic processes. Although our understanding of the global distribution of dynamic triggering has improved, it is far from complete due to spatially uneven monitoring. A major challenge involves establishing statistical significance of potentially triggered earthquakes, particularly if they are isolated events or time-delayed with respect to triggering stresses. Here we highlight these challenges and opportunities with existing data. We focus on environmental dependence of dynamic triggering by large remote earthquakes particularly in volcanic and geothermal systems, as these systems often have high rates of background seismicity. In many volcanic and geothermal systems, such as the Geysers in Northern California, dynamic triggering of micro-earthquakes is frequent and predictable. In contrast, most active and even erupting volcanoes in Alaska (with the exception of the Katmai Volcanic Cluster) do not experience dynamic triggering. We explore why.

  19. Karhunen-Loève treatment to remove noise and facilitate data analysis in sensing, spectroscopy and other applications.

    PubMed

    Zaharov, V V; Farahi, R H; Snyder, P J; Davison, B H; Passian, A

    2014-11-21

    Resolving weak spectral variations in the dynamic response of materials that are either dominated or excited by stochastic processes remains a challenge. Responses that are thermal in origin are particularly relevant examples due to the delocalized nature of heat. Despite its inherent properties in dealing with stochastic processes, the Karhunen-Loève expansion has not been fully exploited in measurement of systems that are driven solely by random forces or can exhibit large thermally driven random fluctuations. Here, we present experimental results and analysis of the archetypes (a) the resonant excitation and transient response of an atomic force microscope probe by the ambient random fluctuations and nanoscale photothermal sample response, and (b) the photothermally scattered photons in pump-probe spectroscopy. In each case, the dynamic process is represented as an infinite series with random coefficients to obtain pertinent frequency shifts and spectral peaks and demonstrate spectral enhancement for a set of compounds including the spectrally complex biomass. The considered cases find important applications in nanoscale material characterization, biosensing, and spectral identification of biological and chemical agents.

  20. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    NASA Astrophysics Data System (ADS)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  1. Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses

    NASA Astrophysics Data System (ADS)

    Kattenbelt, Carolien; Roffel, B.

    2008-10-01

    In the control and optimization of basic oxygen steelmaking, it is important to have an understanding of the influence of control variables on the process. However, important process variables such as the composition of the steel and slag cannot be measured continuously. The decarburization rate and the accumulation rate of oxygen, which can be derived from the generally measured waste gas flow and composition, are an indication of changes in steel and slag composition. The influence of the control variables on the decarburization rate and the accumulation rate of oxygen can best be determined in the main blow period. In this article, the measured step responses of the decarburization rate and the accumulation rate of oxygen to step changes in the oxygen blowing rate, lance height, and the addition rate of iron ore during the main blow are presented. These measured step responses are subsequently used to develop a dynamic model for the main blow. The model consists of an iron oxide and a carbon balance and an additional equation describing the influence of the lance height and the oxygen blowing rate on the decarburization rate. With this simple dynamic model, the measured step responses can be explained satisfactorily.

  2. The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method

    PubMed Central

    Kamali, Hossein; Aminimoghadamfarouj, Noushin; Golmakani, Ebrahim; Nematollahi, Alireza

    2015-01-01

    Aim: The aim of this study was to examine and evaluate crucial variables in essential oils extraction process from Lavandula hybrida through static-dynamic and semi-continuous techniques using response surface method. Materials and Methods: Essential oil components were extracted from Lavandula hybrida (Lavandin) flowers using supercritical carbon dioxide via static-dynamic steps (SDS) procedure, and semi-continuous (SC) technique. Results: Using response surface method the optimum extraction yield (4.768%) was obtained via SDS at 108.7 bar, 48.5°C, 120 min (static: 8×15), 24 min (dynamic: 8×3 min) in contrast to the 4.620% extraction yield for the SC at 111.6 bar, 49.2°C, 14 min (static), 121.1 min (dynamic). Conclusion: The results indicated that a substantial reduction (81.56%) solvent usage (kg CO2/g oil) is observed in the SDS method versus the conventional SC method. PMID:25598636

  3. Initial photoinduced dynamics of the photoactive yellow protein.

    PubMed

    Larsen, Delmar S; van Grondelle, Rienk

    2005-05-01

    The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP photocycle have been explored with several time-resolved techniques, which include ultrafast electronic and vibrational spectroscopies. Ultrafast electronic spectroscopies, such as pump-visible probe, pump-dump-visible probe, and fluorescence upconversion, are useful in identifying the timescales and connectivity of the transient intermediates, while ultrafast vibrational spectroscopies link these intermediates to dynamic structures. Herein, we present the use of these techniques for exploring the initial dynamics of PYP, and show how these techniques provide the basis for understanding the complex relationship between protein and chromophore, which ultimately results in biological function.

  4. Effect of driving voltage polarity on dynamic response characteristics of electrowetting liquid lens

    NASA Astrophysics Data System (ADS)

    Na, Xie; Ning, Zhang; Rong-Qing, Xu

    2018-05-01

    A test device is developed for studying the dynamic process of an electrowetting liquid lens. By analyzing the light signals through the liquid lens, the dynamical properties of the lens are investigated. In our experiment, three types of pulse, i.e., sine, bipolar pulse, and single pulse signals, are employed to drive the liquid lens, and the dynamic characteristics of the lens are subsequently analyzed. The results show that the positive and negative polarities of the driving voltage can cause a significant difference in the response of the liquid lens; meanwhile, the lens’s response to the negative polarity of the driving voltage is clearer. We use the theory of charge restraint to explain this phenomenon, and it is concluded that the negative ions are more easily restrained by a dielectric layer. This work gives direct guidance for practical applications based on an electrowetting liquid lens.

  5. Study on dynamic performance of SOFC

    NASA Astrophysics Data System (ADS)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  6. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    PubMed

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  7. A New Concept to Reveal Protein Dynamics Based on Energy Dissipation

    PubMed Central

    Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping

    2011-01-01

    Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term “protein dynamical modules” based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine. PMID:22022616

  8. Carbon Dioxide and Fruit Odor Transduction in Drosophila Olfactory Neurons. What Controls their Dynamic Properties?

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Su, Chih-Ying; Torkkeli, Päivi H.

    2014-01-01

    We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor. PMID:24466044

  9. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    DOE PAGES

    David, C.; Karvinen, P.; Sikorski, M.; ...

    2015-01-06

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore » time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less

  10. Damage Instability and Transition From Quasi-Static to Dynamic Fracture

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2015-01-01

    In a typical mechanical test, the loading phase is intended to be a quasi-static process, while the failure and collapse is usually a dynamic event. The structural strength and modes of damage can seldom be predicted without accounting for these two aspects of the response. For a proper prediction, it is therefore essential to use tools and methodologies that are capable of addressing both aspects of responses. In some cases, implicit quasi-static models have been shown to be able to predict the entire response of a structure, including the unstable path that leads to fracture. However, is it acceptable to ignore the effect of inertial forces in the formation of damage? In this presentation we examine aspects of the damage processes that must be simulated for an accurate prediction of structural strength and modes of failure.

  11. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  12. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  13. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yi

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observationsmore » and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include: 1) the distinctly different roles played by atmospheric dynamical processes in establishing surface temperature response to ENSO at tropics and extratropics (i.e., atmospheric dynamics disperses energy out of tropics during ENSO warm events and modulate surface temperature at mid-, high-latitudes through controlling downward longwave radiation); 2) the representations of ENSO-related temperature response in climate models fail to converge at the process-level particularly over extratropics (i.e., models produce the right temperature responses to ENSO but with wrong reasons); 3) water vapor feedback contributes substantially to the temperature anomalies found over U.S. during different phases of the Northern Annular Mode (NAM), which adds new insight to the traditional picture that cold/warm advective processes are the main drivers of local temperature responses to the NAM; 4) the overall land surface temperature biases in the latest NCAR model (CESM1) are caused by biases in surface albedo while the surface temperature biases over ocean are related to multiple factors including biases in model albedo, cloud and oceanic dynamics, and the temperature biases over different ocean basins are also induced by different process biases. These results provide a detailed guidance for process-level model turning and improvement, and thus contribute directly to the overall goal of reducing model uncertainty in projecting future changes in the Earth’s climate system, especially in the ENSO and AM variability.« less

  14. Chasing boundaries and cascade effects in a coupled barrier - marshes - lagoon system

    NASA Astrophysics Data System (ADS)

    Lorenzo Trueba, J.; Mariotti, G.

    2015-12-01

    Low-lying coasts are often characterized by barriers islands, shore-parallel stretches of sand separated from the mainland by marshes and lagoons. We built an exploratory numerical model to examine the morphological feedbacks within an idealized barrier - marshes -lagoon system and predict its evolution under projected rates of sea level rise and sediment supply to the backbarrier environment. Our starting point is a recently developed morphodynamic model, which couples shoreface evolution and overwash processes in a dynamic framework. As such, the model is able to capture dynamics not reproduced by morphokinematic models, which advect geometries without specific concern to processes. These dynamics include periodic barrier retreat due to time lags in the shoreface response to barrier overwash, height drowning due to insufficient overwash fluxes as sea level rises, and width drowning, which occurs when the shoreface response rate is insufficient to maintain the barrier geometry during overwash-driven landward migration. We extended the model by coupling the barrier model with a model for the evolution of the marsh platform and the boundary between the marsh and the adjacent lagoon. The coupled model explicitly describes marsh edge processes and accounts for the modification of the wave regime associated with lagoon width (fetch). Model results demonstrate that changes in factors that are not typically associated with the dynamics of coastal barriers, such as the lagoon width and the rate of export/import of sediments from and to the lagoon, can lead to previously unidentified complex responses of the coupled system. In particular, a wider lagoon in the backbarrier, and/or a reduction in the supply of muddy sediments to the backbarrier, can increase barrier retreat rates and even trigger barrier drowning. Overall, our findings highlight the importance of incorporating backbarrier dynamics in models that aim at predicting the response of barrier systems.

  15. Modelling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties

    USGS Publications Warehouse

    Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.

    2000-01-01

    We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.

  16. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes.

    PubMed

    Wang, Cheng; Dong, Da; Strong, P J; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-08-16

    Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases that are distinguished by the temperature resulting from microbial activity, namely the mesophilic, thermophilic, cooling, and maturing phases. In this study, changes of resistome expression were determined and related to active microbiome profiles during the dynamic composting process. This was achieved by integrating metagenomic and time series metatranscriptomic data for the evolving microbial community during composting. Composting noticeably reduced the aggregated expression level of the manure resistome, which primarily consisted of genes encoding for tetracycline, vancomycin, fluoroquinolone, beta-lactam, and aminoglycoside resistance, as well as efflux pumps. Furthermore, a varied transcriptional response of resistome to composting at the ARG levels was highlighted. The expression of tetracycline resistance genes (tetM-tetW-tetO-tetS) decreased during composting, where distinctive shifts in the four phases of composting were related to variations in antibiotic concentration. Composting had no effect on the expression of sulfonamide and fluoroquinolone resistance genes, which increased slightly during the thermophilic phase and then decreased to initial levels. As indigenous populations switched greatly throughout the dynamic composting, the core resistome persisted and their reservoir hosts' composition was significantly correlated with dynamic active microbial phylogenetic structure. Hosts for sulfonamide and fuoroquinolone resistance genes changed notably in phylognetic structure and underwent an initial increase and then a decrease in abundance. By contrast, hosts for tetracycline resistance genes (tetM-tetW-tetO-tetS) exhibited a constant decline through time. The transcriptional patterns of a core resistome over the course of composting were identified, and microbial phylogeny was the key determinant in defining the varied transcriptional response of resistome to this dynamic biological process. This research demonstrated the benefits of composting for manure treatment. It reduced the risk of emerging environmental contaminants such as tetracyclines, tetracycline resistance genes, and clinically relevant pathogens carrying ARGs, as well as RNA viruses and bacteriophages.

  17. Dynamical Adaptation in Photoreceptors

    PubMed Central

    Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava

    2013-01-01

    Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119

  18. Dynamical Systems Theory: Application to Pedagogy

    NASA Astrophysics Data System (ADS)

    Abraham, Jane L.

    Theories of learning affect how cognition is viewed, and this subsequently leads to the style of pedagogical practice that is used in education. Traditionally, educators have relied on a variety of theories on which to base pedagogy. Behavioral learning theories influenced the teaching/learning process for over 50 years. In the 1960s, the information processing approach brought the mind back into the learning process. The current emphasis on constructivism integrates the views of Piaget, Vygotsky, and cognitive psychology. Additionally, recent scientific advances have allowed researchers to shift attention to biological processes in cognition. The problem is that these theories do not provide an integrated approach to understanding principles responsible for differences among students in cognitive development and learning ability. Dynamical systems theory offers a unifying theoretical framework to explain the wider context in which learning takes place and the processes involved in individual learning. This paper describes how principles of Dynamic Systems Theory can be applied to cognitive processes of students, the classroom community, motivation to learn, and the teaching/learning dynamic giving educational psychologists a framework for research and pedagogy.

  19. Solar Dynamics Observatory (SDO) HGAS Induced Jitter

    NASA Technical Reports Server (NTRS)

    Liu, Alice; Blaurock, Carl; Liu, Kuo-Chia; Mule, Peter

    2008-01-01

    This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.

  20. Local processes and regional patterns - Interpreting a multi-decadal altimetry record of Greenland Ice Sheet changes

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.

    2016-12-01

    This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.

  1. Emotions are emergent processes: they require a dynamic computational architecture

    PubMed Central

    Scherer, Klaus R.

    2009-01-01

    Emotion is a cultural and psychobiological adaptation mechanism which allows each individual to react flexibly and dynamically to environmental contingencies. From this claim flows a description of the elements theoretically needed to construct a virtual agent with the ability to display human-like emotions and to respond appropriately to human emotional expression. This article offers a brief survey of the desirable features of emotion theories that make them ideal blueprints for agent models. In particular, the component process model of emotion is described, a theory which postulates emotion-antecedent appraisal on different levels of processing that drive response system patterning predictions. In conclusion, investing seriously in emergent computational modelling of emotion using a nonlinear dynamic systems approach is suggested. PMID:19884141

  2. Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles

    NASA Astrophysics Data System (ADS)

    Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.

    2018-01-01

    In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.

  3. Practical UXO Classification: Enhanced Data Processing Strategies for Technology Transition - Fort Ord: Dynamic and Cued Metalmapper Processing and Classification

    DTIC Science & Technology

    2017-06-06

    OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...Geophysical Mapping, Electromagnetic Induction, Instrument Verification Strip, Time Domain Electromagnetic, Unexploded Ordnance 16. SECURITY...Munitions Response QA Quality Assurance QC Quality Control ROC Receiver Operating Characteristic RTK Real- time Kinematic s Second SNR

  4. Remnant Geometric Hall Response in a Quantum Quench.

    PubMed

    Wilson, Justin H; Song, Justin C W; Refael, Gil

    2016-12-02

    Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.

  5. Do Dynamic Compared to Static Facial Expressions of Happiness and Anger Reveal Enhanced Facial Mimicry?

    PubMed Central

    Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona

    2016-01-01

    Facial mimicry is the spontaneous response to others’ facial expressions by mirroring or matching the interaction partner. Recent evidence suggested that mimicry may not be only an automatic reaction but could be dependent on many factors, including social context, type of task in which the participant is engaged, or stimulus properties (dynamic vs static presentation). In the present study, we investigated the impact of dynamic facial expression and sex differences on facial mimicry and judgment of emotional intensity. Electromyography recordings were recorded from the corrugator supercilii, zygomaticus major, and orbicularis oculi muscles during passive observation of static and dynamic images of happiness and anger. The ratings of the emotional intensity of facial expressions were also analysed. As predicted, dynamic expressions were rated as more intense than static ones. Compared to static images, dynamic displays of happiness also evoked stronger activity in the zygomaticus major and orbicularis oculi, suggesting that subjects experienced positive emotion. No muscles showed mimicry activity in response to angry faces. Moreover, we found that women exhibited greater zygomaticus major muscle activity in response to dynamic happiness stimuli than static stimuli. Our data support the hypothesis that people mimic positive emotions and confirm the importance of dynamic stimuli in some emotional processing. PMID:27390867

  6. Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment

    ERIC Educational Resources Information Center

    van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.

    2011-01-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…

  7. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  8. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  9. Tracking Second Thoughts: Continuous and Discrete Revision Processes during Visual Lexical Decision

    PubMed Central

    Barca, Laura; Pezzulo, Giovanni

    2015-01-01

    We studied the dynamics of lexical decisions by asking participants to categorize lexical and nonlexical stimuli and recording their mouse movements toward response buttons during the choice. In a previous report we revealed greater trajectory curvature and attraction to competitors for Low Frequency words and Pseudowords. This analysis did not clarify whether the trajectory curvature in the two conditions was due to a continuous dynamic competition between the response alternatives or if a discrete revision process (a "change of mind") took place during the choice from an initially selected response to the opposite one. To disentangle these two possibilities, here we analyse the velocity and acceleration profiles of mouse movements during the choice. Pseudowords' peak movement velocity occurred with 100ms delay with respect to words and Letters Strings. Acceleration profile for High and Low Frequency words and Letters Strings exhibited a butterfly plot with one acceleration peak at 400ms and one deceleration peak at 650ms. Differently, Pseudowords' acceleration profile had double positive peaks (at 400 and 600ms) followed by movement deceleration, in correspondence with changes in the decision from lexical to nonlexical response buttons. These results speak to different online processes during the categorization of Low Frequency words and Pseudowords, with a continuous competition process for the former and a discrete revision process for the latter. PMID:25699992

  10. Pitch processing of dynamic lexical tones in the auditory cortex is influenced by sensory and extrasensory processes

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim is to evaluate how language experience (Chinese, English) shapes processing of pitch contours as reflected in the amplitude of cortical pitch response components. Responses were elicited from three dynamic, curvilinear, nonspeech stimuli varying in pitch direction and location of peak acceleration: Mandarin lexical Tone2 (rising) and Tone4 (falling); and a flipped variant of Tone2, Tone2′ (nonnative). At temporal sites (T7/T8), Chinese Na-Pb response amplitude to Tones 2 & 4 was greater than English in the right hemisphere only; a rightward asymmetry for Tones 2 & 4 was restricted to the Chinese group. In common to both Fz-to-linked T7/T8 and T7/T8 electrode sites, the stimulus pattern (Tones 2 & 4 > Tone2′) was found in the Chinese group only. As reflected by Pb-Nb at Fz, Chinese amplitude was larger than English in response to Tones 2 & 4; and Tones 2 & 4 were larger than Tone2′; whereas for English, Tone2 was larger than Tone2′ and Tone4. At frontal electrode sites (F3/F4), regardless of component or hemisphere, Chinese responses were larger in amplitude than English across stimuli. For either group, responses to Tones 2 & 4 were larger than Tone2′. No hemispheric asymmetry was observed at the frontal electrode sites. These findings highlight that cortical pitch response components are differentially modulated by experience-dependent, temporally distinct but functionally overlapping weighting of sensory and extrasensory effects on pitch processing of lexical tones in the right temporal lobe and, more broadly, are consistent with a distributed hierarchical predictive coding process. PMID:25943576

  11. The role of gap phase processes in the biomass dynamics of tropical forests

    PubMed Central

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M.N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-01-01

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four ‘old-growth’ tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget. PMID:17785266

  12. The role of gap phase processes in the biomass dynamics of tropical forests.

    PubMed

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-11-22

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.

  13. Equivalent reduced model technique development for nonlinear system dynamic response

    NASA Astrophysics Data System (ADS)

    Thibault, Louis; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2013-04-01

    The dynamic response of structural systems commonly involves nonlinear effects. Often times, structural systems are made up of several components, whose individual behavior is essentially linear compared to the total assembled system. However, the assembly of linear components using highly nonlinear connection elements or contact regions causes the entire system to become nonlinear. Conventional transient nonlinear integration of the equations of motion can be extremely computationally intensive, especially when the finite element models describing the components are very large and detailed. In this work, the equivalent reduced model technique (ERMT) is developed to address complicated nonlinear contact problems. ERMT utilizes a highly accurate model reduction scheme, the System equivalent reduction expansion process (SEREP). Extremely reduced order models that provide dynamic characteristics of linear components, which are interconnected with highly nonlinear connection elements, are formulated with SEREP for the dynamic response evaluation using direct integration techniques. The full-space solution will be compared to the response obtained using drastically reduced models to make evident the usefulness of the technique for a variety of analytical cases.

  14. Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.

    PubMed

    Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-09-14

    We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.

  15. Dynamic Responses and Initial Decomposition under Shock Loading: A DFTB Calculation Combined with MSST Method for β-HMX with Molecular Vacancy.

    PubMed

    He, Zheng-Hua; Chen, Jun; Ji, Guang-Fu; Liu, Li-Min; Zhu, Wen-Jun; Wu, Qiang

    2015-08-20

    Despite extensive efforts on studying the decomposition mechanism of HMX under extreme condition, an intrinsic understanding of mechanical and chemical response processes, inducing the initial chemical reaction, is not yet achieved. In this work, the microscopic dynamic response and initial decomposition of β-HMX with (1 0 0) surface and molecular vacancy under shock condition, were explored by means of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) in conjunction with multiscale shock technique (MSST). The evolutions of various bond lengths and charge transfers were analyzed to explore and understand the initial reaction mechanism of HMX. Our results discovered that the C-N bond close to major axes had less compression sensitivity and higher stretch activity. The charge was transferred mainly from the N-NO2 group along the minor axes and H atom to C atom during the early compression process. The first reaction of HMX primarily initiated with the fission of the molecular ring at the site of the C-N bond close to major axes. Further breaking of the molecular ring enhanced intermolecular interactions and promoted the cleavage of C-H and N-NO2 bonds. More significantly, the dynamic response behavior clearly depended on the angle between chemical bond and shock direction.

  16. Towards a predictive understanding of belowground process responses to climate change: have we moved any closer?

    Treesearch

    Elise Pendall; Lindsey Rustad; Josh Schimel

    2008-01-01

    Belowground processes, including root production and exudation, microbial activity and community dynamics, and biogeochemical cycling interact to help regulate climate change. Feedbacks associated with these processes, such as warming-enhanced decomposition rates, give rise to major uncertainties in predictions of future climate. Uncertainties associated with these...

  17. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B

    2010-02-01

    The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.

  18. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems.

    PubMed

    Hirakawa, Takeshi; Matsunaga, Sachihiro

    2016-01-01

    In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.

  19. Importance of vegetation distribution for future carbon balance

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.

    2015-12-01

    Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.

  20. In vivo imaging of the neurovascular unit in CNS disease

    PubMed Central

    Merlini, Mario; Davalos, Dimitrios; Akassoglou, Katerina

    2014-01-01

    The neurovascular unit—comprised of glia, pericytes, neurons and cerebrovasculature—is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets. PMID:25197615

  1. A signal processing framework for simultaneous detection of multiple environmental contaminants

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subhadeep; Manahan, Michael P.; Mench, Matthew M.

    2013-11-01

    The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities.

  2. Analysis Of Dynamic Interactions Between Solar Array Simulators And Spacecraft Power Conditioning And Distribution Units

    NASA Astrophysics Data System (ADS)

    Valdivia, V.; Barrado, A.; Lazaro, A.; Rueda, P.; Tonicello, F.; Fernandez, A.; Mourra, O.

    2011-10-01

    Solar array simulators (SASs) are hardware devices, commonly applied instead of actual solar arrays (SAs) during the design process of spacecrafts power conditioning and distribution units (PCDUs), and during spacecrafts assembly integration and tests. However, the dynamic responses between SASs and actual SAs are usually different. This fact plays an important role, since the dynamic response of the SAS may influence significantly the dynamic behaviour of the PCDU under certain conditions, even leading to instability. This paper deals with the dynamic interactions between SASs and PCDUs. Several methods for dynamic characterization of the SASs are discussed, and the response of commercial SASs widely applied in the space industry is compared to that of actual SAs. After that, the interactions are experimentally analyzed by using a boost converter connected to the aforementioned SASs, thus demonstrating their critical importance. The interactions are first tackled analytically by means of small-signal models, and finally a black-box modelling method of SASs is proposed as a useful tool to analyze the interactions by means of simulation. The capabilities of both the analytical method and the black- box model to predict the interactions are demonstrated.

  3. Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration

    PubMed Central

    Bravo, Roberto; Parra, Valentina; Gatica, Damián; Rodriguez, Andrea E.; Torrealba, Natalia; Paredes, Felipe; Wang, Zhao V.; Zorzano, Antonio; Hill, Joseph A.; Jaimovich, Enrique; Quest, Andrew F.G.; Lavandero, Sergio

    2013-01-01

    The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of reestablishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies. PMID:23317820

  4. Analysis of Mars Pathfinder Entry Data, Aerothermal Heating, and Heat Shield Material Response

    NASA Technical Reports Server (NTRS)

    Milos, Frank; Chen, Y. K.; Tran, H. K.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Mars Pathfinder heatshield contained several thermocouples and resistance thermometers. A description of the experiment, the entry data, and analysis of the entry environment and material response is presented. In particular, the analysis addresses uncertainties of the data and the fluid dynamics and material response models. The calculations use the latest trajectory and atmosphere reconstructions for the Pathfinder entry. A modified version of the GIANTS code is used for CFD (computational fluid dynamics) analyses, and FIAT is used for material response. The material response and flowfield are coupled appropriately. Three different material response models are considered. The analysis of Pathfinder entry data for validation of aerothermal heating and material response models is complicated by model uncertainties and unanticipated data-acquisition and processing problems. We will discuss these issues as well as ramifications of the data and analysis for future Mars missions.

  5. Cross-scale interactions, legacies, and spatial connectivity: integrating time and space to predict post-disturbance response across scales

    USDA-ARS?s Scientific Manuscript database

    Emergent properties and cross-scale interactions are important in driving landscape-scale dynamics during a disturbance event, such as wildfire. We used these concepts related to changing pattern-process relationships across scales to explain ecological responses following disturbance that resulted ...

  6. Slow Debye-type peak observed in the dielectric response of polyalcohols

    NASA Astrophysics Data System (ADS)

    Bergman, Rikard; Jansson, Helén; Swenson, Jan

    2010-01-01

    Dielectric relaxation spectroscopy of glass forming liquids normally exhibits a relaxation scenario that seems to be surprisingly general. However, the relaxation dynamics is more complicated for hydrogen bonded liquids. For instance, the dielectric response of monoalcohols is dominated by a mysterious Debye-like process at lower frequencies than the structural α-relaxation that is normally dominating the spectra of glass formers. For polyalcohols this process has been thought to be absent or possibly obscured by a strong contribution from conductivity and polarization effects at low frequencies. We here show that the Debye-like process, although much less prominent, is also present in the response of polyalcohols. It can be observed in the derivative of the real part of the susceptibility or directly in the imaginary part if the conductivity contribution is reduced by covering the upper electrode with a thin Teflon layer. We report on results from broadband dielectric spectroscopy studies of several polyalcohols: glycerol, xylitol, and sorbitol. The findings are discussed in relation to other experimental observations of ultraslow (i.e., slower than the viscosity related α-relaxation) dynamics in glass formers.

  7. Mid-frequency Band Dynamics of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  8. Perspectives on the role of mobility, behavior, and time scales in the spread of diseases.

    PubMed

    Castillo-Chavez, Carlos; Bichara, Derdei; Morin, Benjamin R

    2016-12-20

    The dynamics, control, and evolution of communicable and vector-borne diseases are intimately connected to the joint dynamics of epidemiological, behavioral, and mobility processes that operate across multiple spatial, temporal, and organizational scales. The identification of a theoretical explanatory framework that accounts for the pattern regularity exhibited by a large number of host-parasite systems, including those sustained by host-vector epidemiological dynamics, is but one of the challenges facing the coevolving fields of computational, evolutionary, and theoretical epidemiology. Host-parasite epidemiological patterns, including epidemic outbreaks and endemic recurrent dynamics, are characteristic to well-identified regions of the world; the result of processes and constraints such as strain competition, host and vector mobility, and population structure operating over multiple scales in response to recurrent disturbances (like El Niño) and climatological and environmental perturbations over thousands of years. It is therefore important to identify and quantify the processes responsible for observed epidemiological macroscopic patterns: the result of individual interactions in changing social and ecological landscapes. In this perspective, we touch on some of the issues calling for the identification of an encompassing theoretical explanatory framework by identifying some of the limitations of existing theory, in the context of particular epidemiological systems. Fostering the reenergizing of research that aims at disentangling the role of epidemiological and socioeconomic forces on disease dynamics, better understood as complex adaptive systems, is a key aim of this perspective.

  9. Principles of auditory processing differ between sensory and premotor structures of the songbird forebrain

    PubMed Central

    Vicario, David S.

    2017-01-01

    Sensory and motor brain structures work in collaboration during perception. To evaluate their respective contributions, the present study recorded neural responses to auditory stimulation at multiple sites simultaneously in both the higher-order auditory area NCM and the premotor area HVC of the songbird brain in awake zebra finches (Taeniopygia guttata). Bird’s own song (BOS) and various conspecific songs (CON) were presented in both blocked and shuffled sequences. Neural responses showed plasticity in the form of stimulus-specific adaptation, with markedly different dynamics between the two structures. In NCM, the response decrease with repetition of each stimulus was gradual and long-lasting and did not differ between the stimuli or the stimulus presentation sequences. In contrast, HVC responses to CON stimuli decreased much more rapidly in the blocked than in the shuffled sequence. Furthermore, this decrease was more transient in HVC than in NCM, as shown by differential dynamics in the shuffled sequence. Responses to BOS in HVC decreased more gradually than to CON stimuli. The quality of neural representations, computed as the mutual information between stimuli and neural activity, was higher in NCM than in HVC. Conversely, internal functional correlations, estimated as the coherence between recording sites, were greater in HVC than in NCM. The cross-coherence between the two structures was weak and limited to low frequencies. These findings suggest that auditory communication signals are processed according to very different but complementary principles in NCM and HVC, a contrast that may inform study of the auditory and motor pathways for human speech processing. NEW & NOTEWORTHY Neural responses to auditory stimulation in sensory area NCM and premotor area HVC of the songbird forebrain show plasticity in the form of stimulus-specific adaptation with markedly different dynamics. These two structures also differ in stimulus representations and internal functional correlations. Accordingly, NCM seems to process the individually specific complex vocalizations of others based on prior familiarity, while HVC responses appear to be modulated by transitions and/or timing in the ongoing sequence of sounds. PMID:28031398

  10. Cell fate determination dynamics in bacteria

    NASA Astrophysics Data System (ADS)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol

    2010-03-01

    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  11. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  12. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex

    PubMed Central

    Chaudhuri, Rishidev; Knoblauch, Kenneth; Gariel, Marie-Alice; Kennedy, Henry; Wang, Xiao-Jing

    2015-01-01

    We developed a large-scale dynamical model of the macaque neocortex, which is based on recently acquired directed- and weighted-connectivity data from tract-tracing experiments, and which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from this system: sensory areas show brief, transient responses to input (appropriate for sensory processing), whereas association areas integrate inputs over time and exhibit persistent activity (suitable for decision-making and working memory). The model displays multiple temporal hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation. Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain dynamics. These findings establish a circuit mechanism for “temporal receptive windows” that are progressively enlarged along the cortical hierarchy, suggest an extension of time integration in decision-making from local to large circuits, and should prompt a re-evaluation of the analysis of functional connectivity (measured by fMRI or EEG/MEG) by taking into account inter-areal heterogeneity. PMID:26439530

  13. Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.

    PubMed

    McDermott, Timothy J; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2017-08-01

    The flanker task is a test of visual selective attention that has been widely used to probe error monitoring, response conflict, and related constructs. However, to date, few studies have focused on the selective attention component of this task and imaged the underlying oscillatory dynamics serving task performance. In this study, 21 healthy adults successfully completed an arrow-based version of the Eriksen flanker task during magnetoencephalography (MEG). All MEG data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and voxel time series were extracted from the peak responses to identify the temporal dynamics. Across both congruent and incongruent flanker conditions, our results indicated robust decreases in alpha (9-12Hz) activity in medial and lateral occipital regions, bilateral parietal cortices, and cerebellar areas during task performance. In parallel, increases in theta (3-7Hz) oscillatory activity were detected in dorsal and ventral frontal regions, and the anterior cingulate. As per conditional effects, stronger alpha responses (i.e., greater desynchronization) were observed in parietal, occipital, and cerebellar cortices during incongruent relative to congruent trials, whereas the opposite pattern emerged for theta responses (i.e., synchronization) in the anterior cingulate, left dorsolateral prefrontal, and ventral prefrontal cortices. Interestingly, the peak latency of theta responses in these latter brain regions was significantly correlated with reaction time, and may partially explain the amplitude difference observed between congruent and incongruent trials. Lastly, whole-brain exploratory analyses implicated the frontal eye fields, right temporoparietal junction, and premotor cortices. These findings suggest that regions of both the dorsal and ventral attention networks contribute to visual selective attention processes during incongruent trials, and that such differential processes are transient and fully completed shortly after the behavioral response in most trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Neurodynamics of Affect in the Laboratory Predicts Persistence of Real-World Emotional Responses.

    PubMed

    Heller, Aaron S; Fox, Andrew S; Wing, Erik K; McQuisition, Kaitlyn M; Vack, Nathan J; Davidson, Richard J

    2015-07-22

    Failure to sustain positive affect over time is a hallmark of depression and other psychopathologies, but the mechanisms supporting the ability to sustain positive emotional responses are poorly understood. Here, we investigated the neural correlates associated with the persistence of positive affect in the real world by conducting two experiments in humans: an fMRI task of reward responses and an experience-sampling task measuring emotional responses to a reward obtained in the field. The magnitude of DLPFC engagement to rewards administered in the laboratory predicted reactivity of real-world positive emotion following a reward administered in the field. Sustained ventral striatum engagement in the laboratory positively predicted the duration of real-world positive emotional responses. These results suggest that common pathways are associated with the unfolding of neural processes over seconds and with the dynamics of emotions experienced over minutes. Examining such dynamics may facilitate a better understanding of the brain-behavior associations underlying emotion. Significance statement: How real-world emotion, experienced over seconds, minutes, and hours, is instantiated in the brain over the course of milliseconds and seconds is unknown. We combined a novel, real-world experience-sampling task with fMRI to examine how individual differences in real-world emotion, experienced over minutes and hours, is subserved by affective neurodynamics of brain activity over the course of seconds. When winning money in the real world, individuals sustaining positive emotion the longest were those with the most prolonged ventral striatal activity. These results suggest that common pathways are associated with the unfolding of neural processes over seconds and with the dynamics of emotions experienced over minutes. Examining such dynamics may facilitate a better understanding of the brain-behavior associations underlying emotion. Copyright © 2015 the authors 0270-6474/15/3510503-07$15.00/0.

  15. Unraveling the sub-processes of selective attention: insights from dynamic modeling and continuous behavior.

    PubMed

    Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan

    2015-11-01

    Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.

  16. Oculometric Assessment of Dynamic Visual Processing

    NASA Technical Reports Server (NTRS)

    Liston, Dorion Bryce; Stone, Lee

    2014-01-01

    Eye movements are the most frequent (3 per second), shortest-latency (150-250 ms), and biomechanically simplest (1 joint, no inertial complexities) voluntary motor behavior in primates, providing a model system to assess sensorimotor disturbances arising from trauma, fatigue, aging, or disease states (e.g., Diefendorf and Dodge, 1908). We developed a 15-minute behavioral tracking protocol consisting of randomized stepramp radial target motion to assess several aspects of the behavioral response to dynamic visual motion, including pursuit initiation, steadystate tracking, direction-tuning, and speed-tuning thresholds. This set of oculomotor metrics provide valid and reliable measures of dynamic visual performance (Stone and Krauzlis, 2003; Krukowski and Stone, 2005; Stone et al, 2009; Liston and Stone, 2014), and may prove to be a useful assessment tool for functional impairments of dynamic visual processing.

  17. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    Treesearch

    Shuhua Yi; David McGuire; Jennifer Harden; Eric Kasischke; Kristen Manies; Larr Hinzman; Anna Liljedahl; Jim Randerson; Heping Liu; Vladimire Romanovsky; Sergei Marchenko; Yongwon Kim

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were...

  18. Dynamic musical communication of core affect

    PubMed Central

    Flaig, Nicole K.; Large, Edward W.

    2013-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified “scene” that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience. PMID:24672492

  19. Dynamic musical communication of core affect.

    PubMed

    Flaig, Nicole K; Large, Edward W

    2014-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified "scene" that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  20. Brain dynamics in ASD during movie-watching show idiosyncratic functional integration and segregation.

    PubMed

    Bolton, Thomas A W; Jochaut, Delphine; Giraud, Anne-Lise; Van De Ville, Dimitri

    2018-06-01

    To refine our understanding of autism spectrum disorders (ASD), studies of the brain in dynamic, multimodal and ecological experimental settings are required. One way to achieve this is to compare the neural responses of ASD and typically developing (TD) individuals when viewing a naturalistic movie, but the temporal complexity of the stimulus hampers this task, and the presence of intrinsic functional connectivity (FC) may overshadow movie-driven fluctuations. Here, we detected inter-subject functional correlation (ISFC) transients to disentangle movie-induced functional changes from underlying resting-state activity while probing FC dynamically. When considering the number of significant ISFC excursions triggered by the movie across the brain, connections between remote functional modules were more heterogeneously engaged in the ASD population. Dynamically tracking the temporal profiles of those ISFC changes and tying them to specific movie subparts, this idiosyncrasy in ASD responses was then shown to involve functional integration and segregation mechanisms such as response inhibition, background suppression, or multisensory integration, while low-level visual processing was spared. Through the application of a new framework for the study of dynamic experimental paradigms, our results reveal a temporally localized idiosyncrasy in ASD responses, specific to short-lived episodes of long-range functional interplays. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  1. Nonlinear dynamics of team performance and adaptability in emergency response.

    PubMed

    Guastello, Stephen J

    2010-04-01

    The impact of team size and performance feedback on adaptation levels and performance of emergency response (ER) teams was examined to introduce a metric for quantifying adaptation levels based on nonlinear dynamical systems (NDS) theory. NDS principles appear in reports surrounding Hurricane Katrina, earthquakes, floods, a disease epidemic, and the Southeast Asian tsunami. They are also intrinsic to coordination within teams, adaptation levels, and performance in dynamic decision processes. Performance was measured in a dynamic decision task in which ER teams of different sizes worked against an attacker who was trying to destroy a city (total N = 225 undergraduates). The complexity of teams' and attackers' adaptation strategies and the role of the opponents' performance were assessed by nonlinear regression analysis. An optimal group size for team performance was identified. Teams were more readily influenced by the attackers' performance than vice versa. The adaptive capabilities of attackers and teams were impaired by their opponents in some conditions. ER teams should be large enough to contribute a critical mass of ideas but not so large that coordination would be compromised. ER teams used self-organized strategies that could have been more adaptive, whereas attackers used chaotic strategies. The model and results are applicable to ER processes or training maneuvers involving dynamic decisions but could be limited to nonhierarchical groups.

  2. Online tracking of instantaneous frequency and amplitude of dynamical system response

    NASA Astrophysics Data System (ADS)

    Frank Pai, P.

    2010-05-01

    This paper presents a sliding-window tracking (SWT) method for accurate tracking of the instantaneous frequency and amplitude of arbitrary dynamic response by processing only three (or more) most recent data points. Teager-Kaiser algorithm (TKA) is a well-known four-point method for online tracking of frequency and amplitude. Because finite difference is used in TKA, its accuracy is easily destroyed by measurement and/or signal-processing noise. Moreover, because TKA assumes the processed signal to be a pure harmonic, any moving average in the signal can destroy the accuracy of TKA. On the other hand, because SWT uses a constant and a pair of windowed regular harmonics to fit the data and estimate the instantaneous frequency and amplitude, the influence of any moving average is eliminated. Moreover, noise filtering is an implicit capability of SWT when more than three data points are used, and this capability increases with the number of processed data points. To compare the accuracy of SWT and TKA, Hilbert-Huang transform is used to extract accurate time-varying frequencies and amplitudes by processing the whole data set without assuming the signal to be harmonic. Frequency and amplitude trackings of different amplitude- and frequency-modulated signals, vibrato in music, and nonlinear stationary and non-stationary dynamic signals are studied. Results show that SWT is more accurate, robust, and versatile than TKA for online tracking of frequency and amplitude.

  3. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  4. A Multi-Scale, Integrated Approach to Representing Watershed Systems

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy; Kim, Jongho; Fatichi, Simone; Katopodes, Nikolaos

    2014-05-01

    Understanding and predicting process dynamics across a range of scales are fundamental challenges for basic hydrologic research and practical applications. This is particularly true when larger-spatial-scale processes, such as surface-subsurface flow and precipitation, need to be translated to fine space-time scale dynamics of processes, such as channel hydraulics and sediment transport, that are often of primary interest. Inferring characteristics of fine-scale processes from uncertain coarse-scale climate projection information poses additional challenges. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion, and sediment transport, tRIBS+VEGGIE-FEaST. The model targets to take the advantage of the current generation of wealth of data representing watershed topography, vegetation, soil, and landuse, as well as to explore the hydrological effects of physical factors and their feedback mechanisms over a range of scales. We illustrate how the modeling system connects precipitation-hydrologic runoff partition process to the dynamics of flow, erosion, and sedimentation, and how the soil's substrate condition can impact the latter processes, resulting in a non-unique response. We further illustrate an approach to using downscaled climate change information with a process-based model to infer the moments of hydrologic variables in future climate conditions and explore the impact of climate information uncertainty.

  5. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  6. Neural correlates of motor learning in the vestibulo-ocular reflex: dynamic regulation of multimodal integration in the macaque vestibular system

    PubMed Central

    Sadeghi, Soroush G.; Minor, Lloyd B.; Cullen, Kathleen E.

    2010-01-01

    Motor learning is required for the reacquisition of skills that have been compromised as a result of brain lesion or disease, as well as for the acquisition of new skills. Behaviors with well-characterized anatomy and physiology are required to yield significant insight into changes that occur in the brain during motor learning. The vestibulo-ocular-reflex (VOR) is well suited to establish connections between neurons, neural circuits, and motor performance during learning. Here we examined the linkage between neuronal and behavioural VOR responses in alert behaving monkeys (macaca mulatta) during the impressive recovery that occurs after unilateral vestibular loss. We show, for the first time, that motor learning is characterized by the dynamic reweighting of inputs from different modalities (i.e., vestibular versus extra-vestibular) at the level of the single neurons which constitute the first central stage of vestibular processing. Specifically, two types of information, which did not influence neuronal responses prior to the lesion, had an important role during compensation. First, unmasked neck proprioceptive inputs played a critical role in the early stages of this process demonstrated by faster and more substantial recovery of vestibular responses in proprioceptive sensitive neurons. Second, neuronal and VOR responses were significantly enhanced during active relative to passive head motion later in the compensation process (>3 weeks). Taken together, our findings provide evidence linking the dynamic regulation of multimodal integration at the level of single neurons and behavioural recovery, suggesting a role for homeostatic mechanisms in VOR motor learning. PMID:20668199

  7. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less

  8. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  9. A dynamic dual process model of risky decision making.

    PubMed

    Diederich, Adele; Trueblood, Jennifer S

    2018-03-01

    Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Role of temporal processing stages by inferior temporal neurons in facial recognition.

    PubMed

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition.

  11. Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition

    PubMed Central

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition. PMID:21734904

  12. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge.

    PubMed

    Beaton, Lauren E; Azma, Sheeva; Marinkovic, Ksenija

    2018-01-01

    Despite the subjective experience of being in full and deliberate control of our actions, our daily routines rely on a continuous and interactive engagement of sensory evaluation and response preparation streams. They unfold automatically and unconsciously and are seamlessly integrated with cognitive control which is mobilized by stimuli that evoke ambiguity or response conflict. Methods with high spatio-temporal sensitivity are needed to provide insight into the interplay between automatic and controlled processing. This study used anatomically-constrained MEG to examine the underlying neural dynamics in a flanker task that manipulated S-R incongruity at the stimulus (SI) and response levels (RI). Though irrelevant, flankers evoked automatic preparation of motor plans which had to be suppressed and reversed following the target presentation on RI trials. Event-related source power estimates in beta (15-25 Hz) frequency band in the sensorimotor cortex tracked motor preparation and response in real time and revealed switching from the incorrectly-primed to the correctly-responding hemisphere. In contrast, theta oscillations (4-7 Hz) were sensitive to the levels of incongruity as the medial and ventrolateral frontal cortices were especially activated by response conflict. These two areas are key to cognitive control and their integrated contributions to response inhibition and switching were revealed by phase-locked co-oscillations. These processes were pharmacologically manipulated with a moderate alcohol beverage or a placebo administered to healthy social drinkers. Alcohol selectively decreased accuracy to response conflict. It strongly attenuated theta oscillations during decision making and partly re-sculpted relative contributions of the frontal network without affecting the motor switching process subserved by beta band. Our results indicate that motor preparation is initiated automatically even when counterproductive but that it is monitored and regulated by the prefrontal cognitive control processes under conflict. They further confirm that the regulative top-down functions are particularly vulnerable to alcohol intoxication.

  13. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge

    PubMed Central

    Beaton, Lauren E.; Azma, Sheeva; Marinkovic, Ksenija

    2018-01-01

    Despite the subjective experience of being in full and deliberate control of our actions, our daily routines rely on a continuous and interactive engagement of sensory evaluation and response preparation streams. They unfold automatically and unconsciously and are seamlessly integrated with cognitive control which is mobilized by stimuli that evoke ambiguity or response conflict. Methods with high spatio-temporal sensitivity are needed to provide insight into the interplay between automatic and controlled processing. This study used anatomically-constrained MEG to examine the underlying neural dynamics in a flanker task that manipulated S-R incongruity at the stimulus (SI) and response levels (RI). Though irrelevant, flankers evoked automatic preparation of motor plans which had to be suppressed and reversed following the target presentation on RI trials. Event-related source power estimates in beta (15–25 Hz) frequency band in the sensorimotor cortex tracked motor preparation and response in real time and revealed switching from the incorrectly-primed to the correctly-responding hemisphere. In contrast, theta oscillations (4–7 Hz) were sensitive to the levels of incongruity as the medial and ventrolateral frontal cortices were especially activated by response conflict. These two areas are key to cognitive control and their integrated contributions to response inhibition and switching were revealed by phase-locked co-oscillations. These processes were pharmacologically manipulated with a moderate alcohol beverage or a placebo administered to healthy social drinkers. Alcohol selectively decreased accuracy to response conflict. It strongly attenuated theta oscillations during decision making and partly re-sculpted relative contributions of the frontal network without affecting the motor switching process subserved by beta band. Our results indicate that motor preparation is initiated automatically even when counterproductive but that it is monitored and regulated by the prefrontal cognitive control processes under conflict. They further confirm that the regulative top-down functions are particularly vulnerable to alcohol intoxication. PMID:29329355

  14. Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression

    PubMed Central

    Petrovic, Nada; Alderson, David L.; Carlson, Jean M.

    2012-01-01

    Challenges associated with the allocation of limited resources to mitigate the impact of natural disasters inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of disaster phenomena, including oil spills and disease epidemics, where (1) the disaster evolves on the same timescale as the response effort, and (2) delays in response can lead to increased disaster severity and thus greater demand for resources. We introduce a minimal stochastic process to represent wildfire progression that nonetheless accurately captures the heavy tailed statistical distribution of fire sizes observed in nature. We then couple this model for fire spread to a series of response models that isolate fundamental tradeoffs both in the strength and timing of response and also in division of limited resources across multiple competing suppression efforts. Using this framework, we compute optimal strategies for decision making scenarios that arise in fire response policy. PMID:22514605

  15. Influence of tyre-road contact model on vehicle vibration response

    NASA Astrophysics Data System (ADS)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  16. Academic Excellence/Economic Development Working Group Progress Report to the Board

    ERIC Educational Resources Information Center

    Oregon University System, 2004

    2004-01-01

    A knowledge economy produces new knowledge; transforms knowledge into innovative products, processes, and services; moves innovations into the marketplace; and ultimately, develops new markets. It is global in perspective, collaborative in process, and dynamic in its responsiveness to changing conditions. Most important, it is fed by a healthy…

  17. Dynamic gas temperature measurements using a personal computer for data acquisition and reduction

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Oberle, Lawrence G.; Greer, Lawrence C., III

    1993-01-01

    This report describes a dynamic gas temperature measurement system. It has frequency response to 1000 Hz, and can be used to measure temperatures in hot, high pressure, high velocity flows. A personal computer is used for collecting and processing data, which results in a much shorter wait for results than previously. The data collection process and the user interface are described in detail. The changes made in transporting the software from a mainframe to a personal computer are described in appendices, as is the overall theory of operation.

  18. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought

    Treesearch

    Koong Yi; Danilo Dragoni; Richard P. Phillips; Daniel Tyler Roman; Kimberly A. Novick

    2017-01-01

    Predicting the impact of drought on forest ecosystem processes requires an understanding of trees' species-specific responses to drought, especially in the Eastern USA, where species composition is highly dynamic due to historical changes in land use and fire regime. Here, we adapted a framework that classifies trees' water-use strategy along the spectrum of...

  19. Optimal control theory investigation of proprotor/wing response to vertical gust

    NASA Technical Reports Server (NTRS)

    Frick, J. K. D.; Johnson, W.

    1974-01-01

    Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.

  20. Spatial orientation perception and reflexive eye movements--a perspective, an overview, and some clinical implications

    NASA Technical Reports Server (NTRS)

    Guedry, F. E.; Paloski, W. F. (Principal Investigator)

    1996-01-01

    When head motion includes a linear velocity component, eye velocity required to track an earth-fixed target depends upon: a) angular and linear head velocity, b) target distance, and c) direction of gaze relative to the motion trajectory. Recent research indicates that eye movements (LVOR), presumably otolith-mediated, partially compensate for linear velocity in small head excursions on small devices. Canal-mediated eye velocity (AVOR), otolith-mediated eye velocity (LVOR), and Ocular Torsion (OT) can be measured, one by one, on small devices. However, response dynamics that depend upon the ratio of linear to angular velocity in the motion trajectory and on subject orientation relative to the trajectory are present in a centrifuge paradigm. With this paradigm, two 3-min runs yields measures of: LVOR differentially modulated by different subject orientations in the two runs; OT dynamics in four conditions; two directions of "steady-state" OT, and two directions of AVOR. Efficient assessment of the dynamics (and of the underlying central integrative processes) may require a centrifuge radius of 1.0 meters or more. Clinical assessment of the spatial orientation system should include evaluation of central integrative processes that determine the dynamics of these responses.

  1. Population dynamics can be more important than physiological limits for determining range shifts under climate change.

    PubMed

    Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W

    2013-10-01

    Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.

  2. Flow cells for bioanalytical and bioprocess applications with optimized dynamic response and flow characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, V.R.; Modlin, D.N.

    1994-12-31

    In this study, the authors present a method for design and characterization of flow cells developed for minimum flow volume and optimal dynamic response with a given central observation area. The dynamic response of a circular shaped dual ported flow cell was compared to that obtained from a flow cell whose optimized shape was determined using this method. In the optimized flow cell design, the flow rate at the nominal operating pressure increased by 50% whereas the flow cell volume was reduced by 70%. In addition, the dynamic response of the new flow cell was found to be 200% fastermore » than the circular flow cell. The fluid dynamic analysis included simple graphical techniques utilizing free stream vorticity functions and Hagen-Poiseuille relationships. The flow cell dynamic response was measured using a fluorescence detection system. The fluoresce in emission from a 400{micro}m spot located at the exit port was measured as a function of time after switching the input to the flow cell between fluorescent and non-fluorescent solutions. Analysis of results revealed the system could be reasonably characterized as a first order dynamic system. Although some evidence of second order behavior was also observed, it is reasonable to assume that a first order model will provide adequate predictive capability for many real world applications. Given a set of flow cell requirements, the methods presented in this study can be used to design and characterize flow cells with lower reagent consumption and reduced purging times. These improvements can be readily translated into reduced process times and/or lower usage of high cost reagents.« less

  3. Responding to Ambiguity, Responding to Change the Value of a Responsive Approach to Evaluation.

    ERIC Educational Resources Information Center

    Abma, T. A.

    2000-01-01

    Evaluated the success of a palliative health care team in a Dutch health region. Results show that it is more appropriate to acknowledge ambiguity and facilitate its handling as part of dynamic learning processes. Discusses the usefulness of a responsive approach to evaluation, evaluation methodology, and learning experiences. (SLD)

  4. Perceiving while producing: Modeling the dynamics of phonological planning

    PubMed Central

    Roon, Kevin D.; Gafos, Adamantios I.

    2016-01-01

    We offer a dynamical model of phonological planning that provides a formal instantiation of how the speech production and perception systems interact during online processing. The model is developed on the basis of evidence from an experimental task that requires concurrent use of both systems, the so-called response-distractor task in which speakers hear distractor syllables while they are preparing to produce required responses. The model formalizes how ongoing response planning is affected by perception and accounts for a range of results reported across previous studies. It does so by explicitly addressing the setting of parameter values in representations. The key unit of the model is that of the dynamic field, a distribution of activation over the range of values associated with each representational parameter. The setting of parameter values takes place by the attainment of a stable distribution of activation over the entire field, stable in the sense that it persists even after the response cue in the above experiments has been removed. This and other properties of representations that have been taken as axiomatic in previous work are derived by the dynamics of the proposed model. PMID:27440947

  5. Understanding the dynamics of correct and error responses in free recall: evidence from externalized free recall.

    PubMed

    Unsworth, Nash; Brewer, Gene A; Spillers, Gregory J

    2010-06-01

    The dynamics of correct and error responses in a variant of delayed free recall were examined in the present study. In the externalized free recall paradigm, participants were presented with lists of words and were instructed to subsequently recall not only the words that they could remember from the most recently presented list, but also any other words that came to mind during the recall period. Externalized free recall is useful for elucidating both sampling and postretrieval editing processes, thereby yielding more accurate estimates of the total number of error responses, which are typically sampled and subsequently edited during free recall. The results indicated that the participants generally sampled correct items early in the recall period and then transitioned to sampling more erroneous responses. Furthermore, the participants generally terminated their search after sampling too many errors. An examination of editing processes suggested that the participants were quite good at identifying errors, but this varied systematically on the basis of a number of factors. The results from the present study are framed in terms of generate-edit models of free recall.

  6. Blade loss transient dynamics analysis, volume 2. Task 2: TETRA 2 user's manual

    NASA Technical Reports Server (NTRS)

    Black, Gerald; Gallardo, Vincente C.

    1986-01-01

    This is the user's manual for the TETRA 2 Computer Code, a program developed in the NASA-Lewis Blade Loss Program. TETRA 2 calculates a turbine engine's dynamic structural response from applied stimuli. The calculation options are: (1) transient response; and (2) steady state forced response. Based on the method of modal syntheses, the program allows the use of linear, as well as nonlinear connecting elements. Both transient and steady state options can include: flexible Bladed Disk Module, and Nonlinear Connecting Elements (including deadband, hardening/softening spring). The transient option has the additional capability to calculate response with a squeeze film bearing module. TETRA 2 output is summarized in a plotfile which permits post processing such as FFT or graphical animation with the proper software and computer equipment.

  7. Developments in ambient noise analysis for the characterization of dynamic response of slopes to seismic shaking

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Vincenzo; Wasowski, Janusz

    2016-04-01

    In the last few decades, we have witnessed a growing awareness of the role of site dynamic response to seismic shaking in slope failures during earthquakes. Considering the time and costs involved in acquiring accelerometer data on landslide prone slopes, the analysis of ambient noise offers a profitable investigative alternative. Standard procedures of ambient noise analysis, according to the technique known as HVNR or Nakamura's method, were originally devised to interpret data under simple site conditions similar to 1D layering (flat horizontal layering infinitely extended). In such cases, conditions of site amplification, characterized by a strong impedance contrast between a soft surface layer and a stiff bedrock, result in a single pronounced isotropic maximum of spectral ratios between horizontal and vertical component of ambient noise. However, previous studies have shown that the dynamic response of slopes affected by landslides is rather complex, being characterized by multiple resonance peaks with directional variability, thus, the use of standard techniques can encounter difficulties in providing reliable information. A new approach of data analysis has recently been proposed to exploit the potential of information content of Rayleigh waves present in ambient noise, with regard to the identification of frequency and orientation of directional resonance. By exploiting ground motion ellipticity this approach can also provide information on vertical distribution of S-wave velocity, which controls site amplification factors. The method, based on the identification of Rayleigh wave packets from instantaneous polarization properties of ambient noise, was first tested using synthetic signals in order to optimize the data processing system. Then the improved processing scheme is adopted to re-process and re-interpret the ambient noise data acquired on landslide prone slopes around Caramanico Terme (central Italy), at sites monitored also with accelerometer stations. The comparison of ambient noise analysis results with the outcomes of accelerometer monitoring reveals potential and limits of the new method for the investigations on slope dynamic response.

  8. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  9. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305

  10. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.

  11. Ice-proximal sediment dynamics and their effect on the stability of Muir Glacier, Alaska: A case study of non-climatic glacier response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, L.E.; Powell, R.D.

    1992-01-01

    Recent studies have shown that water depth at tidewater termini affect calving rates and, therefore, glacier mass balance and terminus stability. Grounding-line water depths are themselves governed by glacial and marine processes that interact during the formation of morainal bank depocenters. These morainal banks can fluctuate 10s of meters in height within an interval of a few weeks. Recent investigations in Glacier Bay have focused on quantitatively assessing sediment budgets in the ice-proximal environment. The monitoring of morainal banks in upper Muir Inlet has included repeated bathymetric mapping, sediment trap studies, bottom grab sampling, glacier and iceberg sampling, and submersiblemore » ROV investigations within 1 km of the terminus. Such relationships are important in interpreting recent changes in the dynamics of Muir Glacier where a century of retreat has been succeeded by quasi stability. The new glacier regime has accompanied basin infilling from approximately 100 m depth to a maximum of 52 m at the grounding line. Two large grounding-line fans have aggraded to deltas and reduced the length of the calving margin from 900 m to 290 m wide. These effects have reduced the ice flow velocities by 45%. Annual morainal bank growth ranged from 10[sup 6] to 10[sup 7] m[sup 3] and is the result of glacifluvial dumping, suspension settling from turbid overflow plumes, debris dumping from ice-cliff and iceberg melting, glacier squeezing and pushing of morainal bank sediment, and sediment gravity flow processes. Each of these processes are an integral facet of the morainal bank dynamics and glacier response. These studies of Muir Glacier indicate that glacier response to sediment dynamics need to be addresses before climatic implications are made.« less

  12. High-dynamic-range scene compression in humans

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2006-02-01

    Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up table. It is used in chemical and most digital photographic systems having S-shaped transforms to render high-range scenes onto low-range media. Post-receptor neural processing is spatial, as shown by the physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the response to a particular quanta catch can be any color. Visual response is scene dependent. Stockham proposed an approach to model human range compression using low-spatial frequency filters. Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel models. This paper describes experiments measuring the properties of desirable spatial-frequency filters for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the spatial pattern of changes made by the visual system in processing the input image. It is the spatial signature of human vision. Low-dynamic range images with many white areas need no spatial filtering. High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on the right and shade on the left requires directional filters. These experiments show that variable scene- scenedependent filters are necessary to mimic human vision. Although spatial-frequency filters can model human dependent appearances, the problem still remains that an analysis of the scene is still needed to calculate the scene-dependent strengths of each of the filters for each frequency.

  13. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    PubMed Central

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  14. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    PubMed

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  15. Real-time monitoring of immune responses under pathogen invasion and drug interference by integrated microfluidic device coupled with worm-based biosensor.

    PubMed

    Hu, Liang; Ge, Anle; Wang, Xixian; Wang, Shanshan; Yue, Xinpei; Wang, Jie; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2018-07-01

    Immune response to environmental pathogen invasion is a complex process to prevent host from further damage. For quantitatively understanding immune responses and revealing the pathogenic environmental information, real-time monitoring of such a whole dynamic process with single-animal resolution in well-defined environments is highly desired. In this work, an integrated microfluidic device coupled with worm-based biosensor was proposed for in vivo studies of dynamic immune responses and antibiotics interference in infected C. elegans. Individual worms housed in chambers were exposed to the various pathogens and discontinuously manipulated for imaging with limited influence on physiological activities. The expression of immune responses gene (irg-1) was time-lapse measured in intact worms during pathogen infection. Results demonstrated that irg-1 gene could be induced in the presence of P. aeruginosa strain PA14 in a dose-dependent manner, and the survival of infected worm could be rescued under gentamicin or erythromycin treatments. We expect it to be a versatile platform to facilitate future studies on pathogenesis researches and rapid drug screen using C. elegans disease model. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-05-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  17. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: an example from the Ethiopian Highlands.

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-04-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  18. Understanding the biological underpinnings of ecohydrological processes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.

  19. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  20. Multi-Satellite Scheduling Approach for Dynamic Areal Tasks Triggered by Emergent Disasters

    NASA Astrophysics Data System (ADS)

    Niu, X. N.; Zhai, X. J.; Tang, H.; Wu, L. X.

    2016-06-01

    The process of satellite mission scheduling, which plays a significant role in rapid response to emergent disasters, e.g. earthquake, is used to allocate the observation resources and execution time to a series of imaging tasks by maximizing one or more objectives while satisfying certain given constraints. In practice, the information obtained of disaster situation changes dynamically, which accordingly leads to the dynamic imaging requirement of users. We propose a satellite scheduling model to address dynamic imaging tasks triggered by emergent disasters. The goal of proposed model is to meet the emergency response requirements so as to make an imaging plan to acquire rapid and effective information of affected area. In the model, the reward of the schedule is maximized. To solve the model, we firstly present a dynamic segmenting algorithm to partition area targets. Then the dynamic heuristic algorithm embedding in a greedy criterion is designed to obtain the optimal solution. To evaluate the model, we conduct experimental simulations in the scene of Wenchuan Earthquake. The results show that the simulated imaging plan can schedule satellites to observe a wider scope of target area. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.

  1. Structural Dynamic Behavior of Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  2. FIR signature verification system characterizing dynamics of handwriting features

    NASA Astrophysics Data System (ADS)

    Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu

    2013-12-01

    This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.

  3. Dynamics of brain responses to phobic-related stimulation in specific phobia subtypes.

    PubMed

    Caseras, Xavier; Mataix-Cols, David; Trasovares, Maria Victoria; López-Solà, Marina; Ortriz, Hector; Pujol, Jesus; Soriano-Mas, Carles; Giampietro, Vincent; Brammer, Michael J; Torrubia, Rafael

    2010-10-01

    Very few studies have investigated to what extent different subtypes of specific phobia share the same underlying functional neuroanatomy. This study aims to investigate the potential differences in the anatomy and dynamics of the blood oxygen level-dependent (BOLD) responses associated with spider and blood-injection-injury phobias. We used an event-related paradigm in 14 untreated spider phobics, 15 untreated blood-injection-injury phobics and 17 controls. Phobic images successfully induced distress only in phobic participants. Both phobic groups showed a similar pattern of heart rate increase following the presentation of phobic stimuli, this being different from controls. The presentation of phobic images induced activity within the same brain network in all participants, although the intensity of brain responses was significantly higher in phobics. Only blood-injection-injury phobics showed greater activity in the ventral prefrontal cortex compared with controls. This phobia group also presented a lower activity peak in the left amygdala compared with spider phobics. Importantly, looking at the dynamics of BOLD responses, both phobia groups showed a quicker time-to-peak in the right amygdala than controls, but only spider phobics also differed from controls in this parameter within the left amygdala. Considering these and previous findings, both phobia subtypes show very similar responses regarding their immediate reaction to phobia-related images, but critical differences in their sustained responses to these stimuli. These results highlight the importance of considering complex mental processes potentially associated with coping and emotion regulation processes, rather than exclusively focusing on primary neural responses to threat, when investigating fear and phobias. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. A mathematical study of a random process proposed as an atmospheric turbulence model

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1977-01-01

    A random process is formed by the product of a local Gaussian process and a random amplitude process, and the sum of that product with an independent mean value process. The mathematical properties of the resulting process are developed, including the first and second order properties and the characteristic function of general order. An approximate method for the analysis of the response of linear dynamic systems to the process is developed. The transition properties of the process are also examined.

  5. Time-Structured and Net Intraindividual Variability: Tools for Examining the Development of Dynamic Characteristics and Processes

    PubMed Central

    Ram, Nilam; Gerstorf, Denis

    2009-01-01

    The study of intraindividual variability is the study of fluctuations, oscillations, adaptations, and “noise” in behavioral outcomes that manifest on micro-time scales. This paper provides a descriptive frame for the combined study of intraindividual variability and aging/development. At the conceptual level, we highlight that the study of intraindividual variability provides access to dynamic characteristics – construct-level descriptions of individuals' capacities for change (e.g., lability), and dynamic processes – the systematic changes individuals' exhibit in response to endogenous and exogenous influences (e.g., regulation). At the methodological level, we review how quantifications of net intraindividual variability (e.g., iSD) and models of time-structured intraindividual variability (e.g., time-series) are being used to measure and describe dynamic characteristics and processes. At the research design level, we point to the benefits of measurement burst study designs, wherein data are obtained across multiple time scales, for the study of development. PMID:20025395

  6. The influence of tides on biogeochemical dynamics at the mouth of the Amazon River

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.

    2017-12-01

    A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the response of a suite of biogeochemical parameters to tide-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced response at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low tide (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low tide with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term response of aquatic systems to change.

  7. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568

  8. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, Joy S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, Mark C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that these sensitivities change across the temporal scope of the simulations. The results of the TEM simulations indicate that the scaling of C dynamics to a region of arctic tundra may not represent C dynamics of pan-Arctic tundra because of the limited spatial variation in climate and vegetation within a region relative to the pan-Arctic. For reducing uncertainties, our analyses highlight the importance of incorporating the understanding gained from process-level studies of C dynamics in a region of arctic tundra into process-based models that simulate C dynamics in a spatially explicit fashion across the spatial domain of pan-Arctic tundra. Also, efforts to improve gridded datasets of historical climate for the pan-Arctic would advance the ability to assess the responses of C dynamics for pan-Arctic tundra in a more realistic fashion. A major challenge will be to incorporate topographic controls over soil moisture in assessing the response of C storage for pan-Arctic tundra.

  9. Dual personality of Mad1: regulation of nuclear import by a spindle assembly checkpoint protein.

    PubMed

    Cairo, Lucas V; Ptak, Christopher; Wozniak, Richard W

    2013-01-01

    Nuclear transport is a dynamic process that can be modulated in response to changes in cellular physiology. We recently reported that the transport activity of yeast nuclear pore complexes (NPCs) is altered in response to kinetochore-microtubule (KT-MT) interaction defects. Specifically, KT detachment from MTs activates a signaling pathway that prevents the nuclear import of cargos by the nuclear transport factor Kap121p. This loss of Kap121p-mediated import is thought to influence the nuclear environment, including the phosphorylation state of nuclear proteins. A key regulator of this process is the spindle assembly checkpoint protein Mad1p. In response to unattached KTs, Mad1p dynamically cycles between NPCs and KTs. This cycling appears to induce NPC molecular rearrangements that prevent the nuclear import of Kap121p-cargo complexes. Here, we discuss the underlying mechanisms and the physiological relevance of Mad1p cycling and the inhibition of Kap121p-mediated nuclear import, focusing on outstanding questions within the pathway.

  10. Efficient sensitivity analysis and optimization of a helicopter rotor

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Chopra, Inderjit

    1989-01-01

    Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.

  11. The Phosphorylation State of the Drosophila TRP Channel Modulates the Frequency Response to Oscillating Light In Vivo

    PubMed Central

    Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin

    2017-01-01

    Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815

  12. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  13. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  14. Wavelet Applications for Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  15. Mechanistic modeling of thermo-hydrological processes and microbial interactions at pore to profile scales resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-04-01

    The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.

  16. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  17. Dynamic Statistical Characterization of Variation in Source Processes of Microseismic Events

    NASA Astrophysics Data System (ADS)

    Smith-Boughner, L.; Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2015-12-01

    During a hydraulic fracture, water is pumped at high pressure into a formation. A proppant, typically sand is later injected in the hope that it will make its way into a fracture, keep it open and provide a path for the hydrocarbon to enter the well. This injection can create micro-earthquakes, generated by deformation within the reservoir during treatment. When these injections are monitored, thousands of microseismic events are recorded within several hundred cubic meters. For each well-located event, many source parameters are estimated e.g. stress drop, Savage-Wood efficiency and apparent stress. However, because we are evaluating outputs from a power-law process, the extent to which the failure is impacted by fluid injection or stress triggering is not immediately clear. To better detect differences in source processes, we use a set of dynamic statistical parameters which characterize various force balance assumptions using the average distance to the nearest event, event rate, volume enclosed by the events, cumulative moment and energy from a group of events. One parameter, the Fracability index, approximates the ratio of viscous to elastic forcing and highlights differences in the response time of a rock to changes in stress. These dynamic parameters are applied to a database of more than 90 000 events in a shale-gas play in the Horn River Basin to characterize spatial-temporal variations in the source processes. In order to resolve these differences, a moving window, nearest neighbour approach was used. First, the center of mass of the local distribution was estimated for several source parameters. Then, a set of dynamic parameters, which characterize the response of the rock were estimated. These techniques reveal changes in seismic efficiency and apparent stress and often coincide with marked changes in the Fracability index and other dynamic statistical parameters. Utilizing these approaches allowed for the characterization of fluid injection related processes.

  18. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  19. Modelling of the Hypothalamic-Pituitary-Adrenal Axis Perturbations by Externally Induced Cholesterol Pulses of Finite Duration and with Asymmetrically Distributed Concentration Profile

    NASA Astrophysics Data System (ADS)

    Stanojević, A.; Marković, V. M.; Čupić, Ž.; Vukojević, V.; Kolar-Anić, L.

    2017-12-01

    A model was developed that can be used to study the effect of gradual cholesterol intake by food on the HPA axis dynamics. Namely, well defined oscillatory dynamics of vital neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis has proven to be necessary for maintaining regular basal physiology and formulating appropriate stress response to various types of perturbations. Cholesterol, as a precursor of all steroid HPA axis hormones, can alter the dynamics of HPA axis. To analyse its particular influence on the HPA axis dynamics we used stoichiometric model of HPA axis activity, and simulate cholesterol perturbations in the form of finite duration pulses, with asymmetrically distributed concentration profile. Our numerical simulations showed that there is a complex, nonlinear dependence between the HPA axis responsiveness and different forms of applied cholesterol concentration pulses, indicating the significance of kinetic modelling, and dynamical systems theory for the understanding of large-scale self-regulatory, and homeostatic processes within this neuroendocrine system.

  20. Regulation of C:N:P stoichiometry of microbes and soil organic matter by optimizing enzyme allocation: an omics-informed model study

    NASA Astrophysics Data System (ADS)

    Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.

    2017-12-01

    Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.

  1. Protocol for Landsat-Based Monitoring of Landscape Dynamics at North Coast and Cascades Network Parks

    USGS Publications Warehouse

    Kennedy, Robert E.; Cohen, Warren B.; Kirschbaum, Alan A.; Haunreiter, Erik

    2007-01-01

    Background and Objectives As part of the National Park Service's larger goal of developing long-term monitoring programs in response to the Natural Resource Challenge of 2000, the parks of the North Coast and Cascades Network (NCCN) have determined that monitoring of landscape dynamics is necessary to track ecosystem health (Weber and others, 2005). Landscape dynamics refer to a broad suite of ecological, geomorphological, and anthropogenic processes occurring across broad spatial scales. The NCCN has sought protocols that would leverage remote-sensing technologies to aid in monitoring landscape dynamics.

  2. Dispersion of response times reveals cognitive dynamics.

    PubMed

    Holden, John G; Van Orden, Guy C; Turvey, Michael T

    2009-04-01

    Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and interdependence. Individual participant distributions of approximately 1,100 word-pronunciation times were successfully mimicked for each participant in combinations of lognormal and power-law behavior. Successful hazard function simulations generalized these results to establish interaction dominant dynamics, in contrast with component dominant dynamics, as a likely mechanism for cognitive activity. (c) 2009 APA, all rights reserved

  3. Dispersion of Response Times Reveals Cognitive Dynamics

    PubMed Central

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2013-01-01

    Trial to trial variation in word pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes – interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and interdependence. Individual participant distributions of ≈1100 word pronunciation times are successfully mimicked for each participant in combinations of lognormal and power law behavior. Successful hazard function simulations generalize these results to establish interaction dominant dynamics, in contrast with component dominant dynamics, as a likely mechanism for cognitive activity. PMID:19348544

  4. Influence of the heat transfer on the thermoelastic response of metals on heating by the laser pulse

    NASA Astrophysics Data System (ADS)

    Sudenkov, Y. V.; Zimin, B. A.; Sventitskaya, V. E.

    2018-05-01

    The paper presents an analysis of the effect of the heat transfer process in metals on the parameters of thermal stresses under pulsed laser action. The dynamic problem of thermoelasticity is considered as a two-stage process. The first stage is determined by the time of action of the radiation pulse. The second stage is caused by the dynamics of the heat transfer process after the end of the laser pulse. For showing the continuity of thermoelastic and thermoelectric processes, the analysis of the electronic mechanism for the propagation of heat in metals and the results of experimental studies of these processes are presented. The results of the experiments demonstrate the high sensitivity of the parameters of thermoelastic and thermoelectric pulses to the microstructure of metals.

  5. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    NASA Technical Reports Server (NTRS)

    Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.

    2017-01-01

    This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.

  6. Dynamical analysis of yeast protein interaction network during the sake brewing process.

    PubMed

    Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N

    2011-12-01

    Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.

  7. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    PubMed

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Using a Multivariate Multilevel Polytomous Item Response Theory Model to Study Parallel Processes of Change: The Dynamic Association between Adolescents' Social Isolation and Engagement with Delinquent Peers in the National Youth Survey

    ERIC Educational Resources Information Center

    Hsieh, Chueh-An; von Eye, Alexander A.; Maier, Kimberly S.

    2010-01-01

    The application of multidimensional item response theory models to repeated observations has demonstrated great promise in developmental research. It allows researchers to take into consideration both the characteristics of item response and measurement error in longitudinal trajectory analysis, which improves the reliability and validity of the…

  9. Brain synchronization during perception of facial emotional expressions with natural and unnatural dynamics

    PubMed Central

    Volhard, Jakob; Müller, Viktor; Kaulard, Kathrin; Brick, Timothy R.; Wallraven, Christian; Lindenberger, Ulman

    2017-01-01

    Research on the perception of facial emotional expressions (FEEs) often uses static images that do not capture the dynamic character of social coordination in natural settings. Recent behavioral and neuroimaging studies suggest that dynamic FEEs (videos or morphs) enhance emotion perception. To identify mechanisms associated with the perception of FEEs with natural dynamics, the present EEG (Electroencephalography)study compared (i) ecologically valid stimuli of angry and happy FEEs with natural dynamics to (ii) FEEs with unnatural dynamics, and to (iii) static FEEs. FEEs with unnatural dynamics showed faces moving in a biologically possible but unpredictable and atypical manner, generally resulting in ambivalent emotional content. Participants were asked to explicitly recognize FEEs. Using whole power (WP) and phase synchrony (Phase Locking Index, PLI), we found that brain responses discriminated between natural and unnatural FEEs (both static and dynamic). Differences were primarily observed in the timing and brain topographies of delta and theta PLI and WP, and in alpha and beta WP. Our results support the view that biologically plausible, albeit atypical, FEEs are processed by the brain by different mechanisms than natural FEEs. We conclude that natural movement dynamics are essential for the perception of FEEs and the associated brain processes. PMID:28723957

  10. Brain synchronization during perception of facial emotional expressions with natural and unnatural dynamics.

    PubMed

    Perdikis, Dionysios; Volhard, Jakob; Müller, Viktor; Kaulard, Kathrin; Brick, Timothy R; Wallraven, Christian; Lindenberger, Ulman

    2017-01-01

    Research on the perception of facial emotional expressions (FEEs) often uses static images that do not capture the dynamic character of social coordination in natural settings. Recent behavioral and neuroimaging studies suggest that dynamic FEEs (videos or morphs) enhance emotion perception. To identify mechanisms associated with the perception of FEEs with natural dynamics, the present EEG (Electroencephalography)study compared (i) ecologically valid stimuli of angry and happy FEEs with natural dynamics to (ii) FEEs with unnatural dynamics, and to (iii) static FEEs. FEEs with unnatural dynamics showed faces moving in a biologically possible but unpredictable and atypical manner, generally resulting in ambivalent emotional content. Participants were asked to explicitly recognize FEEs. Using whole power (WP) and phase synchrony (Phase Locking Index, PLI), we found that brain responses discriminated between natural and unnatural FEEs (both static and dynamic). Differences were primarily observed in the timing and brain topographies of delta and theta PLI and WP, and in alpha and beta WP. Our results support the view that biologically plausible, albeit atypical, FEEs are processed by the brain by different mechanisms than natural FEEs. We conclude that natural movement dynamics are essential for the perception of FEEs and the associated brain processes.

  11. What'd You Say Again? Recurrence Quantification Analysis as a Method for Analyzing the Dynamics of Discourse in a Reading Strategy Tutor

    ERIC Educational Resources Information Center

    Allen, Laura K.; Perret, Cecile; Likens, Aaron; McNamara, Danielle S.

    2017-01-01

    In this study, we investigated the degree to which the cognitive processes in which students engage during reading comprehension could be examined through dynamical analyses of their natural language responses to texts. High school students (n = 142) generated typed self-explanations while reading a science text. They then completed a…

  12. Molecular Dynamics Simulations of Surface Processes: Oxygen Recombination on Silica Surfaces at High Temperature

    DTIC Science & Technology

    2007-07-01

    SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18 . NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 Molecular Dynamics Simulations of Surface...phase. O + Oad + silica -------> O2(v,j) + silica ( 18 ) The first step is

  13. MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated carbon, nutrients, and water—technical documentation. Version 1.0.

    Treesearch

    Dominique Bachelet; James M. Lenihan; Christopher Daly; Ronald P. Neilson; Dennis S. Ojima; William J. Parton

    2001-01-01

    Assessments of vegetation response to climate change have generally been made only by equilibrium vegetation models that predict vegetation composition under steady-state conditions. These models do not simulate either ecosystem biogeochemical processes or changes in ecosystem structure that may, in turn, act as feedbacks in determining the dynamics of vegetation...

  14. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  15. Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications

    USGS Publications Warehouse

    Burkett, Virginia R.; Wilcox, Douglas A.; Stottlemyer, Robert; Barrow, Wylie; Fagre, Dan; Baron, Jill S.; Price, Jeff; Nielsen, Jennifer L.; Allen, Craig D.; Peterson, David L.; Ruggerone, Greg; Doyle, Thomas

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.

  16. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  17. Fitness-Balanced Escape Determines Resolution of Dynamic Founder Virus Escape Processes in HIV-1 Infection

    PubMed Central

    Sunshine, Justine E.; Larsen, Brendan B.; Maust, Brandon; Casey, Ellie; Deng, Wenje; Chen, Lennie; Westfall, Dylan H.; Kim, Moon; Zhao, Hong; Ghorai, Suvankar; Lanxon-Cookson, Erinn; Rolland, Morgane; Collier, Ann C.; Maenza, Janine; Mullins, James I.

    2015-01-01

    ABSTRACT To understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24 gag were generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r = 0.43; P = 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack. IMPORTANCE Rapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens. PMID:26223634

  18. Use of simulated satellite radiances from a mesoscale numerical model to understand kinematic and dynamic processes

    NASA Technical Reports Server (NTRS)

    Kalb, Michael; Robertson, Franklin; Jedlovec, Gary; Perkey, Donald

    1987-01-01

    Techniques by which mesoscale numerical weather prediction model output and radiative transfer codes are combined to simulate the radiance fields that a given passive temperature/moisture satellite sensor would see if viewing the evolving model atmosphere are introduced. The goals are to diagnose the dynamical atmospheric processes responsible for recurring patterns in observed satellite radiance fields, and to develop techniques to anticipate the ability of satellite sensor systems to depict atmospheric structures and provide information useful for numerical weather prediction (NWP). The concept of linking radiative transfer and dynamical NWP codes is demonstrated with time sequences of simulated radiance imagery in the 24 TIROS vertical sounder channels derived from model integrations for March 6, 1982.

  19. Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations

    NASA Astrophysics Data System (ADS)

    Kaufman, Matthew H.; Cardenas, M. Bayani; Buttles, Jim; Kessler, Adam J.; Cook, Perran L. M.

    2017-08-01

    Dissolved oxygen (DO) is a key environmental variable that drives and feeds back with numerous processes. In the aquatic sediment that makes up the hyporheic zone, DO may exhibit pronounced spatial gradients and complex patterns which control the distribution of a series of redox processes. Yet, little is known regarding the dynamics of hyporheic zone DO, especially under transitional flow regimes. Considering the natural tendency of rivers to be highly responsive to external forcing, these temporal dynamics are potentially just as important and pronounced as the spatial gradients. Here we use laboratory flume experiments and multiphysics flow and reactive transport modeling to investigate surface flow controls on the depth of oxygen penetration in the bed as well as the area of oxygenated sediment. We show that the hyporheic zone DO conditions respond over time scales of hours-to-days when subjected to practically instantaneous surface flow perturbations. Additionally, the flume experiments demonstrate that hyporheic zone DO conditions respond faster to surface flow acceleration than to deceleration. Finally, we found that the morphology of the dissolved oxygen plume front depends on surface flow acceleration or deceleration. This study thus shows that the highly dynamic nature of typical streams and rivers drives equally dynamic redox conditions in the hyporheic zone. Because the redox conditions and their distribution within the hyporheic zone are important from biological, ecological, and contaminant perspectives, this hyporheic redox dynamism has the potential to impact system scale aquatic chemical cycles.

  20. Dynamic photosynthesis in different environmental conditions.

    PubMed

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. The SNARC effect is not a unitary phenomenon.

    PubMed

    Basso Moro, Sara; Dell'Acqua, Roberto; Cutini, Simone

    2018-04-01

    Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.

  2. Coherence explored between emotion components: evidence from event-related potentials and facial electromyography.

    PubMed

    Gentsch, Kornelia; Grandjean, Didier; Scherer, Klaus R

    2014-04-01

    Componential theories assume that emotion episodes consist of emergent and dynamic response changes to relevant events in different components, such as appraisal, physiology, motivation, expression, and subjective feeling. In particular, Scherer's Component Process Model hypothesizes that subjective feeling emerges when the synchronization (or coherence) of appraisal-driven changes between emotion components has reached a critical threshold. We examined the prerequisite of this synchronization hypothesis for appraisal-driven response changes in facial expression. The appraisal process was manipulated by using feedback stimuli, presented in a gambling task. Participants' responses to the feedback were investigated in concurrently recorded brain activity related to appraisal (event-related potentials, ERP) and facial muscle activity (electromyography, EMG). Using principal component analysis, the prediction of appraisal-driven response changes in facial EMG was examined. Results support this prediction: early cognitive processes (related to the feedback-related negativity) seem to primarily affect the upper face, whereas processes that modulate P300 amplitudes tend to predominantly drive cheek region responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Empathy-Related Responses to Depicted People in Art Works

    PubMed Central

    Kesner, Ladislav; Horáček, Jiří

    2017-01-01

    Existing theories of empathic response to visual art works postulate the primacy of automatic embodied reaction to images based on mirror neuron mechanisms. Arguing for a more inclusive concept of empathy-related response and integrating four distinct bodies of literature, we discuss contextual, and personal factors which modulate empathic response to depicted people. We then present an integrative model of empathy-related responses to depicted people in art works. The model assumes that a response to empathy-eliciting figural artworks engages the dynamic interaction of two mutually interlinked sets of processes: socio-affective/cognitive processing, related to the person perception, and esthetic processing, primarily concerned with esthetic appreciation and judgment and attention to non-social aspects of the image. The model predicts that the specific pattern of interaction between empathy-related and esthetic processing is co-determined by several sets of factors: (i) the viewer's individual characteristics, (ii) the context variables (which include various modes of priming by narratives and other images), (iii) multidimensional features of the image, and (iv) aspects of a viewer's response. Finally we propose that the model is implemented by the interaction of functionally connected brain networks involved in socio-cognitive and esthetic processing. PMID:28286487

  4. Frontal Cortex Activation Causes Rapid Plasticity of Auditory Cortical Processing

    PubMed Central

    Winkowski, Daniel E.; Bandyopadhyay, Sharba; Shamma, Shihab A.

    2013-01-01

    Neurons in the primary auditory cortex (A1) can show rapid changes in receptive fields when animals are engaged in sound detection and discrimination tasks. The source of a signal to A1 that triggers these changes is suspected to be in frontal cortical areas. How or whether activity in frontal areas can influence activity and sensory processing in A1 and the detailed changes occurring in A1 on the level of single neurons and in neuronal populations remain uncertain. Using electrophysiological techniques in mice, we found that pairing orbitofrontal cortex (OFC) stimulation with sound stimuli caused rapid changes in the sound-driven activity within A1 that are largely mediated by noncholinergic mechanisms. By integrating in vivo two-photon Ca2+ imaging of A1 with OFC stimulation, we found that pairing OFC activity with sounds caused dynamic and selective changes in sensory responses of neural populations in A1. Further, analysis of changes in signal and noise correlation after OFC pairing revealed improvement in neural population-based discrimination performance within A1. This improvement was frequency specific and dependent on correlation changes. These OFC-induced influences on auditory responses resemble behavior-induced influences on auditory responses and demonstrate that OFC activity could underlie the coordination of rapid, dynamic changes in A1 to dynamic sensory environments. PMID:24227723

  5. Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses.

    PubMed

    Morris, Aaron H; Mahal, Rajwant S; Udell, Jillian; Wu, Michelle; Kyriakides, Themis R

    2017-10-01

    Pharmacological modulation of responses to injury is complicated by the need to deliver multiple drugs with spatiotemporal resolution. Here, a novel controlled delivery system containing three separate compartments with each releasing its contents over different timescales is fabricated. Core-shell electrospun fibers create two of the compartments in the system, while electrosprayed spheres create the third. Utility is demonstrated by targeting the foreign body response to implants because it is a dynamic process resulting in implant failure. Sequential delivery of a drug targeting nuclear factor-κB (NF-κB) and an antifibrotic is characterized in in vitro experiments. Specifically, macrophage fusion and p65 nuclear translocation in the presence of releasate or with macrophages cultured on the surfaces of the constructs are evaluated. In addition, releasate from pirfenidone scaffolds is shown to reduce transforming growth factor-β (TGF-β)-induced pSMAD3 nuclear localization in fibroblasts. In vivo, drug eluting constructs successfully mitigate macrophage fusion at one week and fibrotic encapsulation in a dose-dependent manner at four weeks, demonstrating effective release of both drugs over different timescales. Future studies can employ this system to improve and prolong implant lifetimes, or load it with other drugs to modulate other dynamic processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. System identification of timber masonry walls using shaking table test

    NASA Astrophysics Data System (ADS)

    Roy, Timir B.; Guerreiro, Luis; Bagchi, Ashutosh

    2017-04-01

    Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as: bridges, dams, high rise buildings etc. There had been substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as: natural frequency, modal damping and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototype of such wall has been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

  7. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    NASA Astrophysics Data System (ADS)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  8. On the dynamic nature of response criterion in recognition memory: effects of base rate, awareness, and feedback.

    PubMed

    Rhodes, Matthew G; Jacoby, Larry L

    2007-03-01

    The authors examined whether participants can shift their criterion for recognition decisions in response to the probability that an item was previously studied. Participants in 3 experiments were given recognition tests in which the probability that an item was studied was correlated with its location during the test. Results from all 3 experiments indicated that participants' response criteria were sensitive to the probability that an item was previously studied and that shifts in criterion were robust. In addition, awareness of the bases for criterion shifts and feedback on performance were key factors contributing to the observed shifts in decision criteria. These data suggest that decision processes can operate in a dynamic fashion, shifting from item to item.

  9. Single-Trial Regression Elucidates the Role of Prefrontal Theta Oscillations in Response Conflict

    PubMed Central

    Cohen, Michael X; Cavanagh, James F.

    2011-01-01

    In most cognitive neuroscience experiments there are many behavioral and experimental dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists or does not in any given trial), whereas some evidence and intuition suggests that conflict may vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of time–frequency electrophysiological activity reveals neural mechanisms of cognitive control that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation phase coherence and synchronization analyses, based on “weighted” phase modulation, that has advantages over standard coherence measures in terms of linking electrophysiological dynamics to trial-varying behavior and experimental variables. After replicating previous response conflict findings using trial-averaged data, we extend these findings using single-trial analytic methods to provide novel evidence for the role of medial frontal–lateral prefrontal theta-band synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal theta-band activity in biasing response times according to perceptual conflict. Given that these methods shed new light on the prefrontal mechanisms of response conflict, they are also likely to be useful for investigating other neurocognitive processes. PMID:21713190

  10. Technology Integration (Task 20) Aeroservoelastic Modeling and Design Studies. Part A; Evaluation of Aeroservoelastic Effects on Flutter and Dynamic Gust Response

    NASA Technical Reports Server (NTRS)

    Nagaraja, K. S.; Kraft, R. H.

    1999-01-01

    The HSCT Flight Controls Group has developed longitudinal control laws, utilizing PTC aeroelastic flexible models to minimize aeroservoelastic interaction effects, for a number of flight conditions. The control law design process resulted in a higher order controller and utilized a large number of sensors distributed along the body for minimizing the flexibility effects. Processes were developed to implement these higher order control laws for performing the dynamic gust loads and flutter analyses. The processes and its validation were documented in Reference 2, for selected flight condition. The analytical results for additional flight conditions are presented in this document for further validation.

  11. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  12. Single-Trial Analysis of V1 Responses Suggests Two Transmission States

    NASA Technical Reports Server (NTRS)

    Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; McGinnis, T.; OConnell, N.; Ding, M.; Bressler, S. L.; Schroeder, C. E.

    2002-01-01

    Sensory processing in the visual, auditory, and somatosensory systems is often studied by recording electrical activity in response to a stimulus of interest. Typically, multiple trial responses to the stimulus are averaged to isolate the stereotypic response from noise. However, averaging ignores dynamic variability in the neuronal response, which is potentially critical to understanding stimulus-processing schemes. Thus, we developed the multiple component, Event-Related Potential (mcERP) model. This model asserts that multiple components, defined as stereotypic waveforms, comprise the stimulus-evoked response and that these components may vary in amplitude and latency from trial to trial. Application of this model to data recorded simultaneously from all six laminae of V1 in an awake, behaving monkey performing a visual discrimination yielded three components. The first component localized to granular V1, the second was located in supragranular V1, and the final component displayed a multi-laminar distribution. These modeling results, which take into account single-trial response dynamics, illustrated that the initial activation of VI occurs in the granular layer followed by activation in the supragranular layers. This finding is expected because the average response in those layers demonstrates the same progression and because anatomical evidence suggests that the feedforward input in V1 enters the granular layer and progresses to supragranular layers. In addition to these findings, the granular component of the model displayed several interesting trial-to-trial characteristics including (1) a bimodal latency distribution, (2) a latency-related variation in response amplitude, (3) a latency correlation with the supragranular component, and (4) an amplitude and latency association with the multi-laminar component. Direct analyses of the single-trial data were consistent with these model predictions. These findings suggest that V1 has at least 2 transmission states, which may be modulated by various effects such as attention, dynamics in local EEG rhythm, or variation in sensory inputs.

  13. Novel model coupling approach for resilience analysis of coastal plant communities.

    PubMed

    Schibalski, Anett; Körner, Katrin; Maier, Martin; Jeltsch, Florian; Schröder, Boris

    2018-06-04

    Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, e.g., plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes like regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi

    2017-03-01

    Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions.

    PubMed

    Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick

    2018-01-01

    When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  16. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular, the repeatability in electron dynamics coupled with observations of processes leading to electron loss (EMIC waves) and acceleration (VLF or ULF waves) can be used to diagnose the relative importance of physical processes in radiation belt dynamics during storms.

  17. Neural dynamics underlying emotional transmissions between individuals

    PubMed Central

    Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-01-01

    Abstract Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social–emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional feedback to participants who viewed a movie in the scanner. Participants in the social group (but not in the control group) believed that the feedback was coming from another person who was co-viewing the same movie. We found that social–emotional feedback significantly affected the neural dynamics both in the core affect and in the medial pre-frontal regions. Specifically, the response time-courses in those regions exhibited increased similarity across recipients and increased neural alignment with the timeline of the feedback in the social compared with control group. Taken in conjunction with previous research, this study suggests that emotional cues from others shape the neural dynamics across the whole neural continuum of emotional processing in the brain. Moreover, it demonstrates that interpersonal neural alignment can serve as a neural mechanism through which affective information is conveyed between individuals. PMID:28575520

  18. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  19. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  20. Dynamic visualization of data streams

    DOEpatents

    Wong, Pak Chung [Richalnd, WA; Foote, Harlan P [Richland, WA; Adams, Daniel R [Kennewick, WA; Cowley, Wendy E [Richland, WA; Thomas, James J [Richland, WA

    2009-07-07

    One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.

  1. Noise facilitates transcriptional control under dynamic inputs.

    PubMed

    Kellogg, Ryan A; Tay, Savaş

    2015-01-29

    Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways.

    PubMed

    Hardy, Simon; Robillard, Pierre N

    2008-01-15

    Cellular signaling networks are dynamic systems that propagate and process information, and, ultimately, cause phenotypical responses. Understanding the circuitry of the information flow in cells is one of the keys to understanding complex cellular processes. The development of computational quantitative models is a promising avenue for attaining this goal. Not only does the analysis of the simulation data based on the concentration variations of biological compounds yields information about systemic state changes, but it is also very helpful for obtaining information about the dynamics of signal propagation. This article introduces a new method for analyzing the dynamics of signal propagation in signaling pathways using Petri net theory. The method is demonstrated with the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulation network. The results constitute temporal information about signal propagation in the network, a simplified graphical representation of the network and of the signal propagation dynamics and a characterization of some signaling routes as regulation motifs.

  3. Constitutional dynamic self-sensing in a zinc(II)/polyiminofluorenes system.

    PubMed

    Giuseppone, Nicolas; Lehn, Jean-Marie

    2004-09-22

    The interaction of an external effector, ZnII ions, with a constitutional dynamic library of fluorescent polyiminofluorenes leads to component exchange, which generates an entity responding by a change in emission to the effector that has induced its formation. The overall coupled system displays a tuning of optical signal, resulting from two synergistic processes: adaptative constitutional reorganization and self-sensing. In broader terms, this work highlights the perspectives opened by constitutional dynamic chemistry toward the design of smart materials, capable of expressing different latent properties in response to environmental conditions.

  4. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.

    PubMed

    Pornkamol, Unrean; Franzen, Carl J

    2015-08-01

    Achieving efficient and economical lignocellulose-based bioprocess requires a robust organism tolerant to furfural, a major inhibitory compound present in lignocellulosic hydrolysate. The aim of this study was to develop a model that could generate quantitative descriptions of cell metabolism for elucidating the cell's adaptive response to furfural. Such a modelling tool could provide strategies for the design of more robust cells. A dynamic flux balance (dFBA) model of Saccharomyces cerevisiae was created by coupling a kinetic fermentation model with a previously published genome-scale stoichiometric model. The dFBA model was used for studying intracellular and extracellular flux responses to furfural perturbations under steady state and dynamic conditions. The predicted effects of furfural on dynamic flux profiles agreed well with previously published experimental results. The model showed that the yeast cell adjusts its metabolism in response to furfural challenge by increasing fluxes through the pentose phosphate pathway, TCA cycle, and proline and serine biosynthesis in order to meet the high demand of NAD(P)H cofactors. The model described here can be used to aid in systematic optimization of the yeast, as well as of the fermentation process, for efficient lignocellulosic ethanol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    PubMed

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.

  6. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  7. Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2001-01-01

    Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.

  8. Preoutbreak dynamics of a recently established invasive herbivore: roles of natural enemies and habitat structure in stage-specific performance of gypsy moth (Lepidoptera: Lymantriidae) populations in northeastern Wisconsin

    Treesearch

    Rebecca Hoffman Gray; Craig G. Lorimer; Patrick C. Tobin; Kenneth F. Raffa

    2008-01-01

    A major challenge to addressing biological invasions is that the need for emergency responses often precludes opportunities to analyze the dynamics between initial establishment and population eruption. Thus, a broader understanding of underlying processes and management opportunities is often lacking. We examined the effects of habitat structure and natural enemies on...

  9. Cooperative inter- and intra-layer lattice dynamics of photoexcited multi-walled carbon nanotubes studied by ultrafast electron diffraction.

    PubMed

    Sun, Shuaishuai; Li, Zhongwen; Li, Zi-An; Xiao, Ruijuan; Zhang, Ming; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2018-04-26

    Optical tuning and probing ultrafast structural response of nanomaterials driven by electronic excitation constitute a challenging but promising approach for understanding microscopic mechanisms and applications in microelectromechanical systems and optoelectrical devices. Here we use pulsed electron diffraction in a transmission electron microscope to investigate laser-induced tubular lattice dynamics of multi-walled carbon nanotubes (MWCNTs) with varying laser fluence and initial specimen temperature. Our photoexcitation experiments demonstrate cooperative and inverse collective atomic motions in intralayer and interlayer directions, whose strengths and rates depend on pump fluence. The electron-driven and thermally driven structural responses with opposite amplitudes cause a crossover between intralayer and interlayer directions. Our ab initio calculations support these findings and reveal that electrons excited from π to π* orbitals in a carbon tube weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Moreover, by probing the structural dynamics of MWCNTs at initial temperatures of 300 and 100 K, we uncover the concomitance of thermal and nonthermal dynamical processes and their mutual influence in MWCNTs. Our results illustrate the nature of electron-driven nonthermal process and electron-phonon thermalization in the MWCNTs, and bear implications for the intricate energy conversion and transfer in materials at the nanoscale.

  10. Theta dynamics reveal domain-specific control over stimulus and response conflict.

    PubMed

    Nigbur, Roland; Cohen, Michael X; Ridderinkhof, K Richard; Stürmer, Birgit

    2012-05-01

    Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.

  11. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurburg, Stephanie D.; Nunes, Inês; Stegen, James C.

    The response of bacterial communities to environmental change may affect local to global nutrient cycles; however the dynamics of these communities following disturbance are poorly understood, and are generally attributed to abiotic factors. Here, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days of recovery. Phylogenetic turnover patterns indicated that biotic interactions shaped the community during recovery, and that the disturbance imposed a strong selective pressure that persisted for up to 10 days, after which the importance of stochastic processes increased. Three successional stages were detected: a primary response (1-4more » days after disturbance) in which surviving taxa increased in abundance; a secondary response phase (10-29 days), during which community dynamics slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Soil bacterial communities, despite their extreme diversity and functional redundancy, respond to disturbances like many macroecological systems and exhibit path-dependent, autogenic dynamics during secondary succession.« less

  12. Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.

    PubMed

    Schröter, M-A; Holschneider, M; Sturm, H

    2012-11-02

    The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.

  13. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  14. Resurgence of Integrated Behavioral Units

    PubMed Central

    Bachá-Méndez, Gustavo; Reid, Alliston K; Mendoza-Soylovna, Adela

    2007-01-01

    Two experiments with rats examined the dynamics of well-learned response sequences when reinforcement contingencies were changed. Both experiments contained four phases, each of which reinforced a 2-response sequence of lever presses until responding was stable. The contingencies then were shifted to a new reinforced sequence until responding was again stable. Extinction-induced resurgence of previously reinforced, and then extinguished, heterogeneous response sequences was observed in all subjects in both experiments. These sequences were demonstrated to be integrated behavioral units, controlled by processes acting at the level of the entire sequence. Response-level processes were also simultaneously operative. Errors in sequence production were strongly influenced by the terminal, not the initial, response in the currently reinforced sequence, but not by the previously reinforced sequence. These studies demonstrate that sequence-level and response-level processes can operate simultaneously in integrated behavioral units. Resurgence and the development of integrated behavioral units may be dissociated; thus the observation of one does not necessarily imply the other. PMID:17345948

  15. School Change from the Inside: Examining the Change Process in Schools.

    ERIC Educational Resources Information Center

    Jutras, Phillip F.

    The process of how innovations develop from ideas and as responses to needs within a middle-school setting is the focus of this study. The dynamics of influence and leadership behavior that contribute to two schoolwide innovations are examined. The study findings highlight the importance of strategic thinking and of the creation of integrating…

  16. Air Force Reserve Officer Training Corps Indicators of Leadership Development in Undergraduate Military Education

    ERIC Educational Resources Information Center

    Shannon, Christopher C.

    2013-01-01

    The selection and retention assessment process is dynamic. Dipboye, Smith, and Howell (1994) argued that the most influential portion of the final hiring process is the result of the interviewer's impression of the applicants. The Air Force Reserve Officer Training Corps program is responsible for selecting, retaining and ultimately hiring…

  17. Dynamic modeling of GMA fillet welding using cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinga, M.; Huissoon, J.; Kerr, H.

    1996-12-31

    The feasibility of employing the cross-correlation system identification technique as a dynamic modeling method for the GMAW process was examined. This approach has the advantages of modeling speed, the ability to operate in low signal to noise environments, the ease of digital implementation, and the lack of model order assumption, making it ideal in a welding application. The width of the weld pool was the parameter investigated as a function of torch travel speed. Both on-line and off-line width measurements were used to identify the impulse response. Experimental results are presented and comparisons made with both step and ramp response.

  18. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  19. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-12-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  20. Energy-saving analysis of hydraulic hybrid excavator based on common pressure rail.

    PubMed

    Shen, Wei; Jiang, Jihai; Su, Xiaoyu; Karimi, Hamid Reza

    2013-01-01

    Energy-saving research of excavators is becoming one hot topic due to the increasing energy crisis and environmental deterioration recently. Hydraulic hybrid excavator based on common pressure rail (HHEC) provides an alternative with electric hybrid excavator because it has high power density and environment friendly and easy to modify based on the existing manufacture process. This paper is focused on the fuel consumption of HHEC and the actuator dynamic response to assure that the new system can save energy without sacrificing performance. Firstly, we introduce the basic principle of HHEC; then, the sizing process is presented; furthermore, the modeling period which combined mathematical analysis and experiment identification is listed. Finally, simulation results show that HHEC has a fast dynamic response which can be accepted in engineering and the fuel consumption can be reduced 21% to compare the original LS excavator and even 32% after adopting another smaller engine.

  1. Energy-Saving Analysis of Hydraulic Hybrid Excavator Based on Common Pressure Rail

    PubMed Central

    Jiang, Jihai; Su, Xiaoyu

    2013-01-01

    Energy-saving research of excavators is becoming one hot topic due to the increasing energy crisis and environmental deterioration recently. Hydraulic hybrid excavator based on common pressure rail (HHEC) provides an alternative with electric hybrid excavator because it has high power density and environment friendly and easy to modify based on the existing manufacture process. This paper is focused on the fuel consumption of HHEC and the actuator dynamic response to assure that the new system can save energy without sacrificing performance. Firstly, we introduce the basic principle of HHEC; then, the sizing process is presented; furthermore, the modeling period which combined mathematical analysis and experiment identification is listed. Finally, simulation results show that HHEC has a fast dynamic response which can be accepted in engineering and the fuel consumption can be reduced 21% to compare the original LS excavator and even 32% after adopting another smaller engine. PMID:24194683

  2. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  3. Color sensitivity of the multi-exposure HDR imaging process

    NASA Astrophysics Data System (ADS)

    Lenseigne, Boris; Jacobs, Valéry Ann; Withouck, Martijn; Hanselaer, Peter; Jonker, Pieter P.

    2013-04-01

    Multi-exposure high dynamic range(HDR) imaging builds HDR radiance maps by stitching together different views of a same scene with varying exposures. Practically, this process involves converting raw sensor data into low dynamic range (LDR) images, estimate the camera response curves, and use them in order to recover the irradiance for every pixel. During the export, applying white balance settings and image stitching, which both have an influence on the color balance in the final image. In this paper, we use a calibrated quasi-monochromatic light source, an integrating sphere, and a spectrograph in order to evaluate and compare the average spectral response of the image sensor. We finally draw some conclusion about the color consistency of HDR imaging and the additional steps necessary to use multi-exposure HDR imaging as a tool to measure the physical quantities such as radiance and luminance.

  4. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes

    PubMed Central

    2004-01-01

    14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810

  5. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.

    PubMed

    Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier

    2006-07-26

    It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.

  6. Scaling environmental change through the community level: a trait-based response-and-effect framework for plants

    Treesearch

    Katharine N. Suding; Sandra Lavorel; F. Stuart Chapin; Johannes H.C. Cornelissen; Sandra Diaz; Eric Garnier; Deborah Goldberg; David U. Hooper; Stephen T. Jackson; Marie-Laure Navas

    2008-01-01

    Predicting ecosystem responses to global change is a major challenge in ecology. A critical step in that challenge is to understand how changing environmental conditions influence processes across levels of ecological organization. While direct scaling from individual to ecosystem dynamics can lead to robust and mechanistic predictions, new approaches are needed to...

  7. Influence of imperfect end boundary condition on the nonlocal dynamics of CNTs

    NASA Astrophysics Data System (ADS)

    Fathi, Reza; Lotfan, Saeed; Sadeghi, Morteza H.

    2017-03-01

    Imperfections that unavoidably occur during the fabrication process of carbon nanotubes (CNTs) have a significant influence on the vibration behavior of CNTs. Among these imperfections, the boundary condition defect is studied in this investigation based on the nonlocal elasticity theory. To this end, a mathematical model of the non-ideal end condition in a cantilever CNT is developed by a strongly non-linear spring to study its effect on the vibration behavior. The weak form equation of motion is derived via Hamilton's principle and solved based on Rayleigh-Ritz approach. Once the frequency response function (FRF) of the CNT is simulated, it is found that the defect parameter injects noise to the FRF in the range of lower frequencies and as a result the small scale effect on the FRF remains undisturbed in high frequency ranges. Besides, in this work a process is introduced to estimate the nonlocal and defect parameters for establishing the mathematical model of the CNT based on FRF, which can be competitive because of its lower instrumentation and data analysis costs. The estimation process relies on the resonance frequencies and the magnitude of noise in the frequency response function of the CNT. The results show that the constructed dynamic response of the system based on estimated parameters is in good agreement with the original response of the CNT.

  8. Phenotypic switching of populations of cells in a stochastic environment

    NASA Astrophysics Data System (ADS)

    Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias

    2018-02-01

    In biology phenotypic switching is a common bet-hedging strategy in the face of uncertain environmental conditions. Existing mathematical models often focus on periodically changing environments to determine the optimal phenotypic response. We focus on the case in which the environment switches randomly between discrete states. Starting from an individual-based model we derive stochastic differential equations to describe the dynamics, and obtain analytical expressions for the mean instantaneous growth rates based on the theory of piecewise-deterministic Markov processes. We show that optimal phenotypic responses are non-trivial for slow and intermediate environmental processes, and systematically compare the cases of periodic and random environments. The best response to random switching is more likely to be heterogeneity than in the case of deterministic periodic environments, net growth rates tend to be higher under stochastic environmental dynamics. The combined system of environment and population of cells can be interpreted as host-pathogen interaction, in which the host tries to choose environmental switching so as to minimise growth of the pathogen, and in which the pathogen employs a phenotypic switching optimised to increase its growth rate. We discuss the existence of Nash-like mutual best-response scenarios for such host-pathogen games.

  9. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.

    PubMed

    Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania

    2015-06-01

    Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.

  10. Inferring infection hazard in wildlife populations by linking data across individual and population scales.

    PubMed

    Pepin, Kim M; Kay, Shannon L; Golas, Ben D; Shriner, Susan S; Gilbert, Amy T; Miller, Ryan S; Graham, Andrea L; Riley, Steven; Cross, Paul C; Samuel, Michael D; Hooten, Mevin B; Hoeting, Jennifer A; Lloyd-Smith, James O; Webb, Colleen T; Buhnerkempe, Michael G

    2017-03-01

    Our ability to infer unobservable disease-dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time-averaged value and are based on population-level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within-host processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be short-lived and produce patterns that are repeatable across individuals, suggesting individual-level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population-level FOI signal can be recovered from individual-level antibody kinetics, despite substantial individual-level variation. In addition to improving inference, the cross-scale quantitative antibody approach we describe can reveal insights into drivers of individual-based variation in disease response, and the role of poorly understood processes such as secondary infections, in population-level dynamics of disease. © 2017 John Wiley & Sons Ltd/CNRS.

  11. Inferring infection hazard in wildlife populations by linking data across individual and population scales

    USGS Publications Warehouse

    Pepin, Kim M.; Kay, Shannon L.; Golas, Ben D.; Shriner, Susan A.; Gilbert, Amy T.; Miller, Ryan S.; Graham, Andrea L.; Riley, Steven; Cross, Paul C.; Samuel, Michael D.; Hooten, Mevin B.; Hoeting, Jennifer A.; Lloyd-Smith, James O.; Webb, Colleen T.; Buhnerkempe, Michael G.

    2017-01-01

    Our ability to infer unobservable disease-dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time-averaged value and are based on population-level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within-host processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be short-lived and produce patterns that are repeatable across individuals, suggesting individual-level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population-level FOI signal can be recovered from individual-level antibody kinetics, despite substantial individual-level variation. In addition to improving inference, the cross-scale quantitative antibody approach we describe can reveal insights into drivers of individual-based variation in disease response, and the role of poorly understood processes such as secondary infections, in population-level dynamics of disease.

  12. Probabilistic Perception, Empathy, and Dynamic Homeostasis: Insights in Autism Spectrum Disorders and Conduct Disorders

    PubMed Central

    Guilé, Jean Marc

    2013-01-01

    Homeostasis is not a permanent and stable state but instead results from conflicting forces. Therefore, infants have to engage in dynamic exchanges with their environment, in biological, cognitive, and affective domains. Empathy is an adaptive response to these environmental challenges, which contributes to reaching proper dynamic homeostasis and development. Empathy relies on implicit interactive processes, namely probabilistic perception and synchrony, which will be reviewed in the article. If typically-developed neonates are fully equipped to automatically and synchronously interact with their human environment, conduct disorders (CD) and autism spectrum disorders (ASD) present with impairments in empathetic communication, e.g., emotional arousal and facial emotion processing. In addition sensorimotor resonance is lacking in ASD, and emotional concern and semantic empathy are impaired in CD with Callous-Unemotional traits. PMID:24479115

  13. Dynamics of the h-LH and h-FSH response after the stimulation test with Gn-RH-LH/FSH in man.

    PubMed

    Klepsch, I; Grigorescu, A; Eşanu, C

    1976-01-01

    A study was carried out on a number of 17 subjects concerning the dynamics of LH and FSH response after stimulation with Gn-RH-LH/FSH. The results show a stimulation 10 minutes after quick i.v. injection of synthetic RH, with a peak at 20-30 minutes and a persistence of the response of up to 180 min. The variation of the response is proportional with the dose, the response to stimulation being higher for LH than for FSH. The response in the normal adult male is of 82-858% for LH and of 157-250% for FSH. In aged subjects there is an increased response capacity showing that the hypophysis still reacts at an advanced age, with variations depending on the individual characteristics. In Sheehan's syndrome the basal values of FSH and LH are low, with a slight response after stimulation with RH, suggesting the possibility of a partial regeneration of the hypophysis if any intact areas were left after the initial necrotic process.

  14. Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm

    PubMed Central

    Shettigar, Nishan; Joshi, Asawari; Dalmeida, Rimple; Gopalkrishna, Rohini; Chakravarthy, Anirudh; Patnaik, Siddharth; Mathew, Manoj; Palakodeti, Dasaradhi; Gulyani, Akash

    2017-01-01

    Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple “eye” while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a “reflex-like,” eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the “processive” eye-brain–mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity–based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism. PMID:28782018

  15. Diagnosis of dynamic process over rainband of landfall typhoon

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li

    2010-07-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.

  16. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  17. Dynamic alarm response procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, J.; Gordon, P.; Fitch, K.

    2006-07-01

    The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as Apache{sup R}, IIS{sup R}, TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphicsmore » (SVG), such as Netscape{sup R}, Microsoft Internet Explorer{sup R}, Mozilla Firefox{sup R}, Opera{sup R}, and others. (authors)« less

  18. Coherent-fields, their responsive colloids, and life's origins.

    NASA Astrophysics Data System (ADS)

    Mitra-Delmotte, G.; Mitra, A. N.

    2015-10-01

    In living systems, evolvable sequence-encoded constraints control the incoming energy-matter flows, and are also sustained by their embedded flows/ processes. What's more, in such dynamic-organized liquid-state media, the flows can also produce novel materials/mechanisms. Thus, embedded processes of such media enable its spatiotemporal resilience via turnovers, as well as functional 'takeovers'. Further, the responsiveness of such constrained media to their environment enables adaptations, as they can mediate feedback between the changing environment & their embedded flows/processes. Now, the complexity of the constituent functional materials, make it very likely that they themselves emerged/got selected thanks to the creative properties of such dynamically constrained media. We have asked if such Maxwelldemon- like scenario could not be mimicked using other plausible ingredients to achieve similar ways of dissipative sustenance and coherent functioning. In particular, the potential of organizing coherent fields and their responsive anisotropic colloids to enhance the probability of life's emergence—akin to an adaptive transition—to a new way of evolving, seems promising. Note that pattern-sustenance in liquid state requires presence of the specific source that enabled it (c.f. spontaneously formed patterns). For example, external coherent heterogeneous fields (e.g. magnetic rocks) can act as sources both of 1) aperiodic information, and 2) useful energy, for inducing and sustaining (specific) structures of superparamagnetic mineral colloids (via their Brownianrotation) away-from-equilibrium, to access 3-way coupling between energy-information-matter in liquid-medium. Such dynamic functioning structures seem ideal for stable containment of bottom-up chemical systems; and similar scenario in the nanoscience engineering area can help in design/tests.

  19. Compounding effects of fluid confinement and surface strain on the wet–dry transition, thermodynamic response, and dynamics of water–graphene systems

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas; Cummings, Peter T.

    2014-10-17

    We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. In this study, we found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as wellmore » as on the slowing down of its dynamics that gives rise to anomalous diffusivity.« less

  20. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  1. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  2. Tests of the Dynamic Field Theory and the Spatial Precision Hypothesis: Capturing a Qualitative Developmental Transition in Spatial Working Memory

    PubMed Central

    Schutte, Anne R.; Spencer, John P.

    2009-01-01

    This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between three and six years of age there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change. PMID:19968430

  3. Lateralization for dynamic facial expressions in human superior temporal sulcus.

    PubMed

    De Winter, François-Laurent; Zhu, Qi; Van den Stock, Jan; Nelissen, Koen; Peeters, Ronald; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2015-02-01

    Most face processing studies in humans show stronger activation in the right compared to the left hemisphere. Evidence is largely based on studies with static stimuli focusing on the fusiform face area (FFA). Hence, the pattern of lateralization for dynamic faces is less clear. Furthermore, it is unclear whether this property is common to human and non-human primates due to predisposing processing strategies in the right hemisphere or that alternatively left sided specialization for language in humans could be the driving force behind this phenomenon. We aimed to address both issues by studying lateralization for dynamic facial expressions in monkeys and humans. Therefore, we conducted an event-related fMRI experiment in three macaques and twenty right handed humans. We presented human and monkey dynamic facial expressions (chewing and fear) as well as scrambled versions to both species. We studied lateralization in independently defined face-responsive and face-selective regions by calculating a weighted lateralization index (LIwm) using a bootstrapping method. In order to examine if lateralization in humans is related to language, we performed a separate fMRI experiment in ten human volunteers including a 'speech' expression (one syllable non-word) and its scrambled version. Both within face-responsive and selective regions, we found consistent lateralization for dynamic faces (chewing and fear) versus scrambled versions in the right human posterior superior temporal sulcus (pSTS), but not in FFA nor in ventral temporal cortex. Conversely, in monkeys no consistent pattern of lateralization for dynamic facial expressions was observed. Finally, LIwms based on the contrast between different types of dynamic facial expressions (relative to scrambled versions) revealed left-sided lateralization in human pSTS for speech-related expressions compared to chewing and emotional expressions. To conclude, we found consistent laterality effects in human posterior STS but not in visual cortex of monkeys. Based on our results, it is tempting to speculate that lateralization for dynamic face processing in humans may be driven by left-hemispheric language specialization which may not have been present yet in the common ancestor of human and macaque monkeys. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Accelerated pharmacokinetic map determination for dynamic contrast enhanced MRI using frequency-domain based Tofts model.

    PubMed

    Vajuvalli, Nithin N; Nayak, Krupa N; Geethanath, Sairam

    2014-01-01

    Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used in the diagnosis of cancer and is also a promising tool for monitoring tumor response to treatment. The Tofts model has become a standard for the analysis of DCE-MRI. The process of curve fitting employed in the Tofts equation to obtain the pharmacokinetic (PK) parameters is time-consuming for high resolution scans. Current work demonstrates a frequency-domain approach applied to the standard Tofts equation to speed-up the process of curve-fitting in order to obtain the pharmacokinetic parameters. The results obtained show that using the frequency domain approach, the process of curve fitting is computationally more efficient compared to the time-domain approach.

  5. Data-based mechanistic modeling of dissolved organic carbon load through storms using continuous 15-minute resolution observations within UK upland watersheds

    NASA Astrophysics Data System (ADS)

    Jones, T.; Chappell, N. A.

    2013-12-01

    Few watershed modeling studies have addressed DOC dynamics through storm hydrographs (notable exceptions include Boyer et al., 1997 Hydrol Process; Jutras et al., 2011 Ecol Model; Xu et al., 2012 Water Resour Res). In part this has been a consequence of an incomplete understanding of the biogeochemical processes leading to DOC export to streams (Neff & Asner, 2001, Ecosystems) & an insufficient frequency of DOC monitoring to capture sometimes complex time-varying relationships between DOC & storm hydrographs (Kirchner et al., 2004, Hydrol Process). We present the results of a new & ongoing UK study that integrates two components - 1/ New observations of DOC concentrations (& derived load) continuously monitored at 15 minute intervals through multiple seasons for replicated watersheds; & 2/ A dynamic modeling technique that is able to quantify storage-decay effects, plus hysteretic, nonlinear, lagged & non-stationary relationships between DOC & controlling variables (including rainfall, streamflow, temperature & specific biogeochemical variables e.g., pH, nitrate). DOC concentration is being monitored continuously using the latest generation of UV spectrophotometers (i.e. S::CAN spectro::lysers) with in situ calibrations to laboratory analyzed DOC. The controlling variables are recorded simultaneously at the same stream stations. The watersheds selected for study are among the most intensively studied basins in the UK uplands, namely the Plynlimon & Llyn Brianne experimental basins. All contain areas of organic soils, with three having improved grasslands & three conifer afforested. The dynamic response characteristics (DRCs) that describe detailed DOC behaviour through sequences of storms are simulated using the latest identification routines for continuous time transfer function (CT-TF) models within the Matlab-based CAPTAIN toolbox (some incorporating nonlinear components). To our knowledge this is the first application of CT-TFs to modelling DOC processes. Furthermore this allows a data-based mechanistic (DBM) modelling philosophy to be followed where no assumptions about processes are defined a priori (given that dominant processes are often not known before analysis) & where the information contained in the time-series is used to identify multiple structures of models that are statistically robust. Within the final stage of DBM, biogeochemical & hydrological processes are interpreted from those models that are observable from the available stream time-series. We show that this approach can simulate the key features of DOC dynamics within & between storms & that some of the resultant response characteristics change with varying DOC processes in different seasons. Through the use of MISO (multiple-input single-output) models we demonstrate the relative importance of different variables (e.g., rainfall, temperature) in controlling DOC responses. The contrasting behaviour of the six experimental catchments is also reflected in differing response characteristics. These characteristics are shown to contribute to understanding of basin-integrated DOC export processes & to the ecosystem service impacts of DOC & color on commercial water treatment within the surrounding water supply basins.

  6. Modeling Elevation and Aspect Controls on Emerging Ecohydrologic Processes and Ecosystem Patterns Using the Component-based Landlab Framework

    NASA Astrophysics Data System (ADS)

    Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.

    2014-12-01

    Topography plays a commanding role on the organization of ecohydrologic processes and resulting vegetation patterns. In southwestern United States, climate conditions lead to terrain aspect- and elevation-controlled ecosystems, with mesic north-facing and xeric south-facing vegetation types; and changes in biodiversity as a function of elevation from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations and ridge tops. These observed patterns have been attributed to differences in topography-mediated local soil moisture availability, micro-climatology, and life history processes of plants that control chances of plant establishment and survival. While ecohydrologic models represent local vegetation dynamics in sufficient detail up to sub-hourly time scales, plant life history and competition for space and resources has not been adequately represented in models. In this study we develop an ecohydrologic cellular automata model within the Landlab component-based modeling framework. This model couples local vegetation dynamics (biomass production, death) and plant establishment and competition processes for resources and space. This model is used to study the vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. Processes that lead to observed plant types across the landscape are examined by initializing the domain with randomly assigned plant types and systematically changing model parameters that couple plant response with soil moisture dynamics. Climate perturbation experiments are conducted to examine the plant response in space and time. Understanding the inherently transient ecohydrologic systems is critical to improve predictions of climate change impacts on ecosystems.

  7. North Korea after Kim Chong-il: Leadership Dynamics and Potential Crisis Scenarios

    DTIC Science & Technology

    2011-11-01

    legal responsibility, and with specified procedures , the actual process is different.3 To date, regime dynamics in the Kim Chong-il era have been... procedures and regulations provide the outlines of formal rule, the 3 For a detailed examination of how...was also made an alternate member. It is also worth noting that 10 of the 12 members of the NDC were represented in the new Politburo lineup , thus

  8. The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG.

    PubMed

    Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio

    2018-06-01

    Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  10. Control of Mechanotransduction by Molecular Clutch Dynamics.

    PubMed

    Elosegui-Artola, Alberto; Trepat, Xavier; Roca-Cusachs, Pere

    2018-05-01

    The linkage of cells to their microenvironment is mediated by a series of bonds that dynamically engage and disengage, in what has been conceptualized as the molecular clutch model. Whereas this model has long been employed to describe actin cytoskeleton and cell migration dynamics, it has recently been proposed to also explain mechanotransduction (i.e., the process by which cells convert mechanical signals from their environment into biochemical signals). Here we review the current understanding on how cell dynamics and mechanotransduction are driven by molecular clutch dynamics and its master regulator, the force loading rate. Throughout this Review, we place a specific emphasis on the quantitative prediction of cell response enabled by combined experimental and theoretical approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Modeling dynamics of western juniper under climate change in a semiarid ecosystem

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Flores, A. N.

    2013-12-01

    Modeling future vegetation dynamics in response to climate change and disturbances such as fire relies heavily on model parameterization. Fine-scale field-based measurements can provide the necessary parameters for constraining models at a larger scale. But the time- and labor-intensive nature of field-based data collection leads to sparse sampling and significant spatial uncertainties in retrieved parameters. In this study we quantify the fine-scale carbon dynamics and uncertainty of juniper woodland in the Reynolds Creek Experimental Watershed (RCEW) in southern Idaho, which is a proposed critical zone observatory (CZO) site for soil carbon processes. We leverage field-measured vegetation data along with airborne lidar and timeseries Landsat imagery to initialize a state-and-transition model (VDDT) and a process-based fire-model (FlamMap) to examine the vegetation dynamics in response to stochastic fire events and climate change. We utilize recently developed and novel techniques to measure biomass and canopy characteristics of western juniper at the individual tree scale using terrestrial and airborne laser scanning techniques in RCEW. These fine-scale data are upscaled across the watershed for the VDDT and FlamMap models. The results will immediately improve our understanding of fine-scale dynamics and carbon stocks and fluxes of woody vegetation in a semi-arid ecosystem. Moreover, quantification of uncertainty will also provide a basis for generating ensembles of spatially-explicit alternative scenarios to guide future land management decisions in the region.

  12. Status Report on the High-Temperature Steam Electrolysis Plant Model Developed in the Modelica Framework (FY17)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Suk; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those observed with the FY16 model. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures and pressures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES.« less

  13. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  14. Population Dynamics of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  15. Altered Brain Dynamics in Patients With Type 1 Diabetes During Working Memory Processing.

    PubMed

    Embury, Christine M; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; McDermott, Timothy J; Lord, Grace H; Brau, Kaitlin L; Drincic, Andjela T; Desouza, Cyrus V; Wilson, Tony W

    2018-06-01

    It is now generally accepted that diabetes increases the risk for cognitive impairment, but the precise mechanisms are poorly understood. A critical problem in linking diabetes to cognitive impairment is that patients often have multiple comorbidities (e.g., obesity, hypertension) that have been independently linked to cognitive deficits. In the study reported here we focused on young adults with and without type 1 diabetes who were virtually free of such comorbidities. The two groups were matched on major health and demographic factors, and all participants completed a verbal working memory task during magnetoencephalographic brain imaging. We hypothesized that patients would have altered neural dynamics in verbal working memory processing and that these differences would directly relate to clinical disease measures. Accordingly, we found that patients had significantly stronger neural responses in the superior parietal cortices during memory encoding and significantly weaker activity in parietal-occipital regions during maintenance compared with control subjects. Moreover, disease duration and glycemic control were both significantly correlated with neural responses in various brain regions. In conclusion, young healthy adults with type 1 diabetes already have aberrant neural processing relative to their peers without diabetes, using compensatory responses to perform the task, and glucose management and duration may play a central role. © 2018 by the American Diabetes Association.

  16. Improving Drive Files for Vehicle Road Simulations

    NASA Astrophysics Data System (ADS)

    Cherng, John G.; Goktan, Ali; French, Mark; Gu, Yi; Jacob, Anil

    2001-09-01

    Shaker tables are commonly used in laboratories for automotive vehicle component testing to study durability and acoustics performance. An example is development testing of car seats. However, it is difficult to repeat the measured road data perfectly with the response of a shaker table as there are basic differences in dynamic characteristics between a flexible vehicle and substantially rigid shaker table. In addition, there are performance limits in the shaker table drive systems that can limit correlation. In practice, an optimal drive signal for the actuators is created iteratively. During each iteration, the error between the road data and the response data is minimised by an optimising algorithm which is generally a part of the feed back loop of the shake table controller. This study presents a systematic investigation to the errors in time and frequency domains as well as joint time-frequency domain and an evaluation of different digital signal processing techniques that have been used in previous work. In addition, we present an innovative approach that integrates the dynamic characteristics of car seats and the human body into the error-minimising iteration process. We found that the iteration process can be shortened and the error reduced by using a weighting function created by normalising the frequency response function of the car seat. Two road data test sets were used in the study.

  17. The Evolution of the MasAgro Hubs: Responsiveness and Serendipity as Drivers of Agricultural Innovation in a Dynamic and Heterogeneous Context

    ERIC Educational Resources Information Center

    Camacho-Villa, Tania Carolina; Almekinders, Conny; Hellin, Jon; Martinez-Cruz, Tania Eulalia; Rendon-Medel, Roberto; Guevara-Hernández, Francisco; Beuchelt, Tina D.; Govaerts, Bram

    2016-01-01

    Purpose: Little is known about effective ways to operationalize agricultural innovation processes. We use the MasAgro program in Mexico (which aims to increase maize and wheat productivity, profitability and sustainability), and the experiences of middle level "hub managers", to understand how innovation processes occur in heterogeneous…

  18. Temporal dynamics of CO 2 and CH 4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.

    Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  19. Temporal dynamics of CO 2 and CH 4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils

    DOE PAGES

    RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.; ...

    2017-06-27

    Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  20. Listening to sound patterns as a dynamic activity

    NASA Astrophysics Data System (ADS)

    Jones, Mari Riess

    2003-04-01

    The act of listening to a series of sounds created by some natural event is described as involving an entrainmentlike process that transpires in real time. Some aspects of this dynamic process are suggested. In particular, real-time attending is described in terms of an adaptive synchronization activity that permits a listener to target attending energy to forthcoming elements within an acoustical pattern (e.g., music, speech, etc.). Also described are several experiments that illustrate features of this approach as it applies to attending to musiclike patterns. These involve listeners' responses to changes in either the timing or the pitch structure (or both) of various acoustical sequences.

  1. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    PubMed

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  2. Working Memory and Hearing Aid Processing: Literature Findings, Future Directions, and Clinical Applications

    PubMed Central

    Souza, Pamela; Arehart, Kathryn; Neher, Tobias

    2015-01-01

    Working memory—the ability to process and store information—has been identified as an important aspect of speech perception in difficult listening environments. Working memory can be envisioned as a limited-capacity system which is engaged when an input signal cannot be readily matched to a stored representation or template. This “mismatch” is expected to occur more frequently when the signal is degraded. Because working memory capacity varies among individuals, those with smaller capacity are expected to demonstrate poorer speech understanding when speech is degraded, such as in background noise. However, it is less clear whether (and how) working memory should influence practical decisions, such as hearing treatment. Here, we consider the relationship between working memory capacity and response to specific hearing aid processing strategies. Three types of signal processing are considered, each of which will alter the acoustic signal: fast-acting wide-dynamic range compression, which smooths the amplitude envelope of the input signal; digital noise reduction, which may inadvertently remove speech signal components as it suppresses noise; and frequency compression, which alters the relationship between spectral peaks. For fast-acting wide-dynamic range compression, a growing body of data suggests that individuals with smaller working memory capacity may be more susceptible to such signal alterations, and may receive greater amplification benefit with “low alteration” processing. While the evidence for a relationship between wide-dynamic range compression and working memory appears robust, the effects of working memory on perceptual response to other forms of hearing aid signal processing are less clear cut. We conclude our review with a discussion of the opportunities (and challenges) in translating information on individual working memory into clinical treatment, including clinically feasible measures of working memory. PMID:26733899

  3. Transformational change in parenting practices after child interpersonal trauma: A grounded theory examination of parental response.

    PubMed

    Cummings, Jorden A

    2018-02-01

    Child interpersonal trauma is associated with a host of negative outcomes, both concurrently and in adulthood. Parental responses following trauma can play an important role in modulating child responses, symptoms, and post-trauma functioning. However, parents themselves are also impacted after their child experiences trauma, reporting distress, psychopathology, concerns about the child's safety, changes in discipline and protectiveness, and feelings of blame. Most of this previous research, however, suffers from methodological limitations such as focusing on description and correlations, providing static "one shot" assessments of parenting after trauma, and relying mainly on results related to child sexual abuse. This project developed a comprehensive, explanatory theory of the dynamic process by which parenting changes in response to a range of child trauma, using a sample of parents whose children had experienced a range of interpersonal trauma types. Grounded theory analyses revealed a three-phase dynamic model of discontinuous transformation, in which parents experienced destabilization, recalibration, and re-stabilization of parenting practices in response to child trauma. Parents were focused on Protecting and Healing the child victim, often at the expense of their own needs. Most parents reached a phase of posttraumatic growth, labelled Thriving Recovery, but processes that hindered this recovery are also discussed. This study provides the first evidence that dynamic systems of change as well as vicarious posttraumatic growth can apply to parents of child trauma victims. Generating an explanatory theory provides important avenues for future research as well as interventions and services aimed at families who have experienced child trauma. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  4. Withholding a Reward-driven Action: Studies of the Rise and Fall of Motor Activation and the Effect of Cognitive Depletion.

    PubMed

    Freeman, Scott M; Aron, Adam R

    2016-02-01

    Controlling an inappropriate response tendency in the face of a reward-predicting stimulus likely depends on the strength of the reward-driven activation, the strength of a putative top-down control process, and their relative timing. We developed a rewarded go/no-go paradigm to investigate such dynamics. Participants made rapid responses (on go trials) to high versus low reward-predicting stimuli and sometimes had to withhold responding (on no-go trials) in the face of the same stimuli. Behaviorally, for high versus low reward stimuli, responses were faster on go trials, and there were more errors of commission on no-go trials. We used single-pulse TMS to map out the corticospinal excitability dynamics, especially on no-go trials where control is needed. For successful no-go trials, there was an early rise in motor activation that was then sharply reduced beneath baseline. This activation-reduction pattern was more pronounced for high- versus low-reward trials and in individuals with greater motivational drive for reward. A follow-on experiment showed that, when participants were fatigued by an effortful task, they made more errors on no-go trials for high versus low reward stimuli. Together, these studies show that, when a response is inappropriate, reward-predicting stimuli induce early motor activation, followed by a top-down effortful control process (which we interpret as response suppression) that depends on the strength of the preceding activation. Our findings provide novel information about the activation-suppression dynamics during control over reward-driven actions, and they illustrate how fatigue or depletion leads to control failures in the face of reward.

  5. Comprehensive Representation of Hydrologic and Geomorphic Process Coupling in Numerical Models: Internal Dynamics and Basin Evolution

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.

  6. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V.

    2011-09-01

    The main purpose of the current work is to develop a new system for structural health monitoring of composite aerospace structures based on real-time dynamic measurements, in order to identify the structural state condition. Long-gauge Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The algorithm that was developed for structural damage detection utilizes the collected dynamic response data, analyzes them in various ways and through an artificial neural network identifies the damage state and its location. Damage was simulated by slightly varying locally the mass of the structure (by adding a known mass) at different zones of the structure. Lumped masses in different locations upon the structure alter the eigen-frequencies in a way similar to actual damage. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of modal testing on two different composite aerospace structures. Advanced digital signal processing techniques, e.g. the wavelet transform (WT), were used for the analysis of the dynamic response for feature extraction. WT's capability of separating the different frequency components in the time domain without loosing frequency information makes it a versatile tool for demanding signal processing applications. The use of WT is also suggested by the no-stationary nature of dynamic response signals and the opportunity of evaluating the temporal evolution of their frequency contents. Feature extraction is the first step of the procedure. The extracted features are effective indices of damage size and location. The classification step comprises of a feed-forward back propagation network, whose output determines the simulated damage location. Finally, dedicated training and validation activities were carried out by means of numerical simulations and experimental procedures. Experimental validation was performed initially on a flat stiffened panel, representing a section of a typical aeronautical structure, manufactured and tested in the lab and, as a second step, on a scaled up space oriented structure, which is a composite honeycomb plate, used as a deployment base for antenna arrays. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on both structures and different excitation positions and boundary conditions were used. The analysis of operational dynamic responses was employed to identify both the damage and its position. The system that was designed and tested initially on the thin composite panel, was successfully validated on the larger honeycomb structure. Numerical simulation of both structures was used as a support tool at all the steps of the work providing among others the location of the optical sensors used. The proposed work will be the base for the whole system qualification and validation on an antenna reflector in future work.

  7. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS.

    PubMed

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-11-04

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  8. Measurement and analysis of applied power, forces and material response in friction stir welding of aluminum alloy 6061

    NASA Astrophysics Data System (ADS)

    Avila, Ricardo E.

    The process of Friction Stir Welding (FSW) 6061 aluminum alloy is investigated, with focus on the forces and power being applied in the process and the material response. The main objective is to relate measurements of the forces and power applied in the process with mechanical properties of the material during the dynamic process, based on mathematical modeling and aided by computer simulations, using the LS-DYNA software for finite element modeling. Results of measurements of applied forces and power are presented. The result obtained for applied power is used in the construction of a mechanical variational model of FSW, in which minimization of a functional for the applied torque is sought, leading to an expression for shear stress in the material. The computer simulations are performed by application of the Smoothed Particle Hydrodynamics (SPH) method, in which no structured finite element mesh is used to construct a spatial discretization of the model. The current implementation of SPH in LS-DYNA allows a structural solution using a plastic kinematic material model. This work produces information useful to improve understanding of the material flow in the process, and thus adds to current knowledge about the behavior of materials under processes of severe plastic deformation, particularly those processes in which deformation occurs mainly by application of shear stress, aided by thermoplastic strain localization and dynamic recrystallization.

  9. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    PubMed Central

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-01-01

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019

  10. Pupil movements to light and accommodative stimulation - A comparative study.

    NASA Technical Reports Server (NTRS)

    Semmlow, J.; Stark, L.

    1973-01-01

    Isolation and definition of specific response components in pupil reflexes through comparison of the dynamic features of light-induced and accommodation-induced pupil movements. A quantitative analysis of the behavior of the complex nonlinear pupil responses reveals the presence of two independent nonlinear characteristics: a range-dependent gain and a direction dependence or movement asymmetry. These nonlinear properties are attributed to motor processes because they are observable in pupil responses to both light and accommodation stimuli. The possible mechanisms and consequences of these pupil response characteristics are quantitatively defined and discussed.

  11. Description of operation of fast-response solenoid actuator in diesel fuel system model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Grekhov, L. V.; Fan, L.; Ma, X.; Song, E.

    2018-03-01

    The performance of the fast-response solenoid actuator (FRSA) of engine fuel systems is characterized by the response time of less than 0.1 ms and the necessity to take into consideration the non-stationary peculiarities of mechanical, hydraulic, electrical and magnetic processes. Simple models for magnetization in static and dynamic hysteresis are used for this purpose. The experimental study of the FRSA performance within the electro-hydraulic injector of the Common Rail demonstrated an agreement between the computational and experimental results. The computation of the processes is not only a tool for analysis, but also a tool for design and optimization of the solenoid actuator of new engine fuels systems.

  12. Thinking on your feet: understanding the immediate responses of staff to adults who challenge intellectual disability services.

    PubMed

    Ravoux, Peggy; Baker, Peter; Brown, Hilary

    2012-05-01

    A gap prevails between the conceptualization of good practice in challenging behaviour management and its implementation in intellectual disability services. This study aimed to investigate staff members' perspectives of managing clients with challenging behaviours in residential services. Semi-structured interviews were conducted with eleven staff in two services. Additionally, service documents on challenging behaviour management were examined in these services. A qualitative methodology was used to investigate staff members' immediate responses to clients' difficult behaviours and their decision-making processes. The immediate responses of staff were conceptualized as the result of complex appraisals shaped by their service context involving the core processes of making the right choice and prioritizing the best interests of all involved. Staff members' responses were understood as a dynamic and retroactive process, where their past and current challenging behaviour management experiences in the service influenced their responses to clients in the future. © 2011 Blackwell Publishing Ltd.

  13. Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT

    PubMed Central

    Xiao, Jianbo

    2015-01-01

    Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869

  14. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    USGS Publications Warehouse

    Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.

  15. Mechanistic modeling of microbial interactions at pore to profile scale resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-05-01

    The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.

  16. Importance of tread inertia and damping on the tyre/road contact stiffness

    NASA Astrophysics Data System (ADS)

    Winroth, J.; Andersson, P. B. U.; Kropp, W.

    2014-10-01

    Predicting tyre/road interaction processes like roughness excitation, stick-slip, stick-snap, wear and traction requires detailed information about the road surface, the tyre dynamics and the local deformation of the tread at the interface. Aspects of inertia and damping when the tread is locally deformed are often neglected in many existing tyre/road interaction models. The objective of this paper is to study how the dynamic features of the tread affect contact forces and contact stiffness during local deformation. This is done by simulating the detailed contact between an elastic layer and a rough road surface using a previously developed numerical time domain contact model. Road roughness on length scales smaller than the discretisation scale is included by the addition of nonlinear contact springs between each pair of contact elements. The dynamic case, with an elastic layer impulse response extending in time, is compared with the case where the corresponding quasi-static response is used. Results highlight the difficulty of estimating a constant contact stiffness as it increases during the indentation process between the elastic layer and the rough road surface. The stiffness-indentation relation additionally depends on how rapidly the contact develops; a faster process gives a stiffer contact. Material properties like loss factor and density also alter the contact development. This work implies that dynamic properties of the local tread deformation may be of importance when simulating contact details during normal tyre/road interaction conditions. There are however indications that the significant effect of damping could approximately be included as an increased stiffness in a quasi-static tread model.

  17. Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model.

    PubMed

    Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong

    2012-03-01

    A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society

  18. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders.

    PubMed

    Sato, Wataru; Toichi, Motomi; Uono, Shota; Kochiyama, Takanori

    2012-08-13

    Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD.We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex-MTG-IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD.

  19. The drift diffusion model as the choice rule in reinforcement learning.

    PubMed

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2017-08-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.

  20. Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: Microbial community succession, relationships with system function and underlying driving forces.

    PubMed

    Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Zhao, Lizhi; Lee, Duu-Jong; Yang, Lian; Wang, Yao

    2017-12-18

    The Feast-Famine (FF) process has been frequently used to select polyhydroxyalkanoate (PHA)-accumulating mixed cultures (MCs), but there has been little insight into the ecophysiology of the microbial community during the selection process. In three FF systems with well-defined conditions, synchronized variations in higher-order properties of MCs and complicate microbial community succession mainly including enrichment and elimination of non-top competitors and unexpected turnover of top competitors, were observed. Quantification of PHA-accumulating function genes (phaC) revealed that the top competitors maintained the PHA synthesis by playing consecutive roles when the highly dynamic turnover occurred. Due to its specific physiological characteristics during the PHA-accumulating process, Thauera strain OTU 7 was found to be responsible for the fluctuating SVI, which threatened the robustness of the FF system. This trait was also responsible for its later competitive exclusion by the other PHA-producer, Paracoccus strain OTU 1. Deterministic processes dominated the entire FF system, resulting in the inevitable microbial community succession in the acclimation phase and maintenance of the stable PHA-accumulating function in the maturation phase. However, neutral processes, likely caused by predation from bacterial phages, also occurred, which led to the unpredictable temporal dynamics of the top competitors. Copyright © 2017. Published by Elsevier Ltd.

  1. The drift diffusion model as the choice rule in reinforcement learning

    PubMed Central

    Frank, Michael J.

    2017-01-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyper-activity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups. PMID:27966103

  2. A normal tissue dose response model of dynamic repair processes.

    PubMed

    Alber, Markus; Belka, Claus

    2006-01-07

    A model is presented for serial, critical element complication mechanisms for irradiated volumes from length scales of a few millimetres up to the entire organ. The central element of the model is the description of radiation complication as the failure of a dynamic repair process. The nature of the repair process is seen as reestablishing the structural organization of the tissue, rather than mere replenishment of lost cells. The interactions between the cells, such as migration, involved in the repair process are assumed to have finite ranges, which limits the repair capacity and is the defining property of a finite-sized reconstruction unit. Since the details of the repair processes are largely unknown, the development aims to make the most general assumptions about them. The model employs analogies and methods from thermodynamics and statistical physics. An explicit analytical form of the dose response of the reconstruction unit for total, partial and inhomogeneous irradiation is derived. The use of the model is demonstrated with data from animal spinal cord experiments and clinical data about heart, lung and rectum. The three-parameter model lends a new perspective to the equivalent uniform dose formalism and the established serial and parallel complication models. Its implications for dose optimization are discussed.

  3. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.

    PubMed

    Rössler, Wolfgang; Brill, Martin F

    2013-11-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.

  4. Metrics for comparing dynamic earthquake rupture simulations

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  5. Challenges and opportunities for improved understanding of regional climate dynamics

    NASA Astrophysics Data System (ADS)

    Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga

    2018-01-01

    Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

  6. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations

    PubMed Central

    Marino, Kristen A.; Filizola, Marta

    2017-01-01

    An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important—albeit static—pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches. PMID:29188572

  7. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations.

    PubMed

    Marino, Kristen A; Filizola, Marta

    2018-01-01

    An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important-albeit static-pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches.

  8. Development of CCD imaging sensors for space applications, phase 1

    NASA Technical Reports Server (NTRS)

    Antcliffe, G. A.

    1975-01-01

    The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.

  9. Summary of methods for calculating dynamic lateral stability and response and for estimating aerodynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O

    1952-01-01

    A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.

  10. A mobile system for assessment of physiological response to posture transitions.

    PubMed

    Jovanov, Emil; Milosevic, Mladen; Milenković, Aleksandar

    2013-01-01

    Posture changes initiate a dynamic physiological response that can be used as an indicator of the overall health status. We introduce an inconspicuous mobile wellness monitoring system (imWell) that continuously assesses the dynamic physiological response to posture transitions during activities of daily living. imWell utilizes a Zephyr BioHarness 3 physiological monitor that continually reports heart activity and physical activity via Bluetooth to a personal device (e.g. smartphone). The personal device processes the reported activity data in real-time to recognize posture transitions from the accelerometer data and to characterize dynamic heart response to posture changes. It annotates, logs, and uploads the heart activity data to our mHealth server. In this paper we present algorithms for detection of posture transitions and heart activity characterization during a sit-to-stand transition. The proposed system was tested on seven healthy subjects performing a predefined protocol. The total average and standard deviation for sit-to-stand transition time is 2.7 ± 0.69 s, resulting in the change of heart rate of 27.36 ± 9.30 bpm (from 63.3 ± 9.02 bpm to 90.66 ± 10.09 bpm).

  11. ProteinAC: a frequency domain technique for analyzing protein dynamics

    NASA Astrophysics Data System (ADS)

    Bozkurt Varolgunes, Yasemin; Demir, Alper

    2018-03-01

    It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.

  12. Shared internal models for feedforward and feedback control.

    PubMed

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  13. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  14. Information properties of morphologically complex words modulate brain activity during word reading

    PubMed Central

    Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-01-01

    Abstract Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well‐defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito‐temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole‐word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. PMID:29524274

  15. Information properties of morphologically complex words modulate brain activity during word reading.

    PubMed

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  16. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  17. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  18. Angular analysis of the cyclic impacting oscillations in a robotic grinding process

    NASA Astrophysics Data System (ADS)

    Rafieian, Farzad; Girardin, François; Liu, Zhaoheng; Thomas, Marc; Hazel, Bruce

    2014-02-01

    In a robotic machining process, a light-weight cutter or grinder is usually held by an articulated robot arm. Material removal is achieved by the rotating cutting tool while the robot end effector ensures that the tool follows a programmed trajectory in order to work on complex curved surfaces or to access hard-to-reach areas. One typical application of such process is maintenance and repair work on hydropower equipment. This paper presents an experimental study of the dynamic characteristics of material removal in robotic grinding, which is unlike conventional grinding due to the lower structural stiffness of the tool-holder robot. The objective of the study is to explore the cyclic nature of this mechanical operation to provide the basis for future development of better process control strategies. Grinding tasks that minimize the number of iterations to converge to the target surface can be better planned based on a good understanding and modeling of the cyclic material removal mechanism. A single degree of freedom dynamic analysis of the process suggests that material removal is performed through high-frequency impacts that mainly last for only a small fraction of the grinding disk rotation period. To detect these discrete cutting events in practice, a grinder is equipped with a rotary encoder. The encoder's signal is acquired through the angular sampling technique. A running cyclic synchronous average is applied to the speed signal to remove its non-cyclic events. The measured instantaneous rotational frequency clearly indicates the impacting nature of the process and captures the transient response excited by these cyclic impacts. The technique also locates the angular positions of cutting impacts in revolution cycles. It is thus possible to draw conclusions about the cyclic nature of dynamic changes in impact-cutting behavior when grinding with a flexible robot. The dynamics of the impacting regime and transient responses to impact-cutting excitations captured synchronously using the angular sampling technique provide feedback that can be used to regulate the material removal process. The experimental results also make it possible to correlate the energy required to remove a chip of metal through impacting with the measured drop in angular speed during grinding.

  19. Integrating Green Building Criteria Into Housing Design Processes Case Study: Tropical Apartment At Kebon Melati, Jakarta

    NASA Astrophysics Data System (ADS)

    Farid, V. L.; Wonorahardjo, S.

    2018-05-01

    The implementation of Green Building criteria is relatively new in architectural practice, especially in Indonesia. Consequently, the integration of these criteria into design process has the potential to change the design process itself. The implementation of the green building criteria into the conventional design process will be discussed in this paper. The concept of this project is to design a residential unit with a natural air-conditioning system. To achieve this purpose, the Green Building criteria has been implemented since the beginning of the design process until the detailing process on the end of the project. Several studies was performed throughout the design process, such as: (1) Conceptual review, where several professionally proved theories related to Tropical Architecture and passive design are used for a reference, and (2) Computer simulations, such as Computational Fluid Dynamics (CFD) and wind tunnel simulation, used to represent the dynamic response of the surrounding environment towards the building. Hopefully this paper may become a reference for designing a green residential building.

  20. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out

    NASA Astrophysics Data System (ADS)

    Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie

    2018-06-01

    Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.

  1. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Phay J.; Knight, Chris

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  2. Characteristics and Concepts of Dynamic Hub Proteins in DNA Processing Machinery from Studies of RPA

    PubMed Central

    Sugitani, Norie; Chazin, Walter J.

    2015-01-01

    DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA). PMID:25542993

  3. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE PAGES

    Ho, Phay J.; Knight, Chris

    2017-04-28

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  4. The Effect of High Energy Ball Milling on the Dynamic Response of Aluminum Powders

    NASA Astrophysics Data System (ADS)

    Beason, Matthew T.; Justice, Andrew W.; Gunduz, Ibrahim E.; Son, Steven F.

    2017-06-01

    Ball milling is an effective method to enhance the reactivity of intermetallic reactives by reducing characteristic diffusions distances. During this process, ductile reactants are mixed into a lamellar material with nanoscale features, resulting in significant strain hardening. Plate impact experiments using a single stage light gas gun have been performed to evaluate the effect of high energy ball milling (HEBM) on the mechanical properties and dynamic response of cold pressed aluminum compacts. The average grain size of the milled material is evaluate and suggested as a method of correlating the measured response to the properties of milled composites. This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002377, as well as individual funding (Beason) by the Department of Defense through the NDSEG.

  5. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-02

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty

    NASA Astrophysics Data System (ADS)

    Fu, Chao; Ren, Xingmin; Yang, Yongfeng; Xia, Yebao; Deng, Wangqun

    2018-07-01

    A non-intrusive interval precise integration method (IPIM) is proposed in this paper to analyze the transient unbalance response of uncertain rotor systems. The transfer matrix method (TMM) is used to derive the deterministic equations of motion of a hollow-shaft overhung rotor. The uncertain transient dynamic problem is solved by combing the Chebyshev approximation theory with the modified precise integration method (PIM). Transient response bounds are calculated by interval arithmetic of the expansion coefficients. Theoretical error analysis of the proposed method is provided briefly, and its accuracy is further validated by comparing with the scanning method in simulations. Numerical results show that the IPIM can keep good accuracy in vibration prediction of the start-up transient process. Furthermore, the proposed method can also provide theoretical guidance to other transient dynamic mechanical systems with uncertainties.

  7. STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.

    1997-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.

  8. Archetypes of famine and response.

    PubMed

    Howe, Paul

    2010-01-01

    Famines have long been characterised by rapidly shifting dynamics: sudden price spirals, sharp increases in mortality, the media frenzy that often accompanies such spikes, the swift scaling up of aid flows, and a subsequent decline in interest. In arguing that these aspects of famine have been largely ignored in recent years due to attention to the famine process', this paper attempts to make these dynamics more explicit by applying systems thinking. It uses standard archetypes of systems thinking to explain six situations--watch, price spiral, aid magnet, media frenzy, overshoot, and peaks--that are present in many famine contexts. It illustrates their application with examples from crises in Ethiopia, Malawi, Niger, and Sudan. The paper contends that the systems approach offers a tool for analysing the larger patterns in famines and for pinpointing the most appropriate responses to them, based on an awareness of the dynamics of the crises.

  9. Ecosystem responses to biogeochemical fronts in the South Brazil Bight

    NASA Astrophysics Data System (ADS)

    Brandini, Frederico P.; Tura, Pedro M.; Santos, Pedro P. G. M.

    2018-05-01

    Here we described the general hydrography in the South Brazil Bight (23-28°S) with emphasis on frontal processes and their role in the structure and functioning of the regional shelf ecosystem. One of the key roles of fronts for ecosystem dynamics is the injection of nutrients into the euphotic zone increasing primary production. Frontal systems also affect plankton biodiversity and fisheries. Physical mechanisms behind frontogenesis in this region are similar in the analogous western side of oceanic basins; their magnitude and seasonal dynamics, however, may differ due to peculiarities in shelf morphology, wind field, tidal circulation and continental drainage. Here we provide a reassessment of earlier and recent ecological and hydrographic studies for a better evaluation of the spatial and temporal dynamics of fronts and their regional ecological implications. Albeit in a fragmented manner, we give a more detailed conceptual framework about the ecosystem responses to the complex frontal system in the South Brazil Bight.

  10. Dynamic Reciprocity in the Wound Microenvironment

    PubMed Central

    Schultz, Gregory S.; Davidson, Jeffrey M.; Kirsner, Robert S.; Bornstein, Paul; Herman, Ira M.

    2011-01-01

    Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction amongst cells and their surrounding microenvironment. In the review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but cellular differentiation, migration, proliferation, and survival during tissue development, including e.g. embryogenesis, angiogenesis, as well as during pathologic processes including cancer diabetes, hypertension and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology, which may be understood within the DR framework. The implications of applying the principles of dynamic reciprocity to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered. PMID:21362080

  11. Dynamic transcription profiles of “Qinguan” apple (Malus × domestica) leaves in response to Marssonina coronaria inoculation

    PubMed Central

    Xu, Jianhua; Li, Miaomiao; Jiao, Peng; Tao, Hongxia; Wei, Ningning; Ma, Fengwang; Zhang, Junke

    2015-01-01

    Marssonina apple blotch, caused by the fungus Marssonina coronaria, is one of the most destructive apple diseases in China and East Asia. A better understanding of the plant's response to fungi during pathogenesis is urgently needed to improve plant resistance and to breed resistant cultivars. To address this, the transcriptomes of “Qinguan” (a cultivar with high resistance to M. coronaria) apple leaves were sequenced at 12, 24, 48, and 72 h post-inoculation (hpi) with Marssonina coronaria. The comparative results showed that a total of 1956 genes were differentially expressed between the inoculated and control samples at the 4 time points. Gene ontology (GO) term enrichment analysis of differentially expressed genes (DEGs) revealed changes in cellular component, secondary metabolism including chalcone isomerase activity, phytoalexin biosynthetic process, anthocyanin-containing compound biosynthetic process, lignin biosynthetic process, positive regulation of flavonoid biosynthetic process; and molecular functions or biological processes related to the defense response, biotic stimulus response, wounding response and fungus response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs were significantly enriched in flavonoid biosynthesis, vitamin B6 metabolism, phenylpropanoid biosynthesis, and the stilbenoid, diarylheptanoid and gingerol biosynthesis pathways. Furthermore, the importance of changes in cellular components and partial polyphenol compounds when encountering M. coronaria are discussed. PMID:26528306

  12. Dynamic Object Representations in Infants with and without Fragile X Syndrome

    PubMed Central

    Farzin, Faraz; Rivera, Susan M.

    2009-01-01

    Our visual world is dynamic in nature. The ability to encode, mentally represent, and track an object's identity as it moves across time and space is critical for integrating and maintaining a complete and coherent view of the world. Here we investigated dynamic object processing in typically developing (TD) infants and infants with fragile X syndrome (FXS), a single-gene disorder associated with deficits in dorsal stream functioning. We used the violation of expectation method to assess infants’ visual response to expected versus unexpected outcomes following a brief dynamic (dorsal stream) or static (ventral stream) occlusion event. Consistent with previous reports of deficits in dorsal stream-mediated functioning in individuals with this disorder, these results reveal that, compared to mental age-matched TD infants, infants with FXS could maintain the identity of static, but not dynamic, object information during occlusion. These findings are the first to experimentally evaluate visual object processing skills in infants with FXS, and further support the hypothesis of dorsal stream difficulties in infants with this developmental disorder. PMID:20224809

  13. Dynamic processes at stress promoters regulate the bimodal expression of HOG response genes

    PubMed Central

    2011-01-01

    Osmotic stress triggers the activation of the HOG (high osmolarity glycerol) pathway in Saccharomyces cerevisiae. This signaling cascade culminates in the activation of the MAPK (mitogen-activated protein kinase) Hog1. Quantitative single cell measurements revealed a discrepancy between kinase- and transcriptional activities of Hog1. While kinase activity increases proportionally to stress stimulus, gene expression is inhibited under low stress conditions. Interestingly, a slow stochastic gene activation process is responsible for setting a tunable threshold for gene expression under basal or low stress conditions, which generates a bimodal expression pattern at intermediate stress levels. PMID:22446531

  14. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  15. DNA Methylation and Demethylation in Plant Immunity.

    PubMed

    Deleris, A; Halter, T; Navarro, L

    2016-08-04

    Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress-induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive.

  16. Dynamic characterization of high damping viscoelastic materials from vibration test data

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Manex; Elejabarrieta, María Jesús

    2011-08-01

    The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.

  17. Mitochondrial Dynamics in Mitochondrial Diseases

    PubMed Central

    Suárez-Rivero, Juan M.; Villanueva-Paz, Marina; de la Cruz-Ojeda, Patricia; de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Sánchez-Alcázar, José A.

    2016-01-01

    Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases. PMID:28933354

  18. Modelling fungal growth in heterogeneous soil: analyses of the effect of soil physical structure on fungal community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.

    2009-04-01

    Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.

  19. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands

    PubMed Central

    Donohue, Sarah E.; Appelbaum, Lawrence G.; McKay, Cameron C.; Woldorff, Marty G.

    2016-01-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity ‘Ninc’ was observed for all conditions, which was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related Ninc, indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. PMID:26827917

  20. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands.

    PubMed

    Donohue, Sarah E; Appelbaum, Lawrence G; McKay, Cameron C; Woldorff, Marty G

    2016-04-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. MODELING LONG-TERM DYNAMICS OF LITTER ACCUMULATION IN RESPONSE TO STATIC AND VARIABLE HYDROPERIODS

    EPA Science Inventory

    Accumulated litter from emergent species like the cattail hybrid (Typha glauca Godr.) can influence local abiotic conditions, other biota, and ecosystem processes. Litter accumulation results from high production coupled with slow breakdown rates. Wetland managers regularly mani...

  2. Catchment hydrological responses to forest harvest amount and spatial pattern

    EPA Science Inventory

    Forest harvest effects on streamflow dynamics have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VE...

  3. DYNACLIPS (DYNAmic CLIPS): A dynamic knowledge exchange tool for intelligent agents

    NASA Technical Reports Server (NTRS)

    Cengeloglu, Yilmaz; Khajenoori, Soheil; Linton, Darrell

    1994-01-01

    In a dynamic environment, intelligent agents must be responsive to unanticipated conditions. When such conditions occur, an intelligent agent may have to stop a previously planned and scheduled course of actions and replan, reschedule, start new activities and initiate a new problem solving process to successfully respond to the new conditions. Problems occur when an intelligent agent does not have enough knowledge to properly respond to the new situation. DYNACLIPS is an implementation of a framework for dynamic knowledge exchange among intelligent agents. Each intelligent agent is a CLIPS shell and runs a separate process under SunOS operating system. Intelligent agents can exchange facts, rules, and CLIPS commands at run time. Knowledge exchange among intelligent agents at run times does not effect execution of either sender and receiver intelligent agent. Intelligent agents can keep the knowledge temporarily or permanently. In other words, knowledge exchange among intelligent agents would allow for a form of learning to be accomplished.

  4. How Dynamic Visualization Technology can Support Molecular Reasoning

    NASA Astrophysics Data System (ADS)

    Levy, Dalit

    2013-10-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and gas. They interact with the visualizations and carry out inquiry activities to make and refine connections between observable phenomena and atomic level processes related to phase change. The explanations proposed by 300 pairs of students in response to pre/post-assessment items have been analyzed using a scale for measuring the level of molecular reasoning. Results indicate that from pretest to posttest, students make progress in their level of molecular reasoning and are better able to connect intermolecular forces and phase change in their explanations. The paper presents the results through the lens of improvement patterns and the metaphor of the "ladder of molecular reasoning," and discusses how this adds to our understanding of the benefits of interacting with dynamic molecular visualizations.

  5. Time-resolved observation of protein allosteric communication

    PubMed Central

    Buchenberg, Sebastian; Sittel, Florian; Stock, Gerhard

    2017-01-01

    Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response (≲0.1 ns), inelastic reorganization (∼100 ns), and structural relaxation (≳1μs). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed. PMID:28760989

  6. FATE-HD: A spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale

    PubMed Central

    Isabelle, Boulangeat; Damien, Georges; Wilfried, Thuiller

    2014-01-01

    During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions; and (iii) account for the processes shaping biodiversity distribution. This paper presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and validated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interactions, spatio-temporal dynamics, and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The distribution of pioneer trees was particularly improved, as were all undergrowth functional groups. PMID:24214499

  7. Dynamic curvature sensing employing ionic-polymer-metal composite sensors

    NASA Astrophysics Data System (ADS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-09-01

    A dynamic curvature sensor is presented based on ionic-polymer-metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson-Nernst-Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations.

  8. Experimental response of Salix cuttings to sudden water table changing dynamics

    NASA Astrophysics Data System (ADS)

    Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.

    2013-12-01

    Hydropower production, agriculture and other human activities change the natural flow regime of rivers, in turn impacting the riparian environment. Inadequate flow rules (e.g., minimal or residual flows) reflecting our limited understanding of eco-hydrological processes have thus been applied since decades. The main challenge for an eco-sustainable water management is to quantify the effects of flow regulation on channel morphodynamics and biological processes. We present a controlled laboratory experiment to investigate riparian vegetation (Salix Viminalis) response to forced water table changing dynamics, from one water regime to another, in a temperate region (Switzerland). Three synthetic flow regimes have been simulated and applied to three batteries of Salix cuttings (60 in total) growing outdoor within plastic pots, each about 1 meter tall. After an initial period where all pots undergone the same oscillations in order to uniform the plants initial conditions, the experiment started, and the water dynamic was changed for two out of three batteries. In particular, one treatment simulated a minimal flow policy, which drastically impacts the low and the medium-low components of the hydrograph, but not the extremes. The other treatment reproduced only the low frequencies corresponding to the seasonal trend of the natural flow regime, still applied on the third battery. Cuttings transitory response dynamics has been quantified by continuous sap flow and water potential measurements, and by regularly collecting growth parameters, as well as leaves photosynthesis, fluorescence, and pictures of each plant. At the end of the experiment, all cuttings were carefully removed and the both above and below ground biomass analyzed in detail. Particularly, the 3D root structure was obtained by High Resolution Computer Tomography. Our analyses reveal a clear dependence between roots distribution and water regime reflecting the need for adaptation, which are also in agreement with field observations of Pasquale et al. (2012, in press). In particular, an initial strong difference in terms of stress and growth performances was then followed by a later adjustment in the roots system, notably detected from tomographic images. Roots tropic response resulted in spatial reallocation, which likely allowed survivors to adapt to new conditions. Macroscopic effects in terms of growth parameters at weekly time step have found correspondence at higher time resolution in terms of sap flow and stem pressure, strengthening our results interpretation. Other interesting effects detected by sap flow meters and psychrometers in the transition time, even if coherent to water regimes, have not led to macroscopic effects. A discussion with data from a parallel field installation along the Thur River (Switzerland) is also made. REFERENCES - Pasquale et al., Effects of streamflow variability on the vertical root density distribution of willow cutting experiments, Ecological Engineering,2011, 10.1016/j.ecoleng.2012.12.002 - Pasquale et al., Above and below-ground Salix dynamics in response to river processes, Hydrological Processes., in press, 10.1002/hyp.9993

  9. Loblolly pine foliar patterns and growth dynamics at age 12 in response to planting density and cultural intensity

    Treesearch

    Madison Katherine Akers; Michael Kane; Dehai Zhao; Richard F. Daniels; Robert O. Teskey

    2015-01-01

    Examining the role of foliage in stand development across a range of stand structures provides a more detailed understanding of the processes driving productivity and allows further development of process-based models for prediction. Productivity changes observed at the stand scale will be the integration of changes at the individual tree scale, but few studies have...

  10. Anxiety, anticipation and contextual information: A test of attentional control theory.

    PubMed

    Cocks, Adam J; Jackson, Robin C; Bishop, Daniel T; Williams, A Mark

    2016-09-01

    We tested the assumptions of Attentional Control Theory (ACT) by examining the impact of anxiety on anticipation using a dynamic, time-constrained task. Moreover, we examined the involvement of high- and low-level cognitive processes in anticipation and how their importance may interact with anxiety. Skilled and less-skilled tennis players anticipated the shots of opponents under low- and high-anxiety conditions. Participants viewed three types of video stimuli, each depicting different levels of contextual information. Performance effectiveness (response accuracy) and processing efficiency (response accuracy divided by corresponding mental effort) were measured. Skilled players recorded higher levels of response accuracy and processing efficiency compared to less-skilled counterparts. Processing efficiency significantly decreased under high- compared to low-anxiety conditions. No difference in response accuracy was observed. When reviewing directional errors, anxiety was most detrimental to performance in the condition conveying only contextual information, suggesting that anxiety may have a greater impact on high-level (top-down) cognitive processes, potentially due to a shift in attentional control. Our findings provide partial support for ACT; anxiety elicited greater decrements in processing efficiency than performance effectiveness, possibly due to predominance of the stimulus-driven attentional system.

  11. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    PubMed

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modeling Dynamic Regulatory Processes in Stroke.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.

    2012-10-11

    The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to developmore » dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.« less

  13. Examining the time course of genital and subjective sexual responses in women and men with concurrent plethysmography and thermography.

    PubMed

    Huberman, Jackie S; Dawson, Samantha J; Chivers, Meredith L

    2017-10-01

    Sexual response is a dynamic process, though there is limited knowledge of the time course and relationships among its psychological and physiological components. To address this gap, we concurrently assessed self-reported sexual arousal, genital temperature (with thermography), and genital vasocongestion (with vaginal photoplethysmography [VPP] or penile plethysmography [PPG]) during sexual and nonsexual films in 28 androphilic women (attracted to men) and 27 gynephilic men (attracted to women). Men and women had similarly strong agreement between subjective and genital responses (sexual concordance) with thermography, but this agreement was stronger in men than women with PPG/VPP. The time course of changes in self-reported arousal was most similar to changes in genital temperature (i.e., time to onset and peak response). Time-lagged correlations and multilevel modeling revealed changes in the strength of relationships between aspects of sexual response over time. Results highlight the dynamic nature of sexual response and drawbacks of relying on zero-order correlations to characterize sexual concordance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (

  15. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  16. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  17. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    PubMed

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  18. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development.

    PubMed

    Wu, Huiquan; White, Maury; Khan, Mansoor A

    2011-02-28

    The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.

  19. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study.

    PubMed

    Fu, Cynthia H Y; Williams, Steven C R; Cleare, Anthony J; Brammer, Michael J; Walsh, Nicholas D; Kim, Jieun; Andrew, Chris M; Pich, Emilio Merlo; Williams, Pauline M; Reed, Laurence J; Mitterschiffthaler, Martina T; Suckling, John; Bullmore, Edward T

    2004-09-01

    Depression is associated with interpersonal difficulties related to abnormalities in affective facial processing. To map brain systems activated by sad facial affect processing in patients with depression and to identify brain functional correlates of antidepressant treatment and symptomatic response. Two groups underwent scanning twice using functional magnetic resonance imaging (fMRI) during an 8-week period. The event-related fMRI paradigm entailed incidental affect recognition of facial stimuli morphed to express discriminable intensities of sadness. Participants were recruited by advertisement from the local population; depressed subjects were treated as outpatients. We matched 19 medication-free, acutely symptomatic patients satisfying DSM-IV criteria for unipolar major depressive disorder by age, sex, and IQ with 19 healthy volunteers. Intervention After the baseline assessment, patients received fluoxetine hydrochloride, 20 mg/d, for 8 weeks. Average activation (capacity) and differential response to variable affective intensity (dynamic range) were estimated in each fMRI time series. We used analysis of variance to identify brain regions that demonstrated a main effect of group (depressed vs healthy subjects) and a group x time interaction (attributable to antidepressant treatment). Change in brain activation associated with reduction of depressive symptoms in the patient group was identified by means of regression analysis. Permutation tests were used for inference. Over time, depressed subjects showed reduced capacity for activation in the left amygdala, ventral striatum, and frontoparietal cortex and a negatively correlated increase of dynamic range in the prefrontal cortex. Symptomatic improvement was associated with reduction of dynamic range in the pregenual cingulate cortex, ventral striatum, and cerebellum. Antidepressant treatment reduces left limbic, subcortical, and neocortical capacity for activation in depressed subjects and increases the dynamic range of the left prefrontal cortex. Changes in anterior cingulate function associated with symptomatic improvement indicate that fMRI may be a useful surrogate marker of antidepressant treatment response.

  20. Quaternary geomorphology and modern coastal development in response to an inherent geologic framework: An example from Charleston, South Carolina

    USGS Publications Warehouse

    Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P.

    2005-01-01

    Coastal landscapes evolve over wide-ranging spatial and temporal scales in response to physical and biological pro-cesses that interact with a wide range of variables. To develop better predictive models for these dynamic areas, we must understand the influence of these variables on coastal morphologies and ultimately how they influence coastal processes. This study defines the influence of geologic framework variability on a classic mixed-energy coastline, and establishes four categorical scales of spatial and temporal influence on the coastal system. The near-surface, geologic framework was delineated using high-resolution seismic profiles, shallow vibracores, detailed geomorphic maps, historical shorelines, aerial photographs, and existing studies, and compared to the long- and short-term development of two coastal compartments near Charleston, South Carolina. Although it is clear that the imprint of a mixed-energy tidal and wave signal (basin-scale) dictates formation of drumstick barriers and that immediate responses to wave climate are dramatic, island size, position, and longer-term dynamics are influenced by a series of inherent, complex near-surface stratigraphic geometries. Major near-surface Tertiary geometries influence inlet placement and drainage development (island-scale) through multiple interglacial cycles and overall channel morphology (local-scale). During the modern marine transgression, the halo of ebb-tidal deltas greatly influence inlet region dynamics, while truncated beach ridges and exposed, differentially erodable Cenozoic deposits in the active system influence historical shoreline dynamics and active shoreface morphologies (blockscale). This study concludes that the mixed-energy imprint of wave and tide theories dominates general coastal morphology, but that underlying stratigraphic influences on the coast provide site-specific, long-standing imprints on coastal evolution.

  1. Dynamics of direct X-ray detection processes in high-Z Bi2O3 nanoparticles-loaded PFO polymer-based diodes

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Cramer, T.; Carroli, M.; Basiricò, L.; Fuhrer, R.; De Leeuw, D. M.; Fraboni, B.

    2017-10-01

    Semiconducting polymer based X-ray detectors doped with high-Z nanoparticles hold the promise to combine mechanical flexibility and large-area processing with a high X-ray stopping power and sensitivity. Currently, a lack of understanding of how nanoparticle doping impacts the detector dynamics impedes the optimization of such detectors. Here, we study direct X-ray radiation detectors based on the semiconducting polymer poly(9,9-dioctyfluorene) blended with Bismuth(III)oxide (Bi2O3) nanoparticles (NPs). Pure polymer diodes show a high mobility of 1.3 × 10-5 cm2/V s, a low leakage current of 200 nA/cm2 at -80 V, and a high rectifying factor up to 3 × 105 that allow us to compare the X-ray response of a polymer detector in charge-injection conditions (forward bias) and in charge-collection conditions (reverse bias), together with the impact of NP-loading in the two operation regimes. When operated in reverse bias, the detectors reach the state of the art sensitivity of 24 μC/Gy cm2, providing a fast photoresponse. In forward operation, a slower detection dynamics but improved sensitivity (up to 450 ± 150 nC/Gy) due to conductive gain is observed. High-Z NP doping increases the X-ray absorption, but higher NP loadings lead to a strong reduction of charge-carrier injection and transport due to a strong impact on the semiconductor morphology. Finally, the time response of optimized detectors showed a cut-off frequency up to 200 Hz. Taking advantage of such a fast dynamic response, we demonstrate an X-ray based velocity tracking system.

  2. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    PubMed

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our integrated experimental and modeling strategies could be widely applicable to other biological systems.

  3. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  4. The temporal spectrum of adult mosquito population fluctuations: conceptual and modeling implications.

    PubMed

    Jian, Yun; Silvestri, Sonia; Brown, Jeff; Hickman, Rick; Marani, Marco

    2014-01-01

    An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.

  5. Analysis/test correlation using VAWT-SDS on a step-relaxation test for the rotating Sandia 34 m test bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argueello, J.G.; Dohrmann, C.R.; Carne, T.G.

    The combined analysis/test effort described in this paper compares predictions with measured data from a step-relaxation test in the absence of significant wind-driven aerodynamic loading. The process described here is intended to illustrate a method for validation of time domain codes for structural analysis of wind turbine structures. Preliminary analyses were performed to investigate the transient dynamic response that the rotating Sandia 34 m Vertical Axis Wind Turbine (VAWT) would undergo when one of the two blades was excited by step-relaxation. The calculations served two purposes. The first was for pretest planning to evaluate the relative importance of the variousmore » forces that would be acting on the structure during the test and to determine if the applied force in the step-relaxation would be sufficient to produce an excitation that was distinguishable from that produced by the aerodynamic loads. The second was to provide predictions that could subsequently be compared to the data from the test. The test was carried out specifically to help in the validation of the time-domain structural dynamics code, VAWT-SDS, which predicts the dynamic response of VAWTs subject to transient events. Post-test comparisons with the data were performed and showed a qualitative agreement between pretest predictions and measured response. However, they also showed that there was significantly more damping in the measurements than included in the predictions. Efforts to resolve this difference, including post-test analyses, were undertaken and are reported herein. The overall effort described in this paper represents a major step in the process of arriving at a validated structural dynamics code.« less

  6. Observed Responses of Mesospheric Water Vapor to Solar Cycle and Dynamical Forcings

    NASA Astrophysics Data System (ADS)

    Remsberg, Ellis; Damadeo, Robert; Natarajan, Murali; Bhatt, Praful

    2018-04-01

    This study focuses on responses of mesospheric water vapor (H2O) to the solar cycle flux at Lyman-α wavelength and to dynamical forcings according to the multivariate El-Nino/Southern Oscillation (ENSO) index. The zonal-averaged responses are for latitudes from 60°S to 60°N and pressure-altitudes from 0.01 to 1.0 hPa, as obtained from multiple linear regression analyses of time series of H2O from the Halogen Occultation Experiment for July 1992 to November 2005. The results compare very well with those from a separate simultaneous temporal and spatial (STS) method that also confirms that there are no significant sampling biases affecting both sets of results. Distributions of the seasonal amplitudes for temperature and H2O are in accord with the seasonal net circulation. In general, the responses of H2O to ENSO are anticorrelated with those of temperature. H2O responses to multivariate ENSO index are negative in the upper mesosphere and largest in the Northern Hemisphere; responses in the lower mesosphere are more symmetric with latitude. H2O responses to the Lyman-α flux (Lya) vary from strong negative values in the uppermost mesosphere to very weak, positive values in the tropical lowermost mesosphere. However, the effects of those H2O responses to the solar activity extend to the rest of the mesosphere via dynamical processes. Profiles of the responses to ENSO and Lya also agree reasonably with published results for H2O at the low latitudes from the Microwave Limb Sounder.

  7. Hydrological versus biogeochemical controls on catchment nitrate export: a test of the flushing mechanism

    NASA Astrophysics Data System (ADS)

    Ocampo, Carlos J.; Oldham, Carolyn E.; Sivapalan, Murugesu; Turner, Jeffrey V.

    2006-12-01

    Deciphering the connection between streamflows and nitrate (NO-3) discharge requires identification of the various water flow pathways within a catchment, and the different time-scales at which hydrological and biogeochemical processes occur. Despite the complexity of the processes involved, many catchments around the world present a characteristic flushing response of NO-3 export. Yet the controls on the flushing response, and how they vary across space and time, are still not clearly understood. In this paper, the flushing response of NO-3 export from a rural catchment in Western Australia was investigated using isotopic (deuterium), chemical (chloride, NO-3), and hydrometric data across different antecedent conditions and time-scales. The catchment streamflow was at all time-scales dominated by a pre-event water source, and the NO-3 discharge was correlated with the magnitude of areas contributing to saturation overland flow. The NO-3 discharge also appeared related to the shallow groundwater dynamics. Thus, the antecedent moisture condition of the catchment at seasonal and interannual time-scales had a major impact on the NO-3 flushing response. In particular, the dynamics of the shallow ephemeral perched aquifer drove a shift from hydrological controls on NO-3 discharge during the early flushing stage to an apparent biogeochemical control on NO-3 discharge during the steady decline stage of the flushing response. This temporally variable control hypothesis provides a new and alternative description of the mechanisms behind the commonly seen flushing response. Copyright

  8. Long time response of soft magnetorheological gels.

    PubMed

    An, Hai-Ning; Sun, Bin; Picken, Stephen J; Mendes, Eduardo

    2012-04-19

    Swollen physical magnetorheological (MR) gels were obtained by self-assembling of triblock copolymers containing dispersed soft magnetic particles. The transient rheological responses of these systems were investigated experimentally. Upon sudden application of a homogeneous magnetic field step change, the storage modulus of MR gels continued to increase with time. Such increase trend of the storage modulus could be expressed by a double-exponential function with two distinct modes, a fast and a slow one. The result was compared with the transient rheological response of equivalent MR fluids (paraffin oil without copolymer) and a MR elastomer (PDMS) and interpreted as the consequence of strong rearrangement of the original particle network under magnetic field. Similar to the structure evolution of MR fluids, the ensemble of results suggests that "chaining" and "clustering" processes are also happening inside the gel and are responsible for the rheological behavior, provided they are happening on a smaller length scale (long chains and clusters are hindered). We show that response times of several minutes are typical for the slow response of MR gels. The characteristic time t(2) for the slow process is significantly dependent on the magnetic flux density, the matrix viscoelastic property, particle volume fraction, and sample's initial particle distribution. In order to validate our results, the role of dynamic strain history was clarified. We show that, in the linear viscoelastic region, the particle rearrangement of MR gels was not hindered or accelerated by the dynamic strain history.

  9. On decentralized design: Rationale, dynamics, and effects on decision-making

    NASA Astrophysics Data System (ADS)

    Chanron, Vincent

    The focus of this dissertation is the design of complex systems, including engineering systems such as cars, airplanes, and satellites. Companies who design these systems are under constant pressure to design better products that meet customer expectations, and competition forces them to develop them faster. One of the responses of the industry to these conflicting challenges has been the decentralization of the design responsibilities. The current lack of understanding of the dynamics of decentralized design processes is the main motivation for this research, and places value on the descriptive base. It identifies the main reasons and the true benefits for companies to decentralize the design of their products. It also demonstrates the limitations of this approach by listing the relevant issues and problems created by the decentralization of decisions. Based on these observations, a game-theoretic approach to decentralized design is proposed to model the decisions made during the design process. The dynamics are modeled using mathematical formulations inspired from control theory. Building upon this formalism, the issue of convergence in decentralized design is analyzed: the equilibrium points of the design space are identified and convergent and divergent patterns are recognized. This rigorous investigation of the design process provides motivation and support for proposing new approaches to decentralized design problems. Two methods are developed, which aim at improving the design process in two ways: decreasing the product development time, and increasing the optimality of the final design. The frame of these methods are inspired by eigenstructure decomposition and set-based design, respectively. The value of the research detailed within this dissertation is in the proposed methods which are built upon the sound mathematical formalism developed. The contribution of this work is two fold: rigorous investigation of the design process, and practical support to decision-making in decentralized environments.

  10. A Process for the Creation of T-MATS Propulsion System Models from NPSS data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  11. A Process for the Creation of T-MATS Propulsion System Models from NPSS Data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  12. Biological conservation law as an emerging functionality in dynamical neuronal networks.

    PubMed

    Podobnik, Boris; Jusup, Marko; Tiganj, Zoran; Wang, Wen-Xu; Buldú, Javier M; Stanley, H Eugene

    2017-11-07

    Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g., one process to build and the other to correct. We propose a network mechanism that demonstrates how collective statistical laws can emerge at a macro (i.e., whole-network) level even when they do not exist at a unit (i.e., network-node) level. Drawing inspiration from neuroscience, we model a highly stylized dynamical neuronal network in which neurons fire either randomly or in response to the firing of neighboring neurons. A synapse connecting two neighboring neurons strengthens when both of these neurons are excited and weakens otherwise. We demonstrate that during this interplay between the synaptic and neuronal dynamics, when the network is near a critical point, both recurrent spontaneous and stimulated phase transitions enable the phase-dependent processes to replace each other and spontaneously generate a statistical conservation law-the conservation of synaptic strength. This conservation law is an emerging functionality selected by evolution and is thus a form of biological self-organized criticality in which the key dynamical modes are collective.

  13. Biological conservation law as an emerging functionality in dynamical neuronal networks

    PubMed Central

    Podobnik, Boris; Tiganj, Zoran; Wang, Wen-Xu; Buldú, Javier M.

    2017-01-01

    Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g., one process to build and the other to correct. We propose a network mechanism that demonstrates how collective statistical laws can emerge at a macro (i.e., whole-network) level even when they do not exist at a unit (i.e., network-node) level. Drawing inspiration from neuroscience, we model a highly stylized dynamical neuronal network in which neurons fire either randomly or in response to the firing of neighboring neurons. A synapse connecting two neighboring neurons strengthens when both of these neurons are excited and weakens otherwise. We demonstrate that during this interplay between the synaptic and neuronal dynamics, when the network is near a critical point, both recurrent spontaneous and stimulated phase transitions enable the phase-dependent processes to replace each other and spontaneously generate a statistical conservation law—the conservation of synaptic strength. This conservation law is an emerging functionality selected by evolution and is thus a form of biological self-organized criticality in which the key dynamical modes are collective. PMID:29078286

  14. A Process for the Creation of T-MATS Propulsion System Models from NPSS Data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  15. System Identification and Verification of Rotorcraft UAVs

    NASA Astrophysics Data System (ADS)

    Carlton, Zachary M.

    The task of a controls engineer is to design and implement control logic. To complete this task, it helps tremendously to have an accurate model of the system to be controlled. Obtaining a very accurate system model is not a trivial one, as much time and money is usually associated with the development of such a model. A typical physics based approach can require hundreds of hours of flight time. In an iterative process the model is tuned in such a way that it accurately models the physical system's response. This process becomes even more complicated for unstable and highly non-linear systems such as the dynamics of rotorcraft. An alternate approach to solving this problem is to extract an accurate model by analyzing the frequency response of the system. This process involves recording the system's responses for a frequency range of input excitations. From this data, an accurate system model can then be deduced. Furthermore, it has been shown that with use of the software package CIFER® (Comprehensive Identification from FrEquency Responses), this process can both greatly reduce the cost of modeling a dynamic system and produce very accurate results. The topic of this thesis is to apply CIFER® to a quadcopter to extract a system model for the flight condition of hover. The quadcopter itself is comprised of off-the-shelf components with a Pixhack flight controller board running open source Ardupilot controller logic. In this thesis, both the closed and open loop systems are identified. The model is next compared to dissimilar flight data and verified in the time domain. Additionally, the ESC (Electronic Speed Controller) motor/rotor subsystem, which is comprised of all the vehicle's actuators, is also identified. This process required the development of a test bench environment, which included a GUI (Graphical User Interface), data pre and post processing, as well as the augmentation of the flight controller source code. This augmentation of code allowed for proper data logging rates of all needed parameters.

  16. Understand and Advocate for Communities First

    ERIC Educational Resources Information Center

    Khalifa, Muhammad; Arnold, Noelle Witherspoon; Newcomb, Whitney

    2015-01-01

    Culturally responsive parent-school relationships require educators to consider the cultural practices and understandings of families as a necessary condition of greater academic achievement. The establishment of healthy parent-school relationships is a complex and dynamic process. A school-community overlap, with a priority given to community…

  17. Dynamics and energetics of the South Pacific convergence zone during FGGE SOP-1

    NASA Technical Reports Server (NTRS)

    Vincent, D. G.; Robertson, F. R.

    1984-01-01

    The major objectives are to: (1) diagnose the physical processes responsible for the maintenance of the South Pacific Convergence Zone (SPCZ); and (2) examine the role of the SPCZ in the large-scale circulation patterns of the Southern Hemisphere.

  18. Cardea: Providing Support for Dynamic Resource Access in a Distributed Computing Environment

    NASA Technical Reports Server (NTRS)

    Lepro, Rebekah

    2003-01-01

    The environment framing the modem authorization process span domains of administration, relies on many different authentication sources, and manages complex attributes as part of the authorization process. Cardea facilitates dynamic access control within this environment as a central function of an inter-operable authorization framework. The system departs from the traditional authorization model by separating the authentication and authorization processes, distributing the responsibility for authorization data and allowing collaborating domains to retain control over their implementation mechanisms. Critical features of the system architecture and its handling of the authorization process differentiate the system from existing authorization components by addressing common needs not adequately addressed by existing systems. Continuing system research seeks to enhance the implementation of the current authorization model employed in Cardea, increase the robustness of current features, further the framework for establishing trust and promote interoperability with existing security mechanisms.

  19. Modelling of Batch Lactic Acid Fermentation in
the Presence of Anionic Clay

    PubMed Central

    Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa

    2014-01-01

    Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318

  20. Interfacial diffusion aided deformation during nanoindentation

    DOE PAGES

    Samanta, Amit; E., Weinan

    2015-07-06

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less

  1. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork

    PubMed Central

    Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier

    2006-01-01

    It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (∅<120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane. PMID:16858413

  2. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    PubMed Central

    Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun

    2017-01-01

    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698

  3. Surface nanobubble nucleation dynamics during water-ethanol exchange

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    Water-ethanol exchange has been a promising nucleation method for surface attached nanobubbles since their discovery. In this process, water and ethanol displace each other sequentially on a substrate. As the gas solubility is 36 times higher in ethanol than water, it was suggested that the exchange process leads to transient supersaturation and is responsible for the nanobubble nucleation. In this work, we visualize the nucleation dynamics by controllably mixing water and ethanol. It depicts the temporal evolution of the conventional exchange in a single field of view, detailing the conditions for surface nanobubble nucleation and the flow field that influences their spatial organization. This technique can also pattern surface nanobubbles with variable size distribution.

  4. On thermal conditions and properties of thallium bromide single crystals grown by the Electro Dynamic Gradient method

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiping; Yu, Yongtao; Gong, Shuping; Fu, Qiuyun; Zhou, Dongxiang

    2013-05-01

    The Electro Dynamic Gradient (EDG) method has been proved to be a feasible way to grow TlBr crystals in our previous work. In this research, the influence of thermal conditions such as cooling rate during growth process on the crystal performance was investigated. Crystals of approximately 12 mm diameter were obtained by the EDG method at different cooling rates during the growth process, and the quality of the crystals was routinely evaluated by X-ray diffraction (XRD), infrared (IR) and ultraviolet (UV) transmission, I-V measurement and energy response spectrum. The results proved that thermal conditions during growth had a profound influence on the characteristics of the crystals.

  5. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

    PubMed Central

    Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380

  6. Color line scan camera technology and machine vision: requirements to consider

    NASA Astrophysics Data System (ADS)

    Paernaenen, Pekka H. T.

    1997-08-01

    Color machine vision has shown a dynamic uptrend in use within the past few years as the introduction of new cameras and scanner technologies itself underscores. In the future, the movement from monochrome imaging to color will hasten, as machine vision system users demand more knowledge about their product stream. As color has come to the machine vision, certain requirements for the equipment used to digitize color images are needed. Color machine vision needs not only a good color separation but also a high dynamic range and a good linear response from the camera used. Good dynamic range and linear response is necessary for color machine vision. The importance of these features becomes even more important when the image is converted to another color space. There is always lost some information when converting integer data to another form. Traditionally the color image processing has been much slower technique than the gray level image processing due to the three times greater data amount per image. The same has applied for the three times more memory needed. The advancements in computers, memory and processing units has made it possible to handle even large color images today cost efficiently. In some cases he image analysis in color images can in fact even be easier and faster than with a similar gray level image because of more information per pixel. Color machine vision sets new requirements for lighting, too. High intensity and white color light is required in order to acquire good images for further image processing or analysis. New development in lighting technology is bringing eventually solutions for color imaging.

  7. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. © 2013 ISA Published by ISA All rights reserved.

  8. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suk Kim, Jong; McKellar, Michael; Bragg-Sitton, Shannon M.

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the HTSE process that requires higher temperature input. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES. A natural-gas fired GTPP has been proposed as a secondary energy supply to be included in an N-R HES. This auxiliary generator could be used to cover rapid dynamics in grid demand that cannot be met by the remainder of the N-R HES. To evaluate the operability and controllability of the proposed process during transients between load (demand) levels, the dynamic model and control design were developed. Special attention was given to the design of feedback controllers to regulate the power frequency, and exhaust gas and turbine firing temperatures. Several case studies were performed to investigate the system responses to the major disturbance (power load demand) in such a control system. The simulation results show that the performance of the proposed control strategies was satisfactory under each test when the GTPP experienced high rapid variations in the load.« less

  9. Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task

    PubMed Central

    Kyriakatos, Alexandros; Sadashivaiah, Vijay; Zhang, Yifei; Motta, Alessandro; Auffret, Matthieu; Petersen, Carl C. H.

    2016-01-01

    Abstract. Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltage-sensitive dyes (VSDs) with near-millisecond temporal resolution and ∼100-μm spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation. PMID:27921068

  10. Temporal dynamics of 2D motion integration for ocular following in macaque monkeys.

    PubMed

    Barthélemy, Fréderic V; Fleuriet, Jérome; Masson, Guillaume S

    2010-03-01

    Several recent studies have shown that extracting pattern motion direction is a dynamical process where edge motion is first extracted and pattern-related information is encoded with a small time lag by MT neurons. A similar dynamics was found for human reflexive or voluntary tracking. Here, we bring an essential, but still missing, piece of information by documenting macaque ocular following responses to gratings, unikinetic plaids, and barber-poles. We found that ocular tracking was always initiated first in the grating motion direction with ultra-short latencies (approximately 55 ms). A second component was driven only 10-15 ms later, rotating tracking toward pattern motion direction. At the end the open-loop period, tracking direction was aligned with pattern motion direction (plaids) or the average of the line-ending motion directions (barber-poles). We characterized the dependency on contrast of each component. Both timing and direction of ocular following were quantitatively very consistent with the dynamics of neuronal responses reported by others. Overall, we found a remarkable consistency between neuronal dynamics and monkey behavior, advocating for a direct link between the neuronal solution of the aperture problem and primate perception and action.

  11. A big data pipeline: Identifying dynamic gene regulatory networks from time-course Gene Expression Omnibus data with applications to influenza infection.

    PubMed

    Carey, Michelle; Ramírez, Juan Camilo; Wu, Shuang; Wu, Hulin

    2018-07-01

    A biological host response to an external stimulus or intervention such as a disease or infection is a dynamic process, which is regulated by an intricate network of many genes and their products. Understanding the dynamics of this gene regulatory network allows us to infer the mechanisms involved in a host response to an external stimulus, and hence aids the discovery of biomarkers of phenotype and biological function. In this article, we propose a modeling/analysis pipeline for dynamic gene expression data, called Pipeline4DGEData, which consists of a series of statistical modeling techniques to construct dynamic gene regulatory networks from the large volumes of high-dimensional time-course gene expression data that are freely available in the Gene Expression Omnibus repository. This pipeline has a consistent and scalable structure that allows it to simultaneously analyze a large number of time-course gene expression data sets, and then integrate the results across different studies. We apply the proposed pipeline to influenza infection data from nine studies and demonstrate that interesting biological findings can be discovered with its implementation.

  12. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    PubMed

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.

  13. Ecohydrological interfaces as hot spots of ecosystem processes

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Lewandowski, Jörg; Grimm, Nancy B.; Hannah, David M.; Pinay, Gilles; McDonald, Karlie; Martí, Eugènia; Argerich, Alba; Pfister, Laurent; Klaus, Julian; Battin, Tom; Larned, Scott T.; Schelker, Jacob; Fleckenstein, Jan; Schmidt, Christian; Rivett, Michael O.; Watts, Glenn; Sabater, Francesc; Sorolla, Albert; Turk, Valentina

    2017-08-01

    The movement of water, matter, organisms, and energy can be altered substantially at ecohydrological interfaces, the dynamic transition zones that often develop within ecotones or boundaries between adjacent ecosystems. Interdisciplinary research over the last two decades has indicated that ecohydrological interfaces are often "hot spots" of ecological, biogeochemical, and hydrological processes and may provide refuge for biota during extreme events. Ecohydrological interfaces can have significant impact on global hydrological and biogeochemical cycles, biodiversity, pollutant removal, and ecosystem resilience to disturbance. The organizational principles (i.e., the drivers and controls) of spatially and temporally variable processes at ecohydrological interfaces are poorly understood and require the integrated analysis of hydrological, biogeochemical, and ecological processes. Our rudimentary understanding of the interactions between different drivers and controls critically limits our ability to predict complex system responses to change. In this paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary framework, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to be conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from their current representation as boundary conditions at investigated ecosystems.

  14. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    PubMed

    Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal

    2018-05-01

    BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  15. Correlation Filtering of Modal Dynamics using the Laplace Wavelet

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.

    1997-01-01

    Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.

  16. Physical Processes Dictate Early Biogeochemical Dynamics of Soil Pyrogenic Organic Matter in a Subtropical Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Stuart, Jason M.; Anderson, Russell; Lazzarino, Patrick; Kuehn, Kevin A.; Harvey, Omar R.

    2018-05-01

    Quantifying links between pyOM dynamics, environmental factors and processes is central to predicting ecosystem function and response to future perturbations. In this study, changes in carbon (TC), nitrogen (TN) , pH and relative recalcitrance (R50) for pine- and cordgrass-derived pyOM were measured at 3-6 weeks intervals throughout the first year of burial in the soil. Objectives were to 1) identify key environmental factors and processes driving early-stage pyOM dynamics, and 2) develop quantitative relationships between environmental factors and changes in pyOM properties. The study was conducted in sandy soils of a forested ecosystem in the Longleaf pine range, US with a focus on links between changes in pyOM properties, fire history (FH), cumulative precipitation (Pcum), average temperature (Tavg) and soil residence time (SRT). Pcum, SRT and Tavg were the main factors controlling TC and TN accounting for 77-91% and 64-96% of their respective variability. Fire history, along with Pcum, SRT and Tavg, exhibited significant controlling effects on pyOM, pH and R50 - accounting for 48-91% and 88-93% of respective variability. Volatilization of volatiles and leaching of water-soluble components (in summer) and the sorption of exogenous organic matter (fall through spring) were most plausibly controlling pyOM dynamics in this study. Overall, our results point to climatic and land management factors and physicochemical process as the main drivers of pyOM dynamics in the pine ecosystems of the Southeastern US.

  17. Integrating the behavioral and neural dynamics of response selection in a dual-task paradigm: a dynamic neural field model of Dux et al. (2009).

    PubMed

    Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P

    2014-02-01

    People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.

  18. Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession

    NASA Astrophysics Data System (ADS)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.; Harman, Ciaran; Gooseff, Michael N.; Singha, Kamini

    2016-02-01

    Solute transport along riparian and hyporheic flow paths is broadly expected to respond to dynamic hydrologic forcing by streams, aquifers, and hillslopes. However, direct observation of these dynamic responses is lacking, as is the relative control of geologic setting as a control on responses to dynamic hydrologic forcing. We conducted a series of four stream solute tracer injections through base flow recession in each of two watersheds with contrasting valley morphology in the H.J. Andrews Experimental Forest, monitoring tracer concentrations in the stream and in a network of shallow riparian wells in each watershed. We found hyporheic mean arrival time, temporal variance, and fraction of stream water in the bedrock-constrained valley bottom and near large roughness elements in the wider valley bottom were not variable with discharge, suggesting minimal control by hydrologic forcing. Conversely, we observed increases in mean arrival time and temporal variance and decreasing fraction stream water with decreasing discharge near the hillslopes in the wider valley bottom. This may indicate changes in stream discharge and valley bottom hydrology control transport in less constrained locations. We detail five hydrogeomorphic responses to base flow recession to explain observed spatial and temporal patterns in the interactions between streams and their valley bottoms. Models able to account for the transition from geologically dominated processes in the near-stream subsurface to hydrologically dominated processes near the hillslope will be required to predict solute transport and fate in valley bottoms of headwater mountain streams.

  19. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.

    PubMed

    Fung, C C Alan; Wong, K Y Michael; Wang, He; Wu, Si

    2012-05-01

    Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity: short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning and may serve as substrates for neural systems manipulating temporal information on relevant timescales. This study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors: the network that is initially being stimulated to an active state decays to a silent state very slowly on the timescale of STD rather than on that of neuralsignaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.

  20. Dynamic Interaction- and Phospho-Proteomics Reveal Lck as a Major Signaling Hub of CD147 in T Cells.

    PubMed

    Supper, Verena; Hartl, Ingrid; Boulègue, Cyril; Ohradanova-Repic, Anna; Stockinger, Hannes

    2017-03-15

    Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147-dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around the G proteins RAP1B and GNB1, the kinases PKCβ, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation- and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Collaborative Research: Process-resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Ming; Deng, Yi

    2015-02-06

    El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less

  2. Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man.

    PubMed

    Kalafatakis, K; Russell, G M; Harmer, C J; Munafo, M R; Marchant, N; Wilson, A; Brooks, J C; Durant, C; Thakrar, J; Murphy, P; Thai, N J; Lightman, S L

    2018-04-24

    Glucocorticoids (GCs) are secreted in an ultradian, pulsatile pattern that emerges from delays in the feedforward-feedback interaction between the anterior pituitary and adrenal glands. Dynamic oscillations of GCs are critical for normal cognitive and metabolic function in the rat and have been shown to modulate the pattern of GC-sensitive gene expression, modify synaptic activity, and maintain stress responsiveness. In man, current cortisol replacement therapy does not reproduce physiological hormone pulses and is associated with psychopathological symptoms, especially apathy and attenuated motivation in engaging with daily activities. In this work, we tested the hypothesis that the pattern of GC dynamics in the brain is of crucial importance for regulating cognitive and behavioral processes. We provide evidence that exactly the same dose of cortisol administered in different patterns alters the neural processing underlying the response to emotional stimulation, the accuracy in recognition and attentional bias toward/away from emotional faces, the quality of sleep, and the working memory performance of healthy male volunteers. These data indicate that the pattern of the GC rhythm differentially impacts human cognition and behavior under physiological, nonstressful conditions and has major implications for the improvement of cortisol replacement therapy.

  3. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network

    PubMed Central

    Yan, Tingzi; Schröter, Klaus; Herbst, Florian; Binder, Wolfgang H.; Thurn-Albrecht, Thomas

    2016-01-01

    Reversible polymeric networks can show self-healing properties due to their ability to reassemble after application of stress and fracture, but typically the relation between equilibrium molecular dynamics and self-healing kinetics has been difficult to disentangle. Here we present a well-characterized, self-assembled bulk network based on supramolecular assemblies, that allows a clear distinction between chain dynamics and network relaxation. Small angle x-ray scattering and rheological measurements provide evidence for a structurally well-defined, dense network of interconnected aggregates giving mechanical strength to the material. Different from a covalent network, the dynamic character of the supramolecular bonds enables macroscopic flow on a longer time scale and the establishment of an equilibrium structure. A combination of linear and nonlinear rheological measurements clearly identifies the terminal relaxation process as being responsible for the process of self-healing. PMID:27581380

  4. Predicting oscillatory dynamics in the movement of territorial animals.

    PubMed

    Giuggioli, L; Potts, J R; Harris, S

    2012-07-07

    Understanding ecological processes relies upon the knowledge of the dynamics of each individual component. In the context of animal population ecology, the way animals move and interact is of fundamental importance in explaining a variety of observed patterns. Here, we present a theoretical investigation on the movement dynamics of interacting scent-marking animals. We study how the movement statistics of territorial animals is responsible for the appearance of damped oscillations in the mean square displacement (MSD) of the animals. This non-monotonicity is shown to depend on one dimensionless parameter, given by the ratio of the correlation distance between successive steps to the size of the territory. As that parameter increases, the time dependence of the animal's MSD displays a transition from monotonic, characteristic of Brownian walks, to non-monotonic, characteristic of highly correlated walks. The results presented here represent a novel way of determining the degree of persistence in animal movement processes within confined regions.

  5. Predicting oscillatory dynamics in the movement of territorial animals

    PubMed Central

    Giuggioli, L.; Potts, J. R.; Harris, S.

    2012-01-01

    Understanding ecological processes relies upon the knowledge of the dynamics of each individual component. In the context of animal population ecology, the way animals move and interact is of fundamental importance in explaining a variety of observed patterns. Here, we present a theoretical investigation on the movement dynamics of interacting scent-marking animals. We study how the movement statistics of territorial animals is responsible for the appearance of damped oscillations in the mean square displacement (MSD) of the animals. This non-monotonicity is shown to depend on one dimensionless parameter, given by the ratio of the correlation distance between successive steps to the size of the territory. As that parameter increases, the time dependence of the animal's MSD displays a transition from monotonic, characteristic of Brownian walks, to non-monotonic, characteristic of highly correlated walks. The results presented here represent a novel way of determining the degree of persistence in animal movement processes within confined regions. PMID:22262814

  6. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    PubMed

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  7. Cellular Tug-of-War: Forces at Work and DNA Stretching in Mitosis

    NASA Astrophysics Data System (ADS)

    Griffin, Brian; Kilfoil, Maria L.

    2013-03-01

    In the microscopic world of the cell dominated by thermal noise, a cell must be able to successfully segregate its DNA with high fidelity in order to pass its genetic information on to its progeny. In this process of mitosis in eukaryotes, driving forces act on the cytoskeleton-based architecture called the mitotic spindle to promote this division. Our preliminary data demonstrates that the dynamics of this process in yeast cells is universal. Moreover, the dynamics suggest an increasing load as the chromosomes are pulled apart. To investigate this, we use three-dimensional imaging to track the dynamics of the poles of this architecture and the points of attachment to chromosomes simultaneously and with high spatial resolution. We analyze the relative motions of chromosomes as they are organized before segregation and as they are pulled apart, using this data to investigate the force-response behavior of this cytoskeleton-chromosome polymer system.

  8. Male veterans with PTSD exhibit aberrant neural dynamics during working memory processing: an MEG study

    PubMed Central

    McDermott, Timothy J.; Badura-Brack, Amy S.; Becker, Katherine M.; Ryan, Tara J.; Khanna, Maya M.; Heinrichs-Graham, Elizabeth; Wilson, Tony W.

    2016-01-01

    Background Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Methods Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Results Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. Limitations This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Conclusion Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits associated with the disorder. PMID:26645740

  9. ALM-FATES: Using dynamic vegetation and demography to capture changes in forest carbon cycling and competition at the global scale

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.

    2017-12-01

    The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.

  10. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan

    2016-01-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less

  11. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacini, Benjamin Robert; Mayes, Randall L.; Roettgen, Daniel R

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less

  12. Material and morphology parameter sensitivity analysis in particulate composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Oskay, Caglar

    2017-12-01

    This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

  13. Structural dynamics of the mitochondrial compartment.

    PubMed

    Thorsness, P E

    1992-09-01

    The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.

  14. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  15. Towards understanding the dynamical evolution of asteroid 25143 Itokawa: constraints from sample analysis

    NASA Astrophysics Data System (ADS)

    Connolly, Harold C.; Lauretta, Dante S.; Walsh, Kevin J.; Tachibana, Shogo; Bottke, William F.

    2015-01-01

    The data from the analysis of samples returned by Hayabusa from asteroid 25143 Itokawa are used to constrain the preaccretion history, the geological activity that occurred after accretion, and the dynamical history of the asteroid from the main belt to near-Earth space. We synthesize existing data to pose hypotheses to be tested by dynamical modeling and the analyses of future samples returned by Hayabusa 2 and OSIRIS-REx. Specifically, we argue that the Yarkosky-O'Keefe-Radzievskii-Paddack (YORP) effect may be responsible for producing geologically high-energy environments on Itokawa and other asteroids that process regolith and essentially affect regolith gardening.

  16. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses.

    PubMed

    Calegari, F; Ayuso, D; Trabattoni, A; Belshaw, L; De Camillis, S; Anumula, S; Frassetto, F; Poletto, L; Palacios, A; Decleva, P; Greenwood, J B; Martín, F; Nisoli, M

    2014-10-17

    In the past decade, attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules, and solids. Here, we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub-4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving toward the investigation of more and more complex systems. Copyright © 2014, American Association for the Advancement of Science.

  17. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  18. Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W. (Principal Investigator)

    1981-01-01

    A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.

  19. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  20. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas

    PubMed Central

    Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.

    2015-01-01

    During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839

  1. Time-correlated gust loads using matched filter theory and random process theory - A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    This paper describes and illustrates two ways of performing time-correlated gust-load calculations. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  2. Time-correlated gust loads using Matched-Filter Theory and Random-Process Theory: A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    Two ways of performing time-correlated gust-load calculations are described and illustrated. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  3. Organisational learning and self-adaptation in dynamic disaster environments.

    PubMed

    Corbacioglu, Sitki; Kapucu, Naim

    2006-06-01

    This paper examines the problems associated with inter-organisational learning and adaptation in the dynamic environments that characterise disasters. The research uses both qualitative and quantitative methods to investigate whether organisational learning took place during and in the time in between five disaster response operations in Turkey. The availability of information and its exchange and distribution within and among organisational actors determine whether self-adaptation happens in the course of a disaster response operation. Organisational flexibility supported by an appropriate information infrastructure creates conditions conducive to essential interaction and permits the flow of information. The study found that no significant organisational learning occurred within Turkish disaster management following the earthquakes in Erzincan (1992), Dinar (1995) and Ceyhan (1998). By contrast, the 'symmetry-breaking' Marmara earthquake of 1999 initiated a 'double loop' learning process that led to change in the organisational, technical and cultural aspects of Turkish disaster management, as revealed by the Duzce earthquake response operations.

  4. Dynamic calibration of fast-response probes in low-pressure shock tubes

    NASA Astrophysics Data System (ADS)

    Persico, G.; Gaetani, P.; Guardone, A.

    2005-09-01

    Shock tube flows resulting from the incomplete burst of the diaphragm are investigated in connection with the dynamic calibration of fast-response pressure probes. As a result of the partial opening of the diaphragm, pressure disturbances are observed past the shock wave and the measured total pressure profile deviates from the envisaged step signal required by the calibration process. Pressure oscillations are generated as the initially normal shock wave diffracts from the diaphragm's orifice and reflects on the shock tube walls, with the lowest local frequency roughly equal to the ratio of the sound speed in the perturbed region to the shock tube diameter. The energy integral of the perturbations decreases with increasing distance from the diaphragm, as the diffracted leading shock and downwind reflections coalesce into a single normal shock. A procedure is proposed to calibrate fast-response pressure probes downwind of a partially opened shock tube diaphragm.

  5. Functional Dynamics of PDZ Binding Domains: A Normal-Mode Analysis

    PubMed Central

    De Los Rios, Paolo; Cecconi, Fabio; Pretre, Anna; Dietler, Giovanni; Michielin, Olivier; Piazza, Francesco; Juanico, Brice

    2005-01-01

    Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80–120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events. PMID:15821164

  6. Dynamic Price Vector Formation Model-Based Automatic Demand Response Strategy for PV-Assisted EV Charging Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qifang; Wang, Fei; Hodge, Bri-Mathias

    A real-time price (RTP)-based automatic demand response (ADR) strategy for PV-assisted electric vehicle (EV) Charging Station (PVCS) without vehicle to grid is proposed. The charging process is modeled as a dynamic linear program instead of the normal day-ahead and real-time regulation strategy, to capture the advantages of both global and real-time optimization. Different from conventional price forecasting algorithms, a dynamic price vector formation model is proposed based on a clustering algorithm to form an RTP vector for a particular day. A dynamic feasible energy demand region (DFEDR) model considering grid voltage profiles is designed to calculate the lower and uppermore » bounds. A deduction method is proposed to deal with the unknown information of future intervals, such as the actual stochastic arrival and departure times of EVs, which make the DFEDR model suitable for global optimization. Finally, both the comparative cases articulate the advantages of the developed methods and the validity in reducing electricity costs, mitigating peak charging demand, and improving PV self-consumption of the proposed strategy are verified through simulation scenarios.« less

  7. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  8. "NONLINEAR DYNAMIC SYSTEMS RESPONSE TO NON-STATIONARY EXCITATION USING THE WAVELET TRANSFORM"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPANOS, POL D.

    2006-01-15

    The objective of this research project has been the development of techniques for estimating the power spectra of stochastic processes using wavelet transform, and the development of related techniques for determining the response of linear/nonlinear systems to excitations which are described via the wavelet transform. Both of the objectives have been achieved, and the research findings have been disseminated in papers in archival journals and technical conferences.

  9. Fast relaxations in foam

    NASA Astrophysics Data System (ADS)

    Krishan, Kapilanjan; Helal, Ahmed; Höhler, Reinhard; Cohen-Addad, Sylvie

    2010-07-01

    Aqueous foams present an anomalous macroscopic viscoelastic response at high frequency, previously shown to arise from collective relaxations in the disordered bubble packing. We demonstrate experimentally how these mesoscopic dynamics are in turn tuned by physico-chemical processes on the scale of the gas-liquid interfaces. Two specific local dissipation processes are identified, and we show how the rigidity of the interfaces selects the dominant one, depending on the choice of the surfactant.

  10. Discontinuous Patterns of Brain Activation in the Psychotherapy Process of Obsessive-Compulsive Disorder: Converging Results from Repeated fMRI and Daily Self-Reports

    PubMed Central

    Schiepek, Günter; Tominschek, Igor; Heinzel, Stephan; Aigner, Martin; Dold, Markus; Unger, Annemarie; Lenz, Gerhard; Windischberger, Christian; Moser, Ewald; Plöderl, Martin; Lutz, Jürgen; Meindl, Thomas; Zaudig, Michael; Pogarell, Oliver; Karch, Susanne

    2013-01-01

    This study investigates neuronal activation patterns during the psychotherapeutic process, assuming that change dynamics undergo critical instabilities and discontinuous transitions. An internet-based system was used to collect daily self-assessments during inpatient therapies. A dynamic complexity measure was applied to the resulting time series. Critical phases of the change process were indicated by the maxima of the varying complexity. Repeated functional magnetic resonance imaging (fMRI) measurements were conducted over the course of the therapy. The study was realized with 9 patients suffering from obsessive-compulsive disorder (subtype: washing/contamination fear) and 9 matched healthy controls. For symptom-provocative stimulation individualized pictures from patients’ personal environments were used. The neuronal responses to these disease-specific pictures were compared to the responses during standardized disgust-provoking and neutral pictures. Considerably larger neuronal changes in therapy-relevant brain areas (cingulate cortex/supplementary motor cortex, bilateral dorsolateral prefrontal cortex, bilateral insula, bilateral parietal cortex, cuneus) were observed during critical phases (order transitions), as compared to non-critical phases, and also compared to healthy controls. The data indicate that non-stationary changes play a crucial role in the psychotherapeutic process supporting self-organization and complexity models of therapeutic change. PMID:23977168

  11. An Assessment of Behavioral Dynamic Information Processing Measures in Audiovisual Speech Perception

    PubMed Central

    Altieri, Nicholas; Townsend, James T.

    2011-01-01

    Research has shown that visual speech perception can assist accuracy in identification of spoken words. However, little is known about the dynamics of the processing mechanisms involved in audiovisual integration. In particular, architecture and capacity, measured using response time methodologies, have not been investigated. An issue related to architecture concerns whether the auditory and visual sources of the speech signal are integrated “early” or “late.” We propose that “early” integration most naturally corresponds to coactive processing whereas “late” integration corresponds to separate decisions parallel processing. We implemented the double factorial paradigm in two studies. First, we carried out a pilot study using a two-alternative forced-choice discrimination task to assess architecture, decision rule, and provide a preliminary assessment of capacity (integration efficiency). Next, Experiment 1 was designed to specifically assess audiovisual integration efficiency in an ecologically valid way by including lower auditory S/N ratios and a larger response set size. Results from the pilot study support a separate decisions parallel, late integration model. Results from both studies showed that capacity was severely limited for high auditory signal-to-noise ratios. However, Experiment 1 demonstrated that capacity improved as the auditory signal became more degraded. This evidence strongly suggests that integration efficiency is vitally affected by the S/N ratio. PMID:21980314

  12. Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads

    NASA Astrophysics Data System (ADS)

    Liang, Li; Guo, Yuming

    One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.

  13. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders

    PubMed Central

    2012-01-01

    Background Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD. We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Result Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex–MTG–IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. Conclusions These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD. PMID:22889284

  14. Transcriptional dynamics with time-dependent reaction rates

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  15. Magnetospheric disturbance effects on the Equatorial Ionization Anomaly (EIA) - An overview

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Sobral, J. H. A.; de Paula, E. R.; Batista, I. S.

    1991-08-01

    The EIA response to magnetospheric disturbance processes is reviewed. It is concluded that the direct penetration to equatorial latitudes of magnetospheric electric fields and the thermospheric disturbances involving winds, electric fields, and composition changes produce significant alteration in the EIA morphology and dynamics.

  16. Dual-Focus Supervision a Nonapprenticeship Approach.

    ERIC Educational Resources Information Center

    McBride, Martha C.; Martin, G. Eric

    1986-01-01

    Provides a professional model for practicum supervision using supervisors with equal responsibility and status. The model stresses the use of professional knowledge in both the content and process of practicum supervision. Dual-focus supervision is seen as the integration and application of theory congruency and interpersonal dynamics. (Author/BL)

  17. Process Dynamics and Control, a Theory-Experiential Approach.

    ERIC Educational Resources Information Center

    Perna, A. J.; And Others

    A required senior-level chemical engineering course at Colorado State University is described. The first nine weeks are devoted to the theory portion of the course, which includes the following topics: LaPlace transformations and time constants, block diagrams, inverse transformations, linearization, frequency response analysis, graphical…

  18. Practicing Improvisation: Preparing Multicultural Educators

    ERIC Educational Resources Information Center

    Hull, Karla

    2015-01-01

    Preparing competent multicultural educators involves a dynamic process requiring constant self-reflection and assisting pre-service teachers to sharpen their cultural vision as they learn to be responsive educators. Reflections on lessons learned as a teacher educator are shared through personal experiences that are identified as keys to prepare…

  19. Conflicts as Aversive Signals

    ERIC Educational Resources Information Center

    Dreisbach, Gesine; Fischer, Rico

    2012-01-01

    Theories of human action control deal with the question of how cognitive control is dynamically adjusted to task demands. The conflict monitoring theory of anterior cingulate (ACC) function suggests that the ACC monitors for response conflicts in the ongoing processing stream thereby triggering the mobilization of cognitive control. Alternatively,…

  20. Evaluating Protein Structure and Dynamics Using Co-Solvents, Photochemical Triggers, and Site-Specific Spectroscopic Probes

    NASA Astrophysics Data System (ADS)

    Abaskharon, Rachel M.

    As ubiquitous and diverse biopolymers, proteins are dynamic molecules that are constantly engaging in inter- and intramolecular interactions responsible for their structure, fold, and function. Because of this, gaining a comprehensive understanding of the factors that control protein conformation and dynamics remains elusive as current experimental techniques often lack the ability to initiate and probe a specific interaction or conformational transition. For this reason, this thesis aims to develop methods to control and monitor protein conformations, conformational transitions, and dynamics in a site-specific manner, as well as to understand how specific and non-specific interactions affect the protein folding energy landscape. First, by using the co-solvent, trifluoroethanol (TFE), we show that the rate at which a peptide folds can be greatly impacted and thus controlled by the excluded volume effect. Secondly, we demonstrate the utility of several light-responsive molecules and reactions as methods to manipulate and investigate protein-folding processes. Using an azobenzene linker as a photo-initiator, we are able to increase the folding rate of a protein system by an order of magnitude by channeling a sub-population through a parallel, faster folding pathway. Additionally, we utilize a tryptophan-mediated electron transfer process to a nearby disulfide bond to strategically unfold a protein molecule with ultraviolet light. We also demonstrate the potential of two ruthenium polypyridyl complexes as ultrafast phototriggers of protein reactions. Finally, we develop several site-specific spectroscopic probes of protein structure and environment. Specifically, we demonstrate that a 13C-labeled aspartic acid residue constitutes a useful site-specific infrared probe for investigating salt-bridges and hydration dynamics of proteins, particularly in proteins containing several acidic amino acids. We also show that a proline-derivative, 4-oxoproline, possesses novel infrared properties that can be exploited to monitor the cis-trans isomerization process of individual proline residues in proteins.

  1. Why don't you like me? Midfrontal theta power in response to unexpected peer rejection feedback.

    PubMed

    van der Molen, M J W; Dekkers, L M S; Westenberg, P M; van der Veen, F M; van der Molen, M W

    2017-02-01

    Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4-8Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta dynamics (power and inter-trial phase synchrony) during the processing of social evaluative feedback. We employed the Social Judgment paradigm in which 56 undergraduate women (mean age=19.67 years) were asked to communicate their expectancies about being liked vs. disliked by unknown peers. Expectancies were followed by feedback indicating social acceptance vs. rejection. Results revealed a significant increase in EEG theta power to unexpected social rejection feedback. This EEG theta response could be source-localized to brain regions typically reported during activation of the saliency network (i.e., dorsal anterior cingulate cortex, insula, inferior frontal gyrus, frontal pole, and the supplementary motor area). Theta phase dynamics mimicked the behavior of the time-domain averaged feedback-related negativity (FRN) by showing stronger phase synchrony for feedback that was unexpected vs. expected. Theta phase, however, differed from the FRN by also displaying stronger phase synchrony in response to rejection vs. acceptance feedback. Together, this study highlights distinct roles for midfrontal theta power and phase synchrony in response to social evaluative feedback. Our findings contribute to the literature by showing that midfrontal theta oscillatory power is sensitive to social rejection but only when peer rejection is unexpected, and this theta response is governed by a widely distributed neural network implicated in saliency detection and conflict monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Logistical constraints lead to an intermediate optimum in outbreak response vaccination

    PubMed Central

    Shea, Katriona; Ferrari, Matthew

    2018-01-01

    Dynamic models in disease ecology have historically evaluated vaccination strategies under the assumption that they are implemented homogeneously in space and time. However, this approach fails to formally account for operational and logistical constraints inherent in the distribution of vaccination to the population at risk. Thus, feedback between the dynamic processes of vaccine distribution and transmission might be overlooked. Here, we present a spatially explicit, stochastic Susceptible-Infected-Recovered-Vaccinated model that highlights the density-dependence and spatial constraints of various diffusive strategies of vaccination during an outbreak. The model integrates an agent-based process of disease spread with a partial differential process of vaccination deployment. We characterize the vaccination response in terms of a diffusion rate that describes the distribution of vaccination to the population at risk from a central location. This generates an explicit trade-off between slow diffusion, which concentrates effort near the central location, and fast diffusion, which spreads a fixed vaccination effort thinly over a large area. We use stochastic simulation to identify the optimum vaccination diffusion rate as a function of population density, interaction scale, transmissibility, and vaccine intensity. Our results show that, conditional on a timely response, the optimal strategy for minimizing outbreak size is to distribute vaccination resource at an intermediate rate: fast enough to outpace the epidemic, but slow enough to achieve local herd immunity. If the response is delayed, however, the optimal strategy for minimizing outbreak size changes to a rapidly diffusive distribution of vaccination effort. The latter may also result in significantly larger outbreaks, thus suggesting a benefit of allocating resources to timely outbreak detection and response. PMID:29791432

  3. Processing of facial affect in social drinkers: a dose-response study of alcohol using dynamic emotion expressions.

    PubMed

    Kamboj, Sunjeev K; Joye, Alyssa; Bisby, James A; Das, Ravi K; Platt, Bradley; Curran, H Valerie

    2013-05-01

    Studies of affect recognition can inform our understanding of the interpersonal effects of alcohol and help develop a more complete neuropsychological profile of this drug. The objective of the study was to examine affect recognition in social drinkers using a novel dynamic affect-recognition task, sampling performance across a range of evolutionarily significant target emotions and neutral expressions. Participants received 0, 0.4 or 0.8 g/kg alcohol in a double-blind, independent groups design. Relatively naturalistic changes in facial expression-from neutral (mouth open) to increasing intensities of target emotions, as well as neutral (mouth closed)-were simulated using computer-generated dynamic morphs. Accuracy and reaction time were measured and a two-high-threshold model applied to hits and false-alarm data to determine sensitivity and response bias. While there was no effect on the principal emotion expressions (happiness, sadness, fear, anger and disgust), compared to those receiving 0.8 g/kg of alcohol and placebo, participants administered with 0.4 g/kg alcohol tended to show an enhanced response bias to neutral expressions. Exploration of this effect suggested an accompanying tendency to misattribute neutrality to sad expressions following the 0.4-g/kg dose. The 0.4-g/kg alcohol-but not 0.8 g/kg-produced a limited and specific modification in affect recognition evidenced by a neutral response bias and possibly an accompanying tendency to misclassify sad expressions as neutral. In light of previous findings on involuntary negative memory following the 0.4-g/kg dose, we suggest that moderate-but not high-doses of alcohol have a special relevance to emotional processing in social drinkers.

  4. Use of soil moisture dynamics and patterns for the investigation of runoff generation processes with emphasis on preferential flow

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2007-08-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  5. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2009-07-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  6. COMMUNICATION: Electrophysiological response dynamics during focal cortical infarction

    NASA Astrophysics Data System (ADS)

    Chiganos, Terry C., Jr.; Jensen, Winnie; Rousche, Patrick J.

    2006-12-01

    While the intracellular processes of hypoxia-induced necrosis and the intercellular mechanisms of post-ischemic neurotoxicity associated with stroke are well documented, the dynamic electrophysiological (EP) response of neurons within the core or periinfarct zone remains unclear. The present study validates a method for continuous measurement of the local EP responses during focal cortical infarction induced via photothrombosis. Single microwire electrodes were acutely implanted into the primary auditory cortex of eight rats. Multi-unit neural activity, evoked via a continuous 2 Hz click stimulus, was recorded before, during and after infarction to assess neuronal function in response to local, permanent ischemia. During sham infarction, the average stimulus-evoked peak firing rate over 20 min remained stable at 495.5 ± 14.5 spikes s-1, indicating temporal stability of neural function under normal conditions. Stimulus-evoked peak firing was reliably reduced to background levels (firing frequency in the absence of stimulus) following initiation of photothrombosis over a period of 439 ± 92 s. The post-infarction firing patterns exhibited unique temporal degradation of the peak firing rate, suggesting a variable response to ischemic challenge. Despite the inherent complexity of cerebral ischemia secondary to microvascular occlusion, complete loss of EP function consistently occurred 300-600 s after photothrombosis. The results suggest that microwire recording during photothrombosis provides a simple and highly efficacious strategy for assessing the electrophysiological dynamics of cortical infarction.

  7. Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores.

    PubMed

    Mezzalira, Jean C; Bonnet, Olivier J F; Carvalho, Paulo C de F; Fonseca, Lidiane; Bremm, Carolina; Mezzalira, Carlos C; Laca, Emilio A

    2017-09-01

    The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than in intermediate swards due to a reduction of bite volume possibly caused by the greater proportion of stem and sheath acting as a physical barrier to bite formation. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed bimodal distribution of plant mass per unit area, even when tall patches are not of significantly lower digestive quality than the pasture average. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  8. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  9. Integrating complex business processes for knowledge-driven clinical decision support systems.

    PubMed

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.

  10. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  11. Cortical processing of dynamic sound envelope transitions.

    PubMed

    Zhou, Yi; Wang, Xiaoqin

    2010-12-08

    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  12. Full-degrees-of-freedom frequency based substructuring

    NASA Astrophysics Data System (ADS)

    Drozg, Armin; Čepon, Gregor; Boltežar, Miha

    2018-01-01

    Dividing the whole system into multiple subsystems and a separate dynamic analysis is common practice in the field of structural dynamics. The substructuring process improves the computational efficiency and enables an effective realization of the local optimization, modal updating and sensitivity analyses. This paper focuses on frequency-based substructuring methods using experimentally obtained data. An efficient substructuring process has already been demonstrated using numerically obtained frequency-response functions (FRFs). However, the experimental process suffers from several difficulties, among which, many of them are related to the rotational degrees of freedom. Thus, several attempts have been made to measure, expand or combine numerical correction methods in order to obtain a complete response model. The proposed methods have numerous limitations and are not yet generally applicable. Therefore, in this paper an alternative approach based on experimentally obtained data only, is proposed. The force-excited part of the FRF matrix is measured with piezoelectric translational and rotational direct accelerometers. The incomplete moment-excited part of the FRF matrix is expanded, based on the modal model. The proposed procedure is integrated in a Lagrange Multiplier Frequency Based Substructuring method and demonstrated on a simple beam structure, where the connection coordinates are mainly associated with the rotational degrees of freedom.

  13. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum.

    PubMed

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.

  14. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Fedorov, Vadim B.; Goropashnaya, Anna V.; Talbot, Sandra; Cook, Joseph A.

    2011-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  15. In situ investigation of explosive crystallization in a-Ge: Experimental determination of the interface response function using dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.

    2014-09-01

    The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

  16. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, Sandra; Cook, Joseph A.

    2014-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  17. Using resistive readout to probe ultrafast dynamics of a plasmonic sensor

    NASA Astrophysics Data System (ADS)

    Cheney, Alec; Chen, Borui; Cartwright, Alexander; Thomay, Tim

    2018-02-01

    Surface plasmons in a DC current lead to an increase in scattering processes, resulting in a measurable increase in electrical resistance of a plasmonic nano-grating. This enables a purely electronic readout of plasmonically mediated optical absorption. We show that there is a time-dependence in these resistance changes on the order of 100ps that we attribute to electron-phonon and phonon-phonon scattering processes in the metal of the nano-gratings. Since plasmonic responses are strongly structurally dependent, an appropriately designed plasmoelectronic detector could potentially offer an extremely fast response at communication wavelengths in a fully CMOS compatible system.

  18. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  19. Dynamic Responses of the Earth's Outer Core to Assimilation of Observed Geomagnetic Secular Variation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2014-01-01

    Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.

  20. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    PubMed

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

Top