Evidence of dynamical spin shielding in Ce from spin-resolved photoelectron spectroscopy
Tobin, J.G.; Yu, S.W.; Komesu, T.; Chung, B.W.; Morton, S.A.; Waddill, G.D.
2008-10-30
Using Fano effect measurements upon polycrystalline Ce, we have observed a phase reversal between the spectral structure at the Fermi edge and the other 4f derived feature near a binding energy of 2 eV. The Fano effect is the observation of spin polarized photoelectron emission from nonmagnetic materials, under chirally selective excitation, such as circularly polarized photons. The observation of phase reversal between the two peaks is a direct experimental proof of Kondo shielding in Ce, confirming the predictions of Gunnarsson and Shoenhammer, albeit with a small modification.
Dynamic rotating-shield brachytherapy
Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong
2013-12-15
Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively
Dynamic rotating-shield brachytherapy
Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong
2013-01-01
Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process. Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and 192Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β = 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively. Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci192Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively. Conclusions: For cervical cancer patients, D
Dynamic rotating-shield brachytherapy.
Liu, Yunlong; Flynn, Ryan T; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong
2013-12-01
To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process. A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and (192)Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α∕β = 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively. For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes∕fraction (min∕fx) assuming a 10 Ci(192)Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min∕fx more delivery time, and S-RSBT required 6.7 min∕fx more. If an additional 20 min∕fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively. For cervical cancer patients, D-RSBT can boost HR-CTV D90
Spin-rotation and NMR shielding constants in HCl
NASA Astrophysics Data System (ADS)
Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz
2013-12-01
The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1H35Cl are CCl = -53.914 kHz and CH = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.
Spin-rotation and NMR shielding constants in HCl
Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz
2013-12-21
The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl} = −53.914 kHz and C{sub H} = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.
SHIELD: Neutral Gas Kinematics and Dynamics
NASA Astrophysics Data System (ADS)
McNichols, Andrew T.; Teich, Yaron G.; Nims, Elise; Cannon, John M.; Adams, Elizabeth A. K.; Bernstein-Cooper, Elijah Z.; Giovanelli, Riccardo; Haynes, Martha P.; Józsa, Gyula I. G.; McQuinn, Kristen B. W.; Salzer, John J.; Skillman, Evan D.; Warren, Steven R.; Dolphin, Andrew; Elson, E. C.; Haurberg, Nathalie; Ott, Jürgen; Saintonge, Amelie; Cave, Ian; Hagen, Cedric; Huang, Shan; Janowiecki, Steven; Marshall, Melissa V.; Thomann, Clara M.; Van Sistine, Angela
2016-11-01
We present kinematic analyses of the 12 galaxies in the “Survey of H i in Extremely Low-mass Dwarfs” (SHIELD). We use multi-configuration interferometric observations of the H i 21 cm emission line from the Karl G. Jansky Very Large Array (VLA)22 to produce image cubes at a variety of spatial and spectral resolutions. Both two- and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find {v}{circ} ≤slant 30 km s-1 for the entire survey population. Baryonic masses are calculated using single-dish H i fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are then placed on the baryonic Tully-Fisher relation. There exists an empirical threshold rotational velocity, V {}{rot} < 15 km s-1, below which current observations cannot differentiate coherent rotation from pressure support. The SHIELD galaxies are representative of an important population of galaxies whose properties cannot be described by current models of rotationally dominated galaxy dynamics.
NASA Astrophysics Data System (ADS)
Demirtas, Sezen; Koymen, Ali; Salamon, Myron
2010-03-01
In this study we investigate a dynamic extension of well known classic spin valves. Ultra thin films were dc sputtered in a UHV chamber and their dynamic responses were measured by ferromagnetic resonance (FMR). Two Co layers, separated by a nonmagnetic Ag layer--thick enough to suppress exchange coupling--were deposited, with one of them coupled to a Gd underlayer, forming a Co(1)/Ag/Co(2)/Gd multilayer. At room temperature both Co(1) and Co(2) FMR's are observed for the external magnetic field in the plane of the film. The field for resonance of Co(2) is reduced significantly relative to Co(1), with the paramagnetic moment of the Gd apparently added to the Co magnetization, and the linewidth is broader. Spin pumping effects are minimal since Co(1) and Co(2) do not resonate at the same field.. The Co(2) FMR disappears at the TC of Gd leaving the linewidth of the Co(1) FMR weakly temperature dependent down to the compensation temperature of the Co(2)/Gd bilayer. Below that point, the two Co layers in this dynamic spin valve device are in antiparallel alignment, leading to strong broadening of the Co(1) FMR with decreasing temperature.
NASA Astrophysics Data System (ADS)
Snyder, Joseph William
2003-07-01
Geometrically frustrated magnets (GFMs) are materials in which it is impossible to satisfy all exchange interactions due the geometry of the lattice. The frustration of interactions is the origin of many unique and interesting material properties. GFMs are typified by large ground state degeneracy and will undergo spin fluctuations down to temperatures well below theta W, where un-frustrated materials display long-range order. This results in the development of correlated magnetic states that are analogous to various structural phases of matter such as spin glasses and spin liquids. Very recently, another magnetic-structural analog has been discovered where the magnetic properties show distinct similarities with the structural properties of a common substance that has itself long perplexed scientists, water ice. The aptly named spin ice compounds have been shown to exhibit the same "ground state entropy" as water ice and to be well characterized by consideration in terms of the "ice model". In this thesis, we explore the low temperature dynamics of the spins in the spin ice compound Dy2Ti2O7 through measurements of the magnetization and ac susceptibility. We show that the ground state represents a unique form of glassiness in a dense magnetic system. Our results show the onset of irreversibility and the development of a metastable state where the dynamics are significantly slowed but no long-range order is achieved below Tirr ˜ 650 mK. The system is also shown to display unique properties at higher temperatures with a partial freezing of the ac susceptibility at T ˜ 16 K. This freezing is shown to be thermally activated in nature above Tcross ˜ 12 K below which it is driven by quantum tunneling until it assumes faster than activated behavior at T ice ˜ 4 K. The freezing is shown to occur over a very narrow range of relaxation time constants, similar to that seen in the dielectric constants of ice. Measurements of Dy2-xYxTi2O 7, where the J = 15/2 Dy3+ ions were
SHIELD: Neutral Gas Kinematics and Dynamics
NASA Astrophysics Data System (ADS)
McNichols, Andrew; Teich, Yaron; Cannon, John M.; SHIELD Team
2016-01-01
The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we present new results of detailed kinematic analyses of these systems using multi-configuration, high spatial (˜300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array. For each source, we produce velocity fields and dispersion maps using different spatial and spectral resolution representations of the data in order to attempt derivation of an inclination-corrected rotation curve. While both two- and three-dimensional fitting techniques are employed, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make multiple position-velocity cuts across each galaxy to determine the maximum circular rotation velocity (≤ 30 km-1 for the survey population). Baryonic masses are calculated using single-dish H I fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are contextualized on the baryonic Tully-Fisher relation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.
NMR shielding and spin-rotation constants in XCO (X = Ni, Pd, Pt) molecules
NASA Astrophysics Data System (ADS)
Demissie, Taye B.; Jaszuński, Michał; Malkin, Elena; Komorovský, Stanislav; Ruud, Kenneth
2015-07-01
Ab initio nonrelativistic and four-component relativistic DFT (density functional theory) methods are combined to study the spin-rotation and absolute nuclear magnetic resonance (NMR) shielding constants of group 10 transition metal monocarbonyls. Good agreement is obtained between the calculated and available experimental data for the spin-rotation constants and shielding spans for PdCO and PtCO. These data allow us to determine accurate absolute chemical shielding constants for all the nuclei, as well as for the unknown spin-rotation constants. We compare the four-component shielding constants with those obtained from the spin-orbit zeroth-order regular approximation, together with an assessment of the performance of different basis sets. For the first time, relativistically optimised basis sets for the heavy atoms used in the four-component calculations are shown to give converged results for both magnetic properties studied. We dedicate this article to the memory of Professor Nicholas C. Handy.
Spin-current emission governed by nonlinear spin dynamics
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-01-01
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712
Measurements of nuclear spin dynamics by spin-noise spectroscopy
Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.
2015-06-15
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.
Measurements of nuclear spin dynamics by spin-noise spectroscopy
NASA Astrophysics Data System (ADS)
Ryzhov, I. I.; Poltavtsev, S. V.; Kavokin, K. V.; Glazov, M. M.; Kozlov, G. G.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Kavokin, A. V.; Lemaître, A.; Bloch, J.; Zapasskii, V. S.
2015-06-01
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.
Imaging electrical spin generation and spin Hall dynamics in semiconductors
NASA Astrophysics Data System (ADS)
Stern, N. P.
2009-03-01
The capability to generate and manipulate spin polarization through the spin-orbit interaction drives interest in all-electrical techniques to exploit electron spins for semiconductor spintronics. The spin Hall effect refers to the generation of a pure spin current transverse to a charge current, resulting in a spontaneous spin accumulation near sample boundaries without the need for magnetic fields or materials. Recent experiments toward imaging this electrically generated spin polarization with both spatially and temporally resolved Kerr rotation microscopy in bulk zincblende semiconductors are discussed. Both current-induced in-plane spin polarization and out-of-plane spin accumulation from the spin Hall effect are observed in ZnSe up to room temperatureootnotetextN. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 97, 126603 (2006). In GaAs devices, spatially resolved measurements of steady-state spin Hall accumulation and associated modeling clarify the important role of drift and diffusion in transporting spins generated at sample boundaries to the device interiorootnotetextN. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Appl. Phys. Lett. 91, 062109 (2007). In these typical optical experiments, electrically-generated spin accumulation is measured using steady-state techniques that do not directly observe dynamics at timescales important for device operation. Here we discuss a time- and spatially-resolved measurement of the spin Hall effect using a pulsed current to drive spin accumulationootnotetextN. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Nat. Physics 4, 843 (2008). The dynamical processes of spin accumulation and diffusion reveal spatially-dependent nanosecond timescales comparable to the electric-field dependent spin coherence time. A time-dependent diffusion analysis reconciles the observed spatial and temporal dynamics of spin accumulation from the spin
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
NASA Astrophysics Data System (ADS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Spin Interactions and Spin Dynamics in Electronic Nanostructures
2007-11-02
and of nanomagnet dynamics excited by spin polarized currents. Major accomplishments achieved during this project include the development and...Reversal Induced by a Spin - Polarized Current,” E. B Myers, F. J. Albert, J. C. Sankey, E. Bonet, R. A. Buhrman, and D. C. Ralph, Phys. Rev. Lett. 89...196801 (2002). 4. “Using single quantum states as spin filters to study spin polarization in ferromagnets,” Mandar M. Deshmukh and D. C. Ralph, Phys
Spin dynamics simulations at AGS
Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.
2010-05-23
To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.
Polarized hyperons probe dynamics of quark spin
Daniel S. Carman; T. S. Harry Lee; Mac Mestayer; Reinhard Schumacher
2007-08-01
Researchers at Jefferson Laboratory demonstrate how two analyses of the same data provide two plausible models of spin transfer in exclusive hyperon production, yielding quite different pictures of quark spin dynamics and challenging existing theories.
Coherent spin mixing dynamics in a spin-1 atomic condensate
Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.
2005-07-15
We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.
Thermal Spin Dynamics of Yttrium Iron Garnet
NASA Astrophysics Data System (ADS)
Barker, Joseph; Bauer, Gerrit E. W.
2016-11-01
The magnetic insulator yttrium iron garnet can be grown with near perfection and is therefore and ideal conduit for spin currents. It is a complex material with 20 magnetic moments in the unit cell. In spite of being a ferrimagnet, YIG is almost always modeled as a simple ferromagnet with a single spin wave mode. We use the method of atomistic spin dynamics to study the temperature evolution of the full spin wave spectrum, in quantitative agreement with neutron scattering experiments. The antiferromagnetic or optical mode is found to suppress the spin Seebeck effect at room temperature and beyond due to thermally pumped spin currents with opposite polarization to the ferromagnetic mode.
Dynamical spin-spin coupling of quantum dots
NASA Astrophysics Data System (ADS)
Grigoryan, Vahram; Xiao, Jiang; A spintronics Group Team
2014-03-01
We carried out a nested Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the spin-spin coupling between two dynamical quantum dots under the influence of rotating transverse magnetic field. As a result of the rotating field, we predict a novel Ising type spin-spin coupling mechanism between quantum dots, whose strength is tunable via the magnitude of the rotating field. Due to its dynamical origin, this new coupling mechanism is qualitatively different from the all existing static couplings such as RKKY, while the strength could be comparable to the strength of the RKKY coupling. The dynamical coupling with the intristic RKKY coupling enables to construct a four level system of maximally entangled Bell states in a controllable manner. This work was supported by the special funds for the Major State Basic Research Project of China (No. 2011CB925601) and the National Natural Science Foundation of China (Grants No. 11004036 and No. 91121002).
Intrinsic spin dynamics in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Valín-Rodríguez, Manuel
2005-12-01
We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.
Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets
NASA Astrophysics Data System (ADS)
Johansen, Øyvind; Brataas, Arne
2017-06-01
Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.
Spin dynamics in bilayer cuprates
NASA Astrophysics Data System (ADS)
Morr, Dirk K.; Pines, David
1998-03-01
Recent neutron scattering experiments have provided a detailed study of the low-lying spin excitations in the normal and superconducting state of YBa_2Cu_3O_6+x(S. Hayden et al.), preprint, P. Bourges et al., preprint for a variety of doping concentrations. Of particular interest is the temperature and doping dependence of the resonance peak and of the local susceptibility in the even and odd channel. For the underdoped compounds (x=0.5), the odd channel shows dramatic changes already above T_c, whereas the gap in the even channel exhibits only slight changes. Simultaneous with these changes, the onset of the resonance peak was observed. We investigate the role of the interlayer exchange J_⊥ for the occurrence of both phenomena as well as the relationship between them. Furthermore, we study the origin of the spectral weight contained in the resonance peak and the changes of the in-plane and out-of-plane spin dynamics as a function of temperature and doping.
Spin dynamics in driven composite multiferroics
Wang, Zidong Grimson, Malcolm J.
2015-09-28
A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.
NASA Astrophysics Data System (ADS)
Cheng, Lan; Gauss, Jürgen; Stanton, John F.
2013-08-01
A cost-effective treatment of scalar-relativistic effects on nuclear magnetic shieldings based on the spin-free exact-two-component theory in its one-electron variant (SFX2C-1e) is presented. The SFX2C-1e scheme gains its computational efficiency, in comparison to the four-component approach, from a focus on spin-free contributions and from the elimination of the small component. For the calculation of nuclear magnetic shieldings, the separation of spin-free and spin-dependent terms in the parent four-component theory is carried out here for the matrix representation of the Dirac equation in terms of a restricted-magnetically balanced gauge-including atomic orbital basis. The resulting spin-free four-component matrix elements required to calculate nuclear magnetic shieldings are then used to construct the corresponding SFX2C-1e Hamiltonian and its perturbed counterpart in the context of SFX2C-1e analytic derivative theory. To demonstrate the applicability of the approach, we report coupled-cluster calculations for prototypical problems such as the 17O shieldings of transition-metal oxo complexes (MO_4^{2-}, M = Cr, Mo, and W) and the 129Xe shieldings of xenon fluorides (XeF2, XeF4, and XeF6).
Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A
2016-08-24
One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules.
Tang, Yanhao; Xie, Wei; McGuire, John A. Lai, Chih Wei; Mandal, Krishna C.
2015-09-21
We analyze exciton spin dynamics in GaSe under nonresonant circularly polarized optical pumping with an exciton spin-flip rate-equation model. The model reproduces polarized time-dependent photoluminescence measurements in which the initial circular polarization approaches unity even when pumping with 0.15 eV excess energy. At T = 10 K, the exciton spin relaxation exhibits a biexponential decay with sub-20 ps and >500 ps time constants, which are also reproduced by the rate-equation model assuming distinct spin-relaxation rates for hot (nonequilibrium) and cold band-edge excitons.
Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A
2016-12-15
The broadly accepted procedure to obtain the experimental absolute scale of NMR magnetic shieldings, σ, is well-known for nonheavy atom-containing molecules. It was uncovered more than 40 years ago by the works of Ramsey and Flygare. They found a quite accurate relationship among σ and the nuclear spin-rotation constants. Its relativistic extension was very recently proposed, although it has an intrinsic weakness because a new SO-S two-component term needs to be considered. We show how to overcome this problem. We found that (νY(S) - νY(atom,S)) generalizes the SO-S term, where νY(S) = ⟨⟨[((r - rY) × α)/(|r - rY|(3))]; S((4))⟩⟩, r - rY is the electron position with respect to the position of nucleus Y, and S((4)) is the four-component total electron spin. When including this new term, one finds that the best of our relativistic Flygare-like models fits quite well with the results of the most accurate method available at the moment. We also show that the difference among the parallel component of σ(Xe) in XeF2 and σ(Xe) of the free atom is almost completely described by that new term.
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Spin dynamics and spin freezing at ferromagnetic quantum phase transitions
NASA Astrophysics Data System (ADS)
Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Süllow, S.; Pedersen, B.; Böni, P.; Pfleiderer, C.
2015-07-01
We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.
Dynamics of Spin Glass and Spin Glass-Like Materials.
NASA Astrophysics Data System (ADS)
Luo, Weili
1990-01-01
In this dissertation extensive research on the dynamics of both metallic and insulating spin glasses is reported. Aging was found in both metallic and insulating spin glass materials. Aging manifests itself through the waiting time dependence of the relaxation rate. Relaxation at a given age can be described by two regimes: a power law for short times, and a stretched exponential (STE) for long times. In the reentrant spin glass Eu_{0.54}Sr _{0.46}S, both regimes are observed, while in the metallic spin glass only STE is present. The time decay of the TRM, _{rm TRM }(t)_{12}, at a given age, is compared with calculation by De Dominicis et al in the frame work of mean field theory. Excellent agreement between the theoretical calculation and the experimental results suggests that mean field theory can provide a qualitative description of the nature of the spin glass phase. If the measurement time is much longer than the waiting time then the relaxation rate will depend on the total age of the system, t+t_{rm w}, where t_{rm w} is the waiting time. This shows up as a deviation from STE at long times, as was observed. Aging is explained by the existence of the complex landscape of free energy. The influence of aging on dynamics is found to decrease with increasing temperature and increasing field. We interpreted this decrease as a simplification of the free energy landscape while the system gets close to the de Almeida - Thouless (AT) line. In the "frustrated ferromagnetic" phase of Eu _{0.54}Sr_ {0.46}S slow decay of TRM is found as well as aging. A new way to determine the phase diagram from the dynamic point of view is presented.
Magnetic Suspension for Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Johnson, Dexter
1998-01-01
NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.
Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems.
Gan, Z
2000-03-01
Polarization inversion spin exchange at the magic angle (PISEMA) [J. Magn. Reson. A 109, 270 (1994)] is an important experiment in NMR structural characterization of membrane proteins in oriented lipid bilayers. This paper presents a theoretical and experimental study of the spin dynamics in PISEMA to investigate the line-narrowing mechanism. The study focuses on the effect of neighboring protons on the spin exchange of a strongly coupled spin pair. The spin exchange is solved analytically for simple spin systems and is numerically simulated for many-spin systems. The results show that the dipolar couplings from the neighboring protons of a strongly coupled spin pair perturb the spin exchange only in the second order, therefore it has little contribution to the linewidth of PISEMA spectra in comparison to the separated-local-field spectra. The effects from proton resonance offset and the mismatch of the Hartmann-Hahn condition are also discussed along with experimental results using model single-crystal samples.
Spin Chains with Dynamical Lattice Supersymmetry
NASA Astrophysics Data System (ADS)
Hagendorf, Christian
2013-02-01
Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the {N}=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension possess a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.
Spin Dynamics of Charged Colloidal Quantum Dots
NASA Astrophysics Data System (ADS)
Stern, N. P.
2005-03-01
Colloidal semiconductor quantum dots are promising structures for controlling spin phenomena because of their highly size- tunable physical properties, ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Recent experiments have succeeded in controlling the charging of the lowest electronic state of colloidal quantum dots ootnotetextC. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem B 108, 9027 (2004).. Here we use time-resolved Faraday rotation measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe quantum dot films in both a charged and uncharged state at room temperature. The charging of the film is controlled by applying a voltage in an electrochemical cell and is confirmed by absorbance measurements. Significant changes in the spin precession are observed upon charging, reflecting the voltage- controlled electron occupation of the quantum dot states and filling of surface states.
The classical and quantum dynamics of molecular spins on graphene
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
A Dynamic Discrete Dislocation Plasticity study of elastodynamic shielding of stationary cracks
NASA Astrophysics Data System (ADS)
Gurrutxaga-Lerma, B.; Balint, D. S.; Dini, D.; Sutton, A. P.
2017-01-01
Employing Dynamic Discrete Dislocation Plasticity (D3P), an elastodynamic analysis of the shielding of a stationary crack tip by dislocations is studied. Dislocations are generated via Frank-Read sources, and make a negligible contribution to the shielding of the crack tip, whereas dislocations generated at the crack tip via homogeneous nucleation dominate the shielding. Their effect is found to be highly localised around the crack, leading to a magnification of the shielding when compared to time-independent, elastostatic predictions. The resulting attenuation of KI(t) is computed, and is found to be directly proportional to the applied load and to √{ t }.
Dynamical spin effects in the pion
NASA Astrophysics Data System (ADS)
Ahmady, Mohammad; Sandapen, Ruben; Chishtie, Farrukh
2017-03-01
We take into account dynamical spin effects in the holographic light-front pion wavefunction in order to predict the pion radius, decay constant, the pion electromagnetic and photon-to-pion transition form factors. We report a striking improvement in the description of all data.
Controlled spatial separation of spins and coherent dynamics in spin-orbit-coupled nanostructures
NASA Astrophysics Data System (ADS)
Lo, Shun-Tsung; Chen, Chin-Hung; Fan, Ju-Chun; Smith, L. W.; Creeth, G. L.; Chang, Che-Wei; Pepper, M.; Griffiths, J. P.; Farrer, I.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Chen, Tse-Ming
2017-07-01
The spatial separation of electron spins followed by the control of their individual spin dynamics has recently emerged as an essential ingredient in many proposals for spin-based technologies because it would enable both of the two spin species to be simultaneously utilized, distinct from most of the current spintronic studies and technologies wherein only one spin species could be handled at a time. Here we demonstrate that the spatial spin splitting of a coherent beam of electrons can be achieved and controlled using the interplay between an external magnetic field and Rashba spin-orbit interaction in semiconductor nanostructures. The technique of transverse magnetic focusing is used to detect this spin separation. More notably, our ability to engineer the spin-orbit interactions enables us to simultaneously manipulate and probe the coherent spin dynamics of both spin species and hence their correlation, which could open a route towards spintronics and spin-based quantum information processing.
Controlled spatial separation of spins and coherent dynamics in spin-orbit-coupled nanostructures.
Lo, Shun-Tsung; Chen, Chin-Hung; Fan, Ju-Chun; Smith, L W; Creeth, G L; Chang, Che-Wei; Pepper, M; Griffiths, J P; Farrer, I; Beere, H E; Jones, G A C; Ritchie, D A; Chen, Tse-Ming
2017-07-10
The spatial separation of electron spins followed by the control of their individual spin dynamics has recently emerged as an essential ingredient in many proposals for spin-based technologies because it would enable both of the two spin species to be simultaneously utilized, distinct from most of the current spintronic studies and technologies wherein only one spin species could be handled at a time. Here we demonstrate that the spatial spin splitting of a coherent beam of electrons can be achieved and controlled using the interplay between an external magnetic field and Rashba spin-orbit interaction in semiconductor nanostructures. The technique of transverse magnetic focusing is used to detect this spin separation. More notably, our ability to engineer the spin-orbit interactions enables us to simultaneously manipulate and probe the coherent spin dynamics of both spin species and hence their correlation, which could open a route towards spintronics and spin-based quantum information processing.
Unusual spin dynamics in topological insulators
Dóra, Balázs; Simon, Ferenc
2015-01-01
The dynamic spin susceptibility (DSS) has a ubiquitous Lorentzian form around the Zeeman energy in conventional materials with weak spin orbit coupling, whose spectral width characterizes the spin relaxation rate. We show that DSS has an unusual non-Lorentzian form in topological insulators, which are characterized by strong SOC, and the anisotropy of the DSS reveals the orientation of the underlying spin texture of topological states. At zero temperature, the high frequency part of DSS is universal and increases in certain directions as ωd−1 with d = 2 and 3 for surface states and Weyl semimetals, respectively, while for helical edge states, the interactions renormalize the exponent as d = 2K − 1 with K the Luttinger-liquid parameter. As a result, spin relaxation rate cannot be deduced from the DSS in contrast to the case of usual metals, which follows from the strongly entangled spin and charge degrees of freedom in these systems. PMID:26439629
Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System
NASA Technical Reports Server (NTRS)
1995-01-01
The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.
Spin observables and spin structure functions: Inequalities and dynamics
NASA Astrophysics Data System (ADS)
Artru, Xavier; Elchikh, Mokhtar; Richard, Jean-Marc; Soffer, Jacques; Teryaev, Oleg V.
2009-01-01
Model-independent identities and inequalities which relate the various spin observables of collisions in nuclear and particle physics are reviewed in a unified formalism. Their physical interpretation and their implications for dynamical models are also discussed. These constraints between observables can be obtained in several ways: from the explicit expression of the observables in terms of a set of helicity or transversity amplitudes, a non-trivial algebraic exercise which can be preceded by numerical simulation with randomly chosen amplitudes, from anticommutation relations, or from the requirement that any polarisation vector is less than unity. The most powerful tool is the positivity of the density matrices describing the spins in the initial or final state of the reaction or its crossed channels. The inequalities resulting from positivity need to be projected to single out correlations between two or three observables. The quantum aspects of the information carried by spins, in particular entanglement, are considered when deriving and discussing the constraints. Several examples are given, with a comparison with experimental data in some cases. For the exclusive reactions, the cases of the strangeness-exchange proton-antiproton scattering and the photoproduction of pseudoscalar mesons are treated in some detail: all triples of observables are constrained, and new results are presented for the allowed domains. The positivity constraints for total cross sections and for the simplest observables of single-particle inclusive reactions are reviewed. They also apply to spin-dependent structure functions and parton distributions, both integrated or transverse-momentum dependent. The corresponding inequalities are shown to be preserved by the evolution equations of quantum chromodynamics.
Communication: quantum dynamics in classical spin baths.
Sergi, Alessandro
2013-07-21
A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.
Communication: Quantum dynamics in classical spin baths
NASA Astrophysics Data System (ADS)
Sergi, Alessandro
2013-07-01
A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.
Structurally Dynamic Spin Market Networks
NASA Astrophysics Data System (ADS)
Horváth, Denis; Kuscsik, Zoltán
The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.
Spin Dynamics in Novel Materials Systems
NASA Astrophysics Data System (ADS)
Yu, Howard
Spintronics and organic electronics are fields that have made considerable advances in recent years, both in fundamental research and in applications. Organic materials have a number of attractive properties that enable them to complement applications traditionally fulfilled by inorganic materials, while spintronics seeks to take advantage of the spin degree of freedom to produce new applications. My research is aimed at combining these two fields to develop organic materials for spintronics use. My thesis is divided into three primary projects centered around an organic-based semiconducting ferrimagnet, vanadium tetracyanoethylene. First, we investigated the transport characteristics of a hybrid organic-inorganic heterostructure. Semiconductors form the basis of the electronics industry, and there has been considerable effort put forward to develop organic semiconductors for applications like organic light-emitting diodes and organic thin film transistors. Working with hybrid organic-inorganic semiconductor device structures allows us to potentially take advantage of the infrastructure that has already been developed for silicon and other inorganic semiconductors. This could potentially pave the way for a new class of active hybrid devices with multifunctional behavior. Second, we investigated the magnetic resonance characteristics of V[TCNE]x, in multiple measurement schemes and exploring the effect of temperature, frequency, and chemical tuning. Recently, the spintronics community has shifted focus from static electrical spin injection to various dynamic processes, such as spin pumping and thermal effects. Spin pumping in particular is an intriguing way to generate pure spin currents via magnetic resonance that has attracted a high degree of interest, with the FMR linewidth being an important metric for spin injection. Furthermore, we can potentially use these measurements to probe the magnetic properties as we change the physical properties of the materials by
Nozirov, Farhod E-mail: farhod.nozirov@gmail.com; Stachów, Michał; Kupka, Teobald E-mail: farhod.nozirov@gmail.com
2014-04-14
A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd) with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)
NASA Astrophysics Data System (ADS)
Hrobárik, Peter; Reviakine, Roman; Arbuznikov, Alexei V.; Malkina, Olga L.; Malkin, Vladimir G.; Köhler, Frank H.; Kaupp, Martin
2007-01-01
The calculation of nuclear shieldings for paramagnetic molecules has been implemented in the ReSpect program, which allows the use of modern density functional methods with accurate treatments of spin-orbit effects for all relevant terms up to order O(α4) in the fine structure constant. Compared to previous implementations, the methodology has been extended to compounds of arbitrary spin multiplicity. Effects of zero-field splittings in high-spin systems are approximately accounted for. Validation of the new implementation is carried out for the C13 and H1 NMR signal shifts of the 3d metallocenes V4Cp2, Cr3Cp2, Mn2Cp2, Mn6Cp2, Co2Cp2, and Ni3Cp2. Zero-field splitting effects on isotropic shifts tend to be small or negligible. Agreement with experimental isotropic shifts is already good with the BP86 gradient-corrected functional and is further improved by admixture of Hartree-Fock exchange in hybrid functionals. Decomposition of the shieldings confirms the dominant importance of the Fermi-contact shifts, but contributions from spin-orbit dependent terms are frequently also non-negligible. Agreement with C13 NMR shift tensors from solid-state experiments is of similar quality as for isotropic shifts.
Dynamic Feedback in Ferromagnet-Spin Hall Metal Heterostructures
NASA Astrophysics Data System (ADS)
Cheng, Ran; Zhu, Jian-Gang; Xiao, Di
2016-08-01
In ferromagnet-normal-metal heterostructures, spin pumping and spin-transfer torques are two reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect interconnecting energy dissipation channels of both magnetization and current. By solving the spin diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magnetoimpedance that reduces to the spin Hall magnetoresistance in the dc limit.
Unidirectional spin-torque driven magnetization dynamics
NASA Astrophysics Data System (ADS)
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Saglam, Hilal; Grudichak, Scott; Jiang, Wanjun; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel
2017-06-01
The rich physics associated with magnetism often centers around directional effects. Here we demonstrate how spin-transfer torques in general result in unidirectional ferromagnetic resonance dynamics upon field reversal. The unidirectionality is a direct consequence of both field-like and damping-like dynamic torques simultaneously driving the motion. This directional effect arises from the field-like torque being odd and the damping-like torque being even under field reversal. The directional effect is observed when the magnetization has both an in-plane and out-of-plane component, since then the linear combination of the torques rotates with a different handedness around the magnetization as the magnetization is tipped out-of-plane. The effect is experimentally investigated via spin-torque ferromagnetic resonance measurements with the field applied at arbitrary directions away from the interface normal. The measured asymmetry of the voltage spectra are well explained within a phenomenological torque model.
Planetary Interior Structure Revealed by Spin Dynamics
NASA Astrophysics Data System (ADS)
Margot, J.; Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V.
2002-12-01
The spin state of a planet depends on the distribution of mass within the interior, gradual and discrete changes in its moments of inertia, dissipation mechanisms at the surface and below, and external torques. Detailed measurements of the spin dynamics can therefore reveal much about planetary interior structure, interactions at the core-mantle and atmosphere-surface boundaries, and mass redistribution events. Studies of the spin precession, polar wobble, and length of day variations have been used to determine Earth's moments of inertia and rigidity and to study the effects of atmospheric angular momentum changes, post-glacial rebound, and large earthquakes. In planetary investigations the spin measurements are particularly important because other means of constraining interior properties require in-situ or orbiting sensors (e.g. seismometers, magnetometers, and Doppler tracking of spacecraft). Here we describe the successful implementation of a new Earth-based radar technique (Holin, 1992) that provides spin state measurements with unprecedented accuracy. Our first observations were designed to characterize Mercury's core. Peale (1976) showed that the measurement of four quantities (the obliquity of the planet, the amplitude of its longitude librations, and the second-degree gravitational harmonics) are sufficient to determine the size and state of Mercury's core. The existence of a molten core would place strong constraints on the thermal and rotational histories of the planet, with profound implications for the composition and rotation state of the planet at the time of formation. A solid core would have a fundamental impact on theories of planetary magnetic field generation. We observed Mercury with the Goldstone radar and the Green Bank Telescope in May-June 2002. We illuminated the planet with a monochromatic signal, recorded the scattered power at the two antennas, and cross-correlated the echoes in the time domain. We obtained strong correlations which
Dynamics of the Lunar Spin Axis
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2006-01-01
The evolution of the lunar spin axis is studied. Prior work has assumed that the inclination of the lunar orbit is constant and that the node regresses uniformly. This work takes into account the nonconstant inclination and nonuniform regression of the node as determined from averaged models of the motion of the lunar orbit. The resulting dynamics is considerably more rich, exhibiting additional resonances, period doubling and tripling, and chaos.
Dynamics of the Lunar Spin Axis
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2006-01-01
The evolution of the lunar spin axis is studied. Prior work has assumed that the inclination of the lunar orbit is constant and that the node regresses uniformly. This work takes into account the nonconstant inclination and nonuniform regression of the node as determined from averaged models of the motion of the lunar orbit. The resulting dynamics is considerably more rich, exhibiting additional resonances, period doubling and tripling, and chaos.
Controlled spatial separation of spins and coherent dynamics in spin-orbit-coupled nanostructures
Lo, Shun-Tsung; Chen, Chin-Hung; Fan, Ju-Chun; Smith, L. W.; Creeth, G. L.; Chang, Che-Wei; Pepper, M.; Griffiths, J. P.; Farrer, I.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Chen, Tse-Ming
2017-01-01
The spatial separation of electron spins followed by the control of their individual spin dynamics has recently emerged as an essential ingredient in many proposals for spin-based technologies because it would enable both of the two spin species to be simultaneously utilized, distinct from most of the current spintronic studies and technologies wherein only one spin species could be handled at a time. Here we demonstrate that the spatial spin splitting of a coherent beam of electrons can be achieved and controlled using the interplay between an external magnetic field and Rashba spin–orbit interaction in semiconductor nanostructures. The technique of transverse magnetic focusing is used to detect this spin separation. More notably, our ability to engineer the spin–orbit interactions enables us to simultaneously manipulate and probe the coherent spin dynamics of both spin species and hence their correlation, which could open a route towards spintronics and spin-based quantum information processing. PMID:28691707
Combined molecular dynamics-spin dynamics simulations of bcc iron
Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg
2014-01-01
Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.
Dynamic Open-Rotor Composite Shield Impact Test Report
NASA Technical Reports Server (NTRS)
Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.
2015-01-01
The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.
NMR probe for dynamic-angle spinning
NASA Astrophysics Data System (ADS)
Mueller, K. T.; Chingas, G. C.; Pines, A.
1991-06-01
We describe the design of a probe for dynamic-angle spinning (DAS) NMR experiments, comprised of a spinning cylindrical sample holder whose axis may be reoriented rapidly between discrete directions within the bore of a superconducting magnet. This allows the refocusing of nuclear spin magnetization that evolves under anisotropic interactions such as chemical shift anisotropy and quadrupolar coupling, providing high resolution NMR spectra for quadrupolar nuclei in solid materials. The probe includes an axial air delivery system to bearing and drive jets which support and spin a rotor containing the sample. Axis reorientation is accomplished with a pulley attached to the probehead and coupled to a stepping motor outside of the magnet. The choice of motor and gear ratio is based on an analysis of the moments of inertia of the motor and load, the desired angular resolution, and simplicity of design. Control of angular accuracy and precision are discussed, as well as the efficiency of radiofrequency irradiation and detection. High resolution DAS spectra of oxygen-17 and aluminum-27 nuclei in polycrystalline minerals illustrate the experimental capabilities.
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Geometric vector potentials from nonadiabatic spin dynamics
NASA Astrophysics Data System (ADS)
Baltanás, J. P.; Saarikoski, H.; Reynoso, A. A.; Frustaglia, D.
2017-07-01
We propose a theoretical framework that captures the geometric vector potential emerging from the nonadiabatic spin dynamics of itinerant carriers subject to arbitrary magnetic textures. Our approach results in a series of constraints on the geometric potential and the nonadiabatic geometric phase associated with it. These constraints play a decisive role when studying, e.g., the geometric spin phase gathered by conducting electrons in ring interferometers under the action of in-plane magnetic textures, allowing a simple characterization of the topological transition recently reported by Saarikoski et al. [H. Saarikoski, J. E. Vázquez-Lozano, J. P. Baltanás, F. Nagasawa, J. Nitta, and D. Frustaglia, Phys. Rev. B 91, 241406(R) (2015), 10.1103/PhysRevB.91.241406].
Agnihotri, Pratik; Bandyopadhyay, Supriyo
2012-05-30
Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.
NASA Astrophysics Data System (ADS)
Ruud, Kenneth; Demissie, Taye B.; Jaszuński, Michał
2014-05-01
We present an analysis of the spin-rotation and absolute shielding constants of XF6 molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin-rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin-rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin-rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin-rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.
Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
NASA Astrophysics Data System (ADS)
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.
Glassy Spin Dynamics in Geometrically Frustrated Buckled Colloidal Crystals
NASA Astrophysics Data System (ADS)
Zhou, Di; Wang, Feng; Li, Bo; Lou, Xiaojie; Han, Yilong
2017-04-01
Geometrical frustration arises when the lattice geometry prevents local interaction energies from minimizing simultaneously. Whether and how geometrically frustrated spins or charges in clean crystals exhibit glassy dynamics remain elusive due to the lack of measurements on microscopic dynamics. Here, we employ buckled monolayer colloidal crystals to mimic frustrated antiferromagnetic Ising spins on triangular lattices and measure single-spin dynamics using video microscopy. Both attractive and repulsive colloidal crystals buckled into zigzag stripes with glassy dynamics at low effective temperatures in experiment and simulation. The simple local spin configurations enable uncovering correlations among structure, dynamics, and soft vibrational modes. Machine learning analysis further reveals facilitated dynamics to be an important mechanism of structural relaxation. Moreover, our simulation reveals a similar structure and dynamics in lattice Coulomb liquids. Hence, spin-lattice coupling and long-range interaction can similarly lift degeneracy, induce a rugged landscape, and, thus, produce glassy dynamics.
Wheeler-Feynman dynamics of spin-1/2 particles
NASA Astrophysics Data System (ADS)
van Alstine, Peter; Crater, Horace W.
1986-02-01
By combining a supersymmetric description of a spinning particle in an external field with an appropriate modification of the ``adjunct field'' of Wheeler and Feynman, we construct a many-time relativistic dynamics for arbitrary numbers of spin-(1/2) and spinless particles in mutual scalar or vector interaction. Quantization of the slow-motion approximation to the dynamics of two spinning particles reproduces the corresponding field-theoretic (Bethe-Salpeter) dynamics through order α4.
Zevenhoven, Koos C. J. Ilmoniemi, Risto J.; Dong, Hui; Clarke, John
2015-01-19
Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents.
Dynamic modeling of the behavior of permalloy for magnetic shielding
NASA Astrophysics Data System (ADS)
Sun, Z.; Reisner, M.; Fierlinger, P.; Schnabel, A.; Stuiber, S.; Li, L.
2016-05-01
The minimization of the remanent magnetization of ferromagnetic materials is a prerequisite for a reproducible low magnetic field inside shields. To realistically describe this so-called magnetic equilibration procedure, this paper proposes two approaches for the calculation of time- and space-dependent fields in the presence of ferromagnetic materials like permalloy. The first method is based on the Jiles-Atherton model and also takes into account frequency dependent effects. The second method is the newly developed empirical phase shift model, tailored specially for the simulation of the equilibration procedure. Both approaches are compared to experimental tests and show good quantitative agreement.
Electrical detection of magnetization dynamics via spin rectification effects
NASA Astrophysics Data System (ADS)
Harder, Michael; Gui, Yongsheng; Hu, Can-Ming
2016-11-01
The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.
Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film
NASA Astrophysics Data System (ADS)
Inoue, Masashi; Ichioka, Masanori; Adachi, Hiroto
2017-07-01
Spin pumping refers to the microwave-driven spin current injection from a ferromagnet into the adjacent target material. We theoretically investigate the spin pumping into superconductors by fully taking account of impurity spin-orbit scattering that is indispensable to describe diffusive spin transport with finite spin diffusion length. We calculate temperature dependence of the spin pumping signal and show that a pronounced coherence peak appears immediately below the superconducting transition temperature Tc, which survives even in the presence of the spin-orbit scattering. The phenomenon provides us with a new way of studying the dynamic spin susceptibility in a superconducting thin film. This is contrasted with the nuclear magnetic resonance technique used to study a bulk superconductor.
Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.
Ki, Dae-Han; Jung, Young-Dae
2013-04-21
The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.
Static and dynamic elastic properties of rocks from the Canadian Shield
King, M.S.
1983-01-01
As part of a number of research studies in the Canadian Shield associated with the stability of underground mine openings, seismic reflection surveys, and the proposed use of a tunnel-boring machine (TBM) for developing mine headings, a long-term laboratory rock mechanics program has been conducted to determine the static and dynamic elastic properties of samples of igneous and metamorphic rocks from the Canadian Shield. This paper reports the results of 174 measurements of static elastic modulus and 152 measurements of uniaxial compressive strength for these rocks as a function of dynamic elastic modulus. 20 references, 5 figures.
Dynamics of Interacting Fermions in Spin-Dependent Potentials
NASA Astrophysics Data System (ADS)
Koller, Andrew P.; Wall, Michael L.; Mundinger, Josh; Rey, Ana Maria
2016-11-01
Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.
Dynamics of Interacting Fermions in Spin-Dependent Potentials.
Koller, Andrew P; Wall, Michael L; Mundinger, Josh; Rey, Ana Maria
2016-11-04
Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.
Nonequilibrium Spin Dynamics: from Protons in Water to a Gauge Theory of Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Tokatly, I. V.; Sherman, E. Ya.
Nonequilibrium dynamics of spin degrees of freedom in condensed matter, ranging from classical liquids to solids and ultracold atomic gases, is one of the focus topics in physics. Here we present a gauge theory of spin dynamics in spinorbit coupled gases for a "pure" gauge realization of the spin-orbit coupling field. This approach allows one to describe the spin dynamics in fermionic systems in terms of exact general response functions and to map it on the density dynamics in a dual system without spin-orbit coupling. We apply this approach to electrons in disordered two-dimensional structures and to cold atomic gases of interacting fermions with synthetic spin-orbit coupling at very low temperatures.
The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2012-01-01
The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2015-01-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019
Dynamic Nuclear Spin Resonance in n-GaAs
NASA Astrophysics Data System (ADS)
Chen, Y. S.; Reuter, D.; Wieck, A. D.; Bacher, G.
2011-10-01
The dynamics of optically detected nuclear magnetic resonance is studied in n-GaAs via time-resolved Kerr rotation using an on-chip microcoil for rf field generation. Both optically allowed and optically forbidden NMR are observed with a dynamics controlled by the interplay between dynamic nuclear polarization via hyperfine interaction with optically generated spin-polarized electrons and nuclear spin depolarization due to magnetic resonance absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with master equation simulations, the underlying nuclear spin depolarization mechanism for each resonance is extracted.
Qiao, Jixin; Hou, Xiaolin
2010-03-01
Fractionation of plutonium isotopes ((238)Pu, (239,240)Pu) in environmental samples (i.e. soil and sediment) and bio-shielding concrete from decommissioning of nuclear reactor were carried out by dynamic sequential extraction using an on-line sequential injection (SI) system combined with a specially designed extraction column. Plutonium in the fractions from the sequential extraction was separated by ion exchange chromatography and measured using alpha spectrometry. The analytical results show a higher mobility of plutonium in bio-shielding concrete, which means attention should be paid to the treatment and disposal of nuclear waste from decommissioning.
NASA Astrophysics Data System (ADS)
Dietl, Tomasz
2015-03-01
A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.
2011-02-15
Research Highlights: > We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). > Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. > SOC mediated magnetization switching is predicted in rare earth metals (large SOC). > The magnetization trajectory and frequency can be modulated by applied voltage. > This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
Spin Dynamics in the Kapitza-Dirac Effect
NASA Astrophysics Data System (ADS)
Ahrens, Sven; Bauke, Heiko; Keitel, Christoph H.; Müller, Carsten
2012-07-01
Electron spin dynamics in Kapitza-Dirac scattering from a standing laser wave of high frequency and high intensity is studied. We develop a fully relativistic quantum theory of the electron motion based on the time-dependent Dirac equation. Distinct spin dynamics, with Rabi oscillations and complete spin-flip transitions, is demonstrated for Kapitza-Dirac scattering involving three photons in a parameter regime accessible to future high-power x-ray laser sources. The Rabi frequency and, thus, the diffraction pattern is shown to depend crucially on the spin degree of freedom.
Nonlinear dynamics of spin and charge in spin-Calogero model
Kulkarni, Manas; Franchini, Fabio; Abanov, Alexander G.
2009-10-15
The fully nonlinear dynamics of spin and charge in spin-Calogero model is studied. The latter is an integrable one-dimensional model of quantum spin-1/2 particles interacting through inverse-square interaction and exchange. Classical hydrodynamic equations of motion are written for this model in the regime where gradient corrections to the exact hydrodynamic formulation of the theory may be neglected. In this approximation variables separate in terms of dressed Fermi momenta of the model. Hydrodynamic equations reduce to a set of decoupled Riemann-Hopf (or inviscid Burgers') equations for the dressed Fermi momenta. We study the dynamics of some nonequilibrium spin-charge configurations for times smaller than the time scale of the gradient catastrophe. We find an interesting interplay between spin and charge degrees of freedom. In the limit of large coupling constant the hydrodynamics reduces to the spin hydrodynamics of the Haldane-Shastry model.
Dynamic Action of the Shielding Gas Jet Upon the Process of Consumable Electrode Welding
NASA Astrophysics Data System (ADS)
Chinakhov, D. A.
2017-07-01
The author considers the gas-dynamic action of the shielding gas jet during consumable electrode welding on the processes in the welding area and properties of the weld joints produced from alloyed high-strength steel 30HGSA. The results of the research on the gas-dynamic action of the jet on the process of consumable electrode welding are provided. It was established that the method of consumable electrode welding with double-jet gas shielding ensures regulated gas dynamics in the welding area and allows controlling the electrode metal transfer, the chemical composition of the weld metal, stabilizing the process of welding and ensures stable high mechanic properties of the weld joints.
Dynamical cooling of nuclear spins in double quantum dots.
Rudner, M S; Levitov, L S
2010-07-09
Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.
Spin liquids and spin dynamics in kagome antiferromagnets
NASA Astrophysics Data System (ADS)
Mendels, Philippe
2006-03-01
Among all the corner sharing highly frustrated magnets, only a few experimental systems are good candidates for a low-T fluctuating state, ie fulfilling the important conditions of the pure Heisenberg lattice with nn couplings. The combination of the weakness of the single-ion anisotropy and of a direct overlap antiferromagnetic exchange are certainly the major advantages of the chromate S=3/2 kagome bilayer Ba2Sn2ZnGa10-7pCr7pO22- BSZCGO(p)- and the long studied SrCr9pGa12-9pO19 - SCGO(p). Beyond the absence of ordering well below the Curie-Weiss temperature, the unusual large value of the specific heat unveils a high density of low lying excitations and its field independence suggests that the excited states are mostly singlets. Moreover, their ground state is found essentially fluctuating although an intrinsic spin glass (SG) signature is observed in susceptibility measurements. Through a review of our past years work, I'll illustrate all the potential of local studies (NMR and μSR) to reveal some key aspects of the physics of these compounds: susceptibility, fluctuations, impact of dilution defects which generate an extended response of the spin-lattice ... as well as the puzzling spin-glass state. More recently we also investigated new series of compounds, among them volborthite and delafossites which feature S=1/2 spins on a corner sharing antiferromagnetic lattice. I'll introduce these compounds and shortly discuss their relation to ideal Hamiltonians and novel features. - D. Bono et al.Phys. Rev. Lett. 93, 187201 (2004), 92, 217202 (2004) ; Cond-mat/0503496. F. Bert et al. Phys. Rev. Lett., 95, 087203 (2005). L. Limot, et al., Phys. Rev. B, 65, 132403 (2002). P. Mendels et al. Phys. Rev. Lett., 85, 3496 (2000).
Dynamics of test bodies with spin in de Sitter spacetime
Obukhov, Yuri N.; Puetzfeld, Dirk
2011-02-15
We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.
Dynamics of multiple plumes in laser ablation: Modeling of the shielding effect
NASA Astrophysics Data System (ADS)
Zinovik, Igor; Povitsky, Alex
2006-07-01
The scattering and absorption of laser radiation by previously ablated plumes in laser ablation (known as the shielding effect) dramatically affect the efficiency of laser ablation process. The ablated plumes consisting of water vapor, droplets, and particles are modeled as a gas-particle equilibrium mixture by solution of the Euler equations combined with the transport equation for the ratio of heat capacities. Shielding effect on the overall ablated mass by multiple plumes is studied for a wide range of concentration of particles in vaporized plumes, various laser repetition rates, scattering, and absorption of laser energy. The shielding phenomenon is studied for short sequences of discrete plumes to focus on the shielding effect of individual plumes. The results of numerical modeling were compared to experimental results of laser-induced water explosive vaporization. Ablation rate was calculated for a single ablated plume and for the sequence of six laser pulses at the repetition rates of 0.33 and 1MHz at which gas dynamics interactions between plumes are strong but plumes have not yet form a continuous jet. A single ablated plume has an initial semispherical shape which transforms into mushroomlike cloud with a thin stem and a ring vortex as it was observed in experiments with water and cornea ablation. For the plume with a given ablated mass, the longer ejection of plume with smaller density produces the plume with smaller shielding capacity. For multiple laser pulses, the velocity of ejected mixture increases from the center of the target to its periphery because of the shielding effect. The ablated mass of the current plume depends on the attenuation of the incident laser beam energy caused by the propagation of laser beam through previously ablated plumes. In the case of laser energy absorption, the ablation rate per pulse exceeds 2-2.5 times the rate obtained for the laser energy scattering.
Spin-dynamics simulations of the antiferromagnetic triangular XY model*
NASA Astrophysics Data System (ADS)
Nho, Kwangsik; Landau, D. P.
2002-03-01
Using Monte Carlo and spin-dynamics methods, we have simulated the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. From space-and time-displaced spin-spin correlation functions and their space-time Fourier transforms we obtained the dynamic structure factor S(q,w) for momentum q and frequency w. Below T_c, where long-range order appears in the staggered chirality[1], S(q,w) exhibits very strong and sharp spin-wave peaks in the in-plane-component S^xx. We also observe two-spin-wave peaks at low w and an almost dispersionless domain-wall peak at high w. Above T_c, a weak spin-wave peak persists but the domain-wall peak disappears for all q. We have calculated the dispersion relation and the linewidth of the spin-wave peak in S^xx by fitting the line shape to simple Lorentzians. *Supported by NSF [1] D.H. Lee, J.D. Joannopoulos, J.W. Negele, and D.P. Landau, Phys. Rev. Lett. 52, 433 (1984)
Spin and charge dynamics of chromium alloys
Fishman, R.S.; Viswanath, V.S.; Liu, S.H.
1996-07-01
Both the spin- and charge-density waves of Cr alloys are produced by the Coulomb attraction between electrons and holes on nearly nested Fermi surfaces. Driven by quasi-particle transitions, transverse spin- wave and longitudinal phason modes are associated with rotational and translational symmetries of pure Cr and its dilute alloys. At low frequencies, both spin and charge phasons have a nearly linear dispersion with a mode velocity which approaches the spin-wave velocity as T approaches T{sub N} or as the mismatch between the Fermi surfaces increases.
Production dynamics and high p/sub T/ spin effects
Soffer, J.
1988-08-01
We will emphasize the importance of spin for our understanding of production dynamics at high p/sub T/. Within the framework of perturbative QCD several predictions for interesting spin observables are presented for various reactions. They are crucial tests accessible to existing or future experimental programs. 17 refs., 10 figs.
Ki, Dae-Han; Jung, Young-Dae
2013-03-15
The influence of the dynamic shielding on the Wannier ridge electron escapes into the continuum states by the electron-impact is investigated in weakly coupled plasmas. The dynamically shielded renormalized electron charge and screened Wannier exponent are obtained by considering the equation of motion in the Wannier configuration mode with the effective interaction potential as functions of the charge of the residual ion, Debye length, projectile energy, and thermal energy. The result shows that the dynamic renormalized effective electron charge decreases with an increase of the thermal energy, especially for large distances. It is found that the dynamic shielding effect enhances the Wannier exponent for the double-electron escape. The variation of the dynamic shielding effect on the screened Wannier exponent is also discussed.
Toward Ultrafast Spin Dynamics in Low Dimensional Semiconductors
NASA Astrophysics Data System (ADS)
Chiu, Yi-Hsin
Since the discovery of long spin relaxation times of itinerant electrons up to 100 nanoseconds and spin diffusion lengths over 100 mum in GaAs, extraordinary advances in semiconductor spintronics have been made in the past one and half decades. Incorporating spins in semiconductors requires the following essential capabilities: (i) injection of spins into semiconductors, (ii) manipulation of spins, and (iii) sensitive detection of spin coherence. The solutions to these challenges lie in a deeper understanding of spin interactions and spin relaxation in semiconductors as well as appropriate tools to probe spin dynamics. In particular, recent experiments have suggested the important role of dimensionality in spin dynamics. For example, spin-orbit interaction, the dominant source of spin relaxation in most II-VI and III-V semiconductors, has been shown to be significantly suppressed in reduced dimensions. Low-dimensional semiconductors are therefore appealing candidates for exploring spin physics and device applications. This dissertation aims at exploring spin dynamics in low dimensional semiconductor systems using time-resolved optical techniques. The time resolution allows for a direct measurement of the equilibrium and non-equilibrium carrier spins and various spin interactions in the time domain. Optical approaches are also a natural fit for probing optically active nanostructures where electric approaches can often encounter challenges. For instance, fabricating electric contacts with nanostructures is a proven challenge because of their reduced size and modified electronic structure. This dissertation is divided into three sections targeting an ultimate goal of employing optical methods to explore spin dynamics in low dimensional semiconductors. First, the time-resolved Kerr rotation technique is employed to study spin relaxation in Fe/MgO/GaAs heterostructures. The results reveal rich interactions between the GaAs electron spins, nuclear spins, and the
Spin dynamics simulation of electron spin relaxation in Ni{sup 2+}(aq)
Rantaharju, Jyrki Mareš, Jiří Vaara, Juha
2014-07-07
The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni{sup 2+} ion. The spin-lattice (T{sub 1}) and spin-spin (T{sub 2}) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Protection of centre spin coherence by dynamic nuclear spin polarization in diamond.
Liu, Gang-Qin; Jiang, Qian-Qing; Chang, Yan-Chun; Liu, Dong-Qi; Li, Wu-Xia; Gu, Chang-Zhi; Po, Hoi Chun; Zhang, Wen-Xian; Zhao, Nan; Pan, Xin-Yu
2014-09-07
We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the (13)C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time (T). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.
Scattering bottleneck for spin dynamics in metallic helical antiferromagnetic dysprosium
NASA Astrophysics Data System (ADS)
Langner, M. C.; Roy, S.; Kemper, A. F.; Chuang, Y.-D.; Mishra, S. K.; Versteeg, R. B.; Zhu, Y.; Hertlein, M. P.; Glover, T. E.; Dumesnil, K.; Schoenlein, R. W.
2015-11-01
Ultrafast studies of magnetization dynamics have revealed fundamental processes that govern spin dynamics, and the emergence of time-resolved x-ray techniques has extended these studies to long-range spin structures that result from interactions with competing symmetries. By combining time-resolved resonant x-ray scattering and ultrafast magneto-optical Kerr studies, we show that the dynamics of the core spins in the helical magnetic structure occur on much longer time scales than the excitation of conduction electrons in the lanthanide metal Dy. The observed spin behavior differs markedly from that observed in the ferromagnetic phase of other lanthanide metals or transition metals and is strongly dependent on temperature and excitation fluence. This unique behavior results from coupling of the real-space helical spin structure to the shape of the conduction electron Fermi surface in momentum space, which creates a bottleneck in spin scattering events that transfer the valence excitation to the core spins. The dependence of the dynamics on the intersite interactions renders the helical ordering much more robust to perturbations than simple ferromagnetic or antiferromagnetic ordering, where dynamics are driven primarily by on-site interactions.
NASA Astrophysics Data System (ADS)
Xu, Lan; Wu, Guiping; Yan, Lin
2017-03-01
We study the dynamics of quantum entanglement and quantum discord between two non-interacting qubits, which couple with two independent spin baths, obeying the XXZ Hamiltonian. After the Holstein-Primakoff transformation, one could reduce the spin bath to a single-mode bosonic bath field. Then we use this model to study the entanglement and discord dynamics of two qubits in their corresponding spin bath. For the initial Werner state, it is indicated that both entanglement and quantum discord exhibit death and revival behavior, while the quantum correlations change more smaller.
Dynamics of polar-core spin vortices in a ferromagnetic spin-1 Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Williamson, Lewis A.; Blakie, P. B.
2016-12-01
A ferromagnetic spin-1 condensate supports polar-core spin vortices (PCVs) in the easy plane phase. We derive a model for the dynamics of these PCVs using a variational Lagrangian approach. The PCVs behave as massive charged particles interacting under the two-dimensional Coulomb interaction, with the mass arising from interaction effects within the vortex core. We compare this model to numerical simulations of the spin-1 Gross-Pitaevskii equations and find semiquantitative agreement. In addition, the numerical results suggest that the PCV core couples to spin waves, and this affects the PCV dynamics even far from the core. We identify areas of further research that could extend the model of PCV dynamics presented here.
Electron spin dynamics in cubic GaN
NASA Astrophysics Data System (ADS)
Buß, J. H.; Schupp, T.; As, D. J.; Brandt, O.; Hägele, D.; Rudolph, J.
2016-12-01
The electron spin dynamics in cubic GaN is comprehensively investigated by time-resolved magneto-optical Kerr-rotation spectroscopy over a wide range of temperatures, magnetic fields, and doping densities. The spin dynamics is found to be governed by the interplay of spin relaxation of localized electrons and Dyakonov-Perel relaxation of delocalized electrons. Localized electrons significantly contribute to spin relaxation up to room temperature at moderate doping levels, while Dyakonov-Perel relaxation dominates for high temperatures or degenerate doping levels. Quantitative agreement to Dyakonov-Perel theory requires a larger value of the spin-splitting constant than theoretically predicted. Possible reasons for this discrepancy are discussed, including the role of charged dislocations.
Gilbert damping of ferromagnetic metals incorporating inhomogeneous spin dynamics
Umetsu, Nobuyuki Miura, Daisuke; Sakuma, Akimasa
2015-05-07
The effects of inhomogeneous spin dynamics on magnetic damping in ferromagnetic metals are studied. On the basis of linear response theory, we derive the microscopic expression for the Gilbert damping term in a two-dimensional electron gas interacting with the magnetization via exchange coupling in the presence of Rashba spin-orbit coupling (SOC). In the spin wave propagating with the wave vector, q, the behavior of q-dependent damping can be explained in terms of both inter- and intra-band spin excitations. The spatially dependent damping torques originating from Rashba SOC that cancel out in a uniform precession system distort the circular orbit of a magnetization-precession trajectory in the presence of inhomogeneous spin dynamics.
Gester, Rodrigo M; Georg, Herbert C; Canuto, Sylvio; Caputo, M Cristina; Provasi, Patricio F
2009-12-31
The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the (1)J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, sigma((15)N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.
NASA Astrophysics Data System (ADS)
Gester, Rodrigo M.; Georg, Herbert C.; Canuto, Sylvio; Caputo, M. Cristina; Provasi, Patricio F.
2009-09-01
The NMR spin coupling parameters, 1J(N,H) and 2J(H,H), and the chemical shielding, σ(15N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the 1J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the 2J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for 1J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, σ(15N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Δσ(15N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.
NMR with generalized dynamics of spin and spatial coordinates
Lee, Chang Jae
1987-11-01
This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences.
Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics
Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...
2017-02-03
Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been established to explain experiment results with good agreement.more » In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
NASA Astrophysics Data System (ADS)
Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hejny, V.; Hempelmann, N.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Pesce, A.; Prasuhn, D.; Pretz, J.; Rosenthal, M.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Soltner, H.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Engblom, P. Thörngren; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Zurek, M.; JEDI Collaboration
2017-07-01
Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called spin tune mapping, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 using polarized deuterons stored in the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8 μ rad .
Spin supercurrent, magnetization dynamics, and φ-state in spin-textured Josephson junctions
NASA Astrophysics Data System (ADS)
Kulagina, Iryna; Linder, Jacob
2014-08-01
The prospect of combining the dissipationless nature of superconducting currents with the spin polarization of magnetic materials is interesting with respect to exploring superconducting analogs of topics in spintronics. In order to accomplish this aim, it is pivotal to understand not only how such spin supercurrents can be created, but also how they interact dynamically with magnetization textures. In this paper, we investigate the appearance of a spin supercurrent and the resulting magnetization dynamics in a textured magnetic Josephson current by using three experimentally relevant models: (i) a superconductor∣ferromagnet∣superconductor (S∣F∣S) junction with spin-active interfaces, (ii) a S∣F1∣F2∣F3∣S Josephson junction with a ferromagnetic trilayer, and (iii) a Josephson junction containing a domain wall. In all of these cases, the supercurrent is spin polarized and exerts a spin-transfer torque on the ferromagnetic interlayers which causes magnetization dynamics. Using a scattering matrix formalism in the clean limit, we compute the Andreev bound states and resulting free energy of the system which in turn is used to solve the Landau-Lifshiftz-Gilbert equation. We compute both how the inhomogeneous magnetism influences the phase dependence of the charge supercurrent and the magnetization dynamics caused by the spin polarization of the supercurrent. Using a realistic experimental parameter set, we find that the spin supercurrent can induce magnetization switching that is controlled by the superconducting phase difference. Moreover, we demonstrate that the combined effect of chiral spin symmetry breaking of the system as a whole with interface scattering causes the systems above to act as phase batteries that may supply any superconducting phase difference φ in the ground state. Such a φ-junction is accompanied by an anomalous supercurrent appearing even at zero phase difference, and we demonstrate that the flow direction of this current is
Dynamical scaling in ferric oxide spin glasses
NASA Astrophysics Data System (ADS)
Irwin, G. M.
1995-06-01
A stochastic relaxation model for the Mössbauer spectra of ferric oxide spin glasses was used to analyze the spectra for the mixed spinel Mg1+tFe2-2tTitO4 with composition t=0.70. The results compare favorably with previously published results on the system BaSnxTi2-xFe4O11 with compositions x=0.40 and x=0.80, and suggest empirical scaling laws for the spin-order parameter defined as q=
Aging dynamics of quantum spin glasses of rotors
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu
2001-12-01
We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.
Spin dynamics of counterrotating Kitaev spirals via duality
NASA Astrophysics Data System (ADS)
Kimchi, Itamar; Coldea, Radu
2016-11-01
Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows an incommensurate order where spirals on neighboring sublattices are counterrotating, giving each moment a different local environment. Theoretically describing its spin dynamics has remained a challenge: The Kitaev interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin of counterrotation.
Dynamics of polarization buildup by spin filtering
NASA Astrophysics Data System (ADS)
Buttimore, N. H.; O'Brien, D. S.
2008-01-01
There has been much recent research into polarizing an antiproton beam, instigated by the recent proposal from the PAX (Polarized Antiproton eXperiment) project at GSI Darmstadt. It plans to polarize an antiproton beam by repeated interaction with a polarized internal target in a storage ring. The method of polarization by spin filtering requires many of the beam particles to remain within the ring after scattering off the polarized internal target via electromagnetic and hadronic interactions. We present and solve sets of differential equations which describe the buildup of polarization by spin filtering in many different scenarios of interest to projects planning to produce high-intensity polarized beams. These scenarios are: 1) spin filtering of a fully stored beam; 2) spin filtering while the beam is being accumulated, i.e. unpolarized particles are continuously being fed into the beam; 3) the particle input rate is equal to the rate at which particles are being lost due to scattering beyond the ring acceptance angle, the beam intensity remaining constant; 4) increasing the initial polarization of a stored beam by spin filtering; 5) the input of particles into the beam is stopped after a certain amount of time, but spin filtering continues. The rate of depolarization of a stored polarized beam on passing through an electron cooler is also shown to be negligible.
The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Wollan, D. S.
1974-01-01
A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.
Non-Markovian Dynamics of Spin Squeezing Under Detuning Modulation
NASA Astrophysics Data System (ADS)
Xiao, Xing; Wu, Jia-Ju; Zhong, Wo-Jun; Li, Yan-Ling
The dynamics of spin squeezing of an ensemble of N separate spin-1/2 particles, each coupled to a zero-temperature non-Markovian reservoir have been investigated. We show that the initial spin squeezing could be prolonged for a long time by utilizing detuning modification. We further explore that the spin squeezing sudden death (SSSD) could be circumvented with the increasing of detuning. By comparison with the results in Markovian regime with detuning and those in non-Markovian regime without detuning, we conclude that the disappearance of SSSD and the robust preservation of spin squeezing should be attributed to the combination of detuning and non-Markovian effect. The present results may be of direct importance for quantum metrology in open systems.
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-07
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
NASA Astrophysics Data System (ADS)
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-01
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.
2011-07-15
We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.
Quantum nonunital dynamics of spin-bath-assisted Fisher information
Hao, Xiang Wu, Yinzhong
2016-04-15
The nonunital non-Markovian dynamics of qubits immersed in a spin bath is studied without any Markovian approximation. The environmental effects on the precisions of quantum parameter estimation are taken into account. The time-dependent transfer matrix and inhomogeneity vector are obtained for the description of the open dynamical process. The dynamical behaviour of one qubit coupled to a spin bath is geometrically described by the Bloch vector. It is found out that the nonunital non-Markovian effects can engender the improvement of the precision of quantum parameter estimation. This result contributes to the environment-assisted quantum information theory.
Nematic ordering dynamics of an antiferromagnetic spin-1 condensate
NASA Astrophysics Data System (ADS)
Symes, L. M.; Blakie, P. B.
2017-07-01
We consider the formation of order in a quasi-two-dimensional antiferromagnetic spin-1 condensate quenched from an easy-axis to an easy-plane nematic phase. We define the relevant order parameter to quantify the spin-nematic degrees of freedom and study the evolution of the spin-nematic and superfluid order during the coarsening dynamics using numerical simulations. We observe dynamical scaling in the late-time dynamics, with both types of order extending across the system with a diffusive growth law. We identify half-quantum vortices as the relevant topological defects of the ordering dynamics and demonstrate that the growth of both types of order is determined by the mutual annihilation of these vortices.
Generating quantum states through spin chain dynamics
NASA Astrophysics Data System (ADS)
Kay, Alastair
2017-04-01
The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.
Dynamics of the optical spin Hall effect
NASA Astrophysics Data System (ADS)
Schmidt, Daniel; Berger, Bernd; Bayer, Manfred; Schneider, Christian; Kamp, Martin; Höfling, Sven; Sedov, Evgeny; Kavokin, Alexey; Aßmann, Marc
2017-08-01
We study the time evolution of the optical spin Hall effect, which occurs when exciton polaritons undergo resonant Rayleigh scattering. The resulting spin pattern in momentum space is quantified by calculating the degree of circular polarization of the momentum space image for each point in time. We find the degree of circular polarization performing oscillations, which can be described within the framework of the pseudospin model by Kavokin et al. [A. Kavokin, G. Malpuech, and M. Glazov, Phys. Rev. Lett. 95, 136601 (2005), 10.1103/PhysRevLett.95.136601].
Spin Dynamics in an Ordered Stripe Phase
NASA Astrophysics Data System (ADS)
Tranquada, J. M.; Wochner, P.; Buttrey, D. J.
1997-09-01
Inelastic neutron scattering has been used to measure the low-energy spin excitations in the ordered charge-stripe phase of La2NiO4+δ with δ = 0.133. Spin-wave-like excitations disperse away from the incommensurate magnetic superlattice points with a velocity ~60% of that in the δ = 0 compound. Incommensurate inelastic peaks remain well resolved up to at least twice the magnetic ordering temperature. Paramagnetic scattering from a δ = 0.105 sample, which has a Néel-ordered ground state, shows anomalies suggestive of incipient stripe correlations. Similarities between these results and measurements on superconducting cuprates are discussed.
Effect of magnetic fields on spin glass dynamics
NASA Astrophysics Data System (ADS)
Zhai, Qiang; Harrison, David C.; Orbach, Raymond L.
2017-08-01
The effects of a magnetic field on spin glass dynamics are explored for a Cu0.887Mn0.113 thin film of thickness L =20 nm in a multilayer configuration. An experimental protocol removes uncertainties associated with the time dependence of the field-cooled magnetization MFC(t ,T ) . Activated dynamics is exhibited after the spin glass correlation length ξ (t ,T ) has reached L , creating a quasiequilibrium state. The activation energy depends upon the strength of the magnetic field H . The magnitude of the activation energy diminishes as H2, the coefficient of which is proportional to the number of correlated spins. A quantitative fit requires a "pancakelike" correlated region, associated with the T =0 phase transition for a spin glass in D =2 dimensions.
Number Fluctuation Dynamics of Atomic Spin Mixing inside a Condensate
Chang, Lee; Zhai, Q.; Lu Rong; You, L.
2007-08-24
We investigate the quantum dynamics of number fluctuations inside an atomic condensate during coherent spin mixing among internal states of the ground state hyperfine manifold, by quantizing the semiclassical nonrigid pendulum model in terms of the conjugate variable pair: the relative phase and the atom number. Our result provides a theoretical basis that resolves the resolution limit, or the effective ''shot-noise'' level, for counting atoms that is needed to clearly detect quantum correlation effects in spin mixing.
Theory of quantum control of spin-photon dynamics and spin decoherence in semiconductors
NASA Astrophysics Data System (ADS)
Yao, Wang
Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propagating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information processing. Cavity quantum electrodynamics of the coupled system composed of charged QD, microcavity and waveguide provides a quantum interface for the interplay of stationary spin qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis for a wide range of essential functions of a quantum network, including transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted optical process also made possible ultrafast initialization and QND readout of the spin qubit in QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables phase gate and entanglement operation for flying single photon qubits in waveguides. The coherence of the electron spin is the wellspring of these quantum applications being investigated. At low temperature and strong magnetic field, the dominant cause of electron spin decoherence is the coupling with the interacting lattice nuclear spins. We present a quantum solution to the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of the single electron, plays an important role in single spin free-induction decay (FID). The spin echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly different. The quantum theory of
Dynamic spin label study of the barstar-barnase complex.
Timofeev, V P; Balandin, T G; Tkachev, Ya V; Novikov, V V; Lapuk, V A; Deev, S M
2007-09-01
The dynamic spin label method was used to study protein-protein interactions in the model complex of the enzyme barnase (Bn) with its inhibitor barstar. The C40A mutant of barstar (Bs) containing a single cysteine residue was modified with two different spin labels varying in length and structure of a flexible linker. Each spin label was selectively bound to the Cys82 residue, located near the Bn-Bs contact site. The formation of the stable protein complex between Bn and spin labeled Bs was accompanied by a substantial restriction of spin label mobility, indicated by remarkable changes in the registered EPR spectra. Order parameter, S, as an estimate of rapid reorientation of spin label relative to protein molecule, was sharply increasing approaching 1. However, the rotational correlation time tau for spin-labeled Bs and its complex with Bn in solution corresponded precisely to their molecular weights. These data indicate that both Bs and its complex with Bn are rigid protein entities. Spin labels attached to Bs in close proximity to an interface of interaction with Bn, regardless of its structure, undergo significant restriction of mobility by the environment of the contact site of the two proteins. The results show that this approach can be used to investigate fusion proteins containing Bn or Bs.
Optically induced dynamic nuclear spin polarisation in diamond
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2016-01-01
The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.
Collective Dynamics in Spin-Textured Electronic Systems
NASA Astrophysics Data System (ADS)
Wong, Clement H.
2010-06-01
In chapter I and II, we develop the hydrodynamic theory of collinear spin currents coupled to magnetization dynamics in metallic ferromagnets. The collective spin density couples to the spin current through a U(1) Berry-phase gauge field determined by the local texture and dynamics of the magnetization. We determine phenomenologically the dissipative corrections to the equation of motion for the electronic current, which consist of a dissipative spin-motive force generated by magnetization dynamics and a magnetic texture-dependent resistivity tensor. The reciprocal dissipative, adiabatic spin torque on the magnetic texture follows from the Onsager principle. By applying general thermodynamic relations, we determine a lower bound on the magnetic-texture resistivity. We investigate the effects of thermal fluctuations and find that electronic dynamics contribute to a nonlocal Gilbert damping tensor in the Landau-Lifshitz-Gilbert equation for the magnetization. In chapter III, we apply our general theory to soliton dynamics in spin-textured metals. We find it necessary to modify the Landau-Lifshitz-Gilbert equation and the corresponding solitonic equations of motion to include higher-order texture effects stemming hydrodynamic backaction. As an example, we consider the gyration of a vortex in a point-contact spin valve, and discuss modifications of orbit radius, frequency, and dissipation power. In chapter IV, we generalize our hydrodynamic theory to a kinetic equation, which we derive in a semiclassical expansion of the density-matrix equation of motion up to the first order in quantum mechanical corrections for a general two-band Hamiltonian. We find, in addition to corrections to the single-particle equation of motion due to Berry curvatures, a modification to the phase-space density of states, and interband terms associated with transport through a general curved phase space. We apply our kinetic equation to the case of inhomogeneities stemming from gauge
NASA Astrophysics Data System (ADS)
Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki
2016-10-01
The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse.
Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki
2016-01-01
The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522
The Dynamic Response of Thick-Liquid Shielding in Z-IFE Reactors
Abbott, R P
2005-10-05
A major concern in the design of thick-liquid protected inertial fusion reactors of all types is the dynamic response of the shielding liquid to the pulsed explosions. Induced liquid motion can stress and damage solid chamber structures such as the firstwall. In a z-pinch based inertial fusion (Z-IFE) reactor this issue becomes particularly critical due to the relatively large proposed target yields of several GJ. In this paper we summarize an analysis of the liquid response taking into account ablation of target facing surfaces, pocket venting, and neutron isochoric heating. The impact of varying several reactor parameters is also discussed.
Dynamics of spin torque switching in all-perpendicular spin valve nanopillars
NASA Astrophysics Data System (ADS)
Liu, H.; Bedau, D.; Sun, J. Z.; Mangin, S.; Fullerton, E. E.; Katine, J. A.; Kent, A. D.
2014-05-01
We present a systematic experimental study of the spin-torque-induced magnetic switching statistics at room temperature, using all-perpendicularly magnetized spin-valves as a model system. Three physical regimes are distinguished: a short-time ballistic limit below a few nanoseconds, where spin-torque dominates the reversal dynamics from a thermal distribution of initial conditions; a long time limit, where the magnetization reversal probability is determined by spin-torque-amplified thermal activation; and a cross-over regime, where the spin-torque and thermal agitation both contribute. For a basic quantitative understanding of the physical processes involved, an analytical macrospin model is presented which contains both spin-torque dynamics and finite temperature effects. The latter was treated rigorously using a Fokker-Plank formalism, and solved numerically for specific sets of parameters relevant to the experiments to determine the switching probability behavior in the short-time and cross-over regimes. This analysis shows that thermal fluctuations during magnetization reversal greatly affect the switching probability over all the time scales studied, even in the short-time limit.
NASA Astrophysics Data System (ADS)
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.
2016-10-01
Starting from the Dirac-Kohn-Sham equation, we derive the relativistic equation of motion of spin angular momentum in a magnetic solid under an external electromagnetic field. This equation of motion can be rewritten in the form of the well-known Landau-Lifshitz-Gilbert equation for a harmonic external magnetic field and leads to a more general magnetization dynamics equation for a general time-dependent magnetic field. In both cases there is an electronic spin-relaxation term which stems from the spin-orbit interaction. We thus rigorously derive, from fundamental principles, a general expression for the anisotropic damping tensor which is shown to contain an isotropic Gilbert contribution as well as an anisotropic Ising-like and a chiral, Dzyaloshinskii-Moriya-like contribution. The expression for the spin relaxation tensor comprises furthermore both electronic interband and intraband transitions. We also show that when the externally applied electromagnetic field possesses spin angular momentum, this will lead to an optical spin torque exerted on the spin moment.
Dynamics of magnetization in ferromagnet with spin-transfer torque
NASA Astrophysics Data System (ADS)
Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming
2014-11-01
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out
The connection between statics and dynamics of spin glasses
NASA Astrophysics Data System (ADS)
Wittmann, Matthew; Young, A. P.
2016-01-01
We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the mean-field regime). The system is quenched to a temperature well below the transition temperature {{T}\\text{c}} and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length ξ (t) agrees quantitatively with the predictions of a static theory, the ‘metastate’, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent z (T ) defined by ξ (t)\\propto {{t}1/z(T)} and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.
Spin-orbital dynamics in a system of polar molecules
NASA Astrophysics Data System (ADS)
Syzranov, Sergey; Wall, Michael; Gurarie, Victor; Rey, Ana Maria
2015-05-01
We consider the dynamics of a two-dimensional system of ultracold polar molecules weakly perturbed from a stationary state. We demonstrate that dipole-dipole interactions in such a system generate chiral excitations with a non-trivial Berry phase 2 π . These excitations, which we call chirons, resemble low-energy quasiparticles in bilayer graphene and emerge regardless of the quantum statistics and for arbitrary ratios of kinetic to interaction energies. Chirons manifest themselves in the dynamics of the spin density profile, spin currents, and spin coherences, even for molecules pinned in a deep optical lattice. We derive the kinetic equation that describes chiron dynamics and calculate the distributions of physical observables for experimentally realisable initial conditions. This work was supported by NIST: JILA-NSF-PFC-1125844, NSF-PIF-1211914, NSF-PHY11-25915, ARO, ARO-DARPA-OLE, AFOSR, AFOSR-MURI; NSF: DMR-1001240, PHY-1125844, and the Alexander von Humboldt Foundation.
Propagation and jamming dynamics in Heisenberg spin ladders
NASA Astrophysics Data System (ADS)
Krimphoff, Carlo B.; Haque, Masudul; Läuchli, Andreas M.
2017-04-01
We investigate the propagation dynamics of initially localized excitations in spin-1/2 Heisenberg ladders. We consider initial states with two overturned spins, either on neighboring sites on the same leg or on the two sites of a single rung, in an otherwise polarized (ferromagnetic) background. Compared to the corresponding dynamics in a chain (single leg), we observe several additional modes of propagation. We connect these propagation modes to features of the spectrum of the ladder system, and to different effective models corresponding to different segments of the spectrum. In addition to the regular propagation modes, we observe for one mode a peculiar "jamming" dynamics where components of the excitations remain localized in an unusual manner. A comparison with the spin-1 bilinear-biquadratic chain is developed and explored, where a similar phenomenon is shown to occur.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This
Spin-dynamics simulations of the triangular antiferromagnetic XY model*
NASA Astrophysics Data System (ADS)
Nho, Kwangsik; Landau, D. P.
2003-03-01
Using Monte Carlo and spin-dynamics methods, we have studied the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. We calculated the dynamic structure factor S(q,w) for momentum q and frequency w. Below T_KT (Kosteritz-Thouless transition), both the in-plane (S^xx) and out-of-plane (S^zz) components exhibit very strong and sharp spin-wave peaks. Well above T_KT, S^xx and S^zz apparently display a central peak, and spin-wave signatures are still seen in S^zz. In addition, we also observed an almost dispersionless domain-wall peak at high w below Tc (Ising transition), where long-range order appears in the staggered chirality[1]. We found that our results demonstrate the consistency of the dynamic finite-size scaling theory for the characteristic frequency wm and S(q,w). *Supported by NSF [1] D.H. Lee, J.D. Joannopoulos, J.W. Negele, and D.P. Landau, Phys. Rev. Lett. 52, 433 (1984)
Dynamics of a spinning particle in a linear in spin Hamiltonian approximation
NASA Astrophysics Data System (ADS)
Lukes-Gerakopoulos, Georgios; Katsanikas, Matthaios; Patsis, Panos A.; Seyrich, Jonathan
2016-07-01
We investigate for order and chaos the dynamical system of a spinning test particle of mass m moving in the spacetime background of a Kerr black hole of mass M . This system is approximated in our investigation by the linear in spin Hamiltonian function [E. Barausse and A. Buonanno, Phys. Rev. D 81, 084024 (2010)]. We study the corresponding phase space by using 2D projections on a surface of section and the method of color and rotation on a 4D Poincaré section. Various topological structures coming from the nonintegrability of the linear in spin Hamiltonian are found and discussed. Moreover, an interesting result is that from the value of the dimensionless spin S /(m M )=10-4 of the particle and below, the impact of the nonintegrability of the system on the motion of the particle seems to be negligible.
Tunable nonequilibrium dynamics of field quenches in spin ice
Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L.
2014-01-01
We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. PMID:24379372
Tunable nonequilibrium dynamics of field quenches in spin ice.
Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L
2014-01-14
We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state--a "Coulomb phase"--whose excitations are point-like defects--magnetic monopoles--in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties--including even the effective dimensionality of the system--can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.
Destination state screening of active spaces in spin dynamics simulations
NASA Astrophysics Data System (ADS)
Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya
2011-06-01
We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).
Spin dynamics in layered honeycomb iridates: implications for Kitaev physics
NASA Astrophysics Data System (ADS)
Choi, Sungkyun
2014-03-01
We explore the spin dynamics in the frustrated honeycomb magnets Na2IrO3 and Li2IrO3, candidates to display novel magnetic states stabilized by the strong spin-orbit coupling at the 5d Ir ions. Theory predicts composite spin-orbital J =1/2 moments at the Ir ions coupled by strongly-anisotropic and bond-directional exchanges, the so-called Kitaev honeycomb model, which has in its phase diagram novel magnetically-ordered ordered phases and a quantum spin liquid with exotic excitations. To search for such physics the experimental technique of choice is inelastic neutron scattering to probe the spin dynamics, however this is technically very challenging due to the large absorption cross-section of neutrons by the Ir nuclei. Using an optimised setup to minimise neutron absorption we have been successful in observing strongly dispersive spin-wave excitations of the Ir moments in both compounds and results are compared with predictions for a Kitaev-Heisenberg model as well as a Heisenberg model with further neighbour couplings.
Dynamics of a j =3/2 quantum spin liquid
NASA Astrophysics Data System (ADS)
Natori, W. M. H.; Daghofer, M.; Pereira, R. G.
2017-09-01
We study a spin-orbital model for 4 d1 or 5 d1 Mott insulators in ordered double perovskites with strong spin-orbit coupling. This model is conveniently written in terms of pseudospin and pseudo-orbital operators representing multipoles of the effective j =3/2 angular momentum. Similarities between this model and the effective theories of Kitaev materials motivate the proposal of a chiral spin-orbital liquid with Majorana fermion excitations. The thermodynamic and spectroscopic properties of this quantum spin liquid are characterized using parton mean-field theory. The heat capacity, spin-lattice relaxation rate, and dynamic structure factor for inelastic neutron scattering are calculated and compared with the experimental data for the spin liquid candidate Ba2YMoO6 . Moreover, based on a symmetry analysis, we discuss the operators involved in resonant inelastic x-ray scattering (RIXS) amplitudes for double-perovskite compounds. In general, the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions.
Dynamic coupling of ferromagnets via spin Hall magnetoresistance
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2017-03-01
The synchronized magnetization dynamics in ferromagnets on a nonmagnetic heavy metal caused by the spin Hall effect is investigated theoretically. The direct and inverse spin Hall effects near the ferromagnetic/nonmagnetic interface generate longitudinal and transverse electric currents. The phenomenon is known as the spin Hall magnetoresistance effect, whose magnitude depends on the magnetization direction in the ferromagnet due to the spin transfer effect. When another ferromagnet is placed onto the same nonmagnet, these currents are again converted to the spin current by the spin Hall effect and excite the spin torque to this additional ferromagnet, resulting in the excitation of the coupled motions of the magnetizations. The in-phase or antiphase synchronization of the magnetization oscillations, depending on the value of the Gilbert damping constant and the field-like torque strength, is found in the transverse geometry by solving the Landau-Lifshitz-Gilbert equation numerically. On the other hand, in addition to these synchronizations, the synchronization having a phase difference of a quarter of a period is also found in the longitudinal geometry. The analytical theory clarifying the relation among the current, frequency, and phase difference is also developed, where it is shown that the phase differences observed in the numerical simulations correspond to that giving the fixed points of the energy supplied by the coupling torque.
Shapiro like steps reveals molecular nanomagnets’ spin dynamics
Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid
2015-09-15
We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.
LETTER TO THE EDITOR: Dynamical crossover in 'hot' spin ice
NASA Astrophysics Data System (ADS)
Ehlers, G.; Cornelius, A. L.; Orendác, M.; Kajnaková, M.; Fennell, T.; Bramwell, S. T.; Gardner, J. S.
2003-01-01
The magnetic dynamics of the spin ice material Ho2Ti2O7 in its paramagnetic ('hot') phase have been investigated by a combination of neutron spin echo and ac-susceptibility techniques. Relaxation at high temperatures (T > 15 K) is proved to occur by a thermally activated single-ion process that is distinct from the process that dominates at lower temperatures (1 K < T < 15 K). It is argued that the low-temperature process must involve quantum mechanical spin tunnelling, as quasi-classical channels of relaxation are exhausted in this temperature range. Our results resolve a mystery in the physics of spin ice: why has a 15 K ac-susceptibility peak been observed in Dy2Ti2O7 but not in Ho2Ti2O7 or Ho2Sn2O7?
Dynamics of Flexible Spinning Satellites with Radial Wire Antennas
NASA Technical Reports Server (NTRS)
Longman, R. W.; Fedor, J. V.
1973-01-01
A dynamic analysis is presented for a spin stabilized spacecraft employing four radial wire antennas with tip masses, a configuration first employed in the IMP-J spacecraft. The use of wires in place of the usual booms represents the ultimate in weight reduction at the expanse of flexibility. The satellite is modelled as a 14 degree of freedom system, and the linearized equations of motion are found. The lowest order vibrational modes and natural frequencies of the gyroscopically coupled system are then determined. Because the satellite spin rate is decreased by antenna deployment, a spin-up maneuver is needed. The response of the time varying mode equations during spin-up is found, for the planar modes, in terms of Bessel functions and a Struve function of order -1/4. Because tables of the latter are not readily available, the particular solution is expressed in various forms including an infinite series of Bessel functions and a particularly useful asymptotic expansion.
Local thermomagnonic torques in two-fluid spin dynamics
NASA Astrophysics Data System (ADS)
Flebus, Benedetta; Upadhyaya, Pramey; Duine, Rembert A.; Tserkovnyak, Yaroslav
2016-12-01
We develop a general phenomenology describing the interplay between coherent and incoherent dynamics in ferromagnetic insulators. Using the Onsager reciprocity and Neumann's principle, we derive expressions for the local thermomagnonic torques exerted by thermal magnons on the order-parameter dynamics and the reciprocal pumping processes, which are in close analogy to the spin-transfer torque and the spin pumping at metallic interfaces. Our formalism is applicable to general long-wavelength dynamics and, although here we explicitly focus on ferromagnetic insulators possessing U(1) symmetry, our approach can be easily extended to other classes of magnetic materials. As an illustrative example, we apply our theory to investigate a domain wall floating over a spin superfluid, whose dynamics are triggered thermally at the system's edge. Our results demonstrate that the local pumping of coherent spin dynamics by a thermal magnon gas offers an alternative route—with no need for conducting components and thus devoid of ohmic losses—for the control and manipulation of topological solitons.
Effects of Cd vacancies and unconventional spin dynamics in the Dirac semimetal Cd3As2
NASA Astrophysics Data System (ADS)
Koumoulis, Dimitrios; Taylor, Robert E.; McCormick, Jeffrey; Ertas, Yavuz N.; Pan, Lei; Che, Xiaoyu; Wang, Kang L.; Bouchard, Louis-S.
2017-08-01
Cd3As2 is a Dirac semimetal that is a 3D analog of graphene. We investigated the local structure and nuclear-spin dynamics in Cd3As2 via 113Cd NMR. The wideline spectrum of the static sample at 295 K is asymmetric and its features are well described by a two-site model with the shielding parameters extracted via Herzfeld-Berger analysis of the magic-angle spinning spectrum. Surprisingly, the 113Cd spin-lattice relaxation time (T1) is extremely long (T1 = 95 s at 295 K), in stark contrast to conductors and the effects of native defects upon semiconductors; but it is similar to that of 13C in graphene (T1 = 110 s). The temperature dependence of 1/T1 revealed a complex bipartite mechanism that included a T2 power-law behavior below 330 K and a thermally activated process above 330 K. In the high-temperature regime, the Arrhenius behavior is consistent with a field-dependent Cd atomic hopping relaxation process. At low temperatures, a T2 behavior consistent with a spin-1/2 Raman-like process provides evidence of a time-dependent spin-rotation magnetic field caused by angular oscillations of internuclear vectors due to lattice vibrations. The observed mechanism does not conform to the conventional two-band model of semimetals, but is instead closer to a mechanism observed in high-Z element ionic solids with large magnetorotation constant [A. J. Vega et al., Phys. Rev. B 74, 214420 (2006)].
Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2015-10-28
We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.
NASA Astrophysics Data System (ADS)
Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2015-10-01
We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.
Antiferromagnetic order and spin dynamics in iron-based superconductors
NASA Astrophysics Data System (ADS)
Dai, Pengcheng
2015-07-01
High-transition temperature (high-Tc) superconductivity in the iron pnictides or chalcogenides emerges from the suppression of the static antiferromagnetic order in their parent compounds, similar to copper oxide superconductors. This raises a fundamental question concerning the role of magnetism in the superconductivity of these materials. Neutron scattering, a powerful probe to study the magnetic order and spin dynamics, plays an essential role in determining the relationship between magnetism and superconductivity in high-Tc superconductors. The rapid development of modern neutron time-of-flight spectrometers allows a direct determination of the spin dynamical properties of iron-based superconductors throughout the entire Brillouin zone. In this paper, an overview is presented of the neutron scattering results on iron-based superconductors, focusing on the evolution of spin-excitation spectra as a function of electron and hole doping and isoelectronic substitution. Spin dynamical properties of iron-based superconductors are compared with those of copper oxide and heavy fermion superconductors and the common features of spin excitations in these three families of unconventional superconductors and their relationship with superconductivity are discussed.
Coherent spin dynamics of polaritons in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Renucci, P.; Amand, T.; Marie, X.
2003-10-01
The influence of the strong light-matter coupling in semiconductor III-V microcavities on polariton spin dynamics is studied in the spontaneous emission regime. Under resonant pulsed excitation, we observe a quenching of spin and alignment relaxation when the polariton is photon-like. These behaviours are attributed to the very small value of the long-range electron-hole exchange term of Coulomb interaction within the excitonic component of the quasi-particle and to the weakness of polariton-polariton Coulomb scattering via the inter-exciton short-range exchange interaction. We investigate then the polariton coherent spin dynamics. Coherence decay occurs in two steps: at short time delay, the polariton keeps the phase memory of the excitation pulse. We show that it is thus possible to manipulate the polariton spin and alignment within the optical dephasing time T2 using the temporal coherent control technique. In a second step (t > T2), optical coherence vanishes, but spin coherences survive and spin quantum beats experiments can be performed within the spin relaxation time under transverse magnetic field. We observe an electron-hole spin correlation within the excitonic component of the quasi-particle under resonant excitation; an increase of the absolute value of the electron effective transverse Landé g-factor with the excitonic character of polaritons is evidenced, which is the consequence of the strong coupling regime. The main experimental features are well accounted by a model taking into account only two classes of excitations in the lower polariton branch.
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½
Maryasov, Alexander G.
2012-01-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
Spin dynamics simulations for a nanoscale Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Hou, Zhuofei; Landau, D. P.; Brown, G.; Stocks, G. M.
2010-03-01
Thermoinduced magnetization(TiM) is a novel response which was predicted to occur in nanoscale antiferromagnetic materials. Extensive Monte Carlo simulations footnotetextG. Brown, A. Janotti, M. Eisenbach, and G. M. Stocks, Phys.Rev.B 72, 140405(2005) have shown that TiM is an intrinsic property of the antiferromagnetic classical Heisenberg model below the Neel temperature. To obtain a fundamental understanding of TiM, spin dynamics(SD) simulations are performed to study the spin wave behavior, which seems to be the cause of TiM. A classical Heisenberg model with an antiferromagnetic nearest-neighbor exchange interaction and uniaxial single-site anisotropy is studied. Simple-cubic lattices with free boundary conditions are used. We employed the fast spin dynamics algorithms with fourth-order Suzuki-Trotter decompositions of the exponential operator. Additional small excitation peaks due to surface effects are found in transverse S(q,w).
Terahertz electromagnons in spin-diluted cupric oxide: dynamics of twisted spin states
NASA Astrophysics Data System (ADS)
Lloyd-Hughes, James; Jones, Samuel; Wurz, Nicola; Failla, Michele; McConville, Chris; Prabhakaran, Dharmalingham
2015-03-01
Understanding the physics of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. We investigated magnons, electromagnons and spin-lattice coupling in Cu(1-x)Zn(x)O (0
Combined Molecular Dynamics-Spin Dynamics Simulation of α-Iron in an External Magnetic Field
NASA Astrophysics Data System (ADS)
Mudrick, Mark; Perera, Dilina; Landau, David P.
Using an atomistic model that treats both translational and spin degrees of freedom, combined molecular and spin dynamics simulations have been performed to study dynamic properties of α-iron. Atomic interactions are described by an empirical many-body potential while spin-spin interactions are handled with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Each of these interactions are parameterized by first-principles calculations. These simulations numerically solve equations of motion using an algorithm based on the second-order Suzuki-Trotter decomposition for the time evolution operator. Through calculation of the Fourier transform of space-displaced time-displaced correlation functions, vibrational and magnetic excitations have been studied. The application of an external magnetic field up to 10-T has now been included and has been shown to increase the characteristic frequencies of the single-spin-wave excitations. Two-spin-wave interactions have also been investigated.
Spin dynamics in a Curie-switch.
Kravets, A F; Tovstolytkin, A I; Dzhezherya, Yu I; Polishchuk, D M; Kozak, I M; Korenivski, V
2015-11-11
Ferromagnetic resonance properties of F1/f/F2/AF multilayers, where weakly ferromagnetic spacer f is sandwiched between strongly ferromagnetic layers F1 and F2, with F1 being magnetically soft and F2-magnetically hard due to exchange pinning to antiferromagnetic layer AF, are investigated. Spacer-mediated exchange coupling is shown to strongly affect the resonance fields of both F1 and F2 layers. Our theoretical calculations as well as measurements show that the key magnetic parameters of the spacer, which govern the ferromagnetic resonance in F1/f/F2/AF, are the magnetic exchange length (Λ), effective saturation magnetization at T = 0 (m0) and effective Curie temperature (T(C)(eff)). The values of these key parameters are deduced from the experimental data for multilayers with f = Ni(x)Cu(100-x), for the key ranges in the Ni-concentration (x = 54 ÷ 70 at. %) and spacer thickness (d = 3 ÷ 6 nm). The results obtained provide a deeper insight into thermally-controlled spin precession and switching in magnetic nanostructures, with potential applications in spin-based oscillators and memory devices.
Magnetization dynamics of imprinted non-collinear spin textures
Streubel, Robert Kopte, Martin; Makarov, Denys; Fischer, Peter; Schmidt, Oliver G.
2015-09-14
We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.
Spin dynamics in storage rings and linear accelerators
Irwin, J.
1994-04-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.
Spin dynamics in storage rings and linear accelerators
Irwin, J.
1994-12-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.
Edge dynamics in a quantum spin Hall state: effects from Rashba spin-orbit interaction.
Ström, Anders; Johannesson, Henrik; Japaridze, G I
2010-06-25
We analyze the dynamics of the helical edge modes of a quantum spin Hall state in the presence of a spatially nonuniform Rashba spin-orbit (SO) interaction. A randomly fluctuating Rashba SO coupling is found to open a scattering channel which causes localization of the edge modes for a weakly screened electron-electron (e-e) interaction. A periodic modulation of the SO coupling, with a wave number commensurate with the Fermi momentum, makes the edge insulating already at intermediate strengths of the e-e interaction. We discuss implications for experiments on edge state transport in a HgTe quantum well.
Dynamical spin-density waves in a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Li, Yan; Qu, Chunlei; Zhang, Yongsheng; Zhang, Chuanwei
2015-07-01
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO-coupled Bose-Einstein condensate (BEC) have been extensively studied in both theory and experiment. Here we numerically investigate the generation and propagation of a dynamical spin-density wave (SDW) in a SO-coupled BEC using a fast moving Gaussian-shaped barrier. We find that the SDW wavelength is sensitive to the barrier's velocity while varies slightly with the barrier's peak potential or width. We qualitatively explain the generation of SDW by considering a rectangular barrier in a one-dimensional system. Our results may motivate future experimental and theoretical investigations of rich dynamics in the SO-coupled BEC induced by a moving barrier.
Spin Dynamics of Electrons Confined in Silicon Heterostructures
NASA Astrophysics Data System (ADS)
Jock, Ryan Michael
The spin states of electrons confined in silicon heterostructures have shown promise as qubits for quantum information processing. Recently, a host of single and few electron silicon quantum dot device architectures have arisen as implementations for quantum computation. These devices often combine regions of low density two-dimensional (2D) electrons, localized electrons, and interfaces depleted of electrons. Electron spin resonance (ESR) is a unique tool for probing the spin dynamics of both mobile and localized electrons at silicon heterointerfaces and investigating the effects limiting the ability to control electrons and their spin states in these structures. We use a continuous wave ESR method to examine localized 2D electron band-tail states at Si/SiO 2 interfaces in large area metal-oxide-semiconductor transistors. We compare two devices, fabricated in different laboratories, which display similar low temperature (4.2 K) peak mobilities. We find that one of the devices displays a smaller band-tail density of confined states and a shallower characteristic confinement. Thus, ESR reveals a difference in device quality, which is not apparent from mobility measurements, and is a valuable tool for evaluating the interface quality in Si/SiO2 heterostructures. Additionally, we use pulsed ESR techniques to study the spin dynamics of electrons confined in Si/SiGe heterostructures. For mobile 2D electrons, the density-dependent Dyakonov-Perel mechanism dominates spin relaxation. At low 2D densities, stronger electron-electron interactions cause an increase in the electron effective mass, leading to an increase in spin susceptibility. For very low densities, natural disorder localizes electrons at the silicon heterointerface. Naturally localized electrons in these structures display short spin relaxation times (< 0.1 ms). By electrostatically confining electrons to quantum dots, the spin relaxation time may be extended. We fabricate large-area dual-gated devices which
Dynamic dependence to domain wall propagation through artificial spin ice
NASA Astrophysics Data System (ADS)
Burn, D. M.; Chadha, M.; Branford, W. R.
2017-03-01
Domain wall propagation dynamics has been studied in nanostructured artificial kagome spin-ice structures. A stripline circuit has been used to provide localized pulsed magnetic fields within the artificial spin-ice (ASI) structure. This provides control of the system through electrically assisted domain wall nucleation events. Synchronization of the pulsed fields with additional global magnetic fields and the use of a focused magneto-optical Kerr effect magnetometer allows our experiments to probe the domain wall transit through an extended ASI structure. We find that the propagation distance depends on the driving field revealing field-driven properties of domain walls below their intrinsic nucleation field.
Computer studies of multiple-quantum spin dynamics
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
On the spin-axis dynamics of a Moonless Earth
Li, Gongjie; Batygin, Konstantin
2014-07-20
The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.
Universal dynamic scaling in three-dimensional Ising spin glasses
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W.; Young, A. P.
2015-08-01
We use a nonequilibrium Monte Carlo simulation method and dynamical scaling to study the phase transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity v (temperature change versus time) in Monte Carlo simulations starting at a high temperature. This approach has the advantage that the equilibrium limit does not have to be strictly reached for a scaling analysis to yield critical exponents. For the dynamic exponent we obtain z =5.85 (9 ) for bimodal couplings distribution and z =6.00 (10 ) for the Gaussian case. Assuming universal dynamic scaling, we combine the two results and obtain z =5.93 ±0.07 for generic 3D Ising spin glasses.
A Flight Dynamic Model of Aircraft Spinning
1990-06-01
Australia, Library Australian Airlines, Library Qantas Airways Limited Hawker de Havilland Aust. Pty Ltd, Victoria, Library Hawker de Havilland Aust. Pty...3. MARTIN, C.A. ; Modelling Aircraft Dynamics. ARL-AERO-TECH- MEMO-400 July 1988 4. HULTBERG, R.S. ; Rotary Balance Data and Analysis for the
Matrix Formalism for Spin Dynamics Near a Single Depolarization Resonance
Chao, Alexander W.; /SLAC
2005-10-26
A matrix formalism is developed to describe the spin dynamics in a synchrotron near a single depolarization resonance as the particle energy (and therefore its spin precession frequency) is varied in a prescribed pattern as a function of time such as during acceleration. This formalism is first applied to the case of crossing the resonance with a constant crossing speed and a finite total step size, and then applied also to other more involved cases when the single resonance is crossed repeatedly in a prescribed manner consisting of linear ramping segments or sudden jumps. How repeated crossings produce an interference behavior is discussed using the results obtained. For a polarized beam with finite energy spread, a spin echo experiment is suggested to explore this interference effect.
Quasilocal Nonequilibrium Dynamics of ϕ-SPINNING Black Rings
NASA Astrophysics Data System (ADS)
Liu, Zhenxing; Chen, Zeqian
In this work, we study the nonequilibrium dynamics of ϕ-spinning black rings within the quasilocal formalism. We adopt the counterterm method and compute the renormalized boundary stress-energy tensor. By considering the conservation of this tensor, the condition for removing the conical singularity at spatial infinity is derived. It is subsequently shown that a ϕ-spinning black ring cannot be kept in a state of equilibrium, which is consistent with the physical interpretation that the angular momentum is on the plane orthogonal to the ring and there is no force to balance the tension and gravitational self-attraction. The results of these computations lay a foundation for studying the thermodynamics of ϕ-spinning rings in detail. Finally, we charge up the rings in Einstein-Maxwell-dilaton system and suggest feasible ways to make them balanced.
Dynamic-angle spinning and double rotation of quadrupolar nuclei
Mueller, K.T. California Univ., Berkeley, CA . Dept. of Chemistry)
1991-07-01
Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.
Anisotropies and spin dynamics in ultrathin magnetic multilayer structures
NASA Astrophysics Data System (ADS)
Kardasz, Bartlomiej
High quality magnetic films were prepared by Molecular Beam Epitaxy (MBE) using Thermal Deposition (TD) and Pulse Laser Deposition (PLD) techniques. Ferromagnetic Resonance (FMR) and Mossbauer studies have shown that the Fe films prepared by PLD exhibited a more intermixed interface lattice structure than those prepared by TD. Dramatic decrease of the in-plane interface uniaxial anisotropy for the PLD films compared to those prepared by TD has shown that the in-plane uniaxial anisotropy is caused by magnetoelasticity driven by the Fe/GaAs(001) interface lattice shear. Magnetization dynamics of the ultrathin Fe/Au,Ag/Fe films was studied using Time-Resolved Magneto-Optical Kerr Effect (TRMOKE) and FMR in the frequency range from 1 to 73 GHz. The Gilbert damping was studied in the Au/Fe/GaAs(001) structures as a function of the Fe and Au layer thickness, respectively. The observed increase in magnetic damping in the Fe film covered with thick Au capping layers was explained by spin pumping at the Fe/Au interface accompanied by spin relaxation and diffusion of the accumulated spin density in the Au layer. The spin diffusion length in Au was found to be 34 nm at room temperature. Significant increase of the Gilbert damping was observed in the Au/Fe/GaAs structures with decreasing Fe film thickness. Its origin lies in the additional damping at the Fe/GaAs interface. Direct detection of the spin current propagating across the Ag spacer in Fe/Ag,Au/Fe/GaAs(001) structures was carried out with stroboscopic TRMOKE measurements. The Fe layer grown on GaAs served as a spin pumping source and the Fe layer grown on the Au,Ag spacer was used as a probe for detection of the spin current propagating across the Au and Ag spacers. The experimental results were interpreted using selfconsistent solution of the Landau Lifshitz Gilbert (LLG) equations of motion with the spin diffusion equation for the accumulated spin density in the Au and Ag spacers. The spin diffusion length in Ag was
Spacetime dynamics of spinning particles: Exact electromagnetic analogies
NASA Astrophysics Data System (ADS)
Costa, L. Filipe O.; Natário, José; Zilhão, Miguel
2016-05-01
We compare the rigorous equations describing the motion of spinning test particles in gravitational and electromagnetic fields, and show that if the Mathisson-Pirani spin condition holds then exact gravito-electromagnetic analogies emerge. These analogies provide a familiar formalism to treat gravitational problems, as well as a means for comparing the two interactions. Fundamental differences are manifest in the symmetries and time projections of the electromagnetic and gravitational tidal tensors. The physical consequences of the symmetries of the tidal tensors are explored comparing the following analogous setups: magnetic dipoles in the field of nonspinning/spinning charges, and gyroscopes in the Schwarzschild, Kerr, and Kerr-de Sitter spacetimes. The implications of the time projections of the tidal tensors are illustrated by the work done on the particle in various frames; in particular, a reciprocity is found to exist: in a frame comoving with the particle, the electromagnetic (but not the gravitational) field does work on it, causing a variation of its proper mass; conversely, for "static observers," a stationary gravitomagnetic (but not a magnetic) field does work on the particle, and the associated potential energy is seen to embody the Hawking-Wald spin-spin interaction energy. The issue of hidden momentum, and its counterintuitive dynamical implications, is also analyzed. Finally, a number of issues regarding the electromagnetic interaction and the physical meaning of Dixon's equations are clarified.
Current-driven spin dynamics in spin-orbit coupled superconductors
NASA Astrophysics Data System (ADS)
Vignale, Giovanni
2012-02-01
The study of the interplay between spin-orbit coupling (SOC) and superconductivity in two-dimensional electron gases (2DEG) has recently gained impetus following the discovery of i) 2DEGs in InAs or GaAs semiconductor heterostructures that are proximized by ordinary s-wave superconducting leads -- a class of systems which plays a key role in the quest for Majorana fermions -- and ii) 2DEGs that form at interfaces between complex oxides such as LaAlO3 and SrTiO3, which display tunable SOC and, under appropriate conditions, superconductivity. Motivated by this body of experimental and theoretical literature, we investigate the collective spin dynamics of an archetypical 2DEG model Hamiltonian with Rashba SOC in the presence of repulsive electron-electron (e-e) interactions. In the absence of superconductivity a Rashba 2DEG exhibits spin oscillations, which, at long wavelength and for weak repulsive interactions, have a frequency 2 αkF, α being the strength of SOC and kF the usual 2D Fermi wavenumber in the absence of SOC. These oscillations, however, are damped and quickly decay due to the emission of (double) electron-hole pairs, which, in the normal phase, are present at arbitrary low energies. In the presence of superconductivity, collective spin oscillations continue to exist in a wide range of parameters, because the Cooper pairs are mixtures of singlet and triplet components. Further, these excitations are undamped because they lie inside the superconducting gap where no other excitation exists. These spin oscillations can be excited by the application of a magnetic field or a supercurrent and can be used to realize persistent spin oscillators operating in the frequency range of 10 GHz - 1 THz.[4pt] Work supported by EU FP7 Programme Grant No. 215368-SEMISPINNET, No. 234970- NANOCTM and No. 248629-SOLID, and by NSF DMR-0705460.
Dynamics of entanglement of two electron spins interacting with nuclear spin baths in quantum dots
NASA Astrophysics Data System (ADS)
Bragar, Igor; Cywiński, Łukasz
2015-04-01
We study the dynamics of entanglement of two electron spins in two quantum dots, in which each electron is interacting with its nuclear spin environment. Focusing on the case of uncoupled dots, and starting from either Bell or Werner states of two qubits, we calculate the decay of entanglement due to the hyperfine interaction with the nuclei. We mostly focus on the regime of magnetic fields in which the bath-induced electron spin flips play a role, for example, their presence leads to the appearance of entanglement sudden death at finite time for two qubits initialized in a Bell state. For these fields, the intrabath dipolar interactions and spatial inhomogeneity of hyperfine couplings are irrelevant on the time scale of coherence (and entanglement) decay, and most of the presented calculations are performed using the uniform-coupling approximation to the exact hyperfine Hamiltonian. We provide a comprehensive overview of entanglement decay in this regime, considering both free evolution of the qubits, and an echo protocol with simultaneous application of π pulses to the two spins. All the currently relevant for experiments bath states are considered: the thermal state, narrowed states (characterized by diminished uncertainty of one of the components of the Overhauser field) of two uncorrelated baths, and a correlated narrowed state with a well-defined value of the z component of the Overhauser field interdot gradient. While we mostly use concurrence to quantify the amount of entanglement in a mixed state of the two electron spins, we also show that their entanglement dynamics can be reconstructed from measurements of the currently relevant for experiments entanglement witnesses and the fidelity of quantum teleportation, performed using a partially disentangled state as a resource.
Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph
2005-01-01
The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.
Magnetization dynamics and spin diffusion in semiconductors and metals
NASA Astrophysics Data System (ADS)
Cywinski, Lukasz
2007-12-01
Spintronics is an emerging field of research focused on introducing the electron spin degree of freedom into electronics. Its aims include devising new means of magnetization manipulation in ferromagnets and creating systems in which the electrical expression of spin-related phenomena is possible. In this dissertation we present theoretical work important for both of these goals. In a process of ultrafast light-induced demagnetization the magnetization of a ferromagnet decreases on a sub-picosecond time-scale following an excitation by a strong laser pulse. We present a theory of this phenomenon which is applicable to ferromagnetic (III,Mn)V semiconductors. Using it we qualitatively explain the experimental results obtained recently in these materials. We also give a theory of ultrafast demagnetization in transition metals, in which we put previously proposed approaches on a sound conceptual basis, and analyze a new mechanism of demagnetization due to emission of spin waves by hot carriers. Recent progress in growth of metal-semiconductor interfaces has enabled efficient spin-polarized transport between metallic ferromagnets and semiconductors such as GaAs. We present a theory of diffusive spin transport in such metal-semiconductor structures. In contrast to popular one-dimensional approach, we take into account realistic two-dimensional lateral geometry of these systems. We also focus on room temperature regime. Our analysis of spin accumulation achievable in systems of sub-micron dimensions leads to a proposal of a new family of spintronic devices with multiple ferromagnetic terminals in contact with a semiconductor channel. We show that in a three-terminal "spin transistor" digital electric expression of spin accumulation is possible. We also calculate the time-dependent spin transport induced by rotation of one of the magnets in this system, and we show that electrical sensing of magnetization dynamics is realistic in metal-semiconductor structures. An
Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins
NASA Astrophysics Data System (ADS)
Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain
2015-03-01
We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).
Dynamics of a Single Spin-1/2 Coupled to x- and y-Spin Baths: Algorithm and Results
NASA Astrophysics Data System (ADS)
Novotny, M. A.; Guerra, Marta L.; De Raedt, Hans; Michielsen, Kristel; Jin, Fengping
The real-time dynamics of a single spin-1/2 particle, called the central spin, coupled to the x(y)-components of the spins of one or more baths is simulated. The bath Hamiltonians contain interactions of x(y)-components of the bath spins only but are general otherwise. An efficient algorithm is described which allows solving the time-dependent Schr'odinger equation for the central spin, even if the x(y) baths contain hundreds of spins. The algorithm requires storage for 2 × 2 matrices only, no matter how many spins are in the baths. We calculate the expectation value of the central spin, as well as its von Neumann entropy S(t), the quantum purity P(t), and the off-diagonal elements of the quantum density matrix. In the case of coupling the central spin to both x- and y- baths the relaxation of S(t) and P(t) with time is a power law, compared to an exponential if the central spin is only coupled to an x-bath. The effect of different initial states for the central spin and bath is studied. Comparison with more general spin baths is also presented.
NASA Astrophysics Data System (ADS)
Borlenghi, Simone; Mahani, M. R.; Fangohr, Hans; Franchin, M.; Delin, Anna; Fransson, Jonas
2017-09-01
We present a simple and fast method to simulate spin-torque driven magnetization dynamics in nanopillar spin-valve structures. The approach is based on the coupling between a spin transport code based on random matrix theory and a micromagnetics finite-elements software. In this way the spatial dependence of both spin transport and magnetization dynamics is properly taken into account. Our results are compared with experiments. The excitation of the spin-wave modes, including the threshold current for steady-state magnetization precession and the nonlinear frequency shift of the modes are reproduced correctly. The giant magneto resistance effect and the magnetization switching also agree with experiment. The similarities with recently described spin-caloritronics devices are also discussed.
SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.
2016-10-01
Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.
Pulse Control Assisted Dynamical Decoupling in a Central Spin Model
NASA Astrophysics Data System (ADS)
Li, Zhao-Yan; Wei, Yong-Bo; Wang, Zhao-Ming; Gu, Yong-Jian; Li, Wen-Dong; Ma, Xiao-Ping
2017-02-01
We study pulse control assisted dynamical decoupling through a central spin model in a total Hilbert space. We find that the effective decoupling can be realized by applying a sequence of external pulses. Compared with the bang-bang control which needs infinite strength and infinitesimal short pulses, we show that there is a large parameter space that allows an effective nonperturbative dynamical control. Furthermore, our numerical calculation shows that the reliability can be held for random pulses, such as random pulse time interval or random strength.
Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect.
Waldl, Maria; Oppel, Markus; González, Leticia
2016-07-14
Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers.
precession: Dynamics of spinning black-hole binaries with python
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Kesden, Michael
2016-06-01
We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.
NASA Astrophysics Data System (ADS)
Forster, F.; Mühlbacher, M.; Schuh, D.; Wegscheider, W.; Giedke, G.; Ludwig, S.
2015-12-01
The control of nuclear spins in quantum dots is essential to explore their many-body dynamics and exploit their prospects for quantum information processing. We present a unique combination of dynamic nuclear spin polarization and electric-dipole-induced spin resonance in an electrostatically defined double quantum dot (DQD) exposed to the strongly inhomogeneous field of two on-chip nanomagnets. Our experiments provide direct and unrivaled access to the nuclear spin polarization distribution and allow us to establish and characterize multiple fixed points. Further, we demonstrate polarization of the DQD environment by nuclear spin diffusion which significantly stabilizes the nuclear spins inside the DQD.
Nonlinear equations of dynamics for spinning paraboloidal antennas
NASA Technical Reports Server (NTRS)
Utku, S.; Shoemaker, W. L.; Salama, M.
1983-01-01
The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.
Dynamic response of an artificial square spin ice
Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; Sklenar, J.; Ding, J.; Jiang, W.; Zhang, S.; Pearson, J. E.; Novosad, V.; Ketterson, J. B.; Heinonen, O.; Hoffmann, A.
2016-03-02
Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets. Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.
Dynamic response of an artificial square spin ice
Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; ...
2016-03-02
Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less
Phase ordering dynamics in spin-1 ferromagnetic condensates
NASA Astrophysics Data System (ADS)
Williamson, Lewis; Blakie, Peter
2016-05-01
Spinor Bose-Einstein condensates present rich phase diagrams for exploring phase transitions between states with different symmetry properties. In this work we simulate the approach to equilibrium of a spin-1 condensate quenched from an unmagnetised phase to three different ferromagnetic phases. The three ferromagnetic phases have Z2, SO(2) and SO(3) symmetries respectively and possess different conservation laws. Following the quench, domains of magnetization form, with each domain making an independent choice of the symmetry breaking order parameter. These domains grow and compete for the global equilibrium state. We find that this growth follows universal scaling laws and identify the dynamic universality class for each of the three quenches. Polar-core spin-vortices play a crucial role in the phase ordering of the SO(2) system and we identify fractal structures in the domain patterns of the SO(2) and SO(3) systems. We acknowledge support from the Marsden Fund of New Zealand.
Magnetic charge and moment dynamics in artificial kagome spin ice
NASA Astrophysics Data System (ADS)
Farhan, A.; Derlet, P. M.; Anghinolfi, L.; Kleibert, A.; Heyderman, L. J.
2017-08-01
Spin ice materials represent an intriguing class of frustrated magnetic systems which, through their geometry, admit an exponential number of approximately degenerate configurations. In this paper, the relaxation properties of a thermally active artificial kagome spin ice system are studied. Through application of an external magnetic field, an out-of-equilibrium vertex charge ordered configuration is selected and relaxed under approximate zero-field conditions. Using x-ray photo-emission electron microscopy, the magnetic moment and vertex charge degrees of freedom are followed in space and time, revealing different dynamics to that seen in past athermal equilibration protocols, and a relaxation which is well described by a point-dipolar model system. Furthermore the charge correlations are found to relax with a time scale several times smaller than that of the moment correlations.
NASA Astrophysics Data System (ADS)
Dréau, A.; Jamonneau, P.; Gazzano, O.; Kosen, S.; Roch, J.-F.; Maze, J. R.; Jacques, V.
2014-09-01
Using fast electron spin resonance spectroscopy of a single nitrogen-vacancy defect in diamond, we demonstrate real-time readout of the Overhauser field produced by its nuclear spin environment under ambient conditions. These measurements enable narrowing the Overhauser field distribution by postselection, corresponding to a conditional preparation of the nuclear spin bath. Correlations of the Overhauser field fluctuations are quantitatively inferred by analyzing the Allan deviation over consecutive measurements. This method allows us to extract the dynamics of weakly coupled nuclear spins of the reservoir.
Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance.
Siaw, Ting Ann; Fehr, Matthias; Lund, Alicia; Latimer, Allegra; Walker, Shamon A; Edwards, Devin T; Han, Song-I
2014-09-21
For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (μw) power. At the maximum μw power, oversaturation reduces the electron spin population differential that must be upheld between
Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling
Yang, Luyi; Orenstein, J.; Lee, Dung-Hai
2010-09-27
We introduce and solve a semiclassical random walk (RW) model that describes the dynamics of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions, as well as the effects of an electric field applied parallel to the spin polarization wave vector. In agreement with calculations based on quantum kinetic theory [P. Kleinert and V. V. Bryksin, Phys. Rev. B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the presence of the field that crosses zero at a nonzero wave vector, q{sub 0}. In addition, we show that the spin-wave decay rate is independent of field at q{sub 0} but increases as (q-q{sub 0}){sup 2} for q {ne} q{sub 0}. These predictions can be tested experimentally by suitable transient spin grating experiments.
Autonomous and driven dynamics of spin torque nano-oscillators
NASA Astrophysics Data System (ADS)
Urazhdin, Sergei
2012-02-01
Understanding the dynamical properties of autonomous spin torque nano-oscillators (STNO) and their response to external perturbations is important for their applications as nanoscale microwave sources. We used spectroscopic measurements to study the dynamical characteristics of nanopillar- and point contact-based STNOs incorporating a microstrip in close proximity to the active magnetic layer. By applying microwave current at frequency fext to the microstrip, we were able to generate large microwave fields of more than 30 Oe rms at the location of STNO. We demonstrate that for a wide range of fext, STNO exhibits multiple synchronization regimes with integer and non-integer rational ratios between fext and the oscillation frequency f. We show that the synchronization ranges are determined by the symmetry of the oscillation orbit and the orientation of the driving field relative to the symmetry axis of the orbit. We observe synchronization hysteresis, i.e. a dependence of the synchronization limits on the dynamical history caused by the nonlinearity of STNO. We also show that the oscillation can be parametrically excited in the subcritical regime of STNO by a microwave field at twice the frequency of the oscillation. By measuring the threshold and the frequency range of parametric excitation, we determine damping, spin-polarization efficiency, and coupling to the microwave signal. In addition, by measuring the frequency range of parametric synchronization in the auto-oscillation regime, we determine the dynamic nonlinearity of the nanomagnet. Thus, analysis of the driven oscillations provides complete information about the dynamical characteristics of STNO. Finally, we discuss several unusual dynamical behaviors of STNO caused by their strong nonlinearity.
The effect of iron spin transition on convective dynamics, slab dynamics and the geoid
NASA Astrophysics Data System (ADS)
Jacobs, Michael; van den Berg, Arie; Spakman, Wim; Cadek, Ondrej; Cizkova, Hana; Matyska, Ctirad
2013-04-01
Iron bearing minerals in the Earths lower mantle show a transition from high-spin to low-spin in the iron constituent. This has been observed in particular for ferropericlase both experimentally (Fei et al, 2007, Lin et al. 2005) and in first principles calculations (Wu et al, 2009). The situation is less unambiguous for perovskite. Umemoto et al (2010) showed that the effect on volume is small compared to experimental uncertainty. Therefore we only considered the spin effects in ferropericlase in our models. The spin transition is characterized by a high valued positive Clapeyron slope ? = 19MPa-K while the smoothness of the transition increases with temperature. Fei et al. (2007) showed that at room temperature the spin transition pressure for iron richer composition occurs at higher values, e.g 40 GPa at 20 mol% FeO, 60 GPa at 40 mol% FeO. In order to get a full thermodynamic description of mantle material that includes the effects of spin transitions in ferropericlase we developed a model based on the multi-Einstein vibrational model approach of Jacobs et al. (2013). This model represents volume-pressure data of Lin et al. (2005), spin fraction data predicted by Wu et al. (2009) and it also includes the observed composition dependence of the spin transition pressure. Our new model further includes the thermodynamic description of Jacobs and de Jong (2007) that has been extended to describe thermodynamic properties of iron bearing (Mg,Fe)SiO3 perovskite. Because the spin transition pressure is composition dependent, the spin transition results in the formation of miscibility gap regions separating compositions enriched in high spin and compositions enriched in low-spin state. The spin transition affects thermodynamic properties, density, thermal expansivity, bulk modulus and heat capacity which in turn impact the convection dynamics of the Earth mantle. For instance, due to the high positive Clapeyron-slope of the transition convective mixing becomes more
Spin dynamics of the giant polyoxometalate molecule {Mn₄₀W₂₂₄} studied by NMR.
Furukawa, Y; Fang, X; Kögerler, P
2014-05-14
(7)Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn(3+) (S = 2) spins in the giant polyoxometalate molecule {Mn₄₀W₂₂₄}. The (7)Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn(3+) spins. The temperature dependence of T₁ for both (1)H and (7)Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T₂ around 3 K, where the fluctuation frequency of spins is of the order of ∼200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn(3+) spins is derived from the nuclear relaxation data.
R.C. Quittmeyer
2005-11-16
The purpose of the drip shield (DS) is to divert water that may seep into emplacement drifts from contacting the waste packages, and to protect the waste packages from impact or static loading from rockfall. The objective of this document is to summarize, into one location, the results of a series of supporting engineering calculations that were developed to study the effect of static and dynamic loads on the mechanical performance of the DS. The potential DS loads are a result of: (1) Potential earthquake vibratory ground motion, and resulting interaction of the DS, waste package and pallet, and drift invert; (2) Dynamic impacts of rockfall resulting from emplacement drift damage as a result of earthquake vibratory motion; and (3) Static load of the caved rock rubble that may come to rest on the DS as a result of vibratory motion or from time-dependent yielding of the rock mass surrounding the emplacement drift. The potential mechanical failure mechanisms that may result from these loads include: (1) Overturning and/or separation of the interlocking DS segments; (2) Loss of structural integrity and stability of the DS, including excessive deformation or buckling; and (3) Localized damage to the top and side-wall plates of the DS. The scope of this document is limited to summarizing results presented in the supporting calculations in the areas of analysis of the potential for DS collapse, and determination of the damaged surface area of the DS plates. New calculations are presented to determine whether or not separation of DSs occur under vibratory motion.
Dynamic nuclear polarization studies on deuterated nitroxyl spin probes.
David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A
2017-10-01
Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl,3-methoxycarbonyl-2,2,5,5-tetramethy pyrolidine-1-oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser-enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm. The proton spin-lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3-5 mm. The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g-factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Local factorisation of the dynamics of quantum spin systems
NASA Astrophysics Data System (ADS)
Bachmann, Sven; Bluhm, Andreas
2017-07-01
Motivated by the study of area laws for the entanglement entropy of gapped ground states of quantum spin systems and their stability, we prove that the unitary cocycle generated by a local time-dependent Hamiltonian can be approximated, for any finite set X, by a tensor product of the corresponding unitaries in X and its complement, multiplied by a dynamics strictly supported in the neighbourhood of the surface ∂ X . The error decays almost exponentially in the size of the neighbourhood and grows with the square of the area |∂ X |2.
Spin-down dynamics of magnetized solar-type stars
Oglethorpe, R. L. F.; Garaud, P.
2013-12-01
It has long been known that solar-type stars undergo significant spin-down, via magnetic braking, during their main-sequence lifetimes. However, magnetic braking only operates on the surface layers; it is not yet completely understood how angular momentum is transported within the star and how rapidly the spin-down information is communicated to the deep interior. In this work, we use insight from recent progress in understanding internal solar dynamics to model the interior of other solar-type stars. We assume, following Gough and McIntyre, that the bulk of the radiation zone of these stars is held in uniform rotation by the presence of an embedded large-scale primordial field, confined below a stably stratified, magnetic-free tachocline by large-scale meridional flows downwelling from the convection zone. We derive simple equations to describe the response of this model interior to spin-down of the surface layers, which are identical to the two-zone model of MacGregor and Brenner, with a coupling timescale proportional to the local Eddington-Sweet timescale across the tachocline. This timescale depends both on the rotation rate of the star and on the thickness of the tachocline, and it can vary from a few hundred thousand years to a few Gyr, depending on stellar properties. Qualitative predictions of the model appear to be consistent with observations, although they depend sensitively on the assumed functional dependence of the tachocline thickness on the stellar rotation rate.
Spin-down Dynamics of Magnetized Solar-type Stars
NASA Astrophysics Data System (ADS)
Oglethorpe, R. L. F.; Garaud, P.
2013-12-01
It has long been known that solar-type stars undergo significant spin-down, via magnetic braking, during their main-sequence lifetimes. However, magnetic braking only operates on the surface layers; it is not yet completely understood how angular momentum is transported within the star and how rapidly the spin-down information is communicated to the deep interior. In this work, we use insight from recent progress in understanding internal solar dynamics to model the interior of other solar-type stars. We assume, following Gough & McIntyre, that the bulk of the radiation zone of these stars is held in uniform rotation by the presence of an embedded large-scale primordial field, confined below a stably stratified, magnetic-free tachocline by large-scale meridional flows downwelling from the convection zone. We derive simple equations to describe the response of this model interior to spin-down of the surface layers, which are identical to the two-zone model of MacGregor & Brenner, with a coupling timescale proportional to the local Eddington-Sweet timescale across the tachocline. This timescale depends both on the rotation rate of the star and on the thickness of the tachocline, and it can vary from a few hundred thousand years to a few Gyr, depending on stellar properties. Qualitative predictions of the model appear to be consistent with observations, although they depend sensitively on the assumed functional dependence of the tachocline thickness on the stellar rotation rate.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Relativistic theory of magnetic inertia in ultrafast spin dynamics
NASA Astrophysics Data System (ADS)
Mondal, Ritwik; Berritta, Marco; Nandy, Ashis K.; Oppeneer, Peter M.
2017-07-01
The influence of possible magnetic inertia effects has recently drawn attention in ultrafast magnetization dynamics and switching. Here we derive rigorously a description of inertia in the Landau-Lifshitz-Gilbert equation on the basis of the Dirac-Kohn-Sham framework. Using the Foldy-Wouthuysen transformation up to the order of 1 /c4 gives the intrinsic inertia of a pure system through the second order time derivative of magnetization in the dynamical equation of motion. Thus, the inertial damping I is a higher order spin-orbit coupling effect, ˜1 /c4 , as compared to the Gilbert damping Γ that is of order 1 /c2 . Inertia is therefore expected to play a role only on ultrashort timescales (subpicoseconds). We also show that the Gilbert damping and inertial damping are related to one another through the imaginary and real parts of the magnetic susceptibility tensor, respectively.
Neutron spin echo studies on the segmental dynamics of macromolecules
NASA Astrophysics Data System (ADS)
Ewen, Bernd; Richter, Dieter
The ultrahigh resolution neutron spin echo (NSE) technique provides the unique opportunity to investigate internal dynamic relaxation processes of polymer molecules simultaneously in spcae and time. In particular, information of the single chain behaviour is not restricted to dilute solutions but may also be obtained, if an appropriate mixture of protonated and deuterated polymers is used, from concentrated systems, the melt included. This paper gives a review on recent NSE studies on liquid polydimethylsiloxane (PDMS) systems. Single chain relaxation as well as collective fluctuations are considered in the whole range of concentrations. Thereby especially the cross over phenomena between different dynamic regimes are emphasized. The results are discussed in terms of microscopic models and compared with the theoretical predictions concerning universal and critical behaviour.
Muonium chemistry and spin dynamics in sulphur, modelling interstitial hydrogen.
Cox, S F J; Lord, J S; McKenzie, I; Adjizian, J-J; Heggie, M I; Jayasooriya, U A; Grinter, R; Reid, I D
2011-08-10
The nature of the elusive muonium centre in sulphur is re-examined in the light of new data on its level-crossing resonance and spin-lattice relaxation. The aim is to provide a model for the solid-state chemistry of interstitial hydrogen in this element, which is as yet unknown, as well as to solve one of the longest standing puzzles in μSR spectroscopy, namely the surprisingly strong depolarization of muons mimicking ion-implanted protons in this innocuous non-magnetic material. The paramagnetic muonium (and by inference hydrogen) centre is confirmed to have the character of a molecular radical, but with huge anisotropy at cryogenic temperatures and a striking shift of the resonance at ordinary temperatures, the hyperfine parameters appearing to collapse and vanish towards the melting point. New density-functional supercell calculations identify a number of possible structures for the defect centre, including a novel form of bond-centred muonium in a closed-ring S(8)Mu complex. Simulations of the spin dynamics and fits to the spectra suggest a dynamical equilibrium or chemical exchange between several configurations, with occupancy of the bond-centre site falling from unity at low cryogenic temperatures to zero near the melting point.
NASA Astrophysics Data System (ADS)
Storch, Natalia I.; Lai, Dong; Anderson, Kassandra R.
2017-03-01
Many exoplanetary systems containing hot Jupiters (HJs) exhibit significant misalignment between the spin axes of the host stars and the orbital angular momentum axes of the planets ('spin-orbit misalignment'). High-eccentricity migration involving Lidov-Kozai oscillations of the planet's orbit induced by a distant perturber is a possible channel for producing such misaligned HJ systems. Previous works have shown that the dynamical evolution of the stellar spin axis during the high-e migration plays a dominant role in generating the observed spin-orbit misalignment. Numerical studies have also revealed various patterns of the evolution of the stellar spin axis leading to the final misalignment. Here, we develop an analytic theory to elucidate the evolution of spin-orbit misalignment during the Lidov-Kozai migration of planets in stellar binaries. Secular spin-orbit resonances play a key role in the misalignment evolution. We include the effects of short-range forces and tidal dissipation, and categorize the different possible paths to spin-orbit misalignment as a function of various physical parameters (e.g. planet mass and stellar rotation period). We identify five distinct spin-orbit evolution paths and outcomes, only two of which are capable of producing retrograde orbits. We show that these paths to misalignment and the outcomes depend only on two dimensionless parameters, which compare the stellar spin precession frequency with the rate of change of the planet's orbital axis, and the Lidov-Kozai oscillation frequency. Our analysis reveals a number of novel phenomena for the stellar spin evolution, ranging from bifurcation, adiabatic advection, to fully chaotic evolution of spin-orbit angles.
Non-diffusive spin dynamics in a two-dimensional electron gas
Weber, C.P.
2010-04-28
We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.
Non-diffusive spin dynamics in a two-dimensional electrongas
Weber, Christopher P.; Orenstein, Joseph; Bernevig, B. Andrei; Zhang, Shou-Cheng; Stephens, Jason; Awschalom, David D.
2006-12-12
We describe measurements of spin dynamics in thetwo-dimensional electron gas in GaAs/GaAlAs quantum wells. Opticaltechniques, including transient spin-grating spectroscopy, are used toprobe the relaxation rates of spin polarization waves in the wavevectorrange from zero to 6E4 cm-1. We find that the spin polarization lifetimeis maximal at nonzero wavevector, in contrast with expectation based onordinary spin diffusion, but in quantitative agreement with recenttheories that treat diffusion in the presence of spin-orbitcoupling.
Dissolved Organic Nitrogen Dynamics in Forested Catchments on the Precambrian Shield
NASA Astrophysics Data System (ADS)
Kothawala, D. N.; Dillon, P. J.
2009-05-01
We present preliminary data on nitrogen (N) mass balances for eleven forested catchments on the southern Ontario Precambrian Shield. Meteorological parameters, stream flow, precipitation and stream chemistry have been monitored since 1980-81. We focus on the most recent decade (1998 to 2008) and attempt to determine whether or not there are changes to N dynamics. In particular, we test whether changes have occurred to the concentrations, fluxes and percent of N species (NO3-, NH4+ and dissolved organic nitrogen (DON)) in precipitation and stream export. We also estimate the amount of N retained within forest stands and soils and test for changes in the rate of catchment scale N leaching. We place particular emphasis on patterns observed between catchments with differing amounts of wetland cover. As DON is the primary form of N exported from these catchments, we determine the relative age of stream DON. By examining the 15 N of soil organic matter within horizons of upland and wetland soils, we establish the extent to which organic forms of N are re-cycled within the catchment prior to being exported into the streams. We characterize soil organic N and DON to determine the proportion of proteinaceous material, amino sugars, and heterocyclic N. Both age and molecular composition may help reveal the primary source of DON. Currently it is unclear what proportion of DON is the product of fresh litter decomposition or aged soil organic matter. The export of stream DON is generally closely linked to dissolved organic carbon (DOC). However there is some evidence of seasonal de-coupling. We also identify changes to DOC:DON with movement through a catchment from throughfall, to soil and stream waters.
Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface
Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del; Cherian, C. T.; Özyilmaz, B.
2015-01-19
We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures.
Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study
Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Greg
2014-01-01
Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Baranowski, M.; Misiewicz, J.
2015-10-21
We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.
Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study
Perera, Dilina Landau, David P.; Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi; Brown, Gregory
2014-05-07
Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering
NASA Astrophysics Data System (ADS)
Félix, Gautier; Mikolasek, Mirko; Peng, Haonan; Nicolazzi, William; Molnár, Gábor; Chumakov, Aleksandr I.; Salmon, Lionel; Bousseksou, Azzedine
2015-01-01
We used nuclear inelastic scattering (NIS) to investigate the lattice dynamics in [Fe(pyrazine)(Ni(CN)4)] spin crossover nanoparticles. The vibrational density of states of iron was extracted from the NIS data, which allowed to determine characteristic thermodynamical and lattice dynamical parameters as well as their spin-state dependence. The optical part of the NIS spectra compares well with the Raman scattering data reflecting the expansion/contraction of the coordination octahedron during the spin transition. From the acoustic part, we extracted the sound velocity in the low-spin (vLS=2073 ±31 m s-1) and high-spin (vHS=1942 ±23 m s-1) states of the particles. The spin-state dependence of this parameter is of primary interest to rationalize the spin-transition behavior in solids as well as its dynamics and finite size effects.
Spin-Entry Characteristics of a Large Supersonic Bomber as Determined by Dynamic Model Tests
NASA Technical Reports Server (NTRS)
Bowman, James S.
1965-01-01
An investigation has been conducted in the Langley spin tunnel and at a catapult launch facility of a 1/60-scale dynamic model to determine the spin-entry characteristics of a large supersonic bomber. Catapult tests indicated that spin-entry motions were obtainable for a center-of-gravity location of 0.21 mean aerodynamic chord but were not obtainable at a center-of-gravity location of 0.25 mean aerodynamic chord. Deflected ailerons were effective in promoting or preventing the spin- entry motion and this effect was qualitatively the same as it was for the fully developed spin. Varying the configuration had little significant effect on the spin-entry characteristics. Brief tests conducted with the model in the Langley spin tunnel indicated that fully developed spins were obtainable at the forward center-of-gravity location and that spins were highly unlikely at the rearward center-of-location.
Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*
NASA Astrophysics Data System (ADS)
Huang, Li; Wu, Xin; Mei, Li-Jie; Huang, Guo-Qing
2017-09-01
This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically.
Strain dependent electron spin dynamics in bulk cubic GaN
Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.
2015-03-07
The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.
Spin-charge coupled dynamics driven by a time-dependent magnetization
NASA Astrophysics Data System (ADS)
Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo
2017-03-01
The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.
Spin probe dynamics of n-hexadecane in confined geometry
NASA Astrophysics Data System (ADS)
Lukešová, Miroslava; Švajdlenková, Helena; Sippel, Pit; Macová, Eva; Berek, Dušan; Loidl, Alois; Bartoš, Josef
2015-02-01
A combined study of the rotational dynamics of the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the phase behavior of n-hexadecane (n-HXD) in the bulk and the confined states in a series of silica gels (SG) by means of ESR and DSC is presented. A slow to fast motion transition of the spin probe TEMPO in the bulk n-HXD occurs at T50 G,bulk ≪ Tm,bulk, i.e., well below the melting temperature due to its trapping and localized mobility in the interlamellar gap of the crystallites [J. Bartoš, H. Švajdlenková, M. Zaleski, M. Edelmann, M. Lukešová, Physica B 430, 99 (2013)]. On the other hand, the dynamics of the TEMPO in the confined systems is strongly slowing down with T50 G (Dpore) >Tm(Dpore) and slightly increases with the pore size Dpore = 60, 100 and 300 Å of the SG's. At the same time, both the corresponding melting temperature, Tm (Dpore), and melting enthalpy, ΔHm (Dpore), decrease with Dpore together with the mutual anti-correlation between T50 G and Tm as a function of the inverse of pore diameter, 1/Dpore. Moreover, the dynamic heterogeneity of the TEMPO in the confined state below T50 G (Dpore) is closely related to the phase transformation. The strong slowing down of the spin probe motion likely results from its preferential localization at the interface layer of the matrix pore due to specific interaction of TEMPO molecules with the polar silanol groups of the SG matrix. This is supported by special study on a series of the variously filled n-HXD/SG systems, other similar experimental findings as well as by theoretical spectral argument.
NASA Astrophysics Data System (ADS)
Tseng, K. F.; Keller, T.; Walters, A. C.; Birgeneau, R. J.; Keimer, B.
2016-07-01
We report a neutron spin-echo study of the critical dynamics in the S =5/2 antiferromagnets MnF2 and Rb2MnF4 with three-dimensional (3D) and two-dimensional (2D) spin systems, respectively, in zero external field. Both compounds are Heisenberg antiferromagnets with a small uniaxial anisotropy resulting from dipolar spin-spin interactions, which leads to a crossover in the critical dynamics close to the Néel temperature, TN. By taking advantage of the μ eV energy resolution of the spin-echo spectrometer, we have determined the dynamical critical exponents z for both longitudinal and transverse fluctuations. In MnF2, both the characteristic temperature for crossover from 3D Heisenberg to 3D Ising behavior and the exponents z in both regimes are consistent with predictions from the dynamical scaling theory. The amplitude ratio of longitudinal and transverse fluctuations also agrees with predictions. In Rb2MnF4 , the critical dynamics crosses over from the expected 2D Heisenberg behavior for T ≫TN to a scaling regime with exponent z =1.387 (4 ) , which has not been predicted by theory and may indicate the influence of long-range dipolar interactions.
NASA Astrophysics Data System (ADS)
Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.
2011-08-01
We studied the nonequilibrium short-time dynamics of a spin-1/2 chain with Dzyaloshinskii-Moriya interactions after a sudden quench by a transverse field. We found that inhomogeneous spin spirals with opposite chiralities propagate from the edges toward the center of the chain. This propagation is accompanied by quantum spin oscillations which decay asymptotically with time. A theoretical description of this phenomenon is given to a good accuracy with the help of numerical calculations with the adaptive time-dependent density matrix renormalization group algorithm.
Quantum-critical spin dynamics in a Tomonaga-Luttinger liquid studied with muon-spin relaxation
NASA Astrophysics Data System (ADS)
Möller, J. S.; Lancaster, T.; Blundell, S. J.; Pratt, F. L.; Baker, P. J.; Xiao, F.; Williams, R. C.; Hayes, W.; Turnbull, M. M.; Landee, C. P.
2017-01-01
We demonstrate that quantum-critical spin dynamics can be probed in high magnetic fields using muon-spin relaxation (μ+SR ). Our model system is the strong-leg spin ladder bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). In the gapless Tomonaga-Luttinger liquid phase we observe finite-temperature scaling of the μ+SR 1 /T1 relaxation rate which allows us to determine the Luttinger parameter K . We discuss the benefits and limitations of local probes compared with inelastic neutron scattering.
Spin-tunnel investigation of a 1/25-scale model of the General Dynamics F-16XL airplane
NASA Technical Reports Server (NTRS)
Whipple, R. D.; White, W. L.
1984-01-01
A spin-tunnel investigation of the spin and recovery characteristics of a 1/25-scale model to the General Dynamics F-16XL aircraft was conducted in the Langley Spin Tunnel. Tests included erect and inverted spins at various symmetric and asymmetric loading conditions. The required size of an emergency spin-recovery parachute was determined.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
NASA Astrophysics Data System (ADS)
Ibarra-Sierra, V. G.; Sandoval-Santana, J. C.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.
2017-05-01
Similar to nitrogen-vacancy centers in diamond and impurity atoms in silicon, interstitial gallium deep paramagnetic centers in GaAsN have been proven to have useful characteristics for the development of spintronic devices. Among other interesting properties, under circularly polarized light, gallium centers act as spin filters that dynamically polarize free and bound electrons reaching record spin polarizations (close to 100%). Furthermore, the recent observation of the amplification of the spin filtering effect under a Faraday configuration magnetic field has suggested that the hyperfine interaction that couples bound electrons and nuclei permits the optical manipulation of the nuclear spin polarization. Even though the mechanisms behind the nuclear spin polarization in gallium centers are fairly well understood, the origin of nuclear spin relaxation and the formation of an Overhauser-like magnetic field remain elusive. In this work we develop a model based on the master equation approach to describe the evolution of electronic and nuclear spin polarizations of gallium centers interacting with free electrons and holes. Our results are in good agreement with existing experimental observations. In particular, we are able to reproduce the amplification of the spin filtering effect under a circularly polarized excitation in a Faraday configuration magnetic field. In regard to the nuclear spin relaxation, the roles of nuclear dipolar and quadrupolar interactions are discussed. Our findings show that, besides the hyperfine interaction, the spin relaxation mechanisms are key to understand the amplification of the spin filtering effect and the appearance of the Overhauser-like magnetic field. To gain a deeper insight in the interplay of the hyperfine interaction and the relaxation mechanisms, we have also performed calculations in the pulsed excitation regime. Our model's results allow us to propose an experimental protocol based on time-resolved spectroscopy. It
Gerber, Iann C; Jolibois, Franck
2015-05-14
Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.
Solid effect in magic angle spinning dynamic nuclear polarization.
Corzilius, Björn; Smith, Albert A; Griffin, Robert G
2012-08-07
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω(0)(-2) field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ε = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of (1)H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear (1)H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.
Solid effect in magic angle spinning dynamic nuclear polarization
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-01-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\omega _0 ^{ - 2}\\end{equation*} \\end{document}ω0−2 field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements
Imaging intracellular protein dynamics by spinning disk confocal microscopy
Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten
2012-01-01
The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541
NASA Astrophysics Data System (ADS)
Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.
2014-05-01
We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.
Spin dynamics in relativistic light-matter interaction
NASA Astrophysics Data System (ADS)
Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer
2015-05-01
Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.
Spin-boson dynamics beyond conventional perturbation theories
NASA Astrophysics Data System (ADS)
Nesi, Francesco; Paladino, Elisabetta; Thorwart, Michael; Grifoni, Milena
2007-10-01
A generalized approximation scheme is proposed to describe the dynamics of the spin-boson problem. Being nonperturbative in the coupling strength nor in the tunneling frequency, it gives reliable results over a wide regime of temperatures and coupling strength to the thermal environment for a large class of bath spectral densities. We use a path-integral approach and start from the exact solution for the two-level system population difference in the form of a generalized master equation (GME). Then, we approximate interblip and blip-sojourn interactions up to linear order, while retaining all intrablip correlations to find the kernels entering the GME in analytical form. Our approximation scheme, which we call weakly interacting blip approximation, fully agrees with conventional perturbative approximations in the tunneling matrix element (noninteracting-blip approximation) or in the system-bath coupling strength in the proper parameter regime.
A key role for unusual spin dynamics in ferropnictides
NASA Astrophysics Data System (ADS)
Mazin, I. I.; Johannes, M. D.
2009-02-01
The discovery of high-Tc ferropnictides introduced a new family of superconductors, and has already revealed a complicated and often contradictory picture of the structural and magnetic properties. An almost unprecedented sensitivity of the calculated magnetism and Fermi surface to structural details prevents correspondence to experiment. Experimental probes of the order parameter are in surprisingly strong disagreement, even considering the relative immaturity of the field. We outline various and seemingly contradictory evidence, both theoretical and experimental, and show it can be rectified by assuming a large-moment spin density wave, well defined but with magnetic twin and antiphase boundaries, dynamic on the experimental timescale. Under this assumption, calculations can accurately reproduce even very fine details of the structure, and a natural explanation for the temperature separation of structural and magnetic transitions is provided. Thus, our theory restores agreement between experiment and theory in crucial areas, making further cooperative progress possible on both fronts.
Spin Precessing Black Hole Binaries in Dynamical Chern-Simons Gravity
NASA Astrophysics Data System (ADS)
Loutrel, Nicholas; Yunes, Nicolas; Tanaka, Takahiro
2017-01-01
Spinning black holes in binary systems under go spin precession, as well as precession of the orbital plane, as a result of the coupling between the black hole spins and the orbital angular momentum. This effect introduces an observable modulation in the amplitude of the gravitational waves emitted by the binary. In dynamical Chern-Simons gravity, spinning black holes are modified from General Relativity through the presence of a scalar dipole moment, which is proportional to the spin of the black hole. Such additional degrees of freedom modify the spin precession equations, and thus the observable modulation of the gravitational waves. In this talk, I will discuss how to approach the spin precession of black holes in dynamical Chern-Simons gravity from an effective field theory perspective and discuss how the modulation of gravitational waves differs from General Relativity. Supported by NSF EAPSI Fellowship Award No. 1614203 and NSF CAREER Grant PHY-1250636.
Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation
Lafuente-Sampietro, A.; Utsumi, H.; Kuroda, S.; Boukari, H.; Besombes, L.
2016-08-01
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.
Meriles, Carlos A.; Doherty, Marcus W.
2014-07-14
Key to future spintronics and spin-based information processing technologies is the generation, manipulation, and detection of spin polarization in a solid state platform. Here, we theoretically explore an alternative route to spin injection via the use of dynamically polarized nitrogen-vacancy (NV) centers in diamond. We focus on the geometry where carriers and NV centers are confined to proximate, parallel layers and use a “trap-and-release” model to calculate the spin cross-relaxation probabilities between the charge carriers and neighboring NV centers. We identify near-unity regimes of carrier polarization depending on the NV spin state, applied magnetic field, and carrier g-factor. In particular, we find that unlike holes, electron spins are distinctively robust against spin-lattice relaxation by other, unpolarized paramagnetic centers. Further, the polarization process is only weakly dependent on the carrier hopping dynamics, which makes this approach potentially applicable over a broad range of temperatures.
Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates in a Random Potential
NASA Astrophysics Data System (ADS)
Mardonov, Sh.; Modugno, M.; Sherman, E. Ya.
2015-10-01
Disorder plays a crucial role in spin dynamics in solids and condensed matter systems. We demonstrate that for a spin-orbit coupled Bose-Einstein condensate in a random potential two mechanisms of spin evolution that can be characterized as "precessional" and "anomalous" are at work simultaneously. The precessional mechanism, typical for solids, is due to the condensate displacement. The unconventional anomalous mechanism is due to the spin-dependent velocity producing the distribution of the condensate spin polarization. The condensate expansion is accompanied by a random displacement and fragmentation, where it becomes sparse, as clearly revealed in the spin dynamics. Thus, different stages of the evolution can be characterized by looking at the condensate spin.
Assessing Intracranial Vascular Compliance Using Dynamic Arterial Spin Labeling
Yan, Lirong; Liu, Collin Y.; Smith, Robert X.; Jog, Mayank; Langham, Michael; Krasileva, Kate; Chen, Yufen; Ringman, John M.; Wang, Danny J.J.
2015-01-01
Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (ΔCBV) and change in arterial pressure (ΔBP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia. PMID:26364865
Spin dynamics and entanglement growth with trapped ions, atoms & molecules
NASA Astrophysics Data System (ADS)
Schachenmayer, Johannes; Lanyon, Ben; Roos, Christian; Daley, Andrew; Zhu, Bihui; Rey, Ana Maria
2014-03-01
Trapped ions and systems of cold atoms or molecules in optical lattices offer controlled environments to experimentally study non-equilibrium dynamics of many-body quantum spin-models with interactions of varying range. Theoretically calculating dynamics of observables for these experiments is a major challenge both analytically and numerically. In 1D, the growth behavior of the entanglement entropy between different blocks of a many-body state determines whether the evolution of the system can be efficiently simulated on a classical computer or not. In return, the study of entanglement growth can guide experiments to regimes where a quantum simulator can outperform a numerical simulation. Here we present results on the entanglement growth behavior in 1D strings of ions after a quench, and show how the growth depends on the range of the interactions. Furthermore we report on progress on methods for higher dimensional systems. These can be used to model Ramsey-dynamics for current experiments with alkaline earth atoms or polar molecules in optical lattices, or for systems with Rydberg atoms.
NASA Astrophysics Data System (ADS)
Kiselev, Egor I.; Scheurer, Mathias S.; Wölfle, Peter; Schmalian, Jörg
2017-03-01
An ordered state in the spin sector that breaks parity without breaking time-reversal symmetry, i.e., that can be considered dynamically generated spin-orbit coupling, was proposed to explain puzzling observations in a range of different systems. Here, we derive severe restrictions for such a state that follow from a Ward identity related to spin conservation. It is shown that l =1 spin-Pomeranchuk instabilities are not possible in nonrelativistic systems since the response of spin-current fluctuations is entirely incoherent and nonsingular. This rules out relativistic spin-orbit coupling as an emergent low-energy phenomenon. We illustrate the exotic physical properties of the remaining higher-angular-momentum analogs of spin-orbit coupling and derive a geometric constraint for spin-orbit vectors in lattice systems.
Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.
Field, Timothy R
2014-11-01
Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.
Dynamics of two coupled semiconductor spin qubits in a noisy environment
NASA Astrophysics Data System (ADS)
Das Sarma, S.; Throckmorton, Robert E.; Wu, Yang-Le
2016-07-01
We theoretically consider the temporal dynamics of two coupled spin qubits (e.g., semiconductor quantum dots) driven by the interqubit spin-spin coupling. The presence of environmental noise (e.g., charge traps, nuclear spins, random magnetic impurities) is accounted for by including random magnetic field and random interqubit coupling terms in the Hamiltonian. Both Heisenberg coupling and Ising coupling between the spin qubits are considered, corresponding respectively to exchange and capacitive gates as appropriate for single spin and singlet-triplet semiconductor qubit systems, respectively. Both exchange (Heisenberg) and capacitive (Ising) coupling situations can be solved numerically exactly even in the presence of noise, leading to the key findings that (i) the steady-state return probability to the initial state remains close to unity in the presence of strong noise for many, but not all, starting spin configurations, and (ii) the return probability as a function of time is oscillatory with a characteristic noise-controlled decay toward the steady-state value. We also provide results for the magnetization dynamics of the coupled two-qubit system. Our predicted dynamics can be directly tested in the already existing semiconductor spin qubit setups providing insight into their coherent interaction dynamics. Retention of the initial state spin memory even in the presence of strong environmental noise has important implications for quantum computation using spin qubits.
Spin Dynamics simulations of the dynamic properties of classical models for magnetic materials
NASA Astrophysics Data System (ADS)
Bunker, Alex; Landau, D. P.
1998-03-01
The Spin Dynamics simulation technique, which has had considerable success for the study of critical properties of classical Heisenberg antiferromagnets(A. Bunker, K. Chen, and D. P. Landau Phys. Rev. B) \\underline54, 9259 (1996), has been used to determine more general properties for a wider range of materials. A general spin dynamics program has been developed which can determine the dynamic structure factor, S(q,ω), in the [100], [110], and [111] directions for a wide range of classical magnetic models at any temperature desired. We have simulated the magnetic dynamics in the ordered phase of the isotropic Heisenberg model with both ferromagnetic and antiferromagnetic coupling on L×L×L BCC and SC lattices. Outside of the critical regime relatively small lattice sizes of L = 12, 24 could be used. From our simulation we have determined the stiffness coefficient and the spin relaxation rate which were compared to both experimental(J. Als-Nielsen in Phase Transitions and Critical Phenomena), ed. C. Domb, M. S. Green, Academic Press, (1976) and theoretical results. We have performed the same simulation with anisotropy appropriate for MnF2 and FeF_2. Research supported in part by the NSF
NASA Astrophysics Data System (ADS)
Timopheev, A. A.; Pogorelov, Yu. G.; Cardoso, S.; Freitas, P. P.; Kakazei, G. N.; Sobolev, N. A.
2014-04-01
Two ferromagnetic (FM) layers magnetically decoupled by a thick, normal metal spacer layer can be dynamically coupled via spin currents emitted by the spin pump and absorbed through the spin-torque effects at the neighboring interfaces. A decrease of damping in both layers due to a partial compensation of the angular momentum leakage in each layer was previously observed at the coincidence of the two FM resonances. In the case of nonzero magnetic coupling, such a dynamic exchange will depend on the mutual precession of the magnetic moments in the layers. A difference in the linewidth of the resonance peaks is expected for the acoustic and optical regimes of precession. However, the interlayer coupling (IC) hybridizes the resonance responses of the layers and therefore can also change their linewidths. The interplay between the two mechanisms has never been considered before. In the present work, the joint influence of the hybridization and nonlocal damping on the linewidth has been studied in weakly coupled NiFe/CoFe/Cu/CoFe/MnIr spin-valve multilayers. It has been found that the dynamic exchange by spin currents is different in the optical and acoustic modes, and this difference is dependent on the IC strength. In contrast to the acoustic precession mode, the dynamic exchange in the optical mode works as an additional damping source. A simulation in the framework of the Landau-Lifshitz-Gilbert formalism for two FM layers coupled magnetically and by spin currents has been done to separate the effects of the nonlocal damping from the resonance modes hybridization. In our samples, both mechanisms bring about linewidth changes of the same order of magnitude but lead to a distinctly different angular behavior. The obtained results are relevant for a broad class of coupled magnetic multilayers with ballistic regime of the spin transport.
Spin dynamics and magneto-optical response in charge-neutral tunnel-coupled quantum dots
NASA Astrophysics Data System (ADS)
Gawełczyk, Michał; Machnikowski, Paweł
2017-04-01
We model the electron and hole spin dynamics in an undoped double quantum dot structure, considering the carrier tunneling between quantum dots. Taking the presence of an additional in-plane or tilted magnetic field into account, we enable the simulation of magneto-optical experiments, like the time-resolved Kerr rotation measurement, which are currently performed on such structures to probe the temporal spin dynamics. With our model, we reproduce the experimentally observed effect of the extension of the spin polarization lifetime caused by spatial charge separation, which may occur in structures of this type. Moreover, we provide a number of qualitative predictions concerning the necessary conditions for observation of this effect as well as about possible channels of its suppression, including the spin-orbit coupling, which leads to tunneling of carriers accompanied by a spin flip. We also consider the impact of the magnetic field tilting, which results in an interesting spin polarization dynamics.
Measurement backaction on the quantum spin-mixing dynamics of a spin-1 Bose-Einstein condensate
Zhang Keye; Zhou Lu; Zhang Weiping; Ling, Hong Y.; Pu Han
2011-06-15
We consider a small F=1 spinor condensate inside an optical cavity driven by an optical probe field, and subject the output of the probe to a homodyne detection, with the goal of investigating the effect of measurement backaction on the spin dynamics of the condensate. Using the stochastic master equation approach, we show that the effect of backaction is sensitive to not only the measurement strength but also the quantum fluctuation of the spinor condensate. The same method is also used to estimate the atom numbers below which the effect of backaction becomes so prominent that extracting spin dynamics from this cavity-based detection scheme is no longer practical.
Observation of Dynamical spin shielding in Ce: Why It Matters for Pu Electronic Structure
Tobin, J G; Yu, S W; Chung, B W; Morton, S A; Komesua, T; Waddill, G D
2007-03-08
In a series of experiments and linked theoretical modeling, the range of possible solutions for Pu electronic structure has been dramatically reduced. Nevertheless, the key issue of electron correlation remains.
NASA Astrophysics Data System (ADS)
Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe
2016-10-01
Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.
Influence of Impurity Spin Dynamics on Quantum Transport in Epitaxial Graphene.
Lara-Avila, Samuel; Kubatkin, Sergey; Kashuba, Oleksiy; Folk, Joshua A; Lüscher, Silvia; Yakimova, Rositza; Janssen, T J B M; Tzalenchuk, Alexander; Fal'ko, Vladimir
2015-09-04
Experimental evidence from both spin-valve and quantum transport measurements points towards unexpectedly fast spin relaxation in graphene. We report magnetotransport studies of epitaxial graphene on SiC in a vector magnetic field showing that spin relaxation, detected using weak-localization analysis, is suppressed by an in-plane magnetic field B(∥), and thereby proving that it is caused at least in part by spinful scatterers. A nonmonotonic dependence of the effective decoherence rate on B(∥) reveals the intricate role of the scatterers' spin dynamics in forming the interference correction to the conductivity, an effect that has gone unnoticed in earlier weak localization studies.
Spin-lattice coupling in molecular dynamics simulation of ferromagnetic iron
NASA Astrophysics Data System (ADS)
Ma, Pui Wai
A model for magnetic iron where atoms are treated as classical particles with intrinsic spins is developed. The atoms interact via scalar many-body forces as well as via spin-dependent forces of the Heisenberg form. The coupling between the lattice and spin degrees of freedom is described by a coordinate-dependent exchange function, where the spin-orientation-dependent forces are proportional to the gradient of this function. A spin-lattice dynamics simulation approach extends the existing magnetic-potential treatment to the case where the strength of interaction between the atoms depends on the relative non-collinear orientations of their spins. An algorithm for integrating the linked spin-coordinate equations of motion is based on the 2nd order Suzuki-Trotter decomposition for the non-commuting evolution operators for both coordinates and spins. The notions of the spin thermostat and the spin temperature are introduced through the combined application of the Langevin spin dynamics and the fluctuation-dissipation theorem. We investigate several applications of the method, performing microcanonical ensemble simulations of adiabatic spin-lattice relaxation of periodic arrays of 180° domain-walls, and isothermal-isobaric ensemble dynamical simulations of thermally equilibrated homogeneous systems at various temperatures. The isothermal magnetization curve evaluated using the spin-lattice dynamics algorithm is well described by the mean-field approximation and agrees satisfactorily with the experimental data for a broad range of temperatures. The equilibrium time-correlation functions of spin orientations exhibit the presence of short-range magnetic order above the Curie temperature. Short-range order spin fluctuations are shown to contribute to the thermal expansion of the material. Simulations on thermal expansion and elastic response of bulk bcc iron, and magnetization in bcc iron thin films are also performed and the results discussed. Our analysis illustrates
NASA Astrophysics Data System (ADS)
Dellerue, S.; Petrescu, A.; Smith, J. C.; Longeville, S.; Bellissent-Funel, M.-C.
2000-03-01
We have studied the collective dynamics of an hydrated soluble protein, the C-phycocyanin by using neutron spin-echo spectroscopy. Molecular dynamics simulations, performed with the same system, showed that the main dynamic contribution comes from backbone and side-chain motions. Both the experimental and spectra exhibit a dynamic relaxation with a characteristic time of about 10 ps.
Continuous Weak Measurement and Nonlinear Dynamics in a Cold Spin Ensemble
NASA Astrophysics Data System (ADS)
Smith, Greg A.; Chaudhury, Souma; Silberfarb, Andrew; Deutsch, Ivan H.; Jessen, Poul S.
2004-10-01
A weak continuous quantum measurement of an atomic spin ensemble can be implemented via Faraday rotation of an off-resonance probe beam, and may be used to create and probe nonclassical spin states and dynamics. We show that the probe light shift leads to nonlinearity in the spin dynamics and limits the useful Faraday measurement window. Removing the nonlinearity allows a nonperturbing measurement on the much longer time scale set by decoherence. The nonlinear spin Hamiltonian is of interest for studies of quantum chaos and real-time quantum state estimation.
Self-consistent magnetization dynamics of a ferromagnetic quantum dot driven by a spin bias
NASA Astrophysics Data System (ADS)
Siu, Z. B.; Jalil, M. B. A.; Tan, S. G.
2012-04-01
We present an iterative scheme which combines the non-equilibrium Green's function (NEGF) for evaluating the quantum spin transport in a ferromagnetic quantum dot device and the Landau-Lifshitz (LL) equation for modeling the magnetization dynamics of the dot. For a given initial magnetization, the spin polarization of current and the resulting spin torque in the dot are calculated using the NEGF formalism. The torque acts on the magnetic moment of the dot, and the resultant magnetization dynamics is obtained from the LL equation. The new value of the dot's magnetization is then used as an input for the next round of NEGF calculation, and the whole process is repeated iteratively. The spin torque is thus calculated self-consistently with the dynamics of the magnetic moment of the dot. We apply this self-consistent iterative scheme to study the magnetization dynamics in an exemplary quantum dot system with an induced spin bias in the leads under varying damping conditions.
Exact results for spin dynamics and fractionalization in the Kitaev Model.
Baskaran, G; Mandal, Saptarshi; Shankar, R
2007-06-15
We present certain exact analytical results for dynamical spin correlation functions in the Kitaev Model. It is the first result of its kind in nontrivial quantum spin models. The result is also novel: in spite of the presence of gapless propagating Majorana fermion excitations, dynamical two spin correlation functions are identically zero beyond nearest neighbor separation. This shows existence of a gapless but short range spin liquid. An unusual, all energy scale fractionalization of a spin-flip quanta, into two infinitely massive pi fluxes and a dynamical Majorana fermion, is shown to occur. As the Kitaev Model exemplifies topological quantum computation, our result presents new insights into qubit dynamics and generation of topological excitations.
Coupled spin-light dynamics in cavity optomagnonics
NASA Astrophysics Data System (ADS)
Viola Kusminskiy, Silvia; Tang, Hong X.; Marquardt, Florian
2016-09-01
Experiments during the past 2 years have shown strong resonant photon-magnon coupling in microwave cavities, while coupling in the optical regime was demonstrated very recently for the first time. Unlike with microwaves, the coupling in optical cavities is parametric, akin to optomechanical systems. This line of research promises to evolve into a new field of optomagnonics, aimed at the coherent manipulation of elementary magnetic excitations in solid-state systems by optical means. In this work we derive the microscopic optomagnonic Hamiltonian. In the linear regime the system reduces to the well-known optomechanical case, with remarkably large coupling. Going beyond that, we study the optically induced nonlinear classical dynamics of a macrospin. In the fast-cavity regime we obtain an effective equation of motion for the spin and show that the light field induces a dissipative term reminiscent of Gilbert damping. The induced dissipation coefficient, however, can change sign on the Bloch sphere, giving rise to self-sustained oscillations. When the full dynamics of the system is considered, the system can enter a chaotic regime by successive period doubling of the oscillations.
Two dimensional electron spin resonance: Structure and dynamics of biomolecules
NASA Astrophysics Data System (ADS)
Saxena, Sunil; Freed, Jack H.
1998-03-01
The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.
Dynamics of Circular Contact Lines: Spin Coating under Marangoni forces.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Shomeek; Behringer, Robert
2007-11-01
Spin Coating remains one of the most important industrial applications of fluid dynamics, where understanding and controlling the instabilities is very important. The basic configuration consists of a fluid drop that is initially centrally located on a flat horizontal rotating surface. In this work we report on experiments on thin liquid films and fingering instabilities of a liquid drop, over a large range of angular speeds (from 10 mHz to 10Hz) of completely wetting PDMS oils on oxidized silicon wafers. Using a novel experimental setup, we will look at the effect of applying a radial temperature gradient (as opposed to a vertical gradient) on the dynamics of both the drop and the thin liquid film. In this case, the Marangoni forces oppose the centrifugal body forces. Depending on the relative strength of the driving force (angular speeds of 1 to 10 Hz and temparature gradients of 10 K/cm) and the drop size (volume of the drop varies from 1 microlitre to 100 microlitre) nontrivial wave structures and patterns arise. These results will be analyzed in the framework of the lubrication approximation.
NASA Astrophysics Data System (ADS)
Harms, Enno; Lukes-Gerakopoulos, Georgios; Bernuzzi, Sebastiano; Nagar, Alessandro
2016-11-01
We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary condition (SSC), the Pirani SSC, and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of Damour and Nagar [Phys. Rev. D 90, 044018 (2014).]. We analyze the four different dynamics in terms of the innermost stable circular orbit (ISCO) shifts and in terms of the coordinate-invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational-wave fluxes produced by the spinning body are computed by solving the inhomogeneous (2 +1 )D Teukolsky equation and contrasted for the different cases. For small orbital frequencies Ω , all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, x ≡(M Ω )2/3>0.1 , where M is the black hole mass, and especially for positive spins (aligned with the orbital angular momentum) a significant disagreement between the different dynamics is observed. The ISCO shifts can differ by up to a factor of 2 for large positive spins; for the Ohashi-Kyrian-Semerak and the Pirani SSC the ISCO diverges around dimensionless spins ˜0.52 and ˜0.94 , respectively. In the spin-orbit part of the energetics the deviation from the Hamiltonian dynamics is largest for the Ohashi-Kyrian-Semerak SSC; it exceeds 10% for x >0.17 . The Tulczyjew and the Pirani SSCs are compatible across almost the whole spin and frequency range. Our results will have direct applications in including spin effects in effective-one-body waveform models for circularized binaries in the extreme-mass-ratio limit.
Spinach - A software library for simulation of spin dynamics in large spin systems
NASA Astrophysics Data System (ADS)
Hogben, H. J.; Krzystyniak, M.; Charnock, G. T. P.; Hore, P. J.; Kuprov, Ilya
2011-02-01
We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org.
Control of spin dynamics in a two-dimensional electron gas by electromagnetic dressing
NASA Astrophysics Data System (ADS)
Pervishko, A. A.; Kibis, O. V.; Morina, S.; Shelykh, I. A.
2015-11-01
We solved the Schrödinger problem for a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction in the presence of a strong high-frequency electromagnetic field (dressing field). The found eigenfunctions and eigenenergies of the problem are used to describe the spin dynamics of the dressed 2DEG within the formalism of the density matrix response function. Solving the equations of spin dynamics, we show that the dressing field can switch the spin relaxation in the 2DEG between the cases corresponding to the known Elliott-Yafet and D'yakonov-Perel' regimes. As a result, the spin properties of the 2DEG can be tuned by a high-frequency electromagnetic field. The present effect opens an unexplored way for controlling the spin with light and, therefore, forms the physical prerequisites for creating light-tuned spintronics devices.
Anomalous spin dynamics in the coupled spin tetramer system CuSeO3
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, W.-J.; van Tol, J.; Kuhns, P. L.; Reyes, A. P.; Berger, H.; Choi, K.-Y.
2017-02-01
We report high-field magnetization, high-frequency electron spin resonance (ESR), and 77Se nuclear magnetic resonance (NMR) measurements on the linear spin tetramer system CuSeO3, consisting of strongly interacting Cu(1) dimers and weakly coupled Cu(2) spins. The magnetization exhibits anisotropic half-step magnetization plateaus at μ0H =45 T, depending on a crystallographic orientation. A temperature dependence of the ESR linewidth Δ Hpp in a paramagnetic phase points towards the significance of anisotropic exchange interactions. Below TN=9 -10 K long-range magnetic order is evidenced by the observation of a critical divergence of both Δ Hpp(T ) and the nuclear spin-lattice relaxation rate 1 /T1 . In addition, we identify a magnetic anomaly at T*=6.0 (5 ) K below TN, which is caused by a spin reorientation. The nuclear spin-spin relaxation rate 1 /T2 unveils the development of site-specific spin correlations. The intriguing magnetism of CuSeO3 is discussed in terms of the energy hierarchy of Cu(1) and Cu(2) spins in concert with additional intertetramer interactions.
Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme.
Zhang, Ziwei; Fleissner, Mark R; Tipikin, Dmitriy S; Liang, Zhichun; Moscicki, Jozef K; Earle, Keith A; Hubbell, Wayne L; Freed, Jack H
2010-04-29
An extensive set of electron spin resonance spectra was obtained over a wide range of frequencies (9, 95, 170, and 240 GHz) and temperatures (2 to 32 degrees C) to explore the dynamic modes of nitroxide-labeled T4 lysozyme in solution. A commonly used nitroxide side chain (R1), or a methylated analogue with hindered internal motion (R2), was substituted for the native side chain at solvent-exposed helical sites, 72 or 131. The spectra at all four frequencies were simultaneously fit with the slowly relaxing local structure (SRLS) model. Good fits were achieved at all the temperatures. Two principle dynamic modes are included in the SRLS model, the global tumbling of the protein and the internal motion consisting of backbone fluctuations and side chain isomerizations. Three distinct spectral components were required for R1 and two for R2 to account for the spectra at all temperatures. One is a highly ordered and slow motional component, which is observed in the spectra of both R1 and R2; it may correspond to conformers stabilized by interaction with the protein surface. The fraction of this component decreases with increasing temperature and is more populated in the R2 spectra, possibly arising from stronger interaction of the nitroxide ring with the protein surface due to the additional methyl group. The other two components of R1 and the second component of R2 are characterized by fast anisotropic diffusion and relatively low ordering, most likely corresponding to conformers having little or no interactions with nearby residues. Ficoll of different concentrations was added to increase the solution viscosity, thereby slowing down the global tumbling of the protein. A significant effect of Ficoll on the internal motion of an immobilized component was apparent in R2 but not in R1. The ability of such multifrequency studies to separate the effects of faster internal modes of motion from slower overall motions is clearly demonstrated, and its utility in future studies
Microscopic formulation of dynamical spin injection in ferromagnetic-nonmagnetic heterostructures
NASA Astrophysics Data System (ADS)
Ahmadi, Amin; Mucciolo, Eduardo R.
2017-07-01
We develop a microscopic formulation of dynamical spin injection in heterostructure comprising nonmagnetic metals in contact with ferromagnets. The spin pumping current is expressed in terms of Green's functions of the nonmagnetic metal attached to the ferromagnet where a precessing magnetization is induced. The formulation allows for the inclusion of spin-orbit coupling and disorder. The Green's functions involved in the expression for the current are expressed in real-space lattice coordinates and can thus be efficiently computed using recursive methods.
Electron-Nuclear Spin Dynamics in a Mesoscopic Solid-State Quantum Computer
Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Nagaev, K.E.
1998-12-07
We numerically simulate the process of nuclear spin measurement in Kane's quantum computer. For this purpose, we model the quantum dynamics of two coupled nuclear spins located on {sup 31}P donors implanted in Si. We estimate the minimum time of measurement necessary for the reliable transfer of quantum information from the nuclear spin subsystem to the electronic one and the probability of error for typical values of external noise.
Self-consistent description of spin-phonon dynamics in ferromagnets
NASA Astrophysics Data System (ADS)
Nieves, P.; Serantes, D.; Chubykalo-Fesenko, O.
2016-07-01
Several recently reported exciting phenomena such as spin caloritronics or ultrafast laser-induced spin dynamics involve the action of temperature on spin dynamics. However, the inverse effect of magnetization dynamics on temperature change is very frequently ignored. Based on the density matrix approach, in this work we derive a self-consistent model for describing the magnetization and phonon temperature dynamics in ferromagnets in the framework of the quantum Landau-Lifshitz-Bloch equation. We explore potential applicability of our approach for two cases, inspired by magnetocaloric effect and magnetic fluid hyperthermia. In the first case, the spin-phonon dynamics is governed by the longitudinal relaxation in bulk systems close to the Curie temperature; while in the second case it is described by the transverse relaxation during the hysteresis cycle of individual nanoparticles well below the Curie temperature.
Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hoffmann, Axel F.; Zhang, Wei; Sklenar, Joseph; Jungfleisch, Matthias Benjamin; Jiang, Wanjun; Hsu, Bo; Xiao, Jiao; Pearson, John E.; Fradin, Frank Y.; Liu, Yaohua; Ketterson, John B.; Yang, Zheng
2016-10-01
Bulk spin Hall effects are well know to provide spin orbit torques, which can be used to drive magnetization dynamics [1]. But one of the reoccurring questions is to what extend spin orbit torques may also originate at the interface between materials with strong spin orbit coupling and the ferromagnets. Using spin torque driven ferromagnetic resonance we show for two systems, where interfacial torques dominate, that they can be large enough to be practically useful. First, we show spin transfer torque driven magnetization dynamics based on Rashba-Edelstein effects at the Bi/Ag interface [2]. Second, we will show that combining permalloy with monolayer MoS2 gives rise to sizable spin-orbit torques. Given the monolayer nature of MoS2 it is clear that bilk spin Hall effects are negligible and therefore the spin transfer torques are completely interfacial in nature. Interestingly the spin orbit torques with MoS2 show a distinct dependence on the orientation of the magnetization in the permalloy, and become strongly enhanced, when the magnetization is pointing perpendicular to the interfacial plane. This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. [1] A. Hoffmann, IEEE Trans. Mag. 49, 5172 (2013). [2] W. Zhang et al., J. Appl. Phys. 117, 17C727 (2015). [3] M. B. Jungfleisch et al., arXiv:1508.01410.
Combined molecular and spin dynamics study of collective excitations in BCC iron
NASA Astrophysics Data System (ADS)
Perera, Dilina; Landau, David P.; Nicholson, Don; Stocks, G. Malcolm
2014-03-01
Spin dynamics simulations of classical spin systems have revealed a substantial amount of information regarding the collective excitations in magnetic materials. However, much of the previous work has been restricted to lattice-based spin models that completely disregard the effect of lattice vibrations. Combining an empirical many body potential with a spin Hamiltonian parameterized by first principles calculations, we present a compressible magnetic model for BCC iron, which treats the dynamics of translational degrees of freedom on an equal footing with the magnetic (spin) degrees of freedom. This model provides us with a unified framework for performing combined molecular and spin dynamics simulations and make simultaneous quantitative measurements of the spin wave and vibrational spectrum. Results from our simulations reveal that the presence of lattice vibrations leads to softening and damping of spin waves, as well as evidence for a novel form of longitudinal spin wave excitation coupled with the longitudinal phonon mode of the same frequency. Furthermore, we will also discuss the influence of lattice vibrations at different temperatures and the implications of using different atomistic potentials. Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, ``Center for Defect Physics,'' an Energy Frontier Research Center. Done...processed 13325 records...10:54:51
Next-to-leading order gravitational spin(1)-spin(2) dynamics in Hamiltonian form
Steinhoff, Jan; Hergt, Steven; Schaefer, Gerhard
2008-04-15
Based on recent developments by the authors a next-to-leading order spin(1)-spin(2) Hamiltonian is derived for the first time. The result is obtained within the canonical formalism of Arnowitt, Deser, and Misner (ADM) utilizing their generalized isotropic coordinates. A comparison with other methods is given.
Dynamic spin correlations in 'stuffed' spin ice Ho(2+x)Ti(2-x)O(7-d)
Ehlers, Georg
2008-02-01
The magnetic correlations in 'stuffed' spin ice Ho{sub 2+x}Ti{sub 2-x}O{sub 7-{delta}} have been characterized using quasielastic neutron scattering. At temperatures above 1K , these correlations are short ranged in nature and dynamic on a picosecond to nanosecond time scale. As for the case of pure spin ice Ho{sub 2+x}Ti{sub 2-x}O{sub 7}, one can identify, above the freezing temperature, a quantum relaxation regime which is enhanced as it persists to even higher temperatures, T{approx}30-40K , than in the parent compound.
Fogler, Michael M
2002-05-06
A long-standing problem of the low-energy dynamics of a disordered XY spin chain is reexamined. The case of a rigid chain is studied, where the quantum effects can be treated quasiclassically. It is shown that, as the frequency decreases, the relevant excitations change from localized spin waves to two-level systems to soliton-antisoliton pairs. The linear-response correlation functions are calculated. The results apply to other periodic glassy systems such as pinned density waves, planar vortex lattices, stripes, and disordered Luttinger liquids.
Charge and Spin Dynamics of the Hubbard Chains
NASA Technical Reports Server (NTRS)
Park, Youngho; Liang, Shoudan
1999-01-01
We calculate the local correlation functions of charge and spin for the one-chain and two-chain Hubbard model using density matrix renormalization group method and the recursion technique. Keeping only finite number of states we get good accuracy for the low energy excitations. We study the charge and spin gaps, bandwidths and weights of the spectra for various values of the on-site Coulomb interaction U and the electron filling. In the low energy part, the local correlation functions are different for the charge and spin. The bandwidths are proportional to t for the charge and J for the spin respectively.
Reading charge transport from the spin dynamics on the surface of a topological insulator.
Liu, Xin; Sinova, Jairo
2013-10-18
Resolving the conductance of the topological surface states (TSSs) from the bulk contribution has been a great challenge for studying the transport properties of topological insulators. By developing a nonperturbative diffusion equation that describes fully the spin-charge dynamics in the strong spin-orbit coupling regime, we present a proposal to read the charge transport information of TSSs from its spin dynamics which can be isolated from the bulk contribution by the time-resolved second harmonic generation pump-probe measurement. We demonstrate the qualitatively different Dyaknov-Perel spin relaxation behavior between the TSSs and the two-dimensional spin-orbit coupling electron gas. The decay time of both in-plane and out-of-plane spin polarization is naturally proved to be identical to the charge transport time. The out-of-plane spin dynamics is shown to be in the experimentally reachable regime of the femtosecond pump-probe spectroscopy and thereby we suggest experiments to detect the charge transport properties of the TSSs from their unique spin dynamics.
NASA Astrophysics Data System (ADS)
Bondarenko, P. V.; Sherman, E. Ya
2017-07-01
A simple model of magnetization dynamics in a ferromagnet/doped semiconductor hybrid structure with Rashba spin-orbit interaction (SOI), driven by an applied pulse of the electric field, is proposed. The electric current excited by the applied field is spin-polarized, due to the SOI and therefore it induces the magnetization rotation in the ferromagnetic layer via s-d exchange coupling. Magnetization dynamics dependence on the electric pulse shape and magnitude is analyzed for realistic values of the parameters. We show that it is similar to the dynamics of a damped nonlinear oscillator with the time-dependent frequency proportional to the square root of the applied electric field. The magnetization switching properties of an elliptic magnetic element are examined as a function of the applied field magnitude and direction.
1H-NMR study of the spin dynamics of fine superparamagnetic nanoparticles
Bordonali, L.; Furukawa, Y.; Kraken, M.; Litterst, F.J.; Sangregorio, C.; Casula, M.F.; Lascialfari, A.
2012-05-25
We report a broadband 1H-NMR study of the temperature spin dynamics of nearly monodisperse dextran-coated γ-Fe2O3 magnetic nanoparticles. We observed a maximum in T1−1(T) that decreases in amplitude and shifts toward higher temperatures with increasing field. We suggest that this is related to the progressive superparamagnetic spin blocking of the ferrite core. The data can be explained by assuming a single electronic spin-spin correlation time and introducing a field-dependent distribution of anisotropy energy barriers.
Spin transport and dynamics in the F/N junction
NASA Astrophysics Data System (ADS)
Li, Hua; Bedell, Kevin
2015-03-01
We study the spin transport in the low temperature regime (often referred to as the precession-dominated regime) between a ferromagnetic Fermi liquid (FFL) and a normal metal metallic Fermi liquid (NFL), the F/N junction, which is considered one of the basic spintronic devices. In particular, we explore the propagation of spin waves and transport of magnetization through the interface of the F/N junction where non-equilibrium spin polarization is created on the normal metal side of the junction by spin injection. We calculate the probable spin wave modes in the precession-dominated regime on both sides of the junction especially on the NFL side where the system is out of equilibrium. Proper boundary conditions at the interface are introduced to establish the transport of the spin properties through the F/N junction. In the end, a possible transmission conduction electron spin resonance experiment is suggested on the F/N junction to see if the predicted spin wave modes could propagate through the junction.
Spinach--a software library for simulation of spin dynamics in large spin systems.
Hogben, H J; Krzystyniak, M; Charnock, G T P; Hore, P J; Kuprov, Ilya
2011-02-01
We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org. Copyright © 2010 Elsevier Inc. All rights reserved.
Spin dynamics of polarons and polaron pairs in a random hyperfine field
NASA Astrophysics Data System (ADS)
Roundy, Robert C.
Spin-dependent recombination of polaron pairs and spin relaxation of a single polaron are the most fundamental processes are responsible for the performance of organic spintronics-based devices such as light-emitting diodes and organic spin valves. In organic materials, with no spin-orbit coupling, both processes are due to random hyperfine fields created by protons neighboring the polaron sites. The essence of spin-dependent recombination is that in order to recombine the pair must be in the singlet state. Hyperfine fields acting on the electron and hole govern the spin-dynamics of localized pairs during the waiting time for recombination. We demonstrate that for certain domain of trapping configurations of hyperfine fields, crossover to the singlet state is quenched. This leads to the blocking of current. The phenomenon of organic magnetoresistance (OMAR) is described by counting the weights of trapping configurations as a function of magnetic field. This explains the universality of the lineshapes of the OMAR curves. In finite samples incomplete averaging over the hyperfine fields gives rise to mesoscopic fluctuations of the current response. We also demonstrate that under the condition of magnetic resonance, new trapping configurations emerge. This leads to nontrivial evolution of current through the sample with microwave power. When discussing spin-relaxation two questions can be asked: (a) How does the local spin polarization decay as a function of distance from the spin-polarized injector? (b) How does the injected spin decay as a function of time after spatial averaging? With regard to (a), we demonstrate that, while decaying exponentially on average, local spin-polarization exhibits giant fluctuations from point to point. Concerning (b), we find that for a spin-carrier which moves diffusively in low dimensions the decay is faster than a simple exponent. The underlying physics for both findings is that in describing spin evolution it is necessary to add up
Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.
Spin dynamics and relaxation in graphene dictated by electron-hole puddles
Van Tuan, Dinh; Ortmann, Frank; Cummings, Aron W.; Soriano, David; Roche, Stephan
2016-01-01
The understanding of spin dynamics and relaxation mechanisms in clean graphene, and the upper time and length scales on which spin devices can operate, are prerequisites to realizing graphene-based spintronic technologies. Here we theoretically reveal the nature of fundamental spin relaxation mechanisms in clean graphene on different substrates with Rashba spin-orbit fields as low as a few tens of μeV. Spin lifetimes ranging from 50 picoseconds up to several nanoseconds are found to be dictated by substrate-induced electron-hole characteristics. A crossover in the spin relaxation mechanism from a Dyakonov-Perel type for SiO2 substrates to a broadening-induced dephasing for hBN substrates is described. The energy dependence of spin lifetimes, their ratio for spins pointing out-of-plane and in-plane, and the scaling with disorder provide a global picture about spin dynamics and relaxation in ultraclean graphene in the presence of electron-hole puddles. PMID:26876333
Spin dynamics and relaxation in graphene dictated by electron-hole puddles
NASA Astrophysics Data System (ADS)
van Tuan, Dinh; Ortmann, Frank; Cummings, Aron W.; Soriano, David; Roche, Stephan
2016-02-01
The understanding of spin dynamics and relaxation mechanisms in clean graphene, and the upper time and length scales on which spin devices can operate, are prerequisites to realizing graphene-based spintronic technologies. Here we theoretically reveal the nature of fundamental spin relaxation mechanisms in clean graphene on different substrates with Rashba spin-orbit fields as low as a few tens of μeV. Spin lifetimes ranging from 50 picoseconds up to several nanoseconds are found to be dictated by substrate-induced electron-hole characteristics. A crossover in the spin relaxation mechanism from a Dyakonov-Perel type for SiO2 substrates to a broadening-induced dephasing for hBN substrates is described. The energy dependence of spin lifetimes, their ratio for spins pointing out-of-plane and in-plane, and the scaling with disorder provide a global picture about spin dynamics and relaxation in ultraclean graphene in the presence of electron-hole puddles.
Dynamical Spin Properties of Confined Fermi and Bose Systems in the Presence of Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Ambrosetti, A.; Salasnich, L.; Silvestrelli, P. L.
2016-10-01
Due to the recent experimental progress, tunable spin-orbit (SO) interactions represent ideal candidates for the control of polarization and dynamical spin properties in both quantum wells and cold atomic systems. A detailed understanding of spin properties in SO-coupled systems is thus a compelling prerequisite for possible novel applications or improvements in the context of spintronics and quantum computers. Here, we analyze the case of equal Rashba and Dresselhaus couplings in both homogeneous and laterally confined two-dimensional systems. Starting from the single-particle picture and subsequently introducing two-body interactions we observe that periodic spin fluctuations can be induced and maintained in the system. Through an analytical derivation, we show that the two-body interaction does not involve decoherence effects in the bosonic dimer, and, in the repulsive homogeneous Fermi gas, it may be even exploited in combination with the SO coupling to induce and tune standing currents. By further studying the effects of a harmonic lateral confinement—a particularly interesting case for Bose condensates—we evidence the possible appearance of nontrivial spin textures, whereas the further application of a small Zeeman-type interaction can be exploited to fine-tune the system's polarizability.
NASA Astrophysics Data System (ADS)
Kochelaev, B. I.
2016-12-01
A short review of experimental results and theoretical models of the spin texture and spin dynamics in superconducting cuprates near the phase transition developed on the basis of the EPR measurements is given. Distortions of the long-range antiferromagnetic order in the YBa_2Cu_3O_{6+y} were investigated for y=0.1-0.4 using Yb^{3+} ions as the EPR probe. In weakly doped samples with y=0.1, a strong anisotropy of the EPR linewidth is revealed which was related to the indirect spin-spin interaction between the ytterbium ions via antiferromagnetic spin-waves. In the case of the doping level y=0.2-0.3, the EPR signal consists of narrow and broad lines, which were attributed to formation of charged domain walls. A theoretical analysis is well consistent with experimental results for the case of coplanar elliptical domain walls. A discussion of possible reasons for the observed unusual planar oxygen isotope effect on a critical temperature T_c related to charge heterogeneity in underdoped cuprates is given.
NASA Astrophysics Data System (ADS)
Fong, C. F.; Ota, Y.; Iwamoto, S.; Arakawa, Y.
2017-06-01
Optically induced dynamic nuclear spin polarization (DNP) in a semiconductor quantum dot (QD) requires many cycles of excitation of spin polarized carriers and carrier recombination. As such, the radiative lifetime of the exciton containing the electron becomes one of the limiting factors of DNP. In principle, changing the radiative lifetime of the exciton will affect DNP and thus the nuclear spin polarization. Here, we demonstrate the manipulation of DNP in single QDs through the engineering of the photonic environment using two-dimensional photonic crystals. We find that the achievable degree of nuclear spin polarization can be controlled through the modification of exciton radiative lifetime. Our results show the promise of achieving a higher degree of nuclear spin polarization via photonic environment engineering, with implications on spin-based quantum information processing.
Spin effects and baryon resonance dynamics in φ-meson photoproduction at few GeV
NASA Astrophysics Data System (ADS)
Titov, A. I.; Lee, T.-S. H.
2003-06-01
The diffractive φ-meson photoproduction amplitude is dominated by the Pomeron-exchange process and contains the terms that govern the spin-spin and spin-orbital interactions. We show that these terms are responsible for the spin-flip transitions at forward photoproduction angles and appear in the angular distributions of φ→K+K- decay in reactions with unpolarized and polarized photon beams. At large momentum transfers, the main contribution to the φ-meson photoproduction is found to be due to the excitation of nucleon resonances. Combined analysis of ω and φ photoproduction indicates strong Okubo-Zweig-Iizuka rule violation in φNN* couplings. We also show that the spin observables are sensitive to the dynamics of φ-meson photoproduction at large angles and could help to distinguish different theoretical models of nucleon resonances. Predictions for spin effects in φ-meson photoproduction are presented for future experimental tests.
Finite temperature spin-dynamics and phase transitions in spin-orbital models
Chen, C.-C.
2010-04-29
We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.
Alam, Todd M; Hart, David; Rempe, Susan L B
2011-08-14
Ab initio molecular dynamics (AIMD) simulations have been used to predict the time-averaged Li NMR chemical shielding for a Li(+) solution. These results are compared to NMR shielding calculations on smaller Li(+)(H(2)O)(n) clusters optimized in either the gas phase or with a polarizable continuum model (PCM) solvent. The trends introduced by the PCM solvent are described and compared to the time-averaged chemical shielding observed in the AIMD simulations where large explicit water clusters hydrating the Li(+) are employed. Different inner- and outer-coordination sphere contributions to the Li NMR shielding are evaluated and discussed. It is demonstrated an implicit PCM solvent is not sufficient to correctly model the Li shielding, and that explicit inner hydration sphere waters are required during the NMR calculations. It is also shown that for hydrated Li(+), the time averaged chemical shielding cannot be simply described by the population-weighted average of coordination environments containing different number of waters.
Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3
NASA Astrophysics Data System (ADS)
Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S.; Tokura, Yoshinori; Nagaosa, Naoto
2016-06-01
Weyl fermions that emerge at band crossings in momentum space caused by the spin-orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet.
Computation of dynamical correlation functions of the spin-1 Babujan-Takhtajan chain
NASA Astrophysics Data System (ADS)
Vlijm, Rogier; Caux, Jean-Sébastien
2014-05-01
The dynamical structure factor of the Babujan-Takhtajan antiferromagnetic spin-1 chain is computed numerically at zero temperature and zero magnetic field, using the higher spin generalization of an algebraic Bethe ansatz-based method previously used for spin-1/2 integrable chains. This method, which consists in the explicit construction of eigenstates and the summation of the Lehmann representation of the correlator, is particularly challenging to implement here in view of the presence of strongly deviated string solutions to the Bethe equations. We show that a careful treatment of these deviations makes it possible to obtain perfect saturation of sum rules for small system sizes, and extremely good saturation for large system sizes where the dynamical structure factor is computed by including all two-spinon and four-spinon contributions. The real-space spin-spin correlation, obtained by Fourier transforming our results, displays asymptotics fitting predictions from conformal field theory.
Teale, Andrew M; Lutnæs, Ola B; Helgaker, Trygve; Tozer, David J; Gauss, Jürgen
2013-01-14
Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.
Spin dynamics in HeH(2+) molecular ion in intense laser fields.
Korani, Youssef; Sabzyan, Hassan
2016-11-23
A theoretical study is carried out on the effect of non-dipole interactions on the electron spin dynamics in the asymmetric diatomic HeH(2+) in its first excited state in intense linearly polarized laser fields. The Foldy-Wouthuysen transformation is used to solve the Dirac equation numerically without BOA. Effects of the phase of the laser pulse and alignment of the molecule on the relativistic characteristics, such as the pure spin and the pure spin-orbit current densities, spin-orbit force and spin torque, are investigated. The results of this study demonstrate that population oscillates between the two spin states during the course of interaction and its configuration depends on the molecular axis orientation and initial phase of the laser pulse. Also, a small polarization takes place in the spin states, even in the absence of the spin-orbit coupling. Furthermore, spin and spin-orbit current densities are phase-dependent and affected differently by the phase of the laser pulse.
SU(2s+1) symmetry and nonlinear dynamics of high spin magnets
Kovalevsky, M.Y. Glushchenko, A.V.
2014-10-15
The article is devoted to the description of dynamics of magnets with arbitrary spin on the basis of the Hamiltonian formalism. The relationship of quantum states and magnetic degrees of freedom has been considered. Subalgebras of Poisson bracket of magnetic values for spin s=1/2; 1; 3/2 have been established. We have obtained non-linear dynamic equations for the normal and degenerate non-equilibrium states of high-spin magnets with the SO(3), SU(4), SU(2)×SU(2), SU(3), SO(4), SO(5) symmetries of exchange interaction. The connection between models of magnetic exchange energy and the Casimir invariants has been discussed.
Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions
Ebling, Ulrich; Eckardt, Andre; Lewenstein, Maciej
2011-12-15
We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic trap after, initially, a spiral spin configuration far from equilibrium is created. We predict a spin segregation building up in time already for weak interaction under realistic experimental conditions. The effect relies on the interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived by integrating out the rapid oscillatory dynamics in the trap.
NASA Astrophysics Data System (ADS)
Page, Michael Roy
In this dissertation, I explore the interactions that occur between transported spins and magnetization dynamics using spatially resolved imaging and magnetic resonance. The integration of spin transport and dynamics will be a crucial aspect of realizing spintronic devices, which seek to improve upon current charge based electronics. Rather than focusing on the charge degree of freedom as in traditional electronics, spintronics seeks to utilize the properties of the electron spin degree of freedom to revolutionize the fundamental operating principles of data processing and storage devices. Spintronics promises greater functionality and energy efficiency in devices based on electron spin. However, improved understanding and control of the spin degree of freedom is required for spintronics to reach its full potential. The work in this dissertation represents efforts towards addressing these requirements. I discuss my work relating to the development of a custom scanned probe microscope allowing simultaneous spatially resolved imaging while imposing transport in electrically active spintronic devices. Using this microscope, I correlate the switching of magnetic electrodes in a graphene spin valve to the resistance states by directly imaging the electrode magnetization configuration while simultaneously measuring the non-local magnetoresistance. I investigate interactions between a ferromagnet driven into resonance and proximal nitrogen vacancy centers in diamond. Spinwaves generated during the decay of the uniform mode driven to ferromagnetic resonance relax the diamond nitrogen vacancy center spins resulting in a change in the fluorescence intensity. This technique allows the study of transport of angular momentum between two separated spin systems, as well as the possibility for the nanoscale imaging of magnetization dynamics. I demonstrate Heusler alloy ferromagnetic materials as high spin polarization spin injectors for device applications by studying their
Formulation of numerical procedures for dynamic analysis of spinning structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1986-01-01
The paper presents the descriptions of recently developed numerical algorithms that prove to be useful for the solution of the free vibration problem of spinning structures. First, a generalized procedure for the computation of nodal centrifugal forces in a finite element owing to any specified spin rate is derived in detail. This is followed by a description of an improved eigenproblem solution procedure that proves to be economical for the free vibration analysis of spinning structures. Numerical results are also presented which indicate the efficacy of the currently developed procedures.
Dynamical quantum phase transitions in presence of a spin bath
NASA Astrophysics Data System (ADS)
Gómez-León, Á.; Stamp, P. C. E.
2017-02-01
We derive an effective time independent Hamiltonian for the transverse Ising model coupled to a spin bath, in the presence of a high frequency AC magnetic field. The spin blocking mechanism that removes the quantum phase transition can be suppressed by the AC field, allowing tunability of the quantum critical point. We calculate the phase diagram, including the nuclear spins, and apply the results to quantum Ising systems with long-range dipolar interactions; the example of LiHoF4 is discussed in detail.
NASA Astrophysics Data System (ADS)
Zheng, Z. W.; Mayne, C. L.; Grant, D. M.
The motional dynamics of ethanol in chloroform are studied by carbon- 13 multiplet spin-lattice relaxation over a wide range of temperatures. The coupled methylene ( 13CH 2) spin system is perturbed from thermal equilibrium using a variety of nonselective and selective pulse techniques. Simultaneous fitting of the resulting partially relaxed transition intensities with a model derived from Redfield theory allows the extraction of both auto-and cross-correlated dipolar spectral densities, from which the three principal elements of a diffusion tensor may be determined. The cross correlation between the chemical-shift anisotropy, CSA, and the dipolar, D, interactions is found to be appreciable. This cross term couples together magnetization modes with different spin-inversion symmetries. Inclusion of the D-CSA interference terms in the model improves the precision of the measurements of dipolar spectral densities, and the determination of the D-CSA interference term itself provides an estimate of the anisotropy of shielding tensors. It is found that the diffusion of ethanol can be described by an axially symmetric diffusion tensor with its unique axis about 5° from the C-O internuclear vector. Calculation of the D-CSA interference terms for an asymmetric shielding tensor under anisotropic diffusion is reported. The experiments were conducted using CD 3CH 2OD so that interference from intramolecular interactions with the adjacent protons is minimized. When other isotopomers of ethanol, CD 3CH 2OH, CH 3CH 2OD, and CH 3CH 2OH, were used, measurably different relaxation was observed. However, the experimental results in all cases can be analyzed by grouping these other interactions into a random-field interaction term. The determined dipolar spectral densities and D-CSA interference terms for each isotopomer are within experimental error of the values obtained for CD 3CH 2OD. As the adjacent protons only minimally affect the evaluation of anisotropic diffusion, this work
Effect of a cosmic string on spin dynamics
NASA Astrophysics Data System (ADS)
Chowdhury, Debashree; Basu, B.
2014-12-01
In the present paper, we have investigated the role of the cosmic string on spin current and Hall electric field. Due to the background cosmic string, the modified electric field of the system generates renormalized spin-orbit coupling, which induces a modified non-Abelian gauge field. The defect causes a change in the Aharonov-Bohm and Aharonov-Casher phases appearing due to the modified electromagnetic field. In addition, for a time varying electric field we perform explicit analytic calculations to derive the exact form of spin electric field and spin current, which is defect parameter dependent and of oscillating type. Furthermore, in an asymmetric crystal within the Drude model approach we investigate the dependence of the cosmic string parameters on cosmic string induced Hall electric field.
Magnetism of metals in the dynamic spin-fluctuation theory
NASA Astrophysics Data System (ADS)
Melnikov, N. B.; Reser, B. I.
2016-12-01
We overview new developments in spin-fluctuation theory, which describes magnetic properties of ferromagnetic metals at finite temperatures. We present a detailed analysis of the underlying techniques and compare numerical results with experiment.
Coherent Spin Dynamics in Molecular Cr8Zn Wheels.
Ghirri, Alberto; Chiesa, Alessandro; Carretta, Stefano; Troiani, Filippo; van Tol, Johan; Hill, Stephen; Vitorica-Yrezabal, Inigo; Timco, Grigore A; Winpenny, Richard E P; Affronte, Marco
2015-12-17
Controlling and understanding transitions between molecular spin states allows selection of the most suitable ones for qubit encoding. Here we present a detailed investigation of single crystals of a polynuclear Cr8Zn molecular wheel using 241 GHz electron paramagnetic resonance (EPR) spectroscopy in high magnetic field. Continuous wave spectra are well reproduced by spin Hamiltonian calculations, which evidence that transitions in correspondence to a well-defined anticrossing involve mixed states with different total spin. We studied, by means of spin echo experiments, the temperature dependence of the dephasing time (T2) down to 1.35 K. These results are reproduced by considering both hyperfine and intermolecular dipolar interactions, evidencing that the dipolar contribution is completely suppressed at the lowest temperature. Overall, these results shed light on the effects of the decoherence mechanisms, whose understanding is crucial to exploit chemically engineered molecular states as a resource for quantum information processing.
Dynamics of an all-optical atomic spin gyroscope.
Fang, Jiancheng; Wan, Shuangai; Yuan, Heng
2013-10-20
We present the transfer function of an all-optical atomic spin gyroscope through a series of differential equations and validate the transfer function by experimental test. A transfer function is the basis for further control system design. We build the differential equations based on a complete set of Bloch equations describing the all-optical atomic spin gyroscope, and obtain the transfer function through application of the Laplace transformation to these differential equations. Moreover, we experimentally validate the transfer function in an all-optical Cs-Xe129 atomic spin gyroscope through a series of step responses. This transfer function is convenient for analysis of the form of control system required. Furthermore, it is available for the design of the control system specifically to improve the performance of all-optical atomic spin gyroscopes.
Noncompact dynamical symmetry of a spin-orbit-coupled oscillator
NASA Astrophysics Data System (ADS)
Haaker, S. M.; Bais, F. A.; Schoutens, K.
2014-03-01
We explain the finite as well as infinite degeneracy in the spectrum of a particular system of spin-1/2 fermions with spin-orbit coupling in three spatial dimensions. Starting from a generalized Runge-Lenz vector, we explicitly construct a complete set of symmetry operators, which span a noncompact SO(3,2) algebra. The degeneracy of the physical spectrum only involves an infinite, so-called singleton representation. In the branch where orbital and spin angular momentum are aligned, the full representation appears, constituting a three-dimensional analog of Landau levels. Antialigning the spin leads to a finite degeneracy due to a truncation of the singleton representation. We conclude the paper by constructing the spectrum generating algebra of the problem.
Cavity Exciton-Polaritons, Bose Einstein Condensation and Spin Dynamics
Malpuech, Guillaume; Solnyshkov, Dmitry; Shelykh, Ivan
2009-10-07
An introduction giving elementary properties of cavity exciton-polariton will be given. The condition of occurrence of the polariton lasing effect and of the polariton Bose Eintein condensation will be discussed. The impact of the structural disorder on the superfluid behavior of polariton condensates will be analysed. The spin properties of polariton condensates will be discussed. I will show how the anisotropy of the polariton-polariton interaction leads to the suppression of zeeman splitting for polariton condensates (spin Meissner effects). I will show how the combined impact of disorder and spin Meissner effect can lead to the formation of a new condense phase. I will show how these phenomena can allow for the realization of a polaritonic Datta Das spin transistor.
Atom-diatom scattering dynamics of spinning molecules
Eyles, C. J.; Floß, J.; Averbukh, I. Sh.; Leibscher, M.
2015-01-14
We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H{sub 2} and F+H{sub 2} collisions. Molecules can be forced to rotate uni-directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules.
Direct observation of dynamic modes excited in a magnetic insulator by pure spin current
Demidov, V. E.; Evelt, M.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; de Loubens, G.; Klein, O.; Collet, M.; Bortolotti, P.; Cros, V.; Anane, A.
2016-01-01
Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators. PMID:27608533
Photoexcited Eu2+ spin dynamics in EuFe2As2
NASA Astrophysics Data System (ADS)
Pogrebna, A.; Mertelj, T.; Cao, G.; Xu, Z. A.; Mihailovic, D.
2014-06-01
Employing temperature dependent time-resolved optical femtosecond spectroscopy, we investigated the quasiparticle and Eu2+ spin relaxation dynamics in EuFe2As2 (EFA). As previously reported in other undoped iron-based pnictides, we observe the quasiparticle relaxation bottleneck due to the charge gap opening in the spin density wave (SDW) state below T SDW = 189 K. Below the Eu2+ antiferromagnetic (AFM) spin ordering temperature, T AFM = 19 K, we observe another slower relaxation component, which we attribute to the Eu2+ AFM order dynamics. The slow dynamics of this component suggests a weak coupling between the Eu2+ spins and the carriers in the Fe- d derived bands.
Spin dynamics in the distorted triangular lattice antiferromagnet α -SrCr2O4
NASA Astrophysics Data System (ADS)
Songvilay, M.; Petit, S.; Suard, E.; Martin, C.; Damay, F.
2017-07-01
The spin dynamics in the distorted triangular lattice antiferromagnet α -SrCr2O4 has been investigated by inelastic neutron scattering on a single crystal. The spin wave dispersion has been mapped out in the (0 k l ) and (h k 0 ) planes, and modeled by spin wave calculations, in order to determine the intraplane and interplane exchange couplings. Comparison with α -CaCr2O4 shows that, despite the smaller lattice distortion of α -SrCr2O4 , the deviation from a perfect triangular lattice still affects the spin dynamics of the Sr compound, with a soft mode, similar to the one observed in the Ca counterpart, being observed in (020). Although α -SrCr2O4 is further away from a magnetic phase boundary than its Ca counterpart, its dynamic magnetic properties still show intriguing features, which are discussed as quantum fluctuations arising from a two-magnon continuum.
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less
Collective dynamics in atomistic models with coupled translational and spin degrees of freedom
Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; ...
2017-01-26
When using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. Furthermore, by calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. A comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnonsmore » leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.« less
Collective dynamics in atomistic models with coupled translational and spin degrees of freedom
NASA Astrophysics Data System (ADS)
Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; Stocks, G. Malcolm; Landau, David P.
2017-01-01
Using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. By calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. Comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnons leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.
Rényi information flow in the Ising model with single-spin dynamics.
Deng, Zehui; Wu, Jinshan; Guo, Wenan
2014-12-01
The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.
Rényi information flow in the Ising model with single-spin dynamics
NASA Astrophysics Data System (ADS)
Deng, Zehui; Wu, Jinshan; Guo, Wenan
2014-12-01
The n -index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.
Xu, Chao; Kiselev, Valerij G; Möller, Harald E; Fiebach, Jochen B
2013-04-01
Perfusion measurements using dynamic susceptibility contrast imaging provide additional information about the mean vessel size of microvasculature when supplemented with a dual gradient echo (GE) - spin echo (SE) contrast. Dynamic increase in the corresponding transverse relaxation rate constant changes, ΔR2GE and ΔR2SE , forms a loop on the (Δ R2SE3/2, ΔR2GE ) plane, rather than a reversible line. The shape of the loop and the direction of its passage differentiate between healthy brain and pathological tissue, such as tumour and ischemic tissue. By considering a tree model of microvasculature, the direction of the loop is found to be influenced mainly by the relative arterial and venous blood volume, as well as the tracer bolus dispersion. A parameter Λ is proposed to characterize the direction and shape of the loop, which might be considered as a novel imaging marker for describing the pathology of cerebrovascular network.
NASA Astrophysics Data System (ADS)
Mikolasek, Mirko; Nicolazzi, William; Terki, Férial; Molnár, Gábor; Bousseksou, Azzedine
2017-07-01
In the first part of this work, an experimental study of the lattice dynamics of spin crossover nanoparticles was performed using the nuclear inelastic scattering (NIS). A size dependence of low energy phonon modes appears under 10 nm, but its origin is not well understood. In this paper, we investigate the phonon confinement effects in the framework of molecular dynamics simulations by modeling three-dimensional nanoparticles considering a cubic lattice with an octahedral pattern. The vibrational density of states is computed and compared to the experiment. The simulations allow one to highlight both the role of the phonon quantification and the role of the size and shape distributions of particles on the extracted parameters leading to a better understanding of the experimental results.
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; Miao, Kevin C.; Galli, Giulia; Awschalom, David D.
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the ^{29}Si and ^{13}C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; Miao, Kevin C.; Galli, Giulia; Awschalom, David D.
2016-01-01
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H–SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state. PMID:27679936
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less
Quantum decoherence dynamics of divacancy spins in silicon carbide.
Seo, Hosung; Falk, Abram L; Klimov, Paul V; Miao, Kevin C; Galli, Giulia; Awschalom, David D
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the (29)Si and (13)C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
Keren, Amit; Gulener, F; Campbell, Ian; Bazalitsky, Galina; Amato, Alex
2002-09-02
We investigate the temperature dependence of the spin-spin dynamical autocorrelation function of the Ising spin glass Fe0.05TiS2 through field dependent muon-spin lattice relaxation measurements. We successfully analyze the results using the Ogielski function, namely, t(-x)exp((-[t/tau](y)) as employed in numerical simulations. The experimental estimates of x, y, and tau are compared with those from simulations. Our major finding is that in this system the correlation function changes its nature from Ogielski to a form indistinguishable from pure stretched exponential upon cooling close to T(g), indicating a dynamical crossover.
Spin dynamics and magnetoelectric properties of the coupled-spin tetrahedral compound Cu2Te2O5Cl2
NASA Astrophysics Data System (ADS)
Besara, T.; Choi, E. S.; Choi, K.-Y.; Kuhns, P. L.; Reyes, A. P.; Lemmens, P.; Berger, H.; Dalal, N. S.
2014-08-01
We report on the spin dynamics and discovery of magnetoelectricity in the coupled-spin tetrahedral compound Cu2Te2O5Cl2. Te125 NMR measurements show an anomalous resonance frequency shift and a signal wipe-out phenomenon around the Néel temperature TN = 18.2 K, which could be attributed to the anomalous critical slowing down of the Cu spin fluctuations on the NMR time scale (˜10-100 MHz). The critical exponent of (T1T)-1∝(T-TN)-α is 0.40 ± 0.03, as compared to 0.5 for a three-dimensional mean-field model. This is in contrast to the Br compound [S.-H. Baek et al., Phys. Rev. B 86, 180405 (2012), 10.1103/PhysRevB.86.180405], which exhibits pronounced singlet dynamics with a large spin gap. Electric polarization (Pc) is observed along the c axis for temperatures below TN under finite magnetic field but not sensitive to the electric poling. Pc increases sharply over zero to 2 T and then reaches saturation. Below TN, Pc changes its sign depending on the applied magnetic field direction, positive for the H⊥c axis and negative for H ∥ c axis. We discuss possible explanations for the observed magnetoelectric (ME) behavior in terms of linear ME effect, spin-driven multiferroicity, and an exchange striction of intertetrahedral exchange paths involving the Te4+ lone-pair ions. Our results suggest that Cu2Te2O5Cl2 is a type of ME material whose properties are tuned by intertetrahedral exchange interactions involving polarizable Te4+ ions.
Nonlinear damping effects in spin torque dynamics of magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Barsukov, Igor; Chen, Yu-Jin; Lee, Han Kyu; Goncalves, Alexandre; Katine, Jordan; Arias, Rodrigo; Ivanov, Boris; Krivorotov, Ilya
2015-03-01
Performance of nanoscale spin torque devices such as memory (STT-MRAM) and auto-oscillators critically depends on magnetic relaxation. It is commonly assumed that magnetization dynamics in the presence of spin torque can be understood as simple competition between antidamping arising from spin torque and Gilbert damping of the free layer. However our experiments reveal that the situation is more complex and that nonlinear damping processes in the free layer of magnetic tunnel junction (MTJ) nanopillars can strongly alter spin torque driven dynamics. We study elliptical MTJ nanopillars with in-plane magnetizations of the free layer and SAF layers by spin torque ferromagnetic resonance. We find an excitation spectrum associated with standing spin waves of the free layer. By varying the external field, the energy of a higher-order spin wave mode becomes twice the energy of the main mode. This opens up a nonlinear, resonant relaxation channel, giving rise to a damping increase of approximately 20 percent. With increasing spin torque provided by a DC bias current, we find that this relaxation channel competes with antidamping in a nonlinear manner, increasingly contributing to and even dominating the relaxation at subcritical currents.
Low energy spin dynamics in the spin ice, Ho2Sn2O7
Ehlers, Georg; Huq, Ashfia; Diallo, Souleymane Omar; Adriano, Cris; Rule, K; Cornelius, A. L.; Fouquet, Peter; Pagliuso, P G; Gardner, Jason
2012-01-01
The magnetic properties of Ho{sub 2}Sn{sub 2}O{sub 7} have been investigated and compared to other spin ice compounds. Although the lattice has expanded by 3% relative to the better studied Ho{sub 2}Ti{sub 2}O{sub 7} spin ice, no significant changes were observed in the high temperature properties, T {approx}> 20 K. As the temperature is lowered and correlations develop, Ho{sub 2}Sn{sub 2}O{sub 7} enters its quantum phase at a slightly higher temperature than Ho{sub 2}Ti{sub 2}O{sub 7} and is more antiferromagnetic in character. Below 80 K a weak inelastic mode associated with the holmium nuclear spin system has been measured. The hyperfine field at the holmium nucleus was found to be {approx}700 T.
NASA Astrophysics Data System (ADS)
Artemieva, Irina; Shulgin, Alexey
2015-04-01
Mesoproterozoic mafic magmatism at the southern part of the Baltic Shield (the Lake Ladoga region) is conventionally ascribed to epicratonic rifting. The region hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). Our analysis of characteristics of continental rifts demonstrates that: 1. the topography of the region lacks a linear horst-graben structure typical of modern rifts, however this feature might have been lost by surface erosion; 2. the crust has neither shallow Moho, nor magmatic high-velocity underplated material, and thus is not typical of continental rifts; 3. weakly negative Bouguer gravity anomalies, especially by comparison with adjacent "background" anomalies suggest the presence of high-density material at shallow, near-Moho depths; however, the shape of the anomaly is rounded rather than linear, and may not attest to the paleorifting event; 4. seismic velocities in the upper mantle show a possible weak low-Pn anomaly near Lake Ladoga, and strong positive (+5+7%) Vs anomaly at 75-125 km depth to the NE of the lake, but not in the region of Mesoproterozoic mafic magmatism; 5. no thermal anomaly or lithosphere thickness anomaly is currently present in the lithosphere of the region, which instead is marked by extremely low heat flow; however, given the age of magmatism any thermal anomaly may have long ceased and thus its absence does not disprove rifting origin of magmatism; 6. the absence of linear magnetic anomalies which are preserved in other paleorifts provides strong evidence that this region has
Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity
NASA Astrophysics Data System (ADS)
Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.
2017-07-01
We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
Bed Stability and Debris Flow Erosion: A Dynamic "Shields Criterion" Associated with Bed Structure
NASA Astrophysics Data System (ADS)
Longjas, A.; Hill, K. M.
2015-12-01
Debris flows are mass movements that play an important role in transporting sediment from steep uplands to rivers at lower slopes. As the debris flow moves downstream, it entrains materials such as loose boulders, gravel, sand and mud deposited locally by shorter flows such as slides and rockfalls. To capture the conditions under which debris flows entrain bed sediment, some models use something akin to the Shields' criterion and an excess shear stress of the flow. However, these models typically neglect granular-scale effects in the bed which can modify the conditions under which a debris flow is erosional or depositional. For example, it is well known that repeated shearing causes denser packing in loose dry soils, which undoubtedly changes their resistance to shear. Here, we present laboratory flume experiments showing that the conditions for entrainment by debris flows is significantly dependent on the aging of an erodible bed even for narrowly distributed spherical particles. We investigate this quantitatively using particle tracking measurements to quantify instantaneous erosion rates and the evolving bed structure or "fabric". With progressive experiments we find a signature that emerges in the bed fabric that is correlated with an increasing apparent "fragility" of the bed. Specifically, a system that is originally depositional may become erosional after repeated debris flow events, and an erodible bed becomes increasingly erodible with repeated flows. We hypothesize that related effects of bed aging at the field scale may be partly responsible for the increasing destructiveness of secondary flows of landslides and debris flows.
Subpicosecond spin dynamics of excited states in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Sánchez-Barriga, J.; Battiato, M.; Krivenkov, M.; Golias, E.; Varykhalov, A.; Romualdi, A.; Yashina, L. V.; Minár, J.; Kornilov, O.; Ebert, H.; Held, K.; Braun, J.
2017-03-01
Using time-, spin-, and angle-resolved photoemission, we investigate the ultrafast spin dynamics of hot electrons on the surface of the topological insulator Bi2Te3 following optical excitation by femtosecond-infrared pulses. We observe two surface-resonance states above the Fermi level coexisting with a transient population of Dirac fermions that relax in ˜2 ps. One state disperses up to ˜0.4 eV just above the bulk continuum, and the other one at ˜0.8 eV inside a projected bulk band gap. At the onset of the excitation, both states exhibit a reversed spin texture with respect to that of the transient Dirac bands, in agreement with our one-step photoemission calculations. Our data reveal that the high-energy state undergoes spin relaxation within ˜0.5 ps, a process that triggers the subsequent spin dynamics of both the Dirac cone and the low-energy state, which behave as two dynamically locked electron populations. We discuss the origin of this behavior by comparing the relaxation times observed for electrons with opposite spins to the ones obtained from a microscopic Boltzmann model of ultrafast band cooling introduced into the photoemission calculations. Our results demonstrate that the nonequilibrium surface dynamics is governed by electron-electron rather than electron-phonon scattering, with a characteristic time scale unambiguously determined by the complex spin texture of excited states above the Fermi level. Our findings reveal the critical importance of detecting momentum and energy-resolved spin textures with femtosecond resolution to fully understand the subpicosecond dynamics of transient electrons on the surface of topological insulators.
NASA Astrophysics Data System (ADS)
Golysheva, Elena A.; Shevelev, Georgiy Yu.; Dzuba, Sergei A.
2017-08-01
In glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement,
Dynamics of Polymer Blend Film Formation During Spin Coating
NASA Astrophysics Data System (ADS)
Mouhamad, Youmna; Clarke, Nigel; Jones, Richard A. L.; Geoghegan, Mark
2012-02-01
Spin casting is a process broadly used to obtain a uniform film on a flat substrate. A homogeneous film results from the balance between centrifugal and viscous forces. Here we revisit the Meyerhofer model of the spin casting process by taking in account the centrifugal forces, a uniform time dependent evaporation rate, and account for the changes in viscosity using the Huggins intrinsic viscosity. Time resolved light reflectometry is used to monitor the thickness changes of a polystyrene-poly(methyl methacrylate)(which we denote as PS and PMMA) film initially dissolved in toluene and spin cast for ten seconds at 1000 rpm. The experimental data are in good agreement with the model. We also investigate how the volume fraction of PS and PMMA influences the thinning of the film during spin casting. A distinct change in the temporal evolution of thickness as a function of time delimits the first phase of the spin casting process where centrifugal forces are dominant from a second phase dominated by the solvent evaporation. This hypothesis is supported by in-situ off specular scattering data. The time at which this change from centrifugal to evaporation-dominated behaviour is delayed as the volume fraction of PMMA increases.
Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect
NASA Astrophysics Data System (ADS)
Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang
2016-10-01
Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.
Spin currents and magnon dynamics in insulating magnets
NASA Astrophysics Data System (ADS)
Nakata, Kouki; Simon, Pascal; Loss, Daniel
2017-03-01
Nambu-Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu-Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann-Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin-Wagner-Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga-Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics.
Spin dynamics and Kondo physics in optical tweezers
NASA Astrophysics Data System (ADS)
Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.
2016-05-01
We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Li, Yan; Sinitsyn, N; Smith, D L; Reuter, D; Wieck, A D; Yakovlev, D R; Bayer, M; Crooker, S A
2012-05-04
The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (exponential, power-law, gaussian, etc.). Here we detect the small random fluctuations of central spins in thermal equilibrium [holes in singly charged (In,Ga)As quantum dots] to reveal the time scales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at a zero magnetic field that increase to ∼5 μs as dominant hole-nuclear relaxation channels are suppressed with small (100 G) applied fields. Concomitantly, the noise line shape evolves from Lorentzian to power law, indicating a crossover from exponential to slow [∼1/log(t)] dynamics.
Electron paramagnetic resonance study of the nuclear spin dynamics in an AlAs quantum well
NASA Astrophysics Data System (ADS)
Shchepetilnikov, A. V.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Tiemann, L.; Reichl, C.; Dietsche, W.; Wegscheider, W.
2016-12-01
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4
NASA Astrophysics Data System (ADS)
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David
2015-07-01
We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c . The possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. Using a spin Hamiltonian, we show that the spin dimensionality is intermediate between X Y - and Ising-like, with an easy b axis and a hard c axis. It is shown that both next-nearest neighbor exchange couplings in the b c plane are in competition with the strongest nearest neighbor coupling.
Growth direction dependence of the electron spin dynamics in {111} GaAs quantum wells
NASA Astrophysics Data System (ADS)
Ye, H. Q.; Wang, G.; Liu, B. L.; Shi, Z. W.; Wang, W. X.; Fontaine, C.; Balocchi, A.; Amand, T.; Lagarde, D.; Renucci, P.; Marie, X.
2012-07-01
The electron spin dynamics is studied by time-resolved Kerr rotation in GaAs/AlGaAs quantum wells embedded in NIP structures grown on (111)A or (111)B-oriented substrates. In both cases the spin lifetimes are significantly increased by applying an external electric field, but this field has to point along the growth direction for structures grown on (111)A and opposite to it for the ones grown on (111)B. This extended electron spin lifetime is the result of the suppression of the D'yakonov-Perel spin relaxation mechanism [Sov. Phys. Solid State 13, 3023 (1972)] due to the cancellation effect of the internal Dresselhaus term [Phys. Rev. 100, 580 (1955)] with the external electric field induced Rashba one [J. Phys. C 17, 6039 (1984)], both governing the conduction band spin-orbit splitting. These results demonstrate the key role played by the growth direction in the design of spintronic devices.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO_{4}
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO_{4} obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.
Unraveling Photoinduced Spin Dynamics in the Topological Insulator Bi(2)Se(3).
Wang, M C; Qiao, S; Jiang, Z; Luo, S N; Qi, J
2016-01-22
We report on a time-resolved ultrafast optical spectroscopy study of the topological insulator Bi_{2}Se_{3}. We unravel that a net spin polarization cannot only be generated using circularly polarized light via interband transitions between topological surface states (SSs), but also via transitions between SSs and bulk states. Our experiment demonstrates that tuning photon energy or temperature can essentially allow for photoexcitation of spin-polarized electrons to unoccupied topological SSs with two distinct spin relaxation times (∼25 and ∼300 fs), depending on the coupling between SSs and bulk states. The intrinsic mechanism leading to such distinctive spin dynamics is the scattering in SSs and bulk states which is dominated by E_{g}^{2} and A_{1g}^{1} phonon modes, respectively. These findings are suggestive of novel ways to manipulate the photoinduced coherent spins in topological insulators.
Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo
NASA Astrophysics Data System (ADS)
Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.
2017-04-01
We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.
Cascaded spin motive force driven by the dynamics of the skyrmion lattice
Ohe, Jun-ichiro; Shimada, Yuhki
2013-12-09
We numerically investigate the spin motive force (SMF) driven by the dynamics of a Skyrmion lattice. The rotating mode of the Skyrmion core excited by the AC magnetic field induces the large spin-dependent electric field near the core. Due to the collective dynamics of Skyrmion lattice, the measurable voltage is enhanced by the cascade effect of the SMF. The amplitude of the AC voltage is estimated to 30 μV in a macroscopic sample, where 100 Skyrmions exist between two probes. We also investigate the SMF due to the dynamics of the helical magnetic state, where the enhancement of the SMF does not occur.
Cavity master equation for the continuous time dynamics of discrete-spin models
NASA Astrophysics Data System (ADS)
Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Dimensionality crossover and frustrated spin dynamics on a triangular lattice
NASA Astrophysics Data System (ADS)
Wikberg, J. M.; Dahbi, M.; Saadoune, I.; Gustafsson, T.; Edström, K.; Svedlindh, P.
2010-06-01
Investigations of the magnetic behavior of the layered oxide, LiNi0.65Co0.25Mn0.10O2 , through ac and time-dependent susceptibility, dc linear and nonlinear susceptibility as well as neutron-diffraction measurements are presented. A ferrimagneticlike spin ordering appears at 119 K with a spontaneous magnetization coexisting with spin frustration in two dimensions (2D). At lower temperature, a cluster-glass transition is found at 17.4 K indicating a transformation to a completely frustrated state in three dimensions (3D). A dimensionality crossover with temperature, from 2D to 3D, in a magnetically frustrated system has been demonstrated. The observed magnetic behavior is believed to originate from a percolating system of spin clusters defined by disordered and frustrated exchange interactions and the findings conform well with predictions of the percolation cluster model.
Internal Dynamics of the 3-Pyrroline-N-Oxide Ring in Spin-Labeled Proteins.
Consentius, Philipp; Loll, Bernhard; Gohlke, Ulrich; Alings, Claudia; Müller, Carsten; Müller, Robert; Teutloff, Christian; Heinemann, Udo; Kaupp, Martin; Wahl, Markus C; Risse, Thomas
2017-03-16
Site-directed spin labeling is a versatile tool to study structure as well as dynamics of proteins using EPR spectroscopy. Methanethiosulfonate (MTS) spin labels tethered through a disulfide linkage to an engineered cysteine residue were used in a large number of studies to extract structural as well as dynamic information on the protein from the rotational dynamics of the nitroxide moiety. The ring itself was always considered to be a rigid body. In this contribution, we present a combination of high-resolution X-ray crystallography and EPR spectroscopy of spin-labeled protein single crystals demonstrating that the nitroxide ring inverts fast at ambient temperature while exhibiting nonplanar conformations at low temperature. We have used quantum chemical calculations to explore the potential energy that determines the ring dynamics as well as the impact of the geometry on the magnetic parameters probed by EPR spectroscopy.
Electron-Spin Dynamics in Strongly Correlated Metals
NASA Astrophysics Data System (ADS)
Dóra, Balázs; Simon, Ferenc
2009-04-01
The temperature dependence of the electron-spin lifetime T1 and the g factor are anomalous in alkali fullerides (K,Rb)3C60, which cannot be explained by the canonical Elliott-Yafet theory. These materials are archetypes of strongly correlated and narrow band metals. We introduce the concept of a “complex electron-spin resonance frequency shift” to treat these measurables in a unified manner within the Kubo formalism. The theory is applicable for metals with nearly degenerate conduction bands and large momentum scattering even with an anomalous temperature dependence and sizable residual value.
Dynamic consequences of optical spin-orbit interaction
NASA Astrophysics Data System (ADS)
Sukhov, Sergey; Kajorndejnukul, Veerachart; Naraghi, Roxana Rezvani; Dogariu, Aristide
2015-12-01
Field symmetries and conservation laws are closely associated through Noether's theorem. Light field inhomogeneities lead to changes in linear and angular momenta and, consequently, to radiation pressure, spin or rotation of objects. Here we discuss a new type of mechanical action originating in the exchange between spin and orbital angular momenta. We demonstrate theoretically and experimentally that, when mirror and central symmetries of scattering are broken, a force appears acting perpendicularly to the direction of propagation. This new force completes the set of non-conservative forces (radiation pressure and tractor beams) that can be generated with unstructured light beams.
Hyperfine interaction and its effects on spin dynamics in organic solids
NASA Astrophysics Data System (ADS)
Yu, Z. G.; Ding, Feizhi; Wang, Haobin
2013-05-01
Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.
Spin relaxations in 2D electron gas determined by the memory in the carrier dynamics.
NASA Astrophysics Data System (ADS)
Sherman, Eugene; Glazov, Mikhail
2007-03-01
The effects of long memory, in carrier dynamics in a magnetic field, on spin polarization evolution in 2D electron gas are investigated qualitatively and quantitatively. As examples we consider (i) systems with random Rashba-type SO coupling and (ii) quantum wells with rigid short-range scatterers (antidotes) and regular Dresselhaus SO coupling. In both cases the spin dynamics is strongly non-Markovian. In the system with the random SO coupling the time dependence of the spin polarization shows Gaussian rather than exponential behavior with the cusps corresponding to the electron revolutions. The relaxation speeds up with the increase of the magnetic field. In the system with antidotes scattering, the spin polarization shows a long-tail behavior with the relaxation rate determined by inelastic electron-phonon and electron-electron collisions and demonstrates unusual field dependence.
Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy.
Liu, R H; Lim, W L; Urazhdin, S
2015-04-03
We study the spectral characteristics of spin current nano-oscillators based on the Pt/[Co/Ni] magnetic multilayer with perpendicular magnetic anisotropy. By varying the applied magnetic field and current, both localized and propagating spin wave modes of the oscillation are achieved. At small fields, we observe an abrupt onset of the modulation sidebands. We use micromagnetic simulations to identify this state as a dynamical magnetic skyrmion stabilized in the active device region by spin current injection, whose current-induced dynamics is accompanied by the gyrotropic motion of the core due to the skew deflection. Our results demonstrate a practical route for controllable skyrmion manipulation by spin current in magnetic thin films.
NASA Astrophysics Data System (ADS)
Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens
2016-10-01
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.
Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates.
Zhang, Yongping; Mao, Li; Zhang, Chuanwei
2012-01-20
Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.
Pohlit, Merlin Porrati, Fabrizio; Huth, Michael; Müller, Jens
2016-10-14
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.
Depondt, Ph; Mertens, F G
2009-08-19
Spin dynamics with the Landau-Lifshitz equation has provided topics for a wealth of research endeavors. We introduce here a numerical integration method which explicitly uses the precession motion of a spin about the local field, thus intrinsically conserving spin lengths, and therefore allowing for relatively quick results for a large number of situations with varying temperatures and couplings. This method is applied to the effect of long-range dipole-dipole interactions in two-dimensional clusters of spins with nearest-neighbor XY-Heisenberg exchange interactions on a square lattice at finite temperature. The structures thus obtained are analyzed through orientational correlations functions. Magnon dispersion curves, different from those of the standard Heisenberg model, are obtained and discussed. The number of vortices in the system is discussed as a function of temperature and typical examples of vortex dynamics are shown.
Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3
Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S.; Tokura, Yoshinori; Nagaosa, Naoto
2016-01-01
Weyl fermions that emerge at band crossings in momentum space caused by the spin–orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet. PMID:27273207
Mean-Field Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Mao, Li; Zhang, Chuanwei
2012-01-01
Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.
Stochastic dynamics and control of a driven nonlinear spin chain: the role of Arnold diffusion
NASA Astrophysics Data System (ADS)
Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.
2009-09-01
We study a chain of nonlinear interacting spins driven by a static and a time-dependent magnetic field. The aim is to identify the conditions for the locally and temporally controlled spin switching. Analytical and full numerical calculations show the possibility of stochastic control if the underlying semiclassical dynamics is chaotic. This is achievable by tuning the external field parameters according to the method described in this paper. We show analytically for a finite spin chain that Arnold diffusion is the underlying mechanism for the present stochastic control. Quantum mechanically we consider the regime where the classical dynamics is regular or chaotic. For the latter we utilize the random matrix theory. The efficiency and the stability of the non-equilibrium quantum spin states are quantified by the time dependence of the Bargmann angle related to the geometric phases of the states.
NASA Astrophysics Data System (ADS)
Ambal, K.; Payne, A.; Waters, D. P.; Williams, C. C.; Boehme, C.
2015-08-01
The suitability of the spin dynamics of paramagnetic silicon dangling bonds (E' centers) in high-E'-density amorphous silicon dioxide (SiO2 ) as probe spins for single-spin tunneling force microscopy (SSTFM) is studied. SSTFM is a spin-selection-rule-based scanning-probe single-spin readout concept. Following the synthesis of SiO2 thin films on (111)-oriented crystalline-silicon substrates with room-temperature stable densities of [E'] >5 ×1018 cm-3 throughout the 60-nm thin film, pulsed electron paramagnetic resonance spectroscopy is conducted on the E' centers at temperatures between T =5 K and T =70 K . The measurements reveal that the spin coherence (the transverse spin-relaxation time T2) of these centers is significantly shortened compared to low-E'-density SiO2 films and within error margins not dependent on temperature. In contrast, the spin-flip times (the longitudinal relaxation times T1) are dependent on the temperature but with much weaker dependence than low-density SiO2 , with the greatest deviations from low-density SiO2 seen for T =5 K . These results, discussed in the context of the spin-relaxation dynamics of dangling-bond states of other silicon-based disordered solids, indicate the suitability of E' centers in high-density SiO2 as probe spins for SSTFM.
2009-05-01
Q-G RIP-140 S-F-S-K-N-G-L-L-S-R-L-L-R-Q-N-Q-D-S-U HnCOa-2/TIF2 E-K-H-K-I-L-H-R-L-L-Q-D-S L-P- Y -E-G-S-L-L-L-K-L-L-R-A-P-V-E-E-V 9 Figure 9: cwEPR...Gullà, Jean Chamoun , Peter G. Fajer, Kalman Hideg, and David E. Budil, New site-directed spin labeling tools for characterizing the dynamic response of...Hideg, Jean Chamoun , Peter G. Fajer, David E. Budil, Characterization of novel estrogen-based nitroxide spin probe binding to the estrogen receptor α
Oscillatory Dyakonov-Perel spin dynamics in two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Leyland, W. J. H.; Harley, R. T.; Henini, M.; Shields, A. J.; Farrer, I.; Ritchie, D. A.
2007-11-01
Optical pump-probe measurements of spin dynamics at temperatures down to 1.5K are described for a series of (001)-oriented GaAs/AlGaAs quantum well samples containing high mobility two-dimensional electron gases (2DEGs). For well widths ranging from 5to20nm and 2DEG sheet densities from 1.75×1011to3.5×1011cm-2 , the evolution of a small injected spin population is found to be a damped oscillation rather than an exponential relaxation, consistent with the quasi-collision-free regime of the Dyakonov-Perel spin dynamics. A Monte Carlo simulation method is used to extract the spin-orbit-induced electron spin precession frequency ∣Ω(kF)∣ and electron momentum scattering time τp* at the Fermi wave vector. The spin decay time passes through a minimum at a temperature corresponding to the transition from collision-free to collision-dominated regimes and τp* is found to be close to the ensemble momentum scattering time τp obtained from Hall measurements of electron mobility. The values of ∣Ω(kF)∣ give the Dresselhaus or bulk inversion asymmetry (BIA) coefficient of spin-orbit interaction as a function of electron confinement energy in the quantum wells and show, qualitatively, the behavior expected from k•p theory.
Laser-induced ultrafast spin dynamics in ErFeO3
NASA Astrophysics Data System (ADS)
de Jong, J. A.; Kimel, A. V.; Pisarev, R. V.; Kirilyuk, A.; Rasing, Th.
2011-09-01
Using 100-fs optical laser pulses, we have been able to excite and probe spin dynamics in the rare-earth orthoferrite ErFeO3. The investigation was performed in a broad temperature range with the focus on the vicinities of the compensation point Tcomp≈47K and the spin reorientation transition region in the interval 86K≲T≲99K. Spin precession excited by the laser pulse was present in a large part of the investigated temperature range, but was especially strong near the spin reorientation region. In this region the laser pulse also caused an ultrafast spin reorientation. By changing the laser pulse fluence, we could vary both the reorientation amplitude and the reorientation speed. We show that the laser-induced spin dynamics in ErFeO3 is caused in part by heating and in part by the inverse Faraday effect. Comparing to the results of similar experiments in other rare-earth orthoferrites, we found the speed of the laser-induced spin reorientation to be significantly lower. We attribute this finding to the weaker electron-phonon coupling of the Er3+ 4f electrons with the lattice.
Charge dynamics and spin blockade in a hybrid double quantum dot in silicon
NASA Astrophysics Data System (ADS)
Chatterjee, Anasua; Urdampilleta, Matias; Lo, Cheuk Chi; Mansir, John; Barraud, Sylvain; Betz, Andreas; Gonzalez-Zalba, M. Fernando; Morton, John J. L.
Hybrid architectures combining donor atoms and quantum dots in silicon can take advantage of fast gate voltage based spin manipulations to form a hybrid singlet-triplet qubit, with access to the quantum memory offered by the nuclear spin of the donor via the hyperfine interaction. Additionally, spin buses using quantum dot chains could mediate the transfer of quantum information between long-lived donor spins. We present an approach to a novel hybrid double quantum dot by coupling a donor to an artificial atom in a CMOS-compatible nanotransistor. Using gate-based RF-reflectometry, we probe the charge stability of the system and its quantum capacitance. Through microwave spectroscopy, we find a tunnel coupling of 2.7GHz and characterize the charge dynamics, revealing a charge T1 of 100ns. We also show spin blockade at the inderdot transition and investigate the spin dynamics, opening up the possibility to operate this coupled system as a singlet-triplet qubit and to coherently transfer spin information between the quantum dot and the donor electron and nucleus. We acknowledge support from the TOLOP project (FP7/318397), the EPSRC, ARC, and the UNDEDD project, the Royal Commission for the Exhibition of 1851 and the Royal Society.
The dynamics of particle disks. II - Effects of spin degrees of freedom
NASA Technical Reports Server (NTRS)
Araki, Suguru
1988-01-01
The present treatment of the thermal equilibria of differentially-rotating, axisymmetric disks consisting of identical, spin-possessing as well as translational DOF-possessing hard sphere particles characterizes these disks' dynamics by means of two novel parameters: (1) the tangential restitution coefficient, and (2) the dimensionless moment of inertia. It is established that rings composed of spinning particles can generally be thermally balanced within more restricted ranges of the optical depth, as well as at higher values of the normal restitution coefficient, than spinless rings. Mean spin is indefinite in the present framework of neglected finite particle-size effects.
Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current
2014-01-01
We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed. PMID:25147490
Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current.
Guslienko, Konstantin Y; Sukhostavets, Oksana V; Berkov, Dmitry V
2014-01-01
We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.
Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses
Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; Dai, Yaomin; Cheong, S.-W.; Bauer, Eric Dietzgen; Taylor, Antoinette Jane; Yarotski, Dmitry Anatolievitch; Prasankumar, Rohit Prativadi
2016-11-22
We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range is magnetic.
Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain
NASA Astrophysics Data System (ADS)
Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong
2010-07-01
This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.
Dynamics of spin valves investigated using Magneto-Optical Kerr Effect Spectroscopy
NASA Astrophysics Data System (ADS)
Stevens, Christopher; Paul, Jagannath; Dey, Prasenjit; Miller, Casey; McGill, Stephen; Karaiskaj, Denis
Through an all-optical approach, we are investigating the spin dynamics in different spin torque based structures. Using pump-probe Time-Resolved Magneto-Optical Kerr Effect (TR-MOKE) spectroscopy, we are able to monitor the ultrafast magnon propagation on a sub-picosecond timescale as well as the longer lived oscillations and demagnetization. This represents a recent efforts to realize magnon induced spin torque using an all optical method. This research at USF is supported by the National Science Foundation, Division of Electrical, Communications and Cyber Systems under Grant Number: 1231929. The work was done in part at the NHMFL, Tallahassee, FSU under Grants: DMR-1229217, DMR-1157490.
Dynamics of quantum dot nuclear spin polarization controlled by a single electron.
Maletinsky, P; Badolato, A; Imamoglu, A
2007-08-03
We present measurements of the buildup and decay of nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that we polarize the nuclei in a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize nuclear spins in milliseconds whereas in the absence of the electron the nuclear spin lifetime is on the scale of seconds. This lifetime is further enhanced by 1-2 orders of magnitude by quenching the nonsecular nuclear dipole-dipole interactions with a magnetic field of 1 mT.
Depolarization Dynamics in a Strongly Interacting Solid-State Spin Ensemble
NASA Astrophysics Data System (ADS)
Choi, Joonhee; Choi, Soonwon; Kucsko, Georg; Maurer, Peter C.; Shields, Brendan J.; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Demler, Eugene; Jelezko, Fedor; Yao, Norman Y.; Lukin, Mikhail D.
2017-03-01
We study the depolarization dynamics of a dense ensemble of dipolar interacting spins, associated with nitrogen-vacancy centers in diamond. We observe anomalously fast, density-dependent, and nonexponential spin relaxation. To explain these observations, we propose a microscopic model where an interplay of long-range interactions, disorder, and dissipation leads to predictions that are in quantitative agreement with both current and prior experimental results. Our results pave the way for controlled many-body experiments with long-lived and strongly interacting ensembles of solid-state spins.
The dynamics of particle disks. II - Effects of spin degrees of freedom
NASA Technical Reports Server (NTRS)
Araki, Suguru
1988-01-01
The present treatment of the thermal equilibria of differentially-rotating, axisymmetric disks consisting of identical, spin-possessing as well as translational DOF-possessing hard sphere particles characterizes these disks' dynamics by means of two novel parameters: (1) the tangential restitution coefficient, and (2) the dimensionless moment of inertia. It is established that rings composed of spinning particles can generally be thermally balanced within more restricted ranges of the optical depth, as well as at higher values of the normal restitution coefficient, than spinless rings. Mean spin is indefinite in the present framework of neglected finite particle-size effects.
Dynamical magnetic anisotropy in spin--1 molecular systems
NASA Astrophysics Data System (ADS)
Ruiz-Tijerina, David; Cornaglia, Pablo; Balseiro, Carlos; Ulloa, Sergio
2012-02-01
We study electronic transport through a deformable spin-1 molecular system in a break junction setup, under the influence of a local vibrational mode. Our study shows that the magnetic anisotropy, which arises due to stretching along the transport axis[Science 328 1370 (2010)], is renormalized by the interactions with vibrations. The coupling induces additional spin--asymmetric hybridizations that contribute to the net molecular anisotropy. We show that the low temperature physics of such device can be described by an anisotropic Kondo model (J> J), with a magnetic anisotropy term, ANetSz^2, negative at zero stretching. A quantum phase transition (QPT) is explored by stretching the molecule, driving ANet into positive values, and changing the character of the device from a non--Fermi--liquid (NFL) to a Fermi liquid (FL) ground state. This transition can be directly observed through the zero--bias conductance, which we find to be finite for negative anisotropy, zero for positive anisotropy, and to reach the unitary limit at ANet 0. At that point, an underscreened spin-1 Kondo ground state appears due to the restitution of the spin-1 triplet degeneracy.
NASA Astrophysics Data System (ADS)
Chekhovich, Evgeny A.
2017-06-01
Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.
Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin
NASA Astrophysics Data System (ADS)
Teissier, Jean; Barfuss, Arne; Maletinsky, Patrick
2017-04-01
We study the parametric interaction between a single nitrogen-vacancy electronic spin and a diamond mechanical resonator in which the spin is embedded. Coupling between spin and oscillator is achieved by crystal strain, which is generated upon actuation of the oscillator and which parametrically modulates the spins’ energy splitting. Under coherent microwave driving of the spin, this parametric drive leads to a locking of the spin Rabi frequency to the oscillator mode in the megahertz range. Both the Rabi oscillation decay time and the inhomogeneous spin dephasing time increase by two orders of magnitude under this spin-locking condition. We present routes to prolong the dephasing times even further, potentially to the relaxation time limit. The remarkable coherence protection that our hybrid spin-oscillator system offers is reminiscent of recently proposed concatenated continuous dynamical decoupling schemes and results from our robust, drift-free strain-coupling mechanism and the narrow linewidth of the high-quality diamond mechanical oscillator employed. Our findings suggest feasible applications in quantum information processing and sensing.
Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon
2016-01-13
Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices.
Controlling the dynamical modes of the chiral magnetic structures by spin Hall effect
NASA Astrophysics Data System (ADS)
Liu, Ronghua; Lim, Weng-Lee; Urazhdin, Sergei
2014-03-01
Recently, pure spin currents generated due to spin Hall effect have been proved as an efficient approach to reverse the magnetization, modify the dynamical relaxation rates, and excite magnetization oscillations in the heavy metal/ferromagnetic heterostructures. In addition, the Dzyaloshinskii-Moriya interaction (DMI) can also induce chiral magnetization configurations and rich dynamics in these asymmetrical heterostructures . We controllably excited several distinct dynamical modes in spin Hall oscillator based on Pt/ [CoNi] magnetic multilayer with perpendicular anisotropy. At low current, a quasi-linear Slonczewski-like propagating spin wave mode was excited. This mode transforms to a localized soliton mode above a certain threshold current. At large fields, this mode can be identified as the spin wave `bullet' mode. At small fields, the localized mode is transformed to the topological structure of the `droplet' mode, which comes from the oscillations of the chiral domain walls forming the boundary of the bubble domain due to DMI. Our measurements demonstrate a straightforward route for emission of spin waves by nano-oscillators controlled either by current or by the applied magnetic field. This work was supported by the NSF grant ECCS-1218419.
Gelman, David; Koch, Christiane P; Kosloff, Ronnie
2004-07-08
The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multiconfiguration time-dependent Hartree method of Nest and Meyer [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction term between bath modes that spreads the excitation eliminates the saturation. The loss of phase between two cat states has been analyzed and the results for the spin and harmonic baths are almost identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The accumulation and degree of entanglement between the bath modes have been characterized. Only in the spin bath the dynamics generate entanglement between the bath modes.
NASA Astrophysics Data System (ADS)
Gelman, David; Koch, Christiane P.; Kosloff, Ronnie
2004-07-01
The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multiconfiguration time-dependent Hartree method of Nest and Meyer [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction term between bath modes that spreads the excitation eliminates the saturation. The loss of phase between two cat states has been analyzed and the results for the spin and harmonic baths are almost identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The accumulation and degree of entanglement between the bath modes have been characterized. Only in the spin bath the dynamics generate entanglement between the bath modes.
Slow Spin Dynamics in Superconducting Ca0.9Ce0.1Fe2As2
Nadeem, K.; Zhang, W.; Chen, D. Y.; Ren, Z. A.; Qiu, X. G.
2015-01-01
Slow spin dynamics has been observed in superconducting under-doped Ca0.9Ce0.1Fe2As2 single crystal. Below 100 K, the system exhibits hysteresis in the cooling and warming protocols of temperature dependent resistivity due to first order tetragonal to orthorhombic structural transition with simultaneous magnetic transition from paramagnetic to spin density wave antiferromagnetic state of the iron (Fe) ions. Zero field cooled/field cooled (ZFC/FC) magnetization curves showed splitting at 32 K followed by a sharp increase of the FC curve and then FC plateau at low temperatures. Slow spin relaxation in both the ZFC and FC protocols was observed which is typical for spin-glass system. The system also showed features analogue to spin-glass behavior such as ZFC peak, FC plateau, ZFC slow spin relaxation, magnetic hysteresis, and ZFC ac memory effect. The spin-glass like behavior was rather weak and vanished at higher fields. The origin of the slow spin dynamics could be the inhomogeneous distribution of the cerium (Ce) spins ordered along the c-axis OR interactions between Fe and Ce spins which lead to magnetic frustration of Ce spins. All these findings support the coexistence of slow spin dynamics of Ce spins and superconductivity in Ca0.9Ce0.1Fe2As2 single crystal. PMID:26024047
Snyder, Keith W.
2002-01-01
A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.
Magma dynamics at shield-volcanoes: New insights from Hualalai oceanites
NASA Astrophysics Data System (ADS)
Welsch, B. T.; Hammer, J. E.; Hellebrand, E.
2011-12-01
Oceanites are olivine-rich basalts generally interpreted as resulting from the dismantling of a dunitic cumulate by percolating magmas. To constrain the possible origins of olivine forming during the shield stage of an ocean island volcano, we studied the texture and the composition of oceanite samples collected from the submarine extension of Hualalai volcano's NW rift zone (2002 JAMSTEC dive S690). These oceanites contain abundant magnesian olivine macrocrysts (Ø>0.5 mm, Fo90-86), mesocrysts (0.1<Ø< 0.5 mm, Fo90-88 and Fo83-81) and microcrysts (Ø<0.1 mm, Fo85-82) set in a mafic glassy matrix (8.1 ± 0.2 wt % MgO) with minor Cr-spinel (10.80 - 15.27 wt% MgO, 36.14 - 48.67 wt % Cr2O3; 1.04 - 2.84 TiO2). The high Mg contents of these phases and the absence plagioclase and clinopyroxene suggest that oceanites erupted at high magma temperatures. The olivine populations also contain extreme variations in phosphorus content, with P-rich zones concentrated along planes parallel to external facets (Figure 1). These zonings indicate that olivine captured elevated amounts of phosphorus from the liquid during exceptionally rapid growth. The growth mechanism evidently switched from diffusion-control to interface-control because most crystals preserve euhedral, low-P facets, as well as sealed-off melt inclusions. The growth shapes of the external faces and internal P-rich zonings provide evidence that these olivine crystals crystallized entirely in suspension in the magma, and were never aggregated into a consolidated cumulate. If so, it is likely that Hualalai oceanites are not related to the dismantling of a dunitic cumulate. Rather, they are portions of a harrisitic mush crystallized in the cold parts of the magma system. These findings are consistent with recent studies conducted on olivine crystals in oceanites erupted from Piton de la Fournaise Volcano (Welsch et al., 2009; Welsch et al., submitted). Evidence of initial olivine crystallization at high undercooling
NASA Astrophysics Data System (ADS)
Belykh, V. V.; Evers, E.; Yakovlev, D. R.; Fobbe, F.; Greilich, A.; Bayer, M.
2016-12-01
We develop an extended pump-probe Faraday rotation technique to study submicrosecond electron spin dynamics with picosecond time resolution in a wide range of magnetic fields. The electron spin dephasing time T2* and the longitudinal spin relaxation time T1, both approaching 250 ns in weak fields, are measured thereby in n -type bulk GaAs. By tailoring the pump pulse train through increasing the contained number of pulses, the buildup of resonant spin amplification is demonstrated for the electron spin polarization. The spin precession amplitude in high magnetic fields applied in the Voigt geometry shows a nonmonotonic dynamics deviating strongly from a monoexponential decay and revealing slow beatings. The beatings indicate a two spin component behavior with a g -factor difference of Δ g ˜4 ×10-4 , much smaller than the Δ g expected for free and donor-bound electrons. This g -factor variation indicates efficient, but incomplete spin exchange averaging.
NASA Astrophysics Data System (ADS)
Yoshitake, Junki; Nasu, Joji; Kato, Yasuyuki; Motome, Yukitoshi
2017-07-01
A prominent feature of quantum spin liquids is fractionalization of the spin degree of freedom. Fractionalized excitations have their own dynamics in different energy scales, and hence, affect finite-temperature (T ) properties in a peculiar manner even in the paramagnetic state harboring the quantum spin liquid state. We here present a comprehensive theoretical study of the spin dynamics in a wide T range for the Kitaev model on a honeycomb lattice, whose ground state is a quantum spin liquid. In this model, the fractionalization occurs to break up quantum spins into itinerant matter fermions and localized Z2 fluxes, which results in two crossovers at very different T scales. Extending the previous study for the isotropic coupling case [J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. Lett. 117, 157203 (2016), 10.1103/PhysRevLett.117.157203], we calculate the dynamical spin structure factor S (q ,ω ) , the NMR relaxation rate 1 /T1 , and the magnetic susceptibility χ while changing the anisotropy in the exchange coupling constants, by using the dynamical mean-field theory based on a Majorana fermion representation. We describe the details of the methodology including the continuous-time quantum Monte Carlo method for computing dynamical spin correlations and the maximum entropy method for analytic continuation. We confirm that the combined method provides accurate results in a wide T range including the region where the spins are fractionalized. We find that also in the anisotropic cases the system exhibits peculiar behaviors below the high-T crossover whose temperature is comparable to the average of the exchange constants: S (q ,ω ) shows an inelastic response at the energy scale of the averaged exchange constant, 1 /T1 continues to grow even though the equal-time spin correlations are saturated and almost T independent, and χ deviates from the Curie-Weiss behavior. In particular, when the exchange interaction in one direction is stronger than the other two
Mi, Qixi; Chernick, Erin T; McCamant, David W; Weiss, Emily A; Ratner, Mark A; Wasielewski, Michael R
2006-06-15
The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.
Optimal Controller Tested for a Magnetically Suspended Five-Axis Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2003-01-01
NASA Glenn Research Center's Structural Mechanics and Dynamics Branch has developed a fully suspended magnetic bearing system for their Dynamic Spin Rig, which performs vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the Dynamic Spin Rig to provide magnetic excitation as well as noncontact magnetic suspension of the 35-lb vertical rotor with blades to induce turbomachinery blade vibration (ref. 1). The new system can provide longer run times at higher speeds and larger vibration amplitudes for rotating blades. Also, it was proven that bearing mechanical life was substantially extended and flexibility was increased in the excitation orientation (direction and phasing).
The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Hadi; Sawatzky, George A.; Berciu, Mona
2014-12-01
Understanding what controls the dynamics of the quasiparticle that results when a hole is doped into an antiferromagnetically ordered CuO2 layer is the first necessary step in the quest for a theory of the high-temperature superconductivity in cuprates. Here we show that the long-held belief that the quantum spin fluctuations of the antiferromagnetic background play a key role in determining this dynamics is wrong. Indeed, we demonstrate that the correct, experimentally observed quasiparticle dispersion is generically obtained for a three-band model describing the hole moving on the oxygen sublattice and coupled to a Néel lattice of spins without spin fluctuations. We argue that results from one-band model studies actually support this conclusion, and that this significant conceptual change in our understanding of this phenomenology opens the way to studying few-hole dynamics, to accurately gauge the strength of the `magnetic glue’ and its contribution to superconductivity.
Spin distributions and dynamics in domain walls guided by soft magnetic nanowire structures
NASA Astrophysics Data System (ADS)
Yang, Jusang; Erskine, James L.
2017-01-01
Numerical simulations are used to investigate static and dynamic properties of spin distributions within domain walls confined by rectangular cross section Permalloy nanowire conduits having widths up to 1000 nm and thickness up to 50 nm. Phase boundaries and critical regions associated with domain-wall spin distributions of various topologies [transverse (or asymmetric transverse), vortex, double-vortex, triple-vortex and cross-tie] are accurately determined using high-performance computing resources. Mobility curves are calculated that characterize domain-wall propagation for an interesting region of the spin texture phase diagram: 20 nm thick nanowires with widths of 60-700 nm at axial drive fields extending to 150 Oe. The simulations (and corresponding experiments, which are discussed), reveal new propagating fixed configuration domain-wall topologies with enhanced velocity. Effects of temperature on the spin distributions and dynamics are explored, by conducting simulations that include separately varying temperature-dependent parameters (saturation magnetization and exchange constant) and simulating effects of temperature-dependent fluctuations using the Langevin dynamics feature of the simulation code. Related temperature-dependent experiments are discussed. The simulation studies demonstrate a close connection between static and (field-driven) dynamic spin configurations in nanowire-confined domain walls and demonstrate the importance of exploring model-system parameter space at high numerical precision.
Non-Markovian dynamics in the extended cluster spin-1/2 XX chain
NASA Astrophysics Data System (ADS)
Mahmoudi, M.; Mahdavifar, S.; Zadeh, T. Mohammad Ali; Soltani, M. R.
2017-01-01
We study the dynamics of entanglement, mutual information, and quantum discord in the extended cluster spin-1/2 XX chain, equivalent to a one-dimensional spin-1/2 XX model with three-spin interaction (TSI). Selecting the nearest neighbor pair spins as an open quantum system, the rest of the chain plays the role of the environment. The two-point Heisenberg and the TSI are responsible for coupling between the system and the environment. Although the revival phenomenon of quantum correlations as an indication of non-Markovian dynamics is observed for TSI stronger than the Heisenberg interaction, the study of the trace distance has proven that the dynamical phase transition from the Markovian to the non-Markovian regime happens at a critical value where the TSI is equal to half of the Heisenberg interaction. By focusing on the nearest neighbor pair spins of the environment, we have also shown that the dynamics of quantum correlation in the environment is sensitive to Markovian and non-Markovian regions.
Benedetti, G.A.
1990-11-01
When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.
Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.
1959-02-17
Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.
Effect of modularity on the Glauber dynamics of the dilute spin glass model
NASA Astrophysics Data System (ADS)
Park, Jeong-Man
2014-11-01
We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r < 1/2 and q = (-1+4 r 2)/(32 r 4) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ and q = (-1+8 r 2)/(128 r 4) which is stable for r > 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.
NASA Astrophysics Data System (ADS)
Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.
2016-10-01
A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (< 100 psec), a regime that is not accessible in semiconductors using traditional Hanle techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296
Attitude dynamic of spin-stabilized satellites with flexible appendages
NASA Technical Reports Server (NTRS)
Renard, M. L.
1973-01-01
Equations of motion and computer programs have been developed for analyzing the motion of a spin-stabilized spacecraft having long, flexible appendages. Stability charts were derived, or can be redrawn with the desired accuracy for any particular set of design parameters. Simulation graphs of variables of interest are readily obtainable on line using program FLEXAT. Finally, applications to actual satellites, such as UK-4 and IMP-1 have been considered.
Flight dynamics of a spinning projectile descending on a parachute
Benedetti, G.A.
1989-02-01
During the past twenty years Sandia National Laboratories and the US Army have vertically gun launched numerous 155mm and eight-inch diameter flight test projectiles. These projectiles are subsequently recovered using an on-board parachute recovery system which is attached to the forward case structure of the projectile. There have been at least five attempts to describe, through analytical and numerical simulations, the translational and rotational motions of a spinning projectile descending on a parachute. However, none of these investigations have correctly described the large nutational motion of the projectile since all of them overlooked the fundamental mechanism which causes these angular motions. Numerical simulations as well as a closed form analytical solution show conclusively that the Magnus moment is responsible for the large nutational motion of the projectile. That is, when the center of pressure for the Magnus force is aft of the center of mass for the projectile, the Magnus moment causes an unstable (or large) nutational motion which always tends to turn the spinning projectile upside down while it is descending on the parachute. Conversely, when the center of mass for the projectile is aft of the center of pressure for the Magnus force, the Magnus moment stabilizes the nutational motion tending to always point the base of the spinning projectile down. The results of this work are utilized to render projectile parachute recovery systems more reliable and to explain what initially may appear to be strange gyrodynamic behavior of a spinning projectile descending on a parachute. 14 refs., 20 figs.
Linear dynamics of classical spin as Mobius transformation
Galda, Alexey; Vinokur, Valerii Ð.
2017-04-26
Though the overwhelming majority of natural processes occur far from the equilibrium, general theoretical approaches to non-equilibrium phase transitions remain scarce. Recent breakthroughs introduced a description of open dissipative systems in terms of non-Hermitian quantum mechanics enabling the identification of a class of non-equilibrium phase transitions associated with the loss of combined parity (reflection) and time-reversal symmetries. Here we report that the time evolution of a single classical spin (e.g. monodomain ferromagnet) governed by the Landau-Lifshitz-Gilbert-Slonczewski equation in the absence of magnetic anisotropy terms is described by a Mobius transformation in complex stereographic coordinates. We identify the parity-time symmetry-breaking phasemore » transition occurring in spin-transfer torque-driven linear spin systems as a transition between hyperbolic and loxodromic classes of Mobius transformations, with the critical point of the transition corresponding to the parabolic transformation. However, this establishes the understanding of non-equilibrium phase transitions as topological transitions in configuration space.« less
Soh, Wee Tee Ong, C. K.; Peng, Bin
2015-08-15
The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.
Wen, Zichao; Yan, Zhenya
2017-03-01
We report new matter-wave solutions of the one-dimensional spin-1 Bose-Einstein condensate system by combining global spin-rotation states and similarity transformation. Dynamical behaviors of non-stationary global spin-rotation states derived from the SU(2) spin-rotation symmetry are discussed, which exhibit temporal periodicity. We derive generalized bright-dark mixed solitons and new rogue wave solutions and reveal the relations between Euler angles in spin-rotation symmetry and parameters in ferromagnetic and polar solitons. In the modulated spin-1 Bose-Einstein condensate system, new solutions are derived and graphically illustrated for different types of modulations. Moreover, numerical simulations are performed to investigate the stability of some obtained solutions for chosen parameters.
A spin-wave logic gate based on a width-modulated dynamic magnonic crystal
Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Chumak, Andrii V.; Serga, Alexander A.; Vasyuchka, Vitaliy I.; Hillebrands, Burkard; Lähderanta, Erkki
2015-03-09
An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.
NASA Astrophysics Data System (ADS)
Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.
2013-01-01
We present the results of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson Ising spin glass with Gaussian disorder. Using parallel tempering (replica exchange) Monte Carlo we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the parallel tempering Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations and up to 1000 spins down to temperatures at 20% of the critical temperature is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free-energy landscape.
NASA Astrophysics Data System (ADS)
Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.
2012-02-01
We present the results of a large-scale numerical study of the equilibrium three-dimensional Ising spin glass with Gaussian disorder. Using replica exchange (parallel tempering) Monte Carlo, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the replica exchange Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations (N <=10^3 spins) down to very low temperatures (T 0.2Tc) is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free energy landscape. We also discuss the size dependence of several static quantities.
NASA Astrophysics Data System (ADS)
Corona, L. A.; Salgado-García, R.
2016-12-01
In this paper we study a class of one-dimensional spin chain having a highly degenerated set of ground-state configurations. The model consists of spin chain having infinite-range pair interactions with a given structure. We show that the set of ground-state configurations of such a model can be fully characterized by means of symbolic dynamics. Particularly we found that the set ground-state configurations define what in symbolic dynamics is called sofic shift space. Finally we prove that this system has a non-vanishing residual entropy (the topological entropy of the shift space), which can be exactly calculated.
Hole dynamics and spin currents after ionization in strong circularly polarized laser fields
NASA Astrophysics Data System (ADS)
Barth, Ingo; Smirnova, Olga
2014-10-01
We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields.
Nonequilibrium-induced enhancement of dynamical quantum coherence and entanglement of spin arrays
NASA Astrophysics Data System (ADS)
Zhang, Zhedong; Fu, Hongchen; Wang, Jin
2017-04-01
The random magnetic field produced by nuclear spins has long been viewed as the dominating source of decoherence in the quantum-dot based spins. Here we obtain in both exact and analytical manner the dynamics of spin qubits coupled to nuclear spin environments via the hyperfine interaction, going beyond the weak system-bath interaction and Markovian approximation. We predict that the detailed-balance breaking produced by chemical potential gradient in nuclear baths leads to the rapid oscillations of populations, quantum coherence and entanglement, which are absent in the conventional case (i.e., Overhauser noise). This is attributed to the nonequilibrium feature of the system as shown in the relation between the oscillation period and the chemical potential imbalance. Our results reveal the essentiality of nonequilibriumness with detailed-balance breaking for enhancing the dynamical coherence and entanglement of spin qubits. Moreover, our exact solution explicitly demonstrates that the non-Markovian bath comprised by nuclear spins can preserve the collective quantum state, due to the recovery of coherence. Finally, we propose an experiment using ultracold trapped ions to observe these nonequilibrium and memory effects.
Dynamics and control of flexible spinning solar sails under reflectivity modulation
NASA Astrophysics Data System (ADS)
Mu, Junshan; Gong, Shengping; Ma, Pengbin; Li, Junfeng
2015-10-01
Electrochromic devices have been used for the attitude control of a spinning solar sail in a deep space mission by modulating the reflectivity of the sail membrane. As a flexible spinning solar sail has no rigid structure to support its membrane, the distributed load due to solar radiation will lead to the deformation of the sail membrane, and the control torque generated by reflectivity modulation can introduce oscillatory motion to the membrane. By contrast, the deformation and oscillatory motion of the sail membrane have an impact on the performance of the reflectivity control. This paper investigates the dynamics and control of flexible spinning solar sails under reflectivity modulation. The static deformation of a spinning sail membrane subjected to solar radiation pressure in an equilibrium state is analyzed. The von Karman theory is used to obtain the displacements and the stress distribution in the equilibrium states. A simplified analytical first-order mode is chosen to model the membrane oscillation. The coupled membrane oscillation-attitude-orbit dynamics are considered for a GeoSail formation flying mission. The relative attitude and orbit control of flexible spinning solar sails under reflectivity modulation are numerically tested. The simulations indicate that the membrane deformation and oscillation have a lower impact on the control of the reflectivity modulated sails than the increase of the spinning rate.
Sugita, Yuji; Ikeguchi, Mitsunori; Toyoshima, Chikashi
2010-12-14
The sarcoplasmic reticulum Ca(2+)-ATPase transports two Ca(2+) per ATP hydrolyzed from the cytoplasm to the lumen against a large concentration gradient. During transport, the pump alters the affinity and accessibility for Ca(2+) by rearrangements of transmembrane helices. In this study, all-atom molecular dynamics simulations were performed for wild-type Ca(2+)-ATPase in the Ca(2+)-bound form and the Gln mutants of Glu771 and Glu908. Both of them contribute only one carboxyl oxygen to site I Ca(2+), but only Glu771Gln completely looses the Ca(2+)-binding ability. The simulations show that: (i) For Glu771Gln, but not Glu908Gln, coordination of Ca(2+) was critically disrupted. (ii) Coordination broke at site II first, although Glu771 and Glu908 only contribute to site I. (iii) A water molecule bound to site I Ca(2+) and hydrogen bonded to Glu771 in wild-type, drastically changed the coordination of Ca(2+) in the mutant. (iv) Water molecules flooded the binding sites from the lumenal side. (v) The side chain conformation of Ile775, located at the head of a hydrophobic cluster near the lumenal surface, appears critical for keeping out bulk water. Thus the simulations highlight the importance of the water molecule bound to site I Ca(2+) and point to a strong relationship between Ca(2+)-coordination and shielding of bulk water, providing insights into the mechanism of gating of ion pathways in cation pumps.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
NASA Astrophysics Data System (ADS)
Mi, Bin-Zhou
2016-09-01
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green's function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2013-01-07
Dynamic nuclear polarization is a method which allows for a dramatic increase of the NMR signals due to polarization transfer between electrons and their neighboring nuclei, via microwave irradiation. These experiments have become popular in recent years due to the ability to create hyper-polarized chemically and biologically relevant molecules, in frozen glass forming mixtures containing free radicals. Three mechanisms have been proposed for the polarization transfer between electrons and their surrounding nuclei in such non-conducting samples: the solid effect and cross effect mechanisms, which are based on quantum mechanics and relaxation on small spin systems, and thermal mixing, which originates from the thermodynamic macroscopic notion of spin temperature. We have recently introduced a spin model, which is based on the density matrix formalism and includes relaxation, and applied it to study the solid effect and cross effect mechanisms on small spin systems. In this publication we use the same model to describe the thermal mixing mechanism, and the creation of spin temperature. This is obtained without relying on the spin temperature formalism. Simulations of small model systems are used on systems with homogeneously and inhomogeneously broadened EPR lines. For the case of a homogeneously broadened line we show that the nuclear enhancement results from the thermal mixing and solid effect mechanisms, and that spin temperatures are created in the system. In the inhomogeneous case the enhancements are attributed to the solid effect and cross effect mechanisms, but not thermal mixing.
Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.
2015-06-21
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
Chaotic dynamics of stellar spin in binaries and the production of misaligned hot Jupiters.
Storch, Natalia I; Anderson, Kassandra R; Lai, Dong
2014-09-12
Many exoplanetary systems containing hot Jupiters are observed to have highly misaligned orbital axes relative to the stellar spin axes. Kozai-Lidov oscillations of orbital eccentricity and inclination induced by a binary companion, in conjunction with tidal dissipation, constitute a major channel for the production of hot Jupiters. We demonstrate that gravitational interaction between the planet and its oblate host star can lead to chaotic evolution of the stellar spin axis during Kozai cycles. As parameters such as the planet mass and stellar rotation period are varied, periodic islands can appear in an ocean of chaos, in a manner reminiscent of other dynamical systems. In the presence of tidal dissipation, the complex spin evolution can leave an imprint on the final spin-orbit misalignment angles.
Mance, Deni; Gast, Peter; Huber, Martina; Baldus, Marc; Ivanov, Konstantin L
2015-06-21
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between "bulk" and "core" nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
Low field domain wall dynamics in artificial spin-ice basis structure
Kwon, J.; Goolaup, S.; Lim, G. J.; Kerk, I. S.; Lew, W. S.; Chang, C. H.; Roy, K.
2015-10-28
Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure strongly influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.
Spin dynamics of close-in planets exhibiting large transit timing variations
NASA Astrophysics Data System (ADS)
Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.
2017-09-01
We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.
On the dynamics of misaligned accretion discs and spinning black holes
NASA Astrophysics Data System (ADS)
Lodato, G.; Pringle, J. E.
2005-12-01
In this contribution, I discuss the dynamics of misaligned accretion discs and spinning black holes in Active Galactic Nuclei, by using a nself-consistent time-dependent approach, that allows to properly track the evolution of the spin of the black hole during the alignment process. I show that, contrary to previous beliefs, the disc angular momentum and the black hole spin can end up counter-aligned, in such a way that accretion proceeds through retrograde orbits. I will discuss the implications that this counter-aligned mode of accretion has on observables from AGNs, such as the shape of X-ray iron lines, the shape of jets, and the possibility of obscuration of the central engine. I will also discuss, more in general, the effects of the alignment (or counter-alignment) process on the spin history of super-massive black holes.
Electron-nuclei spin dynamics in II-VI semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Le Gall, C.; Brunetti, A.; Boukari, H.; Besombes, L.
2012-05-01
We report on the dynamics of optically induced nuclear spin polarization in individual CdTe/ZnTe quantum dots loaded with one electron by modulation doping. The fine structure of the hot trion (charged exciton X- with an electron in the P shell) is identified in photoluminescence excitation spectra. A negative polarization rate of the photoluminescence, optical pumping of the resident electron, and the built up of dynamic nuclear spin polarization (DNSP) are observed in time-resolved optical pumping experiments when the quantum dot is excited at higher energy than the hot trion triplet state. The time and magnetic field dependence of the polarization rate of the X- emission allows us to probe the dynamics of formation of the DNSP in the optical pumping regime. We demonstrate using time-resolved measurements that the creation of a DNSP at B=0 T efficiently prevents longitudinal spin relaxation of the electron caused by fluctuations of the nuclear spin bath. The DNSP is built in the microsecond range at high excitation intensity. A relaxation time of the DNSP in about 10 μm is observed at B=0 T and significantly increases under a magnetic field of a few milli-Tesla. We discuss mechanisms responsible for the fast initialization and relaxation of the diluted nuclear spins in this system.
Distinguishing the ultrafast dynamics of spin and orbital moments in solids.
Boeglin, C; Beaurepaire, E; Halté, V; López-Flores, V; Stamm, C; Pontius, N; Dürr, H A; Bigot, J-Y
2010-05-27
For an isolated quantum particle, such as an electron, the orbital (L) and spin (S) magnetic moments can change provided that the total angular momentum of the particle is conserved. In condensed matter, an efficient transfer between L and S can occur owing to the spin-orbit interaction, which originates in the relativistic motion of electrons. Disentangling the absolute contributions of the orbital and spin angular momenta is challenging, however, as any transfer between the two occurs on femtosecond timescales. Here we investigate such phenomena by using ultrashort optical laser pulses to change the magnetization of a ferromagnetic film and then probe its dynamics with circularly polarized femtosecond X-ray pulses. Our measurements enable us to disentangle the spin and orbital components of the magnetic moment, revealing different dynamics for L and S. We highlight the important role played by the spin-orbit interaction in the ultrafast laser-induced demagnetization of ferromagnetic films, and show also that the magneto-crystalline anisotropy energy is an important quantity to consider in such processes. Our study provides insights into the dynamics in magnetic systems as well as perspectives for the ultrafast control of information in magnetic recording media.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Magnetization dynamics under heat current in metallic spin valves and in insulators
NASA Astrophysics Data System (ADS)
Yu, Haiming
Spin caloritronics, an emerging branch of spintronics, studying the addition of thermal effects to the electrical and magnetic properties of nanostructures, has recently seen a rapid development. It has been predicted by Hatami et al. that a heat current can exert a spin torque on the magnetization in a nanostructure, analogous to the well-known spin-transfer torque induced by an electrical current. We provided the experimental evidence for the thermal spin-transfer torque effect in spin valves, showing the switching field change with heat current. I will present measurements of the second harmonic voltage response of Co-Cu-Co pseudo-spinvalves deposited in the middle of Cu nanowires. Both the magnitude of the second harmonic response of the spin valve and the field value of the maximum response are found to be dependent on the heat current. Both effects show that the magnetization dynamics of the pseudo-spinvalves is influenced by the heat current. Thus, the data provide a quantitative estimate of the thermal spin torque exerted on the magnetization of the Co layers. In addition, I will present recent study on the magnetization dynamics in a magnetic insulator YIG film under in-plane heat current. The ferromagnetic resonance linewidth is found to be tuned by the applied temperature gradient, i.e. narrowing and broadening. This suggests that the Gilbert damping parameter is compensated or reinforced by the applied temperature gradient in respective direction. These observations can be understood as a heat-driven spin torque in magnetic insulators.
Polarization dynamics in spin-polarized vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Gerhardt, Nils C.; Höpfner, Henning; Lindemann, Markus; Hofmann, Martin R.
2014-08-01
Spin-polarized lasers and especially spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) are at- tractive novel spintronic devices providing functionalities and characteristics superior to their conventional purely charge-based counterparts. This applies in particular to ultrafast dynamics, modulation capability and chirp control of directly modulated lasers. Here we demonstrate that ultrafast oscillations of the circular polarization degree can be generated in VCSELs by pulsed spin injection which have the potential to reach frequencies beyond 100 GHz. These oscillations are due to the coupling of the carrier-spin-photon system via the optical birefringence for the linearly polarized laser modes in the micro-cavity and are principally decoupled from conventional relaxation oscillations of the carrier-photon system. Utilizing these polarization oscillations is a very promising path to ultrafast directly modulated spin-VCSELs in the near future as long as an effective concept can be developed to modulate or switch these polarization oscillations. After briefly reviewing the state of research in the emerging field of spin-VCSELs, we present a novel concept for controlled switching of polarization oscillations by use of multiple optical spin injection pulses. Depending on the amplitude and phase conditions of the excitation pulses, constructive or destructive interference of polarization oscillations leads to an excitation, stabilization or switch-off of these oscillations. Furthermore even short single polarization bursts can be generated with pulse widths only limited by the resonance frequency of the polarization oscillation. Consequently, this concept is an important building block for using spin controlled polarization oscillations for future communication applications.
Miniature piezoelectric transducer with elastic shield for dynamic studies of biological objects
NASA Astrophysics Data System (ADS)
Simonov, L. G.; Drobakhin, G. A.; Ioffe, Y. S.; Safarov, Y. S.; Talalayev, Y. G.
1985-11-01
In preparing for ultrasonic examination of biological objects, to provide reliable acoustic contact between the transducer and subject's body, the site of contact is irrigated with vaseline oil or other compound that produces acoustic contact and the sensor is held in the hand during the study. It is noted that the need to use liquid lubricants narrows the area of application of ultrasonic method, while manual immobilization of the transducer is acceptable only for brief studies related, for example, to evaluation of displacement or determination of geometric dimensions of different intratissular structures. The refinement of a piezoelectric transducer for dynamic tests and development of a nonliquid material to provide reliable acoustic contact between the transducer and biological object is discussed. Hemodynamic characteristics of the vascular system of the human brain in the course of long-term observation are evaluated.
Role of temperature-dependent spin model parameters in ultra-fast magnetization dynamics
NASA Astrophysics Data System (ADS)
Deák, A.; Hinzke, D.; Szunyogh, L.; Nowak, U.
2017-08-01
In the spirit of multi-scale modelling magnetization dynamics at elevated temperature is often simulated in terms of a spin model where the model parameters are derived from first principles. While these parameters are mostly assumed temperature-independent and thermal properties arise from spin fluctuations only, other scenarios are also possible. Choosing bcc Fe as an example, we investigate the influence of different kinds of model assumptions on ultra-fast spin dynamics, where following a femtosecond laser pulse, a sample is demagnetized due to a sudden rise of the electron temperature. While different model assumptions do not affect the simulational results qualitatively, their details do depend on the nature of the modelling.
Low-frequency spin dynamics in the CeMIn5 materials.
Curro, N J; Sarrao, J L; Thompson, J D; Pagliuso, P G; Kos, S; Abanov, Ar; Pines, D
2003-06-06
We measure the spin lattice relaxation of the planar In(1) nuclei in the CeMIn5 materials, extract quantitative information about the low energy spin dynamics of the lattice of Ce moments in both CeRhIn5 and CeCoIn5, and identify a crossover in the normal state. Above a temperature T(*) the Ce lattice exhibits "Kondo gas" behavior characterized by local fluctuations of independently screened moments; below T(*) both systems exhibit a "Kondo liquid" regime in which interactions between the local moments contribute to the spin dynamics. Both the antiferromagnetic and superconducting ground states in these systems emerge from the Kondo liquid regime. Our analysis provides strong evidence for quantum criticality in CeCoIn5.
Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon
NASA Astrophysics Data System (ADS)
Johnson, Steven
With femtosecond time resolution, x-ray diffraction offers unique capabilities to observe directly the dynamics of long range order. When the x-ray energy is tuned near a core-level transition is is possible in many systems to selectively study the dynamics of long-range order of valence properties such as orbital ordering or magnetic spin. Here I discuss show how resonantly enhanced magnetic scattering can be used to quantitatively measure the character and magnitude of spin motion in a coherent electromagnon in TbMnO3 driven by a THz frequency electromagnetic field. We observe a 4° rotation of the antiferromagnetically ordered spin spiral plane, a result consistent with a previously published model that suggests this may be a viable route for ultrafast domain switching in multiferroics.
Numerical study of the dynamics of some long range spin glass models
NASA Astrophysics Data System (ADS)
Billoire, Alain
2015-07-01
We present results of a Monte Carlo study of the equilibrium dynamics of the one dimensional long-range Ising spin glass model. By tuning a parameter σ , this model interpolates between the mean field Sherrington-Kirkpatrick model and a proxy of the finite dimensional Edward-Anderson model. Activated scaling fits for the behavior of the relaxation time τ as a function of the number of spins N (Namely \\ln (τ )\\propto {{N}\\psi} ) give values of \\psi that are not stable against inclusion of subleading corrections. Critical scaling (τ \\propto {{N}ρ} ) gives more stable fits, at least in the non mean field region. We also present results on the scaling of the time decay of the critical remanent magnetization of the Sherrington-Kirkpatrick model, a case where the simulation can be done with quite large systems and that shows the difficulties in obtaining precise values for dynamical exponents in spin glass models.
NASA Astrophysics Data System (ADS)
Zhao, Congpeng; Ma, Xingqiao; Huang, Houbing; Liu, Zhuhong; Jafri, Hasnain Mehdi; Wang, Jianjun; Wang, Xueyun; Chen, Long-Qing
2017-08-01
Understanding electric field effects on precession dynamics is crucial to the design of spin transfer torque devices for improving the performance in nano-oscillator. In this letter, the precession dynamics of a CoFeB/MgO multi-layer structured nano-oscillator under externally applied electric field is predicted using a micromagnetic simulation. It is revealed that the electric field can modify the range of oscillation spectra in single frequency mode. With the increase in electric field, there is a red-shift of the resonant frequency. When a positive electric field pulse is applied, a phase lag of the spin precession is induced, which is proportional to the pulse amplitude and duration. The present work is expected to stimulate future experimental efforts on designing devices with electric-field modulated spin transfer torque nano-oscillators.
NASA Astrophysics Data System (ADS)
Inoue, Jun-Ichi
2011-03-01
We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.
Dynamics of polymer film formation during spin coating
Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.; Mokarian-Tabari, P.
2014-09-28
Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.
Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...
2016-09-26
Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less
NASA Astrophysics Data System (ADS)
Han, Jae-Ho; Cho, Yong-Heum; Kim, Ki-Seok
2017-06-01
Resorting to a recently developed theoretical device called dimensional regularization for quantum criticality with a Fermi surface, we examine a metal-insulator quantum phase transition from a Landau's Fermi-liquid state to a U(1) spin-liquid phase with a spinon Fermi surface in two dimensions. Unfortunately, we fail to approach the spin-liquid Mott quantum critical point from the U(1) spin-liquid state within the dimensional regularization technique. Self-interactions between charge fluctuations called holons are not screened, which shows a run-away renormalization group flow, interpreted as holons remain gapped. This leads us to consider another fixed point, where the spinon Fermi surface can be destabilized across the Mott transition. Based on this conjecture, we reveal the nature of the spin-liquid Mott quantum critical point: Dimensional reduction to one dimension occurs for spin dynamics described by spinons. As a result, Landau damping for both spin and charge dynamics disappear in the vicinity of the Mott quantum critical point. When the flavor number of holons is over its critical value, an interacting fixed point appears to be identified with an inverted X Y universality class, controlled within the dimensional regularization technique. On the other hand, a fluctuation-driven first order metal-insulator transition results when it is below the critical number. We propose that the destabilization of a spinon Fermi surface and the emergence of one-dimensional spin dynamics near the spin-liquid Mott quantum critical point can be checked out by spin susceptibility with a 2 kF transfer momentum, where kF is a Fermi momentum in the U(1) spin-liquid state: The absence of Landau damping in U(1) gauge fluctuations gives rise to a divergent behavior at zero temperature while it vanishes in the presence of a spinon Fermi surface.
Egwolf, Bernhard; Tavan, Paul
2004-01-22
We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations, which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.
Effects of ruthenium seed layer on the microstructure and spin dynamics of thin permalloy films
Jin Lichuan; Zhang Huaiwu; Tang Xiaoli; Bai Feiming; Zhong Zhiyong
2013-02-07
The spin dynamics and microstructure properties of a sputtered 12 nm Ni{sub 81}Fe{sub 19} thin film have been enhanced by the use of a ruthenium seed layer. Both the ferromagnetic resonance field and linewidth are enhanced dramatically as the thickness of ruthenium seed layer is increased. The surface anisotropy energy constant can also be largely tailored from 0.06 to 0.96 erg/cm{sup -2} by changing the seed layer thickness. The changes to the dynamics magnetization properties are caused by both ruthenium seed layer induced changes in the Ni{sub 81}Fe{sub 19} structure properties and surface topography properties. Roughness induced inhomogeneous linewidth broadening is also seen. The damping constant is highly tunable via the ruthenium thickness. This approach can be used to tailor both the structure and spin dynamic properties of thin Ni{sub 81}Fe{sub 19} films over a wide range. And it may benefit the applications of spin dynamics and spin current based devices.
Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load
NASA Technical Reports Server (NTRS)
Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.
2005-01-01
After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.
Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions
NASA Astrophysics Data System (ADS)
Blessy, B. S. Gnana; Latha, M. M.
2017-10-01
We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.
Lattice-site-specific spin dynamics in double perovskite Sr2CoOsO6.
Yan, Binghai; Paul, Avijit Kumar; Kanungo, Sudipta; Reehuis, Manfred; Hoser, Andreas; Többens, Daniel M; Schnelle, Walter; Williams, Robert C; Lancaster, Tom; Xiao, Fan; Möller, Johannes S; Blundell, Stephen J; Hayes, William; Felser, Claudia; Jansen, Martin
2014-04-11
Magnetic properties and spin dynamics have been studied for the structurally ordered double perovskite Sr2CoOsO6. Neutron diffraction, muon-spin relaxation, and ac-susceptibility measurements reveal two antiferromagnetic (AFM) phases on cooling from room temperature down to 2 K. In the first AFM phase, with transition temperature TN1=108 K, cobalt (3d7, S=3/2) and osmium (5d2, S=1) moments fluctuate dynamically, while their average effective moments undergo long-range order. In the second AFM phase below TN2=67 K, cobalt moments first become frozen and induce a noncollinear spin-canted AFM state, while dynamically fluctuating osmium moments are later frozen into a randomly canted state at T≈5 K. Ab initio calculations indicate that the effective exchange coupling between cobalt and osmium sites is rather weak, so that cobalt and osmium sublattices exhibit different ground states and spin dynamics, making Sr2CoOsO6 distinct from previously reported double-perovskite compounds.
Precession dynamics of the relativistic electron spin in laser-plasma acceleration
Pugacheva, D V; Andreev, N E
2016-01-31
A model is developed to study the precession dynamics of the relativistic electron spin in a laser-plasma accelerator versus the initial energy of the electron and its injection phase. Optimal parameters providing minimum depolarisation of the electron in the acceleration process are determined. (laser -plasma acceleration of electrons)
Dynamical symmetries and crossovers in a three-spin system with collective dissipation
NASA Astrophysics Data System (ADS)
Pigeon, S.; Xuereb, A.; Lesanovsky, I.; Garrahan, J. P.; De Chiara, G.; Paternostro, M.
2015-01-01
We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smooth out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.
"Light-cone" dynamics after quantum quenches in spin chains.
Bonnes, Lars; Essler, Fabian H L; Läuchli, Andreas M
2014-10-31
Signal propagation in the nonequilibrium evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of "excitations" in an appropriately defined generalized Gibbs ensemble.
Tank Car Head Shield Fatigue Evaluation.
1982-11-01
shields and to record measurements which reflect the dynamic response of the head shield (and its attachments) and then to devise a method for...areas were instrumented for measuring strains. Other positions were also instrumented to obtain a breader understanding of the response of the shield ...center sill of four feet six inches, measured in a straight line between extreme edges; (ii) A minimum width at the top of shield of nine feet
Charged carrier spin dynamics in ZnO quantum wells and epilayers
NASA Astrophysics Data System (ADS)
Kim, Jungtaek; Puls, J.; Sadofev, S.; Henneberger, F.
2016-01-01
Longitudinal charged carrier spin dynamics is studied for ZnO quantum wells and epilayers using the optical transition of the negatively charged exciton X- and the neutral donor bound exciton D0X , respectively. The hole spin relaxation is derived from the optical orientation of X- and D0X photoluminescence, whereas the spin relaxation of the resident electrons and donor electrons is accessed via the bleaching of the spin selective excitation process. Hole spin relaxation times of τ1s ,h of 80 and 140 ps are found for D0X and X-, respectively, which are practically independent of a magnetic field B∥ applied along the ZnO c ⃗ axis. Much longer longitudinal electron spin relaxation times in the 1 μ s range are uncovered if the hyperfine interaction is suppressed by a proper B∥. A field strength of ≈2 mT is large enough proving the extremely small value of the Overhauser field in ZnO. This is related to the very restricted number of magnetic nuclei interacting with the electron inside the volume of the exciton complex.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T_{1} effects and DD microwave pulses are used to increase the transverse coherence time T_{2} from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
NASA Astrophysics Data System (ADS)
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-01
We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ˜0.7 ms up to ˜30 ms . We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Farfurnik, D.; Jarmola, A.; Pham, L. M.; ...
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Magnetization dynamics in LSMO/Pt nanowires in the presence of spin orbit torques
NASA Astrophysics Data System (ADS)
Lee, Hankyu; Barsukov, Igor; Safranski, Christopher; Jara, Alejandro; Chen, Yu-Jin; Swartz, Adrian; Kim, Bongju; Hwang, Harold; Krivorotov, Ilya
La0.7Sr0.3MnO3 (LSMO) possesses attractive magnetic properties for nanowire spin torque oscillators (STOs) driven by spin orbit torques: low magnetic damping, low saturation magnetization and high spin polarization. In this context, good understanding of magnetization dynamics in LSMO/Pt bilayer nanowires is important. Here, we report measurements of the spectral properties of spin-wave modes in LSMO/Pt nanowires magnetized along the two principal in-plane axes. In electrically-detected ferromagnetic resonance (FMR) we observe excitation of multiple spin wave modes, including non-aligned modes when the nanowire is magnetized perpendicular to its axis. Spectral linewidth of the FMR resonances gives quantitative information on the Gilbert damping parameter of the nanowire. In comparison to extended LSMO/Pt films, the magnetic damping in the nanowire is reduced due to the suppression of two-magnon scattering. We will present data on the effect of high bias current density applied to the wire on the frequency and linewidth of the observed spin wave resonances.
Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond.
Abrams, Daniel; Trusheim, Matthew E; Englund, Dirk R; Shattuck, Mark D; Meriles, Carlos A
2014-05-14
Optical pumping of spin polarization can produce almost complete spin order but its application is restricted to select atomic gases and condensed matter systems. Here, we theoretically investigate a novel route to nuclear spin hyperpolarization in arbitrary fluids in which target molecules are exposed to polarized paramagnetic centers located near the surface of a host material. We find that adsorbed nuclear spins relax to positive or negative polarization depending on the average paramagnetic center depth and nanoscale surface topology. For the particular case of optically pumped nitrogen-vacancy centers in diamond, we calculate strong nuclear spin polarization at moderate magnetic fields provided the crystal surface is engineered with surface roughness in the few-nanometer range. The equilibrium nuclear spin temperature depends only weakly on the correlation time describing the molecular adsorption dynamics and is robust in the presence of other, unpolarized paramagnetic centers. These features could be exploited to polarize flowing liquids or gases, as we illustrate numerically for the model case of a fluid brought in contact with an optically pumped diamond nanostructure.
Dynamics and performance optimization of spin-torque switching in magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Dunn, Thomas Edward
In this thesis I present a theoretical description for spin-torque switching using AC and DC spin-currents. This description builds from the standard Landau-Lifshitz-Gilbert equation with Slonczewski spin-torque. By exploiting a separation in time-scales between the fast precessional motion of the free layer magnetization about the effective field and the slow drift of the free layer towards higher or lower energies that results from ST and damping, I reduce the free layer switching dynamics to that of a one dimensional system. Using this description I characterize certain current and frequency values important to switching, such as the DC critical current and the AC upper bifurcation frequency. Finally, using this description I show how to optimize the efficiency of AC, DC, and combination AC/DC spin-current strategies to minimize the Joule heat loss associated with switching. This leads to a well-defined range of spin-current polarization and free layer anisotropy values where each spin-current strategy is optimal.
Critical clusters and efficient dynamics for frustrated spin models
NASA Astrophysics Data System (ADS)
Cataudella, V.; Franzese, G.; Nicodemi, M.; Scala, A.; Coniglio, A.
1994-03-01
A general method to find, in a systematic way, efficient Monte Carlo cluster dynamics among the vast class of dynamics introduced by Kandel et al. [Phys. Rev. Lett. 65, 941 (1990)] is proposed. The method is successfully applied to a class of frustrated two-dimensional Ising systems. In the case of the fully frustrated model, we also find the intriguing result that critical clusters consist of self-avoiding walk at the θ point.
Resolving the role of femtosecond heated electrons in ultrafast spin dynamics
Mendil, J.; Nieves, P.; Chubykalo-Fesenko, O.; Walowski, J.; Santos, T.; Pisana, S.; Münzenberg, M.
2014-01-01
Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal. PMID:24496221
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
Baltisberger, Jay Harvey
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.
Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.
2016-09-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.
NASA Astrophysics Data System (ADS)
Firastrau, I.; Ebels, U.; Buda-Prejbeanu, L.; Toussaint, J.-C.; Thirion, C.; Dieny, B.
2007-03-01
The dynamic state diagram for spin current-induced magnetization dynamics is presented for an out-of-plane magnetized (perpendicular) polarizer and an in-plane magnetized (planar) free layer as obtained from macrospin simulations. The state boundaries are compared upon using a constant spin polarization factor with an angular-dependent spin polarization factor g( θMP) as introduced by Slonczewski. While two critical boundaries remain unaffected by the angular dependence of the polarization, the transition from precession to an out-of-plane stable state is drastically shifted and shows a strong asymmetry with respect to the sign of the spin-polarized current.
Ripley, Edward B.
2009-11-24
A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.
Collective atomic motion and spin dynamics in a driven optical cavity
NASA Astrophysics Data System (ADS)
Stamper-Kurn, Dan
2016-05-01
Cavity quantum electrodynamics generally highlights the interchange of quantum noise and information between light and matter. I will discuss experiments in which the collective motion and spin of a trapped gas of ultracold atoms interact with and are detected by light in a single mode of a high-finesse optical cavity. I will present recent results on quantum-limited force detection, on the damping and amplification of Larmor precession through dynamical backaction, and on cavity-induced coupling between mechanical oscillators and between spin and motional degrees of freedom.
Transient dynamics of spin-polarized injection in helical Luttinger liquids
NASA Astrophysics Data System (ADS)
Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M.
2015-11-01
We analyze the time evolution of spin-polarized electron wave packets injected into the edge states of a two-dimensional topological insulator. In the presence of electron interactions, the system is described as a helical Luttinger liquid and injected electrons fractionalize. However, because of the presence of metallic detectors, no evidences of fractionalization are encoded in dc measurements, and in this regime the system does not show deviations from its non-interacting behavior. Nevertheless, we show that the helical Luttinger liquid nature emerges in the transient dynamics, where signatures of charge/spin fractionalization can be clearly identified.
Chaotic dynamics and spin correlation functions in a chain of nanomagnets
NASA Astrophysics Data System (ADS)
Chotorlishvili, L.; Toklikishvili, Z.; Komnik, A.; Berakdar, J.
2011-05-01
We study a chain of coupled nanomagnets in a classical approximation. We show that the infinitely long chain of coupled nanomagnets can be equivalently mapped onto an effective one-dimensional Hamiltonian with a fictitious time-dependent perturbation. We establish a connection between the dynamical characteristics of the classical system and spin correlation time. The decay rate for the spin correlation functions turns out to depend logarithmically on the maximal Lyapunov exponent. Furthermore, we discuss the nontrivial role of the exchange anisotropy within the chain.
Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics
Tomasello, R.; Carpentieri, M.; Finocchio, G.
2013-12-16
This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.
Non-equilibrium transport and spin dynamics in single-molecule magnets
NASA Astrophysics Data System (ADS)
Moldoveanu, V.; Dinu, I. V.; Tanatar, B.
2015-11-01
The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.
Spin dynamics of ZnSe-ZnTe nanostructures grown by migration enhanced molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Deligiannakis, Vasilios; Dhomkar, Siddharth; Ji, Haojie; Pagliero, Daniela; Kuskovsky, Igor L.; Meriles, Carlos A.; Tamargo, Maria C.
2017-03-01
We study the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots using time resolved Kerr rotation (TRKR). Three samples were grown with an increasing amount of Te, which correlates with increased quantum dot (QD) density. Samples with a higher quantum dot density exhibit longer electron spin lifetimes, up to ˜1 ns at low temperatures. Tellurium isoelectronic centers, which form in the ZnSe spacer regions as a result of the growth conditions, were probed via spectrally dependent TRKR. Temperature dependent TRKR results show that samples with high QD density are not affected by an electron-hole exchange dephasing mechanism.
Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E
2015-04-01
We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.
Reprint of : Transient dynamics of spin-polarized injection in helical Luttinger liquids
NASA Astrophysics Data System (ADS)
Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M.
2016-08-01
We analyze the time evolution of spin-polarized electron wave packets injected into the edge states of a two-dimensional topological insulator. In the presence of electron interactions, the system is described as a helical Luttinger liquid and injected electrons fractionalize. However, because of the presence of metallic detectors, no evidences of fractionalization are encoded in dc measurements, and in this regime the system does not show deviations from its non-interacting behavior. Nevertheless, we show that the helical Luttinger liquid nature emerges in the transient dynamics, where signatures of charge/spin fractionalization can be clearly identified.
NASA Astrophysics Data System (ADS)
Su, Sunyu
The spin dynamics of PrCl_3 and PrBr_3 have been studied in the temperature range from 124mK to 297K using Nuclear Quadrupole Resonance (NQR) techniques. In the low temperature regime, the Pr ions are in the ground state, and the dynamical properties of PrX_3 (X = Cl,Br) are well described by a 1D XY model. The data have been shown to be in agreement with the predictions of a relaxation theory for a magnetic interaction based on a rigorous treatment of the longitudinal dynamical correlation function < S_sp{z}{m}(t)S_sp {z}{n}(t)> of the electronic pseudo-spins S^{m} associated with the crystalline electric field ground state. The fits to the data have yielded reasonable values for the hyperfine interaction parameters A and exchange integrals J/k_{B}. The dynamical properties of the PrX_3 compounds depart from the 1D model as the temperature increases. The spin lattice relaxation rates display unusual temperature dependences in the high temperature regime. These temperature dependences have been qualitatively accounted for by considering the effect of populating the excited states of the crystal electric field. The theory of NQR mixed spin echoes in solids has been established using the interaction representation formalism. The NQR mixed spin echoes theory has been applied to the study of the spin interactions in PrBr_3 . It has been shown that the second moments due to quadrupole interaction M_sp{2} {q}, magnetic dipole-dipole interactions between like spins M_sp{2}{II } and magnetic dipole-dipole interactions between unlike spins M_sp{2}{IS}(Br,Pr ^{3+}),M_sp{2}{IS }(^{79}Br,^{81}Br ) can be simultaneously determined. NQR spectra have been obtained for both praseodymium trihalides. The low temperature spectrum of PrCl _3 has provided strong support to the earlier results. In addition, the present investigation of the NQR spectrum has resulted in a better estimate of the magnitude of dimerization in PrCl_3. The PrBr_3 low temperature NQR spectrum has revealed
Exciton fine structure and spin/valley dynamics in nanosystems (Presentation Recording)
NASA Astrophysics Data System (ADS)
Glazov, Mikhail M.
2015-09-01
In my invited talk the fine structure of neutral and charged excitons for GaAs/AlGaAs quantum dots (QDs) grown on (111) plane as well for transition metal dichalcogenides (TMDCs) monolayers will be discussed. These, at first glance, different systems posses similar trigonal symmetry, which makes exciton fine structure and spin dynamics unusual compared with standard low-dimensional semiconductors. The effects of long-range exchange interaction induced mixing of excitons in two valleys of TMDCs and of magneto-induced mixing of bright and dark excitonic states in trigonal QDs are predicted and confirmed experimentally. Manifestations of excitonic spin/valley dynamics in photoluminescence, pump-probe Kerr rotation and spin noise are discussed. The presentation will be based on the following references: [1] G. Sallen, B. Urbaszek, M. M. Glazov, et al., Dark-Bright Mixing of Interband Transitions in Symmetric Semiconductor Quantum Dots, Phys. Rev. Lett. 107, 166604 (2011). [2] L. Bouet, M. Vidal, T. Mano, N. Ha, T. Kuroda, M. V. Durnev, M. M. Glazov, et al., Charge tuning in [111] grown GaAs droplet quantum dots, Appl. Phys. Lett. 105, 082111 (2014). [3] M. M. Glazov, et al., Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides Phys. Rev. B 89, 201302(R) (2014). [4] C. R. Zhu, K. Zhang, M. Glazov, et al., Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers, Phys. Rev. B 90, 161302(R) (2014).
Dynamical transition in the D=3 Edwards-Anderson spin glass in an external magnetic field.
Baity-Jesi, M; Baños, R A; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Iñiguez, D; Maiorano, A; Mantovani, F; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Pivanti, M; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D
2014-03-01
We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses.
Testing statics-dynamics equivalence at the spin-glass transition in three dimensions
NASA Astrophysics Data System (ADS)
Fernández, Luis Antonio; Martín-Mayor, Víctor
2015-05-01
The statics-dynamics correspondence in spin glasses relate nonequilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.
Dynamical transition in the D =3 Edwards-Anderson spin glass in an external magnetic field
NASA Astrophysics Data System (ADS)
Baity-Jesi, M.; Baños, R. A.; Cruz, A.; Fernandez, L. A.; Gil-Narvion, J. M.; Gordillo-Guerrero, A.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martin-Mayor, V.; Monforte-Garcia, J.; Muñoz Sudupe, A.; Navarro, D.; Parisi, G.; Perez-Gaviro, S.; Pivanti, M.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J. J.; Schifano, S. F.; Seoane, B.; Tarancon, A.; Tripiccione, R.; Yllanes, D.; Janus Collaboration
2014-03-01
We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses.
Dynamics During Thrust Maneuvers of Flexible Spinning Satellites with Axial and Radial Booms
NASA Technical Reports Server (NTRS)
Longman, R. W.; Fedor, J. V.
1986-01-01
The dynamic response to operational maneuvers of spinning symmetric spacecraft with radial and axial booms was analyzed as part of the prelaunch dynamic analysis of the ISEE-3 spacecraft placed in a halo orbit around an Earth-Sun libration point, and later renamed ICE when it was directed to fly-by comet Giacobini-Zinner. The results presented use simple spacecraft models, and frequently give predictions that are good and easily obtained when the results from using a general purpose multibody dynamics program were very time consuming to obtain. Deployment of radial booms, spin-up after partial deployment, stationkeeping, and trajectory changes are analyzed. The latter two can involve both axial thrusting and pulsed radial thrusting once per revolution.
Order and thermalized dynamics in Heisenberg-like square and Kagomé spin ices.
Wysin, G M; Pereira, A R; Moura-Melo, W A; de Araujo, C I L
2015-02-25
Thermodynamic properties of a spin ice model on a Kagomé lattice are obtained from dynamic simulations and compared with properties in square lattice spin ice. The model assumes three-component Heisenberg-like dipoles of an array of planar magnetic islands situated on a Kagomé lattice. Ising variables are avoided. The island dipoles interact via long-range dipolar interactions and are restricted in their motion due to local shape anisotropies. We define various order parameters and obtain them and thermodynamic properties from the dynamics of the system via a Langevin equation, solved by the Heun algorithm. Generally, a slow cooling from high to low temperature does not lead to a particular state of order, even for a set of coupling parameters that gives well thermalized states and dynamics. At very low temperature, however, square ice is more likely to reach states near the ground state than Kagomé ice, for the same island coupling parameters.
Kozlov, G. G.
2007-10-15
The model used to describe the spin dynamics in quantum dots after optical excitation is considered. Problems of the electron-spin polarization decay and the dependence of the steady-state polarization on magnetic field are solved on the basis of exact diagonalization of the model Hamiltonian. An important role of the nuclear state is shown and methods of its calculation for different regimes of optical excitation are proposed. The effect of spin echo generation after application of a {pi} pulse of a magnetic field is predicted for the system under consideration.
Simulation of spin dynamics: a tool in MRI system development
NASA Astrophysics Data System (ADS)
Stöcker, Tony; Vahedipour, Kaveh; Shah, N. Jon
2011-05-01
Magnetic Resonance Imaging (MRI) is a routine diagnostic tool in the clinics and the method of choice in soft-tissue contrast medical imaging. It is an important tool in neuroscience to investigate structure and function of the living brain on a systemic level. The latter is one of the driving forces to further develop MRI technology, as neuroscience especially demands higher spatiotemporal resolution which is to be achieved through increasing the static main magnetic field, B0. Although standard MRI is a mature technology, ultra high field (UHF) systems, at B0 >= 7 T, offer space for new technical inventions as the physical conditions dramatically change. This work shows that the development strongly benefits from computer simulations of the measurement process on the basis of a semi-classical, nuclear spin-1/2 treatment given by the Bloch equations. Possible applications of such simulations are outlined, suggesting new solutions to the UHF-specific inhomogeneity problems of the static main field as well as the high-frequency transmit field.
NASA Astrophysics Data System (ADS)
Halabi, T.
2013-10-01
Stochastic dynamical reduction for the case of spin- z measurement of a spin-1/2 particle describes a random walk on the spin- z axis. The measurement’s result depends on which of the two points: spin- z=± ħ/2 is reached first. Born’s rule is recovered as long as the expected step size in spin- z is independent of proximity to endpoints. Here, we address the questions raised by this description: (1) When is collapse triggered, and what triggers it? (2) Why is the expected step size in spin- z (as opposed to polar angle) independent of proximity to endpoints? (3) Why does spin “lock” in the vertical directions? The difficulties associated with (1) are rooted, as is Bell’s theorem, in the time-asymmetric assumption that the present distribution over hidden variables is independent of future settings. We believe, a priori of any of the experiments of modern physics, that such a time-asymmetric assumption is dubious when probing the microscopic scale. As for (2) and (3), they are simultaneously resolved by abandoning the fundamental distinction drawn between spin and spatial angular momentum, and by appealing to very tiny (in both magnitude and spatial extent) but numerous patches of magnetic noise in the Stern-Gerlach’s field.
Micromagnetics of side shielded perpendicular magnetic recording heads
NASA Astrophysics Data System (ADS)
Takano, Kenichi; Liu, Yue; Liu, Kowang; Bai, Daniel Z.; Min, Tai; Wu, Yan; Dovek, Moris
Micromagnetic models of side shielded perpendicular magnetic recording heads show detailed magnetization configuration of the trailing and side shield during the dynamic writing process. The calculation result indicates possible origins of three kinds. The leakage field at the side shield edge, the side shield saturation, and trailing and side shield domain switching. The side shield edge and the saturation induced fields are based on the geometric boundary and they are limited to just around the side shield edge. However the shield switching field can spread to far track position from the side shield to the trailing shield, and it originates from magnetic boundary of the domains and wall formed during the dynamic writing process. As a result, it produces bump field at far track positions in some trailing and side shields.
Role of environmental correlations in the non-Markovian dynamics of a spin system
Lorenzo, Salvatore; Plastina, Francesco; Paternostro, Mauro
2011-09-15
We study the dynamics of a chain of interacting quantum particles affected by an individual or collective environment(s), focusing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environment magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as spin entanglement and purity that are not observed under a separable environmental state. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.
Wasielewski, M. R.
1998-08-27
Our current work in modeling reaction center dynamics has resulted in the observation of each major spin-dependent photochemical pathway that is observed in reaction centers. The development of new, simpler model systems has permitted us to probe deeply into the mechanistic issues that drive these dynamics. Based on these results we have returned to biomimetic chlorophyll-based electron donors to mimic these dynamics. Future studies will focus on the details of electronic structure and energetic of both the donor-acceptor molecules and their surrounding environment that dictate the mechanistic pathways and result in efficient photosynthetic charge separation.
Static versus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin glass.
Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Guidetti, M; Maiorano, A; Mantovani, F; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D
2010-10-22
We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.
Skyrmion dynamics in a chiral magnet driven by periodically varying spin currents*
NASA Astrophysics Data System (ADS)
Zhu, Rui; Zhang, Yin-Yan
2016-12-01
In this work, we investigated the spin dynamics in a slab of chiral magnets induced by an alternating (ac) spin current. Periodic trajectories of the skyrmion in real space are discovered under the ac current as a result of the Magnus and viscous forces, which originate from the Gilbert damping, the spin transfer torque, and the β-nonadiabatic torque effects. The results are obtained by numerically solving the Landau-Lifshitz-Gilbert equation and can be explained by the Thiele equation characterizing the skyrmion core motion. Supplementary material in the form of one avi file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2016-70467-9
Phase-space methods for the spin dynamics in condensed matter systems.
Hurst, Jérôme; Hervieux, Paul-Antoine; Manfredi, Giovanni
2017-04-28
Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin-[Formula: see text] fermions (typically, electrons) including the Zeeman effect and the spin-orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses
Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...
2016-11-22
We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less
Finite temperature dynamics of spin-1/2 chains with symmetry breaking interactions
NASA Astrophysics Data System (ADS)
Manmana, Salvatore R.; Tiegel, Alexander C.; Pruschke, Thomas; Honecker, Andreas
I will discuss recent developments for flexible matrix product state (MPS) approaches to calculate finite-temperature spectral functions of low-dimensional strongly correlated quantum systems. The main focus will be on a Liouvillian formulation. The resulting algorithm does not specifically depend on the MPS formulation, but is applicable for any wave function based approach which can provide a purification of the density matrix, opening the way for further developments of numerical methods. Based on MPS results for various spin chains, in particular systems with Dzyaloshinskii-Moriya interactions caused by spin-orbit coupling and dimerized chains, I will discuss how symmetry breaking interactions change the nature of the finite-temperature dynamic spin structure factor obtained in ESR and neutron scattering experiments. We acknowledge funding by the Helmholtz Virtual Institute ``New States of Matter and Their Excitations''.
Quantum spin dynamics and entanglement generation with hundreds of trapped ions.
Bohnet, Justin G; Sawyer, Brian C; Britton, Joseph W; Wall, Michael L; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J
2016-06-10
Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of (9)Be(+) ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods. Copyright © 2016, American Association for the Advancement of Science.
Collective-mode dynamics in a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Chen, Zhu; Zhai, Hui
2012-10-01
Recently a spin-orbit-coupled Bose condensate has been realized experimentally using two-photon Raman coupling, and this condensate exhibits two distinct equilibrium phases known as the plane wave phase and the stripe phase at equilibrium. In this Rapid Communication we show that such condensate exhibits unique dynamic behaviors, which originate from interactions and are absent in a noninteracting system. In the plane wave phase, a dipole mode will induce a breathing mode in its perpendicular plane and vice versa. This is a cooperation effect between spin-velocity locking and spin-dependent interaction. While in the stripe phase, a breathing mode will induce the sliding mode of the density stripe along its perpendicular direction. This reflects the fact that the sliding mode is the gapless excitation in this phase due to spontaneous spatial translation symmetry breaking.
Valero, Rosendo; Truhlar, Donald G
2007-09-06
A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian, called a valence diabatic representation, for systems in which spin-orbit coupling cannot be ignored is that the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic energies in terms of the singlet diabatic energies via Slater's rules and assuming constant ratios of Coulomb to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow one to deal with multibond reactions without having to include high-energy diabatic states. The global transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is constructed as the product of channel-specific transformation matrices, each one taken as the product of an asymptotic transformation matrix and a scaling function that depends on ratios of the spin-orbit splitting and the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions in a manner that
NASA Astrophysics Data System (ADS)
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya
2016-12-01
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices.
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K; Ghosh, Nirmalya
2016-12-22
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices.
Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.
Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A
2012-05-11
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya
2016-01-01
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825
Replica exchange Monte Carlo simulations of the ising spin glass: Static and dynamic properties
NASA Astrophysics Data System (ADS)
Yucesoy, Burcu
Spin glasses have been the subject of intense study and considerable controversy for decades, and the low-temperature phase of short-range spin glasses is still poorly understood. Our main goal is to improve our understanding in this area and find an answer to the following question: Are there only a single pair or a countable infinity of pure states in the low temperature phase of the EA spin glass? To that aim we first start by introducing spin glasses and provide a brief history of their research, then proceed to describe our method of simulation, the parallel tempering Monte Carlo algorithm. Next, we present the results of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson Ising spin glass with Gaussian disorder. In order to understand how the parallel tempering algorithm works, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the parallel tempering Monte Carlo method. We examine the correlation between static and dynamic observables for ˜ 5000 disorder realizations and up to 1000 spins down to temperatures at 20% of the critical temperature, and our results show that autocorrelation times are directly correlated with the roughness of the free-energy landscape. In the following chapters, the three- and four-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied again via large scale Monte Carlo simulations at low temperatures, deep within the spin glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. We arrive to the following conclusion: The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics
Veshtort, Mikhail; Griffin, Robert G.
2011-01-01
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics.
Veshtort, Mikhail; Griffin, Robert G
2011-10-07
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R(2)). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two (13)C nuclei and about ten (1)H nuclei from their nearest environment. Spin diffusion constants computed by this
Dynamics of entanglement in a two-dimensional spin system
Xu Qing; Sadiek, Gehad; Kais, Sabre
2011-06-15
We consider the time evolution of entanglement in a finite two-dimensional transverse Ising model. The model consists of a set of seven localized spin-(1/2) particles in a two-dimensional triangular lattice coupled through nearest-neighbor exchange interaction in the presence of an external time-dependent magnetic field. The magnetic field is applied in different function forms: step, exponential, hyperbolic, and periodic. We found that the time evolution of the entanglement shows an ergodic behavior under the effect of the time-dependent magnetic fields. Also, we found that while the step magnetic field causes great disturbance to the system, creating rapid oscillations, the system shows great controllability under the effects of the other magnetic fields where the entanglement profile follows closely the shape of the applied field even with the same frequency for periodic fields. This follow-up trend breaks down as the strength of the field, the transition constant for the exponential and hyperbolic forms, or the frequency for periodic field increase leading to rapid oscillations. We observed that the entanglement is very sensitive to the initial value of the applied periodic field: the smaller the initial value is, the less distorted the entanglement profile is. Furthermore, the effect of thermal fluctuations is very devastating to the entanglement, which decays very rapidly as the temperature increases. Interestingly, although a large value of the magnetic field strength may yield a small entanglement, the magnetic field strength was found to be more persistent against thermal fluctuations than the small field strengths.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
NASA Astrophysics Data System (ADS)
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.
2016-01-01
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; ...
2016-02-05
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blendsmore » exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. In conclusion, magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.« less
Influence of nonmagnetic impurity scattering on spin dynamics in diluted magnetic semiconductors
NASA Astrophysics Data System (ADS)
Cygorek, M.; Ungar, F.; Tamborenea, P. I.; Axt, V. M.
2017-01-01
The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin interaction between quasifree carriers and magnetic impurities but also to a local spin-independent disorder potential for the carriers. Based on a quantum kinetic theory for the carrier and impurity density matrices as well as the magnetic and nonmagnetic carrier-impurity correlations, the influence of the nonmagnetic scattering potential on the spin dynamics in DMS after optical excitation with circularly polarized light is investigated using the example of Mn-doped CdTe. It is shown that non-Markovian effects, which are predicted in calculations where only the magnetic carrier-impurity interaction is accounted for, can be strongly suppressed in the presence of nonmagnetic impurity scattering. This effect can be traced back to a significant redistribution of carriers in k -space which is enabled by the build-up of large carrier-impurity correlation energies. A comparison with the Markov limit of the quantum kinetic theory shows that, in the presence of an external magnetic field parallel to the initial carrier polarization, the asymptotic value of the spin polarization at long times is significantly different in the quantum kinetic and the Markovian calculations. This effect can also be attributed to the formation of strong correlations, which invalidates the semiclassical Markovian picture and it is stronger when the nonmagnetic carrier-impurity interaction is accounted for. In an external magnetic field perpendicular to the initial carrier spin, the correlations are also responsible for a renormalization of the carrier spin precession frequency. Considering only the magnetic carrier-impurity interaction, a significant renormalization is predicted for a very limited set of material parameters and excitation conditions. Accounting also for the nonmagnetic interaction, a relevant renormalization of the precession frequency is found to be more ubiquitous.
X-ray imaging of spin currents and magnetisation dynamics at the nanoscale
NASA Astrophysics Data System (ADS)
Bonetti, Stefano
2017-04-01
Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.
First-principles approach to Non-Collinear Magnetism: towards Spin Dynamics
NASA Astrophysics Data System (ADS)
Gross, E. K. U.
2008-03-01
Most formulations of spin density functional theory (SDFT) restrict the magnetization vector field to have global collinearity. Nevertheless, there exists a wealth of strong non-collinearity in nature, for example molecular magnets, spin-spirals, spin-glasses and all magnets at finite temperatures. The local spin density approximation (LSDA) can be extended to these non-collinear cases [1] but this extension has the undesirable property of having the exchange-correlation (xc) field parallel to the magnetization density at each point in space. When used in conjunction with the equation of motion for the spin magnetization in the absence of spin currents and external fields [2,3], this local collinearity eliminates the torsional term, resulting in no time evolution. This severe shortcoming of LSDA, where the physical prediction is qualitatively wrong, opens up an important new direction for the development of functionals where this time evolution is correctly described. Towards this goal, I will describe our extension of the Kohn-Sham optimized effective potential (OEP) method to the non-collinear case and derive the corresponding integral equations, applicable to both finite and extended systems [3,4]. Most importantly I'll show that the resulting magnetization and xc field are not locally collinear to each other for real solids, and will therefore produce manifestly different spin-dynamics. [1] J. Kuebler, K.-H. Hoeck, J. Sticht and A. R. Williams, J. Phys. F18, 469 (1993). [2] K. Capelle, G. Vignale and B. L. Gyoerffy, Phys. Rev. Lett.87, 206403 (2001). [3] S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem and E.K.U. Gross Phys. Rev. Lett.98, 196405 (2007) S. Sharma, S. Pittalis, S. Kurth, S. Shallcross, J. K. Dewhurst and E.K.U. Gross Phys. Rev. B76, 100401 (Rapid Comm.) (2007)
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP
Multi-Spin Interactions and Dynamics in Model Systems for Organic Molecular Materials
NASA Astrophysics Data System (ADS)
Gardner, Daniel M.
This thesis presents results from the application of electron paramagnetic resonance (EPR) techniques to study the spin-spin interactions of novel organic compounds possessing one or more unpaired electron spins. The first two chapters focus on the use of steady-state techniques to probe the interaction of a single unpaired electron with its surrounding environment. The second part of this thesis expands on these studies by employing transient techniques to analyze and control the spin-spin interactions and dynamics of systems which undergo photoinduced charge separation to generate multiple unpaired electrons. In Chapter 2 a series of novel trifluoromethylated perylene and naphthalene imide and diimide compounds are chemically reduced to yield their respective radical anions. EPR spectroscopy at both X-band and W-band fields allows for characterization of the hyperfine coupling constants and g-tensors which are important for studying their role as intermediates in electron transfer reactions. In Chapter 3 continuous-wave electron-nuclear double resonance (ENDOR) spectroscopy is employed to study the sharing of an unpaired electron across oligomers of naphthalene-1,8:4,5-bis(dicarboximide) in several novel geometries. Transient EPR techniques are introduced in Chapter 4 to measure the spin-spin interactions in photogenerated radical pairs in a series of electron donor-acceptor systems designed to mimic the photosynthetic reaction center. Measurement of the dipolar interaction at X-band fields allows for the determination of the radical pair distance, while the enhanced spectral resolution at W-band fields allows for analysis of the anisotropy of the g-tensors thereby allowing for the determination of the geometry of the radical pair. In Chapter 5 a novel U-shaped electron donor-acceptor-radical system is introduced in which use of a xanthene spacer results in negligible magnetic exchange interactions between the acceptor radical anion and the appended stable
Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel
NASA Technical Reports Server (NTRS)
1962-01-01
Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel. The film shows three spin tunnel tests of a 1/20 scale model of the Gemini capsule. In the first test, the capsule spins freely. In tests 2 and 3, a drogue parachute is attached to the capsule. [Entire movie available on DVD from CASI as Doc ID 20070030989. Contact help@sti.nasa.gov
Finite-temperature dynamics and thermal intraband magnon scattering in Haldane spin-one chains
NASA Astrophysics Data System (ADS)
Becker, J.; Köhler, T.; Tiegel, A. C.; Manmana, S. R.; Wessel, S.; Honecker, A.
2017-08-01
The antiferromagnetic spin-one chain is considerably one of the most fundamental quantum many-body systems, with symmetry-protected topological order in the ground state. Here, we present results for its dynamical spin structure factor at finite temperatures, based on a combination of exact numerical diagonalization, matrix-product-state calculations, and quantum Monte Carlo simulations. Open finite chains exhibit a subgap band in the thermal spectral functions, indicative of localized edge states. Moreover, we observe the thermal activation of a distinct low-energy continuum contribution to the spin spectral function with an enhanced spectral weight at low momenta and its upper threshold. This emerging thermal spectral feature of the Haldane spin-one chain is shown to result from intraband magnon scattering due to the thermal population of the single-magnon branch, which features a large bandwidth-to-gap ratio. These findings are discussed with respect to possible future studies on spin-one chain compounds based on inelastic neutron scattering.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; ...
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore » that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less
New insights into electron spin dynamics in the presence of correlated noise.
Spezia, S; Adorno, D Persano; Pizzolato, N; Spagnolo, B
2012-02-08
The changes in the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which takes into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examining the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitudes lower than the Gunn field, the dephasing length shortens with increasing noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.