Sample records for dynamical structural science

  1. Advances in engineering science, volume 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented dealing with structural dynamics; structural synthesis; and the nonlinear analysis of structures, structural members, and composite structures and materials. Applications of mathematics and computer science are included.

  2. Structure and dynamics of European sports science textual contents: Analysis of ECSS abstracts (1996-2014).

    PubMed

    Hristovski, Robert; Aceski, Aleksandar; Balague, Natalia; Seifert, Ludovic; Tufekcievski, Aleksandar; Cecilia, Aguirre

    2017-02-01

    The article discusses general structure and dynamics of the sports science research content as obtained from the analysis of 21998 European College of Sport Science abstracts belonging to 12 science topics. The structural analysis showed intertwined multidisciplinary and unifying tendencies structured along horizontal (scope) and vertical (level) axes. Methodological (instrumental and mode of inquiry) integrative tendencies are dominant. Theoretical integrative tendencies are much less detectable along both horizontal and vertical axes. The dynamic analysis of written abstracts text content over the 19 years reveals the contextualizing and guiding role of thematic skeletons of each sports science topic in forming more detailed contingent research ideas and the role of the latter in stabilizing and procreating the former. This circular causality between both hierarchical levels and functioning on separate characteristic time scales is crucial for understanding how stable research traditions self-maintain and self-procreate through innovative contingencies. The structure of sports science continuously rebuilds itself through use and re-use of contingent research ideas. The thematic skeleton ensures its identity and the contingent conceptual sets its flexibility and adaptability to different research or applicative problems.

  3. | NREL

    Science.gov Websites

    of NREL's Computational Science Center, where he uses electronic structure calculations and other introductory chemistry and physical chemistry. Research Interests Electronic structure and dynamics in the quantum/classical molecular dynamics simulation|Coupling of molecular electronic structure to

  4. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  5. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  6. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    NASA Astrophysics Data System (ADS)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic discourse becomes a problematic distinction. Regulative discourse is often more instructional and instructional discourse more instrumental in shaping roles and relationships within the learning community. This analysis suggests an agenda for future classroom research and the education of teachers, capitalizing on the SPD as heuristic and reevaluating the ways that social dynamics and structures for domain-specific learning interact in the realization of classroom learning.

  7. Paradigms, Citations, and Maps of Science: A Personal History.

    ERIC Educational Resources Information Center

    Small, Henry

    2003-01-01

    Discusses mapping science and Kuhn's theories of paradigms and scientific development. Highlights include cocitation clustering; bibliometric definition of a paradigm; specialty dynamics; pathways through science; a new Web tool called Essential Science Indicators (ESI) for studying the structure of science; and microrevolutions. (Author/LRW)

  8. Solid earth science in the 1990s. Volume 2: Panel reports

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is the second volume of a three-volume report. Volume 2, Panel Reports, outlines a plan for solid Earth science research for the next decade. The science panels addressed the following fields: plate motion and deformation, lithospheric structure and evolution, volcanology, Earth structure and dynamics, Earth rotation and reference frames, and geopotential fields.

  9. Introducing Students to Structural Dynamics and Earthquake Engineering

    ERIC Educational Resources Information Center

    Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel

    2010-01-01

    The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…

  10. Student Leadership in Small Group Science Inquiry

    ERIC Educational Resources Information Center

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-01-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of…

  11. Correlations between dynamics and atomic structures in Cu64.5Zr35.5 metallic glass

    NASA Astrophysics Data System (ADS)

    Wang, C. Z.; Zhang, Y.; Zhang, F.; Mendelev, M. I.; Kramer, M. J.; Ho, K. M.

    2015-03-01

    The atomic structure of Cu-Zr metallic glasses (MGs) has been widely accepted to be heterogeneous and dominated by icosahedral short range order (ISRO). However, the correlations between dynamics and atomic structures in Cu-Zr MGs remain an enigma. Using molecular dynamics (MD) simulations, we investigated the correlations between dynamics and atomic structures in Cu64.5Zr35.5 MG. The atomic structures are characterized using ISRO and the Bergman-type medium range order (BMRO). The simulation and analysis results show that the majority of the mobile atoms are not involved in ISRO or BMRO, indicating that the dynamical heterogeneity has a strong correlation to structural heterogeneity. Moreover, we found that the localized soft vibration modes below 1.0 THz are mostly concentrated on the mobile atoms. The diffusion was studied using the atomic trajectory collected in an extended time interval of 1.2 μs at 700 K in MD simulations. It was found that the long range diffusion in MGs is highly heterogeneous, which is confined to the liquid-like regions and strongly avoids the ISRO and the Bergman-type MRO. All These results clearly demonstrate strong correlations between dynamics (in terms of dynamical heterogeneity and diffusion) and atomic structures in Cu64.5Zr35.5 MGs. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under the Contract No. DE-AC02-07CH11358.

  12. Progression of 3D Protein Structure and Dynamics Measurements

    NASA Astrophysics Data System (ADS)

    Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2018-06-01

    New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.

  13. Engineering science and mechanics; Proceedings of the International Symposium, Tainan, Republic of China, December 29-31, 1981. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.

    1983-07-01

    The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061

  14. Collective phenomena in crowds—Where pedestrian dynamics need social psychology

    PubMed Central

    2017-01-01

    This article is on collective phenomena in pedestrian dynamics during the assembling and dispersal of gatherings. To date pedestrian dynamics have been primarily studied in the natural and engineering sciences. Pedestrians are analyzed and modeled as driven particles revealing self-organizing phenomena and complex transport characteristics. However, pedestrians in crowds also behave as living beings according to stimulus-response mechanisms or act as human subjects on the basis of social norms, social identities or strategies. To show where pedestrian dynamics need social psychology in addition to the natural sciences we propose the application of three categories–phenomena, behavior and action. They permit a clear discrimination between situations in which minimal models from the natural sciences are appropriate and those in which sociological and psychological concepts are needed. To demonstrate the necessity of this framework, an experiment in which a large group of people (n = 270) enters a concert hall through two different spatial barrier structures is analyzed. These two structures correspond to everyday situations such as boarding trains and access to immigration desks. Methods from the natural and social sciences are applied. Firstly, physical measurements show the influence of the spatial structure on the dynamics of the entrance procedure. Density, waiting time and speed of progress show large variations. Secondly, a questionnaire study (n = 60) reveals how people perceive and evaluate these entrance situations. Markedly different expectations, social norms and strategies are associated with the two spatial structures. The results from the questionnaire study do not always conform to objective physical measures, indicating the limitations of models which are based on objective physical measures alone and which neglect subjective perspectives. PMID:28591142

  15. Collective phenomena in crowds-Where pedestrian dynamics need social psychology.

    PubMed

    Sieben, Anna; Schumann, Jette; Seyfried, Armin

    2017-01-01

    This article is on collective phenomena in pedestrian dynamics during the assembling and dispersal of gatherings. To date pedestrian dynamics have been primarily studied in the natural and engineering sciences. Pedestrians are analyzed and modeled as driven particles revealing self-organizing phenomena and complex transport characteristics. However, pedestrians in crowds also behave as living beings according to stimulus-response mechanisms or act as human subjects on the basis of social norms, social identities or strategies. To show where pedestrian dynamics need social psychology in addition to the natural sciences we propose the application of three categories-phenomena, behavior and action. They permit a clear discrimination between situations in which minimal models from the natural sciences are appropriate and those in which sociological and psychological concepts are needed. To demonstrate the necessity of this framework, an experiment in which a large group of people (n = 270) enters a concert hall through two different spatial barrier structures is analyzed. These two structures correspond to everyday situations such as boarding trains and access to immigration desks. Methods from the natural and social sciences are applied. Firstly, physical measurements show the influence of the spatial structure on the dynamics of the entrance procedure. Density, waiting time and speed of progress show large variations. Secondly, a questionnaire study (n = 60) reveals how people perceive and evaluate these entrance situations. Markedly different expectations, social norms and strategies are associated with the two spatial structures. The results from the questionnaire study do not always conform to objective physical measures, indicating the limitations of models which are based on objective physical measures alone and which neglect subjective perspectives.

  16. Beyond Our Boundaries: Research and Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.

  17. Student leadership in small group science inquiry

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  18. Dynamics of Representational Change: Entropy, Action, and Cognition

    ERIC Educational Resources Information Center

    Stephen, Damian G.; Dixon, James A.; Isenhower, Robert W.

    2009-01-01

    Explaining how the cognitive system can create new structures has been a major challenge for cognitive science. Self-organization from the theory of nonlinear dynamics offers an account of this remarkable phenomenon. Two studies provide an initial test of the hypothesis that the emergence of new cognitive structure follows the same universal…

  19. Students' Conceptions as Dynamically Emergent Structures

    ERIC Educational Resources Information Center

    Brown, David E.

    2014-01-01

    There is wide consensus that learning in science must be considered a process of conceptual change rather than simply information accrual. There are three perspectives on students' conceptions and conceptual change in science that have significant presence in the science education literature: students' ideas as misconceptions, as…

  20. MIDWEST STRUCTURAL SCIENCES CENTER 2011 ANNUAL REPORT

    DTIC Science & Technology

    2011-10-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical...49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C

  1. Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard

    2008-01-01

    The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.

  2. Controlling Proton Delivery through Catalyst Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Allan Jay P.; Ginovska, Bojana; Kumar, Neeraj

    The fastest synthetic molecular catalysts for production and oxidation of H2 emulate components of the active site of natural hydrogenases. The role of controlled structural dynamics is recognized as a critical component in the catalytic performance of many enzymes, including hydrogenases, but is largely neglected in the design of synthetic molecular cata-lysts. In this work, the impact of controlling structural dynamics on the rate of production of H2 was studied for a series of [Ni(PPh2NC6H4-R2)2]2+ catalysts including R = n-hexyl, n-decyl, n-tetradecyl, n-octadecyl, phenyl, or cyclohexyl. A strong correlation was observed between the ligand structural dynamics and the rates ofmore » electrocatalytic hydrogen production in acetonitrile, acetonitrile-water, and protic ionic liquid-water mixtures. Specifically, the turnover frequencies correlate inversely with the rates of ring inversion of the amine-containing ligand, as this dynamic process dictates the positioning of the proton relay in the second coordination sphere and therefore governs protonation at either catalytically productive or non-productive sites. This study demonstrates that the dynamic processes involved in proton delivery can be controlled through modifications of the outer coordination sphere of the catalyst, similar to the role of the protein architecture in many enzymes. The present work provides new mechanistic insight into the large rate enhancements observed in aqueous protic ionic liquid media for the [Ni(PPh2NR2)]2+ family of catalysts. The incorporation of controlled structural dynamics as a design parameter to modulate proton delivery in molecular catalysts has enabled H2 production rates that are up to three orders of magnitude faster than the [Ni(PPh2NPh2)]2+complex. The observed turnover frequencies are up to 106 s-1 in acetonitrile-water, and over 107 s-1 in protic ionic liquid-water mixtures, with a minimal increase in overpotential. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less

  3. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  4. Midwest Structural Sciences Center 2010 Annual Report

    DTIC Science & Technology

    2011-06-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical Mechanics Branch Structures...Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C., Carroll J., Sehitoglu H., Lambros J

  5. An Evolutionary Approach to Harnessing Complex Systems Thinking in the Science and Technology Classroom

    ERIC Educational Resources Information Center

    Yoon, Susan A.

    2008-01-01

    Educational efforts to incorporate ethical decision-making in science classrooms about current science and technology issues have met with great challenges. Some research suggests that the inherent complexity in both the subject matter content and the structure and dynamics of classrooms contribute to this challenge. This study seeks to…

  6. Innovation: Key to the future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics.

  7. Is the Oxygen Atom Static or Dynamic? The Effect of Generating Animations on Students' Mental Models of Atomic Structure

    ERIC Educational Resources Information Center

    Akaygun, Sevil

    2016-01-01

    Visualizing the chemical structure and dynamics of particles has been challenging for many students; therefore, various visualizations and tools have been used in chemistry education. For science educators, it has been important to understand how students visualize and represent particular phenomena--i.e., their mental models-- to design more…

  8. Enhancing implementation science by applying best principles of systems science.

    PubMed

    Northridge, Mary E; Metcalf, Sara S

    2016-10-04

    Implementation science holds promise for better ensuring that research is translated into evidence-based policy and practice, but interventions often fail or even worsen the problems they are intended to solve due to a lack of understanding of real world structures and dynamic complexity. While systems science alone cannot possibly solve the major challenges in public health, systems-based approaches may contribute to changing the language and methods for conceptualising and acting within complex systems. The overarching goal of this paper is to improve the modelling used in dissemination and implementation research by applying best principles of systems science. Best principles, as distinct from the more customary term 'best practices', are used to underscore the need to extract the core issues from the context in which they are embedded in order to better ensure that they are transferable across settings. Toward meaningfully grappling with the complex and challenging problems faced in adopting and integrating evidence-based health interventions and changing practice patterns within specific settings, we propose and illustrate four best principles derived from our systems science experience: (1) model the problem, not the system; (2) pay attention to what is important, not just what is quantifiable; (3) leverage the utility of models as boundary objects; and (4) adopt a portfolio approach to model building. To improve our mental models of the real world, system scientists have created methodologies such as system dynamics, agent-based modelling, geographic information science and social network simulation. To understand dynamic complexity, we need the ability to simulate. Otherwise, our understanding will be limited. The practice of dynamic systems modelling, as discussed herein, is the art and science of linking system structure to behaviour for the purpose of changing structure to improve behaviour. A useful computer model creates a knowledge repository and a virtual library for internally consistent exploration of alternative assumptions. Among the benefits of systems modelling are iterative practice, participatory potential and possibility thinking. We trust that the best principles proposed here will resonate with implementation scientists; applying them to the modelling process may abet the translation of research into effective policy and practice.

  9. Sport science integration: An evolutionary synthesis.

    PubMed

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  10. Engineering science research issues in high power density transmission dynamics for aerospace applications. [rotorcraft geared rotors

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.

    1993-01-01

    This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.

  11. The Rise and Fall of the Social Science Curriculum Project in Iceland, 1974-84: Reflections on Reason and Power in Educational Progress.

    ERIC Educational Resources Information Center

    Edelstein, Wolfgang

    This description of the content and structure of a 10-year Icelandic Social Science Curriculum Project serves as a commentary on the role of the project in the context of Icelandic curriculum reform. A discussion of the place of structural developmental curricula in the reform dynamics of educational progressivism precede the specifics of the…

  12. Exploring complex networks.

    PubMed

    Strogatz, S H

    2001-03-08

    The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

  13. Mapping the Structure and Dynamics of Genomics-Related MeSH Terms Complex Networks

    PubMed Central

    Siqueiros-García, Jesús M.; Hernández-Lemus, Enrique; García-Herrera, Rodrigo; Robina-Galatas, Andrea

    2014-01-01

    It has been proposed that the history and evolution of scientific ideas may reflect certain aspects of the underlying socio-cognitive frameworks in which science itself is developing. Systematic analyses of the development of scientific knowledge may help us to construct models of the collective dynamics of science. Aiming at scientific rigor, these models should be built upon solid empirical evidence, analyzed with formal tools leading to ever-improving results that support the related conclusions. Along these lines we studied the dynamics and structure of the development of research in genomics as represented by the entire collection of genomics-related scientific papers contained in the PubMed database. The analyzed corpus consisted in more than 49,000 articles published in the years 1987 (first appeareance of the term Genomics) to 2011, categorized by means of the Medical Subheadings (MeSH) content-descriptors. Complex networks were built where two MeSH terms were connected if they are descriptors of the same article(s). The analysis of such networks revealed a complex structure and dynamics that to certain extent resembled small-world networks. The evolution of such networks in time reflected interesting phenomena in the historical development of genomic research, including what seems to be a phase-transition in a period marked by the completion of the first draft of the Human Genome Project. We also found that different disciplinary areas have different dynamic evolution patterns in their MeSH connectivity networks. In the case of areas related to science, changes in topology were somewhat fast while retaining a certain core-stucture, whereas in the humanities, the evolution was pretty slow and the structure resulted highly redundant and in the case of technology related issues, the evolution was very fast and the structure remained tree-like with almost no overlapping terms. PMID:24699262

  14. JPRS Report, Science & Technology, USSR: Life Sciences

    DTIC Science & Technology

    1987-11-05

    Sciences, Moscow] [Abstract] Derivatives of pyroglutamic acid , without the histidyl-proline fragment and containing gamma-amino butyric acid [GABA] as...activity of phytohormones, enzymes, carbohydrate metabolism, structural and functional changes of membranes, their lipid and fatty acid composition...Glyugitsur showed the influence of the initial heterogeneity of the suspension on the dynamics of acid resistance of erythrocytes during storage of blood at

  15. High-speed atomic force microscopy for observing protein molecules in dynamic action

    NASA Astrophysics Data System (ADS)

    Ando, T.

    2017-02-01

    Directly observing protein molecules in dynamic action at high spatiotemporal resolution has long been a holy grail for biological science. To materialize this long quested dream, I have been developing high-speed atomic force microscopy (HS-AFM) since 1993. Tremendous strides were recently accomplished in its high-speed and low-invasive performances. Consequently, various dynamic molecular actions, including bipedal walking of myosin V and rotary propagation of structural changes in F1-ATPase, were successfully captured on video. The visualized dynamic images not only provided irrefutable evidence for speculated actions of the protein molecules but also brought new discoveries inaccessible with other approaches, thus giving great mechanistic insights into how the molecules function. HS-AFM is now transforming "static" structural biology into dynamic structural bioscience.

  16. Effects of Construction of the Digital Multipurpose Range Complex (DMPRC) on Riparian and Stream Ecosystems at Fort Benning, Georgia. Addendum

    DTIC Science & Technology

    2009-06-01

    root dynamics in riparian forests. Soil Science Society of America 69(3):729-737. Houser, J. N., P. J. Mulholland, and K. O. Maloney. 2006. Upland...Forested Wetlands, D. M. Amatya and J. Nettles (eds). New Bern, NC. American Society of Agricultural and Biological Engineers, St. Joseph, MI...primary productivity, vegetation composition, structure, and fine root dynamics in riparian forests. Kelly O. Maloney, Ph.D. in Biological Sciences

  17. The Use of Web Search Engines in Information Science Research.

    ERIC Educational Resources Information Center

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  18. Can multilayer brain networks be a real step forward?. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    NASA Astrophysics Data System (ADS)

    Buldú, Javier M.; Papo, David

    2018-03-01

    Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].

  19. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 2

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)

    1999-01-01

    The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.

  20. The Race To X-ray Microbeam and Nanobeam Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ice, Gene E; Budai, John D; Pang, Judy

    2011-01-01

    X-ray microbeams are an emerging characterization tool with transformational implications for broad areas of science ranging from materials structure and dynamics, geophysics and environmental science to biophysics and protein crystallography. In this review, we discuss the race toward sub-10 nm- x-ray beams with the ability to penetrate tens to hundreds of microns into most materials and with the ability to determine local (crystal) structure. Examples of science enabled by current micro/nanobeam technologies are presented and we provide a perspective on future directions. Applications highlighted are chosen to illustrate the important features of various submicron beam strategies and to highlight themore » directions of current and future research. While it is clear that x-ray microprobes will impact science broadly, the practical limit for hard x-ray beam size, the limit to trace element sensitivity, and the ultimate limitations associated with near-atomic structure determinations are the subject of ongoing research.« less

  1. Hierarchical structure and dynamics of oligocarbonate-functionalized PEG block copolymer gels

    NASA Astrophysics Data System (ADS)

    Prabhu, Vivek; Wei, Guangmin; Ali, Samim; Venkataraman, Shrinivas; Yang, Yi Yan; Hedrick, James

    Hierarchical, self-assembled block copolymers in aqueous solutions provide advanced materials for biomaterial applications. Recent advancements in the synthesis of aliphatic polycarbonates have shown nontraditional micellar and hierarchical structures driven by the supramolecular assembly of the carbonate block functionality that includes cholesterol, vitamin D, and fluorene. This presentation shall describe the supramolecular assembly structure and dynamics observed by static and dynamic light scattering, small-angle neutron scattering and transmission electron microscopy in a model pi-pi stacking driven fluorene system. The combination of real-space and reciprocal space methods to develop appropriate models that quantify the structure from the micelle to transient gel network will be discussed. 1) Biomedical Research Council, Agency for Science, Technology and Research, Singapore, 2) NIST Materials Genome Initiative.

  2. A dynamic social systems model for considering structural factors in HIV prevention and detection

    PubMed Central

    Latkin, Carl; Weeks, Margaret; Glasman, Laura; Galletly, Carol; Albarracin, Dolores

    2010-01-01

    We present a model for HIV-related behaviors that emphasizes the dynamic and social nature of the structural factors that influence HIV prevention and detection. Key structural dimensions of the model include resources, science and technology, formal social control, informal social influences and control, social interconnectedness, and settings. These six dimensions can be conceptualized on macro, meso, and micro levels. Given the inherent complexity of structural factors and their interrelatedness, HIV prevention interventions may focus on different levels and dimensions. We employ a systems perspective to describe the interconnected and dynamic processes of change among social systems and their components. The topics of HIV testing and safer injection facilities are analyzed using this structural framework. Finally, we discuss methodological issues in the development and evaluation of structural interventions for HIV prevention and detection. PMID:20838871

  3. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.

    PubMed

    Ecke, Robert E

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.

  4. Software Applications on the Peregrine System | High-Performance Computing

    Science.gov Websites

    programming and optimization. Gaussian Chemistry Program for calculating molecular electronic structure and Materials Science Open-source classical molecular dynamics program designed for massively parallel systems framework Q-Chem Chemistry ab initio quantum chemistry package for predictin molecular structures

  5. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  6. Taking Emergence Seriously: The Centrality of Circular Causality for Dynamic Systems Approaches to Development

    ERIC Educational Resources Information Center

    Witherington, David C.

    2011-01-01

    The dynamic systems (DS) approach has emerged as an influential and potentially unifying metatheory for developmental science. Its central platform--the argument against design--suggests that structure spontaneously and without prescription emerges through self-organization. In one of the most prominent accounts of DS, Thelen and her colleagues…

  7. The Interactions between Problem Solving and Conceptual Change: System Dynamic Modelling as a Platform for Learning

    ERIC Educational Resources Information Center

    Lee, Chwee Beng

    2010-01-01

    This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…

  8. The science of space-time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.; Heller, M.

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics; Copernican kinematics; Newtonian dynamics; the space-time of classical dynamics; classical space-time in the presence of gravity; the space-time of special relativity; the space-time of general relativity; solutions and problems in general relativity; Mach's principle and the dynamics of space-time; theories of inertial mass; the integral formation of general relativity; and the frontiers of relativity (e.g., unified field theories and quantum gravity).

  9. Dave Simms | NREL

    Science.gov Websites

    coming to NREL, Dave was an Air Force officer and led a variety of defense science and engineering efforts in fluid dynamics, combustion, structures, materials, nanotechnology, multidisciplinary design

  10. Electrostatic cloaking of surface structure for dynamic wetting

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro; Nita, Satoshi; Do-Quang, Minh; Wang, Jiayu; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav

    2017-11-01

    Dynamic wetting problems are fundamental to the understanding of the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, as surfaces may often be naturally charged, or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. Here we investigate the interplay between electric forces and surface structures in dynamic wetting. While surface microstructures can significantly hinder the spreading, we find that the electrostatics can ``cloak'' the microstructures, i.e. deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties. This work was financially supported in part by, the Japan Society for the Promotion of Science, Swedish Governmental Agency for Innovation Systems, and the Japan Science and Technology Agency.

  11. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    Potter, P. Y.

    1990-01-01

    The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.

  12. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    NASA Astrophysics Data System (ADS)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  13. Large Deployable Reflector (LDR) feasibility study update

    NASA Technical Reports Server (NTRS)

    Alff, W. H.; Banderman, L. W.

    1983-01-01

    In 1982 a workshop was held to refine the science rationale for large deployable reflectors (LDR) and develop technology requirements that support the science rationale. At the end of the workshop, a set of LDR consensus systems requirements was established. The subject study was undertaken to update the initial LDR study using the new systems requirements. The study included mirror materials selection and configuration, thermal analysis, structural concept definition and analysis, dynamic control analysis and recommendations for further study. The primary emphasis was on the dynamic controls requirements and the sophistication of the controls system needed to meet LDR performance goals.

  14. The science of space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in generalmore » relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity (e.g., unified field theories and quantum gravity).« less

  15. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  16. Symposium II: Mechanochemistry in Materials Science, MRS Fall Meeting, Nov 30-Dec 4, 2009, Boston, MA

    DTIC Science & Technology

    2010-09-02

    Dynamic Mechanical Analysis (DMA). The fracture behavior of the mechanophore-linked polymer is also examined through the Double Cleavage Drilled ...multinary complex structures. Structural, microstructural, and chemical characterizations were explored by metrological tools to support this...simple hydrocarbons in order to quantitatively define structure-property relationships for reacting materials under shock compression. Embedded gauge

  17. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Dang, Liem X.

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occursmore » at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  19. Structural Safety of a Hubble Space Telescope Science Instrument

    NASA Technical Reports Server (NTRS)

    Lou, M. C.; Brent, D. N.

    1993-01-01

    This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.

  20. Solid earth science in the 1990s. Volume 1: Program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is volume one of a three volume series. A plan for solid earth science research for the next decade is outlined. The following topics are addressed: scientific requirements; status of current research; major new emphasis in the 1990's; interagency and international participation; and the program implementation plan. The following fields are represented: plate motion and deformation; lithospheric structure and evolution; volcanology; land surface (processes of change); earth structure and dynamics; earth rotation and reference frames; and geopotential fields. Other topics of discussion include remote sensing, space missions, and space techniques.

  1. Workshop on High-Field NMR and Biological Applications

    NASA Astrophysics Data System (ADS)

    Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.

  2. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: a Quasi-experimental Study

    NASA Astrophysics Data System (ADS)

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2017-03-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.

  3. Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Michael D.; Baer, Marcel D.; Mundy, Christopher J.

    2016-03-10

    The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids usingmore » a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less

  4. "Practical Action": Its Centrality in Producing and Reproducing the Formal Structure of School Organization.

    ERIC Educational Resources Information Center

    Cabraal, Liyana M. C.

    The behaviorist world view, influential in many social-science disciplines, is challenged by theories of action. With steady developments in nonbehaviorist thinking and related social-action conceptions, the study of school organizational structure can be transformed into a field centered about the dynamics of individuals' practical actions. This…

  5. A Teacher Education for Sustainable Development System: An Institutional Responsibility

    ERIC Educational Resources Information Center

    Bentham, Hayley; Sinnes, Astrid; Gjøtterud, Sigrid

    2015-01-01

    Soft systems methodology is commonly used in organizational research and can be very useful when attempting to understand both organizational structures and dynamics. A teacher education institution is identified here as an organization. Soft systems methodology is employed to gain a picture of the current organizational structure of a Science and…

  6. NASA Sun-Earth Connections Theory Program: The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, Joseph M. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period May 16,2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  7. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2002-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract "The Structure and Dynamics of the Solar Corona and Inner Heliosphere," NAS5-99188, between NASA and Science Applications International Corporation (SAIC), and covers the period May 16, 2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD (magnetohydrodynamic) model.

  8. Revealing mesoscopic structural universality with diffusion.

    PubMed

    Novikov, Dmitry S; Jensen, Jens H; Helpern, Joseph A; Fieremans, Els

    2014-04-08

    Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke.

  9. Gluons and the Quark Sea at High Energies: Distributions, Polarization, Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, Daniel; /Groningen U.; Diehl, Markus

    2012-06-07

    This report on the science case for an Electron-Ion Collider (EIC) is the result of a ten-week program at the Institute for Nuclear Theory (INT) in Seattle (from September 13-November 19, 2010), motivated by the need to develop a strong case for the continued study of the QCD description of hadron structure in the coming decades. Hadron structure in the valence quark region will be studied extensively with the Jefferson Lab 12 GeV science program, the subject of an INT program the previous year. The focus of the INT program was on understanding the role of gluons and sea quarks,more » the important dynamical degrees of freedom describing hadron structure at high energies. Experimentally, the most direct and precise way to access the dynamical structure of hadrons and nuclei at high energies is with a high luminosity lepton probe in collider mode. An EIC with optimized detectors offers enormous potential as the next generation accelerator to address many of the most important, open questions about the fundamental structure of matter. The goal of the INT program, as captured in the writeups in this report, was to articulate these questions and to identify golden experiments that have the greatest potential to provide definitive answers to these questions. At resolution scales where quarks and gluons become manifest as degrees of freedom, the structure of the nucleon and of nuclei is intimately connected with unique features of QCD dynamics, such as confinement and the self-coupling of gluons. Information on hadron sub-structure in DIS is obtained in the form of 'snapshots' by the 'lepton microscope' of the dynamical many-body hadron system, over different momentum resolutions and energy scales. These femtoscopic snapshots, at the simplest level, provide distribution functions which are extracted over the largest accessible kinematic range to assemble fundamental dynamical insight into hadron and nuclear sub-structure. For the proton, the EIC would be the brightest femtoscope scale lepton-collider ever, exceeding the intensity of the HERA collider a thousand fold. HERA, with its center-of-mass (CM) energy of 320 GeV, was built to search for quark substructure. An EIC, with its scientific focus on studying QCD in the regime where the sea quarks and gluons dominate, would have a lower CM energy. In a staged EIC design, the CM energy will range from 50-70 GeV in stage I to approximately twice that for the full design. In addition to being the first lepton collider exploring the structure of polarized protons, an EIC will also be the first electron-nucleus collider, probing the gluon and sea quark structure of nuclei for the first time. Following the same structure as the scientific discussions at the INT, this report is organized around the following four major themes: (1) The spin and flavor structure of the proton; (2) Three dimensional structure of nucleons and nuclei in momentum and configuration space; (3) QCD matter in nuclei; and (4) Electroweak physics and the search for physics beyond the Standard Model. In this executive summary, we will briefly outline the outstanding physics questions in these areas and the suite of measurements that are available with an EIC to address these. The status of accelerator and detector designs is addressed at the end of the summary. Tables of golden measurements for each of the key science areas outlined are presented on page 12. In addition, each chapter in the report contains a comprehensive overview of the science topic addressed. Interested readers are encouraged to read these and the individual contributions for more details on the present status of EIC science.« less

  10. Astromaterial Science

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew E.

    Recent work has used large scale molecular dynamics simulations to study the structures and phases of matter in the crusts of neutron stars, with an emphasis on applying techniques in material science to the study of astronomical objects. In the outer crust of an accreting neutron star, a mixture of heavy elements forms following an X-ray burst, which is buried and freezes. We will discuss the phase separation of this mixture, and the composition of the crust that forms. Additionally, calculations of the properties of the crust, such as diffusion coefficients and static structure factors, may be used to interpret observations. Deeper in the neutron star crust, at the base of the inner crust, nuclei are compressed until they touch and form structures which have come to be called 'nuclear pasta.' We study the phases of nuclear pasta with classical molecular dynamics simulations, and discuss how simulations at low density may be relevant to nucleosynthesis in neutron star mergers. Additionally, we discuss the structure factor of nuclear pasta and its impact on the properties of the crust, and use this to interpret observations of crust cooling in low mass X-ray binaries. Lastly, we discuss a correspondence between the structure of nuclear pasta and biophysics.

  11. Dynamics of representational change: entropy, action, and cognition.

    PubMed

    Stephen, Damian G; Dixon, James A; Isenhower, Robert W

    2009-12-01

    Explaining how the cognitive system can create new structures has been a major challenge for cognitive science. Self-organization from the theory of nonlinear dynamics offers an account of this remarkable phenomenon. Two studies provide an initial test of the hypothesis that the emergence of new cognitive structure follows the same universal principles as emergence in other domains (e.g., fluids, lasers). In both studies, participants initially solved gear-system problems by manually tracing the force across a system of gears. Subsequently, they discovered that the gears form an alternating sequence, thereby demonstrating a new cognitive structure. In both studies, dynamical analyses of action during problem solving predicted the spontaneous emergence of the new cognitive structure. Study 1 showed that a peak in entropy, followed by negentropy, key indicators of self-organization, predicted discovery of alternation. Study 2 replicated these effects, and showed that increasing environmental entropy accelerated discovery, a classic prediction from dynamics. Additional analyses based on the relationship between phase transitions and power-law behavior provide converging evidence. The studies provide an initial demonstration of the emergence of cognitive structure through self-organization.

  12. Probing Atomic Dynamics and Structures Using Optical Patterns

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2015-05-01

    Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.

  13. Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting

    2017-07-01

    To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project

  14. Capturing the Interplay of Dynamics and Networks through Parameterizations of Laplacian Operators

    DTIC Science & Technology

    2016-08-24

    important vertices and communities in the network. Specifically, for each dynamical process in this framework, we define a centrality measure that...vertices as a potential cluster (or community ) with respect to this process. We show that the subset-quality function generalizes the traditional conductance...compare the different perspectives they create on network structure. Subjects Network Science and Online Social Networks Keywords Network, Community

  15. Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains

    Treesearch

    Tamara Heartsill Scalley

    2017-01-01

    The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously...

  16. Scanning near-field optical microscopy.

    PubMed

    Vobornik, Dusan; Vobornik, Slavenka

    2008-02-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today's science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.

  17. Atmospheric science on the Galileo mission

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Colin, L.; Hansen, J. E.

    1986-01-01

    The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.

  18. Chemistry Division annual progress report for period ending April 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  19. Molecular Mechanics and Dynamics Characterization of an "in silico" Mutated Protein: A Stand-Alone Lab Module or Support Activity for "in vivo" and "in vitro" Analyses of Targeted Proteins

    ERIC Educational Resources Information Center

    Chiang, Harry; Robinson, Lucy C.; Brame, Cynthia J.; Messina, Troy C.

    2013-01-01

    Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems.…

  20. Revealing mesoscopic structural universality with diffusion

    PubMed Central

    Novikov, Dmitry S.; Jensen, Jens H.; Helpern, Joseph A.; Fieremans, Els

    2014-01-01

    Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke. PMID:24706873

  1. Do general physics textbooks discuss scientists’ ideas about atomic structure? A case in Korea

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general physics textbooks often lack detail about the history and philosophy of science. This result is quite similar to those published for the USA. Furthermore, chemistry textbooks published in the USA, Turkey and Venezuela are quite similar to the physics textbooks. This is a cause for concern as textbooks present theories as facts and ignore the historical reconstructions based on the development of scientific theories that frequently involve controversies and conflicts among scientists. The inclusion of historical reconstructions of ideas about atomic structure can provide students with a better appreciation of the dynamics of scientific progress.

  2. Radio Science Concepts and Approaches for Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Asmar, S. W.; Castillo, J. C.; Folkner, W. M.; Konopliv, A. S.; Marouf, E. A.; Rappaport, N. J.; Schubert, G.; Spilker, T. R.; Tyler, G. L.

    2003-01-01

    Radio Science experiments have been conducted on most deep space missions leading to numerous scientific discoveries. A set of concepts and approaches are proposed for the Jupiter Icy Moons Orbiter (JIMO) to apply Radio Science tools to investigate the interior structures of the Galilean Satellites and address key questions on their thermal and dynamical evolution. Measurements are identified that utilize the spacecraft's telecommunication system. Additional instruments can augment these measurements in order to leverage observational synergies. Experiments are also offered for the purpose of investigating the atmospheres and surfaces of the satellites.

  3. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  4. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Estimating Topology of Discrete Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Guo, Shu-Juan; Fu, Xin-Chu

    2010-07-01

    In this paper, by applying Lasalle's invariance principle and some results about the trace of a matrix, we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamical evolution of the network. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, two examples, including a Hénon map and a central network, are illustrated to verify the theoretical results.

  5. Parallel Computing in Protein Structure Topology Determination

    DTIC Science & Technology

    2008-12-01

    model, B) dynamic model. A B 6. REFERENCES Baker, M. L., W. Jiang, et al. (2006). "Ab initio modeling of the herpesvirus VP26 core...skeletons of secondary structures." J Mol Biol 350(3): 571-86. Zhou, Z. H., M. Dougherty, et al. (2000). "Seeing the herpesvirus capsid at 8.5 Å." Science 288(5467): 877-880.

  6. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    PubMed Central

    He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.

    2016-01-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. PMID:27824086

  7. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    DOE PAGES

    He, Z. -H.; Beaurepaire, B.; Nees, J. A.; ...

    2016-11-08

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here in this paper, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scalemore » by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.« less

  8. The Global Ecosystem Dynamics Investigation: Current Status

    NASA Astrophysics Data System (ADS)

    Dubayah, R.

    2016-12-01

    Spaceborne lidar has been identified as a key technology by the international ecosystem science community because it enables accurate estimates of canopy structure and biomass, forms the basis for fusion approaches with existing and planned missions, such as the NASA's ICESat2, ECOSTRESS and OCO3 missions, and extends the capabilities of radar missions such as the NASA-ISRO SAR, Tandem-X and the ESA BIOMASS missions. The Global Ecosystem Dynamics Investigation (GEDI) is a space-based lidar instrument scheduled for launch in late 2018. From its vantage point on the International Space Station, GEDI will provide high-resolution observations of forest vertical structure. These data will be used to address three core science questions: What is the aboveground carbon balance of the land surface? What role will the land surface play in mitigating atmospheric CO2 in the coming decades? How does ecosystem structure affect habitat quality and biodiversity? GEDI informs these science questions by making billions of lidar waveform observations per year. These canopy measurements are then used to estimate biomass and in fusion with radar and other remote sensing data to quantify changes in biomass resulting from disturbance and recovery. GEDI further marries ecosystem structure from lidar with ecosystem and habitat modeling to evaluate the impact of changes in land use and climate on carbon sequestration and biodiversity. In this talk we present an overview of the GEDI mission and its current implementation status. We first review its major science objectives and planned data sets. We then summarize GEDI algorithms and our approach to calibration and validation. Lastly, we provide the status of the instrument hardware build, as well as expected technical performance details.

  9. Research Reports: 1983 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Dozier, J. B.; Osborn, L.; Freeman, M.

    1983-01-01

    Thirty-five technical reports contain results of investigations in information and electronic systems; materials and processing; systems dynamics; structures and propulsion; and space sciences. Ecology at KSC, satellite de-spin, and the X-ray source monitor were also studied.

  10. Probing molecular dynamics in solution with x-ray valence-to-core spectroscopy

    NASA Astrophysics Data System (ADS)

    Doumy, Gilles; March, Anne Marie; Tu, Ming-Feng; Al Haddad, Andre; Southworth, Stephen; Young, Linda; Walko, Donald; Bostedt, Christoph

    2017-04-01

    Hard X-ray spectroscopies are powerful tools for probing the electronic and geometric structure of molecules in complex or disordered systems and have been particularly useful for studying molecules in the solution phase. They are element specific, sensitive to the electronic structure and the local arrangements of surrounding atoms of the element being selectively probed. When combined in a pump-probe scheme with ultrafast lasers, X-ray spectroscopies can be used to track the evolution of structural changes that occur after photoexcitation. Efficient use of hard x-ray radiation coming from high brilliance synchrotrons and upcoming high repetition rate X-ray Free Electron Lasers requires MHz repetition rate lasers and data acquisition systems. High information content Valence-to-Core x-ray emission is directly sensitive to the molecular orbitals involved in photochemistry. We report on recent progress towards fully enabling this photon-hungry technique for the study of time-resolved molecular dynamics, including efficient detection and use of polychromatic x-ray micro-probe at the Advanced Photon Source. Work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  11. Semiannual report, 1 April - 30 September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software for parallel computers. Research in these areas is discussed.

  12. A computer lab exploring evolutionary aspects of chromatin structure and dynamics for an undergraduate chromatin course*.

    PubMed

    Eirín-López, José M

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Photogrammetry Methodology Development for Gossamer Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Jones, Thomas W.; Walford, Alan; Black, Jonathan T.; Robson, Stuart; Shortis, Mark R.

    2002-01-01

    Photogrammetry--the science of calculating 3D object coordinates from images-is a flexible and robust approach for measuring the static and dynamic characteristics of future ultralightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.

  14. Beam dynamics design of the muon linac high-beta section

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.

    2017-07-01

    A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.

  15. SCANNING NEAR-FIELD OPTICAL MICROSCOPY

    PubMed Central

    Vobornik, Dušan; Vobornik, Slavenka

    2008-01-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution. PMID:18318675

  16. Microgravity Science and Applications Program Tasks, 1984 Revision

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1985-01-01

    This report is a compilation of the active research tasks as of the end of the fiscal year 1984 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. The purpose of the document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, strategy and overall goal; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications. The tasks are grouped into six categories: (1) electronic materials; (2) solidification of metals, alloys, and composites; (3) fluid dynamics and transports; (4) biotechnology; (5) glasses and ceramics; and (6) combustion.

  17. Chemical structure and dynamics: Annual report 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can bemore » brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.« less

  18. Sulfation effect on levan polysaccharide chains structure with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Coskunkan, Binnaz; Turgut, Deniz; Rende, Deniz; Malta, Seyda; Baysal, Nihat; Ozisik, Rahmi; Toksoy-Oner, Ebru

    Diversity in conformations and structural heterogeneity make polysaccharides the most challenging biopolymer type for experimental and theoretical characterization studies. Levan is a biopolymer chain that consists of fructose rings with β(2-6) linkages. It is a glycan that has great potential as a functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Sulfated polysaccharides are group of macromolecules with sulfated groups in their hydroxyl parts with a range of important biological properties. Sulfate groups and their positions have a major effect on anticoagulant activity. It is reported that sulfate modified levan has anticoagulant activity such as heparin. In the current study, the effect of sulfation on the structure and dynamics of unmodified and sulfate modified levan are investigated via fully atomistic Molecular Dynamics simulations in aqueous media and varying salt concentrations at 310 K. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  19. The birth and evolution of surface science: child of the union of science and technology.

    PubMed

    Duke, C B

    2003-04-01

    This article is an account of the birth and evolution of surface science as an interdisciplinary research area. Surface science emanated from the confluence of concepts and tools in physics and chemistry with technological innovations that made it possible to determine the structure and properties of surfaces and interfaces and the dynamics of chemical reactions at surfaces. The combination in the 1960s and 1970s of ultra-high-vacuum (i.e., P < 10(-7) Pascal or 10(-9) Torr) technology with the recognition that electrons in the energy range from 50 to 500 eV exhibited inelastic collision mean free paths of the order of a few angstroms fostered an explosion of activity. The results were a reformulation of the theory of electron solid scattering, the nearly universal use of electron spectroscopies for surface characterization, the rise of surface science as an independent interdisciplinary research area, and the emergence of the American Vacuum Society (AVS) as a major international scientific society. The rise of microelectronics in the 1970s and 1980s resulted in huge increases in computational power. These increases enabled more complex experiments and the utilization of density functional theory for the quantitative prediction of surface structure and dynamics. Development of scanning-probe microscopies in the 1990s led to atomic-resolution images of macroscopic surfaces and interfaces as well as videos of atoms moving about on surfaces during growth and diffusion. Scanning probes have since brought solid-liquid interfaces into the realm of atomic-level surface science, expanding its scope to more complex systems, including fragile biological materials and processes.

  20. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers

    DOE PAGES

    Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.; ...

    2016-10-20

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less

  1. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less

  2. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers

    PubMed Central

    Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.

    2016-01-01

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics. PMID:27764187

  3. Challenges in network science: Applications to infrastructures, climate, social systems and economics

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.

    2012-11-01

    Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.

  4. Molecular Dynamical Simulation of Thermal Conductivity in Amorphous Structures

    NASA Astrophysics Data System (ADS)

    Deangelis, Freddy; Henry, Asegun

    While current descriptions of thermal transport exists for well-ordered materials such as crystal latices, new methods are needed to describe thermal transport in disordered materials, including amorphous solids. Because such structures lack periodic, long-range order, a group velocity cannot be defined for thermal modes of vibration; thus, the phonon gas model cannot be applied to these structures. Instead, a new framework must be applied to analyze such materials. Using a combination of density functional theory and molecular dynamics, we have analyzed thermal transport in amorphous structures, chiefly amorphous germanium. The analysis allows us to categorize vibrational modes as propagons, diffusons, or locons, and to determine how they contribute to thermal conductivity within amorphous structures. This method is also being extended to other disordered structures such as amorphous polymers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903.

  5. Global Ultraviolet Imager (GUVI) investigation

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.

    1995-01-01

    This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.

  6. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Treesearch

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  7. Heliophysics 2009 Roadmap and Global Change: Possibilities for Improved Understanding of the Connection

    NASA Technical Reports Server (NTRS)

    Spann, Jim

    2010-01-01

    Heliophysics is the science that includes all aspects of the research needed to understand the Sun and its effects on the Earth and the solar system. Six science targets: 1. Origins of Near-Earth Plasma - to understand the origin and transport of terrestrial plasma from its source to the magnetosphere and solar wind. 2. Solar Energetic Particle Acceleration and Transport - to understand how and where solar eruptions accelerate energetic particles that reach Earth. 3. Ion-Neutral Coupling in the Atmosphere - to understand how neutral winds control ionospheric variability. 4. Climate Impacts of Space Radiation - to understand our atmosphere s response to auroral, radiation belt, and solar energetic particles, and the associated effects on nitric oxide (NO) and ozone. 5. Dynamic Geospace Coupling - to understand how magnetospheric dynamics provides energy into the coupled ionosphere-magnetosphere system. 6. Heliospheric Magnetics - to understand the flow and dynamics of transient magnetic structures form the solar interior to Earth.

  8. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO

    NASA Astrophysics Data System (ADS)

    Kuklin, A. I.; Rogachev, A. V.; Soloviov, D. V.; Ivankov, O. I.; Kovalev, Yu S.; Utrobin, P. K.; Kutuzov, S. A.; Soloviev, A. G.; Rulev, M. I.; Gordeliy, V. I.

    2017-05-01

    Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures.

  9. Reconstructing networks from dynamics with correlated noise

    NASA Astrophysics Data System (ADS)

    Tam, H. C.; Ching, Emily S. C.; Lai, Pik-Yin

    2018-07-01

    Reconstructing the structure of complex networks from measurements of the nodes is a challenge in many branches of science. External influences are always present and act as a noise to the networks of interest. In this paper, we present a method for reconstructing networks from measured dynamics of the nodes subjected to correlated noise that cannot be approximated by a white noise. This method can reconstruct the links of both bidirectional and directed networks, the correlation time and strength of the noise, and also the relative coupling strength of the links when the coupling functions have certain properties. Our method is built upon theoretical relations between network structure and measurable quantities from the dynamics that we have derived for systems that have fixed point dynamics in the noise-free limit. Using these theoretical results, we can further explain the shortcomings of two common practices of inferring links for bidirectional networks using the Pearson correlation coefficient and the partial correlation coefficient.

  10. GPS in dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.

    2000-01-01

    Global Positioning System (GPS) technology with high sampling rates (??? 10 samples per second) allows scientifically justified and economically feasible dynamic measurements of relative displacements of long-period structures-otherwise difficult to measure directly by other means, such as the most commonly used accelerometers that require post-processing including double integration. We describe an experiment whereby the displacement responses of a simulated tall building are measured clearly and accurately in real-time. Such measurements can be used to assess average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the building performance during extreme motions caused by earthquakes and strong winds. By establishing threshold displacements or drift ratios and identifying changing dynamic characteristics, procedures can be developed to use such information to secure public safety and/or take steps to improve the performance of the building. Published by Elsevier Science Ltd.

  11. Solar Probe Plus: A NASA Mission to Touch the Sun

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Bale, S. D.; Decker, R. B.; Howard, R.; Kasper, J. C.; McComas, D. J.; Szabo, A.; Velli, M. M.

    2013-12-01

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this poster, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  12. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  13. Wind Energy Program Summary. Volume 2: Research summaries, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-04-01

    Activities by the Federal Wind Energy program since the early 1980s have focused on developing a technology base necessary for industry to demonstrate the viability of wind energy as an alternative energy supply. The Federal Wind Energy Program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. These efforts have resulted in major advancements toward the development and commercialization of wind technology as an alternative energy source. The installation of more than 16,000 wind turbines in California by the end of 1987 provides evidence that commercial use of wind energy technology can be a viable source of electric power. Research in wind turbine sciences has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. As outlines in the projects that are described in this document, advancements in atmospheric fluid dynamics have been made through the development and refinement of wind characterization models and wind/rotor interaction prediction codes. Recent gains in aerodynamics can be attributed to a better understanding of airfoil operations, using innovative research approaches such as flow-visualization techniques. Qualitative information and data from laboratory and field tests are being used to document fatigue damage processes. These data are being used to develop new theories and data bases for structural dynamics, and will help to achieve long-term unit life and lower capital and maintenance costs. Material characterization and modeling techniques have been improved to better analyze effects of stress and fatigue on system components.

  14. Reconstruction of dynamic structures of experimental setups based on measurable experimental data only

    NASA Astrophysics Data System (ADS)

    Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang

    2018-03-01

    Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.

  15. Photogrammetry Methodology Development for Gossamer Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Jones, Thomas W.; Black, Jonathan T.; Walford, Alan; Robson, Stuart; Shortis, Mark R.

    2002-01-01

    Photogrammetry--the science of calculating 3D object coordinates from images--is a flexible and robust approach for measuring the static and dynamic characteristics of future ultra-lightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.

  16. Dynamics of Alliances.

    ERIC Educational Resources Information Center

    Hubbard, James; And Others

    To encourage the involvement of the community in mathematics, science, and technology education, some states and localities have formed alliances. This book outlines four key components of alliance building: process, environment, structure, and outcomes; and describes how changes in one component affect the others. It is designed to serve as a…

  17. Local structural mechanism for frozen-in dynamics in metallic glasses

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Wang, S. D.; Wang, H.; Wu, Y.; Liu, C. T.; Li, M.; Lu, Z. P.

    2018-04-01

    The nature of the glass transition is a fundamental and long-standing intriguing issue in the condensed-matter physics and materials science community. In particular, the structural response by which a liquid is arrested dynamically to form a glass or amorphous solid upon approaching its freezing temperature [the glass transition temperature (Tg)] remains unclear. Various structural scenarios in terms of the percolation theory have been proposed recently to understand such a phenomenon; however, there is still no consensus on what the general percolation entity is and how the entity responds to the sudden slowdown dynamics during the glass transition. In this paper, we demonstrate that one-dimensional local linear ordering (LLO) is a universal structural motif associated with the glass transition for various metallic glasses. The quantitative evolution of LLO with temperature indicates that a percolating LLO network forms to serve as the backbone of the rigid glass solid when the temperature approaches the freezing point, resulting in the frozen-in dynamics accompanying the glass transition. The percolation transition occurs by pinning different LLO networks together, which only needs the introduction of a small number of "joint" atoms between them, and therefore the energy expenditure is very low.

  18. Using Grand Challenges For Innovative Teaching in Structural Geology, Geophysics, and Tectonics

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Tewksbury, B. J.; Wysession, M. E.

    2012-12-01

    An innovative approach to teaching involves using the "Big Ideas" or "Grand Challenges" of a field, as determined by the research community in that area, as the basis for classroom activities. There have been several recent efforts in the areas of structural geology, tectonics, and geophysics to determine these Grand Challenges, including the areas of seismology ("Seismological Grand Challenges in Understanding Earth's Dynamic Systems"), mineral physics ("Unlocking the Building Blocks of the Planet"), EarthScope-related science ("Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020"), and structural geology and tectonics (at the Structural Geology and Tectonics Forum held at Williams College in June, 2012). These research community efforts produced frameworks of the essential information for their fields with the aim of guiding future research. An integral part of this, however, is training the next generation of scientists, and using these Big Ideas as the basis for course structures and activities is a powerful way to make this happen. When activities, labs, and homeworks are drawn from relevant and cutting-edge research topics, students can find the material more fascinating and engaging, and can develop a better sense of the dynamic process of scientific discovery. Many creative ideas for incorporating the Grand Challenges of structural geology, tectonics, and geophysics in the classroom were developed at a Cutting Edge workshop on "Teaching Structural Geology, Geophysics, and Tectonics in the 21st Century" held at the University of Tennessee in July, 2012.

  19. Search Regimes and the Industrial Dynamics of Science

    ERIC Educational Resources Information Center

    Bonaccorsi, Andrea

    2008-01-01

    The article addresses the issue of dynamics of science, in particular of new sciences born in twentieth century and developed after the Second World War (information science, materials science, life science). The article develops the notion of search regime as an abstract characterization of dynamic patterns, based on three dimensions: the rate of…

  20. Development of Improved Modeling and Analysis Techniques for Dynamics of Shell Structures

    DTIC Science & Technology

    1991-07-24

    Engineering Sciences and Center for Space Structures and Control University of Colorado,Campus Box 429 Boulder, Colorado 80309 Accesion :or -.... ... i...system architecture ; third, to implement a decomposi- tion/mapping procedure that matches as far as possible the layout of the processors to the...element computations. In particular. we address issues that are related to the processor memory size. to the SIMD architecture and to the fast

  1. Reconstruction of network topology using status-time-series data

    NASA Astrophysics Data System (ADS)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  2. Liquid Dynamics in high melting materials studied by inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Sinn, Harald; Alatas, Ahmet; Said, Ayman; Alp, Esen E.; Price, David L.; Saboungi, Marie Louis; Scheunemann, Richard

    2004-03-01

    The transport properties of high melting materials are of interest for a variety of applications, including geo-sciences, nuclear waste confinement and aerospace technology. While traditional methods of measuring transport properties are often extremely difficult due to the high reactivity of the melts, the combination of containerless levitation and inelastic X-ray scattering offers new insights in the microscopic dynamics of these liquids. Data on the dynamic structure factor of liquid aluminum oxide and liquid boron between 2000-2800 degree Celsius are discussed and related to several macroscopic quantities like sound velocity, viscosity and diffusion.

  3. The birth and evolution of surface science: Child of the union of science and technology

    PubMed Central

    Duke, C. B.

    2003-01-01

    This article is an account of the birth and evolution of surface science as an interdisciplinary research area. Surface science emanated from the confluence of concepts and tools in physics and chemistry with technological innovations that made it possible to determine the structure and properties of surfaces and interfaces and the dynamics of chemical reactions at surfaces. The combination in the 1960s and 1970s of ultra-high-vacuum (i.e., P < 10−7 Pascal or 10−9 Torr) technology with the recognition that electrons in the energy range from 50 to 500 eV exhibited inelastic collision mean free paths of the order of a few angstroms fostered an explosion of activity. The results were a reformulation of the theory of electron solid scattering, the nearly universal use of electron spectroscopies for surface characterization, the rise of surface science as an independent interdisciplinary research area, and the emergence of the American Vacuum Society (AVS) as a major international scientific society. The rise of microelectronics in the 1970s and 1980s resulted in huge increases in computational power. These increases enabled more complex experiments and the utilization of density functional theory for the quantitative prediction of surface structure and dynamics. Development of scanning-probe microscopies in the 1990s led to atomic-resolution images of macroscopic surfaces and interfaces as well as videos of atoms moving about on surfaces during growth and diffusion. Scanning probes have since brought solid–liquid interfaces into the realm of atomic-level surface science, expanding its scope to more complex systems, including fragile biological materials and processes. PMID:12651946

  4. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we showmore » that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.« less

  5. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science.

    PubMed

    Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T

    2018-02-15

    Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.

  6. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  7. Functional supramolecular polymers for biomedical applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Neptune and Triton: A Study in Future Exploration

    NASA Astrophysics Data System (ADS)

    Day, M. D.; Malaska, M. J.; Hosseini, S.; Mcgranaghan, R.; Fernandes, P. A.; Fougere, N.; Clegg, R. N.; Scully, J.; Alibay, F.; Ries, P.; Craig, P. L.; Hutchins, M. L.; Leonard, J.; Uckert, K.; Patthoff, A.; Girazian, Z.

    2013-12-01

    Neptune provides a unique natural laboratory for studying the dynamics of ice giants. Last visited by Voyager 2 in 1989, Neptune and its moon Triton hold important clues to the evolution of the solar system. The Voyager 2 flyby revealed Neptune to be a dynamic world with large storms, unparalleled wind speeds, and an unusual magnetic field. Triton, Neptune's largest satellite, is believed to be a captured Kuiper Belt Object with a thin atmosphere and possible sub-surface ocean. Further study of the farthest planet in our solar system could offer new insights into the dynamics of ice-giant exoplanets, and help us understand their complex atmospheres. The diverse science questions associated with Neptune and Triton motivate the complex and exciting mission proposed in this study. The proposed mission follows the guidelines of the 2013-2022 Planetary Science Decadal Survey, and optimizes the number of high priority science goals achieved, while still maintaining low mission costs. High priority science goals include understanding the structure, composition, and dynamics of Neptune's atmosphere and magnetosphere, as well as analyzing the surface of Triton. With a budget of $1.5 billion, the mission hosts an atmospheric probe and suite of instruments equipped with technologies significantly more advanced than those carried by Voyager 2. Additionally, the mission offers improved spatial coverage and higher resolution measurements than any previously achieved at Neptune. The proposed spacecraft would complete an orbital tour of Neptune and execute several close flybys of Triton. Further study of Neptune and Triton will provide exciting insights into what lies on the edge of our solar system and beyond. This study was prepared in conjunction with Jet Propulsion Laboratory's 2013 Planetary Science Summer School.

  9. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    NASA Technical Reports Server (NTRS)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; hide

    2015-01-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPPs main science goal is to determine the structure and dynamics of the Suns coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASAs Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPPs perihelion from 35 solar radii (RS) for the first orbit to less than 10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions.

  10. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M. K.; McComas, D. J.; Raouafi, N. E.; Szabo, A.

    2016-12-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASA's Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPP's perihelion from 35 solar radii (RS) for the first orbit to {<}10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions

  11. Crash energy management on the base of Movable cellular automata method

    NASA Astrophysics Data System (ADS)

    Psakhie, Serguei; Dmitriev, Andrei; Shilko, Evgueni; Tatarintsev, Evgueni; Korostelev, Serguei

    2001-06-01

    One of the main problems of materials science is increasing of structure's viability under dynamic loading. In general, a solution is the management of transformation of the energy of loading to the energy of destroying of the least important parts and details of the structure. It has to be noted that similar problem also exists in materials science, since a majority of modern materials are heterogeneous and have a complex internal structure. To optimize this structure for working under dynamic loading it is necessary to take into account the redistribution of elastic energy including phase transformation, generation and accumulation of micro-damages, etc. As far as real experiments on destroying the complex objects are sufficiently expensive and getting of detailed information is often associates with essential difficulties, the methods of computer modeling are used in solving the similar problems. As a rule, these are the methods of continuum mechanics. Although essential achievements have been obtained on the basis of these methods the continuum approach has several limitations, connected first of all with the possibility of description of generation of damages, formation and development of cracks and mass mixing effects. These problems may be solved on the basis of the Movable Cellular Automata (MCA) method, which has been successfully used for modeling fracture of the different material and structures In the paper behavior and peculiarities of failure of complex structures and materials under dynamic loading are studied on the basis of computer modeling. The results shown that sometimes even small changes of the internal structure leads to the significant increasing of the viability of the complex structures and materials. It is due to the elastic energy flux change over during the dynamical loading. This effect may be explained by the fact that elastic energy fluxes define the current stress concentration. Namely, because the area of inclusions are subjected by the largest displacement and due to less Young modulus of inclusions the loading pulses are transferred towards the other parts of the sample. This leads to "blurring" of the stress concentrators and conservation of wholeness of the structure. In its turn, this leads to essential raising up of threshold value of "injected" energy, i.e. the energy absorbed by the structure before loss of its carrying capacity. Practically, elastic energy "circulates" in the structure until a stress concentrator appears, which power will be sufficient for forming a macro-cracks. The results demonstrate a possibility of managing the fracture process under dynamic loading and raising viability of structures and heterogeneous materials by changing their internal structure, geometry, so by entering the specific inclusions.

  12. U.S. Materials Science on the International Space Station: Status and Plans

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  13. Watching proteins function with time-resolved x-ray crystallography

    NASA Astrophysics Data System (ADS)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.

  14. Watching proteins function with time-resolved x-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šrajer, Vukica; Schmidt, Marius

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in actionmore » and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.« less

  15. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  16. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    NASA Astrophysics Data System (ADS)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  17. Solvation Structure and Thermodynamic Mapping (SSTMap): An Open-Source, Flexible Package for the Analysis of Water in Molecular Dynamics Trajectories.

    PubMed

    Haider, Kamran; Cruz, Anthony; Ramsey, Steven; Gilson, Michael K; Kurtzman, Tom

    2018-01-09

    We have developed SSTMap, a software package for mapping structural and thermodynamic water properties in molecular dynamics trajectories. The package introduces automated analysis and mapping of local measures of frustration and enhancement of water structure. The thermodynamic calculations are based on Inhomogeneous Fluid Solvation Theory (IST), which is implemented using both site-based and grid-based approaches. The package also extends the applicability of solvation analysis calculations to multiple molecular dynamics (MD) simulation programs by using existing cross-platform tools for parsing MD parameter and trajectory files. SSTMap is implemented in Python and contains both command-line tools and a Python module to facilitate flexibility in setting up calculations and for automated generation of large data sets involving analysis of multiple solutes. Output is generated in formats compatible with popular Python data science packages. This tool will be used by the molecular modeling community for computational analysis of water in problems of biophysical interest such as ligand binding and protein function.

  18. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    NASA Astrophysics Data System (ADS)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  19. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    PubMed Central

    Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander

    2016-01-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033

  20. AMTD - Advanced Mirror Technology Development in Mechanical Stability

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2015-01-01

    Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.

  1. Analysis of coherent dynamical processes through computer vision

    NASA Astrophysics Data System (ADS)

    Hack, M. J. Philipp

    2016-11-01

    Visualizations of turbulent boundary layers show an abundance of characteristic arc-shaped structures whose apparent similarity suggests a common origin in a coherent dynamical process. While the structures have been likened to the hairpin vortices observed in the late stages of transitional flow, a consistent description of the underlying mechanism has remained elusive. Detailed studies are complicated by the chaotic nature of turbulence which modulates each manifestation of the process and which renders the isolation of individual structures a challenging task. The present study applies methods from the field of computer vision to capture the time evolution of turbulent flow features and explore the associated physical mechanisms. The algorithm uses morphological operations to condense the structure of the turbulent flow field into a graph described by nodes and links. The low-dimensional geometric information is stored in a database and allows the identification and analysis of equivalent dynamical processes across multiple scales. The framework is not limited to turbulent boundary layers and can also be applied to different types of flows as well as problems from other fields of science.

  2. Materials science. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration.

    PubMed

    Lee, Jae-Hwang; Loya, Phillip E; Lou, Jun; Thomas, Edwin L

    2014-11-28

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second. Copyright © 2014, American Association for the Advancement of Science.

  3. From structure to structural dynamics: Ahmed Zewail's legacy.

    PubMed

    Chergui, Majed; Thomas, John Meurig

    2017-07-01

    In this brief tribute to Ahmed Zewail, we highlight and place in the historical context, several of the major achievements that he and his colleagues have made in Femtochemistry (of which he was the principal instigator) and his introduction of ultrafast electron scattering, diffraction, microscopy and spectroscopy. By achieving a sub-picosecond temporal resolution, coupled with a picometer spatial resolution, he revolutionised our understanding of the corpus of chemical, physical, biological and materials science systems.

  4. The Inferential Structure of Actionable Science in Climatological and Hydrological Co-Productions

    NASA Astrophysics Data System (ADS)

    Brumble, K. C.

    2016-12-01

    Across the geophysical sciences, and in hydrology in particular, there is a growing emphasis on and desire to produce "actionable science" and "user-inspired" science. Fueled by the need to make research approachable, intelligible, and useful for decision-makers, policy-makers, and across disciplinary boundaries, actionable science endeavors seek to replace the traditional downward flow of information model for knowledge in the sciences. Instead the focus is on more dynamical knowledge flow between the local and contingent and the vast and complex. New methodologies which allow for the co-production of knowledge between modelers, model users, and decision-makers will be surveyed for the structure of knowledge flow present, and for innovations in communicating and handling uncertainties across traditional disciplinary boundaries. Current and possible future methods for handling sources of uncertainty and cascades of uncertainty will be addressed. Examples will be drawn from recent projects involving the interactions between climate modeling groups, hydrological modelers, and decision makers at the local and regional level in water security to try and identify key methodologies for the co-production of actionable knowledge exportable to other applications in the boundary between systems impacted by climate change.

  5. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  6. Emergence of a World Class Atmospheric Science Facility in the Central Himalayan Regions of India

    NASA Astrophysics Data System (ADS)

    Taori, A.; Sunilkumar, S. V.; Pant, P.; Sagar, R.

    A new institute Aryabhatta Research Institute of Observation Sciences ARIES has re-borne in year 2004 when the Department of Science and Technology Govt of India took over the 50 year old State Observatory Nainital situated at 2km above the mean sea level in the Shivalik range of central Himalayas Understanding the importance of Nainital 29 4 N 79 5 E it was decided that prime focus should be to set up a world-class research facility for atmospheric sciences apart from the existing astronomy and astrophysics Reason for the above being the strategic location of Nainital to study the free tropospheric aerosols stratosphere-troposphere exchange monsoon dynamics and atmospheric waves These waves can be seeded by the Himalayan topography and may propagate up to the mesosphere-lower thermosphere altitudes and manifest themselves as an important coupling agent between lower middle and upper atmosphere Advance facilities to study the middle atmospheric dynamics are getting established For this an 84-cm Rayleigh lidar is under development to study the thermal structure of the middle atmosphere which will be commissioned by year 2009 A new project has already been approved to set up a stratosphere-troposphere ST radar facility which will further help understanding the thermal structure and wind field measurements in troposphere-stratosphere altitudes To supplement these several airglow experiments will also be stationed for simultaneous measurements Such facilities are of great importance for coordination with the space borne measurements After

  7. Solar Probe Plus: A NASA Mission to Touch the Sun

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Velli, M. M. C.; Kasper, J. C.; McComas, D. J.; Howard, R.; Bale, S. D.; Decker, R. B.

    2014-12-01

    Solar Probe Plus (SPP), currently in Phase C, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this presentation, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  8. Phylomemetic patterns in science evolution--the rise and fall of scientific fields.

    PubMed

    Chavalarias, David; Cointet, Jean-Philippe

    2013-01-01

    We introduce an automated method for the bottom-up reconstruction of the cognitive evolution of science, based on big-data issued from digital libraries, and modeled as lineage relationships between scientific fields. We refer to these dynamic structures as phylomemetic networks or phylomemies, by analogy with biological evolution; and we show that they exhibit strong regularities, with clearly identifiable phylomemetic patterns. Some structural properties of the scientific fields - in particular their density -, which are defined independently of the phylomemy reconstruction, are clearly correlated with their status and their fate in the phylomemy (like their age or their short term survival). Within the framework of a quantitative epistemology, this approach raises the question of predictibility for science evolution, and sketches a prototypical life cycle of the scientific fields: an increase of their cohesion after their emergence, the renewal of their conceptual background through branching or merging events, before decaying when their density is getting too low.

  9. Perspectives of Community Co-Researchers About Group Dynamics and Equitable Partnership Within a Community-Academic Research Team.

    PubMed

    Vaughn, Lisa M; Jacquez, Farrah; Zhen-Duan, Jenny

    2018-04-01

    Equitable partnership processes and group dynamics, including individual, relational, and structural factors, have been identified as key ingredients to successful community-based participatory research partnerships. The purpose of this qualitative study was to investigate the key aspects of group dynamics and partnership from the perspectives of community members serving as co-researchers. Semistructured, in-depth interviews were conducted with 15 Latino immigrant co-researchers from an intervention project with Latinos Unidos por la Salud (LU-Salud), a community research team composed of Latino immigrant community members and academic investigators working in a health research partnership. A deductive framework approach guided the interview process and qualitative data analysis. The LU-Salud co-researchers described relationships, personal growth, beliefs/identity motivation (individual dynamics), coexistence (relational dynamics), diversity, and power/resource sharing (structural dynamics) as key foundational aspects of the community-academic partnership. Building on existing CBPR and team science frameworks, these findings demonstrate that group dynamics and partnership processes are fundamental drivers of individual-level motivation and meaning making, which ultimately sustain efforts of community partners to engage with the research team and also contribute to the achievement of intended research outcomes.

  10. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    PubMed

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  11. Structure, dynamics and stability of water/scCO 2/mineral interfaces from ab initio molecular dynamics simulations

    DOE PAGES

    Lee, Mal -Soon; Peter McGrail, B.; Rousseau, Roger; ...

    2015-10-12

    Here, the interface between a solid and a complex multi-component liquid forms a unique reaction environment whose structure and composition can significantly deviate from either bulk or liquid phase and is poorly understood due the innate difficulty to obtain molecular level information. Feldspar minerals, as typified by the Ca-end member Anorthite, serve as prototypical model systems to assess the reactivity and ion mobility at solid/water-bearing supercritical fluid (WBSF) interfaces due to recent X-ray based measurements that provide information on water-film formation, and cation vacancies at these surfaces. Using density functional theory based molecular dynamics, which allows the evaluation of reactivitymore » and condensed phase dynamics on equal footing, we report on the structure and dynamics of water nucleation and surface aggregation, carbonation and Ca mobilization under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar). We find that water has a strong enthalpic preference for aggregation on a Ca-rich, O-terminated anorthite (001) surface, but entropy strongly hinders the film formation at very low water concentrations. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies, when in contact with supercritical CO 2. Cation vacancies of this type can form readily in the presence of a water layer that allows for facile and enthalpicly favorable Ca 2+ extraction and solvation. Apart from providing unprecedented molecular level detail of a complex three component (mineral, water and scCO 2) system), this work highlights the ability of modern capabilities of AIMD methods to begin to qualitatively and quantitatively address structure and reactivity at solid-liquid interfaces of high chemical complexity. This work was supported by the US Department of Energy, Office of Fossil Energy (M.-S. L., B. P. M. and V.-A. G.) and the Office of Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences (R.R.), and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle. Computational resources were provided by PNNL’s Platform for Institutional Computing (PIC), the W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.« less

  12. The Emergence of Temporal Structures in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mainzer, Klaus

    2010-10-01

    Dynamical systems in classical, relativistic and quantum physics are ruled by laws with time reversibility. Complex dynamical systems with time-irreversibility are known from thermodynamics, biological evolution, growth of organisms, brain research, aging of people, and historical processes in social sciences. Complex systems are systems that compromise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous emergence of distinctive temporal, spatial or functional structures. But, emergence is no mystery. In a general meaning, the emergence of macroscopic features results from the nonlinear interactions of the elements in a complex system. Mathematically, the emergence of irreversible structures is modelled by phase transitions in non-equilibrium dynamics of complex systems. These methods have been modified even for chemical, biological, economic and societal applications (e.g., econophysics). Emergence of irreversible structures can also be simulated by computational systems. The question arises how the emergence of irreversible structures is compatible with the reversibility of fundamental physical laws. It is argued that, according to quantum cosmology, cosmic evolution leads from symmetry to complexity of irreversible structures by symmetry breaking and phase transitions. Thus, arrows of time and aging processes are not only subjective experiences or even contradictions to natural laws, but they can be explained by quantum cosmology and the nonlinear dynamics of complex systems. Human experiences and religious concepts of arrows of time are considered in a modern scientific framework. Platonic ideas of eternity are at least understandable with respect to mathematical invariance and symmetry of physical laws. Heraclit’s world of change and dynamics can be mapped onto our daily real-life experiences of arrows of time.

  13. Philosophy for the rest of cognitive science.

    PubMed

    Stepp, Nigel; Chemero, Anthony; Turvey, Michael T

    2011-04-01

    Cognitive science has always included multiple methodologies and theoretical commitments. The philosophy of cognitive science should embrace, or at least acknowledge, this diversity. Bechtel's (2009a) proposed philosophy of cognitive science, however, applies only to representationalist and mechanist cognitive science, ignoring the substantial minority of dynamically oriented cognitive scientists. As an example of nonrepresentational, dynamical cognitive science, we describe strong anticipation as a model for circadian systems (Stepp & Turvey, 2009). We then propose a philosophy of science appropriate to nonrepresentational, dynamical cognitive science. Copyright © 2011 Cognitive Science Society, Inc.

  14. Aortic root dynamics and surgery: from craft to science.

    PubMed

    Cheng, Allen; Dagum, Paul; Miller, D Craig

    2007-08-29

    Since the fifteenth century beginning with Leonardo da Vinci's studies, the precise structure and functional dynamics of the aortic root throughout the cardiac cycle continues to elude investigators. The last five decades of experimental work have contributed substantially to our current understanding of aortic root dynamics. In this article, we review and summarize the relevant structural analyses, using radiopaque markers and sonomicrometric crystals, concerning aortic root three-dimensional deformations and describe aortic root dynamics in detail throughout the cardiac cycle. We then compare data between different studies and discuss the mechanisms responsible for the modes of aortic root deformation, including the haemodynamics, anatomical and temporal determinants of those deformations. These modes of aortic root deformation are closely coupled to maximize ejection, optimize transvalvular ejection haemodynamics and-perhaps most importantly-reduce stress on the aortic valve cusps by optimal diastolic load sharing and minimizing transvalvular turbulence throughout the cardiac cycle. This more comprehensive understanding of aortic root mechanics and physiology will contribute to improved medical and surgical treatment methods, enhanced therapeutic decision making and better post-intervention care of patients. With a better understanding of aortic root physiology, future research on aortic valve repair and replacement should take into account the integrated structural and functional asymmetry of aortic root dynamics to minimize stress on the aortic cusps in order to prevent premature structural valve deterioration.

  15. Research on application of intelligent computation based LUCC model in urbanization process

    NASA Astrophysics Data System (ADS)

    Chen, Zemin

    2007-06-01

    Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.

  16. Mapping hydration dynamics and coupled water-protein fluctuations around a protein surface

    NASA Astrophysics Data System (ADS)

    Zhang, Luyuan; Wang, Lijuan; Kao, Ya-Ting; Qiu, Weihong; Yang, Yi; Okobiah, Oghaghare; Zhong, Dongping

    2009-03-01

    Elucidation of the molecular mechanism of water-protein interactions is critical to understanding many fundamental aspects of protein science, such as protein folding and misfolding and enzyme catalysis. We recently carried out a global mapping of protein-surface hydration dynamics around a globular α-helical protein apomyoglobin. The intrinsic optical probe tryptophan was employed to scan the protein surface one at a time by site-specific mutagenesis. With femtosecond resolution, we mapped out the dynamics of water-protein interactions with more than 20 mutants and for two states, native and molten globular. A robust bimodal distribution of time scales was observed, representing two types of water motions: local relaxation and protein-coupled fluctuations. The time scales show a strong correlation with the local protein structural rigidity and chemical identity. We also resolved two distinct contributions to the overall Stokes-shifts from the two time scales. These results are significant to understanding the role of hydration water on protein structural stability, dynamics and function.

  17. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of experimental and historical science topics

    NASA Astrophysics Data System (ADS)

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.

  18. Amorphous Carbon Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Amorphous carbon nanosphere used as the anode material for Li-intercalation in Lithium-ion energy storage. This structure was obtained through a thermal annealing process at a temperature of 3000 degree Kelvin, simulated using the LAMMPS molecular dynamics code on the LCRC Fusion resource. Science: Kah Chun Lau and Larry Curtiss Visualization: Aaron Knoll, Mark Hereld and Michael E. Papka

  19. Joined up Thinking? Evaluating the Use of Concept-Mapping to Develop Complex System Learning

    ERIC Educational Resources Information Center

    Stewart, Martyn

    2012-01-01

    In the physical and natural sciences, the complexity of natural systems and their interactions is becoming better understood. With increased emphasis on learning about complex systems, students will be encountering concepts that are dynamic, ill-structured and interconnected. Concept-mapping is a method considered particularly valuable for…

  20. Research and technology 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.

  1. Using DCOM to support interoperability in forest ecosystem management decision support systems

    Treesearch

    W.D. Potter; S. Liu; X. Deng; H.M. Rauscher

    2000-01-01

    Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...

  2. Women in Authority: A Sociopsychological Analysis

    ERIC Educational Resources Information Center

    Bayes, Marjorie; Newton, Peter M.

    1978-01-01

    A case study of a woman manager and her staff within a mental health center is analyzed in an attempt to interrelate organizational structure, leadership style, and staff group dynamics. The approach to the exercise of authority is sociopsychological. Available from: JAB S Order Dept., NTL Institute for Applied Behavioral Science, P.O. Box 9155,…

  3. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    PubMed

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  4. When do scientists become entrepreneurs? The social structural antecedents of commercial activity in the academic life sciences.

    PubMed

    Stuart, Toby E; Ding, Waverly W

    2006-07-01

    The authors examine the conditions prompting university-employed life scientists to become entrepreneurs, defined to occur when a scientist (1) founds a biotechnology company, or (2) joins the scientific advisory board of a new biotechnology firm. This study draws on theories of social influence, socialization, and status dynamics to examine how proximity to colleagues in commercial science influences individuals' propensity to transition to entrepreneurship. To expose the mechanisms at work, this study also assesses how proximity effects change over time as for-profit science diffuses through the academy. Using adjusted proportional hazards models to analyze case-cohort data, the authors find evidence that the orientation toward commercial science of individuals' colleagues and coauthors, as well as a number of other workplace attributes, significantly influences scientists' hazards of transitioning to for-profit science.

  5. Microsecond protein dynamics observed at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-07-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.

  6. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  7. Quantitative mass imaging of single biological macromolecules.

    PubMed

    Young, Gavin; Hundt, Nikolas; Cole, Daniel; Fineberg, Adam; Andrecka, Joanna; Tyler, Andrew; Olerinyova, Anna; Ansari, Ayla; Marklund, Erik G; Collier, Miranda P; Chandler, Shane A; Tkachenko, Olga; Allen, Joel; Crispin, Max; Billington, Neil; Takagi, Yasuharu; Sellers, James R; Eichmann, Cédric; Selenko, Philipp; Frey, Lukas; Riek, Roland; Galpin, Martin R; Struwe, Weston B; Benesch, Justin L P; Kukura, Philipp

    2018-04-27

    The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. The organization of successful participative management in a health sciences library.

    PubMed Central

    Wood, M B

    1977-01-01

    The University of Washington Health Sciences Library, Seattle, and its participative management process are described in detail. The evolution of the management system is reviewed by interrelating the various phases of the library's growth, its service complexities, and its communication needs. Staff development results of this participative management mode are discussed. Reference is made to the use of group dynamics concepts. The current organizational design, which integrates the participative subunit with the simple line management structure, is considered effective by both the library staff and its director. PMID:843648

  9. Self and world: large scale installations at science museums.

    PubMed

    Shimojo, Shinsuke

    2008-01-01

    This paper describes three examples of illusion installation in a science museum environment from the author's collaboration with the artist and architect. The installations amplify the illusory effects, such as vection (visually-induced sensation of self motion) and motion-induced blindness, to emphasize that perception is not just to obtain structure and features of objects, but rather to grasp the dynamic relationship between the self and the world. Scaling up the size and utilizing the live human body turned out to be keys for installations with higher emotional impact.

  10. Time and Space Resolved High Harmonic Imaging of Electron Tunnelling from Molecules

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2009-05-01

    High harmonic generation in intense laser fields carries the promise of combining sub-Angstrom spatial and attosecond temporal resolution of electronic structures and dynamics in molecules, see e.g. [1-3]. High harmonic emission occurs when an electron detached from a molecule by an intense laser field recombines with the parent ion [4]. Similar to Young's double-slit experiment, recombination to several ``lobes'' of the same molecular orbital can produce interference minima and maxima in harmonic intensities [1]. These minima (maxima) carry structural information -- they occur when the de-Broglie wavelength of the recombining electron matches distances between the centers. We demonstrate both theoretically and experimentally that amplitude minima (maxima) in the harmonic spectra can also have dynamical origin, reflecting multi-electron dynamics in the molecule. We use high harmonic spectra to record this dynamics and reconstruct the position of the hole left in the molecule after ionization. Experimental data are consistent with the hole starting in different places as the ionization dynamics changes from tunnelling to the multi-photon regime. Importantly, hole localization and subsequent attosecond dynamics are induced even in the tunnelling limit. Thus, even ``static'' tunnelling induced by a tip of a tunnelling microscope will generate similar attosecond dynamics in a sample. We anticipate that our approach will become standard in disentangling spatial and temporal information from high harmonic spectra of molecules.[4pt] In collaboration with Serguei Patchkovskii, National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada; Yann Mairesse, NRC Canada and CELIA, Universit'e Bordeaux I, UMR 5107 (CNRS, Bordeaux 1, CEA), 351 Cours de la Lib'eration, 33405 Talence Cedex, France; Nirit Dudovich, NRC Canada and Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; David Villeneuve, Paul Corkum, NRC Canada; and Misha Yu. Ivanov, NRC Canada and Imperial College of Science, Technology and Medicine, London SW7 2BW, United Kingdom. [4pt] [1] Lein, M., et al. Phys. Rev. Lett. 88, 183903 (2002).[0pt] [2] Itatani, J. et al. Nature 432, 834 (2004).[0pt] [3] Baker, S. et al Science 312, 424 (2006).[0pt] [4] Corkum, P. B.Phys. Rev. Lett. 71, 1994 (1993).

  11. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  12. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE PAGES

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  13. Reaction-diffusion processes at the nano- and microscales

    NASA Astrophysics Data System (ADS)

    Epstein, Irving R.; Xu, Bing

    2016-04-01

    The bottom-up fabrication of nano- and microscale structures from primary building blocks (molecules, colloidal particles) has made remarkable progress over the past two decades, but most research has focused on structural aspects, leaving our understanding of the dynamic and spatiotemporal aspects at a relatively primitive stage. In this Review, we draw inspiration from living cells to argue that it is now time to move beyond the generation of structures and explore dynamic processes at the nanoscale. We first introduce nanoscale self-assembly, self-organization and reaction-diffusion processes as essential features of cells. Then, we highlight recent progress towards designing and controlling these fundamental features of life in abiological systems. Specifically, we discuss examples of reaction-diffusion processes that lead to such outcomes as self-assembly, self-organization, unique nanostructures, chemical waves and dynamic order to illustrate their ubiquity within a unifying context of dynamic oscillations and energy dissipation. Finally, we suggest future directions for research on reaction-diffusion processes at the nano- and microscales that we find hold particular promise for a new understanding of science at the nanoscale and the development of new kinds of nanotechnologies for chemical transport, chemical communication and integration with living systems.

  14. Incorporating Social System Dynamics into the Food-Energy-Water System Resilience-Sustainability Modeling Process

    NASA Astrophysics Data System (ADS)

    Givens, J.; Padowski, J.; Malek, K.; Guzman, C.; Boll, J.; Adam, J. C.; Witinok-Huber, R.

    2017-12-01

    In the face of climate change and multi-scalar governance objectives, achieving resilience of food-energy-water (FEW) systems requires interdisciplinary approaches. Through coordinated modeling and management efforts, we study "Innovations in the Food-Energy-Water Nexus (INFEWS)" through a case-study in the Columbia River Basin. Previous research on FEW system management and resilience includes some attention to social dynamics (e.g., economic, governance); however, more research is needed to better address social science perspectives. Decisions ultimately taken in this river basin would occur among stakeholders encompassing various institutional power structures including multiple U.S. states, tribal lands, and sovereign nations. The social science lens draws attention to the incompatibility between the engineering definition of resilience (i.e., return to equilibrium or a singular stable state) and the ecological and social system realities, more explicit in the ecological interpretation of resilience (i.e., the ability of a system to move into a different, possibly more resilient state). Social science perspectives include but are not limited to differing views on resilience as normative, system persistence versus transformation, and system boundary issues. To expand understanding of resilience and objectives for complex and dynamic systems, concepts related to inequality, heterogeneity, power, agency, trust, values, culture, history, conflict, and system feedbacks must be more tightly integrated into FEW research. We identify gaps in knowledge and data, and the value and complexity of incorporating social components and processes into systems models. We posit that socio-biophysical system resilience modeling would address important complex, dynamic social relationships, including non-linear dynamics of social interactions, to offer an improved understanding of sustainable management in FEW systems. Conceptual modeling that is presented in our study, represents a starting point for a continued research agenda that incorporates social dynamics into FEW system resilience and management.

  15. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, S. P.; Brown, G.; Chase, T. F.

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less

  16. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  17. Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering.

    PubMed

    Wang, Yueliang; Fang, Lingling; Chen, Gaoli; Song, Lei; Deng, Zhaoxiang

    2018-02-01

    Despite the versatile forms of colloidal aggregates, these spontaneously formed structures are often hard to find a suitable application in nanotechnology and materials science. A determinate reason is the lack of a suitable method to capture the transiently formed and quickly evolving colloidal structures in solution. To address this challenge, a simple but highly efficient strategy is herein reported to capture the dynamic and metastable colloidal assemblies formed in an aqueous or nonaqueous solution. This process takes advantage of a recently developed Ag ion soldering reaction to realize a rapid fixation of as-formed metastable assemblies. This method works efficiently for both solid (3D) nanoparticle aggregates and weakly bonded fractal nanoparticle chains (1D). In both cases, very high capturing speed and close to 100% efficiency are achieved to fully retain a quickly growing structure. The soldered nanochains further enable a fabrication of discrete, uniform, and functionalizable nanoparticle clusters with enriched linear conformation by mechanical shearing, which would otherwise be difficult to make. The captured products are water dispersible and mechanically robust, favoring an exploration of their properties toward possible applications. The work paves a way to previously untouched aspects of colloidal science and thus would create new chances in nanotechnology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Scale invariance in natural and artificial collective systems: a review

    PubMed Central

    Huepe, Cristián

    2017-01-01

    Self-organized collective coordinated behaviour is an impressive phenomenon, observed in a variety of natural and artificial systems, in which coherent global structures or dynamics emerge from local interactions between individual parts. If the degree of collective integration of a system does not depend on size, its level of robustness and adaptivity is typically increased and we refer to it as scale-invariant. In this review, we first identify three main types of self-organized scale-invariant systems: scale-invariant spatial structures, scale-invariant topologies and scale-invariant dynamics. We then provide examples of scale invariance from different domains in science, describe their origins and main features and discuss potential challenges and approaches for designing and engineering artificial systems with scale-invariant properties. PMID:29093130

  19. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2002-01-01

    This report covers technical progress during the second quarter of the first year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation. and covers the period November 16, 1999 to February 15, 2000. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD (magnetohydrodynamic) model. The topics studied include: the effect of emerging flux on the stability of helmet streamers, coronal loops and streamers, the solar magnetic field, the solar wind, and open magnetic field lines.

  20. High pressure hydrogen stabilised by quantum nuclear motion

    NASA Astrophysics Data System (ADS)

    Needs, Richard; Monserrat, Bartomeu; Pickard, Chris

    Hydrogen under extreme pressures is of fundamental interest, as it might exhibit exotic physical phenomena, and of practical interest, as it is a major component of many astrophysical objects. Structure searches have been successful at identifying promising candidates for the known phases of high pressure hydrogen. However, these searches have so far been restricted to the location of minima of the potential energy landscape. In this talk, we will describe a new structure searching method, ``saddle-point ab initio random structure searching'' (sp-AIRSS), that allows us to identify structures associated with saddle points of the potential energy landscape. Using sp-AIRSS, we find two new high-pressure hydrogen structures that exhibit a harmonic dynamical instability, but quantum and thermal anharmonic motion render them dynamically stable. These structures are formed by mixed layers of strongly and softly bound hydrogen molecules, and become thermodynamically competitive at the highest pressures reached in experiment. The experimental implications of these new structures will also be discussed. BM is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. RJN and CJP are supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.

  1. ICASE semiannual report, April 1 - September 30, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Institute conducts unclassified basic research in applied mathematics, numerical analysis, and computer science in order to extend and improve problem-solving capabilities in science and engineering, particularly in aeronautics and space. The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers. ICASE reports are considered to be primarily preprints of manuscripts that have been submitted to appropriate research journals or that are to appear in conference proceedings.

  2. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swordy, Simon

    2009-03-04

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI ismore » also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.« less

  3. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    ScienceCinema

    Swordy, Simon

    2017-12-22

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  4. Embodied experiences for science learning: A cognitive linguistics exploration of middle school students' language in learning about water

    NASA Astrophysics Data System (ADS)

    Salinas Barrios, Ivan Eduardo

    I investigated linguistic patterns in middle school students' writing to understand their relevant embodied experiences for learning science. Embodied experiences are those limited by the perceptual and motor constraints of the human body. Recent research indicates student understanding of science needs embodied experiences. Recent emphases of science education researchers in the practices of science suggest that students' understanding of systems and their structure, scale, size, representations, and causality are crosscutting concepts that unify all scientific disciplinary areas. To discern the relationship between linguistic patterns and embodied experiences, I relied on Cognitive Linguistics, a field within cognitive sciences that pays attention to language organization and use assuming that language reflects the human cognitive system. Particularly, I investigated the embodied experiences that 268 middle school students learning about water brought to understanding: i) systems and system structure; ii) scale, size and representations; and iii) causality. Using content analysis, I explored students' language in search of patterns regarding linguistic phenomena described within cognitive linguistics: image schemas, conceptual metaphors, event schemas, semantical roles, and force-dynamics. I found several common embodied experiences organizing students' understanding of crosscutting concepts. Perception of boundaries and change in location and perception of spatial organization in the vertical axis are relevant embodied experiences for students' understanding of systems and system structure. Direct object manipulation and perception of size with and without locomotion are relevant for understanding scale, size and representations. Direct applications of force and consequential perception of movement or change in form are relevant for understanding of causality. I discuss implications of these findings for research and science teaching.

  5. A scale-based approach to interdisciplinary research and expertise in sports.

    PubMed

    Ibáñez-Gijón, Jorge; Buekers, Martinus; Morice, Antoine; Rao, Guillaume; Mascret, Nicolas; Laurin, Jérome; Montagne, Gilles

    2017-02-01

    After more than 20 years since the introduction of ecological and dynamical approaches in sports research, their promising opportunity for interdisciplinary research has not been fulfilled yet. The complexity of the research process and the theoretical and empirical difficulties associated with an integrated ecological-dynamical approach have been the major factors hindering the generalisation of interdisciplinary projects in sports sciences. To facilitate this generalisation, we integrate the major concepts from the ecological and dynamical approaches to study behaviour as a multi-scale process. Our integration gravitates around the distinction between functional (ecological) and execution (organic) scales, and their reciprocal intra- and inter-scale constraints. We propose an (epistemological) scale-based definition of constraints that accounts for the concept of synergies as emergent coordinative structures. To illustrate how we can operationalise the notion of multi-scale synergies we use an interdisciplinary model of locomotor pointing. To conclude, we show the value of this approach for interdisciplinary research in sport sciences, as we discuss two examples of task-specific dimensionality reduction techniques in the context of an ongoing project that aims to unveil the determinants of expertise in basketball free throw shooting. These techniques provide relevant empirical evidence to help bootstrap the challenging modelling efforts required in sport sciences.

  6. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized System Dynamics

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Knight, Christopher; Bostedt, Christoph; Young, Linda; Tegze, Miklos; Faigel, Gyula

    2016-05-01

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  7. Exploring the movement dynamics of deception

    PubMed Central

    Duran, Nicholas D.; Dale, Rick; Kello, Christopher T.; Street, Chris N. H.; Richardson, Daniel C.

    2013-01-01

    Both the science and the everyday practice of detecting a lie rest on the same assumption: hidden cognitive states that the liar would like to remain hidden nevertheless influence observable behavior. This assumption has good evidence. The insights of professional interrogators, anecdotal evidence, and body language textbooks have all built up a sizeable catalog of non-verbal cues that have been claimed to distinguish deceptive and truthful behavior. Typically, these cues are discrete, individual behaviors—a hand touching a mouth, the rise of a brow—that distinguish lies from truths solely in terms of their frequency or duration. Research to date has failed to establish any of these non-verbal cues as a reliable marker of deception. Here we argue that perhaps this is because simple tallies of behavior can miss out on the rich but subtle organization of behavior as it unfolds over time. Research in cognitive science from a dynamical systems perspective has shown that behavior is structured across multiple timescales, with more or less regularity and structure. Using tools that are sensitive to these dynamics, we analyzed body motion data from an experiment that put participants in a realistic situation of choosing, or not, to lie to an experimenter. Our analyses indicate that when being deceptive, continuous fluctuations of movement in the upper face, and somewhat in the arms, are characterized by dynamical properties of less stability, but greater complexity. For the upper face, these distinctions are present despite no apparent differences in the overall amount of movement between deception and truth. We suggest that these unique dynamical signatures of motion are indicative of both the cognitive demands inherent to deception and the need to respond adaptively in a social context. PMID:23543852

  8. Exploring the movement dynamics of deception.

    PubMed

    Duran, Nicholas D; Dale, Rick; Kello, Christopher T; Street, Chris N H; Richardson, Daniel C

    2013-01-01

    BOTH THE SCIENCE AND THE EVERYDAY PRACTICE OF DETECTING A LIE REST ON THE SAME ASSUMPTION: hidden cognitive states that the liar would like to remain hidden nevertheless influence observable behavior. This assumption has good evidence. The insights of professional interrogators, anecdotal evidence, and body language textbooks have all built up a sizeable catalog of non-verbal cues that have been claimed to distinguish deceptive and truthful behavior. Typically, these cues are discrete, individual behaviors-a hand touching a mouth, the rise of a brow-that distinguish lies from truths solely in terms of their frequency or duration. Research to date has failed to establish any of these non-verbal cues as a reliable marker of deception. Here we argue that perhaps this is because simple tallies of behavior can miss out on the rich but subtle organization of behavior as it unfolds over time. Research in cognitive science from a dynamical systems perspective has shown that behavior is structured across multiple timescales, with more or less regularity and structure. Using tools that are sensitive to these dynamics, we analyzed body motion data from an experiment that put participants in a realistic situation of choosing, or not, to lie to an experimenter. Our analyses indicate that when being deceptive, continuous fluctuations of movement in the upper face, and somewhat in the arms, are characterized by dynamical properties of less stability, but greater complexity. For the upper face, these distinctions are present despite no apparent differences in the overall amount of movement between deception and truth. We suggest that these unique dynamical signatures of motion are indicative of both the cognitive demands inherent to deception and the need to respond adaptively in a social context.

  9. Global Oscillation Network Group

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Global Oscillation Network Group (GONG) is an international, community-based project, operated by the NATIONAL SOLAR OBSERVATORY for the US National Science Foundation, to conduct a detailed study of the internal structure and dynamics of the Sun over an 11 year solar cycle using helioseismology. 10 242 velocity images are obtained by a six-station network located at Big Bear Solar Observato...

  10. Design Aids for Real-Time Systems (DARTS)

    NASA Technical Reports Server (NTRS)

    Szulewski, P. A.

    1982-01-01

    Design-Aids for Real-Time Systems (DARTS) is a tool that assists in defining embedded computer systems through tree structured graphics, military standard documentation support, and various analyses including automated Software Science parameter counting and metrics calculation. These analyses provide both static and dynamic design quality feedback which can potentially aid in producing efficient, high quality software systems.

  11. Cumulutive reports and publications through December 31, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A complete list of the Institute for Computer Applications in Science and Engineering (ICASE) Reports are given. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. Topics include numerical methods, parameter identification, fluid dynamics, acoustics, structural analysis, and computers.

  12. A Computer Lab Exploring Evolutionary Aspects of Chromatin Structure and Dynamics for an Undergraduate Chromatin Course

    ERIC Educational Resources Information Center

    Eirin-Lopez, Jose M.

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a…

  13. A Methodology for Assessing Learning in Complex and Ill-Structured Task Domains

    ERIC Educational Resources Information Center

    Spector, J. Michael

    2006-01-01

    New information and communications technologies and research in cognitive science have led to new ways to think about and implement learning environments. Among these new approaches to instruction and new methods to support learning and performance is an interest in and emphasis on complex subject matter (e.g., complex and dynamic systems…

  14. Eye-Rollers, Risk-Takers, and Turn Sharks: Target Students in a Professional Science Education Program

    ERIC Educational Resources Information Center

    Martin, Sonya N.; Milne, Catherine; Scantlebury, Kathryn

    2006-01-01

    In classrooms from kindergarten to graduate school, researchers have identified target students as students who monopolize material and human resources. Classroom structures that privilege the voice and actions of target students can cause divisive social dynamics that may generate cliques. This study focuses on the emergence of target students,…

  15. Algorithm Animations for Teaching and Learning the Main Ideas of Basic Sortings

    ERIC Educational Resources Information Center

    Végh, Ladislav; Stoffová, Veronika

    2017-01-01

    Algorithms are hard to understand for novice computer science students because they dynamically modify values of elements of abstract data structures. Animations can help to understand algorithms, since they connect abstract concepts to real life objects and situations. In the past 30-35 years, there have been conducted many experiments in the…

  16. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Outer Solar System" included the following reports:New Data About Seasonal Variations of the North-South Asymmetry of Polarized Light of Jupiter; Appearance of Second Harmonic in the Jupiter Spectrum; Dynamics of Confined Liquid Mass, Spreading on Planet Surface; "Cassini" will Discover 116 New Satellites of Saturn!; Jupiter's Light Reflection Law;and Internal Structure Modelling of Europa.

  17. Research-Based Design and Development of a Simulation of Liquid-Vapor Equilibrium

    ERIC Educational Resources Information Center

    Akaygun, Sevil; Jones, Loretta L.

    2013-01-01

    Helping learners to visualize the structures and dynamics of particles through the use of technology is challenging. Animations and simulations can be difficult for learners to interpret and can even lead to new misconceptions. A systematic approach to development based on the findings of cognitive science was used to design, develop, and evaluate…

  18. Creating Engaging Online Learning Material with the JSAV JavaScript Algorithm Visualization Library

    ERIC Educational Resources Information Center

    Karavirta, Ville; Shaffer, Clifford A.

    2016-01-01

    Data Structures and Algorithms are a central part of Computer Science. Due to their abstract and dynamic nature, they are a difficult topic to learn for many students. To alleviate these learning difficulties, instructors have turned to algorithm visualizations (AV) and AV systems. Research has shown that especially engaging AVs can have an impact…

  19. Toward a Model of Journal Economics in the Language Sciences. LINCS Project Document Series.

    ERIC Educational Resources Information Center

    Berg, Sanford; Campion, Douglas

    This study outlines some considerations for an economic model of the scientific journal market. The model provides an explanation of journal market structure and the dynamics of market behavior, as well as a description of journal market development. Three types of periodicals are discussed: (1) primary, archival journals serving a current…

  20. Neutron and X-ray Scattering Study of Structure and Dynamics of Condensed Matters

    NASA Astrophysics Data System (ADS)

    Fujii, Yasuhiko

    In this article, I have reviewed a series of research on a various phase transitions such as (1) structural phase transitions of perovskite compounds driven by soft phonons, (2) pressure-induced molecular dissociation and metallization observed in solid halogens, and (3) the “Devil's Flower” type phase diagram observed in two compounds with frustrating interactions. Also commented is on the so-called “Small Science at Large Facility” typically symbolized by neutron and synchrotron radiation experiments like the present research.

  1. The behavior of single-crystal silicon to dynamic loading using in-situ X-ray diffraction and phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hae Ja; Xing, Zhou; Galtier, Eric; Arnold, Brice; Granados, Eduardo; Brown, Shaughnessy B.; Tavella, Franz; McBride, Emma; Fry, Alan; Nagler, Bob; Schropp, Andreas; Seiboth, Frank; Samberg, Dirk; Schroer, Christian; Gleason, Arianna E.; Higginbotham, Andrew

    Hydrostatic and uniaxial compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including orthorhombic Imma phase, body-centered tetragonal phase, and a hexagonal primitive phase. The dynamic response of silicon at high pressure, however, is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. In order to characterize the elastic and phase transitions, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudo-flat top shape creates high pressures up to 60 GPa. We measure the crystal structure by observing X-ray diffraction orthogonal to the shock propagation direction over a range of pressures. We describe the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and discuss the dynamic response of Si in high-pressure phases Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by.

  2. Electronic structure and lattice dynamics of few-layer InSe

    NASA Astrophysics Data System (ADS)

    Webster, Lucas; Yan, Jia-An

    Studies of Group-III monochalcogenides (MX, M = Ga and In, X = S, Se, and Te) have revealed their great potentials in many optoelectronic applications, including solar energy conversion, fabrication of memory devices and solid-state batteries. Among these semiconductors, indium selenide (InSe) has attracted particular attention due to its narrower direct bandgap, which makes it suitable for photovoltaic conversion. In this work, using first-principles calculations, we present a detailed study of the energetics, atomic structures, electronic structures, and lattice dynamics of InSe layers down to two-dimensional limit, namely, monolayer InSe and bilayer InSe with various stacking geometry. Calculations using various exchange-correlation functionals and pseudopotentials are tested and compared with experimental data. The dependence of the Raman spectra on the stacking geometry and the laser polarization will also be discussed. This work is supported by the SET Grant of the Fisher College of Science and Mathematics (FCSM) at the Towson University.

  3. Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences

    NASA Astrophysics Data System (ADS)

    Adhikari, Aashish N.; Freed, Karl F.; Sosnick, Tobin R.

    2013-07-01

    We demonstrate the ability of simultaneously determining a protein’s folding pathway and structure using a properly formulated model without prior knowledge of the native structure. Our model employs a natural coordinate system for describing proteins and a search strategy inspired by the observation that real proteins fold in a sequential fashion by incrementally stabilizing nativelike substructures or “foldons.” Comparable folding pathways and structures are obtained for the twelve proteins recently studied using atomistic molecular dynamics simulations [K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, Science 334, 517 (2011)], with our calculations running several orders of magnitude faster. We find that nativelike propensities in the unfolded state do not necessarily determine the order of structure formation, a departure from a major conclusion of the molecular dynamics study. Instead, our results support a more expansive view wherein intrinsic local structural propensities may be enhanced or overridden in the folding process by environmental context. The success of our search strategy validates it as an expedient mechanism for folding both in silico and in vivo.

  4. Computing the Ediz eccentric connectivity index of discrete dynamic structures

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Kamran Siddiqui, Muhammad; Zhao, Bo; Gan, Jianhou; Gao, Wei

    2017-06-01

    From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.

  5. Femtochemistry of confined water

    NASA Astrophysics Data System (ADS)

    Douhal, A.; Carranza, M. A.; Sanz, M.; Organero, J. A.; Santos, L.

    In this contribution, we applied ultrafast spectroscopy to study the H-bond network of water confined in nanostructures (Cyclodextrins and Micelles). We examine the effect of caging on ultrafast reaction dynamics and discuss the related processes under different experimental conditions. The results show an ultrafast dynamic giving birth to intermediates of the probe, which show femtosecond and picosecond dynamics leading to the final structure at the excited state. The results show the high sensitivity of the used technique in detecting small of water. This work was supported by the Ministry of Science and Technology (MCYT, Spain) and ``Conserjería de Ciencia y Tecnologia de la JCCM, Spain'' through projects MAT2002-01829 and PAI-02-004.

  6. Transient lattice contraction in the solid to plasma transition of x-ray heated xenon clusters

    NASA Astrophysics Data System (ADS)

    Bostedt, C.; Ferguson, K.; Gorkhover, T.; Bucksbaum, P. H.; Boutet, S.; Koglin, J. E.; Lutman, A.; Marinelli, A.; Turner, J.; Bucher, M.; Ho, P.; Knight, C.; Young, L.; Fukuzawa, H.; Kumagai, Y.; Ueda, K.; Nagaya, K.; Messerschmidt, M.; Williams, G.

    2016-05-01

    Any sample in the focus of intense x-ray pulses will be transformed into a nanoplasma within femtoseconds. We have employed the novel two-color two-pulse mode available at the Linac Coherent Light Source free-electron laser to investigate the structural dynamics in nanoparticles upon x-ray exposure. We find that the nanoparticle transiently contracts within the first 80 fs following x-ray irradiation before ultimately disintegrating in a rapid hydrodynamic expansion. The contraction can be attributed to the massive x-ray induced electronic excitation that induces a collective change in the bond character of the nanoparticles. Alternative explanations for the contraction include a compression wave stemming from a rapid surface explosion of the nanoparticle. Computer simulations under way can elucidate the dominant contraction mechanism and yield further insight into the complex x-ray induced dynamics in nanoscale samples. This work is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357.

  7. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems

    PubMed Central

    Teuscher, Joël; Brauer, Jan C.; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E.

    2017-01-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here. PMID:29308415

  8. An Insight into the Environmental Effects of the Pocket of the Active Site of the Enzyme. Ab initio ONIOM-Molecular Dynamics (MD) Study on Cytosine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2008-02-01

    We applied the ONIOM-molecular dynamics (MD) method to cytosine deaminase to examine the environmental effects of the amino acid residues in the pocket of the active site on the substrate taking account of their thermal motion. The ab initio ONIOM-MD simulations show that the substrate uracil is strongly perturbed by the amino acid residue Ile33, which sandwiches the uracil with His62, through the steric contact due to the thermal motion. As a result, the magnitude of the thermal oscillation of the potential energy and structure of the substrate uracil significantly increases. TM and MA were partly supported by grants frommore » the Ministry of Education, Culture, Sports, Science and Technology of Japan.MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.« less

  9. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    PubMed

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  10. Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?

    PubMed

    Muñoz-Tamayo, R; Puillet, L; Daniel, J B; Sauvant, D; Martin, O; Taghipoor, M; Blavy, P

    2018-04-01

    What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are (i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling, (ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models. By using illustrative examples that include published mathematical models describing lactation in cattle, we show how structural identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the discovery of a powerful tool for model construction and experiment design.

  11. Conformational Dynamics and Proton Relay Positioning in Nickel Catalysts for Hydrogen Production and Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, James A.; O'Hagan, Molly J.; Ho, Ming-Hsun

    2013-12-09

    The [Ni(PR2NR’2)2]2+ catalysts, (where PR2NR´2 is 1,5-R´-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), are some of the fastest reported for hydrogen production and oxidation, however, chair/boat isomerization and the presence of a fifth solvent ligand have the potential to slow catalysis by incorrectly positioning the pendant amines or blocking the addition of hydrogen. Here, we report the structural dynamics of a series of [Ni(PR2NR’2)2]n+ complexes, characterized by NMR spectroscopy and theoretical modeling. A fast exchange process was observed for the [Ni(CH3CN)(PR2NR’2)2]2+ complexes which depends on the ligand. This exchange process was identified to occur through a three step mechanism including dissociation of the acetonitrile, boat/chair isomerizationmore » of each of the four rings identified by the phosphine ligands (including nitrogen inversion), and reassociation of acetonitrile on the opposite side of the complex. The rate of the chair/boat inversion can be influenced by varying the substituent on the nitrogen atom, but the rate of the overall exchange process is at least an order of magnitude faster than the catalytic rate in acetonitrile demonstrating that the structural dynamics of the [Ni(PR2NR´2)2]2+ complexes does not hinder catalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP56073. Research by J.A.F., M.O., M-H. H., M.L.H, D.L.D. A.M.A., S. R. and R.M.B. was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. W.J.S. and S.L. were funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. T.L. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory; and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).« less

  12. Honorary Authorship Practices in Environmental Science Teams: Structural and Cultural Factors and Solutions.

    PubMed

    Elliott, Kevin C; Settles, Isis H; Montgomery, Georgina M; Brassel, Sheila T; Cheruvelil, Kendra Spence; Soranno, Patricia A

    2017-01-01

    Overinclusive authorship practices such as honorary or guest authorship have been widely reported, and they appear to be exacerbated by the rise of large interdisciplinary collaborations that make authorship decisions particularly complex. Although many studies have reported on the frequency of honorary authorship and potential solutions to it, few have probed how the underlying dynamics of large interdisciplinary teams contribute to the problem. This article reports on a qualitative study of the authorship standards and practices of six National Science Foundation-funded interdisciplinary environmental science teams. Using interviews of the lead principal investigator and an early-career member on each team, our study explores the nature of honorary authorship practices as well as some of the motivating factors that may contribute to these practices. These factors include both structural elements (policies and procedures) and cultural elements (values and norms) that cross organizational boundaries. Therefore, we provide recommendations that address the intersection of these factors and that can be applied at multiple organizational levels.

  13. Dynamic tests on the NASA Langley CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Troidl, H.; Elliott, K. B.

    1993-01-01

    A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.

  14. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  15. Study on a new chaotic bitwise dynamical system and its FPGA implementation

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Xue; Yu, Si-Min; Guyeux, C.; Bahi, J.; Fang, Xiao-Le

    2015-06-01

    In this paper, the structure of a new chaotic bitwise dynamical system (CBDS) is described. Compared to our previous research work, it uses various random bitwise operations instead of only one. The chaotic behavior of CBDS is mathematically proven according to the Devaney's definition, and its statistical properties are verified both for uniformity and by a comprehensive, reputed and stringent battery of tests called TestU01. Furthermore, a systematic methodology developing the parallel computations is proposed for FPGA platform-based realization of this CBDS. Experiments finally validate the proposed systematic methodology. Project supported by China Postdoctoral Science Foundation (Grant No. 2014M552175), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Chinese Education Ministry, the National Natural Science Foundation of China (Grant No. 61172023), and the Specialized Research Foundation of Doctoral Subjects of Chinese Education Ministry (Grant No. 20114420110003).

  16. Towards Non-Equilibrium Dynamics with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  17. Society and the Carbon Cycle: A Social Science Perspective

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.

    2017-12-01

    Societal activities, actions, and practices affect the carbon cycle and the climate of North America in complex ways. Carbon is a key component for the functioning of croplands, grasslands, forests. Carbon fuels our industry, transportation (vehicles and roadways), buildings, and other structures. Drawing on results from the SOCCR-2, this presentation uses a social science perspective to address three scientific questions. How do human actions and activities affect the carbon cycle? How human systems such as cities, agricultural field and forests are affected by changes in the carbon cycle? How is carbon management enabled and constraint by socio-political dynamics?

  18. Structure of Room Temperature Ionic Liquids on Charged Graphene: An integrated experimental and computational study

    NASA Astrophysics Data System (ADS)

    Uysal, Ahmet; Zhou, Hua; Lee, Sang Soo; Fenter, Paul; Feng, Guang; Li, Song; Cummings, Peter; Fulvio, Pasquale; Dai, Sheng; McDonough, Jake; Gogotsi, Yury

    2014-03-01

    Electrical double layer capacitors (EDLCs) with room temperature ionic liquid (RTIL) electrolytes and carbon electrodes are promising candidates for energy storage devices with high power density and long cycle life. We studied the potential and time dependent changes in the electric double layer (EDL) structure of an imidazolium-based room temperature ionic liquid (RTIL) electrolyte at an epitaxial graphene (EG) surface. We used in situ x-ray reflectivity (XR) to determine the EDL structure at static potentials, during cyclic voltammetry (CV) and potential step measurements. The static potential structures were also investigated with fully atomistic molecular dynamics (MD) simulations. Combined XR and MD results show that the EDL structure has alternating anion/cation layers within the first nanometer of the interface. The dynamical response of the EDL to potential steps has a slow component (>10 s) and the RTIL structure shows hysteresis during CV scans. We propose a conceptual model that connects nanoscale interfacial structure to the macroscopic measurements. This material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science (SC), Office of Basic Energy

  19. Heterogeneous Structure of Stem Cells Dynamics: Statistical Models and Quantitative Predictions

    PubMed Central

    Bogdan, Paul; Deasy, Bridget M.; Gharaibeh, Burhan; Roehrs, Timo; Marculescu, Radu

    2014-01-01

    Understanding stem cell (SC) population dynamics is essential for developing models that can be used in basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying patho-physiological events at the cellular and tissue level, predicting (mal)functions along the developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior as they interact with each other through molecular and tactile signals. These findings suggest that more sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying homogeneity assumption by accounting for the presence of more than one dividing sub-population, and their multi-fractal characteristics. PMID:24769917

  20. Topics in Complexity: From Physical to Life Science Systems

    NASA Astrophysics Data System (ADS)

    Charry, Pedro David Manrique

    Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.

  1. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  2. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the third quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period February 16, 2001 to May 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.In this report we summarize the accomplishments made by our group during the first seven quarters of our Sun-Earth Connection Theory Program contract. The descriptions are intended to illustrate our principal results. A full account can be found in the referenced publications.

  3. Coding considerations for standalone molecular dynamics simulations of atomistic structures

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

  4. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure

    PubMed Central

    Garcia-Garibay, Miguel A.

    2005-01-01

    Crystalline molecular machines represent an exciting new branch of crystal engineering and materials science with important implications to nanotechnology. Crystalline molecular machines are crystals built with molecules that are structurally programmed to respond collectively to mechanic, electric, magnetic, or photonic stimuli to fulfill specific functions. One of the main challenges in their construction derives from the picometric precision required for their mechanic operation within the close-packed, self-assembled environment of crystalline solids. In this article, we outline some of the general guidelines for their design and apply them for the construction of molecular crystals with units intended to emulate macroscopic gyroscopes and compasses. Recent advances in the preparation, crystallization, and dynamic characterization of these interesting systems offer a foothold to the possibilities and help highlight some avenues for future experimentation. PMID:16046543

  5. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen

    2018-05-01

    The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.

  6. Molecular Dynamics-based Simulations of Bulk/Interfacial Structures and Diffusion Behaviors in Nuclear Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jincheng; Rimsza, Jessica; Deng, Lu

    This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goalsmore » initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal« less

  7. [Psychiatry as cultural science: considerations following Max Weber].

    PubMed

    Bormuth, M

    2010-11-01

    Psychiatry can be seen as a natural and cultural science. According to this the postulate of freedom is its strong value judgment. Since the times of enlightenment it has been described metaphorically by the myth of the expulsion from Paradise. Following Max Weber and Wilhelm Dilthey, Karl Jaspers has introduced this perspective into psychiatry. His strict dichotomy between explaining and understanding has later been critically revised by Werner Janzarik and Hans Heimann. Their concepts of structure dynamic, of pathography and of anthropology are closer to Max Weber who connected natural and cultural sciences in a much stronger way. Especially the pathographic example of Nietzsche allows to demonstrate the differences between Jaspers and the later psychopathologists of the Heidelberg and Tübingen schools.

  8. The Structure and Dynamics of the Solar Corona and Inner Heliosphere-First Quarter First Year Progress Report

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2000-01-01

    This report details progress during the first quarter of the first year of our Sun-Earth Connections Theory Program (SECTP) contract. Science Applications International Corporation (SAIC) and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  9. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia.

    PubMed

    Safdari, Reza; Shahmoradi, Leila; Hosseini-Beheshti, Molouk-Sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-10-01

    Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics' sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics.

  10. The simultaneous evolution of author and paper networks

    PubMed Central

    Börner, Katy; Maru, Jeegar T.; Goldstone, Robert L.

    2004-01-01

    There has been a long history of research into the structure and evolution of mankind's scientific endeavor. However, recent progress in applying the tools of science to understand science itself has been unprecedented because only recently has there been access to high-volume and high-quality data sets of scientific output (e.g., publications, patents, grants) and computers and algorithms capable of handling this enormous stream of data. This article reviews major work on models that aim to capture and recreate the structure and dynamics of scientific evolution. We then introduce a general process model that simultaneously grows coauthor and paper citation networks. The statistical and dynamic properties of the networks generated by this model are validated against a 20-year data set of articles published in PNAS. Systematic deviations from a power law distribution of citations to papers are well fit by a model that incorporates a partitioning of authors and papers into topics, a bias for authors to cite recent papers, and a tendency for authors to cite papers cited by papers that they have read. In this TARL model (for topics, aging, and recursive linking), the number of topics is linearly related to the clustering coefficient of the simulated paper citation network. PMID:14976254

  11. Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Qing-Yin, Zhang; Peng, Xie; Xin, Wang; Xue-Wen, Yu; Zhi-Qiang, Shi; Shi-Huai, Zhao

    2016-06-01

    Organic salts such as spiro-(1,1')-bipyrrolidinium tetrafluoroborate ([SBP][BF4]) dissolved in liquid acetonitrile (ACN) are a new kind of organic salt solution, which is expected to be used as an electrolyte in electrical double layer capacitors (EDLCs). To explore the physicochemical properties of the solution, an all-atom force field is established on the basis of AMBER parameter values and quantum mechanical calculations. Molecular dynamics (MD) simulations are carried out to explore the liquid structure and physicochemical properties of [SBP][BF4] electrolyte at room temperature. The computed thermodynamic and transport properties match the available experimental results very well. The microscopic structures of [SBP][BF4] salt solution are also discussed in detail. The method used in this work provides an efficient way of predicting the properties of organic salt solvent as an electrolyte in EDLCs. Project supported by the National Natural Science Foundation of China (Grant Nos. 21476172 and 51172160), the National High Technology Research and Development Program of China (Grant No. 2013AA050905), and the Natural Science Foundation of Tianjin, China (Grant Nos. 12JCZDJC28400, 14RCHZGX00859, 14JCTPJC00484, and 14JCQNJC07200).

  12. Using the prisms of gender and rank to interpret research collaboration power dynamics.

    PubMed

    Gaughan, Monica; Bozeman, Barry

    2016-08-01

    Collaboration is central to modern scientific inquiry, and increasingly important to the professional experiences of academic scientists. While the effects of collaboration have been widely studied, much less is understood about the motivations to collaborate and collaboration dynamics that generate scientific outcomes. A particular interest of this study is to understand how collaboration experiences differ between women and men, and the attributions used to explain these differences. We use a multi-method study of university Science, Technology, Engineering, and Mathematics faculty research collaborators. We employ 177 anonymous open-ended responses to a web-based survey, and 60 semi-structured interviews of academic scientists in US research universities. We find similarities and differences in collaborative activity between men and women. Open-ended qualitative textual analysis suggests that some of these differences are attributed to power dynamics - both general ones related to differences in organizational status, and in power dynamics related specifically to gender. In analysis of semi-structured interviews, we find that both status and gender were used as interpretive frames for collaborative behavior, with more emphasis placed on status than gender differences. Overall, the findings support that gender structures some part of the collaborative experience, but that status hierarchy exerts more clear effects.

  13. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  14. Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)

    1988-01-01

    The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.

  15. Single Molecules as Optical Probes for Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Orrit, Michel

    Single molecules and single nanoparticles are convenient links between the nanoscale world and the laboratory. We discuss the limits for their optical detection by three different methods: fluorescence, direct absorption, and photothermal detection. We briefly review some recent illustrations of qualitatively new information gathered from single-molecule signals: intermittency of the fluorescence intensity, acoustic vibrations of nanoparticles (1-100 GHz) or of extended defects in molecular crystals (0.1-1 MHz), and dynamical heterogeneity in glass-forming molecular liquids. We conclude with an outlook of future uses of single-molecule methods in physical chemistry, soft matter, and material science.

  16. Identity in agent-based models : modeling dynamic multiscale social processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozik, J.; Sallach, D. L.; Macal, C. M.

    Identity-related issues play central roles in many current events, including those involving factional politics, sectarianism, and tribal conflicts. Two popular models from the computational-social-science (CSS) literature - the Threat Anticipation Program and SharedID models - incorporate notions of identity (individual and collective) and processes of identity formation. A multiscale conceptual framework that extends some ideas presented in these models and draws other capabilities from the broader CSS literature is useful in modeling the formation of political identities. The dynamic, multiscale processes that constitute and transform social identities can be mapped to expressive structures of the framework

  17. The Dynamics of Cognitive Performance: What Has Been Learnt from Empirical Research in Science Education

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios

    2017-01-01

    This paper discusses investigations in science education addressing the nonlinear dynamical hypothesis. Learning science is a suitable field for applying interdisciplinary research and predominately for testing psychological theories. It was demonstrated that in this area the paradigm of complexity and nonlinear dynamics have offered theoretical…

  18. Computerized modeling techniques predict the 3D structure of H₄R: facts and fiction.

    PubMed

    Zaid, Hilal; Ismael-Shanak, Siba; Michaeli, Amit; Rayan, Anwar

    2012-01-01

    The functional characterization of proteins presents a daily challenge r biochemical, medical and computational sciences, especially when the structures are undetermined empirically, as in the case of the Histamine H4 Receptor (H₄R). H₄R is a member of the GPCR superfamily that plays a vital role in immune and inflammatory responses. To date, the concept of GPCRs modeling is highlighted in textbooks and pharmaceutical pamphlets, and this group of proteins has been the subject of almost 3500 publications in the scientific literature. The dynamic nature of determining the GPCRs structure was elucidated through elegant and creative modeling methodologies, implemented by many groups around the world. H₄R which belongs to the GPCR family was cloned in 2000; understandably, its biological activity was reported only 65 times in pubmed. Here we attempt to cover the fundamental concepts of H₄R structure modeling and its implementation in drug discovery, especially those that have been experimentally tested and to highlight some ideas that are currently being discussed on the dynamic nature of H₄R and GPCRs computerized techniques for 3D structure modeling.

  19. Molecular mechanics and dynamics characterization of an in silico mutated protein: a stand-alone lab module or support activity for in vivo and in vitro analyses of targeted proteins.

    PubMed

    Chiang, Harry; Robinson, Lucy C; Brame, Cynthia J; Messina, Troy C

    2013-01-01

    Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems. Computer simulations of molecular events can now be accomplished quickly and with standard computer technology. Also, simulation software is freely available for most computing platforms, and online support for the novice user is ample. We have therefore created a molecular dynamics laboratory module to enhance undergraduate student understanding of molecular events underlying organismal phenotype. This module builds on a previously described project in which students use site-directed mutagenesis to investigate functions of conserved sequence features in members of a eukaryotic protein kinase family. In this report, we detail the laboratory activities of a MD module that provide a complement to phenotypic outcomes by providing a hypothesis-driven and quantifiable measure of predicted structural changes caused by targeted mutations. We also present examples of analyses students may perform. These laboratory activities can be integrated with genetics or biochemistry experiments as described, but could also be used independently in any course that would benefit from a quantitative approach to protein structure-function relationships. Copyright © 2013 Wiley Periodicals, Inc.

  20. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  1. Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes

    PubMed Central

    Chugunov, Anton O.; Volynsky, Pavel E.; Krylov, Nikolay A.; Boldyrev, Ivan A.; Efremov, Roman G.

    2014-01-01

    Archaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0–100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature. In this work, we use molecular dynamics simulations to assess at the atomistic level the structure and dynamics of a series of model archaeal membranes with lipids that have tetraether chemical nature and “branched” hydrophobic tails. We conclude that the branched structure defines dense packing and low water permeability of archaeal-like membranes, while at the same time ensuring a liquid-crystalline state, which is vital for living cells. This makes tetraether lipid systems promising in bionanotechnology and material science, namely for design of new and unique membrane nanosystems. PMID:25501042

  2. Lunar and planetary studies

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Goldreich, P.; Ingersoll, A. P.; Westphal, J. A.

    1988-01-01

    This grant supports the core program in planetary astronomy at Caltech. The research includes observations in the IR, sub-mm, mm and cm wavelengths at national and Caltech observatories with a strong emphasis on integrating the observations with spacecraft data and with models of atmospheric structure, dynamics and chemistry. Muhleman's group made extensive observations of Saturn, Uranus and Neptune which are being interpreted in terms of deep atmospheric structures which are obvious in the 2 and 6 cm maps of Saturn and Uranus. The microwave measurements are one of the few sources of information below the 2 bar level. Goldreich is investigating the dynamics of narrow rings with postdoctoral fellow, Pierre-Yves Longaretti. Their work has focused on the role of collisional stresses on the precession of the rings, since the Voyager radio science results imply that the previous model based on the ring's self-gravity is not the entire story. In addition Borderies, Goldreich and Tremaine have completed an investigation of the dynamics of the Encke division in Saturn's A ring.

  3. Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A unified program is outlined for studying the Earth, from its deep interior to its fluid envelopes. A system is proposed for measuring devices involving both space-based and in-situ observations that can accommodate simultaneously a large range of scientific needs. The scientific objectices served by this integrated infrastructure are cased into a framework of four grand themes. In summary these are: to determine the composition, structure, dynamics, and evolution of the Earth's crust and deeper interior; to establish and understand the structure, dynamics, and chemistry of the oceans, atmosphere, and cryosphere, and their interaction with the solid Earth; to characterize the history and dynamics of living organisms and their interaction with the environment; and to monitor and understand the interaction of human activities with the natural environment. A focus on these grand themes will help to understand the origin and fate of the planet, and to place it in the context of the solar system.

  4. Chloride ions induce order-disorder transition at water-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.

    2013-12-01

    Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.

  5. Towards a global participatory platform. Democratising open data, complexity science and collective intelligence

    NASA Astrophysics Data System (ADS)

    Buckingham Shum, S.; Aberer, K.; Schmidt, A.; Bishop, S.; Lukowicz, P.; Anderson, S.; Charalabidis, Y.; Domingue, J.; de Freitas, S.; Dunwell, I.; Edmonds, B.; Grey, F.; Haklay, M.; Jelasity, M.; Karpištšenko, A.; Kohlhammer, J.; Lewis, J.; Pitt, J.; Sumner, R.; Helbing, D.

    2012-11-01

    The FuturICT project seeks to use the power of big data, analytic models grounded in complexity science, and the collective intelligence they yield for societal benefit. Accordingly, this paper argues that these new tools should not remain the preserve of restricted government, scientific or corporate élites, but be opened up for societal engagement and critique. To democratise such assets as a public good, requires a sustainable ecosystem enabling different kinds of stakeholder in society, including but not limited to, citizens and advocacy groups, school and university students, policy analysts, scientists, software developers, journalists and politicians. Our working name for envisioning a sociotechnical infrastructure capable of engaging such a wide constituency is the Global Participatory Platform (GPP). We consider what it means to develop a GPP at the different levels of data, models and deliberation, motivating a framework for different stakeholders to find their ecological niches at different levels within the system, serving the functions of (i) sensing the environment in order to pool data, (ii) mining the resulting data for patterns in order to model the past/present/future, and (iii) sharing and contesting possible interpretations of what those models might mean, and in a policy context, possible decisions. A research objective is also to apply the concepts and tools of complexity science and social science to the project's own work. We therefore conceive the global participatory platform as a resilient, epistemic ecosystem, whose design will make it capable of self-organization and adaptation to a dynamic environment, and whose structure and contributions are themselves networks of stakeholders, challenges, issues, ideas and arguments whose structure and dynamics can be modelled and analysed.

  6. Discovering governing equations from data by sparse identification of nonlinear dynamical systems

    PubMed Central

    Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing. PMID:27035946

  7. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

    PubMed

    Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2016-04-12

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.

  8. CMS Annual Report 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Rubia, T D; Shang, S P; Rennie, G

    2005-07-29

    Glance at the articles in this report, and you will sense the transformation that is reshaping the landscape of materials science and chemistry. This transformation is bridging the gaps among chemistry, materials science, and biology--ushering in a wealth of innovative technologies with broad scientific impact. The emergence of this intersection is reinvigorating our strategic investment into areas that build on our strength of interdisciplinary science. It is at the intersection that we position our strategic vision into a future where we will provide radical materials innovations and solutions to our national-security programs and other sponsors. Our 2004 Annual Report describesmore » how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. We have organized this report into two major sections: research themes and our dynamic teams. The research-theme sections focus on achievements arising from earlier investments while addressing future challenges. The dynamic teams section illustrates the directorate's organizational structure of divisions, centers, and institutes that support a team environment across disciplinary and institutional boundaries. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national-security mission. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes.« less

  9. Visualizing the molecular sociology at the HeLa cell nuclear periphery.

    PubMed

    Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang

    2016-02-26

    The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness. Copyright © 2016, American Association for the Advancement of Science.

  10. Development and Validation of an Online Dynamic Assessment for Raising Students' Comprehension of Science Text

    ERIC Educational Resources Information Center

    Wang, Jing-Ru; Chen, Shin-Feng

    2016-01-01

    This article reports on the development of an online dynamic approach for assessing and improving students' reading comprehension of science texts--the dynamic assessment for reading comprehension of science text (DARCST). The DARCST blended assessment and response-specific instruction into a holistic learning task for grades 5 and 6 students. The…

  11. Three dimensional Lagrangian structures in the Antarctic Polar Vortex.

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen

    2017-04-01

    Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A. M. Mancho, A. M. A theoretical framework for lagrangian descriptors. International Journal of Bifurcation and Chaos (2017) to appear. [5] The three-dimensional Lagrangian geometry of the Antarctic Polar Vortex circulation. Preprint.

  12. Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control.

    PubMed

    Michael, Edwin; Madon, Shirin

    2017-02-06

    The current global attempts to control the so-called "Neglected Tropical Diseases (NTDs)" have the potential to significantly reduce the morbidity suffered by some of the world's poorest communities. However, the governance of these control programmes is driven by a managerial rationality that assumes predictability of proposed interventions, and which thus primarily seeks to improve the cost-effectiveness of implementation by measuring performance in terms of pre-determined outputs. Here, we argue that this approach has reinforced the narrow normal-science model for controlling parasitic diseases, and in doing so fails to address the complex dynamics, uncertainty and socio-ecological context-specificity that invariably underlie parasite transmission. We suggest that a new governance approach is required that draws on a combination of non-equilibrium thinking about the operation of complex, adaptive, systems from the natural sciences and constructivist social science perspectives that view the accumulation of scientific knowledge as contingent on historical interests and norms, if more effective control approaches sufficiently sensitive to local disease contexts are to be devised, applied and managed. At the core of this approach is an emphasis on the need for a process that assists with the inclusion of diverse perspectives, social learning and deliberation, and a reflexive approach to addressing system complexity and incertitude, while balancing this flexibility with stability-focused structures. We derive and discuss a possible governance framework and outline an organizational structure that could be used to effectively deal with the complexity of accomplishing global NTD control. We also point to examples of complexity-based management structures that have been used in parasite control previously, which could serve as practical templates for developing similar governance structures to better manage global NTD control. Our results hold important wider implications for global health policy aiming to effectively control and eradicate parasitic diseases across the world.

  13. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  15. Exploring the contexts of urban science classrooms. Part 1: Investigating corporate and communal practices

    NASA Astrophysics Data System (ADS)

    Emdin, Christopher

    2007-04-01

    In this paper, I discuss the existence of varying ideologies and perspectives within urban science classrooms and uncover the importance of focusing on student and teacher practices as a means to bridge these disconnections. Specifically, I describe the existence of corporate and communal ideologies and the dynamics that create the misalignment between groups that hold allegiances to these varying belief systems. Utilizing three allied theoretical frames, this paper provides a multi layered and timely analysis of the teaching of science in an urban high school in New York City. I conjoin Bourdieu's sociocultural theory, an analysis of social life through the use of the structure|agency dialectic, and a theorizing of corporate and communal practice to embark on a journey into how African American and Latino/a students' ways of knowing and being can be utilized to meet the goal of improving their success in science.

  16. Toward a transnational history of the social sciences.

    PubMed

    Heilbron, Johan; Guilhot, Nicolas; Jeanpierre, Laurent

    2008-01-01

    Historical accounts of the social sciences have too often accepted local or national institutions as a self-evident framework of analysis, instead of considering them as being embedded in transnational relations of various kinds. Evolving patterns of transnational mobility and exchange cut through the neat distinction between the local, the national, and the inter-national, and thus represent an essential component in the dynamics of the social sciences, as well as a fruitful perspective for rethinking their historical development. In this programmatic outline, it is argued that a transnational history of the social sciences may be fruitfully understood on the basis of three general mechanisms, which have structured the transnational flows of people and ideas in decisive ways: (a) the functioning of international scholarly institutions, (b) the transnational mobility of scholars, and (c) the politics of trans-national exchange of nonacademic institutions. The article subsequently examines and illustrates each of these mechanisms.

  17. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multi-Stage Compressor Blading.

    DTIC Science & Technology

    1988-01-15

    However. only very engineering limited experimental data exists to assess the Director, Thermal Sciences and range of validity and to direct the... experimental results of Goldstein et. al. "A 1111 and also the Navier Stokes numerical solutions of Morihara 1121. Diffuser The predicted stream function...Unsteady Aerodynamic Interactions in a Multistage Compressor............................................................ 53 I APPENDIX VI. Experimental

  18. Solution Techniques for Large Eigenvalue Problems in Structural Dynamics.

    DTIC Science & Technology

    1979-06-01

    Pasadena, California 91109 Washington, D.C. 20553 Professor Paul M. Naghdi National Academy of Sciences University of California National Research...Engineering Washington, D.C. 20064 : S oProfessor Burt Paul University of Pennsylvania Dr. Samuel B. Batdorf Towns School of Civil and University of...Universities (Con’t) Dr. V. K. Varadan Professor V. H. Neubert Ohio State University Research Foundation Pennsylvania State University Department of

  19. Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, FX; Kong, JB; Li, MZ

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51631003 and 51271197), the National Basic Program of China (Grant No. 2015CB856800), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ01).

  20. Students' Ontological Security and Agency in Science Education--An Example from Reasoning about the Use of Gene Technology

    ERIC Educational Resources Information Center

    Lindahl, Mats Gunnar; Linder, Cedric

    2013-01-01

    This paper reports on a study of how students' reasoning about socioscientific issues is framed by three dynamics: societal structures, agency and how trust and security issues are handled. Examples from gene technology were used as the forum for interviews with 13 Swedish high-school students (year 11, age 17-18). A grid based on modalities from…

  1. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  2. New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere.

    PubMed

    MacDonald, Elizabeth A; Donovan, Eric; Nishimura, Yukitoshi; Case, Nathan A; Gillies, D Megan; Gallardo-Lacourt, Bea; Archer, William E; Spanswick, Emma L; Bourassa, Notanee; Connors, Martin; Heavner, Matthew; Jackel, Brian; Kosar, Burcu; Knudsen, David J; Ratzlaff, Chris; Schofield, Ian

    2018-03-01

    A glowing ribbon of purple light running east-west in the night sky has recently been observed by citizen scientists. This narrow, subauroral, visible structure, distinct from the traditional auroral oval, was largely undocumented in the scientific literature and little was known about its formation. Amateur photo sequences showed colors distinctly different from common types of aurora and occasionally indicated magnetic field-aligned substructures. Observations from the Swarm satellite as it crossed the arc have revealed an unusual level of electron temperature enhancement and density depletion, along with a strong westward ion flow, indicating that a pronounced subauroral ion drift (SAID) is associated with this structure. These early results suggest the arc is an optical manifestation of SAID, presenting new opportunities for investigation of the dynamic SAID signatures from the ground. On the basis of the measured ion properties and original citizen science name, we propose to identify this arc as a Strong Thermal Emission Velocity Enhancement (STEVE).

  3. New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere

    PubMed Central

    MacDonald, Elizabeth A.; Donovan, Eric; Nishimura, Yukitoshi; Case, Nathan A.; Gillies, D. Megan; Gallardo-Lacourt, Bea; Archer, William E.; Spanswick, Emma L.; Bourassa, Notanee; Connors, Martin; Heavner, Matthew; Jackel, Brian; Kosar, Burcu; Knudsen, David J.; Ratzlaff, Chris; Schofield, Ian

    2018-01-01

    A glowing ribbon of purple light running east-west in the night sky has recently been observed by citizen scientists. This narrow, subauroral, visible structure, distinct from the traditional auroral oval, was largely undocumented in the scientific literature and little was known about its formation. Amateur photo sequences showed colors distinctly different from common types of aurora and occasionally indicated magnetic field–aligned substructures. Observations from the Swarm satellite as it crossed the arc have revealed an unusual level of electron temperature enhancement and density depletion, along with a strong westward ion flow, indicating that a pronounced subauroral ion drift (SAID) is associated with this structure. These early results suggest the arc is an optical manifestation of SAID, presenting new opportunities for investigation of the dynamic SAID signatures from the ground. On the basis of the measured ion properties and original citizen science name, we propose to identify this arc as a Strong Thermal Emission Velocity Enhancement (STEVE). PMID:29546244

  4. The skeleton in the closet: should historians of science care about the history of mathematics?

    PubMed

    Alexander, Amir

    2011-09-01

    Up until the 1950s, the history of mathematics was an integral part of the history of science. To George Sarton and his contemporaries, mathematics was the rational skeleton that organized science and held it together, and its history was a fundamental component of the broader history of science. But when historians began focusing on the cultural roots of science rather than its rational structure, the study of mathematics was marginalized and ultimately excluded from the history of science. The alienation between the two fields is detrimental to both, and in recent years there has been a sustained effort to reestablish meaningful communication between the two. This time, however, mathematics is seen not as the static skeleton of science but, instead, as a dynamic and historically evolving field in its own right-just like science itself. The new approach allows for a culturally sensitive study of mathematics, as well as a new and fruitful relationship between the history of science and the history of mathematics. The essays in this Focus section offer a sampling of the new approaches, opening the way to a rapprochement between fields that have gone their separate ways but should by rights be closely interconnected.

  5. Ultrafast electron diffraction and electron microscopy: present status and future prospects

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. A.; Aseyev, S. A.; Bagratashvili, V. N.; Panchenko, V. Ya; Ryabov, E. A.

    2014-07-01

    Acting as complementary research tools, high time-resolved spectroscopy and diffractometry techniques proceeding from various physical principles open up new possibilities for studying matter with necessary integration of the 'structure-dynamics-function' triad in physics, chemistry, biology and materials science. Since the 1980s, a new field of research has started at the leading research laboratories, aimed at developing means of filming the coherent dynamics of nuclei in molecules and fast processes in biological objects ('atomic and molecular movies'). The utilization of ultrashort laser pulse sources has significantly modified traditional electron beam approaches to and provided high space-time resolution for the study of materials. Diffraction methods using frame-by-frame filming and the development of the main principles of the study of coherent dynamics of atoms have paved the way to observing wave packet dynamics, the intermediate states of reaction centers, and the dynamics of electrons in molecules, thus allowing a transition from the kinetics to the dynamics of the phase trajectories of molecules in the investigation of chemical reactions.

  6. Self Diffusion in Nano Filled Polymer Melts: a Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel

    2003-03-01

    SELF DIFFUSION IN NANO FILLED POLYMER MELTS: A MOLECULAR DYNAMICS SIMULATION STUDY* T. G. Desai,P. Keblinski, Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. Using molecular dynamics simulations, we studied the dynamics of the polymeric systems containing immobile and analytically smooth spherical nanoparticles. Each chain consisted of N monomers connected by an anharmonic springs described by the finite extendible nonlinear elastic, FENE potential. The system comprises of 3nanoparticles and the rest by freely rotating but not overlapping chains. The longest chain studied has a Radius of gyration equal to particle size radius and comparable to inter-particle distance. There is no effect on the structural characteristics such as Radius of gyration or end to end distance due to the nanoparticles. Diffusion of polymeric chains is not affected by the presence of either attractive or repulsive nanoparticles. In all cases Rouse dynamics is observed for short chains with a crossover to reptation dynamics for longer chains.

  7. Enhanced Molecular Dynamics Methods Applied to Drug Design Projects.

    PubMed

    Ziada, Sonia; Braka, Abdennour; Diharce, Julien; Aci-Sèche, Samia; Bonnet, Pascal

    2018-01-01

    Nobel Laureate Richard P. Feynman stated: "[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […]." The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.

  8. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  9. A Molecular Dynamics Study of the Structure-Dynamics Relationships of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Soklaski, Ryan

    Central to the field of condensed matter physics is a decades old outstanding problem in the study of glasses -- namely explaining the extreme slowing of dynamics in a liquid as it is supercooled towards the so-called glass transition. Efforts to universally describe the stretched relaxation processes and heterogeneous dynamics that characteristically develop in supercooled liquids remain divided in both their approaches and successes. Towards this end, a consensus on the role that atomic and molecular structures play in the liquid is even more tenuous. However, mounting material science research efforts have culminated to reveal that the vast diversity of metallic glass species and their properties are rooted in an equally-broad set of structural archetypes. Herein lies the motivation of this dissertation: the detailed information available regarding the structure-property relationships of metallic glasses provides a new context in which one can study the evolution of a supercooled liquid by utilizing a structural motif that is known to dominate the glass. Cu64Zr36 is a binary alloy whose good glass-forming ability and simple composition makes it a canonical material to both empirical and numerical studies. Here, we perform classical molecular dynamics simulations and conduct a comprehensive analysis of the dynamical regimes of liquid Cu64Zr36, while focusing on the roles played by atomic icosahedral ordering -- a structural motif which ultimately percolates the glass' structure. Large data analysis techniques are leveraged to obtain uniquely detailed structural and dynamical information in this context. In doing so, we develop the first account of the origin of icosahedral order in this alloy, revealing deep connections between this incipient structural ordering, frustration-limited domain theory, and recent important empirical findings that are relevant to the nature of metallic liquids at large. Furthermore, important dynamical landmarks such as the breakdown of the Stokes-Einstein relationship, the decoupling of particle diffusivities, and the development of general "glassy" relaxation features are found to coincide with successive manifestation of icosahedral ordering that arise as the liquid is supercooled. Remarkably, we detect critical-like features in the growth of the icosahedron network, with signatures that suggest that a liquid-liquid phase transition may occur in the deeply supercooled regime to precede glass formation. Such a transition is predicted to occur in many supercooled liquids, although explicit evidence of this phenomenon in realistic systems is scarce. Ultimately this work concludes that icosahedral order characterizes all dynamical regimes of Cu64Zr 36, demonstrating the importance and utility of studying supercooled liquids in the context of locally-preferred structure. More broadly, it serves to confirm and inform recent theoretical and empirical findings that are central to understanding the physics underlying the glass transition.

  10. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huajun; Dong, Yongqi; Cherukara, Matthew J.

    Memristive devices are an emerging technology that enables both rich interdisciplinary science and novel device functionalities, such as nonvolatile memories and nanoionics-based synaptic electronics. Recent work has shown that the reproducibility and variability of the devices depend sensitively on the defect structures created during electroforming as well as their continued evolution under dynamic electric fields. However, a fundamental principle guiding the material design of defect structures is still lacking due to the difficulty in understanding dynamic defect behavior under different resistance states. Here, we unravel the existence of threshold behavior by studying model, single-crystal devices: resistive switching requires that themore » pristine oxygen vacancy concentration reside near a critical value. Theoretical calculations show that the threshold oxygen vacancy concentration lies at the boundary for both electronic and atomic phase transitions. Through operando, multimodal X-ray imaging, we show that field tuning of the local oxygen vacancy concentration below or above the threshold value is responsible for switching between different electrical states. These results provide a general strategy for designing functional defect structures around threshold concentrations to create dynamic, field-controlled phases for memristive devices.« less

  11. Extended generalized recurrence plot quantification of complex circular patterns

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2017-03-01

    The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.

  12. Sructure and dynamics of fluids in micropous and mesoporous earth and engineered materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David R; Mamontov, Eugene; Rother, Gernot

    2009-01-01

    The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometri-cal confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dy-namical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 nm to 50 nm the micro- and mesoporous regimes. Important factors influ-encing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surfacemore » interaction. While confinement of liq-uids in hydrophobic matrices, such as carbon nanotubes, or near the sur-faces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and ma-terials sciences usually contain oxide structural units and thus are hydro-philic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesopor-ous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered sys-tems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Al-though studied less frequently, matrices such as artificial opals and chry-sotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for com-paring the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques which assess both structural modification and dynamical behav-ior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of bet-ter substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).« less

  13. PREFACE: Topics in the application of scattering methods to investigate the structure and dynamics of soft condensed matter

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Baglioni, Piero

    2006-09-01

    This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of the US Department of Energy for their support of the workshop.

  14. Cumulative reports and publications through December 31, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.

  15. Neutrons for biologists: a beginner's guide, or why you should consider using neutrons.

    PubMed

    Lakey, Jeremy H

    2009-10-06

    From the structures of isolated protein complexes to the molecular dynamics of whole cells, neutron methods can achieve a resolution in complex systems that is inaccessible to other techniques. Biology is fortunate in that it is rich in water and hydrogen, and this allows us to exploit the differential sensitivity of neutrons to this element and its major isotope, deuterium. Furthermore, neutrons exhibit wave properties that allow us to use them in similar ways to light, X-rays and electrons. This review aims to explain the basics of biological neutron science to encourage its greater use in solving difficult problems in the life sciences.

  16. Heterogeneous continuous-time random walks

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  17. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  18. Neutrons for biologists: a beginner's guide, or why you should consider using neutrons

    PubMed Central

    Lakey, Jeremy H.

    2009-01-01

    From the structures of isolated protein complexes to the molecular dynamics of whole cells, neutron methods can achieve a resolution in complex systems that is inaccessible to other techniques. Biology is fortunate in that it is rich in water and hydrogen, and this allows us to exploit the differential sensitivity of neutrons to this element and its major isotope, deuterium. Furthermore, neutrons exhibit wave properties that allow us to use them in similar ways to light, X-rays and electrons. This review aims to explain the basics of biological neutron science to encourage its greater use in solving difficult problems in the life sciences. PMID:19656821

  19. Dance Dynamics--Dance Science.

    ERIC Educational Resources Information Center

    Dunn, Jan, Ed.

    1990-01-01

    Five articles on dance dynamics and dance science focus on incorporating dance science into techniques class and performance training, the role of body therapies in dance training, psychological and nutritional concerns in dance, and training dancers and preventing injuries. (JD)

  20. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia

    PubMed Central

    Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-01-01

    Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440

  1. A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins.

    PubMed

    Spyrakis, Francesca; Benedetti, Paolo; Decherchi, Sergio; Rocchia, Walter; Cavalli, Andrea; Alcaro, Stefano; Ortuso, Francesco; Baroni, Massimo; Cruciani, Gabriele

    2015-10-26

    The importance of taking into account protein flexibility in drug design and virtual ligand screening (VS) has been widely debated in the literature, and molecular dynamics (MD) has been recognized as one of the most powerful tools for investigating intrinsic protein dynamics. Nevertheless, deciphering the amount of information hidden in MD simulations and recognizing a significant minimal set of states to be used in virtual screening experiments can be quite complicated. Here we present an integrated MD-FLAP (molecular dynamics-fingerprints for ligand and proteins) approach, comprising a pipeline of molecular dynamics, clustering and linear discriminant analysis, for enhancing accuracy and efficacy in VS campaigns. We first extracted a limited number of representative structures from tens of nanoseconds of MD trajectories by means of the k-medoids clustering algorithm as implemented in the BiKi Life Science Suite ( http://www.bikitech.com [accessed July 21, 2015]). Then, instead of applying arbitrary selection criteria, that is, RMSD, pharmacophore properties, or enrichment performances, we allowed the linear discriminant analysis algorithm implemented in FLAP ( http://www.moldiscovery.com [accessed July 21, 2015]) to automatically choose the best performing conformational states among medoids and X-ray structures. Retrospective virtual screenings confirmed that ensemble receptor protocols outperform single rigid receptor approaches, proved that computationally generated conformations comprise the same quantity/quality of information included in X-ray structures, and pointed to the MD-FLAP approach as a valuable tool for improving VS performances.

  2. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  3. Quadtree of TIN: a new algorithm of dynamic LOD

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Fei, Lifan; Chen, Zhen

    2009-10-01

    Currently, Real-time visualization of large-scale digital elevation model mainly employs the regular structure of GRID based on quadtree and triangle simplification methods based on irregular triangulated network (TIN). TIN is a refined means to express the terrain surface in the computer science, compared with GRID. However, the data structure of TIN model is complex, and is difficult to realize view-dependence representation of level of detail (LOD) quickly. GRID is a simple method to realize the LOD of terrain, but contains more triangle count. A new algorithm, which takes full advantage of the two methods' merit, is presented in this paper. This algorithm combines TIN with quadtree structure to realize the view-dependence LOD controlling over the irregular sampling point sets, and holds the details through the distance of viewpoint and the geometric error of terrain. Experiments indicate that this approach can generate an efficient quadtree triangulation hierarchy over any irregular sampling point sets and achieve dynamic and visual multi-resolution performance of large-scale terrain at real-time.

  4. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging

    NASA Astrophysics Data System (ADS)

    Giordano, V. M.; Ruta, B.

    2016-01-01

    Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization.

  5. Ultrafast nuclear dynamics in halomethanes studied with time-resolved Coulomb explosion imaging and channel-selective Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Malakar, Y.; Kaderiya, B.; Pearson, W. L.; Ziaee, F.; Kanaka Raju, P.; Zohrabi, M.; Jensen, K.; Rajput, J.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.

    2016-05-01

    Halomethanes have recently attracted considerable attention since they often serve as prototype systems for laser-controlled chemistry (e.g., selective bond breaking or concerted elimination reactions), and are important molecules in atmospheric chemistry. Here we combine a femtosecond laser pump-probe setup with coincident 3D ion momentum imaging apparatus to study strong-field induced nuclear dynamics in methane and several of its halogenated derivatives (CH3 I, CH2 I2, CH2 ICl). We apply a time-resolved Coulomb explosion imaging technique to map the nuclear motion on both, bound and continuum potential surfaces, disentangle different fragmentation pathways and, for halogenated molecules, observe clear signatures of vibrational wave packets in neutral or ionized states. Channel-selective and kinetic-energy resolved Fourier analysis of these data allows for unique identification of different electronic states and vibrational modes responsible for a particular structure. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049. K.J. supported by the NSF-REU Grant No. PHYS-1461251.

  6. Connected Worlds: Connecting the public with complex environmental systems

    NASA Astrophysics Data System (ADS)

    Uzzo, S. M.; Chen, R. S.; Downs, R. R.

    2016-12-01

    Among the most important concepts in environmental science learning is the structure and dynamics of coupled human and natural systems (CHANS). But the fundamental epistemology for understanding CHANS requires systems thinking, interdisciplinarity, and complexity. Although the Next Generation Science Standards mandate connecting ideas across disciplines and systems, traditional approaches to education do not provide more than superficial understanding of this concept. Informal science learning institutions have a key role in bridging gaps between the reductive nature of classroom learning and contemporary data-driven science. The New York Hall of Science, in partnership with Design I/O and Columbia University's Center for International Earth Science Information Network, has developed an approach to immerse visitors in complex human nature interactions and provide opportunities for those of all ages to elicit and notice environmental consequences of their actions. Connected Worlds is a nearly 1,000 m2 immersive, playful environment in which students learn about complexity and interconnectedness in ecosystems and how ecosystems might respond to human intervention. It engages students through direct interactions with fanciful flora and fauna within and among six biomes: desert, rainforest, grassland, mountain valley, reservoir, and wetlands, which are interconnected through stocks and flows of water. Through gestures and the manipulation of a dynamic water system, Connected Worlds enables students, teachers, and parents to experience how the ecosystems of planet Earth are connected and to observe relationships between the behavior of Earth's inhabitants and our shared world. It is also a cyberlearning platform to study how visitors notice and scaffold their understanding of complex environmental processes and the responses of these processes to human intervention, to help inform the improvement of education practices in complex environmental science.

  7. Is a Universal Science of Complexity Conceivable?

    NASA Astrophysics Data System (ADS)

    West, Geoffrey B.

    Over the past quarter of a century, terms like complex adaptive system, the science of complexity, emergent behavior, self-organization, and adaptive dynamics have entered the literature, reflecting the rapid growth in collaborative, trans-disciplinary research on fundamental problems in complex systems ranging across the entire spectrum of science from the origin and dynamics of organisms and ecosystems to financial markets, corporate dynamics, urbanization and the human brain...

  8. Self-consistent Simulation of Microparticle and Ion Wakefield Configuration

    NASA Astrophysics Data System (ADS)

    Sanford, Dustin; Brooks, Beau; Ellis, Naoki; Matthews, Lorin; Hyde, Truell

    2017-10-01

    In a complex plasma, positively charged ions often have a directed flow with respect to the negatively charged dust grains. The resulting interaction between the dust and the flowing plasma creates an ion wakefield downstream from the dust particles, with the resulting positive space region modifying the interaction between the grains and contributing to the observed dynamics and equilibrium structure of the system. Here we present a proof of concept method that uses a molecular dynamics simulation to model the ion wakefield allowing the dynamics of the dust particles to be determined self-consistently. The trajectory of each ion is calculated including the forces from all other ions, which are treated as ``Yukawa particles'' and shielded from thermal electrons and the forces of the charged dust particles. Both the dust grain charge and the wakefield structure are also self-consistently determined for various particle configurations. The resultant wakefield potentials are then used to provide dynamic simulations of dust particle pairs. These results will be employed to analyze the formation and dynamics of field-aligned chains in CASPER's PK4 experiment onboard the International Space Station, allowing examination of extended dust chains without the masking force of gravity. This work was supported by the National Science Foundation under Grants PHY-1414523 and PHY-1740203.

  9. Use of measurement theory for operationalization and quantification of psychological constructs in systems dynamics modelling

    NASA Astrophysics Data System (ADS)

    Fitkov-Norris, Elena; Yeghiazarian, Ara

    2016-11-01

    The analytical tools available to social scientists have traditionally been adapted from tools originally designed for analysis of natural science phenomena. This article discusses the applicability of systems dynamics - a qualitative based modelling approach, as a possible analysis and simulation tool that bridges the gap between social and natural sciences. After a brief overview of the systems dynamics modelling methodology, the advantages as well as limiting factors of systems dynamics to the potential applications in the field of social sciences and human interactions are discussed. The issues arise with regards to operationalization and quantification of latent constructs at the simulation building stage of the systems dynamics methodology and measurement theory is proposed as a ready and waiting solution to the problem of dynamic model calibration, with a view of improving simulation model reliability and validity and encouraging the development of standardised, modular system dynamics models that can be used in social science research.

  10. Computational structures technology and UVA Center for CST

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    Rapid advances in computer hardware have had a profound effect on various engineering and mechanics disciplines, including the materials, structures, and dynamics disciplines. A new technology, computational structures technology (CST), has recently emerged as an insightful blend between material modeling, structural and dynamic analysis and synthesis on the one hand, and other disciplines such as computer science, numerical analysis, and approximation theory, on the other hand. CST is an outgrowth of finite element methods developed over the last three decades. The focus of this presentation is on some aspects of CST which can impact future airframes and propulsion systems, as well as on the newly established University of Virginia (UVA) Center for CST. The background and goals for CST are described along with the motivations for developing CST, and a brief discussion is made on computational material modeling. We look at the future in terms of technical needs, computing environment, and research directions. The newly established UVA Center for CST is described. One of the research projects of the Center is described, and a brief summary of the presentation is given.

  11. International Conference of Applied Science and Technology for Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  12. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-08-07

    Here, hydrology is an integrative discipline linking the broad array of water–related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy tomore » the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross–site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  13. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; Godsey, Sarah E.; Maxwell, Reed M.; McNamara, James P.; Tague, Christina

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on "critical zone hydrology" has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: "how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?" Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.

  14. Impact compaction of a granular material

    DOE PAGES

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less

  15. Plasma membrane-associated platforms: dynamic scaffolds that organize membrane-associated events.

    PubMed

    Astro, Veronica; de Curtis, Ivan

    2015-03-10

    Specialized regions of the plasma membrane dedicated to diverse cellular processes, such as vesicle exocytosis, extracellular matrix remodeling, and cell migration, share a few cytosolic scaffold proteins that associate to form large plasma membrane-associated platforms (PMAPs). PMAPs organize signaling events and trafficking of membranes and molecules at specific membrane domains. On the basis of the intrinsic disorder of the proteins constituting the core of these PMAPs and of the dynamics of these structures at the periphery of motile cells, we propose a working model for the assembly and turnover of these platforms. Copyright © 2015, American Association for the Advancement of Science.

  16. VMD-SS: A graphical user interface plug-in to calculate the protein secondary structure in VMD program.

    PubMed

    Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid

    2014-01-01

    The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.

  17. High-resolution Measurement of Contact Ion-pair Structures in Aqueous RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl K-edge XAFS and XRD Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Van-Thai; Fulton, John L.

    2016-06-21

    In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge x-ray absorption fine structure (XAFS) and the x-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 m (mol/kg )) the solution is dominated by Rb+ - Cl- contact ion pairs yielding an average of 1.5more » pairs at an Rb-Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less

  18. Spatiotemporally resolved magnetic dynamics in B20 chiral FeGe

    NASA Astrophysics Data System (ADS)

    Gray, Isaiah; Turgut, Emrah; Bartell, Jason; Fuchs, Gregory

    Chiral magnetic materials have shown promise for ultra-low-power memory devices exploiting low critical currents for manipulation of spin textures. This motivates systematic studies of chiral dynamics in thin films, both for understanding magnetic properties and for developing devices. We use time-resolved anomalous Nernst effect (TRANE) microscopy to examine ferromagnetic resonance modes in 170 nm thin films of B20 chiral FeGe. Using 3 ps laser pulses with 1.2 μm resolution to generate a local thermal gradient, we measure the resulting Nernst voltage, which is proportional to the in-plane component of the magnetization. We first characterize and image the static magnetic moment as a function of temperature near the helical phase transition at 273 K. We then excite ferromagnetic resonance with microwave current and study the dynamical modes as a function of temperature, spatial position, and frequency. We identify both the uniform field-polarized mode and the helical spin-polarized mode and study the different spatial structures of the two modes. This work was supported by the Cornell Center for Materials Science with funding from the NSF MRSEC program (DMR-1120296), and also by the DOE Office of Science (Grant No. DE-SC0012245).

  19. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry.

    PubMed

    Kurihara, Kensuke; Matsuo, Muneyuki; Yamaguchi, Takumi; Sato, Sota

    2018-02-01

    To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dynamical Analyses for Developmental Science: A Primer for Intrigued Scientists

    ERIC Educational Resources Information Center

    DiDonato, M. D.; England, D.; Martin, C. L.; Amazeen, P. G.

    2013-01-01

    Dynamical systems theory is becoming more popular in social and developmental science. However, unfamiliarity with dynamical analysis techniques remains an obstacle for developmentalists who would like to quantitatively apply dynamics in their own research. The goal of this article is to address this issue by clearly and simply presenting several…

  1. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  2. The Saturn PRobe Interior and aTmosphere Explorer (SPRITE) Mission Concept

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Simon, Amy; Banfield, Don

    2017-04-01

    The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission would measure the abundance of helium and the other noble gases, elemental and isotopic abundances, the clouds, dynamics, and processes within Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE would provide a significantly improved context for understanding the results from the Galileo Jupiter probe, and the formation and evolution of the gas giant planets, resulting in a paradigm shift in our understanding of the formation, evolution, and ultimately the present day structure of the solar system. The proposed SPRITE concept carries an instrument payload to measure Saturn's atmospheric structure, dynamics, composition, chemistry, and clouds to at least 10 bars. A Quadrupole Mass Spectrometer measures noble gases and noble gas isotopes to accuracies that exceed the Galileo probe measurements at Jupiter and allows for discrimination between competing theories of giant planet formation, evolution, and possible migration. Of particular importance are measurements of helium, key to understanding Saturn's thermal evolution. A Tunable Laser Spectrometer measures molecular abundances and isotope ratios to determine the chemical structure of Saturn's atmosphere, and disequilibrium species such as PH3 and CO which can be used to predict Saturn's deep water abundance. An Atmospheric Structure Instrument provides the pressure/temperature profile of Saturn's atmosphere to determine the altitude profile of static stability, and when combined with cloud measurements from the SPRITE Nephelometer, would elucidate processes that determine the location and structure of Saturn's multiple cloud layers. Coupled with the measurement of atmospheric vertical velocities from the Atmospheric Structure Instrument, a Doppler Wind Experiment provides a measure of the 3-dimensional dynamics of the Saturn atmosphere, including the profile of zonal winds with depth and vertical motions from atmospheric waves. The proposed Science Objectives of the SPRITE mission are to: 1. Constrain competing models of habitable system formation and extent of migration in the early solar system by obtaining a chemical inventory of Saturn's troposphere, 2. Determine if Saturn's in situ atmosphere chemistry agrees with condensation models and remotely observed composition, 3. Constrain Saturn's helium depletion to reconcile observed temperatures with thermal evolution models. 4. Perform in situ characterization of Saturn's tropospheric cloud structure to provide the ground truth basis for cloud retrieval models, and 5. Determine Saturn's in situ 3-dimensional atmospheric dynamics along the probe descent path to inform global circulation and analytical models of the time-variable cloud top motions. To develop an improved understanding of the formation, evolution, and structure of the solar system, it is essential that the role played by the giant planets be well understood, and this cannot be accomplished without in situ measurements of the composition, structure, dynamics, and processes of Saturn's atmosphere. The proposed SPRITE mission would carry a suite of instruments specifically tailored to achieve the science objectives, to provide fundamental ground truth measurements for improved understanding of remote sensing measurements including from Cassini, and to understand the formation, evolution, and structure of the solar system as well as represent key ground truth for understanding exoplanets.

  3. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  4. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if researchers are to widely adopt co-production methods

  5. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  6. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  7. JPRS Report, Science & Technology, China.

    DTIC Science & Technology

    1992-08-20

    nature of the nuclear medium. QCD [quantum chromodynamic] lattice gauge calculations have predicted the existence of a new phase of the nuclear medium...and A106 octahedra; the atoms Nb and Al are located at the vacants of the octahedra, but a fraction of Al in the lattice is replaced by Nb atoms, and...superlattice and quantum-well lattice dynamics and electron structure, transport processes in superlattice low-dimensionality systems, semiconductor

  8. What Do I Want to Be with My PhD? The Roles of Personal Values and Structural Dynamics in Shaping the Career Interests of Recent Biomedical Science PhD Graduates

    ERIC Educational Resources Information Center

    Gibbs, Kenneth D., Jr.; Griffin, Kimberly A.

    2013-01-01

    Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs…

  9. Vortex Wakes of Conventional Aircraft

    DTIC Science & Technology

    1975-05-01

    Research Laboratories, Wright-Patterson Air Force Base , Ohio 45433, USA This work was prepared at the request of the Fluid Dynamics Panel of AGARD. THE...aerospace sciences relevant to strengthening the common defence posture; - Improving the co-operation among member nations in aerospace research and...two models have been developed to describe the inviscid structure of the vortex wake. The first model was due to Prandtl [10] and is based on the

  10. Breather soliton dynamics in microresonators

    NASA Astrophysics Data System (ADS)

    Yu, Mengjie; Jang, Jae K.; Okawachi, Yoshitomo; Griffith, Austin G.; Luke, Kevin; Miller, Steven A.; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2017-02-01

    The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation. Our study constitutes a significant contribution to understanding the soliton dynamics within the larger context of nonlinear science.

  11. Climate Dynamics and Hysteresis at Low and High Obliquity

    NASA Astrophysics Data System (ADS)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  12. [Construction and application of bioinformatic analysis platform for aquatic pathogen based on the MilkyWay-2 supercomputer].

    PubMed

    Fang, Xiang; Li, Ning-qiu; Fu, Xiao-zhe; Li, Kai-bin; Lin, Qiang; Liu, Li-hui; Shi, Cun-bin; Wu, Shu-qin

    2015-07-01

    As a key component of life science, bioinformatics has been widely applied in genomics, transcriptomics, and proteomics. However, the requirement of high-performance computers rather than common personal computers for constructing a bioinformatics platform significantly limited the application of bioinformatics in aquatic science. In this study, we constructed a bioinformatic analysis platform for aquatic pathogen based on the MilkyWay-2 supercomputer. The platform consisted of three functional modules, including genomic and transcriptomic sequencing data analysis, protein structure prediction, and molecular dynamics simulations. To validate the practicability of the platform, we performed bioinformatic analysis on aquatic pathogenic organisms. For example, genes of Flavobacterium johnsoniae M168 were identified and annotated via Blast searches, GO and InterPro annotations. Protein structural models for five small segments of grass carp reovirus HZ-08 were constructed by homology modeling. Molecular dynamics simulations were performed on out membrane protein A of Aeromonas hydrophila, and the changes of system temperature, total energy, root mean square deviation and conformation of the loops during equilibration were also observed. These results showed that the bioinformatic analysis platform for aquatic pathogen has been successfully built on the MilkyWay-2 supercomputer. This study will provide insights into the construction of bioinformatic analysis platform for other subjects.

  13. Seismic Characterizations of Fractures: Dynamic Diagnostics

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.

    2017-12-01

    Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  14. Enabling Autonomous Rover Science through Dynamic Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel; Chouinard, Caroline; Fisher, Forest; Castano, Rebecca; Judd, Michele; Nesnas, Issa

    2005-01-01

    This paper describes how dynamic planning and scheduling techniques can be used onboard a rover to autonomously adjust rover activities in support of science goals. These goals could be identified by scientists on the ground or could be identified by onboard data-analysis software. Several different types of dynamic decisions are described, including the handling of opportunistic science goals identified during rover traverses, preserving high priority science targets when resources, such as power, are unexpectedly over-subscribed, and dynamically adding additional, ground-specified science targets when rover actions are executed more quickly than expected. After describing our specific system approach, we discuss some of the particular challenges we have examined to support autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations.

  15. Maximal aggregation of polynomial dynamical systems

    PubMed Central

    Cardelli, Luca; Tschaikowski, Max

    2017-01-01

    Ordinary differential equations (ODEs) with polynomial derivatives are a fundamental tool for understanding the dynamics of systems across many branches of science, but our ability to gain mechanistic insight and effectively conduct numerical evaluations is critically hindered when dealing with large models. Here we propose an aggregation technique that rests on two notions of equivalence relating ODE variables whenever they have the same solution (backward criterion) or if a self-consistent system can be written for describing the evolution of sums of variables in the same equivalence class (forward criterion). A key feature of our proposal is to encode a polynomial ODE system into a finitary structure akin to a formal chemical reaction network. This enables the development of a discrete algorithm to efficiently compute the largest equivalence, building on approaches rooted in computer science to minimize basic models of computation through iterative partition refinements. The physical interpretability of the aggregation is shown on polynomial ODE systems for biochemical reaction networks, gene regulatory networks, and evolutionary game theory. PMID:28878023

  16. The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963) equation as a prediction model.

    NASA Astrophysics Data System (ADS)

    Wan, S.; He, W.

    2016-12-01

    The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963) equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data." On the basis of the intelligent features of evolutionary modeling (EM), including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.

  17. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  18. The Solar Dynamics Observatory: Your On-Orbit Eye on the Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 into the partly cloudy skies above Cape Canaveral, Florida. Over the next month SDO moved into a 28 degree inclined geosynchronous orbit at the longitude of the ground station in New Mexico. SDO is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand and predict those solar variations that influence life on Earth and our technological systems. The SDO science investigations will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere as the solar wind, energetic particles, and variations in the solar irradiance. The SDO mission consists of three scientific investigations (AIA, EVE, and HMI), a spacecraft bus, and a dedicated Ka-band ground station to handle the 150 Mbps data flow. SDO continues a long tradition of NASA missions providing calibrated solar spectral irradiance data, in this case using multiple measurements of the irradiance and rocket underflights of the spacecraft. The other instruments on SDO will be used to explain and develop predictive models of the solar spectral irradiance in the extreme ultraviolet. Science teams at LMSAL, LASP, and Stanford are responsible for processing, analyzing, distributing, and archiving the science data. We will talk about the launch of SDO and describe the data and science it is providing to NASA.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun

    Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less

  20. Structural evolution of the methane cation in subfemtosecond photodynamics

    NASA Astrophysics Data System (ADS)

    Mondal, T.; Varandas, A. J. C.

    2015-07-01

    An ab initio quantum dynamics study has been performed to explore the structural rearrangement of ground state CH 4+ in subfemtosecond resolved photodynamics. The method utilizes time-dependent wave-packet propagation on the X ˜ 2 T 2 electronic manifold of the title cation in full dimensionality, including nonadiabatic coupling of the three electronic sheets. Good agreement is obtained with recent experiments [Baker et al., Science 312, 424 (2006)] which use high-order harmonic generation to probe the attosecond proton dynamics. The novel results provide direct theoretical support of the observations while unravelling the underlying details. With the geometrical changes obtained by calculating the expectation values of the nuclear coordinates as a function of time, the structural evolution is predicted to begin through activation of the totally symmetric a1 and doubly degenerate e modes. While the former retains the original Td symmetry of the cation, the Jahn-Teller active e mode conducts it to a D2d structure. At ˜1.85 fs, the intermediate D2d structure is further predicted to rearrange to local C2v minimum geometry via Jahn-Teller active bending vibrations of t2 symmetry.

  1. NIF Discovery Science Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations.

    PubMed

    Raval, Alpan; Piana, Stefano; Eastwood, Michael P; Shaw, David E

    2016-01-01

    Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  3. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  4. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.

    PubMed

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L

    2016-10-21

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.

  5. Investigating radiation induced damage processes with femtosecond x-ray pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Changyong

    2017-05-01

    Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.

  6. De novo design of a transmembrane Zn²⁺-transporting four-helix bundle.

    PubMed

    Joh, Nathan H; Wang, Tuo; Bhate, Manasi P; Acharya, Rudresh; Wu, Yibing; Grabe, Michael; Hong, Mei; Grigoryan, Gevorg; DeGrado, William F

    2014-12-19

    The design of functional membrane proteins from first principles represents a grand challenge in chemistry and structural biology. Here, we report the design of a membrane-spanning, four-helical bundle that transports first-row transition metal ions Zn(2+) and Co(2+), but not Ca(2+), across membranes. The conduction path was designed to contain two di-metal binding sites that bind with negative cooperativity. X-ray crystallography and solid-state and solution nuclear magnetic resonance indicate that the overall helical bundle is formed from two tightly interacting pairs of helices, which form individual domains that interact weakly along a more dynamic interface. Vesicle flux experiments show that as Zn(2+) ions diffuse down their concentration gradients, protons are antiported. These experiments illustrate the feasibility of designing membrane proteins with predefined structural and dynamic properties. Copyright © 2014, American Association for the Advancement of Science.

  7. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2000-01-01

    This report covers technical progress during the third year of the NASA Space Physics Theory contract "The Structure and Dynamics of the Solar Corona," between NASA and Science Applications International Corporation, and covers the period June 16, 1998 to August 15, 1999. This is also the final report for this contract. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the three-year duration of this contract we have published 49 articles in the scientific literature. These publications are listed in Section 3 of this report. In the Appendix we have attached reprints of selected articles. We summarize our progress during the third year of the contract. Full descriptions of our work can be found in the cited publications, a few of which are attached to this report.

  8. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 4 - Tribological materials and NDE

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)

    1993-01-01

    The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.

  9. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  10. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE PAGES

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; ...

    2016-10-07

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  11. Dynamics of traffic flow with real-time traffic information

    NASA Astrophysics Data System (ADS)

    Yokoya, Yasushi

    2004-01-01

    We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic information based on advancements in telecommunication technology is expected to facilitate the efficient utilization of available road capacity. This system has a potentiality of not only engineering for road usage but also the science of complexity series. In the system, the information plays a role of feedback connecting microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper, we tried to clarify how the information works in a network of traffic flow from the perspective of statistical physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilibrium statistical physics and a computer simulation based on cellular automaton. We found that the information disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.

  12. Nonlinear coherent structures in granular crystals

    NASA Astrophysics Data System (ADS)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  13. Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems

    EPA Science Inventory

    Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...

  14. Exploring the contexts of urban science classrooms. Part 2: The emergence of rituals in the learning of science

    NASA Astrophysics Data System (ADS)

    Emdin, Christopher

    2007-04-01

    In Part 1 of this paper, I described the corporate and communal nature of research, teaching, and learning in urban science classrooms as both a theoretical approach to understanding, and way of viewing practices within these fields. By providing a new approach to theorizing the cultural misalignments that are prevalent in urban schools, I look to provide an informative tool for investigating under-discussed dynamics that impact science teaching and learning. In this body of work, I further expose the nature of the corporate|communal by describing practices that define communal practice. I do so conversant of the fact that synthesizing my previous work on corporate and communal practices necessarily pushes science education researchers and teachers to look for somewhat tactile explications of communal practices. That is to say, if communal practices do exist within the corporate structures of science classrooms, how do they present themselves and how can they be targeted? This paper begins a journey into such a study and focuses on student transactions, fundamental interactions and rituals as a key to redefining and attaining success in urban science classrooms.

  15. In Situ Probe Science at Saturn

    NASA Technical Reports Server (NTRS)

    Atkinson, D.H.; Lunine, J.I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.; hide

    2014-01-01

    A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sens-ing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.

  16. Differential effects of fine root morphology on water dynamics in the root-soil interface

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  17. Collaborative Recurrent Neural Networks forDynamic Recommender Systems

    DTIC Science & Technology

    2016-11-22

    formulation leads to an efficient and practical method. Furthermore, we demonstrate the versatility of our model by applying it to two different tasks: music ...form (user id, location id, check-in time). The LastFM9 dataset consists of sequences of songs played by a user’s music player collected by using a...Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2), 1990. Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition

  18. Estimation and Modeling of Enceladus Plume Density Using Attitude Control Data Collected by the Cassini Spacecraft During Low-Altitude Enceladus Flybys

    NASA Technical Reports Server (NTRS)

    Wang, Eric K.; Lee, Allan Y.

    2011-01-01

    The Cassini spacecraft was launched on 15 October 1997. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. Major science objectives of the Cassini mission include investigations of the configuration and dynamics of Saturn's magnetosphere, the structure and composition of the rings, the characterization of several of Saturn's icy satellites, and Titan's atmosphere constituent abundance

  19. Information Security: A Scientometric Study of the Profile, Structure, and Dynamics of an Emerging Scholarly Specialty

    DTIC Science & Technology

    2014-03-01

    documents (e.g., articles, books ). C ita tio n A n a ly sis Scientometrics The analysis, quantification, and measurement of science. The...the development of mechanical devices for cryptology around the early 1900s. These devices, known as rotor machines, drastically increased the...similar study, Fernandez-Alles and Ramos-Rodriguez (2009) argued that since human resources management was dominated by published books instead of journal

  20. Computational Science | NREL

    Science.gov Websites

    Science Photo of person viewing 3D visualization of a wind turbine The NREL Computational Science challenges in fields ranging from condensed matter physics and nonlinear dynamics to computational fluid dynamics. NREL is also home to the most energy-efficient data center in the world, featuring Peregrine-the

  1. Individual and Collective Leadership in School Science Departments

    ERIC Educational Resources Information Center

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-01-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two…

  2. Computational predictions of the new Gallium nitride nanoporous structures

    NASA Astrophysics Data System (ADS)

    Lien, Le Thi Hong; Tuoc, Vu Ngoc; Duong, Do Thi; Thu Huyen, Nguyen

    2018-05-01

    Nanoporous structural prediction is emerging area of research because of their advantages for a wide range of materials science and technology applications in opto-electronics, environment, sensors, shape-selective and bio-catalysis, to name just a few. We propose a computationally and technically feasible approach for predicting Gallium nitride nanoporous structures with hollows at the nano scale. The designed porous structures are studied with computations using the density functional tight binding (DFTB) and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with their parent’s bulk stable phase. The electronic band structures of these nanoporous structures are finally examined in detail.

  3. Towards an eco-phylogenetic framework for infectious disease ecology.

    PubMed

    Fountain-Jones, Nicholas M; Pearse, William D; Escobar, Luis E; Alba-Casals, Ana; Carver, Scott; Davies, T Jonathan; Kraberger, Simona; Papeş, Monica; Vandegrift, Kurt; Worsley-Tonks, Katherine; Craft, Meggan E

    2018-05-01

    Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats. © 2017 Cambridge Philosophical Society.

  4. An Examination of the Processes of Student Science Identity Negotiation within an Informal Learning Community

    NASA Astrophysics Data System (ADS)

    Mark, Sheron L.

    Scientific proficiency is important, not only for a solid, interdisciplinary educational foundation, but also for entry into and mobility within today's increasingly technological and globalized workplace, as well as for informed, democratic participation in society (National Academies Press, 2007b). Within the United States, low-income, ethnic minority students are disproportionately underperforming and underrepresented in science, as well as mathematics, engineering and other technology fields (Business-Higher Education Forum, 2011; National Assessment of Educational Progress, 2009). This is due, in part, to a lack of educational structures and strategies that can support low-income, ethnic minority students to become competent in science in equitable and empowering ways. In order to investigate such structures and strategies that may be beneficial for these students, a longitudinal, qualitative study was conducted. The 15 month study was an investigation of science identity negotiation informed by the theoretical perspectives of Brown's (2004) discursive science identities and Tan and Barton's (2008) identities-in-practice amongst ten high school students in an informal science program and employed an amalgam of research designs, including ethnography (Geertz, 1973), case study (Stake, 2000) and grounded theory (Glaser & Strauss, 1967). Findings indicated that the students made use of two strategies, discursive identity development and language use in science, in order to negotiate student science identities in satisfying ways within the limits of the TESJ practice. Additionally, 3 factors were identified as being supportive of successful student science identity negotiation in the informal practice, as well. These were (i) peer dynamics, (ii) significant social interactions, and (iii) student ownership in science. The students were also uncovered to be particularly open-minded to the field of STEM. Finally, with respect to STEM career development, specific behaviors were indicative of students' serious consideration of STEM careers and two major patterns in STEM career interests were uncovered. The findings are discussed in relation to existing research in science education, as are implications for future research and practice.

  5. Statistical thermodynamics and the size distributions of tropical convective clouds.

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.

    2017-12-01

    Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.

  6. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    NASA Astrophysics Data System (ADS)

    Pottinger, James E.

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the Earth and Space sciences to determine if similar conclusions may be reached, (b) conduct a quantitative study looking at the available online technologies and their effectiveness in each area, and (c) utilize students that took online Earth and Space science classes and compare their perception of effectiveness to the instructor's perception of effectiveness in the online Earth and Space science classroom.

  7. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals.

    PubMed

    Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U L III -edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO 2 ), and constrained the S 0 2 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H + , +1 e - ). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with applications over a broad swath of chemistry and materials science.

  8. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien; Bylaska, Eric J.; Massey, Michael S.

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking, yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation state (VI, V, and IV) and chargemore » compensation scheme (CCS) were varied. Simulated trajectories were used to calculate the U LIII-edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO2), and constrained the S02 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to injection of one electron into the solid (–1 H+, + 1 e-). The ability of AIMD to model higher-energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with applications over a broad swath of chemistry and materials science.« less

  9. Visualization of the ultrafast structural phase transitions in warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, Mianzhen

    2017-10-01

    It is still a great challenge to obtain real-time atomistic-scale information on the structural phase transitions that lead to warm dense matter state. Recent advances in ultrafast electron diffraction (UED) techniques have opened up exciting prospects to unravel the mechanisms of solid-liquid phase transitions under these extreme non-equilibrium conditions. Here we report on precise measurements of melt time dependency on laser excitation energy density that resolve for the first time the transition from heterogeneous to homogeneous melting. This transition appears in both polycrystalline and single-crystal gold nanofilms with distinct measurable differences. These results test predictions from molecular-dynamics simulations with different interatomic potential models. These data further deliver accurate structure factor data to large wavenumbers that allow us to constrain electron-ion equilibration constants. Our results demonstrate electron-phonon coupling strength much weaker than DFT calculations, and contrary to previous results, provide evidence for bond softening. This work is supported by DOE Office of Science, Fusion Energy Science under FWP 100182, and the DOE BES Accelerator and Detector R&D program.

  10. Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.

    Molecular dynamic simulations were carried out to study the sorption, structural properties, and diffusivities of n-hexane and cyclohexane adsorbed in Ni2(dhtp). The results indicated strong interactions between the alkanes and the host material. The free energy perturbation method was employed to investigate the adsorption free energies of methane, ethane, n-butane, n-hexane and cyclohexane. For linear alkanes, the free energy lowered as the length of the carbon chain increased. Also, the adsorption of n-hexane was preferred over cyclohexane, due to its ability to rearrange its structure to maximize contacts with the host. Furthermore, due to the large pore size of Ni2(dhtp),more » higher loadings of alkanes did not significantly affect the alkane structure, and enhanced the free energy of adsorption for subsequent alkanes being loaded. According to our studies, Ni2(dhtp) has a very promising potential for adsorption and storage of alkanes. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  11. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics: CRITICAL ZONE HYDROLOGY

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water‐related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to themore » base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross‐site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  12. Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation-Maximization (SAEM) Algorithm.

    PubMed

    Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu

    2016-03-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

  13. FITTING NONLINEAR ORDINARY DIFFERENTIAL EQUATION MODELS WITH RANDOM EFFECTS AND UNKNOWN INITIAL CONDITIONS USING THE STOCHASTIC APPROXIMATION EXPECTATION–MAXIMIZATION (SAEM) ALGORITHM

    PubMed Central

    Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew

    2014-01-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456

  14. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    NASA Astrophysics Data System (ADS)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  15. Application of dynamic mass spectrometers for investigations in the field of thermonuclear synthesis

    NASA Astrophysics Data System (ADS)

    Aruev, N. N.

    2017-04-01

    This review discusses the design, analytical characteristics, and some applications of two types of dynamic mass spectrometers that have been developed at the Ioffe Institute, Russian Academy of Sciences: the magnetic resonance mass spectrometer (MRMS) and time-of-flight mass spectrometer (TOFMS), the latter of which the inventors named the mass reflectron. With the aid of an MRMS, it was possible to measure the half-life of tritium, which is a fusion fuel candidate, and to start investigating how deuterium plasma interacts with the structural materials of the spherical tokamak Globus-M. The research done shows that mass reflectrons can be used successfully in the analysis of tritium-containing fusion fuel gas mixtures.

  16. The Linac Coherent Light Source: Recent Developments and Future Plans

    DOE PAGES

    Schoenlein, R. W.; Boutet, S.; Minitti, M. P.; ...

    2017-08-18

    The development of X-ray free-electron lasers (XFELs) has launched a new era in X-ray science by providing ultrafast coherent X-ray pulses with a peak brightness that is approximately one billion times higher than previous X-ray sources. The Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory, the world’s first hard X-ray FEL, has already demonstrated a tremendous scientific impact across broad areas of science. Here in this paper, a few of the more recent representative highlights from LCLS are presented in the areas of atomic, molecular, and optical science; chemistry; condensed matter physics; matter in extreme conditions;more » and biology. This paper also outlines the near term upgrade (LCLS-II) and motivating science opportunities for ultrafast X-rays in the 0.25–5 keV range at repetition rates up to 1 MHz. Future plans to extend the X-ray energy reach to beyond 13 keV (<1 Å) at high repetition rate (LCLS-II-HE) are envisioned, motivated by compelling new science of structural dynamics at the atomic scale.« less

  17. Ontology of Earth's nonlinear dynamic complex systems

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  18. Emerging Trends in Science Education in a Dynamic Academic Environment

    ERIC Educational Resources Information Center

    Avwiri, H. E.

    2016-01-01

    Emerging Trends in Science Education in a Dynamic Academic Environment highlights the changes that have occurred in science education particularly in institutions of higher learning in southern Nigeria. Impelled by the fact that most Nigerian Universities and Colleges of Education still adhere to the practices and teaching methodologies of the…

  19. Resilience | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Resilience is an important framework for understanding and managing complex systems of people and nature that are subject to abrupt and nonlinear change. The idea of ecological resilience was slow to gain acceptance in the scientific community, taking thirty years to become widely accepted (Gunderson 2000, cited under Original Definition). Currently, the concept is commonplace in academics, management, and policy. Although the idea has quantitative roots in the ecological sciences and was proposed as a measurable quality of ecosystems, the broad use of resilience led to an expansion of definitions and applications. Holling’s original definition, presented in 1973 (Holling 1973, cited under Original Definition), was simply the amount of disturbance that a system can withstand before it shifts into an alternative stability domain. Ecological resilience, therefore, emphasizes that the dynamics of complex systems are nonlinear, meaning that these systems can transition, often abruptly, between dynamic states with substantially different structures, functions, and processes. The transition of ecological systems from one state to another frequently has important repercussions for humans. Recent definitions are more normative and qualitative, especially in the social sciences, and a competing definition, that of engineering resilience, is still often used. Resilience is an emergent phenomenon of complex systems, which means it cannot be deduced from the behavior of t

  20. PoSSUM: Polar Suborbital Science in the Upper Mesosphere

    NASA Astrophysics Data System (ADS)

    Reimuller, J. D.; Fritts, D. C.; Thomas, G. E.; Taylor, M. J.; Mitchell, S.; Lehmacher, G. A.; Watchorn, S. R.; Baumgarten, G.; Plane, J. M.

    2013-12-01

    Project PoSSUM (www.projectpossum.org) is a suborbital research project leveraging imaging and remote sensing techniques from Reusable Suborbital Launch Vehicles (rSLVs) to gather critical climate data through use of the PoSSUM Observatory and the PoSSUM Aeronomy Laboratory. An acronym for Polar Suborbital Science in the Upper Mesosphere, PoSSUM grew from the opportunity created by the Noctilucent Cloud Imagery and Tomography Experiment, selected by the NASA Flight Opportunities Program as Experiment 46-S in March 2012. This experiment will employ an rSLV (e.g. the XCOR Lynx Mark II) launched from a high-latitude spaceport (e.g. Eielson AFB, Alaska or Kiruna, Sweden) during a week-long deployment scheduled for July 2015 to address critical questions concerning noctilucent clouds (NLCs) through flights that transition the cloud layer where the clouds will be under direct illumination from the sun. The 2015 Project PoSSUM NLC campaign will use the unique capability of rSLVs to address key under-answered questions pertaining to NLCs. Specifically, PoSSUM will answer: 1) What are the small-scale dynamics of NLCs and what does this tell us about the energy and momentum deposition from the lower atmosphere? 2) What is the seasonal variability of NLCs, mesospheric dynamics, and temperatures? 3) Are structures observed in the OH layer coupled with NLC structures? 4) How do NLCs nucleate? and 5) What is the geometry of NLC particles and how do they stratify? Instrumentation will include video and still-frame visible cameras (PoSSUMCam), infrared cameras, a mesospheric temperatures experiment, a depolarization LiDAR, a mesospheric density and temperatures experiment (MCAT), a mesospheric winds experiment, and a meteoric smoke detector (MASS). The instrument suite used on PoSSUM will mature through subsequent campaigns to develop an integrated, modular laboratory (the ';PoSSUM Observatory') that will provide repeatable, low cost, in-situ NLC and aeronomy observations as well as validate a method to serve the broader Earth Observation science, atmospheric science, and aeronomy communities.

  1. The Impact of Policies Influencing the Demography of Age-Structured Populations: Lessons from Academies of Sciences

    PubMed Central

    Riosmena, Fernando; Winkler-Dworak, Maria; Prskawetz, Alexia; Feichtinger, Gustav

    2013-01-01

    In this paper, we assess the role of policies aimed at regulating the number and age structure of elections on the size and age structure of five European Academies of Sciences. We show the recent pace of ageing and the degree of variation in policies across them and discuss the implications of different policies on the size and age structure of academies. We also illustrate the potential effect of different election regimes (fixed vs. linked) and age structures of election (younger vs. older) by contrasting the steady-state dynamics of different projections of Full Members in each academy into 2070 and measuring the size and age-compositional effect of changing a given policy relative to a status quo policy scenario. Our findings suggest that academies with linked intake (i.e., where the size of the academy below a certain age is fixed and the number of elections is set to the number of members becoming that age) may be a more efficient approach to curb growth without suffering any ageing trade-offs relative to the faster growth of academies electing a fixed number of members per year. We further discuss the implications of our results in the context of stable populations open to migration. PMID:23843677

  2. Mid-lithospheric discontinuity and its roles in the dynamic evolution of the craton-example from the North China Craton

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Wei, Zigen; Jiang, Mingming; Ling, Yuan

    2016-04-01

    Mid-lithospheric discontinuity and its roles in the dynamic evolution of the craton - example from the North China Craton Ling Chen1,2, Zigen Wei3, Mingming Jiang1, Yuan Ling1 1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing100101, China 3. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China Detailed knowledge of lithospheric structure is essential for understanding the long-term evolution and dynamics of continents. We present an integrated lithospheric structural image along an E-W profile across the North China Craton (NCC) derived from the teleseismic data recorded at two dense seismic arrays in combination with other geophysical and geological observations. Our S- and P-receiver function images show substantial undulations of the lithosphere-asthenosphere boundary (LAB), from 60-100 km in the eastern NCC to ~160-200 km in the central-western NCC, and <150-km in the Qilian orogenic belt further to the west, accompanying marked lithospheric structural variations. This agrees with previous studies that suggest the occurrence of fundamental destruction in the eastern NCC but localized lithospheric thinning and modifications in the central-western NCC. A negative velocity discontinuity is identified at the depth of ~80-100 km within the thick lithosphere of the central-western NCC, spatially coincident with the top interface of a relatively low velocity layer in the overall high velocity mantle root imaged by surface wave tomography. Detailed data analyses show that this mid- or intra-lithospheric discontinuity has considerably larger S-to-P and P-to-S conversion amplitudes than the LAB below, which provides observational constraints to further decipher the origin of the discontinuity. Our imaging results corroborate recent seismic studies that reveal similar discontinuities at ~100 km depth under stable continental regions worldwide, suggesting the common presence of vertical heterogeneities and layering in the sub-continental lithospheric mantle (SCLM). The ~100-km depth discontinuity and the corresponding velocity decrease in the SCLM may indicate an ancient, mechanically weak layer within the overall strong cratonic lithosphere, which probably also existed beneath the eastern NCC before its Mesozoic destruction. The presence of such a weak layer could have facilitated simultaneous lithospheric modification at the base and in the middle of the lithosphere in the eastern NCC, especially under the strong influence of the Mesozoic Pacific subduction, eventually leading to the severe lithospheric thinning and destruction recorded in this part of the craton. The weak layer probably did not strongly affect the stability and evolution of the central and western NCC and other cratonic regions where effects from plate boundary processes were weak. Our seismic images, integrated with geological data, provide new insights into structural heterogeneities in the subcontinental lithospheric mantle and their roles in the dynamic evolution of continents.

  3. Morse-Smale Analysis of Ion Diffusion in Ab Initio Battery Materials Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun

    Ab initio molecular dynamics (AIMD) simulations are increasingly useful in modeling, optimizing and synthesizing materials in energy sciences. In solving Schrödinger’s equation, they generate the electronic structure of the simulated atoms as a scalar field. However, methods for analyzing these volume data are not yet common in molecular visualization. The Morse-Smale complex is a proven, versatile tool for topological analysis of scalar fields. In this paper, we apply the discrete Morse-Smale complex to analysis of first-principles battery materials simulations. We consider a carbon nanosphere structure used in battery materials research, and employ Morse-Smale decomposition to determine the possible lithium ionmore » diffusion paths within that structure. Our approach is novel in that it uses the wavefunction itself as opposed distance fields, and that we analyze the 1-skeleton of the Morse-Smale complex to reconstruct our diffusion paths. Furthermore, it is the first application where specific motifs in the graph structure of the complete 1-skeleton define features, namely carbon rings with specific valence. We compare our analysis of DFT data with that of a distance field approximation, and discuss implications on larger classical molecular dynamics simulations.« less

  4. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  5. Environmental GeoSciences Lectures and Transversal Public Workshops

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Redondo, A.; Babiano, A.

    2010-05-01

    Co/organized by the Campus Universitari de la Mediterrania, which is a consortium between the City hall of Vilanova i la Geltru, The Universitat Politecnica de Catalunya and the Generalitat. A series of high level workshops and summer schools have been used to prepare specific, hands on science and scientific, divulgation material aimed at different types of public. Some of the most attractive topics in geosciences, prepared by well established scientists in collaboration with primary and secondary school teachers are used to stimulate science and environmental topics in the clasroom. A collection of CDs with lectures, videos and experimental visual results cover a wide range of topics such as: Cloud shape analysis, Cetacean Acoustics, Turbulence, Soil percolation, Dynamic Oceanograpy, Oil Pollution, Solar Physics, Rainbows and colour, Snail shell structure, etc.. Some of the most popular themes are chosen, studied and presented by the diferent aged pupils from local schools.

  6. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    PubMed

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  7. [Analysis on application of PBL in teaching of Zhenjiuxue (science of acupuncture and moxibustion) and establishment of a new education model].

    PubMed

    Zhang, Kun; Zheng, Jun

    2013-05-01

    Advantages of problem-based leaning (PBL) in teaching of Zhenjiuxue (Science of acupuncture and moxibustion) is analyzed through the feature that the curriculum has more comprehensiveness and practicalness and characteristics of the teaching team. Defects of incomplete communication among thinking pattern, cognitive contents and organization structure are presented in this article as well. It is held that things can be taken as a common point or cognitive origin of the west and the east. Therefore, bridge model of origin is designed, which could fulfill more profound expression and cognition of knowledge in ordered and dynamic organization form based on advantages of PBL, surrounded with cognitive origin and depended on impetus produced by differences between domestic and international sciences, technologies and cultures of ancient and modern societies. Thus, the level of teaching can be constantly enhanced.

  8. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  9. How funding structures for HIV/AIDS research shape outputs and utilization: a Swiss case study

    PubMed Central

    2011-01-01

    Background Research policy in the field of HIV has changed substantially in recent decades in Switzerland. Until 2004, social science research on HIV/AIDS was funded by specialized funding agencies. After 2004, funding of such research was “normalized” and integrated into the Swiss National Science Foundation as the main funding agency for scientific research in Switzerland. This paper offers a longitudinal analysis of the relationship between the changing nature of funding structures on the one hand and the production and communication of policy-relevant scientific knowledge in the field of HIV on the other hand. Methods The analysis relies on an inventory of all social sciences research projects on HIV in Switzerland that were funded between 1987 and 2010, including topics covered and disciplines involved, as well as financial data. In addition, in-depth interviews were conducted with 18 stakeholders. Results The analysis highlights that the pre-2004 funding policy ensured good coverage of important social science research themes. Specific incentives and explicit promotion of social science research related to HIV gave rise to a multidisciplinary, integrative and health-oriented approach. The abolition of a specific funding policy in 2004 was paralleled by a drastic reduction in the number of social science research projects submitted for funding, and a decline of public money dedicated to such research. Although the public administration in charge of HIV policy still acknowledges the relevance of findings from social sciences for the development of prevention, treatment and care, HIV-related social science research does not flourish under current funding conditions. Conclusions The Swiss experience sheds light on the difficulties of sustaining social science research and multidisciplinary approaches related to HIV without specialized funding agencies. Future funding policy might not necessarily require specialized agencies, but should better take into account research dynamics and motivations in the field of social sciences. PMID:21968292

  10. How funding structures for HIV/AIDS research shape outputs and utilization: a Swiss case study.

    PubMed

    Frey, Kathrin; Kübler, Daniel

    2011-09-27

    Research policy in the field of HIV has changed substantially in recent decades in Switzerland. Until 2004, social science research on HIV/AIDS was funded by specialized funding agencies. After 2004, funding of such research was "normalized" and integrated into the Swiss National Science Foundation as the main funding agency for scientific research in Switzerland. This paper offers a longitudinal analysis of the relationship between the changing nature of funding structures on the one hand and the production and communication of policy-relevant scientific knowledge in the field of HIV on the other hand. The analysis relies on an inventory of all social sciences research projects on HIV in Switzerland that were funded between 1987 and 2010, including topics covered and disciplines involved, as well as financial data. In addition, in-depth interviews were conducted with 18 stakeholders. The analysis highlights that the pre-2004 funding policy ensured good coverage of important social science research themes. Specific incentives and explicit promotion of social science research related to HIV gave rise to a multidisciplinary, integrative and health-oriented approach. The abolition of a specific funding policy in 2004 was paralleled by a drastic reduction in the number of social science research projects submitted for funding, and a decline of public money dedicated to such research. Although the public administration in charge of HIV policy still acknowledges the relevance of findings from social sciences for the development of prevention, treatment and care, HIV-related social science research does not flourish under current funding conditions. The Swiss experience sheds light on the difficulties of sustaining social science research and multidisciplinary approaches related to HIV without specialized funding agencies. Future funding policy might not necessarily require specialized agencies, but should better take into account research dynamics and motivations in the field of social sciences.

  11. Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.

    PubMed

    Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra

    2016-09-21

    Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.

  12. Logical Fallacies and the Abuse of Climate Science: Fire, Water, and Ice

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2012-12-01

    Good policy without good science and analysis is unlikely. Good policy with bad science is even more unlikely. Unfortunately, there is a long history of abuse or misuse of science in fields with ideological, religious, or economically controversial policy implications, such as planetary physics during the time of Galileo, the evolution debate, or climate change. Common to these controversies are what are known as "logical fallacies" -- patterns of reasoning that are always -- or at least commonly -- wrong due to a flaw in the structure of the argument that renders the argument invalid. All scientists should understand the nature of logical fallacies in order to (1) avoid making mistakes and reaching unsupported conclusion, (2) help them understand and refute the flaws in arguments made by others, and (3) aid in communicating science to the public. This talk will present a series of logical fallacies often made in the climate science debate, including "arguments from ignorance," "arguments from error," "arguments from misinterpretation," and "cherry picking." Specific examples will be presented in the area of temperature analysis, water resources, and ice dynamics, with a focus on selective use or misuse of data.; "Argument from Error" - an amusing example of a logical fallacy.

  13. Lattice stability and thermal properties of Fe2VAl and Fe2TiSn Heusler compounds

    NASA Astrophysics Data System (ADS)

    Shastri, Shivprasad S.; Pandey, Sudhir K.

    2018-04-01

    Fe2VAl and Fe2TiSn are two full-Heusler compounds with non-magnetic ground states. They have application as potential thermoelectric materials. Along with first-principles electronic structure calculations, phonon calculation is one of the important tools in condensed matter physics and material science. Phonon calculations are important in understanding mechanical properties, thermal properties and phase transitions of periodic solids. A combination of electronic structure code and phonon calculation code - phonopy is employed in this work. The vibrational spectra, phonon DOS and thermal properties are studied for these two Heusler compounds. Two compounds are found to be dynamically stable with absence of negative frequencies (energy) in the phonon band structure.

  14. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2015-06-01

    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficientmore » layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.« less

  15. Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Penner, Joyce E.; Andronova, Natalia; Oehmke, Robert C.; Brown, Jonathan; Stout, Quentin F.; Jablonowski, Christiane; van Leer, Bram; Powell, Kenneth G.; Herzog, Michael

    2007-07-01

    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.

  16. Peptoid Backbone Flexibilility Dictates Its Interaction with Water and Surfaces: A Molecular Dynamics Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Arushi; Baer, Marcel D.; Mundy, Christopher J.

    Peptoids are peptide-mimetic biopolymers that are easy-to-synthesize and adaptable for use in drugs, chemical scaffolds, and coatings. However, there is insufficient information about their structural preferences and interactions with the environment in various applications. We conducted a study to understand the fundamental differences between peptides and peptoids using molecular dynamics simulations with semi-empirical (PM6) and empirical (AMBER) potentials, in conjunction with metadynamics enhanced sampling. From studies of single molecules in water and on surfaces, we found that sarcosine (model peptoid) is much more flexible than alanine (model peptide) in different environments. However, the sarcosine and alanine interact similarly with amore » hydrophobic or a hydrophilic. Finally, this study highlights the conformational landscape of peptoids and the dominant interactions that drive peptoids towards these conformations. ACKNOWLEDGMENT: MD simulations and manuscript preparation were supported by the MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. CJM was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by the US Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. Computing resources were generously allocated by University of Washington's IT department and PNNL's Institutional Computing program. The authors greatly acknowledge conversations with Dr. Kayla Sprenger, Josh Smith, and Dr. Yeneneh Yimer.« less

  17. Chemistry Division: Annual progress report for period ending March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  18. Entropic Elastic Processes in Protein Mechanisms. Part 1. Elastic Structure Due to an Inverse Temperature Transition and Elasticity Due to Internal Chain Dynamics,

    DTIC Science & Technology

    1986-01-01

    Bungenberg de Jong , H . G . and Kruyt, H . R. (1930). Kolloid-Z 50, 39-48. Bungenberg de Jong , H . G . and Kruyt, H . R. (1929). Proc. Kon. Ned. Adak...Submitted). Bungenbery de Jong , H . G . (1949). In Colloid Science, Vol. 2 (Kruyt, H . R., ed.) Elsevier/North Holland Publishers, Amsterdam, pp. 232...Resonance Relaxation Studies g . Dielectric Relaxation Studies h . Temperature Dependence

  19. Laboratory Experiments to Simulate and Investigate the Physics Underlying the Dynamics of Merging Solar Corona Structures

    DTIC Science & Technology

    2016-06-05

    have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical

  20. Workshop on the Martian Surface and Atmosphere Through Time

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M. (Editor); Jakosky, Bruce M. (Editor)

    1992-01-01

    The purpose of the workshop was to bring together the Mars Surface and Atmosphere Through Time (MSATT) Community and interested researchers to begin to explore the interdisciplinary nature of, and to determine the relationships between, various aspects of Mars science that involve the geological and chemical evolution of its surface, the structure and dynamics of its atmosphere, interactions between the surface and atmosphere, and the present and past states of its volatile endowment and climate system.

  1. The Utilization of the Behavioral Sciences in Long Range Forecasting and Policy Planning Volume I. Appendices

    DTIC Science & Technology

    1976-08-01

    foreign policy dynamics, the structure of a theory cannot in {.eneral be derived from statistical analysis of time series data ( Brunner (1071), Thorson...and where such scientific knowledge la applicable. Recent attention in theory and research on the bureaucratic, handling of foreign policy...process. Some of ^.z element» of thase concerns can be made explicit if we introduce modern systems theories which seek to treat organizations as

  2. HST update - Science amid setbacks

    NASA Astrophysics Data System (ADS)

    Fienberg, Richard T.

    1991-09-01

    Recent data obtained from the Hubble Space Telescope (HST) are presented that indicate that the mission of the beleagered telescope has reached a turning point. Among these observations is a spectrogram revealing the complex dynamic structure of the Beta Pictoris's gas disk, the Lyman-alpha lines from clouds of cool hydrogen atoms in the Milky Way, the UV spectrum of Chi Lupi, the images of Eta Carinae and the Homunculus nebula ejected by the star during the 1843 outburst, and the structure of energetic jets from active galactic nuclei. The paper discusses corrective measures planned by the NASA and Hubble project astronomers to restore the observatory to near-perfect health.

  3. Langley's CSI evolutionary model: Phase O

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  4. A numerical study of coarsening in the two-dimensional complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Liu, Weigang; Tauber, Uwe

    The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems: coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose-Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate the coarsening dynamics following a quench from a strongly fluctuating defect turbulence phase to a long-range ordered phase. We start from a simplified amplitude equation, solve it numerically, and then study the spatio-temporal behavior characterized by the spontaneous creation and annihilation of topological defects (spiral waves). We check our simulation results against the known dynamical phase diagram in this non-equilibrium system, tentatively analyze the coarsening kinetics following sudden quenches, and characterize the ensuing aging scaling behavior. In addition, we aim to use Voronoi triangulation to study the cellular structure in the phase turbulence and frozen states. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-09ER46613.

  5. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, LIsa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  6. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, Lisa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO s on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  7. The Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.

  8. Relaxation processes and physical aging in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Pineda, E.; Evenson, Z.

    2017-12-01

    Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with recent theoretical and numerical simulations are discussed as well.

  9. Conformational dynamics of a protein in the folded and the unfolded state

    NASA Astrophysics Data System (ADS)

    Fitter, Jörg

    2003-08-01

    In a quasielastic neutron scattering experiment, the picosecond dynamics of α-amylase was investigated for the folded and the unfolded state of the protein. In order to ensure a reasonable interpretation of the internal protein dynamics, the protein was measured in D 2O-buffer solution. The much higher structural flexibility of the pH induced unfolded state as compared to the native folded state was quantified using a simple analytical model, describing a local diffusion inside a sphere. In terms of this model the conformational volume, which is explored mainly by confined protein side-chain movements, is parameterized by the radius of a sphere (folded state, r=1.2 Å; unfolded state, 1.8 Å). Differences in conformational dynamics between the folded and the unfolded state of a protein are of fundamental interest in the field of protein science, because they are assumed to play an important role for the thermodynamics of folding/unfolding transition and for protein stability.

  10. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    DOE PAGES

    Davis, P.; Döppner, T.; Rygg, J. R.; ...

    2016-04-18

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less

  11. Making Sense of Dynamic Systems: How Our Understanding of Stocks and Flows Depends on a Global Perspective.

    PubMed

    Fischer, Helen; Gonzalez, Cleotilde

    2016-03-01

    Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO2 with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure, whose cognitive explanations are yet unknown. We argue that SF failure appears when people focus on specific system elements (local processing), rather than on the system structure and gestalt (global processing). Using a standard SF task (n = 148), SF failure decreased by (a) a global as opposed to local task format; (b) individual global as opposed to local processing styles; and (c) global as opposed to local perceptual priming. These results converge toward local processing as an explanation for SF failure. We discuss theoretical and practical implications on the connections between the scope of attention and understanding of dynamic systems. Copyright © 2015 Cognitive Science Society, Inc.

  12. From viscous to elastic sheets: Dynamics of smectic freely floating films

    NASA Astrophysics Data System (ADS)

    Harth, Kirsten; May, Kathrin; Trittel, Torsten; Stannarius, Ralf

    2015-03-01

    Oscillations and rupture of bubbles, composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties except surface tension are often neglected for simple fluid films (e.g. soap bubbles), whereas they govern the dynamics in systems with more complex membranes (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to handle fluid films of immense aspect ratios. Recently, freely floating bubbles detached from a support were prepared. We analyze the relaxation from strongly non-spherical shapes and the rupture dynamics of such bubbles using high-speed video recordings. Peculiar dynamics intermediate between those of simple viscous fluid films and an elastic response emerge: Oscillations, slowed relaxation and even the formation of wrinkles and extrusions. We characterize these phenomena and propose explanations. We acknowledge funding by the German Aerospace Center DLR within Project OASIS-CO and German Science Foundation Project STA 425-28.

  13. 76 FR 2889 - Notice of Intent To Grant Exclusive and Co-Exclusive Patent License; NanoDynamics Life Sciences...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... DEPARTMENT OF DEFENSE Department of the Navy Notice of Intent To Grant Exclusive and Co-Exclusive Patent License; NanoDynamics Life Sciences, Inc. AGENCY: Department of the Navy, DOD. ACTION: Notice. SUMMARY: The Department of the Navy hereby gives notice of its intent to grant to NanoDynamics Life...

  14. [Political psychology].

    PubMed

    Resch, Mária; Bella, Tamás

    2013-04-21

    In Hungary one can mostly find references to the psychological processes of politics in the writings of publicists, public opinion pollsters, philosophers, social psychologists, and political analysts. It would be still important if not only legal scientists focusing on political institutions or sociologist-politologists concentrating on social structures could analyse the psychological aspects of political processes; but one could also do so through the application of the methods of political psychology. The authors review the history of political psychology, its position vis-à-vis other fields of science and the essential interfaces through which this field of science, which is still to be discovered in Hungary, connects to other social sciences. As far as its methodology comprising psycho-biographical analyses, questionnaire-based queries, cognitive mapping of interviews and statements are concerned, it is identical with the psychiatric tools of medical sciences. In the next part of this paper, the focus is shifted to the essence and contents of political psychology. Group dynamics properties, voters' attitudes, leaders' personalities and the behavioural patterns demonstrated by them in different political situations, authoritativeness, games, and charisma are all essential components of political psychology, which mostly analyses psychological-psychiatric processes and also involves medical sciences by relying on cognitive and behavioural sciences. This paper describes political psychology, which is basically part of social sciences, still, being an interdisciplinary science, has several ties to medical sciences through psychological and psychiatric aspects.

  15. Progress and Future Directions in North American Carbon Cycle Science

    NASA Astrophysics Data System (ADS)

    Michalak, Anna; Huntzinger, Deborah; Shrestha, Gyami

    2013-05-01

    The North American Carbon Program (NACP) convened its fourth biennial "All Investigators" meeting (AIM4, http://www.nacarbon.org/meeting_2013) to review progress in understanding the dynamics of the carbon cycle of North America and adjacent oceans and to chart a course for a more integrative and holistic approach to future research. The meeting was structured around the six decadal goals outlined in the new "A U.S. Carbon Cycle Science Plan" (Michalak et al., University Corporation for Atmospheric Research, 2011, available at http://www.carboncyclescience.gov) and focused on (1) diagnosis of the atmospheric carbon cycle, (2) drivers of anthropogenic emissions, (3) vulnerability of carbon stocks to change, (4) ecosystem impacts of change, (5) carbon management, and (6) decision support.

  16. A network-base analysis of CMIP5 "historical" experiments

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Foudalis, I.; Dovrolis, C.

    2012-12-01

    In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.

  17. Integrated modeling environment for systems-level performance analysis of the Next-Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry

    1998-08-01

    All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS wavefront error, which directly links to science requirements.

  18. TOPICAL REVIEW: Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Shinar, Ruth

    2008-07-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.

  19. Chaos and The Changing Nature of Science and Medicine. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, D.E.; Croft, P.; Silver, D.S.

    1996-09-01

    These proceedings represent the lectures given at the workshop on chaos and the changing nature of science and medicine. The workshop was sponsored by the University of South Alabama and the American Association of Physicists in Medicine. The topics discussed covered nonlinear dynamical systems, complexity theory, fractals, chaos in biology and medicine and in fluid dynamics. Applications of chaotic dynamics in climatology were also discussed. There were 8 lectures at the workshop and all 8 have been abstracted for the Energy Science and Technology database.(AIP)

  20. M.G. Velarde: Succint Biography. Doing Science in Spain as a Maverick

    NASA Astrophysics Data System (ADS)

    Ryazantsev, Yu. S.

    A succint account is presented about the professional career of Prof. Manuel García Velarde. Different periods illustrate his engagement with science, education and (domestic and international) organizational endeavor. The chapter also oversees some of the major areas of research he has covered with significant scientific achievements. They embrace kinetic theory, statistical mechanics, thermodynamics, fluid physics, geophysics, optics and lasers, ferromagnetism, electron transport theory, acoustics, elasticity, wave theory, reaction-diffusion science, biophysics, active lattice dynamics, and neuro-dynamics, all phenomena and methodologies treated from the unifying perspective of nonlinear dynamics.

  1. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    PubMed

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  2. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  3. Simulated GOLD Observations of Atmospheric Waves

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.

    2016-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.

  4. Molecular Dynamics Simulations Reveal Proton Transfer Pathways in Cytochrome C-Dependent Nitric Oxide Reductase

    PubMed Central

    Pisliakov, Andrei V.; Hino, Tomoya; Shiro, Yoshitsugu; Sugita, Yuji

    2012-01-01

    Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666–70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb 3 oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed. PMID:22956904

  5. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE PAGES

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...

    2017-08-16

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  6. Complex systems: physics beyond physics

    NASA Astrophysics Data System (ADS)

    Holovatch, Yurij; Kenna, Ralph; Thurner, Stefan

    2017-03-01

    Complex systems are characterised by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behaviour. Examples arise both in the physical and non-physical worlds. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicists' point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualised in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new ground for physicists to explore and that methodical and conceptual progress is needed most.

  7. Non-equlibrium relaxation of vortex lines in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Assi, Hiba; Pleimling, Michel; T&äUber, Uwe C.

    2013-03-01

    Vortex matter in disordered type-II superconductors display a remarkable wealth of behavior, ranging from hexagonally arranged crystals and a vortex liquid to glassy phases. The type and strength of the disorder has a profound influence on the structural properties of the vortex matter: Randomly distributed weak point pinning sites lead to the destruction of long range order and a Bragg glass phase; correlated, columnar disorder can yield a Bose glass phase with infinite tilt modulus. We employ a three-dimensional elastic line model and apply a Langevin molecular dynamics algorithm to simulate the dynamics of vortex lines in a dissipative medium. We investigate the relaxation of a system of lines that were initially prepared in an out-of-equilibrium state and characterize the transient behavior via two-time quantities. We vary the disorder type and strength and compare our results for random and columnar disorder. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  8. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  9. Leo Szilard Lectureship Award Talk - Universal Scaling Laws from Cells to Cities; A Physicist's Search for Quantitative, Unified Theories of Biological and Social Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    West, Geoffrey

    2013-04-01

    Many of the most challenging, exciting and profound questions facing science and society, from the origins of life to global sustainability, fall under the banner of ``complex adaptive systems.'' This talk explores how scaling can be used to begin to develop physics-inspired quantitative, predictive, coarse-grained theories for understanding their structure, dynamics and organization based on underlying mathematisable principles. Remarkably, most physiological, organisational and life history phenomena in biology and socio-economic systems scale in a simple and ``universal'' fashion: metabolic rate scales approximately as the 3/4-power of mass over 27 orders of magnitude from complex molecules to the largest organisms. Time-scales (such as lifespans and growth-rates) and sizes (such as genome lengths and RNA densities) scale with exponents which are typically simple multiples of 1/4, suggesting that fundamental constraints underlie much of the generic structure and dynamics of living systems. These scaling laws follow from dynamical and geometrical properties of space-filling, fractal-like, hierarchical branching networks, presumed optimised by natural selection. This leads to a general framework that potentially captures essential features of diverse systems including vasculature, ontogenetic growth, cancer, aging and mortality, sleep, cell size, and DNA nucleotide substitution rates. Cities and companies also scale: wages, profits, patents, crime, disease, pollution, road lengths scale similarly across the globe, reflecting underlying universal social network dynamics which point to general principles of organization transcending their individuality. These have dramatic implications for global sustainability: innovation and wealth creation that fuel social systems, left unchecked, potentially sow the seeds for their inevitable collapse.

  10. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  11. Energy Landscapes of Folding Chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  12. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  13. Visualizing electron dynamics in organic materials: Charge transport through molecules and angular resolved photoemission

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan

    Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.

  14. The quest for four-dimensional imaging in plant cell biology: it's just a matter of time

    PubMed Central

    Domozych, David S.

    2012-01-01

    Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381

  15. Water Cycle Dynamics in a Changing Environment: Advancing Hydrologic Science through Synthesis

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Kumar, P.; Rhoads, B. L.; Wuebbles, D.

    2007-12-01

    As one ponders a changing environment -- climate, hydrology, land use, biogeochemical cycles, human dynamics -- there is an increasing need to understand the long term evolution of the linked component systems (e.g., climatic, hydrologic and ecological) through conceptual and quantitative models. The most challenging problem toward this goal is to understand and incorporate the rich dynamics of multiple linked systems with weak and strong coupling, and with many internal variables that exhibit multi-scale interactions. The richness of these interactions leads to fluctuations in one variable that in turn drive the dynamics of other related variables. The key question then becomes: Do these complexities lend an inherently stochastic character to the system, rendering deterministic prediction and modeling of limited value, or do they translate into constrained self- organization through which emerges order, and a limited group of "active" processes (that may change from time to time) that determine the general evolution of the system through a series of structured states with a distinct signature? This is a grand challenge for predictability and therefore requires community effort. The interconnectivity and hence synthesis of knowledge across the fields should be natural for hydrologists since the global water cycle and its regional manifestations directly correspond to the information flows for mass and energy transformations across the media, and across the disciplines. Further, the rich history of numerical, conceptual and stochastic modeling in hydrology provides the training and breadth for addressing the multi- scale, complex system dynamics challenges posed by the evolution question. Theory and observational analyses that necessitate stepping back from the existing knowledge paradigms and looking at the integrated system are needed. In this talk we will present the outlines of a new NSF-funded community effort that attempts to forge inter- disciplinary synthesis through research efforts aimed at "improving predictability of water cycle dynamics in a changing environment." The synthesis activities have brought together inter-disciplinary scientific teams to address specific open problems such as: (i) human-nature interactions and adaptations; (ii) role of the biosphere in water cycle dynamics; (iii) human induced changes to water cycle dynamics; and (iv) structure of landscapes and their evolution through time. All synthesis activities will be underpinned by common unifying themes: (a) hydrology as the science of interacting processes; (b) variability as the driver of interactions and ecosystem functioning; (c) search for emergent behavior and organizing principles; and (d) complexity theory and non- equilibrium thermodynamics.

  16. Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa

    Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work supported by the National Science Foundation under Grant 1454343 and the Department of Energy under Grant DE-SC0014209.

  17. Dynamical Connections in a Turbulent Fluid: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Kageorge, Logan; Suri, Balachandra; Tithof, Jeff; Grigoriev, Roman; Schatz, Michael

    2017-11-01

    Embedded in the state space of a turbulent flow there exist invariant solutions to the Navier-Stokes equation called Exact Coherent Structures (ECS). Recent studies have demonstrated that the geometry of the ECS locally describes the evolution of the turbulent flow. Theory suggests that global connections may serve to guide the flow from the neighborhood of one ECS to that of another. We present here a numerical model of a Kolmogorov-like two-dimensional flow in which such connections have been calculated. Moreover, we present an experimental quasi-two-dimensional realization of this flow in which these connections prove dynamically relevant. This work is supported by the National Science Foundation (NSF CMMI 12-34436) and DARPA (HR0011-16-2-0033 subcontract to Georgia Tech).

  18. Using the technique of computed tomography for nondestructive analysis of pharmaceutical dosage forms

    NASA Astrophysics Data System (ADS)

    de Oliveira, José Martins, Jr.; Mangini, F. Salvador; Carvalho Vila, Marta Maria Duarte; ViníciusChaud, Marco

    2013-05-01

    This work presents an alternative and non-conventional technique for evaluatingof physic-chemical properties of pharmaceutical dosage forms, i.e. we used computed tomography (CT) technique as a nondestructive technique to visualize internal structures of pharmaceuticals dosage forms and to conduct static and dynamical studies. The studies were conducted involving static and dynamic situations through the use of tomographic images, generated by the scanner at University of Sorocaba - Uniso. We have shown that through the use of tomographic images it is possible to conduct studies of porosity, densities, analysis of morphological parameters and performing studies of dissolution. Our results are in agreement with the literature, showing that CT is a powerful tool for use in the pharmaceutical sciences.

  19. Geometric modeling of subcellular structures, organelles, and multiprotein complexes

    PubMed Central

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797

  20. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, R. James

    This document serves as the final report for United States Department of Energy Basic Energy Sciences Grant DE-FG02-08ER15929, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (R. James Kirkpatrick, P.I., A. O. Yazaydin, co-P.I.). The research under this grant was intimately tied to that supported by the parallel the grant of the same title at Alfred (DOE DE-FG02-10ER16128; Geoffrey M. Bowers, P.I.).

  1. US-Latin American Workshop on Molecular and Materials Sciences: Theoretical and Computational Aspects Held at the University of Florida, Gainesville, on February 8-10, 1994

    DTIC Science & Technology

    1994-08-09

    Observables During a Collision Inst. de Fisica , Cuernavaca, Mexico Ruben D. Santiago Acosta An Algebraic Model for 3-dimensional Atom-Diatom Inst C...STRUCTURES. MOLECULAR DYNAMICS SIMULATION M. C .Donnamaria and J. R. Grigera Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB),CONICET...Crybiology, 1981, 18, 631. ACKNOWLEDGMENTS This work has been partially funded by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) of

  2. Beam-Dynamics Analysis of Long-Range Wakefield Effects on the SCRF Cavities at the Fast Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young-Min; Bishofberger, Kip; Carlsten, Bruce

    Long-range wakefields in superconducting RF (SCRF) cavities create complicated effects on beam dynamics in SCRF-based FEL beamlines. The driving bunch excites effectively an infinite number of structure modes (including HOMs) which oscillate within the SCRF cavity. Couplers with loads are used to damp the HOMs. However, these HOMs can persist for long periods of time in superconducting structures, which leads to long-range wakefields. Clear understanding of the long-range wakefield effects is a critical element for risk mitigation of future SCRF accelerators such as XFEL at DESY, LCLS-II XFEL, and MaRIE XFEL. We are currently developing numerical tools for simulating long-rangemore » wakefields in SCRF accelerators and plan to experimentally verify the tools by measuring these wakefields at the Fermilab Accelerator Science and Technology (FAST) facility. This paper previews the experimental conditions at the FAST 50 MeV beamline based on the simulation results.« less

  3. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  4. Functionalized lipids and surfactants for specific applications.

    PubMed

    Kepczynski, Mariusz; Róg, Tomasz

    2016-10-01

    Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mapping temporal dynamics in social interactions with unified structural equation modeling: A description and demonstration revealing time-dependent sex differences in play behavior

    PubMed Central

    Beltz, Adriene M.; Beekman, Charles; Molenaar, Peter C. M.; Buss, Kristin A.

    2013-01-01

    Developmental science is rich with observations of social interactions, but few available methodological and statistical approaches take full advantage of the information provided by these data. The authors propose implementation of the unified structural equation model (uSEM), a network analysis technique, for observational data coded repeatedly across time; uSEM captures the temporal dynamics underlying changes in behavior at the individual level by revealing the ways in which a single person influences – concurrently and in the future – other people. To demonstrate the utility of uSEM, the authors applied it to ratings of positive affect and vigor of activity during children’s unstructured laboratory play with unfamiliar, same-sex peers. Results revealed the time-dependent nature of sex differences in play behavior. For girls more than boys, positive affect was dependent upon peers’ prior positive affect. For boys more than girls, vigor of activity was dependent upon peers’ current vigor of activity. PMID:24039386

  6. Comparing Families of Dynamic Causal Models

    PubMed Central

    Penny, Will D.; Stephan, Klaas E.; Daunizeau, Jean; Rosa, Maria J.; Friston, Karl J.; Schofield, Thomas M.; Leff, Alex P.

    2010-01-01

    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data. PMID:20300649

  7. Atomic-level structural correlations across the morphotropic phase boundary of a ferroelectric solid solution: xBiMg 1/2Ti 1/2O 3-(1$-$x)PbTiO 3

    DOE PAGES

    Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun; ...

    2017-03-28

    Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less

  8. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid-latitude dynamics and response to external forcing for all species.] Clearly the best possible return from this NASA mission is with the broad support, collaboration and participation from the entire ITM whether their focus is on spacebased measurements, groundbased measurements, or modeling and theory.

  9. Dynamic facial expressions evoke distinct activation in the face perception network: a connectivity analysis study.

    PubMed

    Foley, Elaine; Rippon, Gina; Thai, Ngoc Jade; Longe, Olivia; Senior, Carl

    2012-02-01

    Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223-233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.

  10. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    NASA Astrophysics Data System (ADS)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  11. Capturing the Transformation and Dynamic Nature of an Elementary Teacher Candidate's Identity Development as a Teacher of Science

    ERIC Educational Resources Information Center

    Naidoo, Kara

    2017-01-01

    This study examines the transformation and dynamic nature of one teacher candidate's (Susan) identity as a learner and teacher of science throughout an innovative science methods course. The goal of this paper is to use theoretically derived themes grounded in cultural-historical activity theory (CHAT) and situated learning theory to determine the…

  12. Anharmonicity and confinement in zeolites: Structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5

    DOE PAGES

    Alexopoulos, Konstantinos; Lee, Mal -Soon; Liu, Yue; ...

    2016-03-21

    Here, to account for thermal and entropic effects caused by the dynamics of the motion of the reaction intermediates, ethanol adsorption on the Brønsted acid site of the H-ZSM-5 catalyst has been studied at different temperatures and ethanol loadings using ab initio molecular dynamics (AIMD) simulations, infrared (IR) spectroscopy and calorimetric measurements. At low temperatures (T ≤ 400 K) and ethanol loading, a single ethanol molecule adsorbed in H-ZSM-5 forms a Zundel-like structure where the proton is equally shared between the oxygen of the zeolite and the oxygen of the alcohol. At higher ethanol loading, a second ethanol molecule helpsmore » to stabilize the protonated ethanol at all temperatures by acting as a solvating agent. The vibrational density of states (VDOS), as calculated from the AIMD simulations, are in excellent agreement with measured IR spectra for C 2H 5OH, C 2H 5OD and C 2D 5OH isotopomers and support the existence of both monomers and dimers. A quasi-harmonic approximation (QHA), applied to the VDOS obtained from the AIMD simulations, provides estimates of adsorption free energy within ~10 kJ/mol of the experimentally determined quantities, whereas the traditional approach, employing harmonic frequencies from a single ground state minimum, strongly overestimates the adsorption free energy by at least ~30 kJ/mol. This discrepancy is traced back to the inability of the harmonic approximation to represent the contributions to the vibrational motions of the ethanol molecule upon confinement in the zeolite. KA, MFR, GBM were supported by the Long Term Structural Methusalem Funding by the Flemish Government – grant number BOF09/01M00409. MSL, VAG, RR and JAL were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and the Stevin Supercomputer Infrastructure at Ghent University.« less

  13. Onboard Science Insights and Vehicle Dynamics from Scale-Model Trials of the Titan Mare Explorer (TiME) Capsule at Laguna Negra, Chile.

    PubMed

    Lorenz, Ralph D; Cabrol, Nathalie A

    2018-05-01

    A scale model of the proposed Titan Mare Explorer capsule was deployed at the Planetary Lake Lander field site at Laguna Negra, Chile. The tests served to calibrate models of wind-driven drift of the capsule and to understand its attitude motion in the wave field, as well as to identify dynamic and acoustic signatures of shoreline approach. This information enables formulation of onboard trigger criteria for near-shore science data acquisition. Key Words: Titan-Vehicle dynamics-Science autonomy-Lake. Astrobiology 18, 607-618.

  14. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    NASA Astrophysics Data System (ADS)

    Lehn, Jean-Marie

    2004-03-01

    Molecular chemistry has developed a wide range of very powerful procedures for constructing ever more sophisticated molecules from atoms linked by covalent bonds. Beyond molecular chemistry lies supramolecular chemistry, which aims at developing highly complex chemical systems from components interacting via non-covalent intermolecular forces. By the appropriate manipulation of these interactions, supramolecular chemistry became progressively the chemistry of molecular information, involving the storage of information at the molecular level, in the structural features, and its retrieval, transfer, and processing at the supramolecular level, through molecular recognition processes operating via specific interactional algorithms. This has paved the way towards apprehending chemistry also as an information science. Numerous receptors capable of recognizing, i.e. selectively binding, specific substrates have been developed, based on the molecular information stored in the interacting species. Suitably functionalized receptors may perform supramolecular catalysis and selective transport processes. In combination with polymolecular organization, recognition opens ways towards the design of molecular and supramolecular devices based on functional (photoactive, electroactive, ionoactive, etc) components. A step beyond preorganization consists in the design of systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined supramolecular architectures by self-assembly from their components. Self-organization processes, directed by the molecular information stored in the components and read out at the supramolecular level through specific interactions, represent the operation of programmed chemical systems. They have been implemented for the generation of a variety of discrete functional architectures of either organic or inorganic nature. Self-organization processes also give access to advanced supramolecular materials, such as supramolecular polymers and liquid crystals, and provide an original approach to nanoscience and nanotechnology. In particular, the spontaneous but controlled generation of well-defined, functional supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of nanomaterials. Supramolecular chemistry is intrinsically a dynamic chemistry, in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when a molecular entity contains covalent bonds that may form and break reversibly, so as to make possible a continuous change in constitution and structure by reorganization and exchange of building blocks. This behaviour defines a constitutional dynamic chemistry that allows self-organization by selection as well as by design at both the molecular and supramolecular levels. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization by selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation in a Darwinistic fashion. The merging of the features, information and programmability, dynamics and reversibility, constitution and structural diversity, points towards the emergence of adaptative and evolutionary chemistry. Together with the corresponding fields of physics and biology, it constitutes a science of informed matter, of organized, adaptative complex matter. This article was originally published in 2003 by the Israel Academy of Sciences and Humanities in the framework of its Albert Einstein Memorial Lectures series. Reprinted by permission of the Israel Academy of Sciences and Humanities.

  15. Vibration Modal Characterization of a Stirling Convertor via Base-Shake Excitation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2003-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC), and NASA John H. Glenn Research Center (GRC) are currently developing a high-efficiency Stirling convertor for use in a Stirling Radioisotope Generator (SRG). NASA and DOE have identified the SRG for potential use as an advanced power system for future NASA Space Science missions, providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. Low-level, baseshake sine vibration tests were conducted on the Stirling Technology Demonstration Convertor (TDC), at NASA GRC's Structural Dynamics Laboratory, in February 2001, as part of the development of this Stirling technology. The purpose of these tests was to provide a better understanding of the TDC's internal dynamic response to external vibratory base excitations. The knowledge obtained can therein be used to help explain the success that the TDC enjoyed in its previous random vibration qualification tests (December 1999). This explanation focuses on the TDC s internal dynamic characteristics in the 50 to 250 Hz frequency range, which corresponds to the maximum input levels of its qualification random vibration test specification. The internal dynamic structural characteristics of the TDC have now been measured in two separate tests under different motoring and dynamic loading conditions: (1) with the convertor being electrically motored, under a vibratory base-shake excitation load, and (2) with the convertor turned off, and its alternator internals undergoing dynamic excitation via hammer impact loading. This paper addresses the test setup, procedure and results of the base-shake vibration testing conducted on the motored TDC, and will compare these results with those results obtained from the dynamic impact tests (May 2001) on the nonmotored TDC.

  16. The science of science: From the perspective of complex systems

    NASA Astrophysics Data System (ADS)

    Zeng, An; Shen, Zhesi; Zhou, Jianlin; Wu, Jinshan; Fan, Ying; Wang, Yougui; Stanley, H. Eugene

    2017-11-01

    The science of science (SOS) is a rapidly developing field which aims to understand, quantify and predict scientific research and the resulting outcomes. The problem is essentially related to almost all scientific disciplines and thus has attracted attention of scholars from different backgrounds. Progress on SOS will lead to better solutions for many challenging issues, ranging from the selection of candidate faculty members by a university to the development of research fields to which a country should give priority. While different measurements have been designed to evaluate the scientific impact of scholars, journals and academic institutions, the multiplex structure, dynamics and evolution mechanisms of the whole system have been much less studied until recently. In this article, we review the recent advances in SOS, aiming to cover the topics from empirical study, network analysis, mechanistic models, ranking, prediction, and many important related issues. The results summarized in this review significantly deepen our understanding of the underlying mechanisms and statistical rules governing the science system. Finally, we review the forefront of SOS research and point out the specific difficulties as they arise from different contexts, so as to stimulate further efforts in this emerging interdisciplinary field.

  17. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527

  18. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome

    PubMed Central

    O’Sullivan, David; Evans, Tom; Manson, Steven; Metcalf, Sara; Ligmann-Zielinska, Arika; Bone, Chris

    2015-01-01

    In this short communication, we examine how agent-based modeling has become common in land change science and is increasingly used to develop case studies for particular times and places. There is a danger that the research community is missing a prime opportunity to learn broader lessons from the use of agent-based modeling (ABM), or at the very least not sharing these lessons more widely. How do we find an appropriate balance between empirically rich, realistic models and simpler theoretically grounded models? What are appropriate and effective approaches to model evaluation in light of uncertainties not only in model parameters but also in model structure? How can we best explore hybrid model structures that enable us to better understand the dynamics of the systems under study, recognizing that no single approach is best suited to this task? Under what circumstances – in terms of model complexity, model evaluation, and model structure – can ABMs be used most effectively to lead to new insight for stakeholders? We explore these questions in the hope of helping the growing community of land change scientists using models in their research to move from ‘yet another model’ to doing better science with models. PMID:27158257

  19. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome.

    PubMed

    O'Sullivan, David; Evans, Tom; Manson, Steven; Metcalf, Sara; Ligmann-Zielinska, Arika; Bone, Chris

    In this short communication, we examine how agent-based modeling has become common in land change science and is increasingly used to develop case studies for particular times and places. There is a danger that the research community is missing a prime opportunity to learn broader lessons from the use of agent-based modeling (ABM), or at the very least not sharing these lessons more widely. How do we find an appropriate balance between empirically rich, realistic models and simpler theoretically grounded models? What are appropriate and effective approaches to model evaluation in light of uncertainties not only in model parameters but also in model structure? How can we best explore hybrid model structures that enable us to better understand the dynamics of the systems under study, recognizing that no single approach is best suited to this task? Under what circumstances - in terms of model complexity, model evaluation, and model structure - can ABMs be used most effectively to lead to new insight for stakeholders? We explore these questions in the hope of helping the growing community of land change scientists using models in their research to move from 'yet another model' to doing better science with models.

  20. Community and inquiry: journey of a science teacher

    NASA Astrophysics Data System (ADS)

    Goldberg, Jennifer; Welsh, Kate Muir

    2009-09-01

    In this case study, we examine a teacher's journey, including reflections on teaching science, everyday classroom interaction, and their intertwined relationship. The teacher's reflections include an awareness of being "a White middle-class born and raised teacher teaching other peoples' children." This awareness was enacted in the science classroom and emerges through approaches to inquiry . Our interest in Ms. Cook's journey grew out of discussions, including both informal and semi-structured interviews, in two research projects over a three-year period. Our interest was further piqued as we analyzed videotaped classroom interaction during science lessons and discovered connections between Ms. Cook's reflections and classroom interaction. In this article, we illustrate ways that her journey emerges as a conscientization. This, at least in part, shapes classroom interaction, which then again shapes her conscientization in a recursive, dynamic relationship. We examine her reflections on her "hegemonic (cultural and socio-economic) practices" and consider how these reflections help her reconsider such practices through analysis of classroom interaction. Analyses lead us to considering the importance of inquiry within this classroom community.

  1. Support for ICES International Symposium: Recruitment Dynamics of Exploited Marine Populations: Physical-biological Interactions

    DTIC Science & Technology

    1997-09-30

    Environmental Science ,Chesapeake Biological Laboratory,PO Box 38,Solomons,MD,20688 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...DYNAMICS OF EXPLOITED MARINE POPULATIONS: PHYSICAL-BIOLOGICAL INTERACTIONS Michael J. Fogarty University of Maryland Center for Environmental Science Chesapeake

  2. Analyzing an Aging ISS

    NASA Technical Reports Server (NTRS)

    Scharf, R.

    2014-01-01

    The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.

  3. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    NASA Astrophysics Data System (ADS)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  4. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  5. Local dynamics measured by hydrogen/deuterium exchange and mass spectrometry of creatine kinase digested by two proteases.

    PubMed

    Mazon, Hortense; Marcillat, Olivier; Forest, Eric; Vial, Christian

    2005-12-01

    Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).

  6. Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to deviate from Stokes-like behavior at very low Reynolds numbers and is understood by accounting for periodic landscapes of elastic interaction potential between the particle and cholesteric host medium due to surface anchoring. This work extends our understanding of how colloids interact with liquid crystals and topological defects, and introduces a powerful method of colloidal manipulation with many potential applications.

  7. Fort Collins Science Center Ecosystem Dynamics branch--interdisciplinary research for addressing complex natural resource issues across landscapes and time

    USGS Publications Warehouse

    Bowen, Zachary H.; Melcher, Cynthia P.; Wilson, Juliette T.

    2013-01-01

    The Ecosystem Dynamics Branch of the Fort Collins Science Center offers an interdisciplinary team of talented and creative scientists with expertise in biology, botany, ecology, geology, biogeochemistry, physical sciences, geographic information systems, and remote-sensing, for tackling complex questions about natural resources. As demand for natural resources increases, the issues facing natural resource managers, planners, policy makers, industry, and private landowners are increasing in spatial and temporal scope, often involving entire regions, multiple jurisdictions, and long timeframes. Needs for addressing these issues include (1) a better understanding of biotic and abiotic ecosystem components and their complex interactions; (2) the ability to easily monitor, assess, and visualize the spatially complex movements of animals, plants, water, and elements across highly variable landscapes; and (3) the techniques for accurately predicting both immediate and long-term responses of system components to natural and human-caused change. The overall objectives of our research are to provide the knowledge, tools, and techniques needed by the U.S. Department of the Interior, state agencies, and other stakeholders in their endeavors to meet the demand for natural resources while conserving biodiversity and ecosystem services. Ecosystem Dynamics scientists use field and laboratory research, data assimilation, and ecological modeling to understand ecosystem patterns, trends, and mechanistic processes. This information is used to predict the outcomes of changes imposed on species, habitats, landscapes, and climate across spatiotemporal scales. The products we develop include conceptual models to illustrate system structure and processes; regional baseline and integrated assessments; predictive spatial and mathematical models; literature syntheses; and frameworks or protocols for improved ecosystem monitoring, adaptive management, and program evaluation. The descriptions in this fact sheet provide snapshots of our three research emphases, followed by descriptions of select current projects.

  8. Statistical mechanics of complex neural systems and high dimensional data

    NASA Astrophysics Data System (ADS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-03-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.

  9. Revisiting the Authoritative-Dialogic Tension in Inquiry-Based Elementary Science Teacher Questioning

    NASA Astrophysics Data System (ADS)

    Van Booven, Christopher D.

    2015-05-01

    Building on the 'questioning-based discourse analytical' framework developed by Singapore-based science educator and discourse analyst, Christine Chin, this study investigated the extent to which fifth-grade science teachers' use of questions with either an authoritative or dialogic orientation differentially restricted or expanded the quality and complexity of student responses in the USA. The author analyzed approximately 10 hours of classroom discourse from elementary science classrooms organized around inquiry-based science curricula and texts. Teacher questions and feedback were classified according to their dialogic orientation and contextually inferred structural purpose, while student understanding was operationalized as a dynamic interaction between cognitive process, syntacto-semantic complexity, and science knowledge type. The results of this study closely mirror Chin's and other scholars' findings that the fixed nature of authoritatively oriented questioning can dramatically limit students' opportunities to demonstrate higher order scientific understanding, while dialogically oriented questions, by contrast, often grant students the discursive space to demonstrate a greater breadth and depth of both canonical and self-generated knowledge. However, certain teacher questioning sequences occupying the 'middle ground' between maximal authoritativeness and dialogicity revealed patterns of meaningful, if isolated, instances of higher order thinking. Implications for classroom practice are discussed along with recommendations for future research.

  10. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  11. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.

    PubMed

    Nicolson, Garth L

    2014-06-01

    In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.

  12. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  13. Multiplex Recurrence Networks

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Marwan, Norbert

    2017-04-01

    The complex nature of a variety of phenomena in physical, biological, or earth sciences is driven by a large number of degrees of freedom which are strongly interconnected. Although the evolution of such systems is described by multivariate time series (MTS), so far research mostly focuses on analyzing these components one by one. Recurrence based analyses are powerful methods to understand the underlying dynamics of a dynamical system and have been used for many successful applications including examples from earth science, economics, or chemical reactions. The backbone of these techniques is creating the phase space of the system. However, increasing the dimension of a system requires increasing the length of the time series in order get significant and reliable results. This requirement is one of the challenges in many disciplines, in particular in palaeoclimate, thus, it is not easy to create a phase space from measured MTS due to the limited number of available obervations (samples). To overcome this problem, we suggest to create recurrence networks from each component of the system and combine them into a multiplex network structure, the multiplex recurrence network (MRN). We test the MRN by using prototypical mathematical models and demonstrate its use by studying high-dimensional palaeoclimate dynamics derived from pollen data from the Bear Lake (Utah, US). By using the MRN, we can distinguish typical climate transition events, e.g., such between Marine Isotope Stages.

  14. Beyond Classical Information Theory: Advancing the Fundamentals for Improved Geophysical Prediction

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.; Pires, C. L.; Hall, J.; Bloeschl, G.

    2016-12-01

    Information Theory, in its original and quantum forms, has gradually made its way into various fields of science and engineering. From the very basic concepts of Information Entropy and Mutual Information to Transit Information, Interaction Information and respective partitioning into statistical synergy, redundancy and exclusivity, the overall theoretical foundations have matured as early as the mid XX century. In the Earth Sciences various interesting applications have been devised over the last few decades, such as the design of complex process networks of descriptive and/or inferential nature, wherein earth system processes are "nodes" and statistical relationships between them designed as information-theoretical "interactions". However, most applications still take the very early concepts along with their many caveats, especially in heavily non-Normal, non-linear and structurally changing scenarios. In order to overcome the traditional limitations of information theory and tackle elusive Earth System phenomena, we introduce a new suite of information dynamic methodologies towards a more physically consistent and information comprehensive framework. The methodological developments are then illustrated on a set of practical examples from geophysical fluid dynamics, where high-order nonlinear relationships elusive to the current non-linear information measures are aptly captured. In doing so, these advances increase the predictability of critical events such as the emergence of hyper-chaotic regimes in ocean-atmospheric dynamics and the occurrence of hydro-meteorological extremes.

  15. An Integrated Strategy for Promoting Geoscience Education and Research in Developing Countries through International Cooperation

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    2007-12-01

    Geoscience education and research in Developing countries should aim at achieving food, water and environmental security, and disaster preparedness, based on the synergetic application of earth (including atmospheric and oceanic realms), space and information sciences through economically-viable, ecologically- sustainable and people-participatory management of natural resources. The proposed strategy involves the integration of the following three principal elements: (i) What needs to be taught: Geoscience needs to be taught as earth system science incorporating geophysical, geochemical and geobiological approaches, with focus (say, 80 % of time) on surficial processes (e.g. dynamics of water, wind and waves, surface and groundwater, soil moisture, geomorphology, landuse, crops), and surficial materials (e.g. soils, water, industrial minerals, sediments, biota). Subjects such as the origin, structure and evolution of the earth, and deep-seated processes (e.g. dynamics of the crust-mantle interaction, plate tectonics) could be taught by way of background knowledge (say, 20 % of the time), (ii) How jobs are to be created: Jobs are to be created by merging geoscience knowledge with economic instruments (say, micro enterprises), and management structures at different levels (Policy level, Technology Transfer level and Implementation level), customized to the local biophysical and socioeconomic situations, and (iii) International cooperation: Web-based instruction (e.g. education portals, virtual laboratories) through South - South and North - South cooperation, customized to the local biophysical and socioeconomic situations, with the help of (say) UNDP, UNESCO, World Bank, etc.

  16. Supply network science: Emergence of a new perspective on a classical field

    NASA Astrophysics Data System (ADS)

    Brintrup, Alexandra; Ledwoch, Anna

    2018-03-01

    Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.

  17. Supply network science: Emergence of a new perspective on a classical field.

    PubMed

    Brintrup, Alexandra; Ledwoch, Anna

    2018-03-01

    Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.

  18. High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability.

    PubMed

    Majda, Andrew J; Abramov, Rafail; Gershgorin, Boris

    2010-01-12

    Climate change science focuses on predicting the coarse-grained, planetary-scale, longtime changes in the climate system due to either changes in external forcing or internal variability, such as the impact of increased carbon dioxide. The predictions of climate change science are carried out through comprehensive, computational atmospheric, and oceanic simulation models, which necessarily parameterize physical features such as clouds, sea ice cover, etc. Recently, it has been suggested that there is irreducible imprecision in such climate models that manifests itself as structural instability in climate statistics and which can significantly hamper the skill of computer models for climate change. A systematic approach to deal with this irreducible imprecision is advocated through algorithms based on the Fluctuation Dissipation Theorem (FDT). There are important practical and computational advantages for climate change science when a skillful FDT algorithm is established. The FDT response operator can be utilized directly for multiple climate change scenarios, multiple changes in forcing, and other parameters, such as damping and inverse modelling directly without the need of running the complex climate model in each individual case. The high skill of FDT in predicting climate change, despite structural instability, is developed in an unambiguous fashion using mathematical theory as guidelines in three different test models: a generic class of analytical models mimicking the dynamical core of the computer climate models, reduced stochastic models for low-frequency variability, and models with a significant new type of irreducible imprecision involving many fast, unstable modes.

  19. Black males' self-perceptions of academic ability and gifted potential in advanced science classes

    NASA Astrophysics Data System (ADS)

    Rascoe, Barbara Jean

    The purpose of this study was to examine gifted Black males' self-perceptions of academic ability and gifted potential in science. Major concerns were to determine how these self-perceptions of academic ability and gifted potential influenced gifted Black males' capacity to compete in advanced science classes and to determine how science teachers may have influenced participants' self-perceptions of academic ability and gifted potential. This study required an approach that would allow an interpretive aspect for the experiences of gifted Black males in advanced science classes. An intrinsic qualitative case study design with a critical theory framework was used. Data were collected using semi-structured interviews, which were audiotaped and transcribed. Each participant was interviewed twice and each interview averaged 45 minutes. The purposeful sample consisted of nine gifted high school Black males between the ages of fourteen and eighteen. The constant comparative method was used to analyze the data. The categories of gifted Black males' self-perceptions of academic ability and gifted potential included gifted high achievers, gifted 'could do better' high achievers, gifted 'could do better' situational nonachievers, and gifted 'could do better' underachievers. Gifted Black male participants' perceptions regarding their science teachers' influence on their self-perceptions of academic ability and gifted potential included validation, reinforcement, and enhancement. These participants' perceptions regarding how science teachers' influenced their academic performance in science included science teachers' content knowledge, science teachers' skills to make science challenging and engaging, and a safe learning environment. The conclusions of this study described competing power dynamics of science teachers and gifted Black males' interactions in the science learning environment. The discussion also included a summary of relationships among the emergent themes. Implications are posited for science teaching education programs and future research.

  20. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    PubMed

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  1. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  2. Music and language perception: expectations, structural integration, and cognitive sequencing.

    PubMed

    Tillmann, Barbara

    2012-10-01

    Music can be described as sequences of events that are structured in pitch and time. Studying music processing provides insight into how complex event sequences are learned, perceived, and represented by the brain. Given the temporal nature of sound, expectations, structural integration, and cognitive sequencing are central in music perception (i.e., which sounds are most likely to come next and at what moment should they occur?). This paper focuses on similarities in music and language cognition research, showing that music cognition research provides insight into the understanding of not only music processing but also language processing and the processing of other structured stimuli. The hypothesis of shared resources between music and language processing and of domain-general dynamic attention has motivated the development of research to test music as a means to stimulate sensory, cognitive, and motor processes. Copyright © 2012 Cognitive Science Society, Inc.

  3. Science Meets Literacy and Art at the Library

    NASA Astrophysics Data System (ADS)

    LaConte, K. M.; Shipp, S. S.; Halligan, E.

    2011-12-01

    The Lunar and Planetary Institute's Explore! program is designed to engage and inspire children in Earth and space science in the library and other informal learning environments. Eight online thematic Explore! modules make up-to-date science accessible to rural communities - often where the library is the closest center of public learning - and other underserved audiences. The program prepares librarians to engage their communities in science through experiences with the modules, interactions with scientists, exploration of the resources available within the library learning environment, and development of local partnerships. Through hands-on science activities, art, and reading, Explore! reaches library patrons between the ages of 8 and 13 through librarian-led, locally facilitated programs across the nation. For example, NASA Lunar Science Institute research into lunar formation, evolution, and orbital dynamics are woven into a comic book that serves as a journal and art piece for participants in Marvel Moon programs (http://www.lpi.usra.edu/explore/marvelMoon). In another example, children compare cloud types and atmospheric structure on Earth and Jupiter, and then they consider artwork of Jupiter's clouds and the future discoveries of NASA's upcoming Juno mission as they write "Jovian Poetry" (http://www.lpi.usra.edu/explore/solar_system/activities/weatherStations). Explore! program facilitators are provided resources for making use of children's science books and local professional scientists and engineers.

  4. Kronos Observatory Operations Challenges in a Lean Environment

    NASA Astrophysics Data System (ADS)

    Koratkar, Anuradha; Peterson, Bradley M.; Polidan, Ronald S.

    2003-02-01

    Kronos is a multiwavelength observatory designed to map the accretion disks and environments of supermassive black holes in various environments using the natural intrinsic variability of the accretion-driven sources. Kronos is envisaged as a Medium Explorer mission to NASA Office of Space Science under the Structure and Evolution of the Universe theme. We will achieve the Kronos science objectives by developing cost-effective techniques for obtaining and assimilating data from the research spacecraft and its subsequent work on the ground. The science operations assumptions for the mission are: (1 Need for flexible scheduling due to the variable nature of targets, (2) Large data volumes but minimal ground station contact, (3) Very small staff for operations. Our first assumption implies that we will have to consider an effective strategy to dynamically reprioritize the observing schedule to maximize science data acquisition. The flexibility we seek greatly increases the science return of the mission, because variability events can be properly captured. Our second assumption implies that we will have to develop some basic on-board analysis strategies to determine which data get downloaded. The small size of the operations staff implies that we need to "automate" as many routine processes of science operations as possible. In this paper we will discuss the various solutions that we are considering to optimize our operations and maximize science returns on the observatory.

  5. From the guest editors.

    PubMed

    Chowell, Gerardo; Feng, Zhilan; Song, Baojun

    2013-01-01

    Carlos Castilo-Chavez is a Regents Professor, a Joaquin Bustoz Jr. Professor of Mathematical Biology, and a Distinguished Sustainability Scientist at Arizona State University. His research program is at the interface of the mathematical and natural and social sciences with emphasis on (i) the role of dynamic social landscapes on disease dispersal; (ii) the role of environmental and social structures on the dynamics of addiction and disease evolution, and (iii) Dynamics of complex systems at the interphase of ecology, epidemiology and the social sciences. Castillo-Chavez has co-authored over two hundred publications (see goggle scholar citations) that include journal articles and edited research volumes. Specifically, he co-authored a textbook in Mathematical Biology in 2001 (second edition in 2012); a volume (with Harvey Thomas Banks) on the use of mathematical models in homeland security published in SIAM's Frontiers in Applied Mathematics Series (2003); and co-edited volumes in the Series Contemporary Mathematics entitled '' Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges'' (American Mathematical Society, 2006) and Mathematical and Statistical Estimation Approaches in Epidemiology (Springer-Verlag, 2009) highlighting his interests in the applications of mathematics in emerging and re-emerging diseases. Castillo-Chavez is a member of the Santa Fe Institute's external faculty, adjunct professor at Cornell University, and contributor, as a member of the Steering Committee of the '' Committee for the Review of the Evaluation Data on the Effectiveness of NSF-Supported and Commercially Generated Mathematics Curriculum Materials,'' to a 2004 NRC report. The CBMS workshop '' Mathematical Epidemiology with Applications'' lectures delivered by C. Castillo-Chavez and F. Brauer in 2011 have been published by SIAM in 2013.

  6. Hatfield Marine Science Center Dynamic Revetment Project DSL permit #45455-FP, Monitoring Report February 2012

    EPA Science Inventory

    A Dynamic Revetment (gravel beach) was installed in November, 2011 on the shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) to mitigate erosion that threatened HMSC critical infrastructure. Shoreline topographic and biological monitoring was init...

  7. Hatfield Marine Science Center Dynamic Revetment Project DSL permit #45455-FP, Monitoring Report February, 2013

    EPA Science Inventory

    A Dynamic Revetment (gravel beach) was installed in November, 2011 on the shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) to mitigate erosion that threatened HMSC critical infrastructure. Shoreline topographic and biological monitoring was init...

  8. Parker Solar Probe: A NASA Mission to Touch the Sun: Mission Status Update

    NASA Astrophysics Data System (ADS)

    Fox, N. J.

    2017-12-01

    The newly renamed, Parker Solar Probe (PSP) mission will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Parker Solar Probe mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. PSP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the science objectives. In this presentation, we provide an update on the progress of the Parker Solar Probe mission as we prepare for the July 2018 launch.

  9. Solar Probe Plus: A NASA Mission to Touch the SunMission Status Update

    NASA Astrophysics Data System (ADS)

    Fox, N. J.

    2016-12-01

    Solar Probe Plus (SPP), currently in Phase D, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives. In this presentation, we provide an update on the progress of the Solar Probe Plus mission as we prepare for the July 2018 launch.

  10. A Study Of Undergraduate Students' Alternative Conceptions Of Earth's Interior Using Drawing Tasks

    NASA Astrophysics Data System (ADS)

    McAllister, Meredith L.

    2014-12-01

    Learning fundamental geoscience topics such as plate tectonics, earthquakes, and volcanoes requires students to develop a deep understanding of the conceptual models geologists use when describing the structure and dynamics of Earth's interior. Despite the importance of these mental models underlying much of the undergraduate geoscience curriculum, surprisingly little research related to this complex idea exists in the discipline-based science education research literature. To better understand non-science-majoring undergraduates' conceptual models of Earth's interior, student-generated drawings and interviews were used to probe student understanding of the Earth. Ninety-two semi-structured interviews were conducted with non-science-major college students at the beginning of an entry-level geology course at a large Midwestern university. Students were asked to draw a picture of Earth's interior and provide think-aloud explanations of their drawings. The results reveal that students hold a wide range of alternative conceptions about Earth, with only a small fraction having scientifically accurate ideas. Students' understandings ranged from conceptualizing Earth's interior as consisting of horizontal layers of rock and dirt, to more sophisticated views with Earth's interior being composed of concentric layers with unique physical and chemical characteristics. Processes occurring within Earth, such as "convection," were rarely mentioned or explained. These results provide a first-steps basis from which to further explore college students' thinking and contribute to the growing body of knowledge on earth science teaching and geoscience education research.

  11. The Physical Sciences. Report of the National Science Board Submitted to the Congress.

    ERIC Educational Resources Information Center

    Handler, Philip

    Recent advances in the physical sciences, including astronomy, chemical synthesis, chemical dynamics, solid-state sciences, atomic and nuclear science, and elementary particles and high-energy physics are summarized in this report to Congress. The nature of physical science, including its increasing unity, the relationship between science and…

  12. Study of dynamic fluid-structure coupling with application to human phonation

    NASA Astrophysics Data System (ADS)

    Saurabh, Shakti; Faber, Justin; Bodony, Daniel

    2013-11-01

    Two-dimensional direct numerical simulations of a compressible, viscous fluid interacting with a non-linear, viscoelastic solid are used to study the generation of the human voice. The vocal fold (VF) tissues are modeled using a finite-strain fractional derivative constitutive model implemented in a quadratic finite element code and coupled to a high-order compressible Navier-Stokes solver through a boundary-fitted fluid-solid interface. The viscoelastic solver is validated through in-house experiments using Agarose Gel, a human tissue simulant, undergoing static and harmonic deformation measured with load cell and optical diagnostics. The phonation simulations highlight the role tissue nonlinearity and viscosity play in the glottal jet dynamics and in the radiated sound. Supported by the National Science Foundation (CAREER award number 1150439).

  13. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Willard, Adam P.

    2015-01-01

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering a new direction for study in heterogeneous catalysis at the nanoscale.

  14. Fluid-structure-interaction of a flag in a channel flow

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  15. Toroidal Interaction and Propeller Chirality of Hexaarylbenzenes. Dynamic Domino Inversion Revealed by Combined Experimental and Theoretical Circular Dichroism Studies.

    PubMed

    Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi

    2016-03-03

    Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Schenter, Gregory K.

    To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find thatmore » the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  17. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    PubMed Central

    2012-01-01

    Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net. PMID:22889332

  18. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.

    PubMed

    Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R

    2012-08-13

    The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.

  19. Data-Intensive Science meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Word, Andrea; Nair, Udasysankar

    2014-01-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. For example, challenges in the teaching and learning of atmospheric science can be traced to threshold concepts in fluid dynamics. In particular, Dynamic Meteorology is one of the most challenging courses for graduate students and undergraduates majoring in Atmospheric Science. Dynamic Meteorology introduces threshold concepts - those that prove troublesome for the majority of students but that are essential, associated with fundamental relationships between forces and motion in the atmosphere and requiring the application of basic classical statics, dynamics, and thermodynamic principles to the three dimensionally varying atmospheric structure. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of dataintensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical problem sets and static, limited data samples. In addition, we identify existing gaps and possible solutions for addressing the infrastructure and tools as well as a pedagogical framework through which to implement this inductive approach.

  20. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 5 - Structural dynamics and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)

    1993-01-01

    Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.

  1. Morphological characteristics of motile plants for dynamic motion

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  2. Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.

  3. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  4. The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics

    PubMed Central

    Aguilera, Miguel; Bedia, Manuel G.; Santos, Bruno A.; Barandiaran, Xabier E.

    2013-01-01

    Despite the increase of both dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the Haken-Kelso-Bunz (HKB) model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose “brain” is modeled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain), finding different behavioral strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behavior and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input. To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and philosophy of mind. PMID:23986692

  5. Advancing dendrochronological studies of fire in the United States

    USGS Publications Warehouse

    Harley, Grant L.; Baisan, Christopher H.; Brown, Peter M.; Falk, Donald A.; Flatley, William T.; Grissino-Mayer, Henri D.; Hessl, Amy; Heyerdahl, Emily K.; Kaye, Margot W.; Lafon, Charles W.; Margolis, Ellis; Maxwell, R. Stockton; Naito, Adam T.; Platt, William J.; Rother, Monica T.; Saladyga, Thomas; Sherriff, Rosemary L.; Stachowiak, Lauren A.; Stambaugh, Michael C.; Sutherland, Elaine Kennedy; Taylor, Alan H.

    2018-01-01

    Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010, Amoroso et al., 2017). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct the historical range and variability of fire regimes (e.g., frequency, severity, seasonality, spatial extent), the influence of fire regimes on forest structure and ecosystem dynamics, and the top-down (e.g., climate) and bottom-up (e.g., fuels, topography) drivers of fire that operate at a range of temporal and spatial scales. As in other scientific fields, continued application of dendrochronological techniques to study fires has shaped new trajectories for the science. Here we highlight some important current directions in the United States (US) and call on our international colleagues to continue the conversation with perspectives from other countries.

  6. Understanding nanofluid stability through molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Annapureddy, Harsha V.; Sun, Xiuquan

    We performed molecular dynamics simulations to study solvation of a nanoparticle and nanoparticle-nanoparticle interactions in an n-hexane solution. Structural signatures are barely observed between the nanoparticle and n-hexane molecules because of weak binding and steric effects. The dynamic properties of the n-hexane molecule, on the other hand, are significantly influenced by the solvated nanoparticle. The diffusion of n-hexane molecules inside the nanoparticle is significantly decreased mainly because of the loss of dimensions of translation. Because one translational degree of freedom is lost by colliding with the wall of nanoparticle, the n-hexane molecules outside the nanoparticle diffuse 30% slower than themore » molecules in pure solution. The computed free energy profiles illustrate that the arrangement of the nanoparticles in bulk n-hexane solution are dependent on the orientation and functional group. We found that the n-hexane solvent exerts some effects on the interactions between the solvated nanoparticles. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  7. Protein- mediated enamel mineralization

    PubMed Central

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  8. Asymmetric DE3 causes WN3 in the ionosphere

    NASA Astrophysics Data System (ADS)

    Jiang, Jinzhe; Wan, Weixing; Ren, Zhipeng; Yue, Xinan

    2018-08-01

    This study investigates a mechanism to generate the wavenumber-3 longitude variation in the ionosphere, using the simulations with the Global Coupled Ionosphere Thermosphere Electrodynamics Model, developed by the Institute of Geology and Geophysics, Chinese Academy of Sciences (GCITEM-IGGCAS). Due to the asymmetry of geomagnetic field, the asymmetric Hough mode of diurnal eastward wavenumber-3 (DE3) also produces the WN3 structure in the ionosphere by coupling with the magnetic line. The densities of the neutral mass and the plasmas in the ionosphere are studied in detail. The results show a clear WN3 pattern driven by tide's electro-dynamical coupling. We then conclude that the asymmetric component of the DE3 can also cause the WN3 structure in the ionosphere, which confirms the assumption that more than one source could generate WN3 structure in previous studies.

  9. Core to Atmosphere Exploration of Ice Giants: A Uranus Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Jensema, R. J.; Arias-Young, T. M.; Wilkins, A. N.; Ermakov, A.; Bennett, C.; Dietrich, A.; Hemingway, D.; Klein, V.; Mane, P.; Marr, K. D.; Masterson, J.; Siegel, V.; Stober, K. J.; Talpe, M.; Vines, S. K.; Wetteland, C. J.

    2014-12-01

    Ice giants remain largely unexplored, as their large distance from the Sun limits both Earth-based observations and spacecraft visits. The significant occurrence of ice giant-sized planets among detected exoplanets presents an impetus to study Uranus to understand planetary formation, dynamics, and evolution. In addition, Uranus is also uniquely interesting, given the large inclination of its rotation axis and magnetospheric configuration. In this work, we design a mission concept that aims to maximize scientific return by measuring Uranus' chemical composition, internal structure, and magnetosphere, the first two being primary indicators of ice giant formation mechanisms. For this study, we analyze the trade space for a Uranus mission constrained by a cost cap of $1B. We discuss the decision making processes behind our choices of the science priorities, instrument suite and orbital configuration. Trade space decisions include a strong onboard instrument suite in lieu of a descent probe, an orbiter instead of a flyby mission, and design constraints on the power and propulsion systems. The mission, CAELUS (Core and Atmospheric Evolution Laboratory for Uranus Science), is designed for an August 2023 launch. Following a 14-year cruise with multiple planetary gravity assists, the spacecraft would begin its science mission, which consists of a series of ten 30-day near-polar orbits around Uranus. The instrument suite would consist of a microwave radiometer, Doppler seismometer, magnetometer, and UV spectrometer. These four instruments, along with a high-gain antenna capable of gravity science, would provide a comprehensive science return that meets the bulk of the scientific objectives of the 2013 NRC Planetary Science Decadal Survey for ice giants, most notably those regarding the chemical composition, interior structure, and dynamo of Uranus. This mission concept was created as part of an educational exercise for the 2014 Planetary Science Summer School at the Jet Propulsion Laboratory.

  10. Experimental identification and analytical modelling of human walking forces: Literature review

    NASA Astrophysics Data System (ADS)

    Racic, V.; Pavic, A.; Brownjohn, J. M. W.

    2009-09-01

    Dynamic forces induced by humans walking change simultaneously in time and space, being random in nature and varying considerably not only between different people but also for a single individual who cannot repeat two identical steps. Since these important aspects of walking forces have not been adequately researched in the past, the corresponding lack of knowledge has reflected badly on the quality of their mathematical models used in vibration assessments of pedestrian structures such as footbridges, staircases and floors. To develop better force models which can be used with more confidence in the structural design, an adequate experimental and analytical approach must be taken to account for their complexity. This paper is the most comprehensive review published to date, of 270 references dealing with different experimental and analytical characterizations of human walking loading. The source of dynamic human-induced forces is in fact in the body motion. To date, human motion has attracted a lot of interest in many scientific branches, particularly in medical and sports science, bioengineering, robotics, and space flight programs. Other fields include biologists of various kinds, physiologists, anthropologists, computer scientists (graphics and animation), human factors and ergonomists, etc. It resulted in technologically advanced tools that can help understanding the human movement in more detail. Therefore, in addition to traditional direct force measurements utilizing a force plate and an instrumented treadmill, this review also introduces methods for indirect measurement of time-varying records of walking forces via combination of visual motion tracking (imaging) data and known body mass distribution. The review is therefore an interdisciplinary article that bridges the gaps between biomechanics of human gait and civil engineering dynamics. Finally, the key reason for undertaking this review is the fact that human-structure dynamic interaction and pedestrian synchronization when walking on more or less perceptibly moving structures are increasingly giving serious cause for concern in vibration serviceability design. There is a considerable uncertainty about how excessive structural vibrations modify walking and hence affect pedestrian-induced forces, significantly in many cases. Modelling of this delicate mechanism is one of the challenges that the international civil structural engineering community face nowadays and this review thus provides a step toward understanding better the problem.

  11. Supporting Teachers' Understanding of Nature of Science and Inquiry Through Personal Experience and Perception of Inquiry as a Dynamic Process

    NASA Astrophysics Data System (ADS)

    Zion, Michal; Schwartz, Renee S.; Rimerman-Shmueli, Esther; Adler, Idit

    2018-05-01

    One of today's challenges in science education involves the development of appropriate conceptions of inquiry teaching and realizing how these experiences can support students' understanding of the nature of science and inquiry (NOS and NOSI). To meet this challenge, we developed a course for in-service science teachers, in which explicit-reflective instruction of NOS was coupled with an open inquiry process. This process included documentation tools adjusted to emphasize the dynamic, logical, and reflective aspects of scientific inquiry. Teachers' documentations, reflections, and questionnaires were examined for indications of perceptual connection between comprehending the essence of dynamic open inquiry and understanding certain NOS tenets. The results indicated that the in-service teachers experienced all criteria of dynamic open inquiry, however not to the same extent. By focusing on four teachers who clearly addressed changes in their perspective of NOS and NOSI, we were able to examine the nature of those changes, and relate them to the teachers' personal experiences and perceptions of the characteristics of dynamic open inquiry. Our results suggest that the participants' personal experiences and perceptions of the dynamic characteristics of open inquiry play a crucial role in shaping their understanding of NOS and NOSI. The findings of this research underscore the importance of enhancing teachers' personal experiences and perceptions of the dynamic characteristics of open inquiry, as a vehicle to improve their understanding of NOS and NOSI.

  12. Separation of cis and trans geometric isomers by Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Ablikim, Utuq; Kaderiya, B.; Kumarapan, V.; Rudenko, A.; Rolles, D.; Bomme, C.; Savelyev, E.; Xiong, H.; Berrah, N.; Kilcoyne, D.

    2016-05-01

    Isomers, i.e. molecules with the same chemical formula but different chemical structure, play an important role in many biological processes. Recently, it was shown that it is possible to identify different isomers of a chiral molecule by Coulomb explosion imaging. Here, we show that by imaging the Coulomb explosion of C2 H2 Br2 molecules after inner-shell photoionization, we are able to separate a mixture of cis and trans structures using the momentum correlation between ionic fragments measured in coincidence. Furthermore, we used this capability to investigate the isomer-selective photoionization and fragmentation dynamics of C2 H2 Br2 after Br (3d) ionization. Coulomb explosion simulation results for momentum correlation as well as kinetic energies match closely the experimental results. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological and Biological Sciences under Award Number DE-FG02-86ER13491 (U.A., B.K., V.K., A.R., D.R.) and Award Number DE-SC0012376 (H.X., N.B.).

  13. Large Eddy Simulation of Turbulent Flow in a Ribbed Pipe

    NASA Astrophysics Data System (ADS)

    Kang, Changwoo; Yang, Kyung-Soo

    2011-11-01

    Turbulent flow in a pipe with periodically wall-mounted ribs has been investigated by large eddy simulation with a dynamic subgrid-scale model. The value of Re considered is 98,000, based on hydraulic diameter and mean bulk velocity. An immersed boundary method was employed to implement the ribs in the computational domain. The spacing of the ribs is the key parameter to produce the d-type, intermediate and k-type roughness flows. The mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the experimental measurements currently available. Turbulence statistics, including budgets of the Reynolds stresses, were computed, and analyzed to elucidate turbulence structures, especially around the ribs. In particular, effects of the ribs are identified by comparing the turbulence structures with those of smooth pipe flow. The present investigation is relevant to the erosion/corrosion that often occurs around a protruding roughness in a pipe system. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  14. Active matter at the interface between materials science and cell biology

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel; Dogic, Zvonimir

    2017-09-01

    The remarkable processes that characterize living organisms, such as motility, self-healing and reproduction, are fuelled by a continuous injection of energy at the microscale. The field of active matter focuses on understanding how the collective behaviours of internally driven components can give rise to these biological phenomena, while also striving to produce synthetic materials composed of active energy-consuming components. The synergistic approach of studying active matter in both living cells and reconstituted systems assembled from biochemical building blocks has the potential to transform our understanding of both cell biology and materials science. This methodology can provide insight into the fundamental principles that govern the dynamical behaviours of self-organizing subcellular structures, and can lead to the design of artificial materials and machines that operate away from equilibrium and can thus attain life-like properties. In this Review, we focus on active materials made of cytoskeletal components, highlighting the role of active stresses and how they drive self-organization of both cellular structures and macroscale materials, which are machines powered by nanomachines.

  15. Microscopic to Macroscopic Dynamical Models of Sociality

    NASA Astrophysics Data System (ADS)

    Solis Salas, Citlali; Woolley, Thomas; Pearce, Eiluned; Dunbar, Robin; Maini, Philip; Social; Evolutionary Neuroscience Research Group (Senrg) Collaboration

    To help them survive, social animals, such as humans, need to share knowledge and responsibilities with other members of the species. The larger their social network, the bigger the pool of knowledge available to them. Since time is a limited resource, a way of optimising its use is meeting amongst individuals whilst fulfilling other necessities. In this sense it is useful to know how many, and how often, early humans could meet during a given period of time whilst performing other necessary tasks, such as food gathering. Using a simplified model of these dynamics, which comprehend encounter and memory, we aim at producing a lower-bound to the number of meetings hunter-gatherers could have during a year. We compare the stochastic agent-based model to its mean-field approximation and explore some of the features necessary for the difference between low population dynamics and its continuum limit. We observe an emergent property that could have an inference in the layered structure seen in each person's social organisation. This could give some insight into hunter-gatherer's lives and the development of the social layered structure we have today. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).

  16. Dynamic deformations and the M6.7, Northridge, California earthquake

    USGS Publications Warehouse

    Gomberg, J.

    1997-01-01

    A method of estimating the complete time-varying dynamic formation field from commonly available three-component single station seismic data has been developed and applied to study the relationship between dynamic deformation and ground failures and structural damage using observations from the 1994 Northridge, California earthquake. Estimates from throughout the epicentral region indicate that the horizontal strains exceed the vertical ones by more than a factor of two. The largest strains (exceeding ???100 ??strain) correlate with regions of greatest ground failure. There is a poor correlation between structural damage and peak strain amplitudes. The smallest strains, ???35 ??strain, are estimated in regions of no damage or ground failure. Estimates in the two regions with most severe and well mapped permanent deformation, Potrero Canyon and the Granada-Mission Hills regions, exhibit the largest strains; peak horizontal strains estimates in these regions equal ???139 and ???229 ??strain respectively. Of note, the dynamic principal strain axes have strikes consistent with the permanent failure features suggesting that, while gravity, sub-surface materials, and hydrologic conditions undoubtedly played fundamental roles in determining where and what types of failures occurred, the dynamic deformation field may have been favorably sized and oriented to initiate failure processes. These results support other studies that conclude that the permanent deformation resulted from ground shaking, rather than from static strains associated with primary or secondary faulting. They also suggest that such an analysis, either using data or theoretical calculations, may enable observations of paleo-ground failure to be used as quantitative constraints on the size and geometry of previous earthquakes. ?? 1997 Elsevier Science Limited.

  17. Creating Time: Social Collaboration in Music Improvisation.

    PubMed

    Walton, Ashley E; Washburn, Auriel; Langland-Hassan, Peter; Chemero, Anthony; Kloos, Heidi; Richardson, Michael J

    2018-01-01

    Musical collaboration emerges from the complex interaction of environmental and informational constraints, including those of the instruments and the performance context. Music improvisation in particular is more like everyday interaction in that dynamics emerge spontaneously without a rehearsed score or script. We examined how the structure of the musical context affords and shapes interactions between improvising musicians. Six pairs of professional piano players improvised with two different backing tracks while we recorded both the music produced and the movements of their heads, left arms, and right arms. The backing tracks varied in rhythmic and harmonic information, from a chord progression to a continuous drone. Differences in movement coordination and playing behavior were evaluated using the mathematical tools of complex dynamical systems, with the aim of uncovering the multiscale dynamics that characterize musical collaboration. Collectively, the findings indicated that each backing track afforded the emergence of different patterns of coordination with respect to how the musicians played together, how they moved together, as well as their experience collaborating with each other. Additionally, listeners' experiences of the music when rating audio recordings of the improvised performances were related to the way the musicians coordinated both their playing behavior and their bodily movements. Accordingly, the study revealed how complex dynamical systems methods (namely recurrence analysis) can capture the turn-taking dynamics that characterized both the social exchange of the music improvisation and the sounds of collaboration more generally. The study also demonstrated how musical improvisation provides a way of understanding how social interaction emerges from the structure of the behavioral task context. Copyright © 2017 Cognitive Science Society, Inc.

  18. Dynamic stability with the disturbance-free payload architecture as applied to the Large UV/Optical/Infrared (LUVOIR) Mission

    NASA Astrophysics Data System (ADS)

    Dewell, Larry D.; Tajdaran, Kiarash; Bell, Raymond M.; Liu, Kuo-Chia; Bolcar, Matthew R.; Sacks, Lia W.; Crooke, Julie A.; Blaurock, Carl

    2017-09-01

    The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. Wavefront error stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Previous studies of similar telescope architectures have shown that passive telescope isolation approaches are hard-pressed to meet dynamic stability requirements and usually involve complex actively-controlled elements and sophisticated metrology. To meet these challenging dynamic stability requirements, an isolation architecture that involves no mechanical contact between telescope and the host spacecraft structure has the potential of delivering this needed performance improvement. One such architecture, previously developed by Lockheed Martin called Disturbance Free Payload (DFP), is applied to and analyzed for LUVOIR. In a noncontact DFP architecture, the payload and spacecraft fly in close proximity, and interact via non-contact actuators to allow precision payload pointing and isolation from spacecraft vibration. Because disturbance isolation through non-contact, vibration isolation down to zero frequency is possible, and high-frequency structural dynamics of passive isolators are not introduced into the system. In this paper, the system-level analysis of a non-contact architecture is presented for LUVOIR, based on requirements that are directly traceable to its science objectives, including astrophysics and the direct imaging of habitable exoplanets. Aspects of architecture and how they contribute to system performance are examined and tailored to the LUVOIR architecture and concept of operation.

  19. Annual Report 1998: Chemical Structure and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generatedmore » can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).« less

  20. The cytotoxic T lymphocyte immune synapse at a glance.

    PubMed

    Dieckmann, Nele M G; Frazer, Gordon L; Asano, Yukako; Stinchcombe, Jane C; Griffiths, Gillian M

    2016-08-01

    The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers. © 2016. Published by The Company of Biologists Ltd.

Top