Approaches for Subgrid Parameterization: Does Scaling Help?
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2016-04-01
Arguably the scaling behavior is a well-established fact in many geophysical systems. There are already many theoretical studies elucidating this issue. However, the scaling law is slow to be introduced in "operational" geophysical modelling, notably for weather forecast as well as climate projection models. The main purpose of this presentation is to ask why, and try to answer this question. As a reference point, the presentation reviews the three major approaches for traditional subgrid parameterization: moment, PDF (probability density function), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in the atmosphere and the oceans. The PDF approach is intuitively appealing as it directly deals with a distribution of variables in subgrid scale in a more direct manner. The third category, originally proposed by Aubry et al (1988) in context of the wall boundary-layer turbulence, is specifically designed to represent coherencies in compact manner by a low--dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (POD, or empirical orthogonal functions, EOF) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. The mass-flux formulation that is currently adopted in majority of atmospheric models for parameterizing convection can also be considered a special case of the mode decomposition, adopting the segmentally-constant modes for the expansion basis. The mode decomposition can, furthermore, be re-interpreted as a type of Galarkin approach for numerically modelling the subgrid-scale processes. Simple extrapolation of this re-interpretation further suggests us that the subgrid parameterization problem may be re-interpreted as a type of mesh-refinement problem in numerical modelling. We furthermore see a link between the subgrid parameterization and downscaling problems along this line. The mode decomposition approach would also be the best framework for linking between the traditional parameterizations and the scaling perspectives. However, by seeing the link more clearly, we also see strength and weakness of introducing the scaling perspectives into parameterizations. Any diagnosis under a mode decomposition would immediately reveal a power-law nature of the spectrum. However, exploiting this knowledge in operational parameterization would be a different story. It is symbolic to realize that POD studies have been focusing on representing the largest-scale coherency within a grid box under a high truncation. This problem is already hard enough. Looking at differently, the scaling law is a very concise manner for characterizing many subgrid-scale variabilities in systems. We may even argue that the scaling law can provide almost complete subgrid-scale information in order to construct a parameterization, but with a major missing link: its amplitude must be specified by an additional condition. The condition called "closure" in the parameterization problem, and known to be a tough problem. We should also realize that the studies of the scaling behavior tend to be statistical in the sense that it hardly provides complete information for constructing a parameterization: can we specify the coefficients of all the decomposition modes by a scaling law perfectly when the first few leading modes are specified? Arguably, the renormalization group (RNG) is a very powerful tool for reducing a system with a scaling behavior into a low dimension, say, under an appropriate mode decomposition procedure. However, RNG is analytical tool: it is extremely hard to apply it to real complex geophysical systems. It appears that it is still a long way to go for us before we can begin to exploit the scaling law in order to construct operational subgrid parameterizations in effective manner.
Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2016-07-01
Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.
Subgrid-scale parameterization and low-frequency variability: a response theory approach
NASA Astrophysics Data System (ADS)
Demaeyer, Jonathan; Vannitsem, Stéphane
2016-04-01
Weather and climate models are limited in the possible range of resolved spatial and temporal scales. However, due to the huge space- and time-scale ranges involved in the Earth System dynamics, the effects of many sub-grid processes should be parameterized. These parameterizations have an impact on the forecasts or projections. It could also affect the low-frequency variability present in the system (such as the one associated to ENSO or NAO). An important question is therefore to know what is the impact of stochastic parameterizations on the Low-Frequency Variability generated by the system and its model representation. In this context, we consider a stochastic subgrid-scale parameterization based on the Ruelle's response theory and proposed in Wouters and Lucarini (2012). We test this approach in the context of a low-order coupled ocean-atmosphere model, detailed in Vannitsem et al. (2015), for which a part of the atmospheric modes is considered as unresolved. A natural separation of the phase-space into a slow invariant set and its fast complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts. References: Vannitsem S, Demaeyer J, De Cruz L, Ghil M. 2015. Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model. Physica D: Nonlinear Phenomena 309: 71-85. Wouters J, Lucarini V. 2012. Disentangling multi-level systems: averaging, correlations and memory. Journal of Statistical Mechanics: Theory and Experiment 2012(03): P03 003.
NASA Astrophysics Data System (ADS)
Huang, Dong; Liu, Yangang
2014-12-01
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dong; Liu, Yangang
2014-12-18
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more » allowing for more realistic representation of cloud radiation interactions in large-scale models.« less
NASA Technical Reports Server (NTRS)
Fritsch, J. Michael; Kain, John S.
1997-01-01
Research efforts during the second year have centered on improving the manner in which convective stabilization is achieved in the Penn State/NCAR mesoscale model MM5. Ways of improving this stabilization have been investigated by (1) refining the partitioning between the Kain-Fritsch convective parameterization scheme and the grid scale by introducing a form of moist convective adjustment; (2) using radar data to define locations of subgrid-scale convection during a dynamic initialization period; and (3) parameterizing deep-convective feedbacks as subgrid-scale sources and sinks of mass. These investigations were conducted by simulating a long-lived convectively-generated mesoscale vortex that occurred during 14-18 Jul. 1982 and the 10-11 Jun. 1985 squall line that occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. The long-lived vortex tracked across the central Plains states and was responsible for multiple convective outbreaks during its lifetime.
Convection systems and associated cloudiness directly influence regional and local radiation budgets, and dynamics and thermodynamics through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Heng; Gustafson, Jr., William I.; Hagos, Samson M.
2015-04-18
With this study, to better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km 2s.
NASA Astrophysics Data System (ADS)
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.
2018-03-01
Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...
2017-09-14
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
The application of depletion curves for parameterization of subgrid variability of snow
C. H. Luce; D. G. Tarboton
2004-01-01
Parameterization of subgrid-scale variability in snow accumulation and melt is important for improvements in distributed snowmelt modelling. We have taken the approach of using depletion curves that relate fractional snowcovered area to element-average snow water equivalent to parameterize the effect of snowpack heterogeneity within a physically based mass and energy...
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2015-01-01
The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.
NASA Astrophysics Data System (ADS)
Lim, Kyo-Sun Sunny; Lim, Jong-Myoung; Shin, Hyeyum Hailey; Hong, Jinkyu; Ji, Young-Yong; Lee, Wanno
2018-06-01
A substantial over-prediction bias at low-to-moderate wind speeds in the Weather Research and Forecasting (WRF) model has been reported in the previous studies. Low-level wind fields play an important role in dispersion of air pollutants, including radionuclides, in a high-resolution WRF framework. By implementing two subgrid-scale orography parameterizations (Jimenez and Dudhia in J Appl Meteorol Climatol 51:300-316, 2012; Mass and Ovens in WRF model physics: problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, Boulder, Colo. http://www.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%204/4-1_WRFworkshop2010Final.pdf, 2010), we tried to compare the performance of parameterizations and to enhance the forecast skill of low-level wind fields over the central western part of South Korea. Even though both subgrid-scale orography parameterizations significantly alleviated the positive bias at 10-m wind speed, the parameterization by Jimenez and Dudhia revealed a better forecast skill in wind speed under our modeling configuration. Implementation of the subgrid-scale orography parameterizations in the model did not affect the forecast skills in other meteorological fields including 10-m wind direction. Our study also brought up the problem of discrepancy in the definition of "10-m" wind between model physics parameterizations and observations, which can cause overestimated winds in model simulations. The overestimation was larger in stable conditions than in unstable conditions, indicating that the weak diurnal cycle in the model could be attributed to the representation error.
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-10-20
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Parameterization of subgrid-scale stress by the velocity gradient tensor
NASA Technical Reports Server (NTRS)
Lund, Thomas S.; Novikov, E. A.
1993-01-01
The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.
A Nonlinear Interactions Approximation Model for Large-Eddy Simulation
NASA Astrophysics Data System (ADS)
Haliloglu, Mehmet U.; Akhavan, Rayhaneh
2003-11-01
A new approach to LES modelling is proposed based on direct approximation of the nonlinear terms \\overlineu_iuj in the filtered Navier-Stokes equations, instead of the subgrid-scale stress, τ_ij. The proposed model, which we call the Nonlinear Interactions Approximation (NIA) model, uses graded filters and deconvolution to parameterize the local interactions across the LES cutoff, and a Smagorinsky eddy viscosity term to parameterize the distant interactions. A dynamic procedure is used to determine the unknown eddy viscosity coefficient, rendering the model free of adjustable parameters. The proposed NIA model has been applied to LES of turbulent channel flows at Re_τ ≈ 210 and Re_τ ≈ 570. The results show good agreement with DNS not only for the mean and resolved second-order turbulence statistics but also for the full (resolved plus subgrid) Reynolds stress and turbulence intensities.
Representation of sub-element scale variability in snow accumulation and ablation is increasingly recognized as important in distributed hydrologic modelling. Representing sub-grid scale variability may be accomplished through numerical integration of a nested grid or through a l...
On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models
NASA Astrophysics Data System (ADS)
Jan, A.; Painter, S. L.; Coon, E. T.
2017-12-01
Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.
Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model
NASA Astrophysics Data System (ADS)
O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.
2015-12-01
Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm
NASA Astrophysics Data System (ADS)
von Larcher, Th; Klein, R.
2012-04-01
Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.
NASA Astrophysics Data System (ADS)
Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan
2016-08-01
Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic dynamics. These results suggest that analysis of global inundation is feasible using a sub-grid model, but that spatial patterns at sub-kilometer resolutions still need to be adequately predicted.
NASA Astrophysics Data System (ADS)
Xie, Xin
Microphysics and convection parameterizations are two key components in a climate model to simulate realistic climatology and variability of cloud distribution and the cycles of energy and water. When a model has varying grid size or simulations have to be run with different resolutions, scale-aware parameterization is desirable so that we do not have to tune model parameters tailored to a particular grid size. The subgrid variability of cloud hydrometers is known to impact microphysics processes in climate models and is found to highly depend on spatial scale. A scale- aware liquid cloud subgrid variability parameterization is derived and implemented in the Community Earth System Model (CESM) in this study using long-term radar-based ground measurements from the Atmospheric Radiation Measurement (ARM) program. When used in the default CESM1 with the finite-volume dynamic core where a constant liquid inhomogeneity parameter was assumed, the newly developed parameterization reduces the cloud inhomogeneity in high latitudes and increases it in low latitudes. This is due to both the smaller grid size in high latitudes, and larger grid size in low latitudes in the longitude-latitude grid setting of CESM as well as the variation of the stability of the atmosphere. The single column model and general circulation model (GCM) sensitivity experiments show that the new parameterization increases the cloud liquid water path in polar regions and decreases it in low latitudes. Current CESM1 simulation suffers from the bias of both the pacific double ITCZ precipitation and weak Madden-Julian oscillation (MJO). Previous studies show that convective parameterization with multiple plumes may have the capability to alleviate such biases in a more uniform and physical way. A multiple-plume mass flux convective parameterization is used in Community Atmospheric Model (CAM) to investigate the sensitivity of MJO simulations. We show that MJO simulation is sensitive to entrainment rate specification. We found that shallow plumes can generate and sustain the MJO propagation in the model.
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; van Leeuwen, P. J.
2017-12-01
Model Uncertainty Quantification remains one of the central challenges of effective Data Assimilation (DA) in complex partially observed non-linear systems. Stochastic parameterization methods have been proposed in recent years as a means of capturing the uncertainty associated with unresolved sub-grid scale processes. Such approaches generally require some knowledge of the true sub-grid scale process or rely on full observations of the larger scale resolved process. We present a methodology for estimating the statistics of sub-grid scale processes using only partial observations of the resolved process. It finds model error realisations over a training period by minimizing their conditional variance, constrained by available observations. Special is that these realisations are binned conditioned on the previous model state during the minimization process, allowing for the recovery of complex error structures. The efficacy of the approach is demonstrated through numerical experiments on the multi-scale Lorenz 96' model. We consider different parameterizations of the model with both small and large time scale separations between slow and fast variables. Results are compared to two existing methods for accounting for model uncertainty in DA and shown to provide improved analyses and forecasts.
ED(MF)n: Humidity-Convection Feedbacks in a Mass Flux Scheme Based on Resolved Size Densities
NASA Astrophysics Data System (ADS)
Neggers, R.
2014-12-01
Cumulus cloud populations remain at least partially unresolved in present-day numerical simulations of global weather and climate, and accordingly their impact on the larger-scale flow has to be represented through parameterization. Various methods have been developed over the years, ranging in complexity from the early bulk models relying on a single plume to more recent approaches that attempt to reconstruct the underlying probability density functions, such as statistical schemes and multiple plume approaches. Most of these "classic" methods capture key aspects of cumulus cloud populations, and have been successfully implemented in operational weather and climate models. However, the ever finer discretizations of operational circulation models, driven by advances in the computational efficiency of supercomputers, is creating new problems for existing sub-grid schemes. Ideally, a sub-grid scheme should automatically adapt its impact on the resolved scales to the dimension of the grid-box within which it is supposed to act. It can be argued that this is only possible when i) the scheme is aware of the range of scales of the processes it represents, and ii) it can distinguish between contributions as a function of size. How to conceptually represent this knowledge of scale in existing parameterization schemes remains an open question that is actively researched. This study considers a relatively new class of models for sub-grid transport in which ideas from the field of population dynamics are merged with the concept of multi plume modelling. More precisely, a multiple mass flux framework for moist convective transport is formulated in which the ensemble of plumes is created in "size-space". It is argued that thus resolving the underlying size-densities creates opportunities for introducing scale-awareness and scale-adaptivity in the scheme. The behavior of an implementation of this framework in the Eddy Diffusivity Mass Flux (EDMF) model, named ED(MF)n, is examined for a standard case of subtropical marine shallow cumulus. We ask if a system of multiple independently resolved plumes is able to automatically create the vertical profile of bulk (mass) flux at which the sub-grid scale transport balances the imposed larger-scale forcings in the cloud layer.
Domain-averaged snow depth over complex terrain from flat field measurements
NASA Astrophysics Data System (ADS)
Helbig, Nora; van Herwijnen, Alec
2017-04-01
Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.
Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere
NASA Astrophysics Data System (ADS)
Becker, E.
2016-12-01
At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).
Baker, I. T.; Sellers, P. J.; Denning, A. S.; ...
2017-03-01
The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed tomore » represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, I. T.; Sellers, P. J.; Denning, A. S.
The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed tomore » represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaoqing Wu; Xin-Zhong Liang; Sunwook Park
2007-01-23
The works supported by this ARM project lay the solid foundation for improving the parameterization of subgrid cloud-radiation interactions in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and concurrent ARM observations to produce long-term, consistent cloud and radiative property datasets at the cloud scale (Wu et al. 2006, 2007). With these datasets, we have investigated the mesoscale enhancement of cloud systems on surface heat fluxes (Wu and Guimond 2006), quantified the effects of cloud horizontal inhomogeneity and vertical overlap on the domain-averaged radiative fluxes (Wu and Liang 2005), and subsequently validatedmore » and improved the physically-based mosaic treatment of subgrid cloud-radiation interactions (Liang and Wu 2005). We have implemented the mosaic treatment into the CCM3. The 5-year (1979-1983) AMIP-type simulation showed significant impacts of subgrid cloud-radiation interaction on the climate simulations (Wu and Liang 2005). We have actively participated in CRM intercomparisons that foster the identification and physical understanding of common errors in cloud-scale modeling (Xie et al. 2005; Xu et al. 2005, Grabowski et al. 2005).« less
Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen
2014-05-01
The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.
Parameterization of Small-Scale Processes
1989-09-01
1989, Honolulu, Hawaii !7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FELD GROUP SIJB- GROUP general...detailed sensitivit. studies to assess the dependence of results on the edd\\ viscosities and diffusivities by a direct comparison with certain observations...better sub-grid scale parameterization is to mount a concerted s .arch for model fits to observations. These would require exhaustive sensitivity studies
Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank
2017-07-01
Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.
Renormalization group analysis of turbulence
NASA Technical Reports Server (NTRS)
Smith, Leslie M.
1989-01-01
The objective is to understand and extend a recent theory of turbulence based on dynamic renormalization group (RNG) techniques. The application of RNG methods to hydrodynamic turbulence was explored most extensively by Yakhot and Orszag (1986). An eddy viscosity was calculated which was consistent with the Kolmogorov inertial range by systematic elimination of the small scales in the flow. Further, assumed smallness of the nonlinear terms in the redefined equations for the large scales results in predictions for important flow constants such as the Kolmogorov constant. It is emphasized that no adjustable parameters are needed. The parameterization of the small scales in a self-consistent manner has important implications for sub-grid modeling.
Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...
2015-01-20
Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less
On the use of infrasound for constraining global climate models
NASA Astrophysics Data System (ADS)
Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David
2017-11-01
Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.
Development of renormalization group analysis of turbulence
NASA Technical Reports Server (NTRS)
Smith, L. M.
1990-01-01
The renormalization group (RG) procedure for nonlinear, dissipative systems is now quite standard, and its applications to the problem of hydrodynamic turbulence are becoming well known. In summary, the RG method isolates self similar behavior and provides a systematic procedure to describe scale invariant dynamics in terms of large scale variables only. The parameterization of the small scales in a self consistent manner has important implications for sub-grid modeling. This paper develops the homogeneous, isotropic turbulence and addresses the meaning and consequence of epsilon-expansion. The theory is then extended to include a weak mean flow and application of the RG method to a sequence of models is shown to converge to the Navier-Stokes equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, R.B.; Tripoli, G.
1996-01-08
The authors developed single-column parameterizations for subgrid boundary-layer cumulus clouds. These give cloud onset time, cloud coverage, and ensemble distributions of cloud-base altitudes, cloud-top altitudes, cloud thickness, and the characteristics of cloudy and clear updrafts. They tested and refined the parameterizations against archived data from Spring and Summer 1994 and 1995 intensive operation periods (IOPs) at the Southern Great Plains (SGP) ARM CART site near Lamont, Oklahoma. The authors also found that: cloud-base altitudes are not uniform over a heterogeneous surface; tops of some cumulus clouds can be below the base-altitudes of other cumulus clouds; there is an overlap regionmore » near cloud base where clear and cloudy updrafts exist simultaneously; and the lognormal distribution of cloud sizes scales to the JFD of surface layer air and to the shape of the temperature profile above the boundary layer.« less
The U.S. Environmental Protection Agency (U.S. EPA) is extending its Models-3/Community Multiscale Air Quality (CMAQ) Modeling System to provide detailed gridded air quality concentration fields and sub-grid variability characterization at neighborhood scales and in urban areas...
On the limitations of General Circulation Climate Models
NASA Technical Reports Server (NTRS)
Stone, Peter H.; Risbey, James S.
1990-01-01
General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.
Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones
NASA Astrophysics Data System (ADS)
Painter, S. L.; Coon, E. T.; Brooks, S. C.
2017-12-01
Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.
Sims, Aaron P; Alapaty, Kiran; Raman, Sethu
2017-01-01
Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain-Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.
Characterization of Cloud Water-Content Distribution
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2010-01-01
The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.
Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems.
Schymanski, Stanislaus J; Kleidon, Axel; Stieglitz, Marc; Narula, Jatin
2010-05-12
Feedbacks between water use, biomass and infiltration capacity in semiarid ecosystems have been shown to lead to the spontaneous formation of vegetation patterns in a simple model. The formation of patterns permits the maintenance of larger overall biomass at low rainfall rates compared with homogeneous vegetation. This results in a bias of models run at larger scales neglecting subgrid-scale variability. In the present study, we investigate the question whether subgrid-scale heterogeneity can be parameterized as the outcome of optimal partitioning between bare soil and vegetated area. We find that a two-box model reproduces the time-averaged biomass of the patterns emerging in a 100 x 100 grid model if the vegetated fraction is optimized for maximum entropy production (MEP). This suggests that the proposed optimality-based representation of subgrid-scale heterogeneity may be generally applicable to different systems and at different scales. The implications for our understanding of self-organized behaviour and its modelling are discussed.
A satellite observation test bed for cloud parameterization development
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Suselj, K.
2015-12-01
We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2014-05-01
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.
Dissipative closures for statistical moments, fluid moments, and subgrid scales in plasma turbulence
NASA Astrophysics Data System (ADS)
Smith, Stephen Andrew
1997-11-01
Closures are necessary in the study physical systems with large numbers of degrees of freedom when it is only possible to compute a small number of modes. The modes that are to be computed, the resolved modes, are coupled to unresolved modes that must be estimated. This thesis focuses on dissipative closures models for two problems that arises in the study of plasma turbulence: the fluid moment closure problem and the subgrid scale closure problem. The fluid moment closures of Hammett and Perkins (1990) were originally applied to a one-dimensional kinetic equation, the Vlasov equation. These closures are generalized in this thesis and applied to the stochastic oscillator problem, a standard paradigm problem for statistical closures. The linear theory of the Hammett- Perkins closures is shown to converge with increasing numbers of moments. A novel parameterized hyperviscosity is proposed for two- dimensional drift-wave turbulence. The magnitude and exponent of the hyperviscosity are expressed as functions of the large scale advection velocity. Traditionally hyperviscosities are applied to simulations with a fixed exponent that must be arbitrarily chosen. Expressing the exponent as a function of the simulation parameters eliminates this ambiguity. These functions are parameterized by comparing the hyperviscous dissipation to the subgrid dissipation calculated from direct numerical simulations. Tests of the parameterization demonstrate that it performs better than using no additional damping term or than using a standard hyperviscosity. Heuristic arguments are presented to extend this hyperviscosity model to three-dimensional (3D) drift-wave turbulence where eddies are highly elongated along the field line. Preliminary results indicate that this generalized 3D hyperviscosity is capable of reducing the resolution requirements for 3D gyrofluid turbulence simulations.
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo
2010-05-01
Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Search for subgrid scale parameterization by projection pursuit regression
NASA Technical Reports Server (NTRS)
Meneveau, C.; Lund, T. S.; Moin, Parviz
1992-01-01
The dependence of subgrid-scale stresses on variables of the resolved field is studied using direct numerical simulations of isotropic turbulence, homogeneous shear flow, and channel flow. The projection pursuit algorithm, a promising new regression tool for high-dimensional data, is used to systematically search through a large collection of resolved variables, such as components of the strain rate, vorticity, velocity gradients at neighboring grid points, etc. For the case of isotropic turbulence, the search algorithm recovers the linear dependence on the rate of strain (which is necessary to transfer energy to subgrid scales) but is unable to determine any other more complex relationship. For shear flows, however, new systematic relations beyond eddy viscosity are found. For the homogeneous shear flow, the results suggest that products of the mean rotation rate tensor with both the fluctuating strain rate and fluctuating rotation rate tensors are important quantities in parameterizing the subgrid-scale stresses. A model incorporating these terms is proposed. When evaluated with direct numerical simulation data, this model significantly increases the correlation between the modeled and exact stresses, as compared with the Smagorinsky model. In the case of channel flow, the stresses are found to correlate with products of the fluctuating strain and rotation rate tensors. The mean rates of rotation or strain do not appear to be important in this case, and the model determined for homogeneous shear flow does not perform well when tested with channel flow data. Many questions remain about the physical mechanisms underlying these findings, about possible Reynolds number dependence, and, given the low level of correlations, about their impact on modeling. Nevertheless, demonstration of the existence of causal relations between sgs stresses and large-scale characteristics of turbulent shear flows, in addition to those necessary for energy transfer, provides important insight into the relation between scales in turbulent flows.
NASA Astrophysics Data System (ADS)
Grell, G. A.; Freitas, S. R.; Olson, J.; Bela, M.
2017-12-01
We will start by providing a summary of the latest cumulus parameterization modeling efforts at NOAA's Earth System Research Laboratory (ESRL) will be presented on both regional and global scales. The physics package includes a scale-aware parameterization of subgrid cloudiness feedback to radiation (coupled PBL, microphysics, radiation, shallow and congestus type convection), the stochastic Grell-Freitas (GF) scale- and aerosol-aware convective parameterization, and an aerosol aware microphysics package. GF is based on a stochastic approach originally implemented by Grell and Devenyi (2002) and described in more detail in Grell and Freitas (2014, ACP). It was expanded to include PDF's for vertical mass flux, as well as modifications to improve the diurnal cycle. This physics package will be used on different scales, spanning global to cloud resolving, to look at the impact on scalar transport and numerical weather prediction.
On the Subgrid-Scale Modeling of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Squires, Kyle; Zeman, Otto
1990-01-01
A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.
A new subgrid-scale representation of hydrometeor fields using a multivariate PDF
Griffin, Brian M.; Larson, Vincent E.
2016-06-03
The subgrid-scale representation of hydrometeor fields is important for calculating microphysical process rates. In order to represent subgrid-scale variability, the Cloud Layers Unified By Binormals (CLUBB) parameterization uses a multivariate probability density function (PDF). In addition to vertical velocity, temperature, and moisture fields, the PDF includes hydrometeor fields. Previously, hydrometeor fields were assumed to follow a multivariate single lognormal distribution. Now, in order to better represent the distribution of hydrometeors, two new multivariate PDFs are formulated and introduced.The new PDFs represent hydrometeors using either a delta-lognormal or a delta-double-lognormal shape. The two new PDF distributions, plus the previous single lognormalmore » shape, are compared to histograms of data taken from large-eddy simulations (LESs) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep convective case. In conclusion, the warm microphysical process rates produced by the different hydrometeor PDFs are compared to the same process rates produced by the LES.« less
Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies
NASA Astrophysics Data System (ADS)
Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj
2016-04-01
In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.
NASA Astrophysics Data System (ADS)
Kumar, R.; Samaniego, L. E.; Livneh, B.
2013-12-01
Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked differences; particularly at a shorter time scale (hours to days) in regions with coarse texture sandy soils. Furthermore, the partitioning of total runoff into near-surface interflows and baseflow components was also significantly different between the two simulations. Simulations with the coarser soil map produced comparatively higher baseflows. At longer time scales (months to seasons) where climatic factors plays a major role, the integrated fluxes and states from both sets of model simulations match fairly closely, despite the apparent discrepancy in the partitioning of total runoff.
A Generalized Simple Formulation of Convective Adjustment ...
Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in convective precipitation simulations. In this work, a generalized simple formulation of τ for use in any convection parameterization for shallow and deep clouds is developed to reduce convective precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la
Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-06-08
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes
NASA Technical Reports Server (NTRS)
Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.
2012-01-01
Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.
A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1996-11-01
Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.
NASA Technical Reports Server (NTRS)
Senocak, Inane
2003-01-01
The objective of the present study is to evaluate the dynamic procedure in LES of stratocumulus topped atmospheric boundary layer and assess the relative importance of subgrid-scale modeling, cloud microphysics and radiation modeling on the predictions. The simulations will also be used to gain insight into the processes leading to cloud top entrainment instability and cloud breakup. In this report we document the governing equations, numerical schemes and physical models that are employed in the Goddard Cumulus Ensemble model (GCEM3D). We also present the subgrid-scale dynamic procedures that have been implemented in the GCEM3D code for the purpose of the present study.
Subin, Z M; Milly, Paul C.D.; Sulman, B N; Malyshev, Sergey; Shevliakova, E
2014-01-01
Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs) generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology), into the Geophysical Fluid Dynamics Laboratory (GFDL) land model (LM3). LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-TiHy has the capability to represent some of the controls of these hydrological variables, but also that improvement in parameterization and input datasets are needed for more realistic simulations. We found large sensitivity in model-diagnosed wetland and inundated area to the depth of conductive soil and the parameterization of macroporosity. With improved parameterization and inclusion of peatland biogeochemical processes, the model could provide a new approach to investigating the vulnerability of Boreal peatland carbon to climate change in ESMs.
A Vertically Resolved Planetary Boundary Layer
NASA Technical Reports Server (NTRS)
Helfand, H. M.
1984-01-01
Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.
Subgrid-Scale Parameterization in 3-D Models: The Role of Turbulent Mixing
2006-09-30
Prandke, J. Chiggiato , and M. Sclavo (2006) Turbulence in the Upper Layers of the Southern Adriatic Sea Under Various Meteorological Conditions During... Chiggiato , and M. Sclavo (2006) Turbulence in the Upper Layers of the Southern Adriatic Sea Under Various Meteorological Conditions During Summer 2006. J. Geophys. Res. (submitted).
Subgrid-Scale Parameterization in 3-D Models: The Role of Turbulent Mixing
2007-09-30
layer, 2, Modeling, J. Geophys. Res., 98, 22,657-22,666. Carniel, S., L. Kantha, H. Prandke, J. Chiggiato , and M. Sclavo (2007) Turbulence in the...Kantha, H. Prandke, J. Chiggiato , and M. Sclavo (2007) Turbulence in the Upper Layers of the Southern Adriatic Sea Under Various Meteorological
Water balance model for Kings Creek
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1990-01-01
Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.
Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2012-01-01
Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.
Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone
NASA Astrophysics Data System (ADS)
Green, Benjamin W.; Zhang, Fuqing
2015-03-01
Current numerical simulations of tropical cyclones (TCs) use a horizontal grid spacing as small as Δx = 103 m, with all boundary layer (BL) turbulence parameterized. Eventually, TC simulations can be conducted at Large Eddy Simulation (LES) resolution, which requires Δx to fall in the inertial subrange (often <102 m) to adequately resolve the large, energy-containing eddies. Between the two lies the so-called "terra incognita" because some of the assumptions used by mesoscale models and LES to treat BL turbulence are invalid. This study performs several 4-6 h simulations of Hurricane Katrina (2005) without a BL parameterization at extremely fine Δx [333, 200, and 111 m, hereafter "Large Eddy Permitting (LEP) runs"] and compares with mesoscale simulations with BL parameterizations (Δx = 3 km, 1 km, and 333 m, hereafter "PBL runs"). There are profound differences in the hurricane BL structure between the PBL and LEP runs: the former have a deeper inflow layer and secondary eyewall formation, whereas the latter have a shallow inflow layer without a secondary eyewall. Among the LEP runs, decreased Δx yields weaker subgrid-scale vertical momentum fluxes, but the sum of subgrid-scale and "grid-scale" fluxes remain similar. There is also evidence that the size of the prevalent BL eddies depends upon Δx, suggesting that convergence to true LES has not yet been reached. Nevertheless, the similarities in the storm-scale BL structure among the LEP runs indicate that the net effect of the BL on the rest of the hurricane may be somewhat independent of Δx.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.
2013-02-01
Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e. the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID) are conducted over western Europe. Part 1 describes the background information for the model comparison and simulation design, as well as the application of WRF for January and July 2001 over triple-nested domains in western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°. Six simulated meteorological variables (i.e. temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients of major meteorological variables. While the domainwide performance of T2, Q2, RH2, and WD10 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in WS10 and Precip even at 0.025°. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g. lack of soil temperature and moisture nudging), limitations in the physical parameterizations of the planetary boundary layer (e.g. cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g. snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvement for WS10, Precip, and some mesoscale events (e.g. strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. These results indicate a need to further improve the model representations of the above parameterizations at all scales.
Short-term Time Step Convergence in a Climate Model
Wan, Hui; Rasch, Philip J.; Taylor, Mark; ...
2015-02-11
A testing procedure is designed to assess the convergence property of a global climate model with respect to time step size, based on evaluation of the root-mean-square temperature difference at the end of very short (1 h) simulations with time step sizes ranging from 1 s to 1800 s. A set of validation tests conducted without sub-grid scale parameterizations confirmed that the method was able to correctly assess the convergence rate of the dynamical core under various configurations. The testing procedure was then applied to the full model, and revealed a slow convergence of order 0.4 in contrast to themore » expected first-order convergence. Sensitivity experiments showed without ambiguity that the time stepping errors in the model were dominated by those from the stratiform cloud parameterizations, in particular the cloud microphysics. This provides a clear guidance for future work on the design of more accurate numerical methods for time stepping and process coupling in the model.« less
A stochastic parameterization for deep convection using cellular automata
NASA Astrophysics Data System (ADS)
Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.
2012-12-01
Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in large-scale variables in regions where convective activity is large. A two month extended evaluation of the deterministic behaviour of the scheme indicate a neutral impact on forecast skill. References: Bengtsson, L., H. Körnich, E. Källén, and G. Svensson, 2011: Large-scale dynamical response to sub-grid scale organization provided by cellular automata. Journal of the Atmospheric Sciences, 68, 3132-3144. Frenkel, Y., A. Majda, and B. Khouider, 2011: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. Journal of the Atmospheric Sciences, doi: 10.1175/JAS-D-11-0148.1. Huang, X.-Y., 1988: The organization of moist convection by internal 365 gravity waves. Tellus A, 42, 270-285. Khouider, B., J. Biello, and A. Majda, 2010: A Stochastic Multicloud Model for Tropical Convection. Comm. Math. Sci., 8, 187-216. Palmer, T., 2011: Towards the Probabilistic Earth-System Simulator: A Vision for the Future of Climate and Weather Prediction. Quarterly Journal of the Royal Meteorological Society 138 (2012) 841-861 Plant, R. and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87-105.
Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies
NASA Astrophysics Data System (ADS)
Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj
2017-04-01
In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1
Investigating the scale-adaptivity of a shallow cumulus parameterization scheme with LES
NASA Astrophysics Data System (ADS)
Brast, Maren; Schemann, Vera; Neggers, Roel
2017-04-01
In this study we investigate the scale-adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone. The Eddy-Diffusivity Multiple Mass-Flux (or ED(MF)n ) scheme is a bin-macrophysics scheme, in which subgrid transport is formulated in terms of discretized size densities. While scale-adaptivity in the ED-component is achieved using a pragmatic blending approach, the MF-component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented in a large-eddy simulation (LES) model, replacing the original subgrid-scheme for turbulent transport. LES thus plays the role of a non-hydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary-layer gray zone. In this range convective cumulus clouds are partially resolved. We find that at high resolutions the clouds and the turbulent transport are predominantly resolved by the LES, and the transport represented by ED(MF)n is small. This partitioning changes towards coarser resolutions, with the representation of shallow cumulus clouds becoming exclusively carried by the ED(MF)n. The way the partitioning changes with grid-spacing matches the results of previous LES studies, suggesting some scale-adaptivity is captured. Sensitivity studies show that a scale-inadaptive ED component stays too active at high resolutions, and that the results are fairly insensitive to the number of transporting updrafts in the ED(MF)n scheme. Other assumptions in the scheme, such as the distribution of updrafts across sizes and the value of the area fraction covered by updrafts, are found to affect the location of the gray zone.
NCAR global model topography generation software for unstructured grids
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Bacmeister, J. T.; Callaghan, P. F.; Taylor, M. A.
2015-06-01
It is the purpose of this paper to document the NCAR global model topography generation software for unstructured grids. Given a model grid, the software computes the fraction of the grid box covered by land, the gridbox mean elevation, and associated sub-grid scale variances commonly used for gravity wave and turbulent mountain stress parameterizations. The software supports regular latitude-longitude grids as well as unstructured grids; e.g. icosahedral, Voronoi, cubed-sphere and variable resolution grids. As an example application and in the spirit of documenting model development, exploratory simulations illustrating the impacts of topographic smoothing with the NCAR-DOE CESM (Community Earth System Model) CAM5.2-SE (Community Atmosphere Model version 5.2 - Spectral Elements dynamical core) are shown.
NASA Astrophysics Data System (ADS)
Witte, M.; Morrison, H.; Jensen, J. B.; Bansemer, A.; Gettelman, A.
2017-12-01
The spatial covariance of cloud and rain water (or in simpler terms, small and large drops, respectively) is an important quantity for accurate prediction of the accretion rate in bulk microphysical parameterizations that account for subgrid variability using assumed probability density functions (pdfs). Past diagnoses of this covariance from remote sensing, in situ measurements and large eddy simulation output have implicitly assumed that the magnitude of the covariance is insensitive to grain size (i.e. horizontal resolution) and averaging length, but this is not the case because both cloud and rain water exhibit scale invariance across a wide range of scales - from tens of centimeters to tens of kilometers in the case of cloud water, a range that we will show is primarily limited by instrumentation and sampling issues. Since the individual variances systematically vary as a function of spatial scale, it should be expected that the covariance follows a similar relationship. In this study, we quantify the scaling properties of cloud and rain water content and their covariability from high frequency in situ aircraft measurements of marine stratocumulus taken over the southeastern Pacific Ocean aboard the NSF/NCAR C-130 during the VOCALS-REx field experiment of October-November 2008. First we confirm that cloud and rain water scale in distinct manners, indicating that there is a statistically and potentially physically significant difference in the spatial structure of the two fields. Next, we demonstrate that the covariance is a strong function of spatial scale, which implies important caveats regarding the ability of limited-area models with domains smaller than a few tens of kilometers across to accurately reproduce the spatial organization of precipitation. Finally, we present preliminary work on the development of a scale-aware parameterization of cloud-rain water subgrid covariability based in multifractal analysis intended for application in large-scale model microphysics schemes.
Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model
NASA Astrophysics Data System (ADS)
Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.
2012-12-01
Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.
NASA Astrophysics Data System (ADS)
Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao
2017-03-01
In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.
NASA Astrophysics Data System (ADS)
Tan, Z.; Schneider, T.; Teixeira, J.; Lam, R.; Pressel, K. G.
2014-12-01
Sub-grid scale (SGS) closures in current climate models are usually decomposed into several largely independent parameterization schemes for different cloud and convective processes, such as boundary layer turbulence, shallow convection, and deep convection. These separate parameterizations usually do not converge as the resolution is increased or as physical limits are taken. This makes it difficult to represent the interactions and smooth transition among different cloud and convective regimes. Here we present an eddy-diffusivity mass-flux (EDMF) closure that represents all sub-grid scale turbulent, convective, and cloud processes in a unified parameterization scheme. The buoyant updrafts and precipitative downdrafts are parameterized with a prognostic multiple-plume mass-flux (MF) scheme. The prognostic term for the mass flux is kept so that the life cycles of convective plumes are better represented. The interaction between updrafts and downdrafts are parameterized with the buoyancy-sorting model. The turbulent mixing outside plumes is represented by eddy diffusion, in which eddy diffusivity (ED) is determined from a turbulent kinetic energy (TKE) calculated from a TKE balance that couples the environment with updrafts and downdrafts. Similarly, tracer variances are decomposed consistently between updrafts, downdrafts and the environment. The closure is internally coupled with a probabilistic cloud scheme and a simple precipitation scheme. We have also developed a relatively simple two-stream radiative scheme that includes the longwave (LW) and shortwave (SW) effects of clouds, and the LW effect of water vapor. We have tested this closure in a single-column model for various regimes spanning stratocumulus, shallow cumulus, and deep convection. The model is also run towards statistical equilibrium with climatologically relevant large-scale forcings. These model tests are validated against large-eddy simulation (LES) with the same forcings. The comparison of results verifies the capacity of this closure to realistically represent different cloud and convective processes. Implementation of the closure in an idealized GCM allows us to study cloud feedbacks to climate change and to study the interactions between clouds, convections, and the large-scale circulation.
NASA Astrophysics Data System (ADS)
Nogueira, M.; Barros, A. P.; Miranda, P. M.
2012-04-01
Atmospheric fields can be extremely variable over wide ranges of spatial scales, with a scale ratio of 109-1010 between largest (planetary) and smallest (viscous dissipation) scale. Furthermore atmospheric fields with strong variability over wide ranges in scale most likely should not be artificially split apart into large and small scales, as in reality there is no scale separation between resolved and unresolved motions. Usually the effects of the unresolved scales are modeled by a deterministic bulk formula representing an ensemble of incoherent subgrid processes on the resolved flow. This is a pragmatic approach to the problem and not the complete solution to it. These models are expected to underrepresent the small-scale spatial variability of both dynamical and scalar fields due to implicit and explicit numerical diffusion as well as physically based subgrid scale turbulent mixing, resulting in smoother and less intermittent fields as compared to observations. Thus, a fundamental change in the way we formulate our models is required. Stochastic approaches equipped with a possible realization of subgrid processes and potentially coupled to the resolved scales over the range of significant scale interactions range provide one alternative to address the problem. Stochastic multifractal models based on the cascade phenomenology of the atmosphere and its governing equations in particular are the focus of this research. Previous results have shown that rain and cloud fields resulting from both idealized and realistic numerical simulations display multifractal behavior in the resolved scales. This result is observed even in the absence of scaling in the initial conditions or terrain forcing, suggesting that multiscaling is a general property of the nonlinear solutions of the Navier-Stokes equations governing atmospheric dynamics. Our results also show that the corresponding multiscaling parameters for rain and cloud fields exhibit complex nonlinear behavior depending on large scale parameters such as terrain forcing and mean atmospheric conditions at each location, particularly mean wind speed and moist stability. A particularly robust behavior found is the transition of the multiscaling parameters between stable and unstable cases, which has a clear physical correspondence to the transition from stratiform to organized (banded) convective regime. Thus multifractal diagnostics of moist processes are fundamentally transient and should provide a physically robust basis for the downscaling and sub-grid scale parameterizations of moist processes. Here, we investigate the possibility of using a simplified computationally efficient multifractal downscaling methodology based on turbulent cascades to produce statistically consistent fields at scales higher than the ones resolved by the model. Specifically, we are interested in producing rainfall and cloud fields at spatial resolutions necessary for effective flash flood and earth flows forecasting. The results are examined by comparing downscaled field against observations, and tendency error budgets are used to diagnose the evolution of transient errors in the numerical model prediction which can be attributed to aliasing.
Validation of the RegCM4-Subgrid module for the high resolution climate simulation over Korea
NASA Astrophysics Data System (ADS)
Lee, C.; Im, E.; Chang, K.; Choi, Y.
2010-12-01
Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and the low and high rainfall extremes can influence the water balance of river basin, with several consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, especially for water resources. As an attempt to accurately assess the impact of climate change over Korea, we developed the dynamical downscaling system using the RegCM4 with a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS). The Sub-BATS system is composed of 20 km coarse-grid cell and 4 km sub-grid cell. Before a full climate change simulation is carried out, we performed the simulation spanning the 19-year periods (1989-2007) with the lateral boundary fields obtained from the ERA-Interim reanalysis. The Korean peninsula is characterized by narrow mountain systems surrounded by ocean, and covered by a relatively dense observational network (approximate 400 stations), which provides an excellent dataset to validate a finescale downscaled results over the region. The evaluation of simulated surface variables (e.g. temperature, precipitation, snow, runoff) shows the usefulness of the RegCM4-Subgrid module as a tool to produce fine scale climate information of surface processes for coupling with hydrological model over the Korean peninsula Acknowledgements This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MEST) (No. 2009-0085533), and by the "Advanced research on industrial meteorology" and " Development of meteorological resources for green growth." of National Institute of Meteorological Research (NIMR), funded by the Korea Meteorological Administration(KMA).
NASA Technical Reports Server (NTRS)
Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.
The general situation, (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing gridbased air quality modeling results with observations. Typically, grid models ignore or parameterize processes ...
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; Höft, J.; ...
2014-06-11
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Höft, J.
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more » The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Hoft, Jan
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. Themore » same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds
NASA Astrophysics Data System (ADS)
Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail
2011-01-01
Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling multispecies processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense. Existing lower and upper bounds on linear correlation coefficients are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are populated here using a "cSigma" parameterization that we introduce based on the aforementioned bounds on correlations. The method has three advantages: (1) the computational expense is tolerable; (2) the correlations are, by construction, guaranteed to be consistent with each other; and (3) the methodology is fairly general and hence may be applicable to other problems. The method is tested noninteractively using simulations of three Arctic mixed-phase cloud cases from two field experiments: the Indirect and Semi-Direct Aerosol Campaign and the Mixed-Phase Arctic Cloud Experiment. Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.
Recursive renormalization group theory based subgrid modeling
NASA Technical Reports Server (NTRS)
Zhou, YE
1991-01-01
Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Vincent
2016-11-25
The Multiscale Modeling Framework (MMF) embeds a cloud-resolving model in each grid column of a General Circulation Model (GCM). A MMF model does not need to use a deep convective parameterization, and thereby dispenses with the uncertainties in such parameterizations. However, MMF models grossly under-resolve shallow boundary-layer clouds, and hence those clouds may still benefit from parameterization. In this grant, we successfully created a climate model that embeds a cloud parameterization (“CLUBB”) within a MMF model. This involved interfacing CLUBB’s clouds with microphysics and reducing computational cost. We have evaluated the resulting simulated clouds and precipitation with satellite observations. Themore » chief benefit of the project is to provide a MMF model that has an improved representation of clouds and that provides improved simulations of precipitation.« less
Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System
NASA Astrophysics Data System (ADS)
Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.
2017-12-01
The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Alva, S.; Glenn, I. B.; Krueger, S. K.
2015-12-01
There are two possible approaches for parameterizing sub-grid cloud dynamics in a coarser grid model. The most common is to use a fine scale model to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to parameterize these behaviors cloud state for the coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical mechanics. This approach avoids any requirement to resolve time-dependent processes in order to arrive at a suitable solution. The second approach is widely used elsewhere in the atmospheric sciences: for example the Planck function for blackbody radiation is derived this way, where no mention is made of the complexities of modeling a large ensemble of time-dependent radiation-dipole interactions in order to obtain the "grid-scale" spectrum of thermal emission by the blackbody as a whole. We find that this statistical approach may be equally suitable for modeling convective clouds. Specifically, we make the physical argument that the dissipation of buoyant energy in convective clouds is done through mixing across a cloud perimeter. From thermodynamic reasoning, one might then anticipate that vertically stacked isentropic surfaces are characterized by a power law dlnN/dlnP = -1, where N(P) is the number clouds of perimeter P. In a Giga-LES simulation of convective clouds within a 100 km square domain we find that such a power law does appear to characterize simulated cloud perimeters along isentropes, provided a sufficient cloudy sample. The suggestion is that it may be possible to parameterize certain important aspects of cloud state without appealing to computationally expensive dynamic simulations.
GEWEX Cloud Systems Study (GCSS)
NASA Technical Reports Server (NTRS)
Moncrieff, Mitch
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenes, Athanasios
The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated newmore » parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.« less
Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen
2011-08-16
Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore,more » this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.« less
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1993-01-01
The laminar-turbulent breakdown of a boundary-layer flow along a hollow cylinder at Mach 4.5 is investigated with large-eddy simulation. The subgrid scales are modeled dynamically, where the model coefficients are determined from the local resolved field. The behavior of the dynamic-model coefficients is investigated through both an a priori test with direct numerical simulation data for the same case and a complete large-eddy simulation. Both formulations proposed by Germano et al. and Lilly are used for the determination of unique coefficients for the dynamic model and their results are compared and assessed. The behavior and the energy cascade of the subgrid-scale field structure are investigated at various stages of the transition process. The investigations are able to duplicate a high-speed transition phenomenon observed in experiments and explained only recently by the direct numerical simulations of Pruett and Zang, which is the appearance of 'rope-like' waves. The nonlinear evolution and breakdown of the laminar boundary layer and the structure of the flow field during the transition process were also investigated.
NASA Technical Reports Server (NTRS)
Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.
1993-01-01
New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.
A simple dynamic subgrid-scale model for LES of particle-laden turbulence
NASA Astrophysics Data System (ADS)
Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz
2017-04-01
In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.
Internal wave emission from baroclinic jets: experimental results
NASA Astrophysics Data System (ADS)
Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe
2016-04-01
Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.
NASA Astrophysics Data System (ADS)
Huang, D.; Liu, Y.
2014-12-01
The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The PDFs are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest and thus there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-02-01
Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.
Effect of LES models on the entrainment of a passive scalar in a turbulent planar jet
NASA Astrophysics Data System (ADS)
Chambel Lopes, Diogo; da Silva, Carlos; Reis, Ricardo; Raman, Venkat
2011-11-01
Direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. Specifically the effect of subgrid-scale models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent. It has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. The subgrid scales of motion near the T/NT interface are far from equilibrium and contain an important fraction of the total kinetic energy. Model constants used in several subgrid-scale models such as the Smagorinsky and the gradient models need to be corrected near the jet edge. The procedure used to obtain the dynamic Smagorinsky constant is not able to cope with the intermittent nature of this region.
New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations
NASA Technical Reports Server (NTRS)
Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.
2012-01-01
In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.
NASA Astrophysics Data System (ADS)
Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues; Madec, Gurvan
2015-02-01
The subtle interplay between sea ice formation and ocean vertical mixing is hardly represented in current large-scale models designed for climate studies. Convective mixing caused by the brine release when ice forms is likely to prevail in leads and thin ice areas, while it occurs in models at the much larger horizontal grid cell scale. Subgrid-scale parameterizations have hence been developed to mimic the effects of small-scale convection using a vertical distribution of the salt rejected by sea ice within the mixed layer, instead of releasing it in the top ocean layer. Such a brine rejection parameterization is included in the global ocean-sea ice model NEMO-LIM3. Impacts on the simulated mixed layers and ocean temperature and salinity profiles, along with feedbacks on the sea ice cover, are then investigated in both hemispheres. The changes are overall relatively weak, except for mixed layer depths, which are in general excessively reduced compared to observation-based estimates. While potential model biases prevent a definitive attribution of this vertical mixing underestimation to the brine rejection parameterization, it is unlikely that the latter can be applied in all conditions. In that case, salt rejections do not play any role in mixed layer deepening, which is unrealistic. Applying the parameterization only for low ice-ocean relative velocities improves model results, but introduces additional parameters that are not well constrained by observations.
NASA Astrophysics Data System (ADS)
Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues; Madec, Gurvan
2015-04-01
The subtle interplay between sea ice formation and ocean vertical mixing is hardly represented in current large-scale models designed for climate studies. Convective mixing caused by the brine release when ice forms is likely to prevail in leads and thin ice areas, while it occurs in models at the much larger horizontal grid cell scale. Subgrid-scale parameterizations have hence been developed to mimic the effects of small-scale convection using a vertical distribution of the salt rejected by sea ice within the mixed layer, instead of releasing it in the top ocean layer. Such a brine rejection parameterization is included in the global ocean--sea ice model NEMO-LIM3. Impacts on the simulated mixed layers and ocean temperature and salinity profiles, along with feedbacks on the sea ice cover, are then investigated in both hemispheres. The changes are overall relatively weak, except for mixed layer depths, which are in general excessively reduced compared to observation-based estimates. While potential model biases prevent a definitive attribution of this vertical mixing underestimation to the brine rejection parameterization, it is unlikely that the latter can be applied in all conditions. In that case, salt rejections do not play any role in mixed layer deepening, which is unrealistic. Applying the parameterization only for low ice--ocean relative velocities improves model results, but introduces additional parameters that are not well constrained by observations.
Atmospheric-like rotating annulus experiment: gravity wave emission from baroclinic jets
NASA Astrophysics Data System (ADS)
Rodda, Costanza; Borcia, Ion; Harlander, Uwe
2017-04-01
Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating- annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modelling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Joint laboratory experiment and numerical simulation have been conducted. The comparison between the data obtained from the experiment and the numerical simulations shows a very good agreement for the large scale baroclinic wave regime. Moreover, in both cases a clear signal of horizontal divergence, embedded in the baroclinic wave front, appears suggesting IGWs emission.
NASA Astrophysics Data System (ADS)
Takemi, T.; Yasui, M.
2005-12-01
Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.
NASA Astrophysics Data System (ADS)
Sandbach, S. D.; Lane, S. N.; Hardy, R. J.; Amsler, M. L.; Ashworth, P. J.; Best, J. L.; Nicholas, A. P.; Orfeo, O.; Parsons, D. R.; Reesink, A. J. H.; Szupiany, R. N.
2012-12-01
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh- or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These "subgrid" elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to "unmeasured" topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers.
NASA Technical Reports Server (NTRS)
Avissar, Roni; Chen, Fei
1993-01-01
Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.
NASA Astrophysics Data System (ADS)
Martinez, Luis; Meneveau, Charles
2014-11-01
Large Eddy Simulations (LES) of the flow past a single wind turbine with uniform inflow have been performed. A goal of the simulations is to compare two turbulence subgrid-scale models and their effects in predicting the initial breakdown, transition and evolution of the wake behind the turbine. Prior works have often observed negligible sensitivities to subgrid-scale models. The flow is modeled using an in-house LES with pseudo-spectral discretization in horizontal planes and centered finite differencing in the vertical direction. Turbines are represented using the actuator line model. We compare the standard constant-coefficient Smagorinsky subgrid-scale model with the Lagrangian Scale Dependent Dynamic model (LSDM). The LSDM model predicts faster transition to turbulence in the wake, whereas the standard Smagorinsky model predicts significantly delayed transition. The specified Smagorinsky coefficient is larger than the dynamic one on average, increasing diffusion thus delaying transition. A second goal is to compare the resulting near-blade properties such as local aerodynamic forces from the LES with Blade Element Momentum Theory. Results will also be compared with those of the SOWFA package, the wind energy CFD framework from NREL. This work is supported by NSF (IGERT and IIA-1243482) and computations use XSEDE resources, and has benefitted from interactions with Dr. M. Churchfield of NREL.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)
2001-01-01
Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
NASA Astrophysics Data System (ADS)
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, W.
High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surfacemore » contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.« less
Evapotranspiration and cloud variability at regional sub-grid scales
NASA Astrophysics Data System (ADS)
Vila-Guerau de Arellano, Jordi; Sikma, Martin; Pedruzo-Bagazgoitia, Xabier; van Heerwaarden, Chiel; Hartogensis, Oscar; Ouwersloot, Huug
2017-04-01
In regional and global models uncertainties arise due to our incomplete understanding of the coupling between biochemical and physical processes. Representing their impact depends on our ability to calculate these processes using physically sound parameterizations, since they are unresolved at scales smaller than the grid size. More specifically over land, the coupling between evapotranspiration, turbulent transport of heat and moisture, and clouds lacks a combined representation to take these sub-grid scales interactions into account. Our approach is based on understanding how radiation, surface exchange, turbulent transport and moist convection are interacting from the leaf- to the cloud scale. We therefore place special emphasis on plant stomatal aperture as the main regulator of CO2-assimilation and water transpiration, a key source of moisture source to the atmosphere. Plant functionality is critically modulated by interactions with atmospheric conditions occurring at very short spatiotemporal scales such as cloud radiation perturbations or water vapour turbulent fluctuations. By explicitly resolving these processes, the LES (large-eddy simulation) technique is enabling us to characterize and better understand the interactions between canopies and the local atmosphere. This includes the adaption time of vegetation to rapid changes in atmospheric conditions driven by turbulence or the presence of cumulus clouds. Our LES experiments are based on explicitly coupling the diurnal atmospheric dynamics to a plant physiology model. Our general hypothesis is that different partitioning of direct and diffuse radiation leads to different responses of the vegetation. As a result there are changes in the water use efficiencies and shifts in the partitioning of sensible and latent heat fluxes under the presence of clouds. Our presentation is as follows. First, we discuss the ability of LES to reproduce the surface energy balance including photosynthesis and CO2 soil respiration coupled to the dynamics of a convective boundary layer. LES results are compared with a complete set of surface and upper-air meteorological and carbon-dioxide observations gathered during a representative day at the 213-meter meteorological tall tower at Cabauw. Second, we perform systematic numerical experiments under a wide range of background wind conditions and stomatal aperture response time. Our analysis unravel how thin clouds, characterized by lower values of the cloud optical depth, have a different impact on evapotranspiration compared to thick clouds due to differences in the partitioning between direct and diffuse radiation at canopy level. Related to this detailed simulation, we discuss how new instrumental techniques, e.g. scintillometery, enable us to obtain new observational insight of the coupling between clouds and vegetation. We will close the presentation with open questions regarding the need to include parameterizations for these interactions at short spatiotemporal scales in regional or climate models.
NASA Astrophysics Data System (ADS)
Shastry, A. R.; Durand, M. T.; Fernandez, A.; Phang, S. C.; Hamilton, I.; Laborde, S.; Mark, B. G.; Moritz, M.; Neal, J. C.
2017-12-01
The Logone floodplain in northern Cameroon, also known as Yaayre, is an excellent example of coupled human-natural systems because of strong couplings between social, ecological and hydrologic systems. Overbank flow from the Logone River inundates the floodplain ( 8000 km2) annually and the flood is essential for fish populations and the fishers that depend on them for their livelihood. However, a recent trend of construction of fishing canals threatens to change flood dynamics like duration and timing of onset and may reduce fish productivity. Fishers dig canals during dry season, which are used to catch fish by collecting and channeling water during the flood recession. By connecting the floodplain to the river, these fishing canals act an extension of the river drainage network. The goal of this study is to characterize the relationship between the observed exponential increase in numbers of fishing canals and flood dynamics. We modelled the Logone floodplain as a two-dimensional hydrodynamic model with sub-grid parameterizations of channels using LISFLOOD-FP. We use a simplified version of the hydraulic system at a grid-cell size of 1-km, upscaled using a new high accuracy map of global terrain elevations from Shuttle Radar Topography Mission (SRTM). Using data from a field-collected survey performed in 2014, 1120 fishing canal were collated and parameterized as 111 sub-grid channels and the fishnet structure was represented as a combination of weir and mesh screens. 49 mapped floodplain depressions were also represented as sub-grid channels. In situ discharge observations available at Katoa between 2001 and 2007 were used as input for the model. Preliminary results show that presence of canals resulted in a 24% quicker recession of water in the natural depressions showing increasing canal numbers lead to quicker flood recession. We also investigate the rate of effect increasing number of fishing canals has on flood recession by simulating varying numbers of canals. This model will be integrated within a larger modelling effort to quantify the floodplain's hydraulic, biological and human couplings. This larger integrated model will link inputs and outputs across three different models (flood, fish and fisher) for a holistic insight into the drivers and dynamics of this coupled human and natural system.
Impact of Physics Parameterization Ordering in a Global Atmosphere Model
Donahue, Aaron S.; Caldwell, Peter M.
2018-02-02
Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less
Impact of Physics Parameterization Ordering in a Global Atmosphere Model
NASA Astrophysics Data System (ADS)
Donahue, Aaron S.; Caldwell, Peter M.
2018-02-01
Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effect of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.
Impact of Physics Parameterization Ordering in a Global Atmosphere Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, Aaron S.; Caldwell, Peter M.
Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.
NASA Astrophysics Data System (ADS)
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.
2017-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF demonstrated that CF is improved if SHOC is provided with correct variances of total water and MSE. Consequently, SHOC was modified to include two new prognostic equations for variances of total water and MSE, and coupled with the Chikira-Sugiyama parameterization of deep convection to include effects of detrainment on the prognostic variances.
Toward Simplification of Dynamic Subgrid-Scale Models
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
We examine the relationship between the filter and the subgrid-scale (SGS) model for large-eddy simulations, in general, and for those with dynamic SGS models, in particular. From a review of the literature, it would appear that many practitioners of LES consider the link between the filter and the model more or less as a formality of little practical effect. In contrast, we will show that the filter and the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first- or second-order, and that the Smagorinsky model is inconsistent with spectral filters. Moreover, the Germano identity is shown to be both problematic and unnecessary for the development of dynamic SGS models. Its use obscures the following fundamental realization: For a suitably chosen filter, the computible resolved turbulent stresses, property scaled, closely approximate the SGS stresses.
NASA Astrophysics Data System (ADS)
Hailegeorgis, Teklu T.; Alfredsen, Knut; Abdella, Yisak S.; Kolberg, Sjur
2015-03-01
Identification of proper parameterizations of spatial heterogeneity is required for precipitation-runoff models. However, relevant studies with a specific aim at hourly runoff simulation in boreal mountainous catchments are not common. We conducted calibration and evaluation of hourly runoff simulation in a boreal mountainous watershed based on six different parameterizations of the spatial heterogeneity of subsurface storage capacity for a semi-distributed (subcatchments hereafter called elements) and distributed (1 × 1 km2 grid) setup. We evaluated representation of element-to-element, grid-to-grid, and probabilistic subcatchment/subbasin, subelement and subgrid heterogeneities. The parameterization cases satisfactorily reproduced the streamflow hydrographs with Nash-Sutcliffe efficiency values for the calibration and validation periods up to 0.84 and 0.86 respectively, and similarly for the log-transformed streamflow up to 0.85 and 0.90. The parameterizations reproduced the flow duration curves, but predictive reliability in terms of quantile-quantile (Q-Q) plots indicated marked over and under predictions. The simple and parsimonious parameterizations with no subelement or no subgrid heterogeneities provided equivalent simulation performance compared to the more complex cases. The results indicated that (i) identification of parameterizations require measurements from denser precipitation stations than what is required for acceptable calibration of the precipitation-streamflow relationships, (ii) there is challenges in the identification of parameterizations based on only calibration to catchment integrated streamflow observations and (iii) a potential preference for the simple and parsimonious parameterizations for operational forecast contingent on their equivalent simulation performance for the available input data. In addition, the effects of non-identifiability of parameters (interactions and equifinality) can contribute to the non-identifiability of the parameterizations.
Ida, Masato; Taniguchi, Nobuyuki
2003-09-01
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
NASA Technical Reports Server (NTRS)
Stauffer, David R.; Seaman, Nelson L.; Munoz, Ricardo C.
2000-01-01
The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins using a 3-D mesoscale model, the PSUINCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. It was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having a detailed land-surface parameterization, an advanced boundary-layer parameterization, and a more complete shallow convection parameterization than are available in most current models. The methodology was based on the application in the MM5 of new or recently improved parameterizations covering these three physical processes. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the Southern Great Plains (SGP): (1) the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) described by Wetzel and Boone; (2) the 1.5-order turbulent kinetic energy (TKE)-predicting scheme of Shafran et al.; and (3) the hybrid-closure sub-grid shallow convection parameterization of Deng. Each of these schemes has been tested extensively through this study and the latter two have been improved significantly to extend their capabilities.
A satellite simulator for TRMM PR applied to climate model simulations
NASA Astrophysics Data System (ADS)
Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.
2017-12-01
Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.
NASA Astrophysics Data System (ADS)
Dipankar, A.; Stevens, B. B.; Zängl, G.; Pondkule, M.; Brdar, S.
2014-12-01
The effect of clouds on large scale dynamics is represented in climate models through parameterization of various processes, of which the parameterization of shallow and deep convection are particularly uncertain. The atmospheric boundary layer, which controls the coupling to the surface, and which defines the scale of shallow convection, is typically 1 km in depth. Thus, simulations on a O(100 m) grid largely obviate the need for such parameterizations. By crossing this threshold of O(100m) grid resolution one can begin thinking of large-eddy simulation (LES), wherein the sub-grid scale parameterization have a sounder theoretical foundation. Substantial initiatives have been taken internationally to approach this threshold. For example, Miura et al., 2007 and Mirakawa et al., 2014 approach this threshold by doing global simulations, with (gradually) decreasing grid resolution, to understand the effect of cloud-resolving scales on the general circulation. Our strategy, on the other hand, is to take a big leap forward by fixing the resolution at O(100 m), and gradually increasing the domain size. We believe that breaking this threshold would greatly help in improving the parameterization schemes and reducing the uncertainty in climate predictions. To take this forward, the German Federal Ministry of Education and Research has initiated a project on HD(CP)2 that aims for a limited area LES at resolution O(100 m) using the new unified modeling system ICON (Zängl et al., 2014). In the talk, results from the HD(CP)2 evaluation simulation will be shown that targets high resolution simulation over a small domain around Jülich, Germany. This site is chosen because high resolution HD(CP)2 Observational Prototype Experiment took place in this region from 1.04.2013 to 31.05.2013, in order to critically evaluate the model. Nesting capabilities of ICON is used to gradually increase the resolution from the outermost domain, which is forced from the COSMO-DE data, to the innermost and finest resolution domain centered around Jülich (see Fig. 1 top panel). Furthermore, detailed analyses of the simulation results against the observation data will be presented. A reprsentative figure showing time series of column integrated water vapor (IWV) for both model and observation on 24.04.2013 is shown in bottom panel of Fig. 1.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Cheng, Anning
2007-01-01
The effects of subgrid-scale condensation and transport become more important as the grid spacings increase from those typically used in large-eddy simulation (LES) to those typically used in cloud-resolving models (CRMs). Incorporation of these effects can be achieved by a joint probability density function approach that utilizes higher-order moments of thermodynamic and dynamic variables. This study examines how well shallow cumulus and stratocumulus clouds are simulated by two versions of a CRM that is implemented with low-order and third-order turbulence closures (LOC and TOC) when a typical CRM horizontal resolution is used and what roles the subgrid-scale and resolved-scale processes play as the horizontal grid spacing of the CRM becomes finer. Cumulus clouds were mostly produced through subgrid-scale transport processes while stratocumulus clouds were produced through both subgrid-scale and resolved-scale processes in the TOC version of the CRM when a typical CRM grid spacing is used. The LOC version of the CRM relied upon resolved-scale circulations to produce both cumulus and stratocumulus clouds, due to small subgrid-scale transports. The mean profiles of thermodynamic variables, cloud fraction and liquid water content exhibit significant differences between the two versions of the CRM, with the TOC results agreeing better with the LES than the LOC results. The characteristics, temporal evolution and mean profiles of shallow cumulus and stratocumulus clouds are weakly dependent upon the horizontal grid spacing used in the TOC CRM. However, the ratio of the subgrid-scale to resolved-scale fluxes becomes smaller as the horizontal grid spacing decreases. The subcloud-layer fluxes are mostly due to the resolved scales when a grid spacing less than or equal to 1 km is used. The overall results of the TOC simulations suggest that a 1-km grid spacing is a good choice for CRM simulation of shallow cumulus and stratocumulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2012-01-01
Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.
NASA Astrophysics Data System (ADS)
Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.
2013-12-01
Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to alternative parameterizations of hillslope geometry, macroporosity, and surface runoff / inundation, and to the choice of global topographic dataset and groundwater hydraulic conductivity distribution. Simulated groundwater dynamics among hillslopes tend to cluster into three regimes of wet and well-drained, wet but poorly-drained, and dry. In the base model configuration, near-surface gridcell-mean water tables exist in an excessively large area compared to observations, including large areas of the Eastern U.S. and Northern Europe. However, in better-drained areas, the decrease in water table depth along the hillslope gradient allows for realistic increases in ecosystem water availability and soil carbon downslope. The inclusion of subgrid hydrology can increase the equilibrium 0-2 m global soil carbon stock by a large factor, due to the nonlinear effect of anoxia. We conclude that this innovative modeling framework allows for the inclusion of hillslope-scale processes and the potential for wetland dynamics in an ESM without need for a high-resolution 3-dimensional groundwater model. Future work will include investigating the potential for future changes in land carbon fluxes caused by the effects of changing hydrological regime, particularly in peatland-rich areas poorly treated by current ESMs.
An Overview of Numerical Weather Prediction on Various Scales
NASA Astrophysics Data System (ADS)
Bao, J.-W.
2009-04-01
The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.
Subgrid Scale Modeling in Solar Convection Simulations using the ASH Code
NASA Technical Reports Server (NTRS)
Young, Y.-N.; Miesch, M.; Mansour, N. N.
2003-01-01
The turbulent solar convection zone has remained one of the most challenging and important subjects in physics. Understanding the complex dynamics in the solar con- vection zone is crucial for gaining insight into the solar dynamo problem. Many solar observatories have generated revealing data with great details of large scale motions in the solar convection zone. For example, a strong di erential rotation is observed: the angular rotation is observed to be faster at the equator than near the poles not only near the solar surface, but also deep in the convection zone. On the other hand, due to the wide range of dynamical scales of turbulence in the solar convection zone, both theory and simulation have limited success. Thus, cutting edge solar models and numerical simulations of the solar convection zone have focused more narrowly on a few key features of the solar convection zone, such as the time-averaged di erential rotation. For example, Brun & Toomre (2002) report computational finding of differential rotation in an anelastic model for solar convection. A critical shortcoming in this model is that the viscous dissipation is based on application of mixing length theory to stellar dynamics with some ad hoc parameter tuning. The goal of our work is to implement the subgrid scale model developed at CTR into the solar simulation code and examine how the differential rotation will be a affected as a result. Specifically, we implement a Smagorinsky-Lilly subgrid scale model into the ASH (anelastic spherical harmonic) code developed over the years by various authors. This paper is organized as follows. In x2 we briefly formulate the anelastic system that describes the solar convection. In x3 we formulate the Smagorinsky-Lilly subgrid scale model for unstably stratifed convection. We then present some preliminary results in x4, where we also provide some conclusions and future directions.
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
Significant uncertainty in global scale hydrological modeling from precipitation data errors
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.
2015-10-01
In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.
NASA Astrophysics Data System (ADS)
Mazoyer, M.; Roehrig, R.; Nuissier, O.; Duffourg, F.; Somot, S.
2017-12-01
Most regional climate models (RCSMs) face difficulties in representing a reasonable pre-cipitation probability density function in the Mediterranean area and especially over land.Small amounts of rain are too frequent, preventing any realistic representation of droughts orheat waves, while the intensity of heavy precipitating events is underestimated and not welllocated by most state-of-the-art RCSMs using parameterized convection (resolution from10 to 50 km). Convective parameterization is a key point for the representation of suchevents and recently, the new physics implemented in the CNRM-RCSM has been shown toremarkably improve it, even at a 50-km scale.The present study seeks to further analyse the representation of heavy precipitating eventsby this new version of CNRM-RCSM using a process oriented approach. We focus on oneparticular event in the south-east of France, over the Cévennes. Two hindcast experimentswith the CNRM-RCSM (12 and 50 km) are performed and compared with a simulationbased on the convection-permitting model Meso-NH, which makes use of a very similarsetup as CNRM-RCSM hindcasts. The role of small-scale features of the regional topogra-phy and its interaction with the impinging large-scale flow in triggering the convective eventare investigated. This study provides guidance in the ongoing implementation and use of aspecific parameterization dedicated to account for subgrid-scale orography in the triggeringand closure conditions of the CNRM-RCSM convection scheme.
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.
Chumakov, Sergei G
2008-09-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, R.B.
1993-08-27
This document is a progress report to the USDOE Atmospheric Radiation and Measurement Program (ARM). The overall project goal is to relate subgrid-cumulus-cloud formation, coverage, and population characteristics to statistical properties of surface-layer air, which in turn are modulated by heterogeneous land-usage within GCM-grid-box-size regions. The motivation is to improve the understanding and prediction of climate change by more accurately describing radiative and cloud processes.
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
NASA Astrophysics Data System (ADS)
Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.
2014-12-01
Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.
A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation
NASA Astrophysics Data System (ADS)
Vollant, A.; Balarac, G.; Corre, C.
2016-02-01
Large-eddy simulation (LES) solves only the large scales part of turbulent flows by using a scales separation based on a filtering operation. The solution of the filtered Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor to take into account the effect of scales smaller than the filter size. In this work, a new model is proposed for the SGS stress model. The model formulation is based on a regularization procedure of the gradient model to correct its unstable behavior. The model is developed based on a priori tests to improve the accuracy of the modeling for both structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce enough global SGS dissipation, respectively. LES is then performed for a posteriori validation. This work is an extension to the SGS stress tensor of the regularization procedure proposed by Balarac et al. ["A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations," Phys. Fluids 25(7), 075107 (2013)] to model the SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made available for both the momentum and the scalar equations. The second objective of this work is to compare this new set of DRG models with direct numerical simulations (DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral solver and with the standard set of models based on the dynamic Smagorinsky model. Various flow configurations are considered: decaying homogeneous isotropic turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate the stable behavior provided by the regularization procedure, along with substantial improvement for velocity and scalar statistics predictions.
Structure and covariance of cloud and rain water in marine stratocumulus
NASA Astrophysics Data System (ADS)
Witte, Mikael; Morrison, Hugh; Gettelman, Andrew
2017-04-01
Many state of the art cloud microphysics parameterizations in large-scale models use assumed probability density functions (pdfs) to represent subgrid scale variability of relevant resolved scale variables such as vertical velocity and cloud liquid water content (LWC). Integration over the assumed pdfs of small scale variability results in physically consistent prediction of nonlinear microphysical process rates and obviates the need to apply arbitrary tuning parameters to the calculated rates. In such parameterizations, the covariance of cloud and rain LWC is an important quantity for parameterizing the accretion process by which rain drops grow via collection of cloud droplets. This covariance has been diagnosed by other workers from a variety of observational and model datasets (Boutle et al., 2013; Larson and Griffin, 2013; Lebsock et al., 2013), but there is poor agreement in findings across the studies. Two key assumptions that may explain some of the discrepancies among past studies are 1) LWC (both cloud and rain) distributions are statistically stationary and 2) spatial structure may be neglected. Given the highly intermittent nature of precipitation and the fact that cloud LWC has been found to be poorly represented by stationary pdfs (e.g. Marshak et al., 1997), neither of the aforementioned assumptions are valid. Therefore covariance must be evaluated as a function of spatial scale without the assumption of stationary statistics (i.e. variability cannot be expressed as a fractional standard deviation, which necessitates well-defined first and second moments of the LWC distribution). The present study presents multifractal analyses of both rain and cloud LWC using aircraft data from the VOCALS-REx field campaign to illustrate the importance of spatial structure in microphysical parameterizations and extends the results of Boutle et al. (2013) to provide a parameterization of rain-cloud water covariance as a function of spatial scale without the assumption of statistical stationarity.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.
2013-07-01
Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID)) are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN), outgoing longwave radiation flux (OLR), temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g., lack of soil temperature and moisture nudging), limitations in the physical parameterizations (e.g., shortwave radiation, cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g., snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvements for WS10, WD10, Precip, and some mesoscale events (e.g., strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. The WRF/Chem simulations with and without aerosols show that aerosols lead to reduced net shortwave radiation fluxes, 2 m temperature, 10 m wind speed, planetary boundary layer (PBL) height, and precipitation and increase aerosol optical depth, cloud condensation nuclei, cloud optical depth, and cloud droplet number concentrations over most of the domain. These results indicate a need to further improve the model representations of the above parameterizations as well as aerosol-meteorology interactions at all scales.
A Lagrangian dynamic subgrid-scale model turbulence
NASA Technical Reports Server (NTRS)
Meneveau, C.; Lund, T. S.; Cabot, W.
1994-01-01
A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.
Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation
Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton
2016-01-01
Abstract A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model‐dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model‐dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low‐level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales. PMID:27668040
Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation
NASA Astrophysics Data System (ADS)
Sandu, Irina; Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton
2016-03-01
A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales.
NASA Astrophysics Data System (ADS)
Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.
2014-12-01
Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.
Statistical thermodynamics and the size distributions of tropical convective clouds.
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.
2017-12-01
Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel
2017-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.
NASA Astrophysics Data System (ADS)
Stevens, R. G.; Lonsdale, C. L.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.; Pierce, J. R.
2012-04-01
New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometres and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this presentation, we focus on sub-grid sulphate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. Based on the results of the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM) with online TwO Moment Aerosol Sectional (TOMAS) microphysics, we develop a computationally efficient, but physically based, parameterization that predicts the characteristics of aerosol formed within coal-fired power plant plumes based on parameters commonly available in global and regional-scale models. Given large-scale mean meteorological parameters, emissions from the power plant, mean background condensation sink, and the desired distance from the source, the parameterization will predict the fraction of the emitted SO2 that is oxidized to H2SO4, the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, the median diameter of the newly-formed particles, and the number of newly-formed particles per kilogram SO2 emitted. We perform a sensitivity analysis of these characteristics of the aerosol size distribution to the meteorological parameters, the condensation sink, and the emissions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large preexisting aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. Decreases in NOx emissions without simultaneous decreases in SO2 emissions increase new-particle formation and growth due to increased oxidation of SO2. The parameterization we describe here should allow for more accurate predictions of aerosol size distributions and a greater confidence in the effects of aerosols in climate and health studies.
NASA Astrophysics Data System (ADS)
Alapaty, Kiran; Bullock, O. Russell; Herwehe, Jerold; Spero, Tanya; Nolte, Christopher; Mallard, Megan
2014-05-01
The Regional Climate Modeling Team at the U.S. Environmental Protection Agency has been improving the quality of regional climate fields generated by the Weather Research and Forecasting (WRF) model. Active areas of research include improving core physics within the WRF model and adapting the physics for regional climate applications, improving the representation of inland lakes that are unresolved by the driving fields, evaluating nudging strategies, and devising techniques to demonstrate value added by dynamical downscaling. These research efforts have been conducted using reanalysis data as driving fields, and then their results have been applied to downscale data from global climate models. The goals of this work are to equip environmental managers and policy/decision makers in the U.S. with science, tools, and data to inform decisions related to adapting to and mitigating the potential impacts of climate change on air quality, ecosystems, and human health. Our presentation will focus mainly on one area of the Team's research: Development and testing of a seamless convection parameterization scheme. For the continental U.S., one of the impediments to high-resolution (~3 to 15 km) climate modeling is related to the lack of a seamless convection parameterization that works across many scales. Since many convection schemes are not developed to work at those "gray scales", they often lead to excessive precipitation during warm periods (e.g., summer). The Kain-Fritsch (KF) convection parameterization in the WRF model has been updated such that it can be used seamlessly across spatial scales down to ~1 km grid spacing. First, we introduced subgrid-scale cloud and radiation interactions that had not been previously considered in the KF scheme. Then, a scaling parameter was developed to introduce scale-dependency in the KF scheme for use with various processes. In addition, we developed new formulations for: (1) convective adjustment timescale; (2) entrainment of environmental air; (3) impacts of convective updraft on grid-scale vertical velocity; (4) convective cloud microphysics; (5) stabilizing capacity; (6) elimination of double counting of precipitation; and (7) estimation of updraft mass flux at the lifting condensation level. Some of these scale-dependent formulations make the KF scheme operable at all scales up to about sub-kilometer grid resolution. In this presentation, regional climate simulations using the WRF model will be presented to demonstrate the effects of these changes to the KF scheme. Additionally, we briefly present results obtained from the improved representation of inland lakes, various nudging strategies, and added value of dynamical downscaling of regional climate. Requesting for a plenary talk for the session: "Regional climate modeling, including CORDEX" (session number CL6.4) at the EGU 2014 General Assembly, to be held 27 April - 2 May 2014 in Vienna, Austria.
LES with and without explicit filtering: comparison and assessment of various models
NASA Astrophysics Data System (ADS)
Winckelmans, Gregoire S.; Jeanmart, Herve; Wray, Alan A.; Carati, Daniele
2000-11-01
The proper mathematical formalism for large eddy simulation (LES) of turbulent flows assumes that a regular ``explicit" filter (i.e., a filter with a well-defined second moment, such as the gaussian, the top hat, etc.) is applied to the equations of fluid motion. This filter is then responsible for a ``filtered-scale" stress. Because of the discretization of the filtered equations, using the LES grid, there is also a ``subgrid-scale" stress. The global effective stress is found to be the discretization of a filtered-scale stress plus a subgrid-scale stress. The former can be partially reconstructed from an exact, infinite, series, the first term of which is the ``tensor-diffusivity" model of Leonard and is found, in practice, to be sufficient for modeling. Alternatively, sufficient reconstruction can also be achieved using the ``scale-similarity" model of Bardina. The latter corresponds to loss of information: it cannot be reconstructed; its effect (essentially dissipation) must be modeled using ad hoc modeling strategies (such as the dynamic version of the ``effective viscosity" model of Smagorinsky). Practitionners also often assume LES without explicit filtering: the effective stress is then only a subgrid-scale stress. We here compare the performance of various LES models for both approaches (with and without explicit filtering), and for cases without solid boundaries: (1) decay of isotropic turbulence; (2) decay of aircraft wake vortices in a turbulent atmosphere. One main conclusion is that better subgrid-scale models are still needed, the effective viscosity models being too active at the large scales.
Analysis and modeling of subgrid scalar mixing using numerical data
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.; Zhou, YE
1995-01-01
Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.
NASA Astrophysics Data System (ADS)
Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck
2014-07-01
Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution. Indeed, the shear-stress near the wall increases during the vortex-ring impingement leading to a less refined mesh in terms of wall units, y+. This loss of resolution induces a poor damping of the dynamic constant, which is no longer able to adjust itself to ensure the expected y3-behavior near the wall. It is shown that the dynamic constant is never small enough to properly balance the large values of the squared magnitude of the strain-rate tensor, 2SijSij. The experimental database is made available to the community upon request to the authors.
Recent Upgrades to the NASA Ames Mars General Circulation Model: Applications to Mars' Water Cycle
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Wilson, R. J.; Schaeffer, J.
2008-09-01
We report on recent improvements to the NASA Ames Mars general circulation model (GCM), a robust 3D climate-modeling tool that is state-of-the-art in terms of its physics parameterizations and subgrid-scale processes, and which can be applied to investigate physical and dynamical processes of the present (and past) Mars climate system. The most recent version (gcm2.1, v.24) of the Ames Mars GCM utilizes a more generalized radiation code (based on a two-stream approximation with correlated k's); an updated transport scheme (van Leer formulation); a cloud microphysics scheme that assumes a log-normal particle size distribution whose first two moments are treated as atmospheric tracers, and which includes the nucleation, growth and sedimentation of ice crystals. Atmospheric aerosols (e.g., dust and water-ice) can either be radiatively active or inactive. We apply this version of the Ames GCM to investigate key aspects of the present water cycle on Mars. Atmospheric dust is partially interactive in our simulations; namely, the radiation code "sees" a prescribed distribution that follows the MGS thermal emission spectrometer (TES) year-one measurements with a self-consistent vertical depth scale that varies with season. The cloud microphysics code interacts with a transported dust tracer column whose surface source is adjusted to maintain the TES distribution. The model is run from an initially dry state with a better representation of the north residual cap (NRC) which accounts for both surface-ice and bare-soil components. A seasonally repeatable water cycle is obtained within five Mars years. Our sub-grid scale representation of the NRC provides for a more realistic flux of moisture to the atmosphere and a much drier water cycle consistent with recent spacecraft observations (e.g., Mars Express PFS, corrected MGS/TES) compared to models that assume a spatially uniform and homogeneous north residual polar cap.
A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin
NASA Astrophysics Data System (ADS)
Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.
2016-12-01
Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.
Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B
2006-04-15
Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, X.; Klein, S. A.; Ma, H. -Y.
The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less
Zheng, X.; Klein, S. A.; Ma, H. -Y.; ...
2017-08-24
The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less
A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2017-10-01
At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold the highest positive values of νt; however, the zones of backscatter energy and counter-gradient heat transport are related to the areas of compressed focal vorticity. More arguments have been attained through a priori investigation of the alignment trends imposed by existing parameterizations for the SGS heat flux, tested here inside RBC. It is shown that the parameterizations based linearly on the resolved thermal gradient are invalid in RBC. Alternatively, the tensor-diffusivity approach becomes a crucial choice of modeling the SGS heat flux, in particular, the tensorial diffusivity that includes the SGS stress tensor. This and other crucial scrutinies on a future modeling to the SGS heat flux in RBC are sought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Liang, Xu; Leung, Lai R.
2008-12-05
Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that whenmore » the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.« less
Cloud microphysics modification with an online coupled COSMO-MUSCAT regional model
NASA Astrophysics Data System (ADS)
Sudhakar, D.; Quaas, J.; Wolke, R.; Stoll, J.; Muehlbauer, A. D.; Tegen, I.
2015-12-01
Abstract: The quantification of clouds, aerosols, and aerosol-cloud interactions in models, continues to be a challenge (IPCC, 2013). In this scenario two-moment bulk microphysical scheme is used to understand the aerosol-cloud interactions in the regional model COSMO (Consortium for Small Scale Modeling). The two-moment scheme in COSMO has been especially designed to represent aerosol effects on the microphysics of mixed-phase clouds (Seifert et al., 2006). To improve the model predictability, the radiation scheme has been coupled with two-moment microphysical scheme. Further, the cloud microphysics parameterization has been modified via coupling COSMO with MUSCAT (MultiScale Chemistry Aerosol Transport model, Wolke et al., 2004). In this study, we will be discussing the initial result from the online-coupled COSMO-MUSCAT model system with modified two-moment parameterization scheme along with COSP (CFMIP Observational Simulator Package) satellite simulator. This online coupled model system aims to improve the sub-grid scale process in the regional weather prediction scenario. The constant aerosol concentration used in the Seifert and Beheng, (2006) parameterizations in COSMO model has been replaced by aerosol concentration derived from MUSCAT model. The cloud microphysical process from the modified two-moment scheme is compared with stand-alone COSMO model. To validate the robustness of the model simulation, the coupled model system is integrated with COSP satellite simulator (Muhlbauer et al., 2012). Further, the simulations are compared with MODIS (Moderate Resolution Imaging Spectroradiometer) and ISCCP (International Satellite Cloud Climatology Project) satellite products.
Anisotropy of Observed and Simulated Turbulence in Marine Stratocumulus
NASA Astrophysics Data System (ADS)
Pedersen, J. G.; Ma, Y.-F.; Grabowski, W. W.; Malinowski, S. P.
2018-02-01
Anisotropy of turbulence near the top of the stratocumulus-topped boundary layer (STBL) is studied using large-eddy simulation (LES) and measurements from the POST and DYCOMS-II field campaigns. Focusing on turbulence ˜100 m below the cloud top, we see remarkable similarity between daytime and nocturnal flight data covering different inversion strengths and free-tropospheric conditions. With λ denoting wavelength and zt cloud-top height, we find that turbulence at λ/zt≃0.01 is weakly dominated by horizontal fluctuations, while turbulence at λ/zt>1 becomes strongly dominated by horizontal fluctuations. Between are scales at which vertical fluctuations dominate. Typical-resolution LES of the STBL (based on POST flight 13 and DYCOMS-II flight 1) captures observed characteristics of below-cloud-top turbulence reasonably well. However, using a fixed vertical grid spacing of 5 m, decreasing the horizontal grid spacing and increasing the subgrid-scale mixing length leads to increased dominance of vertical fluctuations, increased entrainment velocity, and decreased liquid water path. Our analysis supports the notion that entrainment parameterizations (e.g., in climate models) could potentially be improved by accounting more accurately for anisotropic deformation of turbulence in the cloud-top region. While LES has the potential to facilitate improved understanding of anisotropic cloud-top turbulence, sensitivity to grid spacing, grid-box aspect ratio, and subgrid-scale model needs to be addressed.
Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows
NASA Technical Reports Server (NTRS)
Blaisdell, Gregory A.
1996-01-01
The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.
Simulation of the planetary boundary layer with the UCLA general circulation model
NASA Technical Reports Server (NTRS)
Suarez, M. J.; Arakawa, A.; Randall, D. A.
1981-01-01
A planetary boundary layer (PBL) model is presented which employs a mixed layer entrainment formulation to describe the mass exchange between the mixed layer with the upper, laminar atmosphere. A modified coordinate system couples the mixed layer model with large scale and sub-grid scale processes of a general circulation model. The vertical coordinate is configured as a sigma coordinate with the lower boundary, the top of the PBL, and the prescribed pressure level near the tropopause expressed as coordinate surfaces. The entrainment mass flux is parameterized by assuming the dissipation rate of turbulent kinetic energy to be proportional to the positive part of the generation by convection or mechanical production. The results of a simulation of July are presented for the entire globe.
Evolution of aerosol downwind of a major highway
NASA Astrophysics Data System (ADS)
Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.
2010-12-01
Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of turbulent dispersion as a function of distance from the highway, and a traffic camera was used to determine traffic density, composition and speed. These measurements differ from previous studies in that turbulence is measured under realistic conditions and hence the relationship of the aerosol evolution to atmospheric stability and mixing will also be quantified. Preliminary results suggest that aerosol size and composition does change on the sub-grid scale, and sub-grid scale parameterizations of turbulence and particle chemistry should be included in models to accurately represent these effects.
NASA Astrophysics Data System (ADS)
Firl, G. J.; Randall, D. A.
2013-12-01
The so-called "assumed probability density function (PDF)" approach to subgrid-scale (SGS) parameterization has shown to be a promising method for more accurately representing boundary layer cloudiness under a wide range of conditions. A new parameterization has been developed, named the Two-and-a-Half ORder closure (THOR), that combines this approach with a higher-order turbulence closure. THOR predicts the time evolution of the turbulence kinetic energy components, the variance of ice-liquid water potential temperature (θil) and total non-precipitating water mixing ratio (qt) and the covariance between the two, and the vertical fluxes of horizontal momentum, θil, and qt. Ten corresponding third-order moments in addition to the skewnesses of θil and qt are calculated using diagnostic functions assuming negligible time tendencies. The statistical moments are used to define a trivariate double Gaussian PDF among vertical velocity, θil, and qt. The first three statistical moments of each variable are used to estimate the two Gaussian plume means, variances, and weights. Unlike previous similar models, plume variances are not assumed to be equal or zero. Instead, they are parameterized using the idea that the less dominant Gaussian plume (typically representing the updraft-containing portion of a grid cell) has greater variance than the dominant plume (typically representing the "environmental" or slowly subsiding portion of a grid cell). Correlations among the three variables are calculated using the appropriate covariance moments, and both plume correlations are assumed to be equal. The diagnosed PDF in each grid cell is used to calculate SGS condensation, SGS fluxes of cloud water species, SGS buoyancy terms, and to inform other physical parameterizations about SGS variability. SGS condensation is extended from previous similar models to include condensation over both liquid and ice substrates, dependent on the grid cell temperature. Implementations have been included in THOR to drive existing microphysical and radiation parameterizations with samples drawn from the trivariate PDF. THOR has been tested in a single-column model framework using standardized test cases spanning a range of large-scale conditions conducive to both shallow cumulus and stratocumulus clouds and the transition between the two states. The results were compared to published LES intercomparison results using the same cases, and the gross characteristics of both cloudiness and boundary layer turbulence produced by THOR were within the range of results from the respective LES ensembles. In addition, THOR was used in a single-column model framework to study low cloud feedbacks in the northeastern Pacific Ocean. Using initialization and forcings developed as part of the CGILS project, THOR was run at 8 points along a cross-section from the trade-wind cumulus region east of Hawaii to the coastal stratocumulus region off the coast of California for both the control climate and a climate perturbed by +2K SST. A neutral to weakly positive cloud feedback of 0-4 W m-2 K-1 was simulated along the cross-section. The physical mechanisms responsible appeared to be increased boundary layer entrainment and stratocumulus decoupling leading to reduced maximum cloud cover and liquid water path.
NASA Technical Reports Server (NTRS)
Starr, D. O'C.; Cox, S. K.
1981-01-01
A time-dependent, two-dimensional Eulerian model is presented whose purpose is to obtain more realistic parameterizations of extended high level cloudiness, and the results of a numerical experiment using the model are reported. The model is anelastic and the Bousinesque assumption is invoked. Unresolved subgrid scale processes are parameterized as eddy diffusion processes. Two phases of water are incorporated and equilibrium between them is assumed. The effects of infrared radiative processes are parametrically represented. Two simulations were conducted with identical initial conditions; in one of them, the radiation term was never turned on. The mean values of perturbation potential temperature at each level in the domain are plotted versus height after 15, 30, and 60 minutes of simulated time. The influence of the radiative term is seen to impose a cooling trend, leading to an increased generation of ice water and an increased generation of turbulent kinetic energy in the cloud layer.
NASA Astrophysics Data System (ADS)
Pressel, K. G.; Collins, W.; Desai, A. R.
2011-12-01
Deficiencies in the parameterization of boundary layer clouds in global climate models (GCMs) remains one of the greatest sources of uncertainty in climate change predictions. Many GCM cloud parameterizations, which seek to include some representation of subgrid-scale cloud variability, do so by making assumptions regarding the subgrid-scale spatial probability density function (PDF) of total water content. Properly specifying the form and parameters of the total water PDF is an essential step in the formulation of PDF based cloud parameterizations. In the cloud free boundary layer, the PDF of total water mixing ratio is equivalent to the PDF of water vapor mixing ratio. Understanding the PDF of water vapor mixing ratio in the cloud free atmosphere is a necessary step towards understanding the PDF of water vapor in the cloudy atmosphere. A primary challenge in empirically constraining the PDF of water vapor mixing ratio is a distinct lack of a spatially distributed observational dataset at or near cloud scale. However, at meso-beta (20-50km) and larger scales, there is a wealth of information on the spatial distribution of water vapor contained in the physically retrieved water vapor profiles from the Atmospheric Infrared Sounder onboard NASA`s Aqua satellite. The scaling (scale-invariance) of the observed water vapor field has been suggested as means of using observations at satellite observed (meso-beta) scales to derive information about cloud scale PDFs. However, doing so requires the derivation of a robust climatology of water vapor scaling from in-situ observations across the meso- gamma (2-20km) and meso-beta scales. In this work, we present the results of the scaling of high frequency (10Hz) time series of water vapor mixing ratio as observed from the 447m WLEF tower located near Park Falls, Wisconsin. Observations from a tall tower offer an ideal set of observations with which to investigate scaling at meso-gamma and meso-beta scales requiring only the assumption of Taylor`s Hypothesis to convert observed time scales to spatial scales. Furthermore, the WLEF tower holds an instrument suite offering a diverse set of variables at the 396m, 122m, and 30m levels with which to characterize the state of the boundary layer. Three methods are used to compute scaling exponents for the observed time series; poor man`s variance spectra, first order structure functions, and detrended fluctuation analysis. In each case scaling exponents are computed by linear regression. The results for each method are compared and used to build a climatology of scaling exponents. In particular, the results for June 2007 are presented, and it is shown that the scaling of water vapor time series at the 396m level is characterized by two regimes that are determined by the state of the boundary layer. Finally, the results are compared to, and shown to be roughly consistent with, scaling exponents computed from AIRS observations.
A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction
NASA Astrophysics Data System (ADS)
Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur
2009-07-01
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).
Improvements in sub-grid, microphysics averages using quadrature based approaches
NASA Astrophysics Data System (ADS)
Chowdhary, K.; Debusschere, B.; Larson, V. E.
2013-12-01
Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong
2016-02-01
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. In Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
Zhang, Kai; Zhao, Chun; Wan, Hui; ...
2016-02-12
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Zhao, Chun; Wan, Hui
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less
NASA Astrophysics Data System (ADS)
Wetzel, Peter J.; Boone, Aaron
1995-07-01
This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.
Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost
NASA Astrophysics Data System (ADS)
Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.
2017-11-01
A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.
Explicit Convection over the Western Pacific Warm Pool in the Community Atmospheric Model.
NASA Astrophysics Data System (ADS)
Ziemiaski, Micha Z.; Grabowski, Wojciech W.; Moncrieff, Mitchell W.
2005-05-01
This paper reports on the application of the cloud-resolving convection parameterization (CRCP) to the Community Atmospheric Model (CAM), the atmospheric component of the Community Climate System Model (CCSM). The cornerstone of CRCP is the use of a two-dimensional zonally oriented cloud-system-resolving model to represent processes on mesoscales at the subgrid scale of a climate model. Herein, CRCP is applied at each climate model column over the tropical western Pacific warm pool, in a domain spanning 10°S-10°N, 150°-170°E. Results from the CRCP simulation are compared with CAM in its standard configuration.The CRCP simulation shows significant improvements of the warm pool climate. The cloud condensate distribution is much improved as well as the bias of the tropopause height. More realistic structure of the intertropical convergence zone (ITCZ) during the boreal winter and better representation of the variability of convection are evident. In particular, the diurnal cycle of precipitation has phase and amplitude in good agreement with observations. Also improved is the large-scale organization of the tropical convection, especially superclusters associated with Madden-Julian oscillation (MJO)-like systems. Location and propagation characteristics, as well as lower-tropospheric cyclonic and upper-tropospheric anticyclonic gyres, are more realistic than in the standard CAM. Finally, the simulations support an analytic theory of dynamical coupling between organized convection and equatorial beta-plane vorticity dynamics associated with MJO-like systems.
NASA Astrophysics Data System (ADS)
Berloff, P. S.
2016-12-01
This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.
Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations
NASA Astrophysics Data System (ADS)
Jenkins, T. G.; Smithe, D. N.
2015-02-01
The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereasmore » the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.« less
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Berner, J.; Coleman, D.; Palmer, T.
2015-12-01
Stochastic parameterizations have been used for more than a decade in atmospheric models to represent the variability of unresolved sub-grid processes. They have a beneficial effect on the spread and mean state of medium- and extended-range forecasts (Buizza et al. 1999, Palmer et al. 2009). There is also increasing evidence that stochastic parameterization of unresolved processes could be beneficial for the climate of an atmospheric model through noise enhanced variability, noise-induced drift (Berner et al. 2008), and by enabling the climate simulator to explore other flow regimes (Christensen et al. 2015; Dawson and Palmer 2015). We present results showing the impact of including the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) in coupled runs of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4) with historical forcing. The SPPT scheme accounts for uncertainty in the CAM physical parameterization schemes, including the convection scheme, by perturbing the parametrised temperature, moisture and wind tendencies with a multiplicative noise term. SPPT results in a large improvement in the variability of the CAM4 modeled climate. In particular, SPPT results in a significant improvement to the representation of the El Nino-Southern Oscillation in CAM4, improving the power spectrum, as well as both the inter- and intra-annual variability of tropical pacific sea surface temperatures. References: Berner, J., Doblas-Reyes, F. J., Palmer, T. N., Shutts, G. J., & Weisheimer, A., 2008. Phil. Trans. R. Soc A, 366, 2559-2577 Buizza, R., Miller, M. and Palmer, T. N., 1999. Q.J.R. Meteorol. Soc., 125, 2887-2908. Christensen, H. M., I. M. Moroz & T. N. Palmer, 2015. Clim. Dynam., doi: 10.1007/s00382-014-2239-9 Dawson, A. and T. N. Palmer, 2015. Clim. Dynam., doi: 10.1007/s00382-014-2238-x Palmer, T.N., R. Buizza, F. Doblas-Reyes, et al., 2009, ECMWF technical memorandum 598.
Aeroacoustic prediction of turbulent free shear flows
NASA Astrophysics Data System (ADS)
Bodony, Daniel Joseph
2005-12-01
For many people living in the immediate vicinity of an active airport the noise of jet aircraft flying overhead can be a nuisance, if not worse. Airports, which are held accountable for the noise they produce, and upcoming international noise limits are pressuring the major airframe and jet engine manufacturers to bring quieter aircraft into service. However, component designers need a predictive tool that can estimate the sound generated by a new configuration. Current noise prediction techniques are almost entirely based on previously collected experimental data and are applicable only to evolutionary, not revolutionary, changes in the basic design. Physical models of final candidate designs must still be built and tested before a single design is selected. By focusing on the noise produced in the jet engine exhaust at take-off conditions, the prediction of sound generated by turbulent flows is addressed. The technique of large-eddy simulation is used to calculate directly the radiated sound produced by jets at different operating conditions. Predicted noise spectra agree with measurements for frequencies up to, and slightly beyond, the peak frequency. Higher frequencies are missed, however, due to the limited resolution of the simulations. Two methods of estimating the 'missing' noise are discussed. In the first a subgrid scale noise model, analogous to a subgrid scale closure model, is proposed. In the second method the governing equations are expressed in a wavelet basis from which simplified time-dependent equations for the subgrid scale fluctuations can be derived. These equations are inexpensively integrated to yield estimates of the subgrid scale fluctuations with proper space-time dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs
NASA Astrophysics Data System (ADS)
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Pincus, R.
2016-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC is now incorporated into a version of GFS, as well as into the next generation of the NCEP global model - NOAA Environmental Modeling System (NEMS). Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these variables. Radiative transfer parameterization uses cloudiness computed by SHOC.Outstanding problems include high level tropical cloud fraction being too high in SHOC runs, possibly related to the interaction of SHOC with condensate detrained from deep convection.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.
Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...
2015-12-28
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
Effect of LES models on the entrainment characteristics in a turbulent planar jet
NASA Astrophysics Data System (ADS)
Chambel Lopes, Diogo; da Silva, Carlos; Raman, Venkat
2012-11-01
The effect of subgrid-scale (SGS) models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent: it has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. In this work direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. LES show that different SGS modes lead to different spreading rates for the velocity and scalar fields, and the scalar quantities are more affected than the velocity e.g. SGS models affect strongly the centreline mean scalar decay than the centreline mean velocity decay. The results suggest the need for a minimum resolution close to the Taylor micro-scale in order to recover the correct results for the integral quantities and this can be explained by recent results on the dynamics of the T/NT interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guangxing; Qian, Yun; Yan, Huiping
One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis.more » The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).« less
NASA Astrophysics Data System (ADS)
Yue, Chao; Ciais, Philippe; Li, Wei
2018-02-01
Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both simulations. The lower ELUC from shifting cultivation in Sage simulations depends on the predefined forest clearing priority rules in the model and the assumed rotation length. A set of sensitivity model runs over Africa reveal that a longer rotation length over the historical period likely results in higher emissions. Our results highlight that although gross land use change as a former missing emission component is included by a growing number of DGVMs, its contribution to overall ELUC remains uncertain and tends to be overestimated when models ignore sub-grid secondary forests.
M. M. Clark; T. H. Fletcher; R. R. Linn
2010-01-01
The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixtureâ fraction model relying on thermodynamic...
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1993-01-01
This report contains the 1992 annual progress reports of the Research Fellows and students of the Center for Turbulence Research. Considerable effort was focused on the large eddy simulation technique for computing turbulent flows. This increased activity has been inspired by the recent predictive successes of the dynamic subgrid scale modeling procedure which was introduced during the 1990 Summer Program. Several Research Fellows and students are presently engaged in both the development of subgrid scale models and their applications to complex flows. The first group of papers in this report contain the findings of these studies. They are followed by reports grouped in the general areas of modeling, turbulence physics, and turbulent reacting flows. The last contribution in this report outlines the progress made on the development of the CTR post-processing facility.
Thayer-Calder, K.; Gettelman, A.; Craig, C.; ...
2015-06-30
Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme.This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; ...
2015-12-01
Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysicsmore » scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. In conclusion, the new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
On the application of the Germano identity to subgrid-scale modeling
NASA Technical Reports Server (NTRS)
Ronchi, C.; Ypma, M.; Canuto, V. M.
1992-01-01
An identity proposed by Germano (1992) has been widely applied to several turbulent flows to dynamically compute rather than adjust the Smagorinsky coefficient. The assumptions under which the method has been used are discussed, and some conceptual difficulties in its current implementation are examined.
Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B
NASA Technical Reports Server (NTRS)
Scheffler, A. O.; Liu, C. H.
1984-01-01
A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-11-01
Simulations of the spatial-temporal dynamics of wetlands are key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate wetland dynamics at global scales. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl dynamic global vegetation model (DGVM), and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. In addition, we found that calibrating TOPMODEL with a benchmark wetland dataset can help to successfully delineate the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetlands among the three DEM products. The estimate of global wetland potential/maximum is ∼ 10.3 Mkm2 (106 km2), with a mean annual maximum of ∼ 5.17 Mkm2 for 1980-2010. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlights the importance of an adequate investigation of topographic indices for simulating global wetlands and shows the opportunity to converge wetland estimates across LSMs by identifying the uncertainty associated with existing wetland products.
Revisiting the use of hyperdiffusivities in numerical dynamo models
NASA Astrophysics Data System (ADS)
Fournier, A.; Aubert, J.
2012-04-01
The groundbreaking numerical dynamo models of Glatzmaier & Roberts (1995) and Kuang & Bloxham (1997) received some criticism due to their use of hyperdiffusivities, whereby small scale processes artificially experience much stronger dissipation than large scale processes. This stronger dissipation they chose was anisotropic, in that it was only effective in the horizontal direction, and parameterized in spectral space using the following generic formula for any diffusive parameter ν ν(l) = ν0 ifl ≤ l0, ν(l) = ν0[1 + a(l- l0)n] ifl > l0, in which l is the spherical harmonic degree, ν0 is a reference value, l0 is the degree above which hyperdiffusivities start operating, and a and n are real numbers. Following the same choice as the studies mentioned above (which had most notably l0 = 0), Grote & Busse (2000) showed in a fully nonlinear context that the usage of hyperdiffusivities could lead to substantially different dynamics and magnetic field generation mechanisms. Without questioning the physical relevance of this parameterization of subgrid scale processes, we wish here to revisit the use of hyperdiffusivities (as defined mathematically above), on the account of the observation that today's models are run with a truncation at much larger spherical harmonic degree than early models. Consequently, they do not require hyperdiffusivities to kick in at the largest scales (l0 can be set to several tens). An exploration of those regions of parameter space less accessible to numerical models could therefore benefit from their use, provided they do not alter noticeably the largest scales of the dynamo (which are the ones expressing themselves in the record of the geomagnetic secular variation). We compare the statistics of a direct numerical simulation with the statistics of several hyperdiffusive simulations. In the prospect of exploring the parameter space and constructing statistics for their subsequent use for geomagnetic data assimilation practice, we conclude that a sensible use of hyperdiffusivities can lead to a much wanted decrease in computational cost, while not altering the nature of the solution.
NASA Astrophysics Data System (ADS)
Lamraoui, F.; Booth, J. F.; Naud, C. M.
2017-12-01
The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
NASA Technical Reports Server (NTRS)
Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.
2011-01-01
Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.
NASA Astrophysics Data System (ADS)
Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo
2017-11-01
A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.
Parameterization Interactions in Global Aquaplanet Simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Suselj, Kay; Teixeira, João.
2018-02-01
Global climate simulations rely on parameterizations of physical processes that have scales smaller than the resolved ones. In the atmosphere, these parameterizations represent moist convection, boundary layer turbulence and convection, cloud microphysics, longwave and shortwave radiation, and the interaction with the land and ocean surface. These parameterizations can generate different climates involving a wide range of interactions among parameterizations and between the parameterizations and the resolved dynamics. To gain a simplified understanding of a subset of these interactions, we perform aquaplanet simulations with the global version of the Weather Research and Forecasting (WRF) model employing a range (in terms of properties) of moist convection and boundary layer (BL) parameterizations. Significant differences are noted in the simulated precipitation amounts, its partitioning between convective and large-scale precipitation, as well as in the radiative impacts. These differences arise from the way the subcloud physics interacts with convection, both directly and through various pathways involving the large-scale dynamics and the boundary layer, convection, and clouds. A detailed analysis of the profiles of the different tendencies (from the different physical processes) for both potential temperature and water vapor is performed. While different combinations of convection and boundary layer parameterizations can lead to different climates, a key conclusion of this study is that similar climates can be simulated with model versions that are different in terms of the partitioning of the tendencies: the vertically distributed energy and water balances in the tropics can be obtained with significantly different profiles of large-scale, convection, and cloud microphysics tendencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad Jan; Ethan Coon; Scott Painter
This Modeling Archive is in support of an NGEE Arctic manuscript under review. A new subgrid model was implemented in the Advanced Terrestrial Simulator (ATS) to capture micro-topography effects on surface flow. A comparison of the fine-scale simulations on seven individual ice-wedge polygons and a cluster of polygons was made between the results of the subgrid model and no-subgrid model. Our finding confirms that the effects of small-scale spatial heterogeneities can be captured in the coarsened models. The dataset contains meshes, inputfiles, subgrid parameters used in the simulations. Python scripts for post-processing and files for geometric analyses are also included.
NASA Astrophysics Data System (ADS)
Cooper, M.; Martin, R.; Wespes, C.; Coheur, P. F.; Clerbaux, C.; Murray, L. T.
2014-12-01
Nitrogen oxides (NOx ≡ NO + NO2) in the free troposphere largely control the production of ozone (O3), an important greenhouse gas and atmospheric oxidant. As HNO3 is the dominant sink of tropospheric NOx, improved understanding of its production and loss mechanisms can help to better constrain NOx emissions, and in turn improve understanding of ozone production and its effect on climate. However, this understanding is inhibited by the scarcity of direct measurements of free tropospheric HNO3, particularly in the tropics. We interpret tropical tropospheric nitric acid columns from the IASI satellite instrument with a global chemical transport model (GEOS-Chem). Overall GEOS-Chem generally agrees with IASI, however we find that the simulation underestimates IASI nitric acid over Southeast Asia by a factor of two. The bias is confirmed by comparing the GEOS-Chem simulation with additional satellite (HIRDLS, ACE-FTS) and aircraft (PEM-Tropics A and PEM-West B) observations of the middle and upper troposphere. We show that this bias can be explained by the parameterization of lightning NOx emissions, primarily from the misrepresentation of concentrated subgrid lightning NOx plumes. We tested a subgrid lightning plume parameterization and found that an additional 0.5 Tg N with an ozone production efficiency of 15 mol/mol would reduce the regional nitric acid bias from 92% to 6% without perturbing the rest of the tropics. Other sensitivity studies such as modified NOx yield per flash, increased altitude of lightning NOx emissions, or changes to convective mass flux or wet deposition of nitric acid required unrealistic changes to reduce the bias. This work demonstrates the importance of a comprehensive lightning parameterization to constraining NOx emissions.
Yang, X I A; Meneveau, C
2017-04-13
In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface 'underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.
2016-12-01
Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.
A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme
Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...
Large-eddy simulation of turbulent flow with a surface-mounted two-dimensional obstacle
NASA Technical Reports Server (NTRS)
Yang, Kyung-Soo; Ferziger, Joel H.
1993-01-01
In this paper, we perform a large eddy simulation (LES) of turbulent flow in a channel containing a two-dimensional obstacle on one wall using a dynamic subgrid-scale model (DSGSM) at Re = 3210, based on bulk velocity above the obstacle and obstacle height; the wall layers are fully resolved. The low Re enables us to perform a DNS (Case 1) against which to validate the LES results. The LES with the DSGSM is designated Case 2. In addition, an LES with the conventional fixed model constant (Case 3) is conducted to allow identification of improvements due to the DSGSM. We also include LES at Re = 82,000 (Case 4) using conventional Smagorinsky subgrid-scale model and a wall-layer model. The results will be compared with the experiment of Dimaczek et al.
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Marchand, R.; Ackerman, T. P.
2016-12-01
Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-7485 A
An improved snow scheme for the ECMWF land surface model: Description and offline validation
Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder
2010-01-01
A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...
Multi-dimensional upwinding-based implicit LES for the vorticity transport equations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Duraisamy, Karthik
2017-11-01
Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.
SGS Closure Methodology for Surface-layer Rough-wall Turbulence.
NASA Astrophysics Data System (ADS)
Brasseur, James G.; Juneja, Anurag
1998-11-01
As reported in another abstract, necessary under-resolution and anisotropy of integral scales near the surface in LES of rough-wall boundary layers cause errors in the statistical structure of the modeled subgrid-scale (SGS) acceleration using eddy viscosity and similarity closures. The essential difficulty is an overly strong coupling between the modeled SGS stress tensor and predicted resolved velocity u^r. Specific to this problem, we propose a class of SGS closures in which subgrid scale velocities u^s1 between an explicit filter scale Δ and the grid scale δ are estimated from the solution to a separate prognostic equation, and the SGS stress tensor is formed using u^s1 as a surrogate for subgrid velocity u^s. The method is currently under development for pseudo-spectral LES where a filter at scales δ < Δ is explicit. The exact evolution equation for u^s1 contains dynamical interactions between u^r and u^s1 which can be calculated directly, and a term which is modeled to capture energy flux from the s1 scales without altering u^s1 structure. Three levels of closure for SGS stress are possible at different levels of accuracy and computational expense. The cheapest model has been tested with DNS and LES of anisotropic buoyancy-driven turbulence. Preliminary results show major improvement in the structure of the predicted SGS acceleration with much of the spurious coupling between u^r and SGS stress removed. Performance, predictions and cost of the three levels of closure are under analysis.
A normal stress subgrid-scale eddy viscosity model in large eddy simulation
NASA Technical Reports Server (NTRS)
Horiuti, K.; Mansour, N. N.; Kim, John J.
1993-01-01
The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.
Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach
NASA Astrophysics Data System (ADS)
Berloff, Pavel
2018-07-01
This work continues development of dynamically consistent parameterizations for representing mesoscale eddy effects in non-eddy-resolving and eddy-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic eddy effects maintain eastward jet extension of the western boundary currents and its adjacent recirculation zones via eddy backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference eddy-resolving flow solution into the large-scale and eddy components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean eddies, and in the transient rectified eddy component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet core and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient eddy forcing via the eddy backscatter mechanism, rather than by the mean eddy forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key eddy parameterization hypothesis: in an eddy-permitting model at least partially resolved eddy backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel eddy parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single parameter. We test the parameterization skills in an hierarchy of non-eddy-resolving and eddy-permitting modifications of the original model and demonstrate, that indeed it can be highly efficient for restoring the eastward jet extension and its adjacent recirculation zones. The new deterministic parameterization framework not only combines remarkable simplicity with good performance but also is dynamically transparent, therefore, it provides a powerful alternative to the common eddy diffusion and emerging stochastic parameterizations.
Study of Varying Boundary Layer Height on Turret Flow Structures
2011-06-01
fluid dynamics. The difficulties of the problem arise in modeling several complex flow features including separation, reattachment, three-dimensional...impossible. In this case, the approach is to create a model to calculate the properties of interest. The main issue with resolving turbulent flows...operation and their effect is modeled through subgrid scale models . As a result, the the most important turbulent scales are resolved and the
Sub-grid drag model for immersed vertical cylinders in fluidized beds
Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...
2017-01-03
Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less
PHOTOCHEMICAL SIMULATIONS OF POINT SOURCE EMISSIONS WITH THE MODELS-3 CMAQ PLUME-IN-GRID APPROACH
A plume-in-grid (PinG) approach has been designed to provide a realistic treatment for the simulation the dynamic and chemical processes impacting pollutant species in major point source plumes during a subgrid scale phase within an Eulerian grid modeling framework. The PinG sci...
NASA Technical Reports Server (NTRS)
Seth, Anji; Giorgi, Filippo; Dickinson, Robert E.
1994-01-01
A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces st the scale of an atmospheric model (AM) grid cells. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climate forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominat vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.
NASA Astrophysics Data System (ADS)
Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.
2015-12-01
The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.
Active Control of Combustion Instability in a Ramjet Using Large-Eddy Simulations
1992-09-01
model is also used to determine the turbulent subgrid fluxes appearing in the momentum equations. Thus, the subgrid stresses in the momentum transport...flows and in flows with complex geometries. To include the effect of walls, an additional correction has been used to ensure that the subgrid stress ...subgrid stress Ty varies as y+3 near the wall. A major issue for LES of complex flows is whether the primary assumption that the subgrid scales are
NASA Astrophysics Data System (ADS)
Wong, J.; Barth, M. C.; Noone, D. C.
2012-12-01
Lightning-generated nitrogen oxides (LNOx) is an important precursor to tropospheric ozone production. With a meteorological time-scale variability similar to that of the ozone chemical lifetime, it can nonlinearly perturb tropospheric ozone concentration. Coupled with upper-air circulation patterns, LNOx can accumulate in significant amount in the upper troposphere with other precursors, thus enhancing ozone production (see attached figure). While LNOx emission has been included and tuned extensively in global climate models, its inclusions in regional chemistry models are seldom tested. Here we present a study that evaluates the frequently used Price and Rind parameterization based on cloud-top height at resolutions that partially resolve deep convection using the Weather Research and Forecasting model with Chemistry (WRF-Chem) over the contiguous United States. With minor modifications, the parameterization is shown to generate integrated flash counts close to those observed. However, the modeled frequency distribution of cloud-to-ground flashes do not represent well for storms with high flash rates, bringing into question the applicability of the intra-cloud/ground partitioning (IC:CG) formulation of Price and Rind in some studies. Resolution dependency also requires attention when sub-grid cloud-tops are used instead of the originally intended grid-averaged cloud-top. LNOx passive tracers being gathered by monsoonal upper tropospheric anticyclone.
NASA Astrophysics Data System (ADS)
Kao, C.-Y. J.; Smith, W. S.
1999-05-01
A physically based cloud parameterization package, which includes the Arakawa-Schubert (AS) scheme for subgrid-scale convective clouds and the Sundqvist (SUN) scheme for nonconvective grid-scale layered clouds (hereafter referred to as the SUNAS cloud package), is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, Version 2 (CCM2). The AS scheme is used for a more reasonable heating distribution due to convective clouds and their associated precipitation. The SUN scheme allows for the prognostic computation of cloud water so that the cloud optical properties are more physically determined for shortwave and longwave radiation calculations. In addition, the formation of anvil-like clouds from deep convective systems is able to be simulated with the SUNAS package. A 10-year simulation spanning the period from 1980 to 1989 is conducted, and the effect of the cloud package on the January climate is assessed by comparing it with various available data sets and the National Center for Environmental Protection/NCAR reanalysis. Strengths and deficiencies of both the SUN and AS methods are identified and discussed. The AS scheme improves some aspects of the model dynamics and precipitation, especially with respect to the Pacific North America (PNA) pattern. CCM2's tendency to produce a westward bias of the 500 mbar stationary wave (time-averaged zonal anomalies) in the PNA sector is remedied apparently because of a less "locked-in" heating pattern in the tropics. The additional degree of freedom added by the prognostic calculation of cloud water in the SUN scheme produces interesting results in the modeled cloud and radiation fields compared with data. In general, too little cloud water forms in the tropics, while excessive cloud cover and cloud liquid water are simulated in midlatitudes. This results in a somewhat degraded simulation of the radiation budget. The overall simulated precipitation by the SUNAS package is, however, substantially improved over the original CCM2.
Prototype Mcs Parameterization for Global Climate Models
NASA Astrophysics Data System (ADS)
Moncrieff, M. W.
2017-12-01
Excellent progress has been made with observational, numerical and theoretical studies of MCS processes but the parameterization of those processes remain in a dire state and are missing from GCMs. The perceived complexity of the distribution, type, and intensity of organized precipitation systems has arguably daunted attention and stifled the development of adequate parameterizations. TRMM observations imply links between convective organization and large-scale meteorological features in the tropics and subtropics that are inadequately treated by GCMs. This calls for improved physical-dynamical treatment of organized convection to enable the next-generation of GCMs to reliably address a slew of challenges. The multiscale coherent structure parameterization (MCSP) paradigm is based on the fluid-dynamical concept of coherent structures in turbulent environments. The effects of vertical shear on MCS dynamics implemented as 2nd baroclinic convective heating and convective momentum transport is based on Lagrangian conservation principles, nonlinear dynamical models, and self-similarity. The prototype MCS parameterization, a minimalist proof-of-concept, is applied in the NCAR Community Climate Model, Version 5.5 (CAM 5.5). The MCSP generates convectively coupled tropical waves and large-scale precipitation features notably in the Indo-Pacific warm-pool and Maritime Continent region, a center-of-action for weather and climate variability around the globe.
NASA Astrophysics Data System (ADS)
Yang, Zhengjun; Wang, Fujun; Zhou, Peijian
2012-09-01
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
Large-eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1994-01-01
Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, E. P.; Rosner, R., E-mail: eph2001@columbia.edu
In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model.more » Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.« less
NASA Astrophysics Data System (ADS)
Sobel, A. H.; Wang, S.; Bellon, G.; Sessions, S. L.; Woolnough, S.
2013-12-01
Parameterizations of large-scale dynamics have been developed in the past decade for studying the interaction between tropical convection and large-scale dynamics, based on our physical understanding of the tropical atmosphere. A principal advantage of these methods is that they offer a pathway to attack the key question of what controls large-scale variations of tropical deep convection. These methods have been used with both single column models (SCMs) and cloud-resolving models (CRMs) to study the interaction of deep convection with several kinds of environmental forcings. While much has been learned from these efforts, different groups' efforts are somewhat hard to compare. Different models, different versions of the large-scale parameterization methods, and experimental designs that differ in other ways are used. It is not obvious which choices are consequential to the scientific conclusions drawn and which are not. The methods have matured to the point that there is value in an intercomparison project. In this context, the Global Atmospheric Systems Study - Weak Temperature Gradient (GASS-WTG) project was proposed at the Pan-GASS meeting in September 2012. The weak temperature gradient approximation is one method to parameterize large-scale dynamics, and is used in the project name for historical reasons and simplicity, but another method, the damped gravity wave (DGW) method, will also be used in the project. The goal of the GASS-WTG project is to develop community understanding of the parameterization methods currently in use. Their strengths, weaknesses, and functionality in models with different physics and numerics will be explored in detail, and their utility to improve our understanding of tropical weather and climate phenomena will be further evaluated. This presentation will introduce the intercomparison project, including background, goals, and overview of the proposed experimental design. Interested groups will be invited to join (it will not be too late), and preliminary results will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonowski, Christiane
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less
Multi-Scale Modeling and the Eddy-Diffusivity/Mass-Flux (EDMF) Parameterization
NASA Astrophysics Data System (ADS)
Teixeira, J.
2015-12-01
Turbulence and convection play a fundamental role in many key weather and climate science topics. Unfortunately, current atmospheric models cannot explicitly resolve most turbulent and convective flow. Because of this fact, turbulence and convection in the atmosphere has to be parameterized - i.e. equations describing the dynamical evolution of the statistical properties of turbulence and convection motions have to be devised. Recently a variety of different models have been developed that attempt at simulating the atmosphere using variable resolution. A key problem however is that parameterizations are in general not explicitly aware of the resolution - the scale awareness problem. In this context, we will present and discuss a specific approach, the Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, that not only is in itself a multi-scale parameterization but it is also particularly well suited to deal with the scale-awareness problems that plague current variable-resolution models. It does so by representing small-scale turbulence using a classic Eddy-Diffusivity (ED) method, and the larger-scale (boundary layer and tropospheric-scale) eddies as a variety of plumes using the Mass-Flux (MF) concept.
Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds
NASA Astrophysics Data System (ADS)
Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.
2015-12-01
An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.
NASA Astrophysics Data System (ADS)
Skamarock, W. C.
2015-12-01
One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.
Impacts of an offshore wind farm on the lower marine atmosphere
NASA Astrophysics Data System (ADS)
Volker, P. J.; Huang, H.; Capps, S. B.; Badger, J.; Hahmann, A. N.; Hall, A. D.
2013-12-01
Due to a continuing increase in energy demand and heightened environmental consciousness, the State of California is seeking out more environmentally-friendly energy resources. Strong and persistent winds along California's coast can be harnessed effectively by current wind turbine technology, providing a promising source of alternative energy. Using an advanced wind farm parameterization implemented in the Weather Research & Forecast model, we investigate the potential impacts of a large offshore wind farm on the lower marine atmosphere. Located offshore of the Sonoma Coast in northern California, this theoretical wind farm includes 200-7 megawatt, 125 m hub height wind turbines which are able to provide a total of 1.4 TW of power for use in neighboring cities. The wind turbine model (i.e., the Explicit Wake Parameterization originally developed at the Danish Technical University) acts as a source of drag where the sub-grid scale velocity deficit expansion is explicitly described. A swath consisting of hub-height velocity deficits and temperature and moisture anomalies extends more than 100 km downstream of the wind farm location. The presence of the large modern wind farm also creates flow distortion upstream in conjunction with an enhanced vertical momentum and scalar transport.
NASA Astrophysics Data System (ADS)
Resseguier, V.; Memin, E.; Chapron, B.; Fox-Kemper, B.
2017-12-01
In order to better observe and predict geophysical flows, ensemble-based data assimilation methods are of high importance. In such methods, an ensemble of random realizations represents the variety of the simulated flow's likely behaviors. For this purpose, randomness needs to be introduced in a suitable way and physically-based stochastic subgrid parametrizations are promising paths. This talk will propose a new kind of such a parametrization referred to as modeling under location uncertainty. The fluid velocity is decomposed into a resolved large-scale component and an aliased small-scale one. The first component is possibly random but time-correlated whereas the second is white-in-time but spatially-correlated and possibly inhomogeneous and anisotropic. With such a velocity, the material derivative of any - possibly active - tracer is modified. Three new terms appear: a correction of the large-scale advection, a multiplicative noise and a possibly heterogeneous and anisotropic diffusion. This parameterization naturally ensures attractive properties such as energy conservation for each realization. Additionally, this stochastic material derivative and the associated Reynolds' transport theorem offer a systematic method to derive stochastic models. In particular, we will discuss the consequences of the Quasi-Geostrophic assumptions in our framework. Depending on the turbulence amount, different models with different physical behaviors are obtained. Under strong turbulence assumptions, a simplified diagnosis of frontolysis and frontogenesis at the surface of the ocean is possible in this framework. A Surface Quasi-Geostrophic (SQG) model with a weaker noise influence has also been simulated. A single realization better represents small scales than a deterministic SQG model at the same resolution. Moreover, an ensemble accurately predicts extreme events, bifurcations as well as the amplitudes and the positions of the simulation errors. Figure 1 highlights this last result and compares it to the strong error underestimation of an ensemble simulated from the deterministic dynamic with random initial conditions.
Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.
1990-09-01
The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.
Spatial Variability of CCN Sized Aerosol Particles
NASA Astrophysics Data System (ADS)
Asmi, A.; Väänänen, R.
2014-12-01
The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Zimmermann, Niklaus E.; Kaplan, Jed O.; Poulter, Benjamin
2016-03-01
Simulations of the spatiotemporal dynamics of wetlands are key to understanding the role of wetland biogeochemistry under past and future climate. Hydrologic inundation models, such as the TOPography-based hydrological model (TOPMODEL), are based on a fundamental parameter known as the compound topographic index (CTI) and offer a computationally cost-efficient approach to simulate wetland dynamics at global scales. However, there remains a large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl (Lund-Potsdam-Jena Wald Schnee und Landschaft version) Dynamic Global Vegetation Model (DGVM) and quantifies uncertainties by comparing three digital elevation model (DEM) products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. In addition, we found that calibrating TOPMODEL with a benchmark wetland data set can help to successfully delineate the seasonal and interannual variation of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows the best accuracy for capturing the spatiotemporal dynamics of wetlands among the three DEM products. The estimate of global wetland potential/maximum is ˜ 10.3 Mkm2 (106 km2), with a mean annual maximum of ˜ 5.17 Mkm2 for 1980-2010. When integrated with wetland methane emission submodule, the uncertainty of global annual CH4 emissions from topography inputs is estimated to be 29.0 Tg yr-1. This study demonstrates the feasibility of TOPMODEL to capture spatial heterogeneity of inundation at a large scale and highlights the significance of correcting maximum wetland extent to improve modeling of interannual variations in wetland area. It additionally highlights the importance of an adequate investigation of topographic indices for simulating global wetlands and shows the opportunity to converge wetland estimates across LSMs by identifying the uncertainty associated with existing wetland products.
Self-consistency tests of large-scale dynamics parameterizations for single-column modeling
Edman, Jacob P.; Romps, David M.
2015-03-18
Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal; Medvedev, Alexander S.
2017-04-01
Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2010-07-15
Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgridmore » strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be implemented in numerical simulations of turbulent premixed combustion. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R.; Aziz, H. M. Abdul; Coletti, Mark A.
Changing human activity within a geographical location may have significant influence on the global climate, but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes to affect global climate within that modeling framework. Additionally, we must have tools that provide decision support and inform local and regional policies regarding mitigation of and adaptation to climate change. The development of next-generation earth system models, that can produce actionable results with minimum uncertainties, depends on understanding global climate change and human activity interactions at policy implementation scales. Unfortunately, at best we currently have only limitedmore » schemes for relating high-resolution sectoral emissions to real-time weather, ultimately to become part of larger regions and well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we know about these processes, what we can model, where we have gaps in these areas and how we can rise to the challenge to fill these gaps.« less
An LES study of vertical-axis wind turbine wakes aerodynamics
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Dabiri, John O.
2016-11-01
In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.
Inferring Small Scale Dynamics from Aircraft Measurements of Tracers
NASA Technical Reports Server (NTRS)
Sparling, L. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
The millions of ER-2 and DC-8 aircraft measurements of long-lived tracers in the Upper Troposphere/Lower Stratosphere (UT/LS) hold enormous potential as a source of statistical information about subgrid scale dynamics. Extracting this information however can be extremely difficult because the measurements are made along a 1-D transect through fields that are highly anisotropic in all three dimensions. Some of the challenges and limitations posed by both the instrumentation and platform are illustrated within the context of the problem of using the data to obtain an estimate of the dissipation scale. This presentation will also include some tutorial remarks about the conditional and two-point statistics used in the analysis.
NASA Astrophysics Data System (ADS)
Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.
2017-12-01
Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.
Efficient implicit LES method for the simulation of turbulent cavitating flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan
2016-07-01
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less
The impact of land-surface wetness heterogeneity on mesoscale heat fluxes
NASA Technical Reports Server (NTRS)
Chen, Fei; Avissar, Roni
1994-01-01
Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Larson, Vincent E.
Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continentalmore » and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.« less
The radiation schemes in the Weather Research and Forecasting (WRF) model have previously not accounted for the presence of subgrid-scale cumulus clouds, thereby resulting in unattenuated shortwave radiation, which can lead to overly energetic convection and overpredicted surface...
Griffin, Brian M.; Larson, Vincent E.
2016-11-25
Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less
Physics-based distributed snow models in the operational arena: Current and future challenges
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.
2017-12-01
The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Eghdami, M.
2017-12-01
High-resolution ( 1 km) numerical weather prediction models are capable of producing atmospheric spectra over synoptic and mesoscale ranges. Nogueira and Barros (2015) showed using high-resolution simulations in the Andes that the horizontal scale invariant behavior of atmospheric wind and water fields in the model is a process-dependent transient property that varies with the underlying dynamics. They found a sharp transition in the scaling parameters between non-convective and convective conditions. Spectral slopes around 2-2.3 arise under non-convective or very weak convective conditions, whereas in convective situations the transient scaling exponents remain under -5/3. Based on these results, Nogueira and Barros (2015) proposed a new sub-grid scale parameterization of clouds obtained from coarse resolution states alone. High Reynolds number direct numerical simulations of two-dimensional turbulence transfer shows that atmospheric flows involve concurrent direct (downscale) enstrophy transfer in the synoptic scales and inverse (upscale) kinetic energy transfer from the meso- to the synoptic-scales. In this study we use an analogy to investigate the transient behavior of kinetic energy spectra of winds over the Andes and Southern Appalachian Mountains representative of high and middle mountains, respectively. In the unstable conditions and particularly in the Planetary Boundary Layer (PBL) the spectral slopes approach -5/3 associated with the upscale KE turbulence transfer. However, in the stable conditions and above the planetary boundary layer, the spectra slopes approach steeper slopes about -3 associated with the downscale KE transfer. The underlying topography, surface roughness, diurnal heating and cooling and moist processes add to the complexity of the problem by introducing anisotropy and sources and sinks of energy. A comprehensive analysis and scaling of flow behavior conditional on stability regime for both KE and moist processes (total water, cloud water, rainfall) is necessary to elucidate scale-interactions among different processes.
Filter size definition in anisotropic subgrid models for large eddy simulation on irregular grids
NASA Astrophysics Data System (ADS)
Abbà, Antonella; Campaniello, Dario; Nini, Michele
2017-06-01
The definition of the characteristic filter size to be used for subgrid scales models in large eddy simulation using irregular grids is still an unclosed problem. We investigate some different approaches to the definition of the filter length for anisotropic subgrid scale models and we propose a tensorial formulation based on the inertial ellipsoid of the grid element. The results demonstrate an improvement in the prediction of several key features of the flow when the anisotropicity of the grid is explicitly taken into account with the tensorial filter size.
The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for their utility in gauging model performance and QPF variability.
Parameterizing the Morse Potential for Coarse-Grained Modeling of Blood Plasma
Zhang, Na; Zhang, Peng; Kang, Wei; Bluestein, Danny; Deng, Yuefan
2014-01-01
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters are systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately. PMID:24910470
Modeling of the Wegener Bergeron Findeisen process—implications for aerosol indirect effects
NASA Astrophysics Data System (ADS)
Storelvmo, T.; Kristjánsson, J. E.; Lohmann, U.; Iversen, T.; Kirkevåg, A.; Seland, Ø.
2008-10-01
A new parameterization of the Wegener-Bergeron-Findeisen (WBF) process has been developed, and implemented in the general circulation model CAM-Oslo. The new parameterization scheme has important implications for the process of phase transition in mixed-phase clouds. The new treatment of the WBF process replaces a previous formulation, in which the onset of the WBF effect depended on a threshold value of the mixing ratio of cloud ice. As no observational guidance for such a threshold value exists, the previous treatment added uncertainty to estimates of aerosol effects on mixed-phase clouds. The new scheme takes subgrid variability into account when simulating the WBF process, allowing for smoother phase transitions in mixed-phase clouds compared to the previous approach. The new parameterization yields a model state which gives reasonable agreement with observed quantities, allowing for calculations of aerosol effects on mixed-phase clouds involving a reduced number of tunable parameters. Furthermore, we find a significant sensitivity to perturbations in ice nuclei concentrations with the new parameterization, which leads to a reversal of the traditional cloud lifetime effect.
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
NASA Astrophysics Data System (ADS)
Pytharoulis, I.; Karagiannidis, A. F.; Brikas, D.; Katsafados, P.; Papadopoulos, A.; Mavromatidis, E.; Kotsopoulos, S.; Karacostas, T. S.
2010-09-01
Contemporary atmospheric numerical models contain a large number of physical parameterization schemes in order to represent the various atmospheric processes that take place in sub-grid scales. The choice of the proper combination of such schemes is a challenging task for research and particularly for operational purposes. This choice becomes a very important decision in cases of high impact weather in which the forecast errors and the concomitant societal impacts are expected to be large. Moreover, it is well known that one of the hardest tasks for numerical models is to predict precipitation with a high degree of accuracy. The use of complex and sophisticated schemes usually requires more computational time and resources, but it does not necessarily lead to better forecasts. The aim of this study is to investigate the sensitivity of the model predicted precipitation on the microphysical and boundary layer parameterizations during extreme events. The nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW Version 3.1.1) is utilized. It is a flexible, state-of-the-art numerical weather prediction system designed to operate in both research and operational mode in global and regional scales. Nine microphysical and two boundary layer schemes are combined in the sensitivity experiments. The 9 microphysical schemes are: i) Lin, ii) WRF Single Moment 5-classes, iii) Ferrier new Eta, iv) WRF Single Moment 6-classes, v) Goddard, vi) New Thompson V3.1, vii) WRF Double Moment 5-classes, viii) WRF Double Moment 6-classes, ix) Morrison. The boundary layer is parameterized using the schemes of: i) Mellor-Yamada-Janjic (MYJ) and ii) Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5. The model is integrated at very high horizontal resolution (2 km x 2 km in the area of interest) utilizing 38 vertical levels. Three cases of high impact weather in Eastern Mediterranean, associated with strong synoptic scale forcing, are employed in the numerical experiments. These events are characterized by strong precipitation with daily amounts exceeding 100 mm. For example, the case of 24 to 26 October 2009 was associated with floods in the eastern mainland of Greece. In Pieria (northern Greece), that was the most afflicted area, one individual perished in the overflowed Esonas river and significant damages were caused in both the infrastructure and cultivations. Precipitation amounts of 347 mm in 3 days were measured in the station of Vrontou, Pieria (which is at an elevation of only 120 m). The model results are statistically analysed and compared to the available surface observations and satellite derived precipitation data in order to identify the parameterizations (and their combinations) that provide the best representation of the spatiotemporal variability of precipitation in extreme conditions. Preliminary results indicate that the MYNN boundary layer parameterization outperforms the one of MYJ. However, the best results are produced by the combination of the Ferrier new Eta microphysics with the MYJ scheme, which are the default schemes of the well-known and reliable ETA and WRF-NMM models. Similarly, good results are produced by the combination of the New Thompson V3.1 microphysics with MYNN boundary layer scheme. On the other hand, the worst results (with mean absolute error up to about 150 mm/day) appear when the WRF Single Moment 5-classes scheme is used with MYJ. Finally, an effort is made to identify and analyze the main factors that are responsible for the aforementioned differences.
Large-Eddy Simulation of Internal Flow through Human Vocal Folds
NASA Astrophysics Data System (ADS)
Lasota, Martin; Šidlof, Petr
2018-06-01
The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2017-12-01
Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.Above results are discussed in a peer-review paper just being accepted for publication on Climate Dynamics (Alessandri et al., 2017; doi:10.1007/s00382-017-3766-y).
Performance of Smagorinsky and dynamic models in near surface turbulence
NASA Astrophysics Data System (ADS)
Brasseur, James G.; Juneja, Anurag
1997-11-01
In LES of high-Reynolds-number wall bounded turbulence such as the atmospheric boundary layer (ABL), a viscous sublayer either does not exist or is within the first grid cell, and some integral scale motions are necessarily under-resolved at the first few grid locations. Here the subgrid terms dominate the evolution of resolved velocity and the SGS model performance becomes crucial. To develop improved closures for surface layer turbulence (under-resolved and anisotropic), we explore (a) why current SGS closures fail and (b) what needs to be fixed. We evaluate the performance of the Smagorinsky and dynamic models using DNS data from shear- and buoyancy-driven turbulence as a function of filter cutoff location. We find that the underlying assumption of good alignment between the subgrid stress and resolved strain-rate tensors is not correct in general. More importantly, the Smagorinsky model incorrectly predicts a strong preference in the direction of the SGS stress divergence vector, a spurious prediction that is directly related to the anisotropic structure of the resolved turbulence field. This, and its under-estimation of the SGS pressure gradient, are likely sources of the errors observed in LES of the ABL. Whereas the dynamic formulations do a better job predicting some SGS dynamics, the model fails when the filter cutoff is near an integral scale, and predicts unreasonable fluctuation levels-- although performance is sensitive to type of averaging. *supported by ARO grant DAAL03-92-0117.
Impact of entrainment on cloud droplet spectra: theory, observations, and modeling
NASA Astrophysics Data System (ADS)
Grabowski, W.
2016-12-01
Understanding the impact of entrainment and mixing on microphysical properties of warm boundary layer clouds is an important aspect of the representation of such clouds in large-scale models of weather and climate. Entrainment leads to a reduction of the liquid water content in agreement with the fundamental thermodynamics, but its impact on the droplet spectrum is difficult to quantify in observations and modeling. For in-situ (e.g., aircraft) observations, it is impossible to follow air parcels and observe processes that lead to changes of the droplet spectrum in different regions of a cloud. For similar reasons traditional modeling methodologies (e.g., the Eulerian large eddy simulation) are not useful either. Moreover, both observations and modeling can resolve only relatively narrow range of spatial scales. Theory, typically focusing on differences between idealized concepts of homogeneous and inhomogeneous mixing, is also of a limited use for the multiscale turbulent mixing between a cloud and its environment. This presentation will illustrate the above points and argue that the Lagrangian large-eddy simulation with appropriate subgrid-scale scheme may provide key insights and eventually lead to novel parameterizations for large-scale models.
New Concepts for Refinement of Cumulus Parameterization in GCM's the Arakawa-Schubert Framework
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Lau, William (Technical Monitor)
2002-01-01
Several state-of-the-art models including the one employed in this study use the Arakawa-Schubert framework for moist convection, and Sundqvist formulation of stratiform. clouds, for moist physics, in-cloud condensation, and precipitation. Despite a variety of cloud parameterization methodologies developed by several modelers including the authors, most of the parameterized cloud-models have similar deficiencies. These consist of: (a) not enough shallow clouds, (b) too many deep clouds; (c) several layers of clouds in a vertically demoralized model as opposed to only a few levels of observed clouds, and (d) higher than normal incidence of double ITCZ (Inter-tropical Convergence Zone). Even after several upgrades consisting of a sophisticated cloud-microphysics and sub-grid scale orographic precipitation into the Data Assimilation Office (DAO)'s atmospheric model (called GEOS-2 GCM) at two different resolutions, we found that the above deficiencies remained persistent. The two empirical solutions often used to counter the aforestated deficiencies consist of a) diffusion of moisture and heat within the lower troposphere to artificially force the shallow clouds; and b) arbitrarily invoke evaporation of in-cloud water for low-level clouds. Even though helpful, these implementations lack a strong physical rationale. Our research shows that two missing physical conditions can ameliorate the aforestated cloud-parameterization deficiencies. First, requiring an ascending cloud airmass to be saturated at its starting point will not only make the cloud instantly buoyant all through its ascent, but also provide the essential work function (buoyancy energy) that would promote more shallow clouds. Second, we argue that training clouds that are unstable to a finite vertical displacement, even if neutrally buoyant in their ambient environment, must continue to rise and entrain causing evaporation of in-cloud water. These concepts have not been invoked in any of the cloud parameterization schemes so far. We introduced them into the DAO-GEOS-2 GCM with McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme).
Roesler, Erika L.; Posselt, Derek J.; Rood, Richard B.
2017-04-06
Three-dimensional large eddy simulations (LES) are used to analyze a springtime Arctic mixed-phase stratocumulus observed on 26 April 2008 during the Indirect and Semi-Direct Aerosol Campaign. Two subgrid-scale turbulence parameterizations are compared. The first scheme is a 1.5-order turbulent kinetic energy (1.5-TKE) parameterization that has been previously applied to boundary layer cloud simulations. The second scheme, Cloud Layers Unified By Binormals (CLUBB), provides higher-order turbulent closure with scale awareness. The simulations, in comparisons with observations, show that both schemes produce the liquid profiles within measurement variability but underpredict ice water mass and overpredict ice number concentration. The simulation using CLUBBmore » underpredicted liquid water path more than the simulation using the 1.5-TKE scheme, so the turbulent length scale and horizontal grid box size were increased to increase liquid water path and reduce dissipative energy. The LES simulations show this stratocumulus cloud to maintain a closed cellular structure, similar to observations. The updraft and downdraft cores self-organize into a larger meso-γ-scale convective pattern with the 1.5-TKE scheme, but the cores remain more isotropic with the CLUBB scheme. Additionally, the cores are often composed of liquid and ice instead of exclusively containing one or the other. Furthermore, these results provide insight into traditionally unresolved and unmeasurable aspects of an Arctic mixed-phase cloud. From analysis, this cloud's updraft and downdraft cores appear smaller than other closed-cell stratocumulus such as midlatitude stratocumulus and Arctic autumnal mixed-phase stratocumulus due to the weaker downdrafts and lower precipitation rates.« less
Using Unsupervised Learning to Unlock the Potential of Hydrologic Similarity
NASA Astrophysics Data System (ADS)
Chaney, N.; Newman, A. J.
2017-12-01
By clustering environmental data into representative hydrologic response units (HRUs), hydrologic similarity aims to harness the covariance between a system's physical environment and its hydrologic response to create reduced-order models. This is the primary approach through which sub-grid hydrologic processes are represented in large-scale models (e.g., Earth System Models). Although the possibilities of hydrologic similarity are extensive, its practical implementations have been limited to 1-d bins of oversimplistic metrics of hydrologic response (e.g., topographic index)—this is a missed opportunity. In this presentation we will show how unsupervised learning is unlocking the potential of hydrologic similarity; clustering methods enable generalized frameworks to effectively and efficiently harness the petabytes of global environmental data to robustly characterize sub-grid heterogeneity in large-scale models. To illustrate the potential that unsupervised learning has towards advancing hydrologic similarity, we introduce a hierarchical clustering algorithm (HCA) that clusters very high resolution (30-100 meters) elevation, soil, climate, and land cover data to assemble a domain's representative HRUs. These HRUs are then used to parameterize the sub-grid heterogeneity in land surface models; for this study we use the GFDL LM4 model—the land component of the GFDL Earth System Model. To explore HCA and its impacts on the hydrologic system we use a ¼ grid cell in southeastern California as a test site. HCA is used to construct an ensemble of 9 different HRU configurations—each configuration has a different number of HRUs; for each ensemble member LM4 is run between 2002 and 2014 with a 26 year spinup. The analysis of the ensemble of model simulations show that: 1) clustering the high-dimensional environmental data space leads to a robust representation of the role of the physical environment in the coupled water, energy, and carbon cycles at a relatively low number of HRUs; 2) the reduced-order model with around 300 HRUs effectively reproduces the fully distributed model simulation (30 meters) with less than 1/1000 of computational expense; 3) assigning each grid cell of the fully distributed grid to an HRU via HCA enables novel visualization methods for large-scale models—this has significant implications for how these models are applied and evaluated. We will conclude by outlining the potential that this work has within operational prediction systems including numerical weather prediction, Earth System models, and Early Warning systems.
Local dynamic subgrid-scale models in channel flow
NASA Technical Reports Server (NTRS)
Cabot, William H.
1994-01-01
The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.
NASA Astrophysics Data System (ADS)
Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.
2016-05-01
Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.
How to assess the impact of a physical parameterization in simulations of moist convection?
NASA Astrophysics Data System (ADS)
Grabowski, Wojciech
2017-04-01
A numerical model capable in simulating moist convection (e.g., cloud-resolving model or large-eddy simulation model) consists of a fluid flow solver combined with required representations (i.e., parameterizations) of physical processes. The later typically include cloud microphysics, radiative transfer, and unresolved turbulent transport. Traditional approaches to investigate impacts of such parameterizations on convective dynamics involve parallel simulations with different parameterization schemes or with different scheme parameters. Such methodologies are not reliable because of the natural variability of a cloud field that is affected by the feedback between the physics and dynamics. For instance, changing the cloud microphysics typically leads to a different realization of the cloud-scale flow, and separating dynamical and microphysical impacts is difficult. This presentation will present a novel modeling methodology, the piggybacking, that allows studying the impact of a physical parameterization on cloud dynamics with confidence. The focus will be on the impact of cloud microphysics parameterization. Specific examples of the piggybacking approach will include simulations concerning the hypothesized deep convection invigoration in polluted environments, the validity of the saturation adjustment in modeling condensation in moist convection, and separation of physical impacts from statistical uncertainty in simulations applying particle-based Lagrangian microphysics, the super-droplet method.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Technical Reports Server (NTRS)
Chen, Fei; Yates, David; LeMone, Margaret
2001-01-01
To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Brian M.; Larson, Vincent E.
Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less
NASA Astrophysics Data System (ADS)
Prasad, K.
2017-12-01
Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.
A New LES/PDF Method for Computational Modeling of Turbulent Reacting Flows
NASA Astrophysics Data System (ADS)
Turkeri, Hasret; Muradoglu, Metin; Pope, Stephen B.
2013-11-01
A new LES/PDF method is developed for computational modeling of turbulent reacting flows. The open source package, OpenFOAM, is adopted as the LES solver and combined with the particle-based Monte Carlo method to solve the LES/PDF model equations. The dynamic Smagorinsky model is employed to account for the subgrid-scale motions. The LES solver is first validated for the Sandia Flame D using a steady flamelet method in which the chemical compositions, density and temperature fields are parameterized by the mean mixture fraction and its variance. In this approach, the modeled transport equations for the mean mixture fraction and the square of the mixture fraction are solved and the variance is then computed from its definition. The results are found to be in a good agreement with the experimental data. Then the LES solver is combined with the particle-based Monte Carlo algorithm to form a complete solver for the LES/PDF model equations. The in situ adaptive tabulation (ISAT) algorithm is incorporated into the LES/PDF method for efficient implementation of detailed chemical kinetics. The LES/PDF method is also applied to the Sandia Flame D using the GRI-Mech 3.0 chemical mechanism and the results are compared with the experimental data and the earlier PDF simulations. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. 111M067.
Validation of Numerical Predictions of the Impact Forces and Hydrodynamics of a Deep-V Planing Hull
2012-12-01
technique. NFA uses an implicit subgrid- scale model that is built into the treatment of the convective terms in the momentum equations [14]. A...delivered to SAIC under the Navy DASS (Dynamic Assessment of Surface Ship) 8 NSWCCD-50-TR-2012/040 project in 1998. SLAM2D has two solution methods: (1...is in knots-ft-1/2]. Model Scale Pressure [psi] -0.04 0.0 004 0.08 0.12 0.16 Figure 25. Pressures on hull for CA=0.608, L/b=4 and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Qian, Yun; Fast, Jerome D.
2011-07-13
Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less
Scale-Similar Models for Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Sarghini, F.
1999-01-01
Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.
Shetty, Dinesh A.; Frankel, Steven H.
2013-01-01
Summary The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. PMID:24187423
NASA Astrophysics Data System (ADS)
Resovsky, A.; Yang, Z. L.
2015-12-01
Methane (CH4) is an important greenhouse gas, and the predominant source of natural atmospheric CH4 globally is its production in wetland soils. Wetlands and marshes in the southeastern U.S. comprise over 40 million acres of land and thus represent a significant component of the global climate system. CH4 contributions from these and other subtropical systems remain difficult to quantify, however. Existing field measurements are lacking in both spatial and temporal coverage, inhibiting efforts to produce regional estimates through upscaling. Top-down constraints on emissions have been generated using satellite remote sensing retrievals of column CH4 (e.g., Frankenberg et al., 2005, 2008, Bergamaschi et al., 2007, 2013, Bloom et al., 2010, Wecht et al., 2014), but such approaches typically require preexisting emissions estimates to discern individual source contributions. Land Surface Models (LSMs) have the potential to produce realistic results, but such predictions rely on accurate representations of sub-grid scale processes responsible for emissions. Since net fluxes are governed by complex interactions between local environmental and biogeochemical factors including water table position, soil temperature, soil substrate availability and vegetation type, reliable flux simulations depend not only upon how such processes are resolved but how skillfully the land surface state itself is predicted by a given model. Here, we examine simulations using CLM4Me, a CH4 biogeochemistry model run within CESM, and compare results to recently compiled flux estimations from satellite remote sensing data. We then examine how seasonal CH4 flux simulations in CLM4Me are affected by alternative parameterizations of inundated land fraction. A global inundation dataset is calculated using DYPTOP, a newly-developed TOPMODEL implementation specifically designed to simulate the dynamics of wetland spatial distribution. We find evidence that DYPTOP may improve wetland CH4 flux predictions over subtropical regions in CLM4.5, and propose a computationally efficient framework for fine-scale tuning of this scheme to more accurately represent the role of subtropical and temperate wetlands in global climate projections.
NASA Astrophysics Data System (ADS)
Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.
2017-12-01
Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.
Water dependency and water exploitation at global scale as indicators of water security
NASA Astrophysics Data System (ADS)
De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.
2015-12-01
A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.
Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2013-09-08
Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less
NASA Astrophysics Data System (ADS)
Nijzink, R. C.; Samaniego, L.; Mai, J.; Kumar, R.; Thober, S.; Zink, M.; Schäfer, D.; Savenije, H. H. G.; Hrachowitz, M.
2015-12-01
Heterogeneity of landscape features like terrain, soil, and vegetation properties affect the partitioning of water and energy. However, it remains unclear to which extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated in the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge based model constraints reduces model uncertainty; and (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both, the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as overall measure for model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 % respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. Besides, it was shown that suitable semi-quantitative prior constraints in combination with the transfer function based regularization approach of mHM, can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Samaniego, Luis; Mai, Juliane; Kumar, Rohini; Thober, Stephan; Zink, Matthias; Schäfer, David; Savenije, Hubert H. G.; Hrachowitz, Markus
2016-03-01
Heterogeneity of landscape features like terrain, soil, and vegetation properties affects the partitioning of water and energy. However, it remains unclear to what extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated into the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge-based model constraints reduces model uncertainty, and whether (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge-based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as an overall measure of model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 %, respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. In addition, it was shown that suitable semi-quantitative prior constraints in combination with the transfer-function-based regularization approach of mHM can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
On why dynamic subgrid-scale models work
NASA Technical Reports Server (NTRS)
Jimenez, J.
1995-01-01
Dynamic subgrid models have proved to be remarkably successful in predicting the behavior of turbulent flows. Part of the reasons for their success are well understood. Since they are constructed to generate an effective viscosity which is proportional to some measure of the turbulent energy at the high wavenumber end of the spectrum, their eddy viscosity vanishes as the flow becomes laminar. This alone would justify their use over simpler models. But beyond this obvious advantage, which is confined to inhomogeneous and evolving flows, the reason why they also work better in simpler homogeneous cases, and how they do it without any obvious adjustable parameter, is not clear. This lack of understanding of the internal mechanisms of a useful tool is disturbing, not only as an intellectual challenge, but because it raises the doubt of whether it will work in all cases. This note is an attempt to clarify those mechanisms. We will see why dynamic models are robust and how they can get away with even comparatively gross errors in their formulations. This will suggest that they are only particular cases of a larger family of robust models, all of which would be relatively insensitive to large simplifications in the physics of the flow. We will also construct some such models, although mostly as research tools. It will turn out, however, that the standard dynamic formulation is not only robust to errors, but also behaves as if it were substantially well formulated. The details of why this is so will still not be clear at the end of this note, specially since it will be shown that the 'a priori' testing of the stresses gives, as is usual in most subgrid models, very poor results. But it will be argued that the basic reason is that the dynamic formulation mimics the condition that the total dissipation is approximately equal to the production measured at the test filter level.
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Jedlovec, G. L.; Lapenta, W. M.
2009-01-01
As operational numerical weather prediction is performed at increasingly finer spatial resolution, precipitation traditionally represented by sub-grid scale parameterization schemes is now being calculated explicitly through the use of single- or multi-moment, bulk water microphysics schemes. As computational resources grow, the real-time application of these schemes is becoming available to a broader audience, ranging from national meteorological centers to their component forecast offices. A need for improved quantitative precipitation forecasts has been highlighted by the United States Weather Research Program, which advised that gains in forecasting skill will draw upon improved simulations of clouds and cloud microphysical processes. Investments in space-borne remote sensing have produced the NASA A-Train of polar orbiting satellites, specially equipped to observe and catalog cloud properties. The NASA CloudSat instrument, a recent addition to the A-Train and the first 94 GHz radar system operated in space, provides a unique opportunity to compare observed cloud profiles to their modeled counterparts. Comparisons are available through the use of a radiative transfer model (QuickBeam), which simulates 94 GHz radar returns based on the microphysics of cloudy model profiles and the prescribed characteristics of their constituent hydrometeor classes. CloudSat observations of snowfall are presented for a case in the central United States, with comparisons made to precipitating clouds as simulated by the Weather Research and Forecasting Model and the Goddard single-moment microphysics scheme. An additional forecast cycle is performed with a temperature-based parameterization of the snow distribution slope parameter, with comparisons to CloudSat observations provided through the QuickBeam simulator.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2015-01-01
Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC is that cloud water content is much higher than in CAM5, which is combined with higher low-cloud coverage to produce larger shortwave CREs in some low-cloud prevailing regions. Thus, the cloud-radiative feedbacks are exaggerated there. The turning exercise is focused on microphysical parameters, which are also commonly used for tuning in climate models. The results will be discussed in this presentation.
NASA Astrophysics Data System (ADS)
Qiu, J.; Gu, Z. L.; Wang, Z. S.
2008-05-01
High-accuracy large-eddy simulations of neutral atmospheric surface-layer flow over a gapped plant canopy strip have been performed. Subgrid-scale (SGS) motions are parameterized by the Sagaut mixed length SGS model, with a modification to compute the SGS characteristic length self-adaptively. Shaw’s plant canopy model, taking the vertical variation of leaf area density into account, is applied to study the response of the atmospheric surface layer to the gapped dense forest strip. Differences in the region far away from the gap and in the middle of the gap are investigated, according to the instantaneous velocity magnitude, the zero-plane displacement, the potential temperature and the streamlines. The large-scale vortex structure, in the form of a roll vortex, is revealed in the region far away from the gap. The nonuniform spatial distribution of plants appears to cause the formation of the coherent structure. The roll vortex starts in the wake of the canopy, and results in strong fluctuations throughout the entire canopy region. Wind sweeps and ejections in the plant canopy are also attributed to the large vortex structure.
Statistical Ensemble of Large Eddy Simulations
NASA Technical Reports Server (NTRS)
Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Berner, J.; Sardeshmukh, P. D.
2017-12-01
Stochastic parameterizations have been used for more than a decade in atmospheric models. They provide a way to represent model uncertainty through representing the variability of unresolved sub-grid processes, and have been shown to have a beneficial effect on the spread and mean state for medium- and extended-range forecasts. There is increasing evidence that stochastic parameterization of unresolved processes can improve the bias in mean and variability, e.g. by introducing a noise-induced drift (nonlinear rectification), and by changing the residence time and structure of flow regimes. We present results showing the impact of including the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) in coupled runs of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4) with historical forcing. SPPT results in a significant improvement in the representation of the El Nino-Southern Oscillation in CAM4, improving the power spectrum, as well as both the inter- and intra-annual variability of tropical pacific sea surface temperatures. We use a Linear Inverse Modelling framework to gain insight into the mechanisms by which SPPT has improved ENSO-variability.
NASA Astrophysics Data System (ADS)
O'Neill, J. J.; Cai, X.; Kinnersley, R.
2015-12-01
Large-eddy simulation (LES) provides a powerful tool for developing our understanding of atmospheric boundary layer (ABL) dynamics, which in turn can be used to improve the parameterisations of simpler operational models. However, LES modelling is not without its own limitations - most notably, the need to parameterise the effects of all subgrid-scale (SGS) turbulence. Here, we employ a stochastic backscatter SGS model, which explicitly handles the effects of both forward and reverse energy transfer to/from the subgrid scales, to simulate the neutrally stratified ABL as well as flow within an idealised urban street canyon. In both cases, a clear improvement in LES output statistics is observed when compared with the performance of a SGS model that handles forward energy transfer only. In the neutral ABL case, the near-surface velocity profile is brought significantly closer towards its expected logarithmic form. In the street canyon case, the strength of the primary vortex that forms within the canyon is more accurately reproduced when compared to wind tunnel measurements. Our results indicate that grid-scale backscatter plays an important role in both these modelled situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Heng; Gustafson, William I.; Wang, Hailong
Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactionsmore » contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.« less
A dynamic subgrid scale model for Large Eddy Simulations based on the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Parish, Eric J.; Duraisamy, Karthik
2017-11-01
The development of reduced models for complex multiscale problems remains one of the principal challenges in computational physics. The optimal prediction framework of Chorin et al. [1], which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a framework for the development of mathematically-derived reduced models of dynamical systems. Several promising models have emerged from the optimal prediction community and have found application in molecular dynamics and turbulent flows. In this work, a new M-Z-based closure model that addresses some of the deficiencies of existing methods is developed. The model is constructed by exploiting similarities between two levels of coarse-graining via the Germano identity of fluid mechanics and by assuming that memory effects have a finite temporal support. The appeal of the proposed model, which will be referred to as the 'dynamic-MZ-τ' model, is that it is parameter-free and has a structural form imposed by the mathematics of the coarse-graining process (rather than the phenomenological assumptions made by the modeler, such as in classical subgrid scale models). To promote the applicability of M-Z models in general, two procedures are presented to compute the resulting model form, helping to bypass the tedious error-prone algebra that has proven to be a hindrance to the construction of M-Z-based models for complex dynamical systems. While the new formulation is applicable to the solution of general partial differential equations, demonstrations are presented in the context of Large Eddy Simulation closures for the Burgers equation, decaying homogeneous turbulence, and turbulent channel flow. The performance of the model and validity of the underlying assumptions are investigated in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong
2015-08-01
A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less
Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map
NASA Astrophysics Data System (ADS)
AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong
2017-04-01
The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by using truncated spectra or model spectra as the input. Analyses show that most of the SGS statistics agree well with those from MTLM fields with DNS spectra as the input. For the mean SGS energy dissipation, some significant deviation is observed. However, it is shown that the deviation can be parametrized by the input energy spectrum, which demonstrates the robustness of the MTLM procedure.
NASA Technical Reports Server (NTRS)
Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)
1992-01-01
The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.
NASA Astrophysics Data System (ADS)
Rai, R. K.; Berg, L. K.; Kosovic, B.; Mirocha, J. D.; Pekour, M. S.; Shaw, W. J.
2015-12-01
Resolving the finest turbulent scales present in the lower atmosphere using numerical simulations helps to study the processes that occur in the atmospheric boundary layer, such as the turbulent inflow condition to the wind plant and the generation of the wake behind wind turbines. This work employs several nested domains in the WRF-LES framework to simulate conditions in a convectively driven cloud free boundary layer at an instrumented field site in complex terrain. The innermost LES domain (30 m spatial resolution) receives the boundary forcing from two other coarser resolution LES outer domains, which in turn receive boundary conditions from two WRF-mesoscale domains. Wind and temperature records from sonic anemometers mounted at two vertical levels (30 m and 60 m) are compared with the LES results in term of first and second statistical moments as well as power spectra and distributions of wind velocity. For the two mostly used boundary layer parameterizations (MYNN and YSU) tested in the WRF mesoscale domains, the MYNN scheme shows slightly better agreement with the observations for some quantities, such as time averaged velocity and Turbulent Kinetic Energy (TKE). However, LES driven by WRF-mesoscale simulations using either parameterization have similar velocity spectra and distributions of velocity. For each component of the wind velocity, WRF-LES power spectra are found to be comparable to the spectra derived from the measured data (for the frequencies that are accurately represented by WRF-LES). Furthermore, the analysis of LES results shows a noticeable variability of the mean and variance even over small horizontal distances that would be considered sub-grid scale in mesoscale simulations. This observed statistical variability in space and time can be utilized to further analyze the turbulence quantities over a heterogeneous surface and to improve the turbulence parameterization in the mesoscale model.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2008-01-01
This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Center for Medium-range Weather Forecasts (ECMWF) operational analysis (EOA) and ECMWF Re-Analyses (ERA-40 and ERA Interim) are validated against those obtained from Earth Observing System satellite cloud object data for January-August 1998 and March 2000 periods. These properties include ice water path (IWP), cloud-top height and temperature, cloud optical depth and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud-object type for the January-August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The downgrade of data assimilation technique and the lack of snow water content information in ERA-40, not the coarser horizontal grid resolution, are also responsible for the disagreements with observed pdfs of cloud physical properties although the detection rates of cloud object occurrence are improved for small size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights with grid-cell dynamics. These conclusions will be rechecked using the ERA Interim data, due to recent changes in the ECMWF convective parameterization (Bechtold et al. 2004, 2008). Results from the ERA Interim will be presented at the meeting.
Subgrid-scale effects in compressible variable-density decaying turbulence
GS, Sidharth; Candler, Graham V.
2018-05-08
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Subgrid-scale effects in compressible variable-density decaying turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
GS, Sidharth; Candler, Graham V.
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)
2002-01-01
The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 km or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed-shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)
2002-01-01
The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 kin or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed- shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.
NASA Astrophysics Data System (ADS)
Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.
2017-11-01
Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.
Anisotropic mesoscale eddy transport in ocean general circulation models
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan
2014-11-01
In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2018-02-01
Disequilibrium chemical processes significantly affect the spectra of substellar objects. To study these effects, dynamical disequilibrium has been parameterized using the quench and eddy diffusion approximations, but little work has been done to explore how these approximations perform under realistic planetary conditions in different dynamical regimes. As a first step toward addressing this problem, we study the localized, small-scale convective dynamics of planetary atmospheres by direct numerical simulation of fully compressible hydrodynamics with reactive tracers using the Dedalus code. Using polytropically stratified, plane-parallel atmospheres in 2D and 3D, we explore the quenching behavior of different abstract chemical species as a function of the dynamical conditions of the atmosphere as parameterized by the Rayleigh number. We find that in both 2D and 3D, chemical species quench deeper than would be predicted based on simple mixing-length arguments. Instead, it is necessary to employ length scales based on the chemical equilibrium profile of the reacting species in order to predict quench points and perform chemical kinetics modeling in 1D. Based on the results of our simulations, we provide a new length scale, derived from the chemical scale height, that can be used to perform these calculations. This length scale is simple to calculate from known chemical data and makes reasonable predictions for our dynamical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gettelman, Andrew
2015-10-01
In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2017-11-01
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.
A Priori Subgrid Scale Modeling for a Droplet Laden Temporal Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
2000-01-01
Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using a direct numerical simulation (DNS) database. The DNS is for a Reynolds number (based on initial vorticity thickness) of 600, with droplet mass loading of 0.2. The gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. Since Large Eddy Simulation (LES) of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be given by the filtered variables plus a correction based on the filtered standard deviation, which can be computed from the sub-grid scale (SGS) standard deviation. This model predicts unfiltered variables at droplet locations better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: Smagorinsky, gradient and scale-similarity. When properly calibrated, the gradient and scale-similarity methods give results in excellent agreement with the DNS.
Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.
2010-01-01
As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.
NASA Astrophysics Data System (ADS)
Chaney, N.; Wood, E. F.
2014-12-01
The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.
The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Ye, Zhou
1997-01-01
The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analytical statistical theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state in which the inertial range energy spectrum scales as k(sup -2) and the turbulent time scale is the inverse rotation rate. This scaling has been derived previously by heuristic arguments.
Toward large eddy simulation of turbulent flow over an airfoil
NASA Technical Reports Server (NTRS)
Choi, Haecheon
1993-01-01
The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.
A family of dynamic models for large-eddy simulation
NASA Technical Reports Server (NTRS)
Carati, D.; Jansen, K.; Lund, T.
1995-01-01
Since its first application, the dynamic procedure has been recognized as an effective means to compute rather than prescribe the unknown coefficients that appear in a subgrid-scale model for Large-Eddy Simulation (LES). The dynamic procedure is usually used to determine the nondimensional coefficient in the Smagorinsky (1963) model. In reality the procedure is quite general and it is not limited to the Smagorinsky model by any theoretical or practical constraints. The purpose of this note is to consider a generalized family of dynamic eddy viscosity models that do not necessarily rely on the local equilibrium assumption built into the Smagorinsky model. By invoking an inertial range assumption, it will be shown that the coefficients in the new models need not be nondimensional. This additional degree of freedom allows the use of models that are scaled on traditionally unknown quantities such as the dissipation rate. In certain cases, the dynamic models with dimensional coefficients are simpler to implement, and allow for a 30% reduction in the number of required filtering operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Na; Zhang, Peng; Kang, Wei
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters aremore » systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately.« less
NASA Astrophysics Data System (ADS)
Xu, Kuan-Man; Cheng, Anning
2014-05-01
A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three models (CAM5, CAM5-IPHOC and SPCAM-IPHOC), with emphasis on low-level clouds and precipitation. Detailed comparisons of scatter diagrams among the monthly-mean low-level cloudiness, PBL height, surface relative humidity and lower tropospheric stability (LTS) reveal the relative strengths and weaknesses for five coastal low-cloud regions among the three models. Observations from CloudSat and CALIPSO and ECMWF Interim reanalysis are used as the truths for the comparisons. We found that the standard CAM5 underestimates cloudiness and produces small cloud fractions at low PBL heights that contradict with observations. CAM5-IPHOC tends to overestimate low clouds but the ranges of LTS and PBL height variations are most realistic. SPCAM-IPHOC seems to produce most realistic results with relatively consistent results from one region to another. Further comparisons with other atmospheric environmental variables will be helpful to reveal the causes of model deficiencies so that SPCAM-IPHOC results will provide guidance to the other two models.
Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence
NASA Astrophysics Data System (ADS)
Danish, Mohammad; Meneveau, Charles
2018-04-01
Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial range into the viscous range, the subgrid-stress effect decreases more rapidly as a function of scale than the viscous effects increase. To make up for the difference, the pressure Hessian also behaves somewhat differently in the viscous than in the inertial range. The results have implications for models for the velocity gradient tensor showing that the effects of subgrid scales may not be simply modeled via a constant eddy viscosity in the inertial range if one wishes to reproduce the observed trends.
Diagnosing the Ice Crystal Enhancement Factor in the Tropics
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Matsui, Toshihisa; Xie, Shaocheng; Lang, Stephen; Zhang, Minghua; Starr, David O'C; Li, Xiaowen; Simpson, Joanne
2009-01-01
Recent modeling studies have revealed that ice crystal number concentration is one of the dominant factors in the effect of clouds on radiation. Since the ice crystal enhancement factor and ice nuclei concentration determine the concentration, they are both important in quantifying the contribution of increased ice nuclei to global warming. In this study, long-term cloud-resolving model (CRM) simulations are compared with field observations to estimate the ice crystal enhancement factor in tropical and midlatitudinal clouds, respectively. It is found that the factor in tropical clouds is 10 3-104 times larger than that of mid-latitudinal ones, which makes physical sense because entrainment and detrainment in the Tropics are much stronger than in middle latitudes. The effect of entrainment/detrainment on the enhancement factor, especially in tropical clouds, suggests that cloud microphysical parameterizations should be coupled with subgrid turbulence parameterizations within CRMs to obtain a more accurate depiction of cloud-radiative forcing.
Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean
NASA Astrophysics Data System (ADS)
Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.
2011-12-01
Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.
Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D
2015-01-01
There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.
Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
NASA Astrophysics Data System (ADS)
Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos
2017-05-01
This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.
A LES-Langevin model for turbulence
NASA Astrophysics Data System (ADS)
Dolganov, Rostislav; Dubrulle, Bérengère; Laval, Jean-Philippe
2006-11-01
The rationale for Large Eddy Simulation is rooted in our inability to handle all degrees of freedom (N˜10^16 for Re˜10^7). ``Deterministic'' models based on eddy-viscosity seek to reproduce the intensification of the energy transport. However, they fail to reproduce backward energy transfer (backscatter) from small to large scale, which is an essentiel feature of the turbulence near wall or in boundary layer. To capture this backscatter, ``stochastic'' strategies have been developed. In the present talk, we shall discuss such a strategy, based on a Rapid Distorsion Theory (RDT). Specifically, we first divide the small scale contribution to the Reynolds Stress Tensor in two parts: a turbulent viscosity and the pseudo-Lamb vector, representing the nonlinear cross terms of resolved and sub-grid scales. We then estimate the dynamics of small-scale motion by the RDT applied to Navier-Stockes equation. We use this to model the cross term evolution by a Langevin equation, in which the random force is provided by sub-grid pressure terms. Our LES model is thus made of a truncated Navier-Stockes equation including the turbulent force and a generalized Langevin equation for the latter, integrated on a twice-finer grid. The backscatter is automatically included in our stochastic model of the pseudo-Lamb vector. We apply this model to the case of homogeneous isotropic turbulence and turbulent channel flow.
NASA Astrophysics Data System (ADS)
Wang, S.; Sobel, A. H.; Nie, J.
2015-12-01
Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the importance of both horizontal advection of moisture and cloud-radiative feedback to the dynamics of the MJO, as well as to accurate simulation and prediction of it in models.
Subgrid-scale models for large-eddy simulation of rotating turbulent flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel
2016-11-01
This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.
2017-09-01
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.
Palmer, T. N.
2014-01-01
This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic–dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only. PMID:24842038
Palmer, T N
2014-06-28
This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.
NASA Astrophysics Data System (ADS)
Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca
2018-06-01
We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.
NASA Astrophysics Data System (ADS)
Thiry, Olivier; Winckelmans, Grégoire
2016-02-01
In the large-eddy simulation (LES) of turbulent flows, models are used to account for the subgrid-scale (SGS) stress. We here consider LES with "truncation filtering only" (i.e., that due to the LES grid), thus without regular explicit filtering added. The SGS stress tensor is then composed of two terms: the cross term that accounts for interactions between resolved scales and unresolved scales, and the Reynolds term that accounts for interactions between unresolved scales. Both terms provide forward- (dissipation) and backward (production, also called backscatter) energy transfer. Purely dissipative, eddy-viscosity type, SGS models are widely used: Smagorinsky-type models, or more advanced multiscale-type models. Dynamic versions have also been developed, where the model coefficient is determined using a dynamic procedure. Being dissipative by nature, those models do not provide backscatter. Even when using the dynamic version with local averaging, one typically uses clipping to forbid negative values of the model coefficient and hence ensure the stability of the simulation; hence removing the backscatter produced by the dynamic procedure. More advanced SGS model are thus desirable, and that better conform to the physics of the true SGS stress, while remaining stable. We here investigate, in decaying homogeneous isotropic turbulence, and using a de-aliased pseudo-spectral method, the behavior of the cross term and of the Reynolds term: in terms of dissipation spectra, and in terms of probability density function (pdf) of dissipation in physical space: positive and negative (backscatter). We then develop a new mixed model that better accounts for the physics of the SGS stress and for the backscatter. It has a cross term part which is built using a scale-similarity argument, further combined with a correction for Galilean invariance using a pseudo-Leonard term: this is the term that also does backscatter. It also has an eddy-viscosity multiscale model part that accounts for all the remaining phenomena (also for the incompleteness of the cross term model), that is dynamic and that adjusts the overall dissipation. The model is tested, both a priori and a posteriori, and is compared to the direct numerical simulation and to the exact SGS terms, also in time. The model is seen to provide accurate energy spectra, also in comparison to the dynamic Smagorinsky model. It also provides significant backscatter (although four times less than the real SGS stress), while remaining stable.
Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion
NASA Astrophysics Data System (ADS)
Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.
2014-12-01
The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations, and FDS influence functions will be compared with those generated from WRF and the Lagrangian Particle Dispersion Model. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions.
The influence of sub-grid scale motions on particle collision in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Xiong, Yan; Li, Jing; Liu, Zhaohui; Zheng, Chuguang
2018-02-01
The absence of sub-grid scale (SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue, data from direct numerical simulation (DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS (FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover, this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS. As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However, it still leaves considerable errors for { St}_k <3.0.
NASA Astrophysics Data System (ADS)
Cariolle, D.; Caro, D.; Paoli, R.; Hauglustaine, D. A.; CuéNot, B.; Cozic, A.; Paugam, R.
2009-10-01
A method is presented to parameterize the impact of the nonlinear chemical reactions occurring in the plume generated by concentrated NOx sources into large-scale models. The resulting plume parameterization is implemented into global models and used to evaluate the impact of aircraft emissions on the atmospheric chemistry. Compared to previous approaches that rely on corrected emissions or corrective factors to account for the nonlinear chemical effects, the present parameterization is based on the representation of the plume effects via a fuel tracer and a characteristic lifetime during which the nonlinear interactions between species are important and operate via rates of conversion for the NOx species and an effective reaction rates for O3. The implementation of this parameterization insures mass conservation and allows the transport of emissions at high concentrations in plume form by the model dynamics. Results from the model simulations of the impact on atmospheric ozone of aircraft NOx emissions are in rather good agreement with previous work. It is found that ozone production is decreased by 10 to 25% in the Northern Hemisphere with the largest effects in the north Atlantic flight corridor when the plume effects on the global-scale chemistry are taken into account. These figures are consistent with evaluations made with corrected emissions, but regional differences are noticeable owing to the possibility offered by this parameterization to transport emitted species in plume form prior to their dilution at large scale. This method could be further improved to make the parameters used by the parameterization function of the local temperature, humidity and turbulence properties diagnosed by the large-scale model. Further extensions of the method can also be considered to account for multistep dilution regimes during the plume dissipation. Furthermore, the present parameterization can be adapted to other types of point-source NOx emissions that have to be introduced in large-scale models, such as ship exhausts, provided that the plume life cycle, the type of emissions, and the major reactions involved in the nonlinear chemical systems can be determined with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin
2018-01-01
The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.
Progress on Implementing Additional Physics Schemes into ...
The U.S. Environmental Protection Agency (USEPA) has a team of scientists developing a next generation air quality modeling system employing the Model for Prediction Across Scales – Atmosphere (MPAS-A) as its meteorological foundation. Several preferred physics schemes and options available in the Weather Research and Forecasting (WRF) model are regularly used by the USEPA with the Community Multiscale Air Quality (CMAQ) model to conduct retrospective air quality simulations. These include the Pleim surface layer, the Pleim-Xiu (PX) land surface model with fractional land use for a 40-class National Land Cover Database (NLCD40), the Asymmetric Convective Model 2 (ACM2) planetary boundary layer scheme, the Kain-Fritsch (KF) convective parameterization with subgrid-scale cloud feedback to the radiation schemes and a scale-aware convective time scale, and analysis nudging four-dimensional data assimilation (FDDA). All of these physics modules and options have already been implemented by the USEPA into MPAS-A v4.0, tested, and evaluated (please see the presentations of R. Gilliam and R. Bullock at this workshop). Since the release of MPAS v5.1 in May 2017, work has been under way to implement these preferred physics options into the MPAS-A v5.1 code. Test simulations of a summer month are being conducted on a global variable resolution mesh with the higher resolution cells centered over the contiguous United States. Driving fields for the FDDA and soil nudging are
Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn
2018-05-01
The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.
NASA Astrophysics Data System (ADS)
Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey
2017-11-01
In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Lagrangian predictability characteristics of an Ocean Model
NASA Astrophysics Data System (ADS)
Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia
2014-11-01
The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1999-10-01
Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using eddy viscosity subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the ground, a rough surface with no viscous sublayer. It has recently been shown that convective motions carry this localized error vertically to infect the entire ABL, and that the error is more a consequence of the SGS model than grid resolution in the near-surface inertial layer. Our goal was to determine what first-order errors in the predicted SGS terms lead to spurious expectation values, and what basic dynamics in the filtered equation for resolved scale (RS) velocity must be captured by SGS models to correct the deficiencies. Our analysis is of general relevance to LES of rough-wall high Reynolds number boundary layers, where the essential difficulty in the closure is the importance of the SGS acceleration terms, a consequence of necessary under-resolution of relevant energy-containing motions at the first few grid levels, leading to potentially strong couplings between the anisotropies in resolved velocity and predicted SGS dynamics. We analyze these two issues (under-resolution and anisotropy) in the absence of a wall using two direct numerical simulation datasets of homogeneous turbulence with very different anisotropic structure characteristic of the near-surface ABL: shear- and buoyancy-generated turbulence. We uncover three important issues which should be addressed in the design of SGS closures near rough walls and we provide a priori tests for the SGS model. First, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted velocity field. Second, we find that eddy viscosity and "similarity" SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Third, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.
NASA Astrophysics Data System (ADS)
Draper, Martin; Usera, Gabriel
2015-04-01
The Scale Dependent Dynamic Model (SDDM) has been widely validated in large-eddy simulations using pseudo-spectral codes [1][2][3]. The scale dependency, particularly the potential law, has been proved also in a priori studies [4][5]. To the authors' knowledge there have been only few attempts to use the SDDM in finite difference (FD) and finite volume (FV) codes [6][7], finding some improvements with the dynamic procedures (scale independent or scale dependent approach), but not showing the behavior of the scale-dependence parameter when using the SDDM. The aim of the present paper is to evaluate the SDDM in the open source code caffa3d.MBRi, an updated version of the code presented in [8]. caffa3d.MBRi is a FV code, second-order accurate, parallelized with MPI, in which the domain is divided in unstructured blocks of structured grids. To accomplish this, 2 cases are considered: flow between flat plates and flow over a rough surface with the presence of a model wind turbine, taking for this case the experimental data presented in [9]. In both cases the standard Smagorinsky Model (SM), the Scale Independent Dynamic Model (SIDM) and the SDDM are tested. As presented in [6][7] slight improvements are obtained with the SDDM. Nevertheless, the behavior of the scale-dependence parameter supports the generalization of the dynamic procedure proposed in the SDDM, particularly taking into account that no explicit filter is used (the implicit filter is unknown). [1] F. Porté-Agel, C. Meneveau, M.B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer". Journal of Fluid Mechanics, 2000, 415, 261-284. [2] E. Bou-Zeid, C. Meneveau, M. Parlante. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows". Physics of Fluids, 2005, 17, 025105 (18p). [3] R. Stoll, F. Porté-Agel. "Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain". Water Resources Research, 2006, 42, WO1409 (18 p). [4] J. Keissl, M. Parlange, C. Meneveau. "Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer". Journal of the Atmospheric Science, 2004, 61, 2296-2307. [5] E. Bou-Zeid, N. Vercauteren, M.B. Parlange, C. Meneveau. "Scale dependence of subgrid-scale model coefficients: An a priori study". Physics of Fluids, 2008, 20, 115106. [6] G. Kirkil, J. Mirocha, E. Bou-Zeid, F.K. Chow, B. Kosovic, "Implementation and evaluation of dynamic subfilter - scale stress models for large - eddy simulation using WRF". Monthly Weather Review, 2012, 140, 266-284. [7] S. Radhakrishnan, U. Piomelli. "Large-eddy simulation of oscillating boundary layers: model comparison and validation". Journal of Geophysical Research, 2008, 113, C02022. [8] G. Usera, A. Vernet, J.A. Ferré. "A parallel block-structured finite volume method for flows in complex geometry with sliding interfaces". Flow, Turbulence and Combustion, 2008, 81, 471-495. [9] Y-T. Wu, F. Porté-Agel. "Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations". BoundaryLayerMeteorology, 2011, 138, 345-366.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-12-01
Simulations of the spatial-temporal dynamics of wetlands is key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate global wetland dynamics. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl DGVM, and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. We found that calibrating TOPMODEL with a benchmark dataset can help to successfully predict the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetland among three DEM products. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlight the importance of an adequate understanding of topographic indices for simulating global wetlands and show the opportunity to converge wetland estimations in LSMs by identifying the uncertainty associated with existing wetland products.
The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.
The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection.more » Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.« less
High-resolution subgrid models: background, grid generation, and implementation
NASA Astrophysics Data System (ADS)
Sehili, Aissa; Lang, Günther; Lippert, Christoph
2014-04-01
The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.
Model for predicting mountain wave field uncertainties
NASA Astrophysics Data System (ADS)
Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal
2017-04-01
Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of absorption and dispersion and a stochastic model is constructed for ground-based acoustic signals in mountain environments.
Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)
NASA Technical Reports Server (NTRS)
Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; Mccaul, E. W., Jr.
1993-01-01
This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall program of instrument development and scientific measurement. The focus of current research and plans for next year are presented.
NASA Astrophysics Data System (ADS)
Rouholahnejad, E.; Kirchner, J. W.
2016-12-01
Evapotranspiration (ET) is a key process in land-climate interactions and affects the dynamics of the atmosphere at local and regional scales. In estimating ET, most earth system models average over considerable sub-grid heterogeneity in land surface properties, precipitation (P), and potential evapotranspiration (PET). This spatial averaging could potentially bias ET estimates, due to the nonlinearities in the underlying relationships. In addition, most earth system models ignore lateral redistribution of water within and between grid cells, which could potentially alter both local and regional ET. Here we present a first attempt to quantify the effects of spatial heterogeneity and lateral redistribution on grid-cell-averaged ET as seen from the atmosphere over heterogeneous landscapes. Using a Budyko framework to express ET as a function of P and PET, we quantify how sub-grid heterogeneity affects average ET at the scale of typical earth system model grid cells. We show that averaging over sub-grid heterogeneity in P and PET, as typical earth system models do, leads to overestimates of average ET. We use a similar approach to quantify how lateral redistribution of water could affect average ET, as seen from the atmosphere. We show that where the aridity index P/PET increases with altitude, gravitationally driven lateral redistribution will increase average ET, implying that models that neglect lateral moisture redistribution will underestimate average ET. In contrast, where the aridity index P/PET decreases with altitude, gravitationally driven lateral redistribution will decrease average ET. This approach yields a simple conceptual framework and mathematical expressions for determining whether, and how much, spatial heterogeneity and lateral redistribution can affect regional ET fluxes as seen from the atmosphere. This analysis provides the basis for quantifying heterogeneity and redistribution effects on ET at regional and continental scales, which will be the focus of future work.
A Minimal Three-Dimensional Tropical Cyclone Model.
NASA Astrophysics Data System (ADS)
Zhu, Hongyan; Smith, Roger K.; Ulrich, Wolfgang
2001-07-01
A minimal 3D numerical model designed for basic studies of tropical cyclone behavior is described. The model is formulated in coordinates on an f or plane and has three vertical levels, one characterizing a shallow boundary layer and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale. The subgrid-scale schemes are based on the mass-flux models suggested by Arakawa and Ooyama in the late 1960s, but modified to include the effects of precipitation-cooled downdrafts. They differ from one another in the closure that determines the cloud-base mass flux. One closure is based on the assumption of boundary layer quasi-equilibrium proposed by Raymond and Emanuel.It is shown that a realistic hurricane-like vortex develops from a moderate strength initial vortex, even when the initial environment is slightly stable to deep convection. This is true for all three cumulus schemes as well as in the case where only the explicit release of latent heat is included. In all cases there is a period of gestation during which the boundary layer moisture in the inner core region increases on account of surface moisture fluxes, followed by a period of rapid deepening. Precipitation from the convection scheme dominates the explicit precipitation in the early stages of development, but this situation is reversed as the vortex matures. These findings are similar to those of Baik et al., who used the Betts-Miller parameterization scheme in an axisymmetric model with 11 levels in the vertical. The most striking difference between the model results using different convection schemes is the length of the gestation period, whereas the maximum intensity attained is similar for the three schemes. The calculations suggest the hypothesis that the period of rapid development in tropical cyclones is accompanied by a change in the character of deep convection in the inner core region from buoyantly driven, predominantly upright convection to slantwise forced moist ascent.
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.
2015-12-01
The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate the hydrological dynamics of the Delaware River basin will be assessed by comparing the model results (both hydrological performance and numerical efficiency) with the standard setup of the NOAH-MP model and a high-resolution (1km) version of NOAH-MP, which also explicitly accounts for lateral subsurface and overland flow.
On the Interactions Between Planetary and Mesoscale Dynamics in the Oceans
NASA Astrophysics Data System (ADS)
Grooms, I.; Julien, K. A.; Fox-Kemper, B.
2011-12-01
Multiple-scales asymptotic methods are used to investigate the interaction of planetary and mesoscale dynamics in the oceans. We find three regimes. In the first, the slow, large-scale planetary flow sets up a baroclinically unstable background which leads to vigorous mesoscale eddy generation, but the eddy dynamics do not affect the planetary dynamics. In the second, the planetary flow feels the effects of the eddies, but appears to be unable to generate them. The first two regimes rely on horizontally isotropic large-scale dynamics. In the third regime, large-scale anisotropy, as exists for example in the Antarctic Circumpolar Current and in western boundary currents, allows the large-scale dynamics to both generate and respond to mesoscale eddies. We also discuss how the investigation may be brought to bear on the problem of parameterization of unresolved mesoscale dynamics in ocean general circulation models.
NASA Astrophysics Data System (ADS)
Verma, Aman; Mahesh, Krishnan
2012-08-01
The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.
NASA Astrophysics Data System (ADS)
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.
2004-11-01
Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Shang, Jianying; Shan, Huimei
2014-02-04
The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relativelymore » homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.« less
NASA Astrophysics Data System (ADS)
Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-01
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less
NASA Astrophysics Data System (ADS)
Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng
2018-02-01
Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.
Are quantitative sensitivity analysis methods always reliable?
NASA Astrophysics Data System (ADS)
Huang, X.
2016-12-01
Physical parameterizations developed to represent subgrid-scale physical processes include various uncertain parameters, leading to large uncertainties in today's Earth System Models (ESMs). Sensitivity Analysis (SA) is an efficient approach to quantitatively determine how the uncertainty of the evaluation metric can be apportioned to each parameter. Also, SA can identify the most influential parameters, as a result to reduce the high dimensional parametric space. In previous studies, some SA-based approaches, such as Sobol' and Fourier amplitude sensitivity testing (FAST), divide the parameters into sensitive and insensitive groups respectively. The first one is reserved but the other is eliminated for certain scientific study. However, these approaches ignore the disappearance of the interactive effects between the reserved parameters and the eliminated ones, which are also part of the total sensitive indices. Therefore, the wrong sensitive parameters might be identified by these traditional SA approaches and tools. In this study, we propose a dynamic global sensitivity analysis method (DGSAM), which iteratively removes the least important parameter until there are only two parameters left. We use the CLM-CASA, a global terrestrial model, as an example to verify our findings with different sample sizes ranging from 7000 to 280000. The result shows DGSAM has abilities to identify more influential parameters, which is confirmed by parameter calibration experiments using four popular optimization methods. For example, optimization using Top3 parameters filtered by DGSAM could achieve substantial improvement against Sobol' by 10%. Furthermore, the current computational cost for calibration has been reduced to 1/6 of the original one. In future, it is necessary to explore alternative SA methods emphasizing parameter interactions.
Parallel Simulation of Unsteady Turbulent Flames
NASA Technical Reports Server (NTRS)
Menon, Suresh
1996-01-01
Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.
Assessment of zero-equation SGS models for simulating indoor environment
NASA Astrophysics Data System (ADS)
Taghinia, Javad; Rahman, Md Mizanur; Tse, Tim K. T.
2016-12-01
The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier-Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman-Agarwal-Siikonen-Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.
Dynamical Scaling Relations and the Angular Momentum Problem in the FIRE Simulations
NASA Astrophysics Data System (ADS)
Schmitz, Denise; Hopkins, Philip F.; Quataert, Eliot; Keres, Dusan; Faucher-Giguere, Claude-Andre
2015-01-01
Simulations are an extremely important tool with which to study galaxy formation and evolution. However, even state-of-the-art simulations still fail to accurately predict important galaxy properties such as star formation rates and dynamical scaling relations. One possible explanation is the inadequacy of sub-grid models to capture the range of stellar feedback mechanisms which operate below the resolution limit of simulations. FIRE (Feedback in Realistic Environments) is a set of high-resolution cosmological galaxy simulations run using the code GIZMO. It includes more realistic models for various types of feedback including radiation pressure, supernovae, stellar winds, and photoionization and photoelectric heating. Recent FIRE results have demonstrated good agreement with the observed stellar mass-halo mass relation as well as more realistic star formation histories than previous simulations. We investigate the effects of FIRE's improved feedback prescriptions on the simulation "angular momentum problem," i.e., whether FIRE can reproduce observed scaling relations between galaxy stellar mass and rotational/dispersion velocities.
NASA Astrophysics Data System (ADS)
Yang, Xiang
2017-11-01
The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.
NASA Astrophysics Data System (ADS)
Lee, J.; Zhang, Y.; Klein, S. A.
2017-12-01
The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to account for more realistic situations. Our goal is to assist answering the question: "Do the sub-grid scale land surface heterogeneity matter for the weather and climate modeling?" This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 736011.
Effect of particle size distribution on the hydrodynamics of dense CFB risers
NASA Astrophysics Data System (ADS)
Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed
2015-11-01
Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.
Multiscale Cloud System Modeling
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Moncrieff, Mitchell W.
2009-01-01
The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.
As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less
A test harness for accelerating physics parameterization advancements into operations
NASA Astrophysics Data System (ADS)
Firl, G. J.; Bernardet, L.; Harrold, M.; Henderson, J.; Wolff, J.; Zhang, M.
2017-12-01
The process of transitioning advances in parameterization of sub-grid scale processes from initial idea to implementation is often much quicker than the transition from implementation to use in an operational setting. After all, considerable work must be undertaken by operational centers to fully test, evaluate, and implement new physics. The process is complicated by the scarcity of like-to-like comparisons, availability of HPC resources, and the ``tuning problem" whereby advances in physics schemes are difficult to properly evaluate without first undertaking the expensive and time-consuming process of tuning to other schemes within a suite. To address this process shortcoming, the Global Model TestBed (GMTB), supported by the NWS NGGPS project and undertaken by the Developmental Testbed Center, has developed a physics test harness. It implements the concept of hierarchical testing, where the same code can be tested in model configurations of varying complexity from single column models (SCM) to fully coupled, cycled global simulations. Developers and users may choose at which level of complexity to engage. Several components of the physics test harness have been implemented, including a SCM and an end-to-end workflow that expands upon the one used at NOAA/EMC to run the GFS operationally, although the testbed components will necessarily morph to coincide with changes to the operational configuration (FV3-GFS). A standard, relatively user-friendly interface known as the Interoperable Physics Driver (IPD) is available for physics developers to connect their codes. This prerequisite exercise allows access to the testbed tools and removes a technical hurdle for potential inclusion into the Common Community Physics Package (CCPP). The testbed offers users the opportunity to conduct like-to-like comparisons between the operational physics suite and new development as well as among multiple developments. GMTB staff have demonstrated use of the testbed through a comparison between the 2017 operational GFS suite and one containing the Grell-Freitas convective parameterization. An overview of the physics test harness and its early use will be presented.
Predicting the Effects of Man-Made Fishing Canals on Floodplain Inundation - A Modelling Study
NASA Astrophysics Data System (ADS)
Shastry, A. R.; Durand, M. T.; Neal, J. C.; Fernandez, A.; Hamilton, I.; Kari, S.; Laborde, S.; Mark, B. G.; Arabi, M.; Moritz, M.; Phang, S. C.
2016-12-01
The Logone floodplain in northern Cameroon is an excellent example of coupled human-natural systems because of strong couplings between the social, ecological and hydrologic systems. Overbank flow from the Logone River in September and October is essential for agriculture and fishing livelihoods. Fishers dig canals to catch fish during the flood's recession to the river in November and December by installing nets at the intersection of canals and the river. Fishing canals connect the river to natural depressions in the terrain and may serve as a man-made extension of the river drainage network. In the last four decades, there has been an exponential increase in the number of canals which may affect flood hydraulics and the fishery. The goal of this study is to characterize the relationship between the fishing canals and flood dynamics in the Logone floodplain, specifically, parameters of flooding and recession timings and the duration of inundation. To do so, we model the Bara region ( 30 km2) of the floodplain using LISFLOOD-FP, a two-dimensional hydrodynamic model with sub-grid parameterizations of canals. We use a simplified version of the hydraulic system at a grid-cell size of 30-m, using synthetic topography, parameterized fishing canals, and representing fishnets as a combination of weir and mesh screens. The inflow at Bara is obtained from a separate, lower resolution (1-km grid-cell) model forced by daily discharge records obtained from Katoa, located 25-km upstream of Bara. Preliminary results show more canals lead to early recession of flood and a shorter duration of flood inundation. A shorter duration of flood inundation reduces the period of fish growth and will affect fisher catch returns. Understanding the couplings within the system is important for predicting long-term dynamics and the impact of building more fishing canals.
A novel representation of groundwater dynamics in large-scale land surface modelling
NASA Astrophysics Data System (ADS)
Rahman, Mostaquimur; Rosolem, Rafael; Kollet, Stefan
2017-04-01
Land surface processes are connected to groundwater dynamics via shallow soil moisture. For example, groundwater affects evapotranspiration (by influencing the variability of soil moisture) and runoff generation mechanisms. However, contemporary Land Surface Models (LSM) generally consider isolated soil columns and free drainage lower boundary condition for simulating hydrology. This is mainly due to the fact that incorporating detailed groundwater dynamics in LSMs usually requires considerable computing resources, especially for large-scale applications (e.g., continental to global). Yet, these simplifications undermine the potential effect of groundwater dynamics on land surface mass and energy fluxes. In this study, we present a novel approach of representing high-resolution groundwater dynamics in LSMs that is computationally efficient for large-scale applications. This new parameterization is incorporated in the Joint UK Land Environment Simulator (JULES) and tested at the continental-scale.
NASA Astrophysics Data System (ADS)
Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc
2018-05-01
The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.
NASA Astrophysics Data System (ADS)
Rouholahnejad, E.; Fan, Y.; Kirchner, J. W.; Miralles, D. G.
2017-12-01
Most Earth system models (ESM) average over considerable sub-grid heterogeneity in land surface properties, and overlook subsurface lateral flow. This could potentially bias evapotranspiration (ET) estimates and has implications for future temperature predictions, since overestimations in ET imply greater latent heat fluxes and potential underestimation of dry and warm conditions in the context of climate change. Here we quantify the bias in evaporation estimates that may arise from the fact that ESMs average over considerable heterogeneity in surface properties, and also neglect lateral transfer of water across the heterogeneous landscapes at global scale. We use a Budyko framework to express ET as a function of P and PET to derive simple sub-grid closure relations that quantify how spatial heterogeneity and lateral transfer could affect average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimation of average ET. Our analysis at global scale shows that the effects of sub-grid heterogeneity will be most pronounced in steep mountainous areas where the topographic gradient is high and where P is inversely correlated with PET across the landscape. In addition, we use the Total Water Storage (TWS) anomaly estimates from the Gravity Recovery and Climate Experiment (GRACE) remote sensing product and assimilate it into the Global Land Evaporation Amsterdam Model (GLEAM) to correct for existing free drainage lower boundary condition in GLEAM and quantify whether, and how much, accounting for changes in terrestrial storage can improve the simulation of soil moisture and regional ET fluxes at global scale.
Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H
2014-07-01
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.
A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows
NASA Astrophysics Data System (ADS)
Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi
2016-09-01
Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).
Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models
NASA Astrophysics Data System (ADS)
Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.
2016-12-01
Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...
2016-03-18
As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less
Plant, R. S.; Woolnough, S. J.; Sessions, S.; Herman, M. J.; Sobel, A.; Wang, S.; Kim, D.; Cheng, A.; Bellon, G.; Peyrille, P.; Ferry, F.; Siebesma, P.; van Ulft, L.
2016-01-01
Abstract As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large‐scale dynamics in a set of cloud‐resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative‐convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison of the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large‐scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column‐relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large‐scale velocity profiles which are smoother and less top‐heavy compared to those produced by the WTG simulations. These large‐scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two‐way feedback between convection and the large‐scale circulation. PMID:27642501
Development and application of a reactive plume-in-grid model: evaluation over Greater Paris
NASA Astrophysics Data System (ADS)
Korsakissok, I.; Mallet, V.
2010-09-01
Emissions from major point sources are badly represented by classical Eulerian models. An overestimation of the horizontal plume dilution, a bad representation of the vertical diffusion as well as an incorrect estimate of the chemical reaction rates are the main limitations of such models in the vicinity of major point sources. The plume-in-grid method is a multiscale modeling technique that couples a local-scale Gaussian puff model with an Eulerian model in order to better represent these emissions. We present the plume-in-grid model developed in the air quality modeling system Polyphemus, with full gaseous chemistry. The model is evaluated on the metropolitan Île-de-France region, during six months (summer 2001). The subgrid-scale treatment is used for 89 major point sources, a selection based on the emission rates of NOx and SO2. Results with and without the subgrid treatment of point emissions are compared, and their performance by comparison to the observations on measurement stations is assessed. A sensitivity study is also carried out, on several local-scale parameters as well as on the vertical diffusion within the urban area. Primary pollutants are shown to be the most impacted by the plume-in-grid treatment. SO2 is the most impacted pollutant, since the point sources account for an important part of the total SO2 emissions, whereas NOx emissions are mostly due to traffic. The spatial impact of the subgrid treatment is localized in the vicinity of the sources, especially for reactive species (NOx and O3). Ozone is mostly sensitive to the time step between two puff emissions which influences the in-plume chemical reactions, whereas the almost-passive species SO2 is more sensitive to the injection time, which determines the duration of the subgrid-scale treatment. Future developments include an extension to handle aerosol chemistry, and an application to the modeling of line sources in order to use the subgrid treatment with road emissions. The latter is expected to lead to more striking results, due to the importance of traffic emissions for the pollutants of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Ma, Po-Lun; Xiao, Heng
2013-08-29
The ability to use multi-resolution dynamical cores for weather and climate modeling is pushing the atmospheric community towards developing scale aware or, more specifically, resolution aware parameterizations that will function properly across a range of grid spacings. Determining the resolution dependence of specific model parameterizations is difficult due to strong resolution dependencies in many pieces of the model. This study presents the Separate Physics and Dynamics Experiment (SPADE) framework that can be used to isolate the resolution dependent behavior of specific parameterizations without conflating resolution dependencies from other portions of the model. To demonstrate the SPADE framework, the resolution dependencemore » of the Morrison microphysics from the Weather Research and Forecasting model and the Morrison-Gettelman microphysics from the Community Atmosphere Model are compared for grid spacings spanning the cloud modeling gray zone. It is shown that the Morrison scheme has stronger resolution dependence than Morrison-Gettelman, and that the ability of Morrison-Gettelman to use partial cloud fractions is not the primary reason for this difference. This study also discusses how to frame the issue of resolution dependence, the meaning of which has often been assumed, but not clearly expressed in the atmospheric modeling community. It is proposed that parameterization resolution dependence can be expressed in terms of "resolution dependence of the first type," RA1, which implies that the parameterization behavior converges towards observations with increasing resolution, or as "resolution dependence of the second type," RA2, which requires that the parameterization reproduces the same behavior across a range of grid spacings when compared at a given coarser resolution. RA2 behavior is considered the ideal, but brings with it serious implications due to limitations of parameterizations to accurately estimate reality with coarse grid spacing. The type of resolution awareness developers should target in their development depends upon the particular modeler’s application.« less
NASA Technical Reports Server (NTRS)
Luo, Yali; Xu, Kuan-Man; Morrison, Hugh; McFarquhar, Greg M.; Wang, Zhien; Zhang, Gong
2007-01-01
A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a factor of 3 due to interactions between the excessive LW radiative cooling and extra cloud water; heating caused by phase change of hydrometeors could affect the LWC and cloud top height by partially canceling out the LW radiative cooling. It is further shown that the resolved dynamical circulation appears to contribute more greatly to the evolution of the MPS cloud layers than the parameterized subgrid-scale circulation.
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.
1996-01-01
Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.
NASA Astrophysics Data System (ADS)
Schubert, J. E.; Sanders, B. F.
2011-12-01
Urban landscapes are at the forefront of current research efforts in the field of flood inundation modeling for two major reasons. First, urban areas hold relatively large economic and social importance and as such it is imperative to avoid or minimize future damages. Secondly, urban flooding is becoming more frequent as a consequence of continued development of impervious surfaces, population growth in cities, climate change magnifying rainfall intensity, sea level rise threatening coastal communities, and decaying flood defense infrastructure. In reality urban landscapes are particularly challenging to model because they include a multitude of geometrically complex features. Advances in remote sensing technologies and geographical information systems (GIS) have promulgated fine resolution data layers that offer a site characterization suitable for urban inundation modeling including a description of preferential flow paths, drainage networks and surface dependent resistances to overland flow. Recent research has focused on two-dimensional modeling of overland flow including within-curb flows and over-curb flows across developed parcels. Studies have focused on mesh design and parameterization, and sub-grid models that promise improved performance relative to accuracy and/or computational efficiency. This presentation addresses how fine-resolution data, available in Los Angeles County, are used to parameterize, initialize and execute flood inundation models for the 1963 Baldwin Hills dam break. Several commonly used model parameterization strategies including building-resistance, building-block and building hole are compared with a novel sub-grid strategy based on building-porosity. Performance of the models is assessed based on the accuracy of depth and velocity predictions, execution time, and the time and expertise required for model set-up. The objective of this study is to assess field-scale applicability, and to obtain a better understanding of advantages and drawbacks of each method, and to recommend best practices for future studies. The Baldwin Hills dam-break flood is interesting for a couple of reasons. First, the flood caused high velocity, rapidly varied flow through a residential neighborhood and extensive damage to dozens residential structures. These conditions pose a challenge for many numerical models, the test is a rigorous one. Second, previous research has shown that flood extent predictions are sensitive to topographic data and stream flow predictions are sensitive to resistance parameters. Given that the representation of buildings affects the modeling of topography and resistance, a sensitivity to the representation of buildings is expected. Lastly, the site is supported by excellent geospatial data including validation datasets, and is made available through the Los Angeles County Imagery Acquisition Consortium (LAR-IAC), a joint effort of many public agencies in Los Angeles County to provide county-wide data. Hence, a broader aim of this study is to characterize the most useful aspects of the LAR-IAC data from a flood mapping perspective.
Development and application of a reactive plume-in-grid model: evaluation over Greater Paris
NASA Astrophysics Data System (ADS)
Korsakissok, I.; Mallet, V.
2010-02-01
Emissions from major point sources are badly represented by classical Eulerian models. An overestimation of the horizontal plume dilution, a bad representation of the vertical diffusion as well as an incorrect estimate of the chemical reaction rates are the main limitations of such models in the vicinity of major point sources. The plume-in-grid method is a multiscale modeling technique that couples a local-scale Gaussian puff model with an Eulerian model in order to better represent these emissions. We present the plume-in-grid model developed in the air quality modeling system Polyphemus, with full gaseous chemistry. The model is evaluated on the metropolitan Île-de-France region, during six months (summer 2001). The subgrid-scale treatment is used for 89 major point sources, a selection based on the emission rates of NOx and SO2. Results with and without the subgrid treatment of point emissions are compared, and their performance by comparison to the observations at measurement stations is assessed. A sensitivity study is also carried out, on several local-scale parameters as well as on the vertical diffusion within the urban area. Primary pollutants are shown to be the most impacted by the plume-in-grid treatment, with a decrease in RMSE by up to about -17% for SO2 and -7% for NO at measurement stations. SO2 is the most impacted pollutant, since the point sources account for an important part of the total SO2 emissions, whereas NOx emissions are mostly due to traffic. The spatial impact of the subgrid treatment is localized in the vicinity of the sources, especially for reactive species (NOx and O3). Reactive species are mostly sensitive to the local-scale parameters, such as the time step between two puff emissions which influences the in-plume chemical reactions, whereas the almost-passive species SO2 is more sensitive to the injection time, which determines the duration of the subgrid-scale treatment. Future developments include an extension to handle aerosol chemistry, and an application to the modeling of line sources in order to use the subgrid treatment with road emissions. The latter is expected to lead to more striking results, due to the importance of traffic emissions for the pollutants of interest.
NASA Astrophysics Data System (ADS)
Toyota, Takenobu; Kimura, Noriaki
2018-02-01
The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.
NASA Astrophysics Data System (ADS)
Yue, Chao; Ciais, Philippe; Luyssaert, Sebastiaan; Li, Wei; McGrath, Matthew J.; Chang, Jinfeng; Peng, Shushi
2018-01-01
Land use change (LUC) is among the main anthropogenic disturbances in the global carbon cycle. Here we present the model developments in a global dynamic vegetation model ORCHIDEE-MICT v8.4.2 for a more realistic representation of LUC processes. First, we included gross land use change (primarily shifting cultivation) and forest wood harvest in addition to net land use change. Second, we included sub-grid evenly aged land cohorts to represent secondary forests and to keep track of the transient stage of agricultural lands since LUC. Combination of these two features allows the simulation of shifting cultivation with a rotation length involving mainly secondary forests instead of primary ones. Furthermore, a set of decision rules regarding the land cohorts to be targeted in different LUC processes have been implemented. Idealized site-scale simulation has been performed for miombo woodlands in southern Africa assuming an annual land turnover rate of 5 % grid cell area between forest and cropland. The result shows that the model can correctly represent forest recovery and cohort aging arising from agricultural abandonment. Such a land turnover process, even though without a net change in land cover, yields carbon emissions largely due to the imbalance between the fast release from forest clearing and the slow uptake from agricultural abandonment. The simulation with sub-grid land cohorts gives lower emissions than without, mainly because the cleared secondary forests have a lower biomass carbon stock than the mature forests that are otherwise cleared when sub-grid land cohorts are not considered. Over the region of southern Africa, the model is able to account for changes in different forest cohort areas along with the historical changes in different LUC activities, including regrowth of old forests when LUC area decreases. Our developments provide possibilities to account for continental or global forest demographic change resulting from past anthropogenic and natural disturbances.
NASA Astrophysics Data System (ADS)
Marras, S.; Suckale, J.; Eguzkitza, B.; Houzeaux, G.; Vázquez, M.; Lesage, A. C.
2016-12-01
The propagation of tsunamis in the open ocean has been studied in detail with many excellent numerical approaches available to researchers. Our understanding of the processes that govern the onshore propagation of tsunamis is less advanced. Yet, the reach of tsunamis on land is an important predictor of the damage associated with a given event, highlighting the need to investigate the factors that govern tsunami propagation onshore. In this study, we specifically focus on understanding the effect of bottom roughness at a variety of scales. The term roughness is to be understood broadly, as it represents scales ranging from small features like rocks, to vegetation, up to the size of larger structures and topography. In this poster, we link applied mathematics, computational fluid dynamics, and tsunami physics to analyze the small scales features of coastal hydrodynamics and the effect of roughness on the motion of tsunamis as they run up a sloping beach and propagate inland. We solve the three-dimensional Navier-Stokes equations of incompressible flows with free surface, which is tracked by a level set function in combination with an accurate re-distancing scheme. We discretize the equations via linear finite elements for space approximation and fully implicit time integration. Stabilization is achieved via the variational multiscale method whereas the subgrid scales for our large eddy simulations are modeled using a dynamically adaptive Smagorinsky eddy viscosity. As the geometrical characteristics of roughness in this study vary greatly across different scales, we implement a scale-dependent representation of the roughness elements. We model the smallest sub-grid scale roughness features by the use of a properly defined law of the wall. Furthermore, we utilize a Manning formula to compute the shear stress at the boundary. As the geometrical scales become larger, we resolve the geometry explicitly and compute the effective volume drag introduced by large scale immersed bodies. This study is a necessary step to verify and validate our model before proceeding further into the simulation of sediment transport in turbulent free surface flows. The simulation of such problems requires a space and time-dependent viscosity to model the effect of solid bodies transported by the incoming flow on onshore tsunami propagation.
Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data
NASA Astrophysics Data System (ADS)
McCaffrey, Katherine
Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing the tidal channel. TurbSim models statistics at the height of a turbine hub (5m) well, but do not model coherent events, while the LES does create these events, but not realistically in this configuration, based on comparisons with observations. Each of the datasets have disadvantages when it comes to observing turbulence. The Argo network is sparse in space, and few measurements are taken simultaneously in time. Therefore spatial and temporal averaging is needed, which requires the turbulence to be homogeneous and stationary if it is to be generalized. Though the acoustic Doppler current profiler provides a vertical profile of velocities, the fluctuations are dominated by instrument noise and beam spread, preventing it from being used for most turbulence metrics. ADV measurements have much less noise, and no beam spread, but the observations are made at one point in space, limiting us to temporal statistics or an assumption of "frozen turbulence" to infer spatial scales. As for the models, TurbSim does not have any real-world forcing, and uses parameterized spectra, and coherence functions and randomizes phase information, while LES models must make assumptions about sub-grid scales, which may be inaccurate. Additionally, all models are set up with idealizations of the forcing and domain, which may make the results unlike observations in a particular location and time. Despite these difficulties in observing and characterizing turbulence, I present several quantities that use the imperfect, yet still valuable observations, to attain a better description of the turbulence in the oceans.
LONG-TERM PROJECTIONS OF EASTERN OYSTER POPULATIONS UNDER VARIOUS MANAGEMENT SCENARIOS
Time series of fishery-dependent and fishery-independent data were used to parameterize a model of oyster population dynamics for Maryland's Chesapeake Bay. Model parameters are (1) fishing mortality, estimated from differences between predicted and reported landings scaled to a ...
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.
1999-01-01
The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general/regional circulation models; obtain similar datasets to improve understanding and predictive capabilities for similarly-scaled processes and features; and simulate and validate the performance of prospective satellite Doppler lidars for global tropospheric wind measurement.
NASA Astrophysics Data System (ADS)
Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.; Levy, M.; Taylor, M.
2014-12-01
Snowpack is crucial for the western USA, providing around 75% of the total fresh water supply (Cayan et al., 1996) and buffering against seasonal aridity impacts on agricultural, ecosystem, and urban water demands. The resilience of the California water system is largely dependent on natural stores provided by snowpack. This resilience has shown vulnerabilities due to anthropogenic global climate change. Historically, the northern Sierras showed a net decline of 50-75% in snow water equivalent (SWE) while the southern Sierras showed a net accumulation of 30% (Mote et al., 2005). Future trends of SWE highlight that western USA SWE may decline by 40-70% (Pierce and Cayan, 2013), snowfall may decrease by 25-40% (Pierce and Cayan, 2013), and more winter storms may tend towards rain rather than snow (Bales et al., 2006). The volatility of Sierran snowpack presents a need for scientific tools to help water managers and policy makers assess current and future trends. A burgeoning tool to analyze these trends comes in the form of variable-resolution global climate modeling (VRGCM). VRGCMs serve as a bridge between regional and global models and provide added resolution in areas of need, eliminate lateral boundary forcings, provide model runtime speed up, and utilize a common dynamical core, physics scheme and sub-grid scale parameterization package. A cubed-sphere variable-resolution grid with 25 km horizontal resolution over the western USA was developed for use in the Community Atmosphere Model (CAM) within the Community Earth System Model (CESM). A 25-year three-member ensemble climatology (1980-2005) is presented and major snowpack metrics such as SWE, snow depth, snow cover, and two-meter surface temperature are assessed. The ensemble simulation is also compared to observational, reanalysis, and WRF model datasets. The variable-resolution model provides a mechanism for reaching towards non-hydrostatic scales and simulations are currently being developed with refined nests of 12.5km resolution over California.
Studying Turbulence Using Numerical Simulation Databases. 3: Proceedings of the 1990 Summer Program
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1990-01-01
Papers that cover the following topics are presented: subgrid scale modeling; turbulence modeling; turbulence structure, transport, and control; small scales mixing; turbulent reacting flows; and turbulence theory.
Structure and modeling of turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, E.A.
The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scalemore » motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).« less
Short‐term time step convergence in a climate model
Rasch, Philip J.; Taylor, Mark A.; Jablonowski, Christiane
2015-01-01
Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral‐element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process‐coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid‐scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full‐physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid‐scale physical parameterizations, the stratiform cloud schemes are associated with the largest time‐stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time‐stepping errors and identify the related model sensitivities. PMID:27660669
NASA Astrophysics Data System (ADS)
Burtch, D.; Mullendore, G. L.; Kennedy, A. D.; Simms, M.; Kirilenko, A.; Coburn, J.
2015-12-01
Understanding the impacts of global climate change on regional scales is crucial for accurate decision-making by state and local governments. This is especially true in North Dakota, where climate change can have significant consequences on agriculture, its traditionally strongest economic sector. This region of the country shows a high variability in precipitation, especially in the summer months and so the focus of this study is on warm season processes over decadal time scales. The Weather Research and Forecast (WRF) model is used to dynamically downscale two Global Circulation Models (GCMs) from the CMIP5 ensemble in order to determine the microphysical parameterization and nudging techniques (spectral or analysis) best suited for this region. The downscaled domain includes the entirety of North Dakota at a horizontal resolution of 5 km. In addition, smaller domains of 1 km horizontal resolution are centered over regions of focused hydrological importance. The dynamically downscaled simulations are compared with both gridded observational data and statistically downscaled data to evaluate the performance of the simulations. Preliminary results have shown a marked difference between the two downscaled GCMs in terms of temperature and precipitation bias. Choice of microphysical parameterization has not shown to create any significant differences in the temperature fields. However, the precipitation fields do appear to be most affected by the microphysical parameterization, regardless of the choice of GCM. Implications on the unique water resource challenges faced in this region will also be discussed.
Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry
NASA Astrophysics Data System (ADS)
Auzillon, Pierre; Riber, Eléonore; Gicquel, Laurent Y. M.; Gicquel, Olivier; Darabiha, Nasser; Veynante, Denis; Fiorina, Benoît
2013-01-01
This article presents Large Eddy Simulations (LES) of a realistic aeronautical combustor device: the chamber CTA1 designed by TURBOMECA. Under nominal operating conditions, experiments show hot spots observed on the combustor walls, in the vicinity of the injectors. These high temperature regions disappear when modifying the fuel stream equivalence ratio. In order to account for detailed chemistry effects within LES, the numerical simulation uses the recently developed turbulent combustion model F-TACLES (Filtered TAbulated Chemistry for LES). The principle of this model is first to generate a lookup table where thermochemical variables are computed from a set of filtered laminar unstrained premixed flamelets. To model the interactions between the flame and the turbulence at the subgrid scale, a flame wrinkling analytical model is introduced and the Filtered Density Function (FDF) of the mixture fraction is modeled by a β function. Filtered thermochemical quantities are stored as a function of three coordinates: the filtered progress variable, the filtered mixture fraction and the mixture fraction subgrid scale variance. The chemical lookup table is then coupled with the LES using a mathematical formalism that ensures an accurate prediction of the flame dynamics. The numerical simulation of the CTA1 chamber with the F-TACLES turbulent combustion model reproduces fairly the temperature fields observed in experiments. In particular the influence of the fuel stream equivalence ratio on the flame position is well captured.
NASA Technical Reports Server (NTRS)
Wey, Thomas
2017-01-01
This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).
On the urban land-surface impact on climate over Central Europe
NASA Astrophysics Data System (ADS)
Huszar, Peter; Halenka, Tomas; Belda, Michal; Zemankova, Katerina; Zak, Michal
2014-05-01
For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate over central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM) for urban and suburban land surface. This can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface processes on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0,6 m s-1 and both increases and decreases in summer depending the location with respect to cities and daytime (changes up to 0.3 ms-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts in our simulations the summer precipitation rate showing decrease over cities up to - 2 mm day-1. We further showed, that significant temperature increases are not limited to the urban canopy layer but spawn the whole boundary layer. Above that, a small but statistically significant temperature decrease is modeled. The comparison with observational data showed significant improvement in modeling the monthly surface temperatures in summer and the models better describe the diurnal temperature variation reducing the afternoon and evening bias due to the UHI development, which was not captured by the model if one does not apply the urban parameterization. Sensitivity experiments were carried out as well to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs, anthropogenic heat release etc. and showed that the results are rather robust and the choice of the key SLUCM parameters impacts the results only slightly (mainly temperature, ZPBL and wind velocity). Further, the important conclusion is that statistically significant impacts are modeled not only over large urbanized areas (cities), but the influence of cities is evident over remote rural areas as well with minor or without any urban surfaces. We show that this is the result of the combined effect of the distant influence of surrounding cities and the influence of the minor local urban surface coverage.
NASA Technical Reports Server (NTRS)
Bellan, J.; Okongo, N.
2000-01-01
A study of emerging turbulent scales entropy production is conducted for a supercritical shear layer as a precursor to the eventual modeling of Subgrid Scales (from a turbulent state) leading to Large Eddy Simulations.
A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit
NASA Astrophysics Data System (ADS)
Smith, Edward
2016-11-01
What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.
NASA Astrophysics Data System (ADS)
Rosolem, R.; Rahman, M.; Kollet, S. J.; Wagener, T.
2017-12-01
Understanding the impacts of land cover and climate changes on terrestrial hydrometeorology is important across a range of spatial and temporal scales. Earth System Models (ESMs) provide a robust platform for evaluating these impacts. However, current ESMs lack the representation of key hydrological processes (e.g., preferential water flow, and direct interactions with aquifers) in general. The typical "free drainage" conceptualization of land models can misrepresent the magnitude of those interactions, consequently affecting the exchange of energy and water at the surface as well as estimates of groundwater recharge. Recent studies show the benefits of explicitly simulating the interactions between subsurface and surface processes in similar models. However, such parameterizations are often computationally demanding resulting in limited application for large/global-scale studies. Here, we take a different approach in developing a novel parameterization for groundwater dynamics. Instead of directly adding another complex process to an established land model, we examine a set of comprehensive experimental scenarios using a very robust and establish three-dimensional hydrological model to develop a simpler parameterization that represents the aquifer to land surface interactions. The main goal of our developed parameterization is to simultaneously maximize the computational gain (i.e., "efficiency") while minimizing simulation errors in comparison to the full 3D model (i.e., "robustness") to allow for easy implementation in ESMs globally. Our study focuses primarily on understanding both the dynamics for groundwater recharge and discharge, respectively. Preliminary results show that our proposed approach significantly reduced the computational demand while model deviations from the full 3D model are considered to be small for these processes.
NASA Astrophysics Data System (ADS)
Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.
2016-06-01
Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.
Predictions of Bedforms in Tidal Inlets and River Mouths
2016-07-31
that community modeling environment. APPROACH Bedforms are ubiquitous in unconsolidated sediments . They act as roughness elements, altering the...flow and creating feedback between the bed and the flow and, in doing so, they are intimately tied to erosion, transport and deposition of sediments ...With this approach, grain-scale sediment transport is parameterized with simple rules to drive bedform-scale dynamics. Gallagher (2011) developed a
Numerical prediction of pollutant dispersion and transport in an atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Zeoli, Stéphanie; Bricteux, Laurent; Mech. Eng. Dpt. Team
2014-11-01
The ability to accurately predict concentration levels of air pollutant released from point sources is required in order to determine their environmental impact. A wall modeled large-eddy simulation (WMLES) of the ABL is performed using the OpenFoam based solver SOWFA (Churchfield and Lee, NREL). It uses Boussinesq approximation for buoyancy effects and takes into account Coriolis forces. A synthetic eddy method is proposed to properly model turbulence inlet velocity boundary conditions. This method will be compared with the standard pressure gradient forcing. WMLES are usually performed using a standard Smagorinsky model or its dynamic version. It is proposed here to investigate a subgrid scale (SGS) model with a better spectral behavior. To this end, a regularized variational multiscale (RVMs) model (Jeanmart and Winckelmans, 2007) is implemented together with standard wall function in order to preserve the dynamics of the large scales within the Ekman layer. The influence of the improved SGS model on the wind simulation and scalar transport will be discussed based on turbulence diagnostics.
We present results from a study testing the new boundary layer parameterization method, the canopy drag approach (DA) which is designed to explicitly simulate the effects of buildings, street and tree canopies on the dynamic, thermodynamic structure and dispersion fields in urban...
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). Here, the resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution
NASA Astrophysics Data System (ADS)
Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.
2016-12-01
Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and sedimentation models owing to the different time scales of the physical and ecological processes. The coupled model is being applied to Delaware marsh evolution in response to rising sea level and changing sediment supplies.
Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein
2011-01-01
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...
NASA Astrophysics Data System (ADS)
Behera, Abhinna; Rivière, Emmanuel; Marécal, Virginie; Rysman, Jean-François; Claud, Chantal; Burgalat, Jérémie
2017-04-01
The stratospheric water vapour (WV) has a conceding impact on the radiative and chemical budget of Earth's atmosphere. The convective overshooting (COV) at the tropics is well admitted for playing a role in transporting directly WV to the stratosphere. Nonetheless, its impact on the lower stratosphere is yet to be determined at global scale, as the satellite and other air-borne measurements are not of having fine enough resolution to quantify this impact at large scale. Therefore, efforts have been made to quantify the influence of COV over the WV budget in the tropical tropopause layer (TTL) through modelling. Our approach is to build two synthetic tropical wet-seasons; where one would be having only deep convection (DC) but no COV at all, and the second one would be having the COV, and in both cases the WV budget in the TTL would be estimated. Before that, a French-Brazilian TRO-pico campaign was carried out at Bauru, Brazil in order to understand the influence of COV on the WV budget in the TTL. The radio-sounding, and the small balloon-borne WV measurements from the campaign are being utilized to validate the model simulation. Brazilian version of Regional Atmospheric Modeling System (BRAMS) is used with a single grid system to simulate a WV variability in a wet-season. Grell's convective parameterization with ensemble closure, microphysics with double moment scheme and 7 types of hydrometeors are incorporated to simulate the WV variability for a wet-season at the tropics. The grid size of simulation is chosen to be 20 km x 20 km horizontally and from surface to 30 km altitude, so that there cannot be COV at all, only DC due to such a relatively coarse resolution. The European Centre for Medium-range Weather Forecasts (ECMWF) operational analyses data are used every 6 hours for grid initialization and boundary conditions, and grid center nudging. The simulation is carried out for a full wet-season (Nov 2012 - Mar 2013) at Brazilian scale, so that it would coincide with the TRO-pico campaign measurements. As of first step, we have already shown that, this model with only DC is well capable of producing key features of the TTL. Hence in the second step, keeping all the settings same in the model, a sub-grid scale process/parameterization is being developed in order to reproduce COV in the model. Then, we would be able to compare these two atmospheres, and it would describe quantitatively the impact of COV on the WV budget in the TTL at a continental scale. This on-going work reports about the further advancement done to introduce the COV parameterization in BRAMS by incorporating the information from satellite-borne and balloon-borne measurements. The preliminary results of the simulation with COV nudging, achieved till date of EGU assembly, will be presented.
Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A.; Frankel, Steven H.
2014-01-01
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, “Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow,” J. Fluid Mech., 582, pp. 253–280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, “Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method,” J. Comput. Phys., 227(13), pp. 6660–6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, “General Circulation Experiments With the Primitive Equations,” Mon. Weather Rev., 91(10), pp. 99–164), recently developed Vreman model (Vreman, 2004, “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications,” Phys. Fluids, 16(10), pp. 3670–3681), and the Sigma model (Nicoud et al., 2011, “Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations,” Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) (“OpenFOAM,” http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo. PMID:24801556
NASA Astrophysics Data System (ADS)
Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan
2005-04-01
The reasons for biases in regional climate simulations were investigated in an attempt to discern whether they arise from deficiencies in the model parameterizations or are due to dynamical problems. Using the Regional Atmospheric Modeling System (RAMS) forced by the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, the detailed climate over North America at 50-km resolution for June 2000 was simulated. First, the RAMS equations were modified to make them applicable to a large region, and its turbulence parameterization was corrected. The initial simulations showed large biases in the location of precipitation patterns and surface air temperatures. By implementing higher-resolution soil data, soil moisture and soil temperature initialization, and corrections to the Kain-Fritch convective scheme, the temperature biases and precipitation amount errors could be removed, but the precipitation location errors remained. The precipitation location biases could only be improved by implementing spectral nudging of the large-scale (wavelength of 2500 km) dynamics in RAMS. This corrected for circulation errors produced by interactions and reflection of the internal domain dynamics with the lateral boundaries where the model was forced by the reanalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar, E-mail: t-seideman@northwestern.edu
2014-12-14
We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify ourmore » approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.« less
NASA Astrophysics Data System (ADS)
Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.
2015-11-01
The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.
Parameterizing Coefficients of a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter-continuation software can be used on the parameterized dynamical system to derive a bifurcation diagram that accurately predicts the temporal flow behavior.
NASA Astrophysics Data System (ADS)
Gao, Yang; Leung, L. Ruby; Zhao, Chun; Hagos, Samson
2017-03-01
Simulating summer precipitation is a significant challenge for climate models that rely on cumulus parameterizations to represent moist convection processes. Motivated by recent advances in computing that support very high-resolution modeling, this study aims to systematically evaluate the effects of model resolution and convective parameterizations across the gray zone resolutions. Simulations using the Weather Research and Forecasting model were conducted at grid spacings of 36 km, 12 km, and 4 km for two summers over the conterminous U.S. The convection-permitting simulations at 4 km grid spacing are most skillful in reproducing the observed precipitation spatial distributions and diurnal variability. Notable differences are found between simulations with the traditional Kain-Fritsch (KF) and the scale-aware Grell-Freitas (GF) convection schemes, with the latter more skillful in capturing the nocturnal timing in the Great Plains and North American monsoon regions. The GF scheme also simulates a smoother transition from convective to large-scale precipitation as resolution increases, resulting in reduced sensitivity to model resolution compared to the KF scheme. Nonhydrostatic dynamics has a positive impact on precipitation over complex terrain even at 12 km and 36 km grid spacings. With nudging of the winds toward observations, we show that the conspicuous warm biases in the Southern Great Plains are related to precipitation biases induced by large-scale circulation biases, which are insensitive to model resolution. Overall, notable improvements in simulating summer rainfall and its diurnal variability through convection-permitting modeling and scale-aware parameterizations suggest promising venues for improving climate simulations of water cycle processes.
Log-Normal Turbulence Dissipation in Global Ocean Models
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor
2018-03-01
Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.
Model unification and scale-adaptivity in the Eddy-Diffusivity Mass-Flux (EDMF) approach
NASA Astrophysics Data System (ADS)
Neggers, R.; Siebesma, P.
2011-12-01
It has long been understood that the turbulent-convective transport of heat, moisture and momentum plays an important role in the dynamics and climate of the earth's atmosphere. Accordingly, the representation of these processes in General Circulation Models (GCMs) has always been an active research field. Turbulence and convection act on temporal and spatial scales that are unresolved by most present-day GCMs, and have to be represented through parametric relations. Over the years a variety of schemes has been successfully developed. Although differing widely in their details, only two basic transport models stand at the basis of most of these schemes. The first is the diffusive transport model, which can only act down-gradient. An example is the turbulent mixing at small scales. The second is the advective transport model, which can act both down-gradient and counter-gradient. A good example is the transport of heat and moisture by convective updrafts that overshoot into stable layers of air. In practice, diffusive models often make use of a K-profile method or a prognostic TKE budget, while advective models make use of a rising (and entraining) plume budget. While most transport schemes classicaly apply either the diffusive model or advective model, the relatively recently introduced Eddy-Diffusivity Mass-Flux (EDMF) approach aims to combine both techniques. By applying advection and diffusion simultaneously, one can make use of the benefits of both approaches. Since its emergence about a decade ago, the EDMF approach has been successfully applied in both research and operational circulation models. This presentation is dedicated to the EDMF framework. Apart from a short introduction to the EDMF concept and a short overview of its current implementations, our main goal is to elaborate on the opportunities EDMF brings in addressing some long-standing problems in the parameterization of turbulent-convective transport. The first problem is the need for a unified approach in the parameterization of distinct transport regimes. The main objections to a separate representation of regimes are i) artificially discrete regime-transitions, and ii) superfluous and intransparent coding. For a unified approach we need to establish what complexity is sufficient to achieve general applicability. We argue that adding only little complexity already enables the standard EDMF framework to represent multiple boundary-layer transport regimes and smooth transitions between those. The second long-standing problem is that the ever increasing computational capacity and speed has lead to increasingly fine discretizations in GCMs, which requires scale-adaptivity in a sub-grid transport model. It is argued that a flexible partitioning between advection and diffusion within EDMF, as well as the potential to introduce stochastic elements in the advective part of EDMF, creates opportunities to introduce such adaptivity. In the final part of the presentation we will attempt to give an overview of currently ongoing developments of the EDMF framework, both concerning model formulation as well as evaluation efforts of key assumptions against observational datasets and large-eddy simulation results.
Numerical simulations and parameterizations of volcanic plumes observed at Reunion Island
NASA Astrophysics Data System (ADS)
Gurwinder Sivia, Sandra; Gheusi, Francois; Mari, Celine; DiMuro, Andrea; Tulet, Pierre
2013-04-01
Volcanoes are natural composite hazards. The volcanic ejecta can have considerable impact on human health. Volcanic gases and ash, can be especially harmful to people with lung disease such as asthma. Volcanic gases that pose the greatest potential hazards are sulfur dioxide, carbon dioxide, and hydrogen fluoride. Locally, sulfur dioxide gas can lead to acid rain and air pollution downwind from a volcano. These gases can come from lava flows as well as volcano eruptive plumes. This acidic pollution can be transported by wind over large distances. To comply with regulatory rules, modeling tools are needed to accurately predict the contribution of volcanic emissions to air quality degradation. Unfortunately, the ability of existing models to simulate volcanic plume production and dispersion is currently limited by inaccurate volcanic emissions and uncertainties in plume-rise estimates. The present work is dedicated to the study of deep injections of volcanic emissions into the troposphere developed as consequence of intense but localized input of heat near eruptive mouths. This work covers three aspects. First a precise quantification of heat sources in terms of surface, geometry and heat source intensity is done for the Piton de la Fournaise volcano. Second, large eddy simulation (LES) are performed with the Meso-NH model to determine the dynamics and vertical development of volcanic plumes. The estimated energy fluxes and the geometry of the heat source is used at the bottom boundary to generate and sustain the plume, while, passive tracers are used to represent volcanic gases and their injection into the atmosphere. The realism of the simulated plumes is validated on the basis of plume observations. The LES simulations finally serve as references for the development of column parameterizations for the coarser resolution version of the model which is the third aspect of the present work. At spatial resolution coarser than ~1km, buoyant volcanic plumes are sub-grid processes. A new parameterization for the injection height is presented which is based on a modified version of the eddy-diffusivity/mass-flux scheme initially developed for the simulation of convective boundary layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho
2014-10-01
The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less
Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei Y.
2014-01-01
Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at speeds, which are much higher than the characteristic speeds of turbulent fluctuations. These effects can qualitatively change the dynamics of the explosion and, therefore, must be properly accounted for in the turbulent-flame subgrid-scale models.
The power of structural modeling of sub-grid scales - application to astrophysical plasmas
NASA Astrophysics Data System (ADS)
Georgiev Vlaykov, Dimitar; Grete, Philipp
2015-08-01
In numerous astrophysical phenomena the dynamical range can span 10s of orders of magnitude. This implies more than billions of degrees-of-freedom and precludes direct numerical simulations from ever being a realistic possibility. A physical model is necessary to capture the unresolved physics occurring at the sub-grid scales (SGS).Structural modeling is a powerful concept which renders itself applicable to various physical systems. It stems from the idea of capturing the structure of the SGS terms in the evolution equations based on the scale-separation mechanism and independently of the underlying physics. It originates in the hydrodynamics field of large-eddy simulations. We apply it to the study of astrophysical MHD.Here, we present a non-linear SGS model for compressible MHD turbulence. The model is validated a priori at the tensorial, vectorial and scalar levels against of set of high-resolution simulations of stochastically forced homogeneous isotropic turbulence in a periodic box. The parameter space spans 2 decades in sonic Mach numbers (0.2 - 20) and approximately one decade in magnetic Mach number ~(1-8). This covers the super-Alfvenic sub-, trans-, and hyper-sonic regimes, with a range of plasma beta from 0.05 to 25. The Reynolds number is of the order of 103.At the tensor level, the model components correlate well with the turbulence ones, at the level of 0.8 and above. Vectorially, the alignment with the true SGS terms is encouraging with more than 50% of the model within 30° of the data. At the scalar level we look at the dynamics of the SGS energy and cross-helicity. The corresponding SGS flux terms have median correlations of ~0.8. Physically, the model represents well the two directions of the energy cascade.In comparison, traditional functional models exhibit poor local correlations with the data already at the scalar level. Vectorially, they are indifferent to the anisotropy of the SGS terms. They often struggle to represent the energy backscatter from small to large scales as well as the turbulent dynamo mechanism.Overall, the new model surpasses the traditional ones in all tests by a large margin.
NASA Astrophysics Data System (ADS)
Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.
2017-12-01
A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.
Small-Scale Dissipation in Binary-Species Transitional Mixing Layers
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2011-01-01
Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of LES modeling. The Smagorinsky model, for example, is unsuited for modeling SGS fluxes in the LES because it cannot render backscatter. With increased filter size, there is only a modest decrease in the spatial extent of backscatter. The implication is that even at large LES grid spacing, the issue of backscatter and related SGS-flux modeling decisions are unavoidable. As a fraction of the total dissipation, the small-scale dissipation is between 10 and 30 percent of the total dissipation for a filter size that is four times the DNS grid spacing, with all OH cases bunched at 10 percent, and the HN cases spanning 24 30 percent. A scale similarity was found in that the domain-average proportion of each small-scale dissipation mode, with respect to the total small-scale dissipation, is very similar to equivalent results at the DNS scale. With increasing filter size, the proportion of the small-scale dissipation in the dissipation increases substantially, although not quite proportionally. When the filter size increases by four-fold, 52 percent for all OH runs, and 70 percent for HN runs, of the dissipation is contained in the subgrid-scale portion with virtually no dependence on the initial conditions of the DNS. The indications from the dissipation analysis are that modeling efforts in LES of thermodynamically supercritical flows should be focused primarily on mass-flux effects, with temperature and viscous effects being secondary. The analysis also reveals a physical justification for scale-similarity type models, although the suitability of these will need to be confirmed in a posteriori studies.
NASA Astrophysics Data System (ADS)
Nicholas, A. P.; Ashworth, P. J.; Best, J.; Lane, S. N.; Parsons, D. R.; Sambrook Smith, G.; Simpson, C.; Strick, R. J. P.; Unsworth, C. A.
2017-12-01
Recent years have seen significant advances in the development and application of morphodynamic models to simulate river evolution. Despite this progress, significant challenges remain to be overcome before such models can provide realistic simulations of river response to environmental change, or be used to determine the controls on alluvial channel patterns and deposits with confidence. This impasse reflects a wide range of factors, not least the fact that many of the processes that control river behaviour operate at spatial scales that cannot be resolved by such models. For example, sand-bed rivers are characterised by multiple scales of topography (e.g., dunes, bars, channels), the finest of which must often by parameterized, rather than represented explicitly in morphodynamic models. We examine these issues using a combination of numerical modeling and field observations. High-resolution aerial imagery and Digital Elevation Models obtained for the sandy braided South Saskatchewan River in Canada are used to quantify dune, bar and channel morphology and their response to changing flow discharge. Numerical simulations are carried out using an existing morphodynamic model based on the 2D shallow water equations, coupled with new parameterisations of the evolution and influence of alluvial bedforms. We quantify the spatial patterns of sediment flux using repeat images of dune migration and bar evolution. These data are used to evaluate model predictions of sediment transport and morphological change, and to assess the degree to which model performance is controlled by the parametrization of roughness and sediment transport phenomena linked to subgrid-scale bedforms (dunes). The capacity of such models to replicate the characteristic multi-scale morphology of bars in sand-bed rivers, and the contrasting morphodynamic signatures of braiding during low and high flow conditions, is also assessed.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1994-01-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.
NASA Astrophysics Data System (ADS)
Canuto, V. M.
1994-06-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 108 for the planetary boundary layer and Re approximately equals 1014 for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re9/4 exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2014-04-23
The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less
Mixed Layer Sub-Mesoscale Parameterization - Part 1: Derivation and Assessment
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Dubovikov, M. S.
2010-01-01
Several studies have shown that sub-mesoscales (SM 1km horizontal scale) play an important role in mixed layer dynamics. In particular, high resolution simulations have shown that in the case of strong down-front wind, the re-stratification induced by the SM is of the same order of the de-stratification induced by small scale turbulence, as well as of that induced by the Ekman velocity. These studies have further concluded that it has become necessary to include SM in ocean global circulation models (OGCMs), especially those used in climate studies. The goal of our work is to derive and assess an analytic parameterization of the vertical tracer flux under baroclinic instabilities and wind of arbitrary directions and strength. To achieve this goal, we have divided the problem into two parts: first, in this work we derive and assess a parameterization of the SM vertical flux of an arbitrary tracer for ocean codes that resolve mesoscales, M, but not sub-mesoscales, SM. In Part 2, presented elsewhere, we have used the results of this work to derive a parameterization of SM fluxes for ocean codes that do not resolve either M or SM. To carry out the first part of our work, we solve the SM dynamic equations including the non-linear terms for which we employ a closure developed and assessed in previous work. We present a detailed analysis for down-front and up-front winds with the following results: (a) down-front wind (blowing in the direction of the surface geostrophic velocity) is the most favorable condition for generating vigorous SM eddies; the de-stratifying effect of the mean flow and re-stratifying effect of SM almost cancel each other out,
NASA Astrophysics Data System (ADS)
Park, Jun; Hwang, Seung-On
2017-11-01
The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.
1994-01-01
The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.
Climate Process Team "Representing calving and iceberg dynamics in global climate models"
NASA Astrophysics Data System (ADS)
Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.
2016-12-01
Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL global climate model. The simulation results show that the Antarctic iceberg calving-size distribution affects iceberg trajectories, determines where iceberg meltwater enters the ocean and the increased ice-berg freshwater transport leads to increased sea-ice growth around much of the East Antarctic coastline.
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thatcher, Diana R.; Jablonowski, Christiane
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
Thatcher, Diana R.; Jablonowski, Christiane
2016-04-04
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
NASA Astrophysics Data System (ADS)
Xu, M.; Hoffman, F. M.
2016-12-01
The El Niño Southern Oscillation (ENSO) is an important interannual climate variability and has significant consequences and impacts on the global biosphere. The responses of vegetation to ENSO are highly heterogeneous and generally depend on the biophysical and biochemical characteristics associated with model plant functional types (PFTs). The modeled biogeochemical variables from Earth System Models (ESMs) are generally grid averages consisting of several PFTs within a gridcell, which will lead to difficulties in directly comparing them with site observations and large uncertainties in studying their responses to large scale climate variability. In this study, we conducted a transient ENSO simulation for the previoustwo decades from 1995 to 2020 using the DOE ACME v0.3 model. It has a comprehensive terrestrial biogeochemistry model that is fully coupled with a sophisticated atmospheric model with an advanced spectral element dynamical core. The model was driven by the NOAA optimum interpolation sea surface temperature (SST) for contemporary years and CFS v2 nine-month seasonal predicted and reconstructed SST for future years till to 2020. We saved the key biogeochemical variables in the subgrid PFT patches and compared them with site observations directly. Furthermore, we studied the biogeochemical responses of terrestrial vegetation to two largest ENSO events (1997-1998 and 2015-2016) for different PFTs. Our results show that it is useful and meaningful to compare and analyze model simulations in subgrid patches. The comparison and analysis not only gave us the details of responses of terrestrial ecosystem to global climate variability under changing climate, but also the insightful view on the model performance on the PFT level.
Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried
1999-01-01
The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.
Influence of container shape on scaling of turbulent fluctuations in convection
NASA Astrophysics Data System (ADS)
Foroozani, N.; Niemela, J. J.; Armenio, V.; Sreenivasan, K. R.
2014-12-01
We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 106 and 1010 and the molecular Prandtl number, Pr=0.7 . The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001), 10.1103/PhysRevLett.87.184501] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.
NASA Astrophysics Data System (ADS)
Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy
2017-09-01
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.
Influence of container shape on scaling of turbulent fluctuations in convection.
Foroozani, N; Niemela, J J; Armenio, V; Sreenivasan, K R
2014-12-01
We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 10(6) and 10(10) and the molecular Prandtl number, Pr=0.7. The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001)] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.
Large Eddy Simulation of a Turbulent Jet
NASA Technical Reports Server (NTRS)
Webb, A. T.; Mansour, Nagi N.
2001-01-01
Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.
Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)
NASA Astrophysics Data System (ADS)
Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.
2015-12-01
The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research will provide a better understanding of model deficiencies in reproducing and predicting droughts in the future, which is essential to the economic, ecologic and social well being of the High Plains.
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.
2003-01-01
The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.
This presentation explains the importance of the fine-scale features for air toxics exposure modeling. The paper presents a new approach to combine local-scale and regional model results for the National Air Toxic Assessment. The technique has been evaluated with a chemical tra...
Characterization of Sound Radiation by Unresolved Scales of Motion in Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Zhou, Ye
1999-01-01
Evaluation of the sound sources in a high Reynolds number turbulent flow requires time-accurate resolution of an extremely large number of scales of motion. Direct numerical simulations will therefore remain infeasible for the forseeable future: although current large eddy simulation methods can resolve the largest scales of motion accurately the, they must leave some scales of motion unresolved. A priori studies show that acoustic power can be underestimated significantly if the contribution of these unresolved scales is simply neglected. In this paper, the problem of evaluating the sound radiation properties of the unresolved, subgrid-scale motions is approached in the spirit of the simplest subgrid stress models: the unresolved velocity field is treated as isotropic turbulence with statistical descriptors, evaluated from the resolved field. The theory of isotropic turbulence is applied to derive formulas for the total power and the power spectral density of the sound radiated by a filtered velocity field. These quantities are compared with the corresponding quantities for the unfiltered field for a range of filter widths and Reynolds numbers.
A Priori Subgrid Analysis of Temporal Mixing Layers with Evaporating Droplets
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
1999-01-01
Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using three sets of results from a Direct Numerical Simulation (DNS) database, with Reynolds numbers (based on initial vorticity thickness) as large as 600 and with droplet mass loadings as large as 0.5. In the DNS, the gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. The Large Eddy Simulation (LES) equations corresponding to the DNS are first derived, and key assumptions in deriving them are first confirmed by computing the terms using the DNS database. Since LES of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be the sum of the filtered variables and a correction based on the filtered standard deviation; this correction is then computed from the Subgrid Scale (SGS) standard deviation. This model predicts the unfiltered variables at droplet locations considerably better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: the Smagorinsky approach, the Gradient model and the Scale-Similarity formulation. When the proportionality constant inherent in the SGS models is properly calculated, the Gradient and Scale-Similarity methods give results in excellent agreement with the DNS.
Numerical study of drop spreading on a flat surface
NASA Astrophysics Data System (ADS)
Wang, Sheng; Desjardins, Olivier
2017-11-01
In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.
LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Colucci, P. J.; Jaberi, F. A.; Givi, P.
1996-01-01
A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.
Impact of numerical choices on water conservation in the E3SM Atmosphere Model Version 1 (EAM V1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods formore » fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model is negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in the new model results in a very thin model layer at the Earth’s surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for this model.« less
Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1)
NASA Astrophysics Data System (ADS)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.; Wan, Hui; Leung, Ruby; Ma, Po-Lun; Golaz, Jean-Christophe; Wolfe, Jon; Lin, Wuyin; Singh, Balwinder; Burrows, Susannah; Yoon, Jin-Ho; Wang, Hailong; Qian, Yun; Tang, Qi; Caldwell, Peter; Xie, Shaocheng
2018-06-01
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods for fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model becomes negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors in early V1 versions decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in V1 results in a very thin model layer at the Earth's surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for V1.
Strategy for long-term 3D cloud-resolving simulations over the ARM SGP site and preliminary results
NASA Astrophysics Data System (ADS)
Lin, W.; Liu, Y.; Song, H.; Endo, S.
2011-12-01
Parametric representations of cloud/precipitation processes continue having to be adopted in climate simulations with increasingly higher spatial resolution or with emerging adaptive mesh framework; and it is only becoming more critical that such parameterizations have to be scale aware. Continuous cloud measurements at DOE's ARM sites have provided a strong observational basis for novel cloud parameterization research at various scales. Despite significant progress in our observational ability, there are important cloud-scale physical and dynamical quantities that are either not currently observable or insufficiently sampled. To complement the long-term ARM measurements, we have explored an optimal strategy to carry out long-term 3-D cloud-resolving simulations over the ARM SGP site using Weather Research and Forecasting (WRF) model with multi-domain nesting. The factors that are considered to have important influences on the simulated cloud fields include domain size, spatial resolution, model top, forcing data set, model physics and the growth of model errors. The hydrometeor advection that may play a significant role in hydrological process within the observational domain but is often lacking, and the limitations due to the constraint of domain-wide uniform forcing in conventional cloud system-resolving model simulations, are at least partly accounted for in our approach. Conventional and probabilistic verification approaches are employed first for selected cases to optimize the model's capability of faithfully reproducing the observed mean and statistical distributions of cloud-scale quantities. This then forms the basis of our setup for long-term cloud-resolving simulations over the ARM SGP site. The model results will facilitate parameterization research, as well as understanding and dissecting parameterization deficiencies in climate models.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1998-01-01
The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Teixeira, João
2018-01-01
Abstract Large‐scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid‐scale turbulence and convection—such as that they adjust instantaneously to changes in resolved‐scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary‐layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large‐scale models. Here we lay the theoretical foundations for an extended eddy‐diffusivity mass‐flux (EDMF) scheme that has explicit time‐dependence and memory of subgrid‐scale variables and is designed to represent all subgrid‐scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross‐sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large‐scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time‐dependent life cycle. PMID:29780442
Reed, K. A.; Bacmeister, J. T.; Rosenbloom, N. A.; ...
2015-05-13
Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral elementmore » core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty« less
Uncertainty quantification in LES of channel flow
Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; ...
2016-07-12
Here, in this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence andmore » are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for.« less
Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction
NASA Astrophysics Data System (ADS)
Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.
2017-12-01
Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).
NASA Astrophysics Data System (ADS)
Martin, D. F.; Cornford, S. L.; Schwartz, P.; Bhalla, A.; Johansen, H.; Ng, E.
2017-12-01
Correctly representing grounding line and calving-front dynamics is of fundamental importance in modeling marine ice sheets, since the configuration of these interfaces exerts a controlling influence on the dynamics of the ice sheet. Traditional ice sheet models have struggled to correctly represent these regions without very high spatial resolution. We have developed a front-tracking discretization for grounding lines and calving fronts based on the Chombo embedded-boundary cut-cell framework. This promises better representation of these interfaces vs. a traditional stair-step discretization on Cartesian meshes like those currently used in the block-structured AMR BISICLES code. The dynamic adaptivity of the BISICLES model complements the subgrid-scale discretizations of this scheme, producing a robust approach for tracking the evolution of these interfaces. Also, the fundamental discontinuous nature of flow across grounding lines is respected by mathematically treating it as a material phase change. We present examples of this approach to demonstrate its effectiveness.
Quantifying Potential Groundwater Recharge In South Texas
NASA Astrophysics Data System (ADS)
Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.
2015-12-01
Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.
Medvigy, David; Moorcroft, Paul R
2012-01-19
Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.
Black hole feeding and feedback: the physics inside the `sub-grid'
NASA Astrophysics Data System (ADS)
Negri, A.; Volonteri, M.
2017-05-01
Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parametrized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and active galactic nuclei feedback (radiation pressure, Compton heating/cooling) where mass, momentum and energy are deposited in the interstellar medium through conical winds. We find that on average the approximated Bondi formalism can lead to both over- and underestimations of the BH growth, depending on resolution and on how the variables entering into the Bondi-Hoyle formalism are calculated.
A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics
NASA Astrophysics Data System (ADS)
McDermott, Randall; Weinschenk, Craig
2013-11-01
A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.
A next generation air quality modeling system is being developed at the U.S. EPA to enable seamless modeling of air quality from global to regional to (eventually) local scales. State of the science chemistry and aerosol modules from the Community Multiscale Air Quality (CMAQ) mo...
Land-Atmosphere Interactions: Successes, Problems and Prospects
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.
1999-01-01
After two decades of active research, a much better understanding of the broader role of biospheric processes on the local climate has emerged. A surface-albedo increase, particularly in desert border regions of the subtropics (as well as the deforested tropical regions), leads to a net surface energy deficit, which in turn leads to a relative sinking and reduced rainfall. On the other hand, studies of the influence of altered ratios of evapotranspiration and sensible fluxes, in situations where the net solar income is unchanged, show that evapotranspiration is a more desirable flux for increased precipitation and vitality of the biosphere. Besides providing water vapor and convective available potential energy (CAPE) to the lower troposphere, evapotranspiration helps in building larger CAPE before "turning on" the moist-convection. Larger CAPE in the lower troposphere enables convection to reach into the deeper atmosphere thereby heating the upper troposphere; indeed, moist-convection is also accompanied by the evaporation of falling precipitation that cools and moistens the lower atmosphere. While convective, as opposed to stratiform, precipitation reduces the fractional cloud cover; it also allows more solar radiation to reach the surface thereby invigorating surface fluxes. These, together with moist convection and associated downdrafts help to maintain the characteristic upper temperature limit(s) of the moist-land as well as oceanic regions. Regardless of the above understanding, several important problems continue to hinder the accurate simulation of a realistic land atmosphere interaction in a numerical model (both GCM and/or Meso-scale models). Among the unsolved problems are parameterization of sub-grid scale land processes that include small-scale variability of soil moisture, snow-cover and snow-physics, the biodiversity of the biosphere, orography, local drainage characteristics under natural conditions, and surface flow over the natural terrain. A well-known non-linear response of surface fluxes to these variations makes the problem of parameterizing land-atmosphere interaction processes hard-to-address and simulate, particularly in a GCM. In our presentation, we will discuss how orographic, snow-cover, and water table interactions can be included into a Simple Biosphere Model such as SiB/SSiB. Figure I shows how, in the Russian region, spring snowmelt affects the soil moisture profile. Corresponding figure 2 shows how interaction with the water table decreases the natural evapotranspiration in the Sahel region simulation. While these simulations need better validation with data, the simulations reveal that surface processes are sensitive to these parameterizations. With these developments, we continue to advance our understanding of the interaction of land with the atmosphere aloft, but the intrinsic variability of the newer parameters, e. g., hydraulic properties of the soil, diminish the positive influences of these advances on the improved climate simulation with GCMs.
Convective dynamics - Panel report
NASA Technical Reports Server (NTRS)
Carbone, Richard; Foote, G. Brant; Moncrieff, Mitch; Gal-Chen, Tzvi; Cotton, William; Heymsfield, Gerald
1990-01-01
Aspects of highly organized forms of deep convection at midlatitudes are reviewed. Past emphasis in field work and cloud modeling has been directed toward severe weather as evidenced by research on tornadoes, hail, and strong surface winds. A number of specific issues concerning future thrusts, tactics, and techniques in convective dynamics are presented. These subjects include; convective modes and parameterization, global structure and scale interaction, convective energetics, transport studies, anvils and scale interaction, and scale selection. Also discussed are analysis workshops, four-dimensional data assimilation, matching models with observations, network Doppler analyses, mesoscale variability, and high-resolution/high-performance Doppler. It is also noted, that, classical surface measurements and soundings, flight-level research aircraft data, passive satellite data, and traditional photogrammetric studies are examples of datasets that require assimilation and integration.
The HD(CP)2 Observational Prototype Experiment (HOPE) - an overview
NASA Astrophysics Data System (ADS)
Macke, Andreas; Seifert, Patric; Baars, Holger; Barthlott, Christian; Beekmans, Christoph; Behrendt, Andreas; Bohn, Birger; Brueck, Matthias; Bühl, Johannes; Crewell, Susanne; Damian, Thomas; Deneke, Hartwig; Düsing, Sebastian; Foth, Andreas; Di Girolamo, Paolo; Hammann, Eva; Heinze, Rieke; Hirsikko, Anne; Kalisch, John; Kalthoff, Norbert; Kinne, Stefan; Kohler, Martin; Löhnert, Ulrich; Lakshmi Madhavan, Bomidi; Maurer, Vera; Muppa, Shravan Kumar; Schween, Jan; Serikov, Ilya; Siebert, Holger; Simmer, Clemens; Späth, Florian; Steinke, Sandra; Träumner, Katja; Trömel, Silke; Wehner, Birgit; Wieser, Andreas; Wulfmeyer, Volker; Xie, Xinxin
2017-04-01
The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal. First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.
2012-08-01
Molecular Dynamics Simulations Coarse-Grain Particle Dynamics Simulations Local structure; Force field parameterization Extended structure...K) C8H18 C12H26 C16H34 Adhesive forces can cause local density gradients and defects " Pronounced layering of polymer near interfaces...reactive end groups (CnH2n+1S) on Cu Gap SubPc on C60 Pentacene on a-SiO2 Cyclopentene on Au Crystalline CuPc on Al Polyimide on Si
Climate simulations and projections with a super-parameterized climate model
Stan, Cristiana; Xu, Li
2014-07-01
The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less
NASA Astrophysics Data System (ADS)
José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro
2017-04-01
A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the lower resolution of 12 km, in whose case the convection has to be parameterized. Each configuration is used to produce two simulations, including and not including aerosol-radiation-cloud interactions. The comparison of the simulated output at different scales allows to evaluate the impact of sub-grid scale mixing of precursors on aerosol production. By focusing on these processes at different resolutions, the differences between convection-permitting models running at resolutions of 4 km to 12 km can be explored. Preliminary results indicate that the inclusion of aerosol effects may indeed impact the severity of this simulated medicane, especially sea salt aerosols, and leads to important spatial shifts and differences in intensity of surface precipitation.
NASA Astrophysics Data System (ADS)
Rauser, F.
2013-12-01
We present results from the German BMBF initiative 'High Definition Cloud and Precipitation for advancing Climate Prediction -HD(CP)2'. This initiative addresses most of the problems that are discussed in this session in one, unified approach: cloud physics, convection, boundary layer development, radiation and subgrid variability are approached in one organizational framework. HD(CP)2 merges both observation and high performance computing / model development communities to tackle a shared problem: how to improve the understanding of the most important subgrid-scale processes of cloud and precipitation physics, and how to utilize this knowledge for improved climate predictions. HD(CP)2 is a coordinated initiative to: (i) realize; (ii) evaluate; and (iii) statistically characterize and exploit for the purpose of both parameterization development and cloud / precipitation feedback analysis; ultra-high resolution (100 m in the horizontal, 10-50 m in the vertical) regional hind-casts over time periods (3-15 y) and spatial scales (1000-1500 km) that are climatically meaningful. HD(CP)2 thus consists of three elements (the model development and simulations, their observational evaluation and exploitation/synthesis to advance CP prediction) and its first three-year phase has started on October 1st 2012. As a central part of HD(CP)2, the HD(CP)2 Observational Prototype Experiment (HOPE) has been carried out in spring 2013. In this campaign, high resolution measurements with a multitude of instruments from all major centers in Germany have been carried out in a limited domain, to allow for unprecedented resolution and precision in the observation of microphysics parameters on a resolution that will allow for evaluation and improvement of ultra-high resolution models. At the same time, a local area version of the new climate model ICON of the Max Planck Institute and the German weather service has been developed that allows for LES-type simulations on high resolutions on limited domains. The advantage of modifying an existing, evolving climate model is to share insights from high resolution runs directly with the large-scale modelers and to allow for easy intercomparison and evaluation later on. Within this presentation, we will give a short overview on HD(CP)2 , show results from the observation campaign HOPE and the LES simulations of the same domain and conditions and will discuss how these will lead to an improved understanding and evaluation background for the efforts to improve fast physics in our climate model.
Methods of testing parameterizations: Vertical ocean mixing
NASA Technical Reports Server (NTRS)
Tziperman, Eli
1992-01-01
The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.
NASA Astrophysics Data System (ADS)
Saito, Namiko
Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Retau = O(102) - O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Re tau ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.
Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.
2000-01-01
We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.
Influence of container shape on scaling of turbulent fluctuations in convection
NASA Astrophysics Data System (ADS)
Foroozani, Najmeh; Niemela, Joseph J.; Armenio, Vincenzo; Sreenivasan, Katepalli R.
2014-11-01
We perform large-eddy simulations of turbulent convection in a cubic enclosure for Rayleigh numbers 1 ×106 <= Ra <= 1 ×1010 and molecular Prandtl number, Pr = 0 . 7 . The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were parametrized using a Lagrangian dynamic Smagorinsky model. The scalings of root-mean-square fluctuations of density and velocity in the cell center with Ra differ significantly from those in cylindrical containers, and are in agreement with laboratory observations by, also using a cell with square cross-section. We find that the time-averaged spatial distributions of the local heat flux and temperature fluctuations are inhomogeneous in the horizontal plane, associated with the forced orientation of the mean wind along either one or the other diagonal. Larger values of the steady-state density (temperature) gradients occur at the mid-plane corners of the diagonal opposite to that of the mean wind, due to the presence of strong counter-rotating circulations.
NASA Astrophysics Data System (ADS)
Chaouat, Bruno
2012-04-01
The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.
On the large eddy simulation of turbulent flows in complex geometry
NASA Technical Reports Server (NTRS)
Ghosal, Sandip
1993-01-01
Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.
NASA Astrophysics Data System (ADS)
Abhik, S.; Krishna, R. P. M.; Mahakur, M.; Ganai, Malay; Mukhopadhyay, P.; Dudhia, J.
2017-06-01
The National Centre for Environmental Prediction (NCEP) Climate Forecast System (CFS) is being used for operational monsoon prediction over the Indian region. Recent studies indicate that the moist convective process in CFS is one of the major sources of uncertainty in monsoon predictions. In this study, the existing simple cloud microphysics of CFS is replaced by the six-class Weather Research Forecasting (WRF) single moment (WSM6) microphysical scheme. Additionally, a revised convective parameterization is employed to improve the performance of the model in simulating the boreal summer mean climate and intraseasonal variability over the Indian summer monsoon (ISM) region. The revised version of the model (CFSCR) exhibits a potential to improve shortcomings in the seasonal mean precipitation distribution relative to the standard CFS (CTRL), especially over the ISM region. Consistently, notable improvements are also evident in other observed ISM characteristics. These improvements are found to be associated with a better simulation of spatial and vertical distributions of cloud hydrometeors in CFSCR. A reasonable representation of the subgrid-scale convective parameterization along with cloud hydrometeors helps to improve the convective and large-scale precipitation distribution in the model. As a consequence, the simulated low-frequency boreal summer intraseasonal oscillation (BSISO) exhibits realistic propagation and the observed northwest-southeast rainband is well reproduced in CFSCR. Additionally, both the high and low-frequency BSISOs are better captured in CFSCR. The improvement of low and high-frequency BSISOs in CFSCR is shown to be related to a realistic phase relationship of clouds.
Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.
2017-04-01
Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.
Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms
NASA Astrophysics Data System (ADS)
Simmer, C.
2015-12-01
An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.
João A. N. Filipe; Richard C. Cobb; David M. Rizzo; Ross K. Meentemeyer; Christopher A. Gilligan
2010-01-01
Landscape- to regional-scale models of plant epidemics are direly needed to predict largescale impacts of disease and assess practicable options for control. While landscape heterogeneity is recognized as a major driver of disease dynamics, epidemiological models are rarely applied to realistic landscape conditions due to computational and data limitations. Here we...
Grid and subgrid-scale interactions in viscoelastic turbulent flow and implications for modelling
NASA Astrophysics Data System (ADS)
Masoudian, M.; da Silva, C. B.; Pinho, F. T.
2016-06-01
Using direct numerical simulations of turbulent plane channel flow of homogeneous polymer solutions, described by the Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model, a-priori analyses of the filtered momentum and FENE-P constitutive equations are performed. The influence of the polymer additives on the subgrid-scale (SGS) energy is evaluated by comparing the Newtonian and the viscoelastic flows, and a severe suppression of SGS stresses and energy is observed in the viscoelastic flow. All the terms of the transport equation of the SGS kinetic energy for FENE-P fluids are analysed, and an approximated version of this equation for use in future large eddy simulation closures is suggested. The terms responsible for kinetic energy transfer between grid-scale (GS) and SGS energy (split into forward/backward energy transfer) are evaluated in the presence of polymers. It is observed that the probability and intensity of forward scatter events tend to decrease in the presence of polymers.
Aware only of the resolved, grid-scale clouds, the Weather Research & Forecasting model (WRF) does not consider the interactions between subgrid-scale convective clouds and radiation. One consequence of this omission may be WRF’s overestimation of surface precipitation during sum...
Many regional and global climate models include aerosol indirect effects (AIE) on grid-scale/resolved clouds. However, the interaction between aerosols and convective clouds remains highly uncertain, as noted in the IPCC AR4 report. The objective of this work is to help fill in ...
The effects of changing land cover on streamflow simulation in Puerto Rico
Van Beusekom, Ashley E.; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad
2014-01-01
This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
Wang, Yong; Zhang, Guang J.
2016-09-29
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Zhang, Guang J.
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
Evaluation of Convective Transport in the GEOS-5 Chemistry and Climate Model
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Ott, Lesley E.; Shi, Jainn J.; Tao. Wei-Kuo; Mari, Celine; Schlager, Hans
2011-01-01
The NASA Goddard Earth Observing System (GEOS-5) Chemistry and Climate Model (CCM) consists of a global atmospheric general circulation model and the combined stratospheric and tropospheric chemistry package from the NASA Global Modeling Initiative (GMI) chemical transport model. The subgrid process of convective tracer transport is represented through the Relaxed Arakawa-Schubert parameterization in the GEOS-5 CCM. However, substantial uncertainty for tracer transport is associated with this parameterization, as is the case with all global and regional models. We have designed a project to comprehensively evaluate this parameterization from the point of view of tracer transport, and determine the most appropriate improvements that can be made to the GEOS-5 convection algorithm, allowing improvement in our understanding of the role of convective processes in determining atmospheric composition. We first simulate tracer transport in individual observed convective events with a cloud-resolving model (WRF). Initial condition tracer profiles (CO, CO2, O3) are constructed from aircraft data collected in undisturbed air, and the simulations are evaluated using aircraft data taken in the convective anvils. A single-column (SCM) version of the GEOS-5 GCM with online tracers is then run for the same convective events. SCM output is evaluated based on averaged tracer fields from the cloud-resolving model. Sensitivity simulations with adjusted parameters will be run in the SCM to determine improvements in the representation of convective transport. The focus of the work to date is on tropical continental convective events from the African Monsoon Multidisciplinary Analyses (AMMA) field mission in August 2006 that were extensively sampled by multiple research aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Minghua
1. Understanding of the observed variability of ITCZ in the equatorial eastern Pacific. The annual mean precipitation in the eastern Pacific has a maximum zonal band north of the equator in the ITCZ where the maximum SST is located. During the boreal spring (referring to February, March, and April throughout the present paper), because of the accumulated solar radiation heating and oceanic heat transport, a secondary maximum of SST exists in the southeastern equatorial Pacific. Associated with this warm SST is also a seasonal transitional maximum of precipitation in the same region in boreal spring, exhibited as a weak doublemore » ITCZ pattern in the equatorial eastern Pacific. This climatological seasonal variation, however, varies greatly from year to year: double ITCZ in the boreal spring occurs in some years but not in other years; when there a single ITCZ, it can appear either north, south or at the equator. Understanding this observed variability is critical to find the ultimate cause of the double ITCZ in climate models. Seasonal variation of ITCZ south of the eastern equatorial Pacific: By analyzing data from satellites, field measurements and atmospheric reanalysis, we have found that in the region where spurious ITCZ in models occurs, there is a “seasonal cloud transition” — from stratocumulus to shallow cumulus and eventually to deep convection —in the South Equatorial Pacific (SEP) from September to April that is similar to the spatial cloud transition from the California coast to the equator. This seasonal transition is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence. This finding of seasonal cloud transition points to the same source of model errors in the ITCZ simulations as in simulation of stratocumulus-cumulus-deep convection transition. It provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double Inter-tropical Convergence Zone (ITCZ) in most models. This work is recently published in Yu et al. (2016). Interannual variation of ITCZ south of the eastern equatorial Pacific: By analyzing data from satellites, field measurements and atmospheric reanalysis, we have characterized the interannual variation of boreal spring precipitation in the eastern tropical Pacific and found the cause of the observed interannual variability. We have shown that ITCZ in this region can occur as a single ITCZ along the Equator, single ITCZ north of the Equator, single ITCZ south of the Equator, and double ITCZ on both sides of the Equator. We have found that convective instability only plays a secondary role in the ITCZ interannual variability. Instead, the remote impact of the Pacific basin-wide SST on the horizontal gradient of surface pressure and wind convergence is the primary driver of this interannual variability. Results point to the need to include moisture convergence in convection schemes to improve the simulation of precipitation in the eastern tropical Pacific. This result has been recently submitted for publication (Yu and Zhang 2016). 2. Improvement of model parameterizations to reduce the double ITCZ bias We analyzed the current status of climate model performance in simulating precipitation in the equatorial Pacific. We have found that the double ITCZ bias has not been reduced in CMIP5 models relative to CMIP4 models. We have characterized the dynamic structure of the common bias by using precipitation, sea surface temperature, surface winds and sea-level. Results are published in Zhang et al. (2015): Since cumulus convection plays a significant role in the double ITCZ behavior in models, we have used measurements from ARM and other sources to carry out a systematic analysis of the roles of shallow and deep convection in the CAM. We found that in both CAM4 and CAM5, when the intensity of deep convection decreases as a result of parameterization change, the intensity of shallow convection increases, leading to very different changes in precipitation partitions but little change in the total precipitation. The different precipitation partition however can manifest themselves in other measures of model performances including temperature and humidity. This study points to the need to treat model physical parameterizations as integrated system rather than individual components. Results from this study are published in Wang and Zhang (2013). Since shallow convection interacts with the deep convection scheme and surface turbulence to trigger the double ITCZ, we studied methods to improve the shallow convection scheme in climate models. We investigated the bulk budgets of the vertical velocity and its parameterization in convective cores, convective updrafts, and clouds by using large-eddy simulation (LES) of four shallow convection cases including one from ARM. We proposed optimal forms of the Simpson and Wiggert equation to calculate the vertical velocity in bulk mass flux convection schemes for convective cores, convective updrafts, and convective clouds as parameterization schemes. The new scheme is published in Wang and Zhang (2014). By using long-term radar-based ground measurements from ARM, we derived a scale-aware inhomogeneity parameterization of cloud liquid water in climate models. We found a relationship between the inhomogeneity parameter and the model grid size as well as atmospheric stability. This relationship is implemented in the CESM to describe the subgrid-scale cloud inhomogeneity. Relative to the default CESM with the finite-volume dynamic core at 2-degree resolution, the new parameterization leads to smaller cloud inhomogeneity and larger cloud liquid-water path in high latitudes, and the opposite effect in low latitudes, with the regional impact on shortwave cloud radiation effect of up to 10 W/m 2. This is due to both the smaller (larger) grid size in high (low) latitudes in the longitude-latitude grid setting of CESM and the more stable (unstable) atmosphere. This parameterization is expected lead to more realistic simulation of tropical precipitation in high-resolution models. Results from this study are reported in Xie and Zhang (2015).« less
Collaborative Research: Cloudiness transitions within shallow marine clouds near the Azores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; de Szoeke, Simon P.; Yuter, Sandra E.
Marine stratocumulus clouds are low, persistent, liquid phase clouds that cover large areas and play a significant role in moderating the climate by reflecting large quantities of incoming solar radiation. The deficiencies in simulating these clouds in global climate models are widely recognized. Much of the uncertainty arises from sub-grid scale variability in the cloud albedo that is not accurately parameterized in climate models. The Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP–MBL) observational campaign and the ongoing ARM site measurements on Graciosa Island in the Azores aim to sample the Northeast Atlantic low cloud regime. These datamore » represent, the longest continuous research quality cloud radar/lidar/radiometer/aerosol data set of open-ocean shallow marine clouds in existence. Data coverage from CAP–MBL and the series of cruises to the southeast Pacific culminating in VOCALS will both be of sufficient length to contrast the two low cloud regimes and explore the joint variability of clouds in response to several environmental factors implicated in cloudiness transitions. Our research seeks to better understand cloud system processes in an underexplored but climatologically important maritime region. Our primary goal is an improved physical understanding of low marine clouds on temporal scales of hours to days. It is well understood that aerosols, synoptic-scale forcing, surface fluxes, mesoscale dynamics, and cloud microphysics all play a role in cloudiness transitions. However, the relative importance of each mechanism as a function of different environmental conditions is unknown. To better understand cloud forcing and response, we are documenting the joint variability of observed environmental factors and associated cloud characteristics. In order to narrow the realm of likely parameter ranges, we assess the relative importance of parameter conditions based primarily on two criteria: how often the condition occurs (frequency) and to what degree varying that condition within its typically observed range affects cloud characteristics (magnitude of impact given the condition). In this manner we will be able to address the relative importance of individual factors within a multivariate range of environmental conditions. We will determine the relative roles of the thermodynamic, aerosol, and synoptic environmental factors on low cloud and drizzle formation and lifetime.« less
Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.
2011-01-01
The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.328C relative to 1881-1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.568 and 0.528C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol-cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.668C but did not include aerosol-cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud-aerosol interactions to limit greenhouse gas warming. ?? 2011 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
Thermo-Gas-Dynamic Model of Afterburning in Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Ferguson, R E; Bell, J B
2003-07-27
A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, P.; Phani Murali Krishna, R.; Goswami, Bidyut B.; Abhik, S.; Ganai, Malay; Mahakur, M.; Khairoutdinov, Marat; Dudhia, Jimmy
2016-05-01
Inspite of significant improvement in numerical model physics, resolution and numerics, the general circulation models (GCMs) find it difficult to simulate realistic seasonal and intraseasonal variabilities over global tropics and particularly over Indian summer monsoon (ISM) region. The bias is mainly attributed to the improper representation of physical processes. Among all the processes, the cloud and convective processes appear to play a major role in modulating model bias. In recent times, NCEP CFSv2 model is being adopted under Monsoon Mission for dynamical monsoon forecast over Indian region. The analyses of climate free run of CFSv2 in two resolutions namely at T126 and T382, show largely similar bias in simulating seasonal rainfall, in capturing the intraseasonal variability at different scales over the global tropics and also in capturing tropical waves. Thus, the biases of CFSv2 indicate a deficiency in model's parameterization of cloud and convective processes. Keeping this in background and also for the need to improve the model fidelity, two approaches have been adopted. Firstly, in the superparameterization, 32 cloud resolving models each with a horizontal resolution of 4 km are embedded in each GCM (CFSv2) grid and the conventional sub-grid scale convective parameterization is deactivated. This is done to demonstrate the role of resolving cloud processes which otherwise remain unresolved. The superparameterized CFSv2 (SP-CFS) is developed on a coarser version T62. The model is integrated for six and half years in climate free run mode being initialised from 16 May 2008. The analyses reveal that SP-CFS simulates a significantly improved mean state as compared to default CFS. The systematic bias of lesser rainfall over Indian land mass, colder troposphere has substantially been improved. Most importantly the convectively coupled equatorial waves and the eastward propagating MJO has been found to be simulated with more fidelity in SP-CFS. The reason of such betterment in model mean state has been found to be due to the systematic improvement in moisture field, temperature profile and moist instability. The model also has better simulated the cloud and rainfall relation. This initiative demonstrates the role of cloud processes on the mean state of coupled GCM. As the superparameterization approach is computationally expensive, so in another approach, the conventional Simplified Arakawa Schubert (SAS) scheme is replaced by a revised SAS scheme (RSAS) and also the old and simplified cloud scheme of Zhao-Karr (1997) has been replaced by WSM6 in CFSV2 (hereafter CFS-CR). The primary objective of such modifications is to improve the distribution of convective rain in the model by using RSAS and the grid-scale or the large scale nonconvective rain by WSM6. The WSM6 computes the tendency of six class (water vapour, cloud water, ice, snow, graupel, rain water) hydrometeors at each of the model grid and contributes in the low, middle and high cloud fraction. By incorporating WSM6, for the first time in a global climate model, we are able to show a reasonable simulation of cloud ice and cloud liquid water distribution vertically and spatially as compared to Cloudsat observations. The CFS-CR has also showed improvement in simulating annual rainfall cycle and intraseasonal variability over the ISM region. These improvements in CFS-CR are likely to be associated with improvement of the convective and stratiform rainfall distribution in the model. These initiatives clearly address a long standing issue of resolving the cloud processes in climate model and demonstrate that the improved cloud and convective process paramterizations can eventually reduce the systematic bias and improve the model fidelity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Raj K.; Berg, Larry K.; Pekour, Mikhail
The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains eachmore » for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.« less
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene
2012-01-01
In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.
NASA Technical Reports Server (NTRS)
Bardino, J.; Ferziger, J. H.; Reynolds, W. C.
1983-01-01
The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.
NASA Astrophysics Data System (ADS)
Rasthofer, U.; Wall, W. A.; Gravemeier, V.
2018-04-01
A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2005-01-01
Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.
A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume
NASA Astrophysics Data System (ADS)
Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration
2017-11-01
An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.
Formulating a subgrid-scale breakup model for microbubble generation from interfacial collisions
NASA Astrophysics Data System (ADS)
Chan, Wai Hong Ronald; Mirjalili, Shahab; Urzay, Javier; Mani, Ali; Moin, Parviz
2017-11-01
Multiphase flows often involve impact events that engender important effects like the generation of a myriad of tiny bubbles that are subsequently transported in large liquid bodies. These impact events are created by large-scale phenomena like breaking waves on ocean surfaces, and often involve the relative approach of liquid surfaces. This relative motion generates continuously shrinking length scales as the entrapped gas layer thins and eventually breaks up into microbubbles. The treatment of this disparity in length scales is computationally challenging. In this presentation, a framework is presented that addresses a subgrid-scale (SGS) model aimed at capturing the process of microbubble generation. This work sets up the components in an overarching volume-of-fluid (VoF) toolset and investigates the analytical foundations of an SGS model for describing the breakup of a thin air film trapped between two approaching water bodies in a physical regime corresponding to Mesler entrainment. Constituents of the SGS model, such as the identification of impact events and the accurate computation of the local characteristic curvature in a VoF-based architecture, and the treatment of the air layer breakup, are discussed and illustrated in simplified scenarios. Supported by Office of Naval Research (ONR)/A*STAR (Singapore).
Controllers, observers, and applications thereof
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang (Inventor); Zhou, Wankun (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zheng, Qing (Inventor)
2011-01-01
Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.
NASA Astrophysics Data System (ADS)
Khouider, B.; Majda, A.; Deng, Q.; Ravindran, A. M.
2015-12-01
Global climate models (GCMs) are large computer codes based on the discretization of the equations of atmospheric and oceanic motions coupled to various processes of transfer of heat, moisture and other constituents between land, atmosphere, and oceans. Because of computing power limitations, typical GCM grid resolution is on the order of 100 km and the effects of many physical processes, occurring on smaller scales, on the climate system are represented through various closure recipes known as parameterizations. The parameterization of convective motions and many processes associated with cumulus clouds such as the exchange of latent heat and cloud radiative forcing are believed to be behind much of uncertainty in GCMs. Based on a lattice particle interacting system, the stochastic multicloud model (SMCM) provide a novel and efficient representation of the unresolved variability in GCMs due to organized tropical convection and the cloud cover. It is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Stratiform anvils forming in the wake of deep convection play a central role in the dynamics of tropical mesoscale convective systems. Here, aquaplanet simulations with a warm pool like surface forcing, based on a coarse-resolution GCM , of ˜170 km grid mesh, coupled with SMCM, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When some key model parameters are set to produce higher stratiform heating fractions, the model produces low-frequency and planetary-scale Madden Julian oscillation (MJO)-like wave disturbances while lower to moderate stratiform heating fractions yield mainly synoptic-scale convectively coupled Kelvin-like waves. Rooted from the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations perhaps with mechanisms that are in essence similar to those of mesoscale convective systems.
Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.
Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Rastelli, Massimo
2013-09-01
This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Joo; Choi, Suk-Jin; Koo, Myung-Seo; Kim, Jung-Eun; Kwon, Young Cheol; Hong, Song-You
2017-10-01
The impact of subgrid orographic drag on weather forecasting and simulated climatology over East Asia in boreal summer is examined using two parameterization schemes in a global forecast model. The schemes consider gravity wave drag (GWD) with and without lower-level wave breaking drag (LLWD) and flow-blocking drag (FBD). Simulation results from sensitivity experiments verify that the scheme with LLWD and FBD improves the intensity of a summertime continental high over the northern part of the Korean Peninsula, which is exaggerated with GWD only. This is because the enhanced lower tropospheric drag due to the effects of lower-level wave breaking and flow blocking slows down the wind flowing out of the high-pressure system in the lower troposphere. It is found that the decreased lower-level divergence induces a compensating weakening of middle- to upper-level convergence aloft. Extended experiments for medium-range forecasts for July 2013 and seasonal simulations for June to August of 2013-2015 are also conducted. Statistical skill scores for medium-range forecasting are improved not only in low-level winds but also in surface pressure when both LLWD and FBD are considered. A simulated climatology of summertime monsoon circulation in East Asia is also realistically reproduced.
Stochastic Parameterization: Toward a New View of Weather and Climate Models
Berner, Judith; Achatz, Ulrich; Batté, Lauriane; ...
2017-03-31
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
Stochastic Parameterization: Toward a New View of Weather and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berner, Judith; Achatz, Ulrich; Batté, Lauriane
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
NASA Astrophysics Data System (ADS)
Moustaoui, Mohamed; Joseph, Binson; Teitelbaum, Hector
2004-12-01
A plausible mechanism for the formation of mixing layers in the lower stratosphere above regions of tropical convection is demonstrated numerically using high-resolution, two-dimensional (2D), anelastic, nonlinear, cloud-resolving simulations. One noteworthy point is that the mixing layer simulated in this study is free of anvil clouds and well above the cloud anvil top located in the upper troposphere. Hence, the present mechanism is complementary to the well-known process by which overshooting cloud turrets causes mixing within stratospheric anvil clouds. The paper is organized as a case study verifying the proposed mechanism using atmospheric soundings obtained during the Central Equatorial Pacific Experiment (CEPEX), when several such mixing layers, devoid of anvil clouds, had been observed. The basic dynamical ingredient of the present mechanism is (quasi stationary) gravity wave critical level interactions, occurring in association with a reversal of stratospheric westerlies to easterlies below the tropopause region. The robustness of the results is shown through simulations at different resolutions. The insensitivity of the qualitative results to the details of the subgrid scheme is also evinced through further simulations with and without subgrid mixing terms. From Lagrangian reconstruction of (passive) ozone fields, it is shown that the mixing layer is formed kinematically through advection by the resolved-scale (nonlinear) velocity field.