Sample records for dynamically adaptive systems

  1. Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems

    NASA Astrophysics Data System (ADS)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.

    2016-04-01

    Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.

  2. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    PubMed

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  3. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  4. Adaptive dynamical networks

    NASA Astrophysics Data System (ADS)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  5. A Knowledge-Structure-Based Adaptive Dynamic Assessment System for Calculus Learning

    ERIC Educational Resources Information Center

    Ting, M.-Y.; Kuo, B.-C.

    2016-01-01

    The purpose of this study was to investigate the effect of a calculus system that was designed using an adaptive dynamic assessment (DA) framework on performance in the "finding an area using an integral". In this study, adaptive testing and dynamic assessment were combined to provide different test items depending on students'…

  6. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combiningmore » the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.« less

  7. Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.

    1982-01-01

    Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.

  8. Dynamic properties of the adaptive optics system depending on the temporary transformations of mirror control voltages

    NASA Astrophysics Data System (ADS)

    Lavrinov, V. V.; Lavrinova, L. N.

    2017-11-01

    The statistically optimal control algorithm for the correcting mirror is formed by constructing a prediction of distortions of the optical signal and improves the time resolution of the adaptive optics system. The prediction of distortions is based on an analysis of the dynamics of changes in the optical inhomogeneities of the turbulent atmosphere or the evolution of phase fluctuations at the input aperture of the adaptive system. Dynamic properties of the system are manifested during the temporary transformation of the stresses controlling the mirror and are determined by the dynamic characteristics of the flexible mirror.

  9. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.

    1985-01-01

    This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.

  10. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Predictor-Based Model Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2009-01-01

    This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.

  12. The Feasibility of Adaptive Unstructured Computations On Petaflops Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Heber, Gerd; Gao, Guang; Saini, Subhash (Technical Monitor)

    1999-01-01

    This viewgraph presentation covers the advantages of mesh adaptation, unstructured grids, and dynamic load balancing. It illustrates parallel adaptive communications, and explains PLUM (Parallel dynamic load balancing for adaptive unstructured meshes), and PSAW (Proper Self Avoiding Walks).

  13. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    NASA Technical Reports Server (NTRS)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  14. The Use of Complex Adaptive Systems as a Generative Metaphor in an Action Research Study of an Organisation

    ERIC Educational Resources Information Center

    Brown, Callum

    2008-01-01

    Understanding the dynamic behaviour of organisations is challenging and this study uses a model of complex adaptive systems as a generative metaphor to address this challenge. The research question addressed is: How might a conceptual model of complex adaptive systems be used to assist in understanding the dynamic nature of organisations? Using an…

  15. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    NASA Astrophysics Data System (ADS)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  16. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-09

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2006-12-01

    A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.

  18. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  19. Predicting Adaptive Behavior in the Environment from Central Nervous System Dynamics

    PubMed Central

    Proekt, Alex; Wong, Jane; Zhurov, Yuriy; Kozlova, Nataliya; Weiss, Klaudiusz R.; Brezina, Vladimir

    2008-01-01

    To generate adaptive behavior, the nervous system is coupled to the environment. The coupling constrains the dynamical properties that the nervous system and the environment must have relative to each other if adaptive behavior is to be produced. In previous computational studies, such constraints have been used to evolve controllers or artificial agents to perform a behavioral task in a given environment. Often, however, we already know the controller, the real nervous system, and its dynamics. Here we propose that the constraints can also be used to solve the inverse problem—to predict from the dynamics of the nervous system the environment to which they are adapted, and so reconstruct the production of the adaptive behavior by the entire coupled system. We illustrate how this can be done in the feeding system of the sea slug Aplysia. At the core of this system is a central pattern generator (CPG) that, with dynamics on both fast and slow time scales, integrates incoming sensory stimuli to produce ingestive and egestive motor programs. We run models embodying these CPG dynamics—in effect, autonomous Aplysia agents—in various feeding environments and analyze the performance of the entire system in a realistic feeding task. We find that the dynamics of the system are tuned for optimal performance in a narrow range of environments that correspond well to those that Aplysia encounter in the wild. In these environments, the slow CPG dynamics implement efficient ingestion of edible seaweed strips with minimal sensory information about them. The fast dynamics then implement a switch to a different behavioral mode in which the system ignores the sensory information completely and follows an internal “goal,” emergent from the dynamics, to egest again a strip that proves to be inedible. Key predictions of this reconstruction are confirmed in real feeding animals. PMID:18989362

  20. Macroscopic description of complex adaptive networks coevolving with dynamic node states

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  1. Macroscopic description of complex adaptive networks coevolving with dynamic node states.

    PubMed

    Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  2. A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering

    NASA Technical Reports Server (NTRS)

    Carroll, R. L.; Lindorff, D. P.

    1973-01-01

    An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.

  3. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  4. Adaptive synchronization and anticipatory dynamical systems

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  5. Adaptive synchronization and anticipatory dynamical systems.

    PubMed

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C K

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  6. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  7. Neural network based adaptive control for nonlinear dynamic regimes

    NASA Astrophysics Data System (ADS)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  8. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  9. Quantifying the adaptive cycle

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  10. Quantifying the Adaptive Cycle.

    PubMed

    Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  11. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  12. Introduction to State Estimation of High-Rate System Dynamics.

    PubMed

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  13. Modelling the dynamics of traits involved in fighting-predators-prey system.

    PubMed

    Kooi, B W

    2015-12-01

    We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

  14. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  15. Is a Universal Science of Complexity Conceivable?

    NASA Astrophysics Data System (ADS)

    West, Geoffrey B.

    Over the past quarter of a century, terms like complex adaptive system, the science of complexity, emergent behavior, self-organization, and adaptive dynamics have entered the literature, reflecting the rapid growth in collaborative, trans-disciplinary research on fundamental problems in complex systems ranging across the entire spectrum of science from the origin and dynamics of organisms and ecosystems to financial markets, corporate dynamics, urbanization and the human brain...

  16. An adaptive actuator failure compensation scheme for two linked 2WD mobile robots

    NASA Astrophysics Data System (ADS)

    Ma, Yajie; Al-Dujaili, Ayad; Cocquempot, Vincent; El Badaoui El Najjar, Maan

    2017-01-01

    This paper develops a new adaptive compensation control scheme for two linked mobile robots with actuator failurs. A configuration with two linked two-wheel drive (2WD) mobile robots is proposed, and the modelling of its kinematics and dynamics are given. An adaptive failure compensation scheme is developed to compensate actuator failures, consisting of a kinematic controller and a multi-design integration based dynamic controller. The kinematic controller is a virtual one, and based on which, multiple adaptive dynamic control signals are designed which covers all possible failure cases. By combing these dynamic control signals, the dynamic controller is designed, which ensures system stability and asymptotic tracking properties. Simulation results verify the effectiveness of the proposed adaptive failure compensation scheme.

  17. A system management methodology for building successful resource management systems

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Willoughby, John K.

    1989-01-01

    This paper presents a system management methodology for building successful resource management systems that possess lifecycle effectiveness. This methodology is based on an analysis of the traditional practice of Systems Engineering Management as it applies to the development of resource management systems. The analysis produced fifteen significant findings presented as recommended adaptations to the traditional practice of Systems Engineering Management to accommodate system development when the requirements are incomplete, unquantifiable, ambiguous and dynamic. Ten recommended adaptations to achieve operational effectiveness when requirements are incomplete, unquantifiable or ambiguous are presented and discussed. Five recommended adaptations to achieve system extensibility when requirements are dynamic are also presented and discussed. The authors conclude that the recommended adaptations to the traditional practice of Systems Engineering Management should be implemented for future resource management systems and that the technology exists to build these systems extensibly.

  18. Recruitment dynamics in adaptive social networks

    NASA Astrophysics Data System (ADS)

    Shkarayev, Maxim; Shaw, Leah; Schwartz, Ira

    2011-03-01

    We model recruitment in social networks in the presence of birth and death processes. The recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. The recruiting nodes may adapt their connections in order to improve recruitment capabilities, thus changing the network structure. We develop a mean-field theory describing the system dynamics. Using mean-field theory we characterize the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment dynamics, as well as on network topology. The theoretical predictions are confirmed by the direct simulations of the full system.

  19. Introduction to State Estimation of High-Rate System Dynamics

    PubMed Central

    Dodson, Jacob; Joyce, Bryan

    2018-01-01

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model. PMID:29342855

  20. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  1. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  2. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  3. Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics.

    PubMed

    Li, Yongming; Sui, Shuai; Tong, Shaocheng

    2017-02-01

    This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.

  4. Robust master-slave synchronization for general uncertain delayed dynamical model based on adaptive control scheme.

    PubMed

    Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin

    2014-03-01

    In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Structural self-assembly and avalanchelike dynamics in locally adaptive networks

    NASA Astrophysics Data System (ADS)

    Gräwer, Johannes; Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni

    2015-07-01

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events.

  6. Recent Developments in Smart Adaptive Structures for Solar Sailcraft

    NASA Technical Reports Server (NTRS)

    Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.

    2007-01-01

    The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.

  7. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  8. Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking

    NASA Astrophysics Data System (ADS)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Li, Qun; Chen, De-Bao; Wang, Zhen

    2013-08-01

    Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.

  9. Approximately adaptive neural cooperative control for nonlinear multiagent systems with performance guarantee

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian

    2017-04-01

    This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.

  10. Adaptive modeling, identification, and control of dynamic structural systems. I. Theory

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.

  11. ER fluid applications to vibration control devices and an adaptive neural-net controller

    NASA Astrophysics Data System (ADS)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  12. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  13. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights.

    PubMed

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  14. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua; Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021; Wu, Songli

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in themore » closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.« less

  15. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.

    PubMed

    Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu

    2018-04-23

    This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.

  16. Quantifying the Adaptive Cycle | Science Inventory | US EPA

    EPA Pesticide Factsheets

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and

  17. Adaptive Fuzzy Control for Nonstrict Feedback Systems With Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback.

    PubMed

    Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan

    2017-09-01

    This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.

  18. Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics.

    PubMed

    Brahmi, Brahim; Saad, Maarouf; Ochoa-Luna, Cristobal; Rahman, Mohammad H

    2017-07-01

    In this paper, we propose a new adaptive control technique based on nonlinear sliding mode control (JSTDE) taking into account kinematics and dynamics uncertainties. This approach is applied to an exoskeleton robot with uncertain kinematics and dynamics. The adaptation design is based on Time Delay Estimation (TDE). The proposed strategy does not necessitate the well-defined dynamic and kinematic models of the system robot. The updated laws are designed using Lyapunov-function to solve the adaptation problem systematically, proving the close loop stability and ensuring the convergence asymptotically of the outputs tracking errors. Experiments results show the effectiveness and feasibility of JSTDE technique to deal with the variation of the unknown nonlinear dynamics and kinematics of the exoskeleton model.

  19. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    PubMed

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  20. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    PubMed

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  1. Optimal region of latching activity in an adaptive Potts model for networks of neurons

    NASA Astrophysics Data System (ADS)

    Abdollah-nia, Mohammad-Farshad; Saeedghalati, Mohammadkarim; Abbassian, Abdolhossein

    2012-02-01

    In statistical mechanics, the Potts model is a model for interacting spins with more than two discrete states. Neural networks which exhibit features of learning and associative memory can also be modeled by a system of Potts spins. A spontaneous behavior of hopping from one discrete attractor state to another (referred to as latching) has been proposed to be associated with higher cognitive functions. Here we propose a model in which both the stochastic dynamics of Potts models and an adaptive potential function are present. A latching dynamics is observed in a limited region of the noise(temperature)-adaptation parameter space. We hence suggest noise as a fundamental factor in such alternations alongside adaptation. From a dynamical systems point of view, the noise-adaptation alternations may be the underlying mechanism for multi-stability in attractor-based models. An optimality criterion for realistic models is finally inferred.

  2. Adaptive control with an expert system based supervisory level. Thesis

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerald A.

    1991-01-01

    Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up to the use of expert systems for more advanced supervision capabilities.

  3. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  4. Adaptive functional systems: learning with chaos.

    PubMed

    Komarov, M A; Osipov, G V; Burtsev, M S

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations. © 2010 American Institute of Physics.

  5. Evolutionary game based control for biological systems with applications in drug delivery.

    PubMed

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-07

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation

    PubMed Central

    Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si

    2018-01-01

    Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural encoding. We believe that our study shed lights on the mechanism underlying the efficient neural information processing via adaptation. PMID:29636675

  7. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    PubMed

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Adaptation without parameter change: Dynamic gain control in motion detection

    PubMed Central

    Borst, Alexander; Flanagin, Virginia L.; Sompolinsky, Haim

    2005-01-01

    Many sensory systems adapt their input-output relationship to changes in the statistics of the ambient stimulus. Such adaptive behavior has been measured in a motion detection sensitive neuron of the fly visual system, H1. The rapid adaptation of the velocity response gain has been interpreted as evidence of optimal matching of the H1 response to the dynamic range of the stimulus, thereby maximizing its information transmission. Here, we show that correlation-type motion detectors, which are commonly thought to underlie fly motion vision, intrinsically possess adaptive properties. Increasing the amplitude of the velocity fluctuations leads to a decrease of the effective gain and the time constant of the velocity response without any change in the parameters of these detectors. The seemingly complex property of this adaptation turns out to be a straightforward consequence of the multidimensionality of the stimulus and the nonlinear nature of the system. PMID:15833815

  9. Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.

    PubMed

    Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping

    2018-06-01

    This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.

  10. Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.

  11. An adaptive control system for a shell-and-tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Skorospeshkin, V. N.; Rymashevskiy, P. O.

    2017-01-01

    This article suggests an adaptive control system for a hydrocarbon perspiration temperature control. This control system consists of a PI-controller and a pseudolinear compensating device that modifies control system dynamic properties. As a result, the behaviour research of the developed temperature control system has been undertaken. This article shows high effectiveness of the represented adaptive control system during changing control object parameters.

  12. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  13. On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system

    NASA Astrophysics Data System (ADS)

    Hajipour, Ahamad; Hajipour, Mojtaba; Baleanu, Dumitru

    2018-05-01

    This manuscript mainly focuses on the construction, dynamic analysis and control of a new fractional-order financial system. The basic dynamical behaviors of the proposed system are studied such as the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits of state variables and the intervals of system parameters. It is shown that the system exhibits hyperchaotic behavior for a number of system parameters and fractional-order values. To stabilize the proposed hyperchaotic fractional system with uncertain dynamics and disturbances, an efficient adaptive sliding mode controller technique is developed. Using the proposed technique, two hyperchaotic fractional-order financial systems are also synchronized. Numerical simulations are presented to verify the successful performance of the designed controllers.

  14. Application of Non-Kolmogorovian Probability and Quantum Adaptive Dynamics to Unconscious Inference in Visual Perception Process

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2016-07-01

    Recently a novel quantum information formalism — quantum adaptive dynamics — was developed and applied to modelling of information processing by bio-systems including cognitive phenomena: from molecular biology (glucose-lactose metabolism for E.coli bacteria, epigenetic evolution) to cognition, psychology. From the foundational point of view quantum adaptive dynamics describes mutual adapting of the information states of two interacting systems (physical or biological) as well as adapting of co-observations performed by the systems. In this paper we apply this formalism to model unconscious inference: the process of transition from sensation to perception. The paper combines theory and experiment. Statistical data collected in an experimental study on recognition of a particular ambiguous figure, the Schröder stairs, support the viability of the quantum(-like) model of unconscious inference including modelling of biases generated by rotation-contexts. From the probabilistic point of view, we study (for concrete experimental data) the problem of contextuality of probability, its dependence on experimental contexts. Mathematically contextuality leads to non-Komogorovness: probability distributions generated by various rotation contexts cannot be treated in the Kolmogorovian framework. At the same time they can be embedded in a “big Kolmogorov space” as conditional probabilities. However, such a Kolmogorov space has too complex structure and the operational quantum formalism in the form of quantum adaptive dynamics simplifies the modelling essentially.

  15. Criticality of Adaptive Control Dynamics

    NASA Astrophysics Data System (ADS)

    Patzelt, Felix; Pawelzik, Klaus

    2011-12-01

    We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.

  16. Dynamical information encoding in neural adaptation.

    PubMed

    Luozheng Li; Wenhao Zhang; Yuanyuan Mi; Dahui Wang; Xiaohan Lin; Si Wu

    2016-08-01

    Adaptation refers to the general phenomenon that a neural system dynamically adjusts its response property according to the statistics of external inputs. In response to a prolonged constant stimulation, neuronal firing rates always first increase dramatically at the onset of the stimulation; and afterwards, they decrease rapidly to a low level close to background activity. This attenuation of neural activity seems to be contradictory to our experience that we can still sense the stimulus after the neural system is adapted. Thus, it prompts a question: where is the stimulus information encoded during the adaptation? Here, we investigate a computational model in which the neural system employs a dynamical encoding strategy during the neural adaptation: at the early stage of the adaptation, the stimulus information is mainly encoded in the strong independent firings; and as time goes on, the information is shifted into the weak but concerted responses of neurons. We find that short-term plasticity, a general feature of synapses, provides a natural mechanism to achieve this goal. Furthermore, we demonstrate that with balanced excitatory and inhibitory inputs, this correlation-based information can be read out efficiently. The implications of this study on our understanding of neural information encoding are discussed.

  17. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  18. Introduction to Fuzzy Set Theory

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  19. Learning and adaptation: neural and behavioural mechanisms behind behaviour change

    NASA Astrophysics Data System (ADS)

    Lowe, Robert; Sandamirskaya, Yulia

    2018-01-01

    This special issue presents perspectives on learning and adaptation as they apply to a number of cognitive phenomena including pupil dilation in humans and attention in robots, natural language acquisition and production in embodied agents (robots), human-robot game play and social interaction, neural-dynamic modelling of active perception and neural-dynamic modelling of infant development in the Piagetian A-not-B task. The aim of the special issue, through its contributions, is to highlight some of the critical neural-dynamic and behavioural aspects of learning as it grounds adaptive responses in robotic- and neural-dynamic systems.

  20. Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems.

    PubMed

    Munera, Eduardo; Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Noguera, Juan Fco Blanes

    2015-07-24

    The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client's requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client's requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.

  1. Adaptive Approximation-Based Regulation Control for a Class of Uncertain Nonlinear Systems Without Feedback Linearizability.

    PubMed

    Wang, Ning; Sun, Jing-Chao; Han, Min; Zheng, Zhongjiu; Er, Meng Joo

    2017-09-06

    In this paper, for a general class of uncertain nonlinear (cascade) systems, including unknown dynamics, which are not feedback linearizable and cannot be solved by existing approaches, an innovative adaptive approximation-based regulation control (AARC) scheme is developed. Within the framework of adding a power integrator (API), by deriving adaptive laws for output weights and prediction error compensation pertaining to single-hidden-layer feedforward network (SLFN) from the Lyapunov synthesis, a series of SLFN-based approximators are explicitly constructed to exactly dominate completely unknown dynamics. By the virtue of significant advancements on the API technique, an adaptive API methodology is eventually established in combination with SLFN-based adaptive approximators, and it contributes to a recursive mechanism for the AARC scheme. As a consequence, the output regulation error can asymptotically converge to the origin, and all other signals of the closed-loop system are uniformly ultimately bounded. Simulation studies and comprehensive comparisons with backstepping- and API-based approaches demonstrate that the proposed AARC scheme achieves remarkable performance and superiority in dealing with unknown dynamics.

  2. Social determinants of health inequalities: towards a theoretical perspective using systems science.

    PubMed

    Jayasinghe, Saroj

    2015-08-25

    A systems approach offers a novel conceptualization to natural and social systems. In recent years, this has led to perceiving population health outcomes as an emergent property of a dynamic and open, complex adaptive system. The current paper explores these themes further and applies the principles of systems approach and complexity science (i.e. systems science) to conceptualize social determinants of health inequalities. The conceptualization can be done in two steps: viewing health inequalities from a systems approach and extending it to include complexity science. Systems approach views health inequalities as patterns within the larger rubric of other facets of the human condition, such as educational outcomes and economic development. This anlysis requires more sophisticated models such as systems dynamic models. An extension of the approach is to view systems as complex adaptive systems, i.e. systems that are 'open' and adapt to the environment. They consist of dynamic adapting subsystems that exhibit non-linear interactions, while being 'open' to a similarly dynamic environment of interconnected systems. They exhibit emergent properties that cannot be estimated with precision by using the known interactions among its components (such as economic development, political freedom, health system, culture etc.). Different combinations of the same bundle of factors or determinants give rise to similar patterns or outcomes (i.e. property of convergence), and minor variations in the initial condition could give rise to widely divergent outcomes. Novel approaches using computer simulation models (e.g. agent-based models) would shed light on possible mechanisms as to how factors or determinants interact and lead to emergent patterns of health inequalities of populations.

  3. The dynamics of health care reform--learning from a complex adaptive systems theoretical perspective.

    PubMed

    Sturmberg, Joachim P; Martin, Carmel M

    2010-10-01

    Health services demonstrate key features of complex adaptive systems (CAS), they are dynamic and unfold in unpredictable ways, and unfolding events are often unique. To better understand the complex adaptive nature of health systems around a core attractor we propose the metaphor of the health care vortex. We also suggest that in an ideal health care system the core attractor would be personal health attainment. Health care reforms around the world offer an opportunity to analyse health system change from a complex adaptive perspective. At large health care reforms have been pursued disregarding the complex adaptive nature of the health system. The paper details some recent reforms and outlines how to understand their strategies and outcomes, and what could be learnt for future efforts, utilising CAS principles. Current health systems show the inherent properties of a CAS driven by a core attractor of disease and cost containment. We content that more meaningful health systems reform requires the delicate task of shifting the core attractor from disease and cost containment towards health attainment.

  4. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  5. A Framework for Speech Activity Detection Using Adaptive Auditory Receptive Fields.

    PubMed

    Carlin, Michael A; Elhilali, Mounya

    2015-12-01

    One of the hallmarks of sound processing in the brain is the ability of the nervous system to adapt to changing behavioral demands and surrounding soundscapes. It can dynamically shift sensory and cognitive resources to focus on relevant sounds. Neurophysiological studies indicate that this ability is supported by adaptively retuning the shapes of cortical spectro-temporal receptive fields (STRFs) to enhance features of target sounds while suppressing those of task-irrelevant distractors. Because an important component of human communication is the ability of a listener to dynamically track speech in noisy environments, the solution obtained by auditory neurophysiology implies a useful adaptation strategy for speech activity detection (SAD). SAD is an important first step in a number of automated speech processing systems, and performance is often reduced in highly noisy environments. In this paper, we describe how task-driven adaptation is induced in an ensemble of neurophysiological STRFs, and show how speech-adapted STRFs reorient themselves to enhance spectro-temporal modulations of speech while suppressing those associated with a variety of nonspeech sounds. We then show how an adapted ensemble of STRFs can better detect speech in unseen noisy environments compared to an unadapted ensemble and a noise-robust baseline. Finally, we use a stimulus reconstruction task to demonstrate how the adapted STRF ensemble better captures the spectrotemporal modulations of attended speech in clean and noisy conditions. Our results suggest that a biologically plausible adaptation framework can be applied to speech processing systems to dynamically adapt feature representations for improving noise robustness.

  6. A Laboratory for Characterizing the Efficacy of Moving Target Defense

    DTIC Science & Technology

    2016-10-25

    of William and Mary are developing a scalable, dynamic, adaptive security system that combines virtualization , emulation, and mutable network...goal with the resource constraints of a small number of servers, and making virtual nodes “real enough” from the view of attackers. Unfortunately, with...we at College of William and Mary are developing a scalable, dynamic, adaptive security system that combines virtualization , emulation, and mutable

  7. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    NASA Astrophysics Data System (ADS)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance rejection and noise suppression for nonnegative and compartmental dynamical systems with noise and exogenous system disturbances. We then use the developed framework to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of continuing hemorrhage and hemodilution. Critical care patients, whether undergoing surgery or recovering in intensive care units, require drug administration to regulate physiological variables such as blood pressure, cardiac output, heart rate, and degree of consciousness. The rate of infusion of each administered drug is critical, requiring constant monitoring and frequent adjustments. In this dissertation, we develop a neuroadaptive output feedback control framework for nonlinear uncertain nonnegative and compartmental systems with nonnegative control inputs and noisy measurements. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error signals. In addition, the neuroadaptive controller guarantees that the physical system states remain in the nonnegative orthant of the state space. Finally, the developed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of noisy electroencephalographic (EEG) measurements. Clinical trials demonstrate excellent regulation of unconsciousness allowing for a safe and effective administration of the anesthetic agent propofol. Furthermore, a neuroadaptive output feedback control architecture for nonlinear nonnegative dynamical systems with input amplitude and integral constraints is developed. Specifically, the neuroadaptive controller guarantees that the imposed amplitude and integral input constraints are satisfied and the physical system states remain in the nonnegative orthant of the state space. The proposed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for noncardiac surgery in the face of infusion rate constraints and a drug dosing constraint over a specified period. In addition, the aforementioned control architecture is used to control lung volume and minute ventilation with input pressure constraints that also accounts for spontaneous breathing by the patient. Specifically, we develop a pressure- and work-limited neuroadaptive controller for mechanical ventilation based on a nonlinear multi-compartmental lung model. The control framework does not rely on any averaged data and is designed to automatically adjust the input pressure to the patient's physiological characteristics capturing lung resistance and compliance modeling uncertainty. Moreover, the controller accounts for input pressure constraints as well as work of breathing constraints. The effect of spontaneous breathing is incorporated within the lung model and the control framework. Finally, a neural network hybrid adaptive control framework for nonlinear uncertain hybrid dynamical systems is developed. The proposed hybrid adaptive control framework is Lyapunov-based and guarantees partial asymptotic stability of the closed-loop hybrid system; that is, asymptotic stability with respect to part of the closed-loop system states associated with the hybrid plant states. A numerical example is provided to demonstrate the efficacy of the proposed hybrid adaptive stabilization approach.

  8. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  9. Quantifying the Adaptive Cycle

    EPA Science Inventory

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative...

  10. ADAPT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, John; Jankovsky, Zachary; Metzroth, Kyle G

    2018-04-04

    The purpose of the ADAPT code is to generate Dynamic Event Trees (DET) using a user specified set of simulators. ADAPT can utilize any simulation tool which meets a minimal set of requirements. ADAPT is based on the concept of DET which uses explicit modeling of the deterministic dynamic processes that take place during a nuclear reactor plant system (or other complex system) evolution along with stochastic modeling. When DET are used to model various aspects of Probabilistic Risk Assessment (PRA), all accident progression scenarios starting from an initiating event are considered simultaneously. The DET branching occurs at user specifiedmore » times and/or when an action is required by the system and/or the operator. These outcomes then decide how the dynamic system variables will evolve in time for each DET branch. Since two different outcomes at a DET branching may lead to completely different paths for system evolution, the next branching for these paths may occur not only at separate times, but can be based on different branching criteria. The computational infrastructure allows for flexibility in ADAPT to link with different system simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination), analysis of results, and user friendly graphical capabilities. The ADAPT system is designed for a distributed computing environment; the scheduler can track multiple concurrent branches simultaneously. The scheduler is modularized so that the DET branching strategy can be modified (e.g. biasing towards the worst-case scenario/event). Independent database systems store data from the simulation tasks and the DET structure so that the event tree can be constructed and analyzed later. ADAPT is provided with a user-friendly client which can easily sort through and display the results of an experiment, precluding the need for the user to manually inspect individual simulator runs.« less

  11. Adaptive Hypermedia Educational System Based on XML Technologies.

    ERIC Educational Resources Information Center

    Baek, Yeongtae; Wang, Changjong; Lee, Sehoon

    This paper proposes an adaptive hypermedia educational system using XML technologies, such as XML, XSL, XSLT, and XLink. Adaptive systems are capable of altering the presentation of the content of the hypermedia on the basis of a dynamic understanding of the individual user. The user profile can be collected in a user model, while the knowledge…

  12. Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.

    PubMed

    Dai, Shi-Lu; Wang, Cong; Wang, Min

    2014-01-01

    This paper studies the problem of learning from adaptive neural network (NN) control of a class of nonaffine nonlinear systems in uncertain dynamic environments. In the control design process, a stable adaptive NN tracking control design technique is proposed for the nonaffine nonlinear systems with a mild assumption by combining a filtered tracking error with the implicit function theorem, input-to-state stability, and the small-gain theorem. The proposed stable control design technique not only overcomes the difficulty in controlling nonaffine nonlinear systems but also relaxes constraint conditions of the considered systems. In the learning process, the partial persistent excitation (PE) condition of radial basis function NNs is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition and an appropriate state transformation, the proposed adaptive NN control is shown to be capable of acquiring knowledge on the implicit desired control input dynamics in the stable control process and of storing the learned knowledge in memory. Subsequently, an NN learning control design technique that effectively exploits the learned knowledge without re-adapting to the controller parameters is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed design techniques.

  13. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    NASA Astrophysics Data System (ADS)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  14. Cultural ecologies of adaptive vs. maladaptive traits: A simple nonlinear model

    NASA Astrophysics Data System (ADS)

    Antoci, Angelo; Russu, Paolo; Sacco, Pier Luigi

    2018-05-01

    In this paper, we generalize a model by Enquist and Ghirlanda [12] to analyze the "macro" dynamics of cumulative culture in a context where there is a coexistence of adaptive and maladaptive cultural traits. In particular, we introduce a different, nonlinear specification of the main processes at work in the cumulative culture dynamics: imperfect transmission of traits, generation of new traits, and switches from adaptive to maladaptive and vice-versa. We find that the system exhibits a variety of dynamic behaviors where the crucial force is the switching between the adaptive and maladaptive nature of a certain trait, with the other processes playing a modulating role. We identify in particular a number of dynamic regimes with distinctive characteristics.

  15. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  16. Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Tong, Shaocheng; Li, Yongming

    2017-02-01

    This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.

  17. Adaptive Calibration of Dynamic Accommodation—Implications for Accommodating Intraocular Lenses

    PubMed Central

    Schor, Clifton M.; Bharadwaj, Shrikant R.

    2009-01-01

    PURPOSE When the aging lens is replaced with prosthetic accommodating intraocular lenses (IOLs), with effective viscoelasticities different from those of the natural lens, mismatches could arise between the neural control of accommodation and the biomechanical properties of the new lens. These mismatches could lead to either unstable oscillations or sluggishness of dynamic accommodation. Using computer simulations, we investigated whether optimal accommodative responses could be restored through recalibration of the neural control of accommodation. Using human experiments, we also investigated whether the accommodative system has the capacity for adaptive recalibration in response to changes in lens biomechanics. METHODS Dynamic performance of two accommodating IOL prototypes was simulated for a 45-year-old accommodative system, before and after neural recalibration, using a dynamic model of accommodation. Accommodating IOL I, a prototype for an injectable accommodating IOL, was less stiff and less viscous than the natural 45-year-old lens. Accommodating IOL II, a prototype for a translating accommodating IOL, was less stiff and more viscous than the natural 45-year-old lens. Short-term adaptive recalibration of dynamic accommodation was stimulated using a double-step adaptation paradigm that optically induced changes in neuromuscular effort mimicking responses to changes in lens biomechanics. RESULTS Model simulations indicate that the unstable oscillations or sluggishness of dynamic accommodation resulting from mismatches between neural control and lens biomechanics might be restored through neural recalibration. CONCLUSIONS Empirical measures reveal that the accommodative system is capable of adaptive recalibration in response to optical loads that simulate effects of changing lens biomechanics. PMID:19044245

  18. Complexity and network dynamics in physiological adaptation: an integrated view.

    PubMed

    Baffy, György; Loscalzo, Joseph

    2014-05-28

    Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.

  19. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    PubMed

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking speed, fractal dynamics increased closer to 1/f when participants were exposed to asymmetric walking. These findings suggest there may not be a relationship between unperturbed preferred or slow speed walking fractal dynamics and gait adaptability. However, the emergent relationship between asymmetric walking fractal dynamics and limb phase adaptation may represent a functional reorganization of the locomotor system (i.e., improved interactivity between degrees of freedom within the system) to be better suited to attenuate externally generated perturbations at various spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Design of an Adaptive Power Regulation Mechanism and a Nozzle for a Hydroelectric Power Plant Turbine Test Rig

    NASA Astrophysics Data System (ADS)

    Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.

  1. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  2. Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System

    NASA Astrophysics Data System (ADS)

    Hajipour, Ahmad; Tavakoli, Hamidreza

    2017-12-01

    In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.

  3. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  4. Lessons from Jurassic Park: patients as complex adaptive systems.

    PubMed

    Katerndahl, David A

    2009-08-01

    With realization that non-linearity is generally the rule rather than the exception in nature, viewing patients and families as complex adaptive systems may lead to a better understanding of health and illness. Doctors who successfully practise the 'art' of medicine may recognize non-linear principles at work without having the jargon needed to label them. Complex adaptive systems are systems composed of multiple components that display complexity and adaptation to input. These systems consist of self-organized components, which display complex dynamics, ranging from simple periodicity to chaotic and random patterns showing trends over time. Understanding the non-linear dynamics of phenomena both internal and external to our patients can (1) improve our definition of 'health'; (2) improve our understanding of patients, disease and the systems in which they converge; (3) be applied to future monitoring systems; and (4) be used to possibly engineer change. Such a non-linear view of the world is quite congruent with the generalist perspective.

  5. Real-Time Minimization of Tracking Error for Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  6. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  7. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  8. On dynamical systems approaches and methods in f ( R ) cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alho, Artur; Carloni, Sante; Uggla, Claes, E-mail: aalho@math.ist.utl.pt, E-mail: sante.carloni@tecnico.ulisboa.pt, E-mail: claes.uggla@kau.se

    We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f ( R )-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f ( R ) = R + α R {sup 2}, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniquesmore » involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f ( R ) cosmology and discuss their advantages and disadvantages.« less

  9. Inherent robustness of discrete-time adaptive control systems

    NASA Technical Reports Server (NTRS)

    Ma, C. C. H.

    1986-01-01

    Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.

  10. Differential flatness properties and adaptive control of the hypothalamic-pituitary-adrenal axis model

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    It is shown that the model of the hypothalamic-pituitary-adrenal gland axis is a differentially flat one and this permits to transform it to the so-called linear canonical form. For the new description of the system's dynamics the transformed control inputs contain unknown terms which depend on the system's parameters. To identify these terms an adaptive fuzzy approximator is used in the control loop. Thus an adaptive fuzzy control scheme is implemented in which the unknown or unmodeled system dynamics is approximated by neurofuzzy networks and next this information is used by a feedback controller that makes the state variables (CRH - corticotropin releasing hormone, adenocortocotropic hormone - ACTH, cortisol) of the hypothalamic-pituitary-adrenal gland axis model converge to the desirable levels (setpoints). This adaptive control scheme is exclusively implemented with the use of output feedback, while the state vector elements which are not directly measured are estimated with the use of a state observer that operates in the control loop. The learning rate of the adaptive fuzzy system is suitably computed from Lyapunov analysis, so as to assure that both the learning procedure for the unknown system's parameters, the dynamics of the observer and the dynamics of the control loop will remain stable. The performed Lyapunov stability analysis depends on two Riccati equations, one associated with the feedback controller and one associated with the state observer. Finally, it is proven that for the control scheme that comprises the feedback controller, the state observer and the neurofuzzy approximator, an H-infinity tracking performance can be succeeded.

  11. Variable Neural Adaptive Robust Control: A Switched System Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less

  12. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    PubMed

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  13. Dynamic metrology and data processing for precision freeform optics fabrication and testing

    NASA Astrophysics Data System (ADS)

    Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook

    2017-06-01

    Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.

  14. Using evaluation to adapt health information outreach to the complex environments of community-based organizations.

    PubMed

    Olney, Cynthia A

    2005-10-01

    After arguing that most community-based organizations (CBOs) function as complex adaptive systems, this white paper describes the evaluation goals, questions, indicators, and methods most important at different stages of community-based health information outreach. This paper presents the basic characteristics of complex adaptive systems and argues that the typical CBO can be considered this type of system. It then presents evaluation as a tool for helping outreach teams adapt their outreach efforts to the CBO environment and thus maximize success. Finally, it describes the goals, questions, indicators, and methods most important or helpful at each stage of evaluation (community assessment, needs assessment and planning, process evaluation, and outcomes assessment). Literature from complex adaptive systems as applied to health care, business, and evaluation settings is presented. Evaluation models and applications, particularly those based on participatory approaches, are presented as methods for maximizing the effectiveness of evaluation in dynamic CBO environments. If one accepts that CBOs function as complex adaptive systems-characterized by dynamic relationships among many agents, influences, and forces-then effective evaluation at the stages of community assessment, needs assessment and planning, process evaluation, and outcomes assessment is critical to outreach success.

  15. Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.

  16. Epidemics in Adaptive Social Networks with Temporary Link Deactivation

    NASA Astrophysics Data System (ADS)

    Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.

    2013-04-01

    Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.

  17. Adaptive traffic signal control system (ACS-Lite) for Wolf Road, Albany, New York.

    DOT National Transportation Integrated Search

    2014-10-01

    Adaptive Control Software Lite (ACS : - : Lite) is a : traffic : signal timing optimization system that : dynamically adjusts : traffic : signal timing : s : to meet current traffic demands. : The purpose of this : research project : was : to : deplo...

  18. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  19. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    PubMed

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding

    2017-08-29

    This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.

  1. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    PubMed

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  2. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  3. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  4. Adaptive-network models of collective dynamics

    NASA Astrophysics Data System (ADS)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.

  5. Adding dynamic rules to self-organizing fuzzy systems

    NASA Technical Reports Server (NTRS)

    Buhusi, Catalin V.

    1992-01-01

    This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.

  6. Resilience thinking: integrating resilience, adaptability and transformability

    Treesearch

    Carl Folke; Stephen R. Carpenter; Brian Walker; Marten Scheffer; Terry Chapin; Johan Rockstrom

    2010-01-01

    Resilience thinking addresses the dynamics and development of complex social-ecological systems (SES). Three aspects are central: resilience, adaptability and transformability. These aspects interrelate across multiple scales. Resilience in this context is the capacity of a SES to continually change and adapt yet remain within critical thresholds. Adaptability is part...

  7. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  8. Adaptive Optimal Control Using Frequency Selective Information of the System Uncertainty With Application to Unmanned Aircraft.

    PubMed

    Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian

    2018-01-01

    A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.

  9. An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics

    PubMed Central

    Gupta, Priti; Markan, C. M.

    2014-01-01

    The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID:24765062

  10. Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces

    PubMed Central

    Miall, R. C.; Woolley, D. G.

    2007-01-01

    Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error. PMID:17703286

  11. Decentralized Estimation and Vision-based Guidance of Fast Autonomous Systems with Guaranteed Performance in Uncertain Environments

    DTIC Science & Technology

    2013-04-22

    Following for Unmanned Aerial Vehicles Using L1 Adaptive Augmentation of Commercial Autopilots, Journal of Guidance, Control, and Dynamics, (3 2010): 0...Naira Hovakimyan. L1 Adaptive Controller for MIMO system with Unmatched Uncertainties using Modi?ed Piecewise Constant Adaptation Law, IEEE 51st...adaptive input nominal input with  Nominal input L1 ‐based control generator  This L1 adaptive control architecture uses data from the reference model

  12. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  13. Training a Constitutional Dynamic Network for Effector Recognition: Storage, Recall, and Erasing of Information.

    PubMed

    Holub, Jan; Vantomme, Ghislaine; Lehn, Jean-Marie

    2016-09-14

    Constitutional dynamic libraries (CDLs) of hydrazones, acylhydrazones, and imines undergo reorganization and adaptation in response to chemical effectors (herein metal cations) via component exchange and selection. Such CDLs can be subjected to training by exposition to given effectors and keep memory of the information stored by interaction with a specific metal ion. The long-term storage of the acquired information into the set of constituents of the system allows for fast recognition on subsequent contacts with the same effector(s). Dynamic networks of constituents were designed to adapt orthogonally to different metal cations by up- and down-regulation of specific constituents in the final distribution. The memory may be erased by component exchange between the constituents so as to regenerate the initial (statistical) distribution. The libraries described represent constitutional dynamic systems capable of acting as information storage molecular devices, in which the presence of components linked by reversible covalent bonds in slow exchange and bearing adequate coordination sites allows for the adaptation to different metal ions by constitutional variation. The system thus performs information storage, recall, and erase processes.

  14. Emergent explosive synchronization in adaptive complex networks

    NASA Astrophysics Data System (ADS)

    Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  15. Emergent explosive synchronization in adaptive complex networks.

    PubMed

    Avalos-Gaytán, Vanesa; Almendral, Juan A; Leyva, I; Battiston, F; Nicosia, V; Latora, V; Boccaletti, S

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  16. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  17. Nonlinear dynamics of team performance and adaptability in emergency response.

    PubMed

    Guastello, Stephen J

    2010-04-01

    The impact of team size and performance feedback on adaptation levels and performance of emergency response (ER) teams was examined to introduce a metric for quantifying adaptation levels based on nonlinear dynamical systems (NDS) theory. NDS principles appear in reports surrounding Hurricane Katrina, earthquakes, floods, a disease epidemic, and the Southeast Asian tsunami. They are also intrinsic to coordination within teams, adaptation levels, and performance in dynamic decision processes. Performance was measured in a dynamic decision task in which ER teams of different sizes worked against an attacker who was trying to destroy a city (total N = 225 undergraduates). The complexity of teams' and attackers' adaptation strategies and the role of the opponents' performance were assessed by nonlinear regression analysis. An optimal group size for team performance was identified. Teams were more readily influenced by the attackers' performance than vice versa. The adaptive capabilities of attackers and teams were impaired by their opponents in some conditions. ER teams should be large enough to contribute a critical mass of ideas but not so large that coordination would be compromised. ER teams used self-organized strategies that could have been more adaptive, whereas attackers used chaotic strategies. The model and results are applicable to ER processes or training maneuvers involving dynamic decisions but could be limited to nonhierarchical groups.

  18. Adaptations in Electronic Structure Calculations in Heterogeneous Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamudupula, Sai

    Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model ismore » limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.« less

  19. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.

    PubMed

    Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu

    2015-01-01

    This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Adaptive servo control for umbilical mating

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  1. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    NASA Astrophysics Data System (ADS)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  2. Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control

    PubMed Central

    Nachstedt, Timo; Tetzlaff, Christian; Manoonpong, Poramate

    2017-01-01

    Rhythmic neural signals serve as basis of many brain processes, in particular of locomotion control and generation of rhythmic movements. It has been found that specific neural circuits, named central pattern generators (CPGs), are able to autonomously produce such rhythmic activities. In order to tune, shape and coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external signals. Nonlinear oscillators are a standard model of CPGs and are used in various robotic applications. A special class of nonlinear oscillators are adaptive frequency oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an external periodic signal and to keep this learned frequency once the external signal vanishes. AFOs have been successfully used, for instance, for resonant tuning of robotic locomotion control. However, the choice of parameters for a standard AFO is characterized by a trade-off between the speed of the adaptation and its precision and, additionally, is strongly dependent on the range of frequencies the AFO is confronted with. As a result, AFOs are typically tuned such that they require a comparably long time for their adaptation. To overcome the problem, here, we improve the standard AFO by introducing a novel adaptation mechanism based on dynamical coupling strengths. The dynamical adaptation mechanism enhances both the speed and precision of the frequency adaptation. In contrast to standard AFOs, in this system, the interplay of dynamics on short and long time scales enables fast as well as precise adaptation of the oscillator for a wide range of frequencies. Amongst others, a very natural implementation of this mechanism is in terms of neural networks. The proposed system enables robotic applications which require fast retuning of locomotion control in order to react to environmental changes or conditions. PMID:28377710

  3. Short-Term Adaptive Modification of Dynamic Ocular Accommodation

    PubMed Central

    Bharadwaj, Shrikant R.; Vedamurthy, Indu; Schor, Clifton M.

    2009-01-01

    Purpose Indirect observations suggest that the neural control of accommodation may undergo adaptive recalibration in response to age-related biomechanical changes in the accommodative system. However, there has been no direct demonstration of such an adaptive capability. This investigation was conducted to demonstrate short-term adaptation of accommodative step response dynamics to optically induced changes in neuromuscular demands. Methods Repetitive changes in accommodative effort were induced in 15 subjects (18–34 years) with a double-step adaptation paradigm wherein an initial 2-D step change in blur was followed 350 ms later by either a 2-D step increase in blur (increasing-step paradigm) or a 1.75-D step decrease in blur (decreasing-step paradigm). Peak velocity, peak acceleration, and latency of 2-D single-step test responses were assessed before and after 1.5 hours of training with these paradigms. Results Peak velocity and peak acceleration of 2-D step responses increased after adaptation to the increasing-step paradigm (9/12 subjects), and they decreased after adaptation to the decreasing-step paradigm (4/9 subjects). Adaptive changes in peak velocity and peak acceleration generalized to responses that were smaller (1 D) and larger (3 D) than the 2-D adaptation stimulus. The magnitude of adaptation correlated poorly with the subject's age, but it was significantly negatively correlated with the preadaptation dynamics. Response latency decreased after adaptation, irrespective of the direction of adaptation. Conclusions Short-term adaptive changes in accommodative step response dynamics could be induced, at least in some of our subjects between 18 and 34 years, with a directional bias toward increasing rather than decreasing the dynamics. PMID:19255153

  4. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  5. Adaptive beam shaping by controlled thermal lensing in optical elements

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Quetschke, Volker; Gleason, Joseph; Williams, Luke F.; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J.; Mueller, Guido; Tanner, D. B.; Reitze, David. H.

    2007-04-01

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  6. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  7. Adaptive Neural Control for a Class of Pure-Feedback Nonlinear Systems via Dynamic Surface Technique.

    PubMed

    Liu, Zongcheng; Dong, Xinmin; Xue, Jianping; Li, Hongbo; Chen, Yong

    2016-09-01

    This brief addresses the adaptive control problem for a class of pure-feedback systems with nonaffine functions possibly being nondifferentiable. Without using the mean value theorem, the difficulty of the control design for pure-feedback systems is overcome by modeling the nonaffine functions appropriately. With the help of neural network approximators, an adaptive neural controller is developed by combining the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. The key features of our approach are that, first, the restrictive assumptions on the partial derivative of nonaffine functions are removed, second, the DSC technique is used to avoid "the explosion of complexity" in the backstepping design, and the number of adaptive parameters is reduced significantly using the MLP technique, third, smooth robust compensators are employed to circumvent the influences of approximation errors and disturbances. Furthermore, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, the simulation results are provided to demonstrate the effectiveness of the designed method.

  8. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2008-10-01

    In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.

  9. Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks

    PubMed Central

    Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada

    2015-01-01

    Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093

  10. Asymptotically inspired moment-closure approximation for adaptive networks

    NASA Astrophysics Data System (ADS)

    Shkarayev, Maxim

    2013-03-01

    Dynamics of adaptive social networks, in which nodes and network structure co-evolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher order topological structures. We propose a systematic approach to moment closure approximation based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and adaptive epidemic model. We show a good agreement between the mean-field prediction and simulations of the full network system.

  11. Direct Adaptive Control of Systems with Actuator Failures: State of the Art and Continuing Challenges

    NASA Technical Reports Server (NTRS)

    Tao, Gang; Joshi, Suresh M.

    2008-01-01

    In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.

  12. Eco-evolutionary dynamics in a coevolving host-virus system.

    PubMed

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  13. Atomic switch networks as complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  14. Robust adaptive vibration control of a flexible structure.

    PubMed

    Khoshnood, A M; Moradi, H M

    2014-07-01

    Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  16. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    PubMed

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  17. Examining inter-family differences in intra-family (parent-adolescent) dynamics using grid-sequence analysis.

    PubMed

    Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam

    2017-12-01

    Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.

    PubMed

    Fu, Yue; Fu, Jun; Chai, Tianyou

    2015-12-01

    In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.

  19. Design and Integration for High Performance Robotic Systems Based on Decomposition and Hybridization Approaches

    PubMed Central

    Zhang, Dan; Wei, Bin

    2017-01-01

    Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360

  20. Introduction: Second Language Development as a Dynamic Process

    ERIC Educational Resources Information Center

    De Bot, Kees

    2008-01-01

    In this contribution, some of the basic characteristics of complex adaptive systems, collectively labeled Dynamic Systems Theory (DST), are discussed. Such systems are self-organizing, dependent on initial conditions, sometimes chaotic, and they show emergent properties. The focus in DST is on development over time. Language is seen as a dynamic…

  1. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin

    2008-05-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accidentmore » progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other such codes.) The results of this demonstration indicate that the approach can significantly reduce the resources required for Level 2 PRAs. From the phenomenological viewpoint, ADAPT can also treat the associated epistemic and aleatory uncertainties. This methodology can also be used for analyses of other complex systems. Any complex system can be analyzed using ADAPT if the workings of that system can be displayed as an event tree, there is a computer code that simulates how those events could progress, and that simulator code has switches to turn on and off system events, phenomena, etc. Using and applying ADAPT to particular problems is not human independent. While the human resources for the creation and analysis of the accident progression are significantly decreased, knowledgeable analysts are still necessary for a given project to apply ADAPT successfully. This research and development effort has met its original goals and then exceeded them.« less

  2. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  3. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  4. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  5. An improved adaptive control for repetitive motion of robots

    NASA Technical Reports Server (NTRS)

    Pourboghrat, F.

    1989-01-01

    An adaptive control algorithm is proposed for a class of nonlinear systems, such as robotic manipulators, which is capable of improving its performance in repetitive motions. When the task is repeated, the error between the desired trajectory and that of the system is guaranteed to decrease. The design is based on the combination of a direct adaptive control and a learning process. This method does not require any knowledge of the dynamic parameters of the system.

  6. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  7. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE PAGES

    Zhang, Gaigong; Lin, Lin; Hu, Wei; ...

    2017-01-27

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  8. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin; Hu, Wei

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  9. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  10. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    ERIC Educational Resources Information Center

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  11. Wire rope tension control of hoisting systems using a robust nonlinear adaptive backstepping control scheme.

    PubMed

    Zhu, Zhen-Cai; Li, Xiang; Shen, Gang; Zhu, Wei-Dong

    2018-01-01

    This paper concerns wire rope tension control of a double-rope winding hoisting system (DRWHS), which consists of a hoisting system employed to realize a transportation function and an electro-hydraulic servo system utilized to adjust wire rope tensions. A dynamic model of the DRWHS is developed in which parameter uncertainties and external disturbances are considered. A comparison between simulation results using the dynamic model and experimental results using a double-rope winding hoisting experimental system is given in order to demonstrate accuracy of the dynamic model. In order to improve the wire rope tension coordination control performance of the DRWHS, a robust nonlinear adaptive backstepping controller (RNABC) combined with a nonlinear disturbance observer (NDO) is proposed. Main features of the proposed combined controller are: (1) using the RNABC to adjust wire rope tensions with consideration of parameter uncertainties, whose parameters are designed online by adaptive laws derived from Lyapunov stability theory to guarantee the control performance and stability of the closed-loop system; and (2) introducing the NDO to deal with uncertain external disturbances. In order to demonstrate feasibility and effectiveness of the proposed controller, experimental studies have been conducted on the DRWHS controlled by an xPC rapid prototyping system. Experimental results verify that the proposed controller exhibits excellent performance on wire rope tension coordination control compared with a conventional proportional-integral (PI) controller and adaptive backstepping controller. Copyright © 2017 ISA. All rights reserved.

  12. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  13. Dynamic User Modeling within a Game-Based ITS

    ERIC Educational Resources Information Center

    Snow, Erica L.

    2015-01-01

    Intelligent tutoring systems are adaptive learning environments designed to support individualized instruction. The adaptation embedded within these systems is often guided by user models that represent one or more aspects of students' domain knowledge, actions, or performance. The proposed project focuses on the development and testing of user…

  14. Adaptive Modulation for DFIG and STATCOM With High-Voltage Direct Current Transmission.

    PubMed

    Tang, Yufei; He, Haibo; Ni, Zhen; Wen, Jinyu; Huang, Tingwen

    2016-08-01

    This paper develops an adaptive modulation approach for power system control based on the approximate/adaptive dynamic programming method, namely, the goal representation heuristic dynamic programming (GrHDP). In particular, we focus on the fault recovery problem of a doubly fed induction generator (DFIG)-based wind farm and a static synchronous compensator (STATCOM) with high-voltage direct current (HVDC) transmission. In this design, the online GrHDP-based controller provides three adaptive supplementary control signals to the DFIG controller, STATCOM controller, and HVDC rectifier controller, respectively. The mechanism is to observe the system states and their derivatives and then provides supplementary control to the plant according to the utility function. With the GrHDP design, the controller can adaptively develop an internal goal representation signal according to the observed power system states, therefore, to achieve more effective learning and modulating. Our control approach is validated on a wind power integrated benchmark system with two areas connected by HVDC transmission lines. Compared with the classical direct HDP and proportional integral control, our GrHDP approach demonstrates the improved transient stability under system faults. Moreover, experiments under different system operating conditions with signal transmission delays are also carried out to further verify the effectiveness and robustness of the proposed approach.

  15. Simple robust control laws for robot manipulators. Part 2: Adaptive case

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Wen, J. T.

    1987-01-01

    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.

  16. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    PubMed

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  18. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  19. A Network Thermodynamic Framework for the Analysis and Control Design of Large-Scale Dynamical Systems

    DTIC Science & Technology

    2006-03-31

    Nonnegative Dynamical Sys- tems................................................. 18 2.10. Adaptive Control for General Anesthesia and Intensive Care...Unit Sedation 20 2.11. Neural Network Adaptive Control for Intensive Care Unit Sedation and In- traoperative Anesthesia ...control for operating room hypnosis and intefisive care unit sedation. 1.3. Goals of this Report The main goal of this report is to summarize the

  20. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review

    PubMed Central

    Aoi, Shinya; Manoonpong, Poramate; Ambe, Yuichi; Matsuno, Fumitoshi; Wörgötter, Florentin

    2017-01-01

    Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots. PMID:28878645

  1. Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor

    PubMed Central

    Dostal, Petr

    2015-01-01

    Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878

  2. Incremental update of electrostatic interactions in adaptively restrained particle simulations.

    PubMed

    Edorh, Semeho Prince A; Redon, Stéphane

    2018-04-06

    The computation of long-range potentials is one of the demanding tasks in Molecular Dynamics. During the last decades, an inventive panoply of methods was developed to reduce the CPU time of this task. In this work, we propose a fast method dedicated to the computation of the electrostatic potential in adaptively restrained systems. We exploit the fact that, in such systems, only some particles are allowed to move at each timestep. We developed an incremental algorithm derived from a multigrid-based alternative to traditional Fourier-based methods. Our algorithm was implemented inside LAMMPS, a popular molecular dynamics simulation package. We evaluated the method on different systems. We showed that the new algorithm's computational complexity scales with the number of active particles in the simulated system, and is able to outperform the well-established Particle Particle Particle Mesh (P3M) for adaptively restrained simulations. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. State-space self-tuner for on-line adaptive control

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.

    1994-01-01

    Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.

  4. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  5. Fixed gain and adaptive techniques for rotorcraft vibration control

    NASA Technical Reports Server (NTRS)

    Roy, R. H.; Saberi, H. A.; Walker, R. A.

    1985-01-01

    The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.

  6. Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot

    PubMed Central

    Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar

    2016-01-01

    A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062

  7. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  8. Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors.

    PubMed

    Villaverde, Monica; Perez, David; Moreno, Felix

    2015-11-17

    The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor's infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.

  9. Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.

    2003-01-01

    Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.

  10. Human Health and Climate Change: Leverage Points for Adaptation in Urban Environments

    PubMed Central

    Proust, Katrina; Newell, Barry; Brown, Helen; Capon, Anthony; Browne, Chris; Burton, Anthony; Dixon, Jane; Mu, Lisa; Zarafu, Monica

    2012-01-01

    The design of adaptation strategies that promote urban health and well-being in the face of climate change requires an understanding of the feedback interactions that take place between the dynamical state of a city, the health of its people, and the state of the planet. Complexity, contingency and uncertainty combine to impede the growth of such systemic understandings. In this paper we suggest that the collaborative development of conceptual models can help a group to identify potential leverage points for effective adaptation. We describe a three-step procedure that leads from the development of a high-level system template, through the selection of a problem space that contains one or more of the group’s adaptive challenges, to a specific conceptual model of a sub-system of importance to the group. This procedure is illustrated by a case study of urban dwellers’ maladaptive dependence on private motor vehicles. We conclude that a system dynamics approach, revolving around the collaborative construction of a set of conceptual models, can help communities to improve their adaptive capacity, and so better meet the challenge of maintaining, and even improving, urban health in the face of climate change. PMID:22829795

  11. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta's An Giang Province, Vietnam.

    PubMed

    Chapman, Alexander; Darby, Stephen

    2016-07-15

    Challenging dynamics are unfolding in social-ecological systems around the globe as society attempts to mitigate and adapt to climate change while sustaining rapid local development. The IPCC's 5th assessment suggests these changing systems are susceptible to unforeseen and dangerous 'emergent risks'. An archetypal example is the Vietnamese Mekong Delta (VMD) where the river dyke network has been heightened and extended over the last decade with the dual objectives of (1) adapting the delta's 18 million inhabitants and their livelihoods to increasingly intense river-flooding, and (2) developing rice production through a shift from double to triple-cropping. Negative impacts have been associated with this shift, particularly in relation to its exclusion of fluvial sediment deposition from the floodplain. A deficit in our understanding of the dynamics of the rice-sediment system, which involve unintuitive delays, feedbacks, and tipping points, is addressed here, using a system dynamics (SD) approach to inform sustainable adaptation strategies. Specifically, we develop and test a new SD model which simulates the dynamics between the farmers' economic system and their rice agriculture operations, and uniquely, integrates the role of fluvial sediment deposition within their dyke compartment. We use the model to explore a range of alternative rice cultivation strategies. Our results suggest that the current dominant strategy (triple-cropping) is only optimal for wealthier groups within society and over the short-term (ca. 10years post-implementation). The model suggests that the policy of opening sluice gates and leaving paddies fallow during high-flood years, in order to encourage natural sediment deposition and the nutrient replenishment it supplies, is both a more equitable and a more sustainable policy. But, even with this approach, diminished supplies of sediment-bound nutrients and the consequent need to compensate with artificial fertilisers will mean that smaller-scale farmers in the VMD are more vulnerable to accruing debt. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Speech as a breakthrough signaling resource in the cognitive evolution of biological complex adaptive systems.

    PubMed

    Mattei, Tobias A

    2014-12-01

    In self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.

  13. Adaptation in Living Systems

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai; Rappel, Wouter-Jan

    2018-03-01

    Adaptation refers to the biological phenomenon where living systems change their internal states in response to changes in their environments in order to maintain certain key functions critical for their survival and fitness. Adaptation is one of the most ubiquitous and arguably one of the most fundamental properties of living systems. It occurs throughout all biological scales, from adaptation of populations of species over evolutionary time to adaptation of a single cell to different environmental stresses during its life span. In this article, we review some of the recent progress made in understanding molecular mechanisms of cellular-level adaptation. We take the minimalist (or the physicist) approach and study the simplest systems that exhibit generic adaptive behaviors, namely chemotaxis in bacterium cells (Escherichia coli) and eukaryotic cells (Dictyostelium). We focus on understanding the basic biochemical interaction networks that are responsible for adaptation dynamics. By combining theoretical modeling with quantitative experimentation, we demonstrate universal features in adaptation as well as important differences in different cellular systems. Future work in extending the modeling framework to study adaptation in more complex systems such as sensory neurons is also discussed.

  14. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  15. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks

    PubMed Central

    Ollivier, Julien F.; Soyer, Orkun S.

    2016-01-01

    Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612

  16. Force adaptation transfers to untrained workspace regions in children: evidence for developing inverse dynamic motor models.

    PubMed

    Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor

    2002-03-01

    When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.

  17. Tera-OP Reliable Intelligently Adaptive Processing System (TRIPS) Implementation

    DTIC Science & Technology

    2008-09-01

    38 6.8 Instruction Scheduling ...39 6.8.1 Spatial Path Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.8.2...oblivious scheduling for rapid application prototyping and deployment, environmental adaptivity for resilience in hostile environments, and dynamic

  18. The NASA F-15 Intelligent Flight Control Systems: Generation II

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Bosworth, John

    2006-01-01

    The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.

  19. Towards a Cognitive Radar: Canada's Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone.

    PubMed

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-07-07

    Canada's third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data.

  20. Towards a Cognitive Radar: Canada’s Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone

    PubMed Central

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-01-01

    Canada’s third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data. PMID:28686198

  1. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  2. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-09-01

    Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.

  3. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  4. On Cognition, Structured Sequence Processing, and Adaptive Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Petersson, Karl Magnus

    2008-11-01

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.

  5. Effects of External Loads on Human Head Movement Control Systems

    NASA Technical Reports Server (NTRS)

    Nam, M. H.; Choi, O. M.

    1984-01-01

    The central and reflexive control strategies underlying movements were elucidated by studying the effects of external loads on human head movement control systems. Some experimental results are presented on dynamic changes weigh the addition of aviation helmet (SPH4) and lead weights (6 kg). Intended time-optimal movements, their dynamics and electromyographic activity of neck muscles in normal movements, and also in movements made with external weights applied to the head were measured. It was observed that, when the external loads were added, the subject went through complex adapting processes and the head movement trajectory and its derivatives reached steady conditions only after transient adapting period. The steady adapted state was reached after 15 to 20 seconds (i.e., 5 to 6 movements).

  6. An adaptive load-following control system for a space nuclear power system

    NASA Astrophysics Data System (ADS)

    Metzger, John D.; El-Genk, Mohamed S.

    An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.

  7. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    ERIC Educational Resources Information Center

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  8. Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Li, Xue-yan; Li, Xue-mei; Yang, Lingrun; Li, Jing

    2018-07-01

    Most of the previous studies on dynamic traffic assignment are based on traditional analytical framework, for instance, the idea of Dynamic User Equilibrium has been widely used in depicting both the route choice and the departure time choice. However, some recent studies have demonstrated that the dynamic traffic flow assignment largely depends on travelers' rationality degree, travelers' heterogeneity and what the traffic information the travelers have. In this paper, we develop a new self-adaptive multi agent model to depict travelers' behavior in Dynamic Traffic Assignment. We use Cumulative Prospect Theory with heterogeneous reference points to illustrate travelers' bounded rationality. We use reinforcement-learning model to depict travelers' route and departure time choosing behavior under the condition of imperfect information. We design the evolution rule of travelers' expected arrival time and the algorithm of traffic flow assignment. Compared with the traditional model, the self-adaptive multi agent model we proposed in this paper can effectively help travelers avoid the rush hour. Finally, we report and analyze the effect of travelers' group behavior on the transportation system, and give some insights into the relation between travelers' group behavior and the performance of transportation system.

  9. Coordinating Decentralized Learning and Conflict Resolution across Agent Boundaries

    ERIC Educational Resources Information Center

    Cheng, Shanjun

    2012-01-01

    It is crucial for embedded systems to adapt to the dynamics of open environments. This adaptation process becomes especially challenging in the context of multiagent systems because of scalability, partial information accessibility and complex interaction of agents. It is a challenge for agents to learn good policies, when they need to plan and…

  10. RPV application of a globally adaptive rate controlled compressor

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1978-01-01

    A globally adaptive image compression structure is introduced for use in a tactical RPV environment. The structure described would provide an operator with the flexibility to dynamically maximize the usefulness of a limited and changing data rate. The concepts would potentially simplify system design while at the same time improving overall system performance.

  11. Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Chih

    2010-12-01

    In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.

  12. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  13. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    PubMed

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.

  14. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    PubMed

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  15. Adaptive Robust Output Feedback Control for a Marine Dynamic Positioning System Based on a High-Gain Observer.

    PubMed

    Du, Jialu; Hu, Xin; Liu, Hongbo; Chen, C L Philip

    2015-11-01

    This paper develops an adaptive robust output feedback control scheme for dynamically positioned ships with unavailable velocities and unknown dynamic parameters in an unknown time-variant disturbance environment. The controller is designed by incorporating the high-gain observer and radial basis function (RBF) neural networks in vectorial backstepping method. The high-gain observer provides the estimations of the ship position and heading as well as velocities. The RBF neural networks are employed to compensate for the uncertainties of ship dynamics. The adaptive laws incorporating a leakage term are designed to estimate the weights of RBF neural networks and the bounds of unknown time-variant environmental disturbances. In contrast to the existing results of dynamic positioning (DP) controllers, the proposed control scheme relies only on the ship position and heading measurements and does not require a priori knowledge of the ship dynamics and external disturbances. By means of Lyapunov functions, it is theoretically proved that our output feedback controller can control a ship's position and heading to the arbitrarily small neighborhood of the desired target values while guaranteeing that all signals in the closed-loop DP control system are uniformly ultimately bounded. Finally, simulations involving two ships are carried out, and simulation results demonstrate the effectiveness of the proposed control scheme.

  16. Architecture for Adaptive Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Hayes-Roth, Barbara

    1993-01-01

    We identify a class of niches to be occupied by 'adaptive intelligent systems (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches present situations that vary dynamically along several key dimensions: different combinations of required tasks, different configurations of available resources, contextual conditions ranging from benign to stressful, and different performance criteria. We present a small class hierarchy of AIS niches that exhibit these dimensions of variability and describe a particular AIS niche, ICU (intensive care unit) patient monitoring, which we use for illustration throughout the paper. We have designed and implemented an agent architecture that supports all of different kinds of adaptation by exploiting a single underlying theoretical concept: An agent dynamically constructs explicit control plans to guide its choices among situation-triggered behaviors. We illustrate the architecture and its support for adaptation with examples from Guardian, an experimental agent for ICU monitoring.

  17. Flight Validation of a Metrics Driven L(sub 1) Adaptive Control

    NASA Technical Reports Server (NTRS)

    Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.

    2008-01-01

    The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.

  18. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  19. Flatness-based adaptive fuzzy control of chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.

  20. Managing lifelike behavior in a dynamic self-assembled system

    NASA Astrophysics Data System (ADS)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  1. Convergent Adaptation in Small Groups: Understanding Professional Development Activities through a Complex Systems Lens

    ERIC Educational Resources Information Center

    Yoon, Susan; Liu, Lei; Goh, Sao-Ee

    2010-01-01

    Understanding the dynamics of individual or group adaptation can provide valuable information for constructing professional development strategies to increase chances of instructional success. This paper reports on an exploratory study that identifies indicators of convergent vs. non-convergent adaptation in two cases of teachers working together…

  2. Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics.

    PubMed

    Ye, Dan; Chen, Mengmeng; Li, Kui

    2017-11-01

    In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Overly Regulated Thinking and Autism Revisited.

    PubMed

    Cashin, Andrew; Yorke, James

    2016-08-01

    Humans exist within a socially mediated dynamical system. Frequent demands are experienced to respond to change in the environment to adapt and flourish. People with autism have impaired behavioral and thinking flexibility and experience high levels of anxiety, as change and adaptation do not come naturally. The disability inherent in autism is by definition the impaired social and occupational functioning that results from lack of adaptation. The point of the behavioral triad of restricted and repetitive interests, activities, and behaviors has received relatively little attention as compared to the other two points of the triad. A review of the literature related to restricted and repetitive interests and activities and behaviors and autism was conducted to inform this theoretical review. This paper considers the overly regulated thought and behavior inherent in autism spectrum disorders through the lens of dynamical systems, and an explanatory model is generated. The mathematical tools applied to understand dynamical systems may be a fruitful basis of further research to enable the movement from a theoretical concept of overly regulated thinking and behavior in autism to an empirically derived understanding. © 2016 Wiley Periodicals, Inc.

  4. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    EPA Science Inventory

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  5. Computational Systems Toxicology: recapitulating the logistical dynamics of cellular response networks in virtual tissue models (Eurotox_2017)

    EPA Science Inventory

    Translating in vitro data and biological information into a predictive model for human toxicity poses a significant challenge. This is especially true for complex adaptive systems such as the embryo where cellular dynamics are precisely orchestrated in space and time. Computer ce...

  6. The Dynamics of Vulnerability and Implications for Climate Change Adaptation: Lessons from Urban Water Management

    NASA Astrophysics Data System (ADS)

    Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.

    2013-12-01

    Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand: a) the variety of actions taken; b) the limitations of actions available to water managers; and c) the effectiveness of actions taken to date. Time permitting, we briefly present the results of 3 in-depth case studies of drought response and current perception of preparedness with respect to future drought and climate change among urban water system managers. We examine the role of governance, system connectivity, public perceptions and other factors in driving decision making and outcomes.

  7. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    NASA Astrophysics Data System (ADS)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  9. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  10. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  11. Adapting crop rotations to climate change in regional impact modelling assessments.

    PubMed

    Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank

    2018-03-01

    The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used to develop improved regional impact assessments for situations where multi-crop rotations better represent predominant agricultural systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    NASA Astrophysics Data System (ADS)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  13. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host–Pathogen Interaction Networks

    PubMed Central

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892

  14. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  15. Static and Dynamic Behaviour Assessment of the Trajan Arch by Means of New Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Petti, L.; Barone, F.; Mammone, A.; Giordano, G.

    2017-08-01

    An effective assessment of the static and dynamic structural behavior of historical monuments requires the development and validation of suitable adaptive structural models using high-quality experimental data acquired with an effectively continuous and distributed monitoring. Furthermore, the adaptive strategy allows an efficient evaluation of the health status and of the evolution along the time of a historical monument, providing relevant information to plan appropriate actions for its long-term preservation. The Trajan Arch in Benevento chosen as a case of study to develop and apply this new adaptive strategy in cultural heritage conservation. The paper, after a description of the innovative monitoring system, based on state-of-the-art mechanical sensors, presents and discusses the results of two tests, comparing the measurements with the predictions of an adaptive structural FEM model developed for the dynamical simulation of the Trajan Arch.

  16. Emerging hierarchies in dynamically adapting webs

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.

  17. The paradox of enrichment in an adaptive world

    PubMed Central

    Mougi, Akihiko; Nishimura, Kinya

    2008-01-01

    Paradoxically, enrichment can destabilize a predator–prey food web. While adaptive dynamics can greatly influence the stability of interaction systems, few theoretical studies have examined the effect of the adaptive dynamics of interaction-related traits on the possibility of resolution of the paradox of enrichment. We consider the evolution of attack and defence traits of a predator and two prey species in a one predator–two prey system in which the predator practises optimal diet use. The results showed that optimal foraging alone cannot eliminate a pattern of destabilization with enrichment, but trait evolution of the predator or prey can change the pattern to one of stabilization, implying a possible resolution of the paradox of enrichment. Furthermore, trait evolution in all species can broaden the parameter range of stabilization. Importantly, rapid evolution can stabilize this system, but weaken its stability in the face of enrichment. PMID:18700201

  18. A control systems engineering approach for adaptive behavioral interventions: illustration with a fibromyalgia intervention.

    PubMed

    Deshpande, Sunil; Rivera, Daniel E; Younger, Jarred W; Nandola, Naresh N

    2014-09-01

    The term adaptive intervention has been used in behavioral medicine to describe operationalized and individually tailored strategies for prevention and treatment of chronic, relapsing disorders. Control systems engineering offers an attractive means for designing and implementing adaptive behavioral interventions that feature intensive measurement and frequent decision-making over time. This is illustrated in this paper for the case of a low-dose naltrexone treatment intervention for fibromyalgia. System identification methods from engineering are used to estimate dynamical models from daily diary reports completed by participants. These dynamical models then form part of a model predictive control algorithm which systematically decides on treatment dosages based on measurements obtained under real-life conditions involving noise, disturbances, and uncertainty. The effectiveness and implications of this approach for behavioral interventions (in general) and pain treatment (in particular) are demonstrated using informative simulations.

  19. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  20. Emergent "Quantum" Theory in Complex Adaptive Systems.

    PubMed

    Minic, Djordje; Pajevic, Sinisa

    2016-04-30

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  1. Emergent “Quantum” Theory in Complex Adaptive Systems

    PubMed Central

    Minic, Djordje; Pajevic, Sinisa

    2017-01-01

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective “Planck constant” associated with such emergent “quantum” theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems. PMID:28890591

  2. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    PubMed Central

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  3. Intelligent Adaptive Systems: Literature Research of Design Guidance for Intelligent Adaptive Automation and Interfaces

    DTIC Science & Technology

    2007-09-01

    behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic

  4. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.

    PubMed

    Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz

    2017-07-01

    This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.

  5. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Xinxin; Ge, Shuzhi Sam; He, Wei

    2018-04-01

    In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.

  7. Dynamic hybrid materials for constitutional self-instructed membranes.

    PubMed

    Cazacu, Adinela; Legrand, Yves-Marie; Pasc, Andreea; Nasr, Gihane; Van der Lee, Arie; Mahon, Eugene; Barboiu, Mihail

    2009-05-19

    Constitutional self-instructed membranes were developed and used for mimicking the adaptive structural functionality of natural ion-channel systems. These membranes are based on dynamic hybrid materials in which the functional self-organized macrocycles are reversibly connected with the inorganic silica through hydrophobic noncovalent interactions. Supramolecular columnar ion-channel architectures can be generated by reversible confinement within scaffolding hydrophobic silica mesopores. They can be structurally determined by using X-ray diffraction and morphologically tuned by alkali-salts templating. From the conceptual point of view, these membranes express a synergistic adaptive behavior: the simultaneous binding of the fittest cation and its anion would be a case of "homotropic allosteric interactions," because in time it increases the transport efficiency of the pore-contained superstructures by a selective evolving process toward the fittest ion channel. The hybrid membranes presented here represent dynamic constitutional systems evolving over time to form the fittest ion channels from a library of molecular and supramolecular components, or selecting the fittest ion pairs from a mixture of salts demonstrating flexible adaptation.

  8. Epicenters of dynamic connectivity in the adaptation of the ventral visual system.

    PubMed

    Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge

    2017-04-01

    Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Avoiding the Water-Climate-Poverty Trap: Adaptive Risk Management for Bangladesh's Coastal Embankments

    NASA Astrophysics Data System (ADS)

    Hall, J. W.

    2015-12-01

    Our recent research on water security (Sadoff et al., 2015, Dadson et al., 2015) has revealed the dynamic relationship between water security and human well-being. A version of this dynamic is materialising in the coastal polder areas of Khulna, Bangladesh. Repeated coastal floods increase salinity, wipe out agricultural yields for several years and increase out-migration. As a tool to help inform and target future cycles of investment in improvements to the coastal embankments, in this paper we propose a dynamical model of biophysical processes and human well-being, which downscales our previous research to the Khulna region. State variables in the model include agricultural production, population, life expectancy and child mortality. Possible infrastructure interventions include embankment improvements, groundwater wells and drainage infrastructure. Hazard factors include flooding, salinization and drinking water pollution. Our system model can be used to inform adaptation decision making by testing the dynamical response of the system to a range of possible policy interventions, under uncertain future conditions. The analysis is intended to target investment and enable adaptive resource reallocation based on learning about the system response to interventions over the seven years of our research programme. The methodology and paper will demonstrate the complex interplay of factors that determine system vulnerability to climate change. The role of climate change uncertainties (in terms of mean sea level rise and storm surge frequency) will be evaluated alongside multiple other uncertain factors that determine system response. Adaptive management in a 'learning system' will be promoted as a mechanism for coping with climate uncertainties. References:Dadson, S., Hall, J.W., Garrick, D., Sadoff, C. and Grey, D. Water security, risk and economic growth: lessons from a dynamical systems model, Global Environmental Change, in review.Sadoff, C.W., Hall, J.W., Grey, D., Aerts, J.C.J.H., Ait-Kadi, M., Brown, C., Cox, A., Dadson, S., Garrick, D., Kelman, J., McCornick, P., Ringler, C., Rosegrant, M., Whittington, D. and Wiberg, D. Securing Water, Sustaining Growth: Report of the GWP/OECD Task Force on Water Security and Sustainable Growth, University of Oxford, April 2015, 180pp.

  10. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaosmore » of PMSM and show the effectiveness and robustness of the proposed method.« less

  11. Ecosystems and the Biosphere as Complex Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.

    1998-01-01

    Ecosystems are prototypical examples of complex adaptive systems, in which patterns at higher levels emerge from localized interactions and selection processes acting at lower levels. An essential aspect of such systems is nonlinearity, leading to historical dependency and multiple possible outcomes of dynamics. Given this, it is essential to determine the degree to which system features are determined by environmental conditions, and the degree to which they are the result of self-organization. Furthermore, given the multiple levels at which dynamics become apparent and at which selection can act, central issues relate to how evolution shapes ecosystems properties, and whether ecosystems become buffered to changes (more resilient) over their ecological and evolutionary development or proceed to critical states and the edge of chaos.

  12. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  13. VLT deformable secondary mirror: integration and electromechanical tests results

    NASA Astrophysics Data System (ADS)

    Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.

    2012-07-01

    The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.

  14. Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2008-01-01

    Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.

  15. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    PubMed

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  16. Adaptable mission planning for kino-dynamic systems

    NASA Astrophysics Data System (ADS)

    Bush, Lawrence A. M.; Jimenez, Tony R.; Williams, Brian C.

    Autonomous systems can perform tasks that are dangerous, monotonous, or even impossible for humans. To approach the problem of planning for Unmanned Aerial Vehicles (UAVs) we present a hierarchical method that combines a high-level planner with a low-level planner. We pose the problem of high-level planning as a Selective Traveling Salesman Problem (STSP) and select the order in which to visit our science sites. We then use a kino-dynamic path planner to create a large number of intermediate waypoints. This is a complete system that combines high and low level planning to achieve a goal. This paper demonstrates the benefits gained by adaptable high-level plans versus static and greedy plans.

  17. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  18. Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example

    PubMed Central

    Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying

    2014-01-01

    Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902

  19. The simulation of the non-Markovian behaviour of a two-level system

    NASA Astrophysics Data System (ADS)

    Semina, I.; Petruccione, F.

    2016-05-01

    Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.

  20. Dynamic Lesson Planning in EFL Reading Classes through a New e-Learning System

    ERIC Educational Resources Information Center

    Okada, Takeshi; Sakamoto, Yasunobu

    2015-01-01

    This paper illustrates how lesson plans, teaching styles and assessment can be dynamically adapted on a real-time basis during an English as a Foreign Language (EFL) reading classroom session by using a new e-learning system named iBELLEs (interactive Blended English Language Learning Enhancement system). iBELLEs plays a crucial role in filling…

  1. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers

    NASA Astrophysics Data System (ADS)

    Wojtecki, Rudy J.; Meador, Michael A.; Rowan, Stuart J.

    2011-01-01

    New materials that have the ability to reversibly adapt to their environment and possess a wide range of responses ranging from self-healing to mechanical work are continually emerging. These adaptive systems have the potential to revolutionize technologies such as sensors and actuators, as well as numerous biomedical applications. We will describe the emergence of a new trend in the design of adaptive materials that involves the use of reversible chemistry (both non-covalent and covalent) to programme a response that originates at the most fundamental (molecular) level. Materials that make use of this approach - structurally dynamic polymers - produce macroscopic responses from a change in the material's molecular architecture (that is, the rearrangement or reorganization of the polymer components, or polymeric aggregates). This design approach requires careful selection of the reversible/dynamic bond used in the construction of the material to control its environmental responsiveness.

  2. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.

  3. Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena

    2010-01-01

    The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.

  4. Understanding global health governance as a complex adaptive system.

    PubMed

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  5. Adaptive learning and control for MIMO system based on adaptive dynamic programming.

    PubMed

    Fu, Jian; He, Haibo; Zhou, Xinmin

    2011-07-01

    Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.

  6. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  7. A meta-learning system based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  8. Learning of spatio-temporal codes in a coupled oscillator system.

    PubMed

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  9. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  10. Effects of payoff functions and preference distributions in an adaptive population

    NASA Astrophysics Data System (ADS)

    Yang, H. M.; Ting, Y. S.; Wong, K. Y. Michael

    2008-03-01

    Adaptive populations such as those in financial markets and distributed control can be modeled by the Minority Game. We consider how their dynamics depends on the agents’ initial preferences of strategies, when the agents use linear or quadratic payoff functions to evaluate their strategies. We find that the fluctuations of the population making certain decisions (the volatility) depends on the diversity of the distribution of the initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. In systems with linear payoffs, this results in dynamical transitions from vanishing volatility to a nonvanishing one. For low signal dimensions, the dynamical transitions for the different signals do not take place at the same critical diversity. Rather, a cascade of dynamical transitions takes place when the diversity is reduced. In contrast, no phase transitions are found in systems with the quadratic payoffs. Instead, a basin boundary of attraction separates two groups of samples in the space of the agents’ decisions. Initial states inside this boundary converge to small volatility, while those outside diverge to a large one. Furthermore, when the preference distribution becomes more polarized, the dynamics becomes more erratic. All the above results are supported by good agreement between simulations and theory.

  11. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems.

    PubMed

    Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang

    2014-08-01

    This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.

  12. Precision pharmacology for Alzheimer's disease.

    PubMed

    Hampel, Harald; Vergallo, Andrea; Aguilar, Lisi Flores; Benda, Norbert; Broich, Karl; Cuello, A Claudio; Cummings, Jeffrey; Dubois, Bruno; Federoff, Howard J; Fiandaca, Massimo; Genthon, Remy; Haberkamp, Marion; Karran, Eric; Mapstone, Mark; Perry, George; Schneider, Lon S; Welikovitch, Lindsay A; Woodcock, Janet; Baldacci, Filippo; Lista, Simone

    2018-04-01

    The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  14. Transitions from trees to cycles in adaptive flow networks

    NASA Astrophysics Data System (ADS)

    Martens, Erik A.; Klemm, Konstantin

    2017-11-01

    Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.

  15. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  16. Trends in modern system theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1976-01-01

    The topics considered are related to linear control system design, adaptive control, failure detection, control under failure, system reliability, and large-scale systems and decentralized control. It is pointed out that the design of a linear feedback control system which regulates a process about a desirable set point or steady-state condition in the presence of disturbances is a very important problem. The linearized dynamics of the process are used for design purposes. The typical linear-quadratic design involving the solution of the optimal control problem of a linear time-invariant system with respect to a quadratic performance criterion is considered along with gain reduction theorems and the multivariable phase margin theorem. The stumbling block in many adaptive design methodologies is associated with the amount of real time computation which is necessary. Attention is also given to the desperate need to develop good theories for large-scale systems, the beginning of a microprocessor revolution, the translation of the Wiener-Hopf theory into the time domain, and advances made in dynamic team theory, dynamic stochastic games, and finite memory stochastic control.

  17. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  18. Immunity-Based Optimal Estimation Approach for a New Real Time Group Elevator Dynamic Control Application for Energy and Time Saving

    PubMed Central

    Baygin, Mehmet; Karakose, Mehmet

    2013-01-01

    Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods. PMID:23935433

  19. A plastic corticostriatal circuit model of adaptation in perceptual decision making

    PubMed Central

    Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2013-01-01

    The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA) system that modulates spike-timing dependent plasticity (STDP). We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject's preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment. PMID:24339814

  20. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

    PubMed

    Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X

    2007-05-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.

  1. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    PubMed Central

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-01-01

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164

  2. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.

    PubMed

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-09-02

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.

  3. How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?

    PubMed

    Duarte, Jorge; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2015-12-01

    Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.

  4. Space motion sickness preflight adaptation training: preliminary studies with prototype trainers

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Rock, J. C.; von Gierke, H. E.; Ouyang, L.; Reschke, M. F.; Arrott, A. P.

    1987-01-01

    Preflight training frequently has been proposed as a potential solution to the problem of space motion sickness. The paper considers successively the otolith reinterpretation, the concept for a preflight adaptation trainer and the research with the Miami University Seesaw, the Wright Patterson Air-Force Base Dynamic Environment Simulator and the Visually Coupled Airborne Systems Simulator prototype adaptation trainers.

  5. A real-time spiking cerebellum model for learning robot control.

    PubMed

    Carrillo, Richard R; Ros, Eduardo; Boucheny, Christian; Coenen, Olivier J-M D

    2008-01-01

    We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.

  6. Chaos as a psychological construct: historical roots, principal findings, and current growth directions.

    PubMed

    Guastello, Stephen J

    2009-07-01

    The landmarks in the use of chaos and related constructs in psychology were entwined with the growing use of other nonlinear dynamical constructs, especially catastrophes and self-organization. The growth in substantive applications of chaos in psychology is partially related to the development of methodologies that work within the constraints of psychological data. The psychological literature includes rigorous theory with testable propositions, lighter-weight metaphorical uses of the construct, and colloquial uses of "chaos" with no particular theoretical intent. The current state of the chaos construct and supporting empirical research in psychological theory is summarized in neuroscience, psychophysics, psychomotor skill and other learning phenomena, clinical and abnormal psychology, and group dynamics and organizational behavior. Trends indicate that human systems do not remain chaotic indefinitely; they eventually self-organize, and the concept of the complex adaptive system has become prominent. Chaotic turbulence is generally higher in healthy systems compared to unhealthy systems, although opposite appears true in mood disorders. Group dynamics research shows trends consistent with the complex adaptive system, whereas organizational behavior lags behind in empirical studies relative to the quantity of its theory. Future directions for research involving the chaos construct and other nonlinear dynamics are outlined.

  7. Distributed cooperative H∞ optimal tracking control of MIMO nonlinear multi-agent systems in strict-feedback form via adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Luy, N. T.

    2018-04-01

    The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.

  8. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  9. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  10. Nonlinear neural control with power systems applications

    NASA Astrophysics Data System (ADS)

    Chen, Dingguo

    1998-12-01

    Extensive studies have been undertaken on the transient stability of large interconnected power systems with flexible ac transmission systems (FACTS) devices installed. Varieties of control methodologies have been proposed to stabilize the postfault system which would otherwise eventually lose stability without a proper control. Generally speaking, regular transient stability is well understood, but the mechanism of load-driven voltage instability or voltage collapse has not been well understood. The interaction of generator dynamics and load dynamics makes synthesis of stabilizing controllers even more challenging. There is currently increasing interest in the research of neural networks as identifiers and controllers for dealing with dynamic time-varying nonlinear systems. This study focuses on the development of novel artificial neural network architectures for identification and control with application to dynamic electric power systems so that the stability of the interconnected power systems, following large disturbances, and/or with the inclusion of uncertain loads, can be largely enhanced, and stable operations are guaranteed. The latitudinal neural network architecture is proposed for the purpose of system identification. It may be used for identification of nonlinear static/dynamic loads, which can be further used for static/dynamic voltage stability analysis. The properties associated with this architecture are investigated. A neural network methodology is proposed for dealing with load modeling and voltage stability analysis. Based on the neural network models of loads, voltage stability analysis evolves, and modal analysis is performed. Simulation results are also provided. The transient stability problem is studied with consideration of load effects. The hierarchical neural control scheme is developed. Trajectory-following policy is used so that the hierarchical neural controller performs as almost well for non-nominal cases as they do for the nominal cases. The adaptive hierarchical neural control scheme is also proposed to deal with the time-varying nature of loads. Further, adaptive neural control, which is based on the on-line updating of the weights and biases of the neural networks, is studied. Simulations provided on the faulted power systems with unknown loads suggest that the proposed adaptive hierarchical neural control schemes should be useful for practical power applications.

  11. Key properties of expert movement systems in sport : an ecological dynamics perspective.

    PubMed

    Seifert, Ludovic; Button, Chris; Davids, Keith

    2013-03-01

    This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include 'multi- and meta-stability', 'adaptive variability', 'redundancy', 'degeneracy' and the 'attunement to affordances'. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived 'gap' separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual's behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.

  12. A dynamical system that describes vein graft adaptation and failure.

    PubMed

    Garbey, Marc; Berceli, Scott A

    2013-11-07

    Adaptation of vein bypass grafts to the mechanical stresses imposed by the arterial circulation is thought to be the primary determinant for lesion development, yet an understanding of how the various forces dictate local wall remodeling is lacking. We develop a dynamical system that summarizes the complex interplay between the mechanical environment and cell/matrix kinetics, ultimately dictating changes in the vein graft architecture. Based on a systematic mapping of the parameter space, three general remodeling response patterns are observed: (1) shear stabilized intimal thickening, (2) tension induced wall thinning and lumen expansion, and (3) tension stabilized wall thickening. Notable is our observation that the integration of multiple feedback mechanisms leads to a variety of non-linear responses that would be unanticipated by an analysis of each system component independently. This dynamic analysis supports the clinical observation that the majority of vein grafts proceed along an adaptive trajectory, where grafts dilate and mildly thicken in response to the increased tension and shear, but a small portion of the grafts demonstrate a maladaptive phenotype, where progressive inward remodeling and accentuated wall thickening lead to graft failure. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  13. CALM: Complex Adaptive System (CAS)-Based Decision Support for Enabling Organizational Change

    NASA Astrophysics Data System (ADS)

    Adler, Richard M.; Koehn, David J.

    Guiding organizations through transformational changes such as restructuring or adopting new technologies is a daunting task. Such changes generate workforce uncertainty, fear, and resistance, reducing morale, focus and performance. Conventional project management techniques fail to mitigate these disruptive effects, because social and individual changes are non-mechanistic, organic phenomena. CALM (for Change, Adaptation, Learning Model) is an innovative decision support system for enabling change based on CAS principles. CALM provides a low risk method for validating and refining change strategies that combines scenario planning techniques with "what-if" behavioral simulation. In essence, CALM "test drives" change strategies before rolling them out, allowing organizations to practice and learn from virtual rather than actual mistakes. This paper describes the CALM modeling methodology, including our metrics for measuring organizational readiness to respond to change and other major CALM scenario elements: prospective change strategies; alternate futures; and key situational dynamics. We then describe CALM's simulation engine for projecting scenario outcomes and its associated analytics. CALM's simulator unifies diverse behavioral simulation paradigms including: adaptive agents; system dynamics; Monte Carlo; event- and process-based techniques. CALM's embodiment of CAS dynamics helps organizations reduce risk and improve confidence and consistency in critical strategies for enabling transformations.

  14. An adaptive approach to the dynamic allocation of buffer storage. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Crooke, S. C.

    1970-01-01

    Several strategies for the dynamic allocation of buffer storage are simulated and compared. The basic algorithms investigated, using actual statistics observed in the Univac 1108 EXEC 8 System, include the buddy method and the first-fit method. Modifications are made to the basic methods in an effort to improve and to measure allocation performance. A simulation model of an adaptive strategy is developed which permits interchanging the two different methods, the buddy and the first-fit methods with some modifications. Using an adaptive strategy, each method may be employed in the statistical environment in which its performance is superior to the other method.

  15. High precision tracking control of a servo gantry with dynamic friction compensation.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-05-01

    This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule

    NASA Astrophysics Data System (ADS)

    Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong

    2018-06-01

    To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.

  17. A case study in nonlinear dynamics and control of articulated spacecraft: The Space Station Freedom with a mobile remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer

    1994-01-01

    The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.

  18. Population Dynamics of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  19. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  20. Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.

    PubMed

    Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang

    2017-06-28

    This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.

  1. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  2. Adaptive sampling strategies with high-throughput molecular dynamics

    NASA Astrophysics Data System (ADS)

    Clementi, Cecilia

    Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.

  3. Architecture for an artificial immune system.

    PubMed

    Hofmeyr, S A; Forrest, S

    2000-01-01

    An artificial immune system (ARTIS) is described which incorporates many properties of natural immune systems, including diversity, distributed computation, error tolerance, dynamic learning and adaptation, and self-monitoring. ARTIS is a general framework for a distributed adaptive system and could, in principle, be applied to many domains. In this paper, ARTIS is applied to computer security in the form of a network intrusion detection system called LISYS. LISYS is described and shown to be effective at detecting intrusions, while maintaining low false positive rates. Finally, similarities and differences between ARTIS and Holland's classifier systems are discussed.

  4. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  5. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  6. Dynamics modeling and adaptive control of flexible manipulators

    NASA Technical Reports Server (NTRS)

    Sasiadek, J. Z.

    1991-01-01

    An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.

  7. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.

    PubMed

    Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph

    2017-09-26

    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

  8. Adaptive Control for Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2005-01-01

    Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.

  9. A Flight Control System for Small Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Tunik, A. A.; Nadsadnaya, O. I.

    2018-03-01

    The program adaptation of the controller for the flight control system (FCS) of an unmanned aerial vehicle (UAV) is considered. Linearized flight dynamic models depend mainly on the true airspeed of the UAV, which is measured by the onboard air data system. This enables its use for program adaptation of the FCS over the full range of altitudes and velocities, which define the flight operating range. FCS with program adaptation, based on static feedback (SF), is selected. The SF parameters for every sub-range of the true airspeed are determined using the linear matrix inequality approach in the case of discrete systems for synthesis of a suboptimal robust H ∞-controller. The use of the Lagrange interpolation between true airspeed sub-ranges provides continuous adaptation. The efficiency of the proposed approach is shown against an example of the heading stabilization system.

  10. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.

    PubMed

    Zhang, Huaguang; Cui, Lili; Zhang, Xin; Luo, Yanhong

    2011-12-01

    In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua; School of Automation, Chongqing University, Chongqing 400044; Sun, Quanping

    This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Puttingmore » tracking differentiator into chaos controller solves the ‘explosion of complexity’ of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.« less

  12. Dynamic hybrid materials for constitutional self-instructed membranes

    PubMed Central

    Cazacu, Adinela; Legrand, Yves-Marie; Pasc, Andreea; Nasr, Gihane; Van der Lee, Arie; Mahon, Eugene; Barboiu, Mihail

    2009-01-01

    Constitutional self-instructed membranes were developed and used for mimicking the adaptive structural functionality of natural ion-channel systems. These membranes are based on dynamic hybrid materials in which the functional self-organized macrocycles are reversibly connected with the inorganic silica through hydrophobic noncovalent interactions. Supramolecular columnar ion-channel architectures can be generated by reversible confinement within scaffolding hydrophobic silica mesopores. They can be structurally determined by using X-ray diffraction and morphologically tuned by alkali-salts templating. From the conceptual point of view, these membranes express a synergistic adaptive behavior: the simultaneous binding of the fittest cation and its anion would be a case of “homotropic allosteric interactions,” because in time it increases the transport efficiency of the pore-contained superstructures by a selective evolving process toward the fittest ion channel. The hybrid membranes presented here represent dynamic constitutional systems evolving over time to form the fittest ion channels from a library of molecular and supramolecular components, or selecting the fittest ion pairs from a mixture of salts demonstrating flexible adaptation. PMID:19416909

  13. Opinion dynamics on an adaptive random network

    NASA Astrophysics Data System (ADS)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2009-04-01

    We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.

  14. CLASSICAL AREAS OF PHENOMENOLOGY: Correcting dynamic residual aberrations of conformal optical systems using AO technology

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Lin; Huang, Yi-Fan; Du, Bao-Lin

    2009-07-01

    This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme. Communication between MATLAB and Code V is established via ActiveX technique in computer simulation. The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror. After comparison of performance of the corrected system with the baseline system, AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.

  15. Free-energy landscapes from adaptively biased methods: Application to quantum systems

    NASA Astrophysics Data System (ADS)

    Calvo, F.

    2010-10-01

    Several parallel adaptive biasing methods are applied to the calculation of free-energy pathways along reaction coordinates, choosing as a difficult example the double-funnel landscape of the 38-atom Lennard-Jones cluster. In the case of classical statistics, the Wang-Landau and adaptively biased molecular-dynamics (ABMD) methods are both found efficient if multiple walkers and replication and deletion schemes are used. An extension of the ABMD technique to quantum systems, implemented through the path-integral MD framework, is presented and tested on Ne38 against the quantum superposition method.

  16. Fine Surface Control of Flexible Space Mirrors Using Adaptive Optics and Robust Control

    DTIC Science & Technology

    2009-03-01

    an AO system not only increases complexity but also lends itself to coupling between actuators. Whereas historically, control laws treated AO...adaptive optic in large ground based AO systems is treated as a static system with no dynamics. In the case of a deformable mirror, it is assumed... astigmatism , and so on. As with any series expansion, the more terms used, the more accurate the approximation will be. For this research, 21 Zernike

  17. Stochastic Gain in Population Dynamics

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Röhl, Torsten; Schuster, Heinz Georg

    2004-07-01

    We introduce an extension of the usual replicator dynamics to adaptive learning rates. We show that a population with a dynamic learning rate can gain an increased average payoff in transient phases and can also exploit external noise, leading the system away from the Nash equilibrium, in a resonancelike fashion. The payoff versus noise curve resembles the signal to noise ratio curve in stochastic resonance. Seen in this broad context, we introduce another mechanism that exploits fluctuations in order to improve properties of the system. Such a mechanism could be of particular interest in economic systems.

  18. Harm reduction as a complex adaptive system: A dynamic framework for analyzing Tanzanian policies concerning heroin use

    PubMed Central

    Ratliff, Eric A.; Kaduri, Pamela; Masao, Frank; Mbwambo, Jessie K.K.; McCurdy, Sheryl A.

    2016-01-01

    Contrary to popular belief, policies on drug use are not always based on scientific evidence or composed in a rational manner. Rather, decisions concerning drug policies reflect the negotiation of actors’ ambitions, values, and facts as they organize in different ways around the perceived problems associated with illicit drug use. Drug policy is thus best represented as a complex adaptive system (CAS) that is dynamic, self-organizing, and coevolving. In this analysis, we use a CAS framework to examine how harm reduction emerged around heroin trafficking and use in Tanzania over the past thirty years (1985-present). This account is an organizational ethnography based on of the observant participation of the authors as actors within this system. We review the dynamic history and self-organizing nature of harm reduction, noting how interactions among system actors and components have coevolved with patterns of heroin us, policing, and treatment activities over time. Using a CAS framework, we describe harm reduction as a complex process where ambitions, values, facts, and technologies interact in the Tanzanian socio-political environment. We review the dynamic history and self-organizing nature of heroin policies, noting how the interactions within and between competing prohibitionist and harm reduction policies have changed with patterns of heroin use, policing, and treatment activities over time. Actors learn from their experiences to organize with other actors, align their values and facts, and implement new policies. Using a CAS approach provides researchers and policy actors a better understanding of patterns and intricacies in drug policy. This knowledge of how the system works can help improve the policy process through adaptive action to introduce new actors, different ideas, and avenues for communication into the system. PMID:26790689

  19. Harm reduction as a complex adaptive system: A dynamic framework for analyzing Tanzanian policies concerning heroin use.

    PubMed

    Ratliff, Eric A; Kaduri, Pamela; Masao, Frank; Mbwambo, Jessie K K; McCurdy, Sheryl A

    2016-04-01

    Contrary to popular belief, policies on drug use are not always based on scientific evidence or composed in a rational manner. Rather, decisions concerning drug policies reflect the negotiation of actors' ambitions, values, and facts as they organize in different ways around the perceived problems associated with illicit drug use. Drug policy is thus best represented as a complex adaptive system (CAS) that is dynamic, self-organizing, and coevolving. In this analysis, we use a CAS framework to examine how harm reduction emerged around heroin trafficking and use in Tanzania over the past thirty years (1985-present). This account is an organizational ethnography based on of the observant participation of the authors as actors within this system. We review the dynamic history and self-organizing nature of harm reduction, noting how interactions among system actors and components have coevolved with patterns of heroin us, policing, and treatment activities over time. Using a CAS framework, we describe harm reduction as a complex process where ambitions, values, facts, and technologies interact in the Tanzanian sociopolitical environment. We review the dynamic history and self-organizing nature of heroin policies, noting how the interactions within and between competing prohibitionist and harm reduction policies have changed with patterns of heroin use, policing, and treatment activities over time. Actors learn from their experiences to organize with other actors, align their values and facts, and implement new policies. Using a CAS approach provides researchers and policy actors a better understanding of patterns and intricacies in drug policy. This knowledge of how the system works can help improve the policy process through adaptive action to introduce new actors, different ideas, and avenues for communication into the system. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Toward Dynamic Adaptation of Psychological Interventions for Child and Adolescent Development and Mental Health.

    PubMed

    Malti, Tina; Noam, Gil G; Beelmann, Andreas; Sommer, Simon

    2016-01-01

    Children's and adolescents' mental health needs emphasize the necessity of a new era of translational research to enhance development and yield better lives for children, families, and communities. Developmental, clinical, and translational research serves as a powerful tool for managing the inevitable complexities in pursuit of these goals. This article proposes key ideas that will strengthen current evidence-based intervention practices by creating stronger links between research, practice, and complex systems contexts, with the potential of extending applicability, replicability, and impact. As exemplified in some of the articles throughout this special issue, new research and innovative implementation models will likely contribute to better ways of assessing and dynamically adapting structure and intervention practice within mental health systems. We contend that future models for effective interventions with children and adolescents will involve increased attention to (a) the connection of research on the developmental needs of children and adolescents to practice models; (b) consideration of informed contextual and cultural adaptation in implementation; and (c) a rational model of evidence-based planning, using a dynamic, inclusive approach with high support for adaptation, flexibility, and implementation fidelity. We discuss future directions for translational research for researchers, practitioners, and administrators in the field to continue and transform these ideas and their illustrations.

  1. Dynamic Models of Insurgent Activity

    DTIC Science & Technology

    2014-05-19

    Martin Short, P. Jeffrey Brantingham, Frederick Schoenberg, George Tita . Self-Exciting Point Process Modeling of Crime, Journal of the American...Mohler, P. J. Brantingham, G. E. Tita . Gang rivalry dynamics via coupled point process networks, Discrete and Continuous Dynamical Systems - Series...8532-2-1 Laura Smith, Andrea Bertozzi, P. Jeffrey Brantingham, George Tita , Matthew Valasik. ADAPTATION OF AN ECOLOGICAL TERRITORIAL MODEL TOSTREET

  2. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  3. J-adaptive estimation with estimated noise statistics

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Hipkins, C.

    1973-01-01

    The J-adaptive sequential estimator is extended to include simultaneous estimation of the noise statistics in a model for system dynamics. This extension completely automates the estimator, eliminating the requirement of an analyst in the loop. Simulations in satellite orbit determination demonstrate the efficacy of the sequential estimation algorithm.

  4. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.

    PubMed

    Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan

    2015-11-01

    In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Adaptive filter design using recurrent cerebellar model articulation controller.

    PubMed

    Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S

    2010-07-01

    A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.

  6. Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms

    PubMed Central

    Balleza, Enrique; Alvarez-Buylla, Elena R.; Chaos, Alvaro; Kauffman, Stuart; Shmulevich, Ilya; Aldana, Maximino

    2008-01-01

    The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us. PMID:18560561

  7. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  8. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  9. Prescribed-performance fault-tolerant control for feedback linearisable systems with an aircraft application

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Wang, Jinzhi; Wang, Xianghua

    2017-05-01

    This paper investigates fault-tolerant control (FTC) for feedback linearisable systems (FLSs) and its application to an aircraft. To ensure desired transient and steady-state behaviours of the tracking error under actuator faults, the dynamic effect caused by the actuator failures on the error dynamics of a transformed model is analysed, and three control strategies are designed. The first FTC strategy is proposed as a robust controller, which relies on the explicit information about several parameters of the actuator faults. To eliminate the need for these parameters and the input chattering phenomenon, the robust control law is later combined with the adaptive technique to generate the adaptive FTC law. Next, the adaptive control law is further improved to achieve the prescribed performance under more severe input disturbance. Finally, the proposed control laws are applied to an air-breathing hypersonic vehicle (AHV) subject to actuator failures, which confirms the effectiveness of the proposed strategies.

  10. Adaptive optimization as a design and management methodology for coal-mining enterprise in uncertain and volatile market environment - the conceptual framework

    NASA Astrophysics Data System (ADS)

    Mikhalchenko, V. V.; Rubanik, Yu T.

    2016-10-01

    The work is devoted to the problem of cost-effective adaptation of coal mines to the volatile and uncertain market conditions. Conceptually it can be achieved through alignment of the dynamic characteristics of the coal mining system and power spectrum of market demand for coal product. In practical terms, this ensures the viability and competitiveness of coal mines. Transformation of dynamic characteristics is to be done by changing the structure of production system as well as corporate, logistics and management processes. The proposed methods and algorithms of control are aimed at the development of the theoretical foundations of adaptive optimization as basic methodology for coal mine enterprise management in conditions of high variability and uncertainty of economic and natural environment. Implementation of the proposed methodology requires a revision of the basic principles of open coal mining enterprises design.

  11. A new RISE-based adaptive control of PKMs: design, stability analysis and experiments

    NASA Astrophysics Data System (ADS)

    Bennehar, M.; Chemori, A.; Bouri, M.; Jenni, L. F.; Pierrot, F.

    2018-03-01

    This paper deals with the development of a new adaptive control scheme for parallel kinematic manipulators (PKMs) based on Rrbust integral of the sign of the error (RISE) control theory. Original RISE control law is only based on state feedback and does not take advantage of the modelled dynamics of the manipulator. Consequently, the overall performance of the resulting closed-loop system may be poor compared to modern advanced model-based control strategies. We propose in this work to extend RISE by including the nonlinear dynamics of the PKM in the control loop to improve its overall performance. More precisely, we augment original RISE control scheme with a model-based adaptive control term to account for the inherent nonlinearities in the closed-loop system. To demonstrate the relevance of the proposed controller, real-time experiments are conducted on the Delta robot, a three-degree-of-freedom (3-DOF) PKM.

  12. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.

    PubMed

    Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong

    2016-05-01

    In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.

  13. Repercussion of geometric and dynamic constraints on the 3D rendering quality in structurally adaptive multi-view shooting systems

    NASA Astrophysics Data System (ADS)

    Ali-Bey, Mohamed; Moughamir, Saïd; Manamanni, Noureddine

    2011-12-01

    in this paper a simulator of a multi-view shooting system with parallel optical axes and structurally variable configuration is proposed. The considered system is dedicated to the production of 3D contents for auto-stereoscopic visualization. The global shooting/viewing geometrical process, which is the kernel of this shooting system, is detailed and the different viewing, transformation and capture parameters are then defined. An appropriate perspective projection model is afterward derived to work out a simulator. At first, this latter is used to validate the global geometrical process in the case of a static configuration. Next, the simulator is used to show the limitations of a static configuration of this shooting system type by considering the case of dynamic scenes and then a dynamic scheme is achieved to allow a correct capture of this kind of scenes. After that, the effect of the different geometrical capture parameters on the 3D rendering quality and the necessity or not of their adaptation is studied. Finally, some dynamic effects and their repercussions on the 3D rendering quality of dynamic scenes are analyzed using error images and some image quantization tools. Simulation and experimental results are presented throughout this paper to illustrate the different studied points. Some conclusions and perspectives end the paper. [Figure not available: see fulltext.

  14. A new approach for designing self-organizing systems and application to adaptive control

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song

    1993-01-01

    There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.

  15. Thermostatistically approaching living systems: Boltzmann Gibbs or nonextensive statistical mechanics?

    NASA Astrophysics Data System (ADS)

    Tsallis, Constantino

    2006-03-01

    Boltzmann-Gibbs ( BG) statistical mechanics is, since well over one century, successfully used for many nonlinear dynamical systems which, in one way or another, exhibit strong chaos. A typical case is a classical many-body short-range-interacting Hamiltonian system (e.g., the Lennard-Jones model for a real gas at moderately high temperature). Its Lyapunov spectrum (which characterizes the sensitivity to initial conditions) includes positive values. This leads to ergodicity, the stationary state being thermal equilibrium, hence standard applicability of the BG theory is verified. The situation appears to be of a different nature for various phenomena occurring in living organisms. Indeed, such systems exhibit a complexity which does not really accommodate with this standard dynamical behavior. Life appears to emerge and evolve in a kind of delicate situation, at the frontier between large order (low adaptability and long memory; typically characterized by regular dynamics, hence only nonpositive Lyapunov exponents) and large disorder (high adaptability and short memory; typically characterized by strong chaos, hence at least one positive Lyapunov exponent). Along this frontier, the maximal relevant Lyapunov exponents are either zero or close to that, characterizing what is currently referred to as weak chaos. This type of situation is shared by a great variety of similar complex phenomena in economics, linguistics, to cite but a few. BG statistical mechanics is built upon the entropy S=-k∑plnp. A generalization of this form, S=k(1-∑piq)/(q-1) (with S=S), has been proposed in 1988 as a basis for formulating what is nowadays currently called nonextensive statistical mechanics. This theory appears to be particularly adapted for nonlinear dynamical systems exhibiting, precisely, weak chaos. Here, we briefly review the theory, its dynamical foundation, its applications in a variety of disciplines (with special emphasis to living systems), and its connections with the ubiquitous scale-free networks.

  16. Synthesis of the adaptive continuous system for the multi-axle wheeled vehicle body oscillation damping

    NASA Astrophysics Data System (ADS)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.

  17. IRAC Full-Scale Flight Testbed Capabilities

    NASA Technical Reports Server (NTRS)

    Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.

    2009-01-01

    Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.

  18. Water scarcity and institutional change: lessons in adaptive governance from the drought experience of Perth, Western Australia.

    PubMed

    Bettini, Y; Brown, R; de Haan, F J

    2013-01-01

    Urban water systems will be increasingly challenged under future climates and global pressures. Meeting challenges by reconfiguring water systems to integrate supplies and deliver multifunctional uses is technically well described. Adjusting the institutions that frame the management of these systems is not well operationalized in practice or conceptualized in theory. This study seeks to address this gap through an institutional analysis of Perth, Australia, a city where drought crisis has put under pressure both management practices and the institutional setting that underlies them. The study found that while trusted practices moderated water scarcity, the stability of the institutional setting may not facilitate a shift toward adaptable institutional configurations suited to future conditions. The results identified three key ingredients for a flexible institutional setting: (i) feedbacks in the system through better information management, (ii) reflexive dialogue and strategic use of projects to generate greater learning opportunities, and (iii) policy level support for sector-wide collaboration through progressive agendas, incentives for innovation and capacity building in stakeholder and community engagement. Further, the results suggest that a deeper understanding of institutional dynamics is needed to enable adaptive governance. The paper provides an analytical framework for diagnosing how greater adaptive capacity might be mobilized through influencing these dynamics.

  19. Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-01-01

    This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.

  20. Nonlinear adaptive control of an elastic robotic arm

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1986-01-01

    An approach to control of a class of nonlinear flexible robotic systems is presented. For simplicity, a robot arm (PUMA-type) with three rotational joints is considered. The third link is assumed to be elastic. An adaptive torquer control law is derived for controlling the joint angles. This controller includes a dynamic system in the feedback path, requires only joint angle and rate for feedback, and asymptotically decomposes the elastic dynamics into two subsystems representing the transverse vibrations of the elastic link in two orthogonal planes. To damp out the elastic vibration, a force control law using modal feedback is synthesized. The combination of the torque and force control laws accomplishes joint angle control and elastic mode stabilization.

  1. A disturbance observer-based adaptive control approach for flexure beam nano manipulators.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-01-01

    This paper presents a systematic modeling and control methodology for a two-dimensional flexure beam-based servo stage supporting micro/nano manipulations. Compared with conventional mechatronic systems, such systems have major control challenges including cross-axis coupling, dynamical uncertainties, as well as input saturations, which may have adverse effects on system performance unless effectively eliminated. A novel disturbance observer-based adaptive backstepping-like control approach is developed for high precision servo manipulation purposes, which effectively accommodates model uncertainties and coupling dynamics. An auxiliary system is also introduced, on top of the proposed control scheme, to compensate the input saturations. The proposed control architecture is deployed on a customized-designed nano manipulating system featured with a flexure beam structure and voice coil actuators (VCA). Real time experiments on various manipulating tasks, such as trajectory/contour tracking, demonstrate precision errors of less than 1%. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  3. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    PubMed

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke.

    PubMed

    Choi, Younggeun; Gordon, James; Park, Hyeshin; Schweighofer, Nicolas

    2011-08-03

    Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested in a clinical trial.

  5. Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence.

    PubMed

    Hernández-Orozco, Santiago; Hernández-Quiroz, Francisco; Zenil, Hector

    2018-01-01

    Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.

  6. On-line training of recurrent neural networks with continuous topology adaptation.

    PubMed

    Obradovic, D

    1996-01-01

    This paper presents an online procedure for training dynamic neural networks with input-output recurrences whose topology is continuously adjusted to the complexity of the target system dynamics. This is accomplished by changing the number of the elements of the network hidden layer whenever the existing topology cannot capture the dynamics presented by the new data. The training mechanism is based on the suitably altered extended Kalman filter (EKF) algorithm which is simultaneously used for the network parameter adjustment and for its state estimation. The network consists of a single hidden layer with Gaussian radial basis functions (GRBF), and a linear output layer. The choice of the GRBF is induced by the requirements of the online learning. The latter implies the network architecture which permits only local influence of the new data point in order not to forget the previously learned dynamics. The continuous topology adaptation is implemented in our algorithm to avoid memory and computational problems of using a regular grid of GRBF'S which covers the network input space. Furthermore, we show that the resulting parameter increase can be handled "smoothly" without interfering with the already acquired information. If the target system dynamics are changing over time, we show that a suitable forgetting factor can be used to "unlearn" the no longer-relevant dynamics. The quality of the recurrent network training algorithm is demonstrated on the identification of nonlinear dynamic systems.

  7. Flexible and adaptive water systems operations through more informed and dynamic decisions

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.

    2016-12-01

    Timely adapting the operations of water systems to be resilient against rapid changes in both hydroclimatic and socioeconomic forcing is generally recommended as a part of planning and managing water resources under uncertain futures. A great opportunity to make the operations more flexible and adaptive is offered by the unprecedented amount of information that is becoming available to water system operators, providing a wide range of data at increasingly higher temporal and spatial resolution. Yet, many water systems are still operated using very simple information systems, typically based on basic statistical analysis and the operator's experience. In this work, we discuss the potential offered by incorporating improved information to enhance water systems operation and increase their ability of adapting to different external conditions and resolving potential conflicts across sectors. In particular, we focus on the use of different variables associated to different dynamics of the system (slow and fast) diversely impacting the operating objectives on the short-, medium- and long-term. The multi-purpose operations of the Hoa Binh reservoir in the Red River Basin (Vietnam) is used to demonstrate our approach. Numerical results show that our procedure is able to automatically select the most valuable information for improving the Hoa Binh operations and mitigating the conflict between short-term objectives, i.e. hydropower production and flood control. Moreover, we also successfully identify low-frequency climate information associated to El-Nino Southern Oscillation for improving the performance in terms of long-term objectives, i.e. water supply. Finally, we assess the value of better informing operational decisions for adapting the system operations to changing conditions by considering different climate change projections.

  8. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  9. Quantum Dynamics of Solitons in Strongly Interacting Systems on Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rubbo, Chester; Balakrishnan, Radha; Reinhardt, William; Satija, Indubala; Rey, Ana; Manmana, Salvatore

    2012-06-01

    We present results of the quantum dynamics of solitons in XXZ spin-1/2 systems which in general can be derived from a system of spinless fermions or hard-core bosons (HCB) with nearest neighbor interaction on a lattice. A mean-field treatment using spin-coherent states revealed analytic solutions of both bright and dark solitons [1]. We take these solutions and apply a full quantum evolution using the adaptive time-dependent density matrix renormalization group method (adaptive t-DMRG), which takes into account the effect of strong correlations. We use local spin observables, correlations functions, and entanglement entropies as measures for the stability of these soliton solutions over the simulation times. [4pt] [1] R. Balakrishnan, I.I. Satija, and C.W. Clark, Phys. Rev. Lett. 103, 230403 (2009).

  10. Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces

    NASA Astrophysics Data System (ADS)

    Song, Qi; Song, Y. D.; Cai, Wenchuan

    2011-09-01

    Although backstepping control design approach has been widely utilised in many practical systems, little effort has been made in applying this useful method to train systems. The main purpose of this paper is to apply this popular control design technique to speed and position tracking control of high-speed trains. By integrating adaptive control with backstepping control, we develop a control scheme that is able to address not only the traction and braking dynamics ignored in most existing methods, but also the uncertain friction and aerodynamic drag forces arisen from uncertain resistance coefficients. As such, the resultant control algorithms are able to achieve high precision train position and speed tracking under varying operation railway conditions, as validated by theoretical analysis and numerical simulations.

  11. Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay.

    PubMed

    Eberle, Henry; Nasuto, Slawomir J; Hayashi, Yoshikatsu

    2018-03-01

    We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a 'slave' system predicts a 'master' via delayed self-feedback. By treating the delayed output of the plant as one half of a 'sensory' AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target's motion. We use two simulated robotic systems with differing arrangements of the plant and internal model ('parallel' and 'serial') to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed.

  12. Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua, E-mail: hua66com@163.com; School of Automation, Chongqing University, Chongqing 400044; Hou, Zhiwei

    2015-12-15

    In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposedmore » approach is demonstrated on the brushless DC motor example.« less

  13. Neural network based adaptive output feedback control: Applications and improvements

    NASA Astrophysics Data System (ADS)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in simulation, a fictitious actuator model is developed that fits experimentally observed characteristics of flow control actuators in static flight conditions as well as possible coupling effects between actuation, the dynamics of flow field, and the rigid body dynamics of the vehicle.

  14. Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, N.; Yang, L.; Gao, F.

    2017-02-27

    A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly differentmore » time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.« less

  15. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.

    2017-07-01

    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by considering a time-dependent interplay between structure and dynamics, this work offers a mechanism through which emergent phenomena and organization can arise in complex systems utilizing local rules.

  16. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    PubMed

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  17. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    PubMed Central

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  18. Adaptation to conflict via context-driven anticipatory signals in the dorsomedial prefrontal cortex.

    PubMed

    Horga, Guillermo; Maia, Tiago V; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S

    2011-11-09

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging, we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict.

  19. Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex

    PubMed Central

    Horga, Guillermo; Maia, Tiago V.; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S.

    2011-01-01

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging (fMRI), we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict. PMID:22072672

  20. Stability and Performance Metrics for Adaptive Flight Control

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens

    2009-01-01

    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.

  1. An Approach to Dynamic Service Management in Pervasive Computing Systems

    DTIC Science & Technology

    2005-01-01

    standard interface to them that is easily accessible by any user. This paper outlines the design of Centaurus , an infrastructure for presenting...based on Extensi- ble Markup Language (XML) for communication, giving the system a uniform and easily adaptable interface. Centaurus defines a...easy and automatic usage. This is the vision that guides our re- search on the Centaurus system. We define a SmartSpace as a dynamic environment that

  2. Resilience of Adapting Networks: Results from a Stylized Infrastructure Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyeler, Walter E.; Vugrin, Eric D.; Forden, Geoffrey Ethan

    2015-01-01

    Adaptation is believed to be a source of resilience in systems. It has been difficult to measure the contribution of adaptation to resilience, unlike other resilience mechanisms such as restoration and recovery. One difficulty comes from treating adaptation as a deus ex machina that is interjected after a disruption. This provides no basis for bounding possible adaptive responses. We can bracket the possible effects of adaptation when we recognize that it occurs continuously, and is in part responsible for the current system’s properties. In this way the dynamics of the system’s pre-disruption structure provides information about post-disruption adaptive reaction. Seenmore » as an ongoing process, adaptation has been argued to produce “robust-yet-fragile” systems. Such systems perform well under historical stresses but become committed to specific features of those stresses in a way that makes them vulnerable to system-level collapse when those features change. In effect adaptation lessens the cost of disruptions within a certain historical range, at the expense of increased cost from disruptions outside that range. Historical adaptive responses leave a signature in the structure of the system. Studies of ecological networks have suggested structural metrics that pick out systemic resilience in the underlying ecosystems. If these metrics are generally reliable indicators of resilience they provide another strategy for gaging adaptive resilience. To progress in understanding how the process of adaptation and the property of resilience interrelate in infrastructure systems, we pose some specific questions: Does adaptation confer resilience?; Does it confer resilience to novel shocks as well, or does it tune the system to fragility?; Can structural features predict resilience to novel shocks?; Are there policies or constraints on the adaptive process that improve resilience?.« less

  3. Investigation of Models and Estimation Techniques for GPS Attitude Determination

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1996-01-01

    Much work has been done in the Flight Dynamics Analysis Branch (FDAB) in developing algorithms to met the new and growing field of attitude determination using the Global Positioning SYstem (GPS) constellation of satellites. Flight Dynamics has the responsibility to investigate any new technology and incorporate the innovations in the attitude ground support systems developed to support future missions. The work presented here is an investigative analysis that will produce the needed adaptation to allow the Flight Dynamics Support System (FDSS) to incorporate GPS phase measurements and produce observation measurements compatible with the FDSS. A simulator was developed to produce the necessary measurement data to test the models developed for the different estimation techniques used by FDAB. This paper gives an overview of the current modeling capabilities of the simulator models and algorithms for the adaptation of GPS measurement data and results from each of the estimation techniques. Future analysis efforts to evaluate the simulator and models against inflight GPS measurement data are also outlined.

  4. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.

    PubMed

    Chai, Tianyou; Zhang, Yajun; Wang, Hong; Su, Chun-Yi; Sun, Jing

    2011-12-01

    For a complex industrial system, its multivariable and nonlinear nature generally make it very difficult, if not impossible, to obtain an accurate model, especially when the model structure is unknown. The control of this class of complex systems is difficult to handle by the traditional controller designs around their operating points. This paper, however, explores the concepts of controller-driven model and virtual unmodeled dynamics to propose a new design framework. The design consists of two controllers with distinct functions. First, using input and output data, a self-tuning controller is constructed based on a linear controller-driven model. Then the output signals of the controller-driven model are compared with the true outputs of the system to produce so-called virtual unmodeled dynamics. Based on the compensator of the virtual unmodeled dynamics, the second controller based on a nonlinear controller-driven model is proposed. Those two controllers are integrated by an adaptive switching control algorithm to take advantage of their complementary features: one offers stabilization function and another provides improved performance. The conditions on the stability and convergence of the closed-loop system are analyzed. Both simulation and experimental tests on a heavily coupled nonlinear twin-tank system are carried out to confirm the effectiveness of the proposed method.

  5. Anticipatory Neurofuzzy Control

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1994-01-01

    Technique of feedback control, called "anticipatory neurofuzzy control," developed for use in controlling flexible structures and other dynamic systems for which mathematical models of dynamics poorly known or unknown. Superior ability to act during operation to compensate for, and adapt to, errors in mathematical model of dynamics, changes in dynamics, and noise. Also offers advantage of reduced computing time. Hybrid of two older fuzzy-logic control techniques: standard fuzzy control and predictive fuzzy control.

  6. Neural Computations in a Dynamical System with Multiple Time Scales.

    PubMed

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  7. Microbial Communities Are Well Adapted to Disturbances in Energy Input

    PubMed Central

    Vallino, Joseph J.

    2016-01-01

    ABSTRACT Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic “unstable” communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating microbiomes in both host-associated and natural ecosystems. PMID:27822558

  8. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; OBrien, R; Shieh, C

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less

  9. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  10. Identification and Control of Non-Linear Time-Varying Dynamical Systems Using Artificial Neural Networks

    DTIC Science & Technology

    1992-09-01

    finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the

  11. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2003-09-30

    We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.

  12. Mathematical modelling of active safety system functions as tools for development of driverless vehicles

    NASA Astrophysics Data System (ADS)

    Ryazantsev, V.; Mezentsev, N.; Zakharov, A.

    2018-02-01

    This paper is dedicated to a solution of the issue of synthesis of the vehicle longitudinal dynamics control functions (acceleration and deceleration control) based on the element base of the vehicle active safety system (ESP) - driverless vehicle development tool. This strategy helps to reduce time and complexity of integration of autonomous motion control systems (AMCS) into the vehicle architecture and allows direct control of actuators ensuring the longitudinal dynamics control, as well as reduction of time for calibration works. The “vehicle+wheel+road” longitudinal dynamics control is complicated due to the absence of the required prior information about the control object. Therefore, the control loop becomes an adaptive system, i.e. a self-adjusting monitoring system. Another difficulty is the driver’s perception of the longitudinal dynamics control process in terms of comfort. Traditionally, one doesn’t pay a lot of attention to this issue within active safety systems, and retention of vehicle steerability, controllability and stability in emergency situations are considered to be the quality criteria. This is mainly connected to its operational limits, since it is activated only in critical situations. However, implementation of the longitudinal dynamics control in the AMCS poses another challenge for the developers - providing the driver with comfortable vehicle movement during acceleration and deceleration - while the possible highest safety level in terms of the road grip is provided by the active safety system (ESP). The results of this research are: universal active safety system - AMCS interaction interface; block diagram for the vehicle longitudinal acceleration and deceleration control as one of the active safety system’s integrated functions; ideology of adaptive longitudinal dynamics control, which enables to realize the deceleration and acceleration requested by the AMCS; algorithms synthesised; analytical experiments proving the efficiency and practicability of the chosen concept.

  13. Weather variability and adaptive management for rangeland restoration

    USDA-ARS?s Scientific Manuscript database

    Inherent weather variability in upland rangeland systems requires relatively long-term goal setting, and contingency planning for partial success or failure in any given year. Rangeland plant communities are dynamic systems and successional planning is essential for achieving and maintaining system...

  14. Systems and complexity thinking in the general practice literature: an integrative, historical narrative review.

    PubMed

    Sturmberg, Joachim P; Martin, Carmel M; Katerndahl, David A

    2014-01-01

    Over the past 7 decades, theories in the systems and complexity sciences have had a major influence on academic thinking and research. We assessed the impact of complexity science on general practice/family medicine. We performed a historical integrative review using the following systematic search strategy: medical subject heading [humans] combined in turn with the terms complex adaptive systems, nonlinear dynamics, systems biology, and systems theory, limited to general practice/family medicine and published before December 2010. A total of 16,242 articles were retrieved, of which 49 were published in general practice/family medicine journals. Hand searches and snowballing retrieved another 35. After a full-text review, we included 56 articles dealing specifically with systems sciences and general/family practice. General practice/family medicine engaged with the emerging systems and complexity theories in 4 stages. Before 1995, articles tended to explore common phenomenologic general practice/family medicine experiences. Between 1995 and 2000, articles described the complex adaptive nature of this discipline. Those published between 2000 and 2005 focused on describing the system dynamics of medical practice. After 2005, articles increasingly applied the breadth of complex science theories to health care, health care reform, and the future of medicine. This historical review describes the development of general practice/family medicine in relation to complex adaptive systems theories, and shows how systems sciences more accurately reflect the discipline's philosophy and identity. Analysis suggests that general practice/family medicine first embraced systems theories through conscious reorganization of its boundaries and scope, before applying empirical tools. Future research should concentrate on applying nonlinear dynamics and empirical modeling to patient care, and to organizing and developing local practices, engaging in community development, and influencing health care reform.

  15. Systems and Complexity Thinking in the General Practice Literature: An Integrative, Historical Narrative Review

    PubMed Central

    Sturmberg, Joachim P.; Martin, Carmel M.; Katerndahl, David A.

    2014-01-01

    PURPOSE Over the past 7 decades, theories in the systems and complexity sciences have had a major influence on academic thinking and research. We assessed the impact of complexity science on general practice/family medicine. METHODS We performed a historical integrative review using the following systematic search strategy: medical subject heading [humans] combined in turn with the terms complex adaptive systems, nonlinear dynamics, systems biology, and systems theory, limited to general practice/family medicine and published before December 2010. A total of 16,242 articles were retrieved, of which 49 were published in general practice/family medicine journals. Hand searches and snowballing retrieved another 35. After a full-text review, we included 56 articles dealing specifically with systems sciences and general/family practice. RESULTS General practice/family medicine engaged with the emerging systems and complexity theories in 4 stages. Before 1995, articles tended to explore common phenomenologic general practice/family medicine experiences. Between 1995 and 2000, articles described the complex adaptive nature of this discipline. Those published between 2000 and 2005 focused on describing the system dynamics of medical practice. After 2005, articles increasingly applied the breadth of complex science theories to health care, health care reform, and the future of medicine. CONCLUSIONS This historical review describes the development of general practice/family medicine in relation to complex adaptive systems theories, and shows how systems sciences more accurately reflect the discipline’s philosophy and identity. Analysis suggests that general practice/family medicine first embraced systems theories through conscious reorganization of its boundaries and scope, before applying empirical tools. Future research should concentrate on applying nonlinear dynamics and empirical modeling to patient care, and to organizing and developing local practices, engaging in community development, and influencing health care reform. PMID:24445105

  16. Adaptation to sensory input tunes visual cortex to criticality

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf

    2015-08-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.

  17. A Parallel, Multi-Scale Watershed-Hydrologic-Inundation Model with Adaptively Switching Mesh for Capturing Flooding and Lake Dynamics

    NASA Astrophysics Data System (ADS)

    Ji, X.; Shen, C.

    2017-12-01

    Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.

  18. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware

    PubMed Central

    Srinivasa, Narayan; Stepp, Nigel D.; Cruz-Albrecht, Jose

    2015-01-01

    Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839

  19. Towards Contextualized Learning Services

    NASA Astrophysics Data System (ADS)

    Specht, Marcus

    Personalization of feedback and instruction has often been considered as a key feature in learning support. The adaptations of the instructional process to the individual and its different aspects have been investigated from different research perspectives as learner modelling, intelligent tutoring systems, adaptive hypermedia, adaptive instruction and others. Already in the 1950s first commercial systems for adaptive instruction for trainings of keyboard skills have been developed utilizing adaptive configuration of feedback based on user performance and interaction footprints (Pask 1964). Around adaptive instruction there is a variety of research issues bringing together interdisciplinary research from computer science, engineering, psychology, psychotherapy, cybernetics, system dynamics, instructional design, and empirical research on technology enhanced learning. When classifying best practices of adaptive instruction different parameters of the instructional process have been identified which are adapted to the learner, as: sequence and size of task difficulty, time of feedback, pace of learning speed, reinforcement plan and others these are often referred to the adaptation target. Furthermore Aptitude Treatment Interaction studies explored the effect of adapting instructional parameters to different characteristics of the learner (Tennyson and Christensen 1988) as task performance, personality characteristics, or cognitive abilities, this is information is referred to as adaptation mean.

  20. EC86-33385-002

    NASA Image and Video Library

    1986-02-27

    This photograph shows a modified General Dynamics AFTI/F-111A Aardvark in flight with supercritical mission adaptive wings (MAW) installed. With the phasing out of the TACT program came a renewed effort by the Air Force Flight Dynamics Laboratory to extend supercritical wing technology to a higher level of performance. In the early 1980s the supercritical wing on the F-111A aircraft was replaced with a wing built by Boeing Aircraft Company System called a “mission adaptive wing” (MAW), and a joint NASA and Air Force program called Advanced Fighter Technology Integration (AFTI) was born.

  1. Use of measurement theory for operationalization and quantification of psychological constructs in systems dynamics modelling

    NASA Astrophysics Data System (ADS)

    Fitkov-Norris, Elena; Yeghiazarian, Ara

    2016-11-01

    The analytical tools available to social scientists have traditionally been adapted from tools originally designed for analysis of natural science phenomena. This article discusses the applicability of systems dynamics - a qualitative based modelling approach, as a possible analysis and simulation tool that bridges the gap between social and natural sciences. After a brief overview of the systems dynamics modelling methodology, the advantages as well as limiting factors of systems dynamics to the potential applications in the field of social sciences and human interactions are discussed. The issues arise with regards to operationalization and quantification of latent constructs at the simulation building stage of the systems dynamics methodology and measurement theory is proposed as a ready and waiting solution to the problem of dynamic model calibration, with a view of improving simulation model reliability and validity and encouraging the development of standardised, modular system dynamics models that can be used in social science research.

  2. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  3. Adaptive evolution of body size subject to indirect effect in trophic cascade system.

    PubMed

    Wang, Xin; Fan, Meng; Hao, Lina

    2017-09-01

    Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  5. On Restructurable Control System Theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  6. Simple adaptation for dynamic Bogota bag.

    PubMed

    Johnson, O Kenneth

    2016-01-01

    The use of a large Bogota bag tucked well under fascial edges to the colonic gutters and easily made elastic bands from Esmarch bandage provides a dynamic tension system that decreases subsequent trips to theatre and may allow gradual closure of the abdominal wound. © The Author(s) 2015.

  7. An AD100 implementation of a real-time STOVL aircraft propulsion system

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Drummond, Colin K.

    1990-01-01

    A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included.

  8. Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.

    PubMed

    Zhang, Qichao; Zhao, Dongbin; Wang, Ding

    2018-01-01

    In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  9. Dynamic plasticity in coupled avian midbrain maps

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder Singh

    2004-12-01

    Internal mapping of the external environment is carried out using the receptive fields of topographic neurons in the brain, and in a normal barn owl the aural and visual subcortical maps are aligned from early experiences. However, instantaneous misalignment of the aural and visual stimuli has been observed to result in adaptive behavior, manifested by functional and anatomical changes of the auditory processing system. Using methods of information theory and statistical mechanics a model of the adaptive dynamics of the aural receptive field is presented and analyzed. The dynamics is determined by maximizing the mutual information between the neural output and the weighted sensory neural inputs, admixed with noise, subject to biophysical constraints. The reduced costs of neural rewiring, as in the case of young barn owls, reveal two qualitatively different types of receptive field adaptation depending on the magnitude of the audiovisual misalignment. By letting the misalignment increase with time, it is shown that the ability to adapt can be increased even when neural rewiring costs are high, in agreement with recent experimental reports of the increased plasticity of the auditory space map in adult barn owls due to incremental learning. Finally, a critical speed of misalignment is identified, demarcating the crossover from adaptive to nonadaptive behavior.

  10. Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.

    PubMed

    Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T

    2013-12-01

    It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.

  11. Complexity and health professions education: a basic glossary.

    PubMed

    Mennin, Stewart

    2010-08-01

    The study of health professions education in the context of complexity science and complex adaptive systems involves different concepts and terminology that are likely to be unfamiliar to many health professions educators. A list of selected key terms and definitions from the literature of complexity science is provided to assist readers to navigate familiar territory from a different perspective. include agent, attractor, bifurcation, chaos, co-evolution, collective variable, complex adaptive systems, complexity science, deterministic systems, dynamical system, edge of chaos, emergence, equilibrium, far from equilibrium, fuzzy boundaries, linear system, non-linear system, random, self-organization and self-similarity.

  12. Adaptive Identification of Fluid-Dynamic Systems

    DTIC Science & Technology

    2001-06-14

    Fig. 1. Unknown System Adaptive Filter Σ _ + Input u Filter Output y Desired Output d Error e Fig. 1. Modeling of a SISO system using...2J E e n =   (12) Here [ ]. E is the expectation operator and ( ) ( ) ( ) e n d n y n= − is the error between the desired system output and...B … input vector ( ) ( ) ( ) ( )[ ], , ,1 1 Tn u n u n u n N= − − +U … output and error ( ) ( ) ( ) ( ) ( ) ( ) ( ) T T y n n n e n d n n n

  13. Adaptive simplification of complex multiscale systems.

    PubMed

    Chiavazzo, Eliodoro; Karlin, Ilya

    2011-03-01

    A fully adaptive methodology is developed for reducing the complexity of large dissipative systems. This represents a significant step toward extracting essential physical knowledge from complex systems, by addressing the challenging problem of a minimal number of variables needed to exactly capture the system dynamics. Accurate reduced description is achieved, by construction of a hierarchy of slow invariant manifolds, with an embarrassingly simple implementation in any dimension. The method is validated with the autoignition of the hydrogen-air mixture where a reduction to a cascade of slow invariant manifolds is observed.

  14. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2007-02-01

    Supramolecular chemistry has developed over the last forty years as chemistry beyond the molecule. Starting with the investigation of the basis of molecular recognition, it has explored the implementation of molecular information in the programming of chemical systems towards self-organisation processes, that may occur either on the basis of design or with selection of their components. Supramolecular entities are by nature constitutionally dynamic by virtue of the lability of non-covalent interactions. Importing such features into molecular chemistry, through the introduction of reversible bonds into molecules, leads to the emergence of a constitutional dynamic chemistry, covering both the molecular and supramolecular levels. It considers chemical objects and systems capable of responding to external solicitations by modification of their constitution through component exchange or reorganisation. It thus opens the way towards an adaptive and evolutive chemistry, a further step towards the chemistry of complex matter.

  15. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.

    PubMed

    Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M

    2011-09-01

    Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.

  16. Adaptive Control Law Development for Failure Compensation Using Neural Networks on a NASA F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2005-01-01

    This viewgraph presentation covers the following topics: 1) Brief explanation of Generation II Flight Program; 2) Motivation for Neural Network Adaptive Systems; 3) Past/ Current/ Future IFCS programs; 4) Dynamic Inverse Controller with Explicit Model; 5) Types of Neural Networks Investigated; and 6) Brief example

  17. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  18. On the adaptivity and complexity embedded into differential evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman

    2016-06-08

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performedmore » on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.« less

  19. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  1. Passivity of Directed and Undirected Complex Dynamical Networks With Adaptive Coupling Weights.

    PubMed

    Wang, Jin-Liang; Wu, Huai-Ning; Huang, Tingwen; Ren, Shun-Yan; Wu, Jigang

    2017-08-01

    A complex dynamical network consisting of N identical neural networks with reaction-diffusion terms is considered in this paper. First, several passivity definitions for the systems with different dimensions of input and output are given. By utilizing some inequality techniques, several criteria are presented, ensuring the passivity of the complex dynamical network under the designed adaptive law. Then, we discuss the relationship between the synchronization and output strict passivity of the proposed network model. Furthermore, these results are extended to the case when the topological structure of the network is undirected. Finally, two examples with numerical simulations are provided to illustrate the correctness and effectiveness of the proposed results.

  2. Modelling interactions between mitigation, adaptation and sustainable development

    NASA Astrophysics Data System (ADS)

    Reusser, D. E.; Siabatto, F. A. P.; Garcia Cantu Ros, A.; Pape, C.; Lissner, T.; Kropp, J. P.

    2012-04-01

    Managing the interdependence of climate mitigation, adaptation and sustainable development requires a good understanding of the dominant socioecological processes that have determined the pathways in the past. Key variables include water and food availability which depend on climate and overall ecosystem services, as well as energy supply and social, political and economic conditions. We present our initial steps to build a system dynamic model of nations that represents a minimal set of relevant variables of the socio- ecological development. The ultimate goal of the modelling exercise is to derive possible future scenarios and test those for their compatibility with sustainability boundaries. Where dynamics go beyond sustainability boundaries intervention points in the dynamics can be searched.

  3. Innovations in dynamic test restraint systems

    NASA Technical Reports Server (NTRS)

    Fuld, Christopher J.

    1990-01-01

    Recent launch system development programs have led to a new generation of large scale dynamic tests. The variety of test scenarios share one common requirement: restrain and capture massive high velocity flight hardware with no structural damage. The Space Systems Lab of McDonnell Douglas developed a remarkably simple and cost effective approach to such testing using ripstitch energy absorbers adapted from the sport of technical rockclimbing. The proven system reliability of the capture system concept has led to a wide variety of applications in test system design and in aerospace hardware design.

  4. Direct adaptive control of wind energy conversion systems using Gaussian networks.

    PubMed

    Mayosky, M A; Cancelo, I E

    1999-01-01

    Grid connected wind energy conversion systems (WECS) present interesting control demands, due to the intrinsic nonlinear characteristics of windmills and electric generators. In this paper a direct adaptive control strategy for WECS control is proposed. It is based on the combination of two control actions: a radial basis zfunction network-based adaptive controller, which drives the tracking error to zero with user specified dynamics, and a supervisory controller, based on crude bounds of the system's nonlinearities. The supervisory controller fires when the finite neural-network approximation properties cannot be guaranteed. The form of the supervisor control and the adaptation law for the neural controller are derived from a Lyapunov analysis of stability. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

  5. The experimental results of a self tuning adaptive controller using online frequency identification. [for Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Chiang, W.-W.; Cannon, R. H., Jr.

    1985-01-01

    A fourth-order laboratory dynamic system featuring very low structural damping and a noncolocated actuator-sensor pair has been used to test a novel real-time adaptive controller, implemented in a minicomputer, which consists of a state estimator, a set of state feedback gains, and a frequency-locked loop for real-time parameter identification. The adaptation algorithm employed can correct controller error and stabilize the system for more than 50 percent variation in the plant's natural frequency, compared with a 10 percent stability margin in frequency variation for a fixed gain controller having the same performance as the nominal plant condition. The very rapid convergence achievable by this adaptive system is demonstrated experimentally, and proven with simple, root-locus methods.

  6. Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.

    We study synchronization in delay-coupled neural networks of heterogeneous nodes. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. We show that an adaptive tuning of the overall coupling strength can be used to counteract the effect of the heterogeneity. Our adaptive controller is demonstrated on ring networks of FitzHugh-Nagumo systems which are paradigmatic for excitable dynamics but can also — depending on the system parameters — exhibit self-sustained periodic firing. We show that the adaptively tuned time-delayed coupling enables synchronization even if parameter heterogeneities are so large that excitable nodes coexist with oscillatory ones.

  7. A perspective of adaptation in healthcare.

    PubMed

    Mezghani, Emna; Da Silveira, Marcos; Pruski, Cédric; Exposito, Ernesto; Drira, Khalil

    2014-01-01

    Emerging new technologies in healthcare has proven great promises for managing patient care. In recent years, the evolution of Information and Communication Technologies pushes many research studies to think about treatment plan adaptation in this area. The main goal is to accelerate the decision making by dynamically generating new treatment due to unexpected situations. This paper portrays the treatment adaptation from a new perspective inspired from the human nervous system named autonomic computing. Thus, the selected potential studies are classified according to the maturity levels of this paradigm. To guarantee optimal and accurate treatment adaptation, challenges related to medical knowledge and data are identified and future directions to be explored in healthcare systems are discussed.

  8. Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system.

    PubMed

    Dixon, W E; Dawson, D M; Zergeroglu, E; Behal, A

    2001-01-01

    This paper considers the problem of position/orientation tracking control of wheeled mobile robots via visual servoing in the presence of parametric uncertainty associated with the mechanical dynamics and the camera system. Specifically, we design an adaptive controller that compensates for uncertain camera and mechanical parameters and ensures global asymptotic position/orientation tracking. Simulation and experimental results are included to illustrate the performance of the control law.

  9. Handling Qualities Evaluations of Low Complexity Model Reference Adaptive Controllers for Reduced Pitch and Roll Damping Scenarios

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Johnson, Marcus; Nguyen, Nhan

    2011-01-01

    National Aeronautics and Space Administration (NASA) researchers have conducted a series of flight experiments designed to study the effects of varying levels of adaptive controller complexity on the performance and handling qualities of an aircraft under various simulated failure or damage conditions. A baseline, nonlinear dynamic inversion controller was augmented with three variations of a model reference adaptive control design. The simplest design consisted of a single adaptive parameter in each of the pitch and roll axes computed using a basic gradient-based update law. A second design was built upon the first by increasing the complexity of the update law. The third and most complex design added an additional adaptive parameter to each axis. Flight tests were conducted using NASA s Full-scale Advanced Systems Testbed, a highly modified F-18 aircraft that contains a research flight control system capable of housing advanced flight controls experiments. Each controller was evaluated against a suite of simulated failures and damage ranging from destabilization of the pitch and roll axes to significant coupling between the axes. Two pilots evaluated the three adaptive controllers as well as the non-adaptive baseline controller in a variety of dynamic maneuvers and precision flying tasks designed to uncover potential deficiencies in the handling qualities of the aircraft, and adverse interactions between the pilot and the adaptive controllers. The work was completed as part of the Integrated Resilient Aircraft Control Project under NASA s Aviation Safety Program.

  10. Time course of dynamic range adaptation in the auditory nerve

    PubMed Central

    Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465

  11. Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory.

    PubMed

    Qi, Shuanhu; Schmid, Friederike

    2017-11-08

    We present a multiscale hybrid particle-field scheme for the simulation of relaxation and diffusion behavior of soft condensed matter systems. It combines particle-based Brownian dynamics and field-based local dynamics in an adaptive sense such that particles can switch their level of resolution on the fly. The switching of resolution is controlled by a tuning function which can be chosen at will according to the geometry of the system. As an application, the hybrid scheme is used to study the kinetics of interfacial broadening of a polymer blend, and is validated by comparing the results to the predictions from pure Brownian dynamics and pure local dynamics calculations.

  12. Smart monitoring system based on adaptive current control for superconducting cable test.

    PubMed

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  13. A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Plötz, Thomas; Olivier, Patrick

    We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.

  14. Emergence, institutionalization and renewal: Rhythms of adaptive governance in complex social-ecological systems.

    PubMed

    Chaffin, Brian C; Gunderson, Lance H

    2016-01-01

    Adaptive governance provides the capacity for environmental managers and decision makers to confront variable degrees of uncertainty inherent to complex social-ecological systems. Current theoretical conceptualizations of adaptive governance represent a series of structures and processes best suited for either adapting or transforming existing environmental governance regimes towards forms flexible enough to confront rapid ecological change. As the number of empirical examples of adaptive governance described in the literature grows, the conceptual basis of adaptive governance remains largely under theorized. We argue that reconnecting adaptive governance with foundational concepts of ecological resilience-specifically Panarchy and the adaptive cycle of complex systems-highlights the importance of episodic disturbances and cross-scale interactions in triggering reorganizations in governance. By envisioning the processes of adaptive governance through the lens of Panarchy, scholars and practitioners alike will be better able to identify the emergence of adaptive governance, as well as take advantage of opportunities to institutionalize this type of governance in pursuit of sustainability outcomes. The synergistic analysis of adaptive governance and Panarchy can provide critical insight for analyzing the role of social dynamics during oscillating periods of stability and instability in social-ecological systems. A deeper understanding of the potential for cross-scale interactions to shape adaptive governance regimes may be useful as society faces the challenge of mitigating the impacts of global environmental change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nonbibliographic Applications of Z39.50.

    ERIC Educational Resources Information Center

    Kunze, John A.

    1992-01-01

    Describes the use of the Z39.50 information retrieval protocol as the basis for Infocal, a read-only, client/server-based campus information system. Technical considerations in adapting the protocol to nonbibliographic data, including semantic modules, dynamic attribute sets, and dynamic record syntax, are described in detail. (Contains 11…

  16. Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake

    USDA-ARS?s Scientific Manuscript database

    Plants are known to adjust their root systems to adapt to changing subsurface water conditions. However, most current land surface models (LSMs) use a prescribed, static root profile, which cuts off the interactions between soil moisture and root dynamics. In this paper, we implemented an optimality...

  17. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  18. Sharpening vision by adapting to flicker.

    PubMed

    Arnold, Derek H; Williams, Jeremy D; Phipps, Natasha E; Goodale, Melvyn A

    2016-11-01

    Human vision is surprisingly malleable. A static stimulus can seem to move after prolonged exposure to movement (the motion aftereffect), and exposure to tilted lines can make vertical lines seem oppositely tilted (the tilt aftereffect). The paradigm used to induce such distortions (adaptation) can provide powerful insights into the computations underlying human visual experience. Previously spatial form and stimulus dynamics were thought to be encoded independently, but here we show that adaptation to stimulus dynamics can sharpen form perception. We find that fast flicker adaptation (FFAd) shifts the tuning of face perception to higher spatial frequencies, enhances the acuity of spatial vision-allowing people to localize inputs with greater precision and to read finer scaled text, and it selectively reduces sensitivity to coarse-scale form signals. These findings are consistent with two interrelated influences: FFAd reduces the responsiveness of magnocellular neurons (which are important for encoding dynamics, but can have poor spatial resolution), and magnocellular responses contribute coarse spatial scale information when the visual system synthesizes form signals. Consequently, when magnocellular responses are mitigated via FFAd, human form perception is transiently sharpened because "blur" signals are mitigated.

  19. Sharpening vision by adapting to flicker

    PubMed Central

    Arnold, Derek H.; Williams, Jeremy D.; Phipps, Natasha E.; Goodale, Melvyn A.

    2016-01-01

    Human vision is surprisingly malleable. A static stimulus can seem to move after prolonged exposure to movement (the motion aftereffect), and exposure to tilted lines can make vertical lines seem oppositely tilted (the tilt aftereffect). The paradigm used to induce such distortions (adaptation) can provide powerful insights into the computations underlying human visual experience. Previously spatial form and stimulus dynamics were thought to be encoded independently, but here we show that adaptation to stimulus dynamics can sharpen form perception. We find that fast flicker adaptation (FFAd) shifts the tuning of face perception to higher spatial frequencies, enhances the acuity of spatial vision—allowing people to localize inputs with greater precision and to read finer scaled text, and it selectively reduces sensitivity to coarse-scale form signals. These findings are consistent with two interrelated influences: FFAd reduces the responsiveness of magnocellular neurons (which are important for encoding dynamics, but can have poor spatial resolution), and magnocellular responses contribute coarse spatial scale information when the visual system synthesizes form signals. Consequently, when magnocellular responses are mitigated via FFAd, human form perception is transiently sharpened because “blur” signals are mitigated. PMID:27791115

  20. Cooperative Adaptive Responses in Gene Regulatory Networks with Many Degrees of Freedom

    PubMed Central

    Inoue, Masayo; Kaneko, Kunihiko

    2013-01-01

    Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components. PMID:23592959

  1. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    PubMed

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  2. Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type.

    PubMed

    Zhou, Douglas; Sun, Yi; Rangan, Aaditya V; Cai, David

    2010-04-01

    We discuss how to characterize long-time dynamics of non-smooth dynamical systems, such as integrate-and-fire (I&F) like neuronal network, using Lyapunov exponents and present a stable numerical method for the accurate evaluation of the spectrum of Lyapunov exponents for this large class of dynamics. These dynamics contain (i) jump conditions as in the firing-reset dynamics and (ii) degeneracy such as in the refractory period in which voltage-like variables of the network collapse to a single constant value. Using the networks of linear I&F neurons, exponential I&F neurons, and I&F neurons with adaptive threshold, we illustrate our method and discuss the rich dynamics of these networks.

  3. Dynamic Radioisotope Power System Development for Space Explorations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualls, A L

    Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less

  4. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  5. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system

    PubMed Central

    Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191

  6. Automated adaptive inference of phenomenological dynamical models

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  7. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  8. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  9. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and robustness.

  10. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    PubMed

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  11. Evolving RBF neural networks for adaptive soft-sensor design.

    PubMed

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  12. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.

    PubMed

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-23

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.

  13. Generalization in Adaptation to Stable and Unstable Dynamics

    PubMed Central

    Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne

    2012-01-01

    Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191

  14. Single-pass incremental force updates for adaptively restrained molecular dynamics.

    PubMed

    Singh, Krishna Kant; Redon, Stephane

    2018-03-30

    Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. An Efficient Means of Adaptive Refinement Within Systems of Overset Grids

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1996-01-01

    An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.

  16. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents

    PubMed Central

    Griol, David

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  17. Fully adaptive propagation of the quantum-classical Liouville equation

    NASA Astrophysics Data System (ADS)

    Horenko, Illia; Weiser, Martin; Schmidt, Burkhard; Schütte, Christof

    2004-05-01

    In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamics) scheme [I. Horenko and M. Weiser, J. Comput. Chem. 24, 1921 (2003)] has been extended to account for nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In the context of particle methods, the quality of the spatial approximation of the phase-space distributions is maximized while the numerical condition of the least-squares problem for the parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation of moving particles (Gaussian and Dirac deltalike trajectories) in phase space employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians to Dirac-type trajectories. This allows for the combination of Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects occurring at conical intersections are treated in the diabatic representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards exact results.

  18. Fully adaptive propagation of the quantum-classical Liouville equation.

    PubMed

    Horenko, Illia; Weiser, Martin; Schmidt, Burkhard; Schütte, Christof

    2004-05-15

    In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamics) scheme [I. Horenko and M. Weiser, J. Comput. Chem. 24, 1921 (2003)] has been extended to account for nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In the context of particle methods, the quality of the spatial approximation of the phase-space distributions is maximized while the numerical condition of the least-squares problem for the parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation of moving particles (Gaussian and Dirac deltalike trajectories) in phase space employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians to Dirac-type trajectories. This allows for the combination of Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects occurring at conical intersections are treated in the diabatic representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards exact results.

  19. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a generalized stability metric for time-varying loop=gain perturbations is needed for the AAC.

  20. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  1. Coherent Multimodal Sensory Information Allows Switching between Gravitoinertial Contexts

    PubMed Central

    Barbiero, Marie; Rousseau, Célia; Papaxanthis, Charalambos; White, Olivier

    2017-01-01

    Whether the central nervous system is capable to switch between contexts critically depends on experimental details. Motor control studies regularly adopt robotic devices to perturb the dynamics of a certain task. Other approaches investigate motor control by altering the gravitoinertial context itself as in parabolic flights and human centrifuges. In contrast to conventional robotic experiments, where only the hand is perturbed, these gravitoinertial or immersive settings coherently plunge participants into new environments. However, radically different they are, perfect adaptation of motor responses are commonly reported. In object manipulation tasks, this translates into a good matching of the grasping force or grip force to the destabilizing load force. One possible bias in these protocols is the predictability of the forthcoming dynamics. Here we test whether the successful switching and adaptation processes observed in immersive environments are a consequence of the fact that participants can predict the perturbation schedule. We used a short arm human centrifuge to decouple the effects of space and time on the dynamics of an object manipulation task by adding an unnatural explicit position-dependent force. We created different dynamical contexts by asking 20 participants to move the object at three different paces. These contextual sessions were interleaved such that we could simulate concurrent learning. We assessed adaptation by measuring how grip force was adjusted to this unnatural load force. We found that the motor system can switch between new unusual dynamical contexts, as reported by surprisingly well-adjusted grip forces, and that this capacity is not a mere consequence of the ability to predict the time course of the upcoming dynamics. We posit that a coherent flow of multimodal sensory information born in a homogeneous milieu allows switching between dynamical contexts. PMID:28553233

  2. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  3. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  4. Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay

    PubMed Central

    Nasuto, Slawomir J.; Hayashi, Yoshikatsu

    2018-01-01

    We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a ‘slave’ system predicts a ‘master’ via delayed self-feedback. By treating the delayed output of the plant as one half of a ‘sensory’ AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target’s motion. We use two simulated robotic systems with differing arrangements of the plant and internal model (‘parallel’ and ‘serial’) to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed. PMID:29657750

  5. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  6. Adaptive hybrid simulations for multiscale stochastic reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such amore » partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.« less

  7. Adaptive hybrid simulations for multiscale stochastic reaction networks.

    PubMed

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.

  8. A Module for Adaptive Course Configuration and Assessment in Moodle

    NASA Astrophysics Data System (ADS)

    Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia

    Personalization and Adaptation are among the main challenges in the field of e-learning, where currently just few Learning Management Systems, mostly experimental ones, support such features. In this work we present an architecture that allows Moodle to interact with the Lecomps system, an adaptive learning system developed earlier by our research group, that has been working in a stand-alone modality so far. In particular, the Lecomps responsibilities are circumscribed to the sole production of personalized learning objects sequences and to the management of the student model, leaving to Moodle all the rest of the activities for course delivery. The Lecomps system supports the "dynamic" adaptation of learning objects sequences, basing on the student model, i.e., learner's Cognitive State and Learning Style. Basically, this work integrates two main Lecomps tasks into Moodle, to be directly managed by it: Authentication and Quizzes.

  9. The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.

    PubMed

    McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M

    2017-10-01

    Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.

  10. Using Dynamic Time Warping and Data Forensics to Examine Tradeoffs among Land-Energy-Water Networks Across the Conterminous United States

    NASA Astrophysics Data System (ADS)

    McManamay, R.; Allen, M. R.; Piburn, J.; Sanyal, J.; Stewart, R.; Bhaduri, B. L.

    2017-12-01

    Characterizing interdependencies among land-energy-water sectors, their vulnerabilities, and tipping points, is challenging, especially if all sectors are simultaneously considered. Because such holistic system behavior is uncertain, largely unmodeled, and in need of testable hypotheses of system drivers, these dynamics are conducive to exploratory analytics of spatiotemporal patterns, powered by tools, such as Dynamic Time Warping (DTW). Here, we conduct a retrospective analysis (1950 - 2010) of temporal trends in land use, energy use, and water use within US counties to identify commonalities in resource consumption and adaptation strategies to resource limitations. We combine existing and derived data from statistical downscaling to synthesize a temporally comprehensive land-energy-water dataset at the US county level and apply DTW and subsequent hierarchical clustering to examine similar temporal trends in resource typologies for land, energy, and water sectors. As expected, we observed tradeoffs among water uses (e.g., public supply vs irrigation) and land uses (e.g., urban vs ag). Strong associations between clusters amongst sectors reveal tight system interdependencies, whereas weak associations suggest unique behaviors and potential for human adaptations towards disruptive technologies and less resource-dependent population growth. Our framework is useful for exploring complex human-environmental system dynamics and generating hypotheses to guide subsequent energy-water-nexus research.

  11. On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach.

    PubMed

    Baigzadehnoe, Barmak; Rahmani, Zahra; Khosravi, Alireza; Rezaie, Behrooz

    2017-09-01

    In this paper, the position and force tracking control problem of cooperative robot manipulator system handling a common rigid object with unknown dynamical models and unknown external disturbances is investigated. The universal approximation properties of fuzzy logic systems are employed to estimate the unknown system dynamics. On the other hand, by defining new state variables based on the integral and differential of position and orientation errors of the grasped object, the error system of coordinated robot manipulators is constructed. Subsequently by defining the appropriate change of coordinates and using the backstepping design strategy, an adaptive fuzzy backstepping position tracking control scheme is proposed for multi-robot manipulator systems. By utilizing the properties of internal forces, extra terms are also added to the control signals to consider the force tracking problem. Moreover, it is shown that the proposed adaptive fuzzy backstepping position/force control approach ensures all the signals of the closed loop system uniformly ultimately bounded and tracking errors of both positions and forces can converge to small desired values by proper selection of the design parameters. Finally, the theoretic achievements are tested on the two three-link planar robot manipulators cooperatively handling a common object to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation

    NASA Astrophysics Data System (ADS)

    He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi

    2018-06-01

    The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.

  13. Distributed Optimal Consensus Over Resource Allocation Network and Its Application to Dynamical Economic Dispatch.

    PubMed

    Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo

    2018-06-01

    The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.

  14. Adaptive guidance for an aero-assisted boost vehicle

    NASA Astrophysics Data System (ADS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.

    An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.

  15. Unstructured Adaptive (UA) NAS Parallel Benchmark. Version 1.0

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; VanderWijngaart, Rob; Biswas, Rupak; Mavriplis, Catherine

    2004-01-01

    We present a complete specification of a new benchmark for measuring the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. It complements the existing NAS Parallel Benchmark suite. The benchmark involves the solution of a stylized heat transfer problem in a cubic domain, discretized on an adaptively refined, unstructured mesh.

  16. Dynamic Performance Evaluation of PV Integration

    NASA Astrophysics Data System (ADS)

    Gao, Ruilin; Jiang, Anwen; Chen, Hongjin

    2018-03-01

    Topics on adaptability of Grid-connected photovoltaic systems (GCPVS) under sag conditions has been proposed. A basic low-voltage-ride-through (LVRT) strategy widely used in engineering practice is taken in this paper and manages to ride through different sag conditions. The role of hardware protection has been discussed in detail. By simulation validated that the proposed GCPVS have strong adaptability

  17. The non-equilibrium and energetic cost of sensory adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, G.; Sartori, Pablo; Tu, Y.

    2011-03-24

    Biological sensory systems respond to external signals in short time and adapt to permanent environmental changes over a longer timescale to maintain high sensitivity in widely varying environments. In this work we have shown how all adaptation dynamics are intrinsically non-equilibrium and free energy is dissipated. We show that the dissipated energy is utilized to maintain adaptation accuracy. A universal relation between the energy dissipation and the optimum adaptation accuracy is established by both a general continuum model and a discrete model i n the specific case of the well-known E. coli chemo-sensory adaptation. Our study suggests that cellular levelmore » adaptations are fueled by hydrolysis of high energy biomolecules, such as ATP. The relevance of this work lies on linking the functionality of a biological system (sensory adaptation) with a concept rooted in statistical physics (energy dissipation), by a mathematical law. This has been made possible by identifying a general sensory system with a non-equilibrium steady state (a stationary state in which the probability current is not zero, but its divergence is, see figure), and then numerically and analytically solving the Fokker-Planck and Master Equations which describe the sensory adaptive system. The application of our general results to the case of E. Coli has shed light on why this system uses the high energy SAM molecule to perform adaptation, since using the more common ATP would not suffice to obtain the required adaptation accuracy.« less

  18. Ecological dynamics of continuous and categorical decision-making: the regatta start in sailing.

    PubMed

    Araújo, Duarte; Davids, Keith; Diniz, Ana; Rocha, Luis; Santos, João Coelho; Dias, Gonçalo; Fernandes, Orlando

    2015-01-01

    Ecological dynamics of decision-making in the sport of sailing exemplifies emergent, conditionally coupled, co-adaptive behaviours. In this study, observation of the coupling dynamics of paired boats during competitive sailing showed that decision-making can be modelled as a self-sustained, co-adapting system of informationally coupled oscillators (boats). Bytracing the spatial-temporal displacements of the boats, time series analyses (autocorrelations, periodograms and running correlations) revealed that trajectories of match racing boats are coupled more than 88% of the time during a pre-start race, via continuous, competing co-adaptions between boats. Results showed that both the continuously selected trajectories of the sailors (12 years of age) and their categorical starting point locations were examples of emergent decisions. In this dynamical conception of decision-making behaviours, strategic positioning (categorical) and continuous displacement of a boat over the course in match-race sailing emerged as a function of interacting task, personal and environmental constraints. Results suggest how key interacting constraints could be manipulated in practice to enhance sailors' perceptual attunement to them in competition.

  19. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social-ecological systems.

  20. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  1. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  2. Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.

    PubMed

    Lijun Long; Jun Zhao

    2017-04-01

    In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.

  3. Digital data storage systems, computers, and data verification methods

    DOEpatents

    Groeneveld, Bennett J.; Austad, Wayne E.; Walsh, Stuart C.; Herring, Catherine A.

    2005-12-27

    Digital data storage systems, computers, and data verification methods are provided. According to a first aspect of the invention, a computer includes an interface adapted to couple with a dynamic database; and processing circuitry configured to provide a first hash from digital data stored within a portion of the dynamic database at an initial moment in time, to provide a second hash from digital data stored within the portion of the dynamic database at a subsequent moment in time, and to compare the first hash and the second hash.

  4. Constitutional dynamic self-sensing in a zinc(II)/polyiminofluorenes system.

    PubMed

    Giuseppone, Nicolas; Lehn, Jean-Marie

    2004-09-22

    The interaction of an external effector, ZnII ions, with a constitutional dynamic library of fluorescent polyiminofluorenes leads to component exchange, which generates an entity responding by a change in emission to the effector that has induced its formation. The overall coupled system displays a tuning of optical signal, resulting from two synergistic processes: adaptative constitutional reorganization and self-sensing. In broader terms, this work highlights the perspectives opened by constitutional dynamic chemistry toward the design of smart materials, capable of expressing different latent properties in response to environmental conditions.

  5. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  6. Application of dynamic recurrent neural networks in nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  7. Where you stand depends on where you sit: Qualitative inquiry into notions of fire adaptation

    Treesearch

    Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ; Christopher M. Barth

    2017-01-01

    Wildfire and the threat it poses to society represents an example of the complex, dynamic relationship between social and ecological systems. Increasingly, wildfire adaptation is posited as a pathway to shift the approach to fire from a suppression paradigm that seeks to control fire to a paradigm that focuses on “living with” and “adapting to” wildfire. In this study...

  8. An adaptive human response mechanism controlling the V/STOL aircraft. Appendix 3: The adaptive control model of a pilot in V/STOL aircraft control loops. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Kucuk, Senol

    1988-01-01

    Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.

  9. Evolutionary genetics of plant adaptation.

    PubMed

    Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas

    2011-07-01

    Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  11. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  12. The Stress Response Systems: Universality and Adaptive Individual Differences

    ERIC Educational Resources Information Center

    Ellis, Bruce J.; Jackson, Jenee James; Boyce, W. Thomas

    2006-01-01

    Biological reactivity to psychological stressors comprises a complex, integrated system of central neural and peripheral neuroendocrine responses designed to prepare the organism for challenge or threat. Developmental experience plays a role, along with heritable variation, in calibrating the response dynamics of this system. This calibration…

  13. A nonlinear control method based on ANFIS and multiple models for a class of SISO nonlinear systems and its application.

    PubMed

    Zhang, Yajun; Chai, Tianyou; Wang, Hong

    2011-11-01

    This paper presents a novel nonlinear control strategy for a class of uncertain single-input and single-output discrete-time nonlinear systems with unstable zero-dynamics. The proposed method combines adaptive-network-based fuzzy inference system (ANFIS) with multiple models, where a linear robust controller, an ANFIS-based nonlinear controller and a switching mechanism are integrated using multiple models technique. It has been shown that the linear controller can ensure the boundedness of the input and output signals and the nonlinear controller can improve the dynamic performance of the closed loop system. Moreover, it has also been shown that the use of the switching mechanism can simultaneously guarantee the closed loop stability and improve its performance. As a result, the controller has the following three outstanding features compared with existing control strategies. First, this method relaxes the assumption of commonly-used uniform boundedness on the unmodeled dynamics and thus enhances its applicability. Second, since ANFIS is used to estimate and compensate the effect caused by the unmodeled dynamics, the convergence rate of neural network learning has been increased. Third, a "one-to-one mapping" technique is adapted to guarantee the universal approximation property of ANFIS. The proposed controller is applied to a numerical example and a pulverizing process of an alumina sintering system, respectively, where its effectiveness has been justified.

  14. No evidence of local adaptation of immune responses to Gyrodactylus in three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C

    2017-01-01

    Parasitism represents one of the most widespread lifestyles in the animal kingdom, with the potential to drive coevolutionary dynamics with their host population. Where hosts and parasites evolve together, we may find local adaptation. As one of the main host defences against infection, there is the potential for the immune response to be adapted to local parasites. In this study, we used the three-spined stickleback and its Gyrodactylus parasites to examine the extent of local adaptation of parasite infection dynamics and the immune response to infection. We took two geographically isolated host populations infected with two distinct Gyrodactylus species and performed a reciprocal cross-infection experiment in controlled laboratory conditions. Parasite burdens were monitored over the course of the infection, and individuals were sampled at multiple time points for immune gene expression analysis. We found large differences in virulence between parasite species, irrespective of host, and maladaptation of parasites to their sympatric host. The immune system responded to infection, with a decrease in expression of innate and Th1-type adaptive response genes in fish infected with the less virulent parasite, representing a marker of a possible resistance mechanism. There was no evidence of local adaptation in immune gene expression levels. Our results add to the growing understanding of the extent of host-parasite local adaptation, and demonstrate a systemic immune response during infection with a common ectoparasite. Further immunological studies using the stickleback-Gyrodactylus system can continue to contribute to our understanding of the function of the immune response in natural populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Method Engineering: A Service-Oriented Approach

    NASA Astrophysics Data System (ADS)

    Cauvet, Corine

    In the past, a large variety of methods have been published ranging from very generic frameworks to methods for specific information systems. Method Engineering has emerged as a research discipline for designing, constructing and adapting methods for Information Systems development. Several approaches have been proposed as paradigms in method engineering. The meta modeling approach provides means for building methods by instantiation, the component-based approach aims at supporting the development of methods by using modularization constructs such as method fragments, method chunks and method components. This chapter presents an approach (SO2M) for method engineering based on the service paradigm. We consider services as autonomous computational entities that are self-describing, self-configuring and self-adapting. They can be described, published, discovered and dynamically composed for processing a consumer's demand (a developer's requirement). The method service concept is proposed to capture a development process fragment for achieving a goal. Goal orientation in service specification and the principle of service dynamic composition support method construction and method adaptation to different development contexts.

  16. Formation tracker design of multiple mobile robots with wheel perturbations: adaptive output-feedback approach

    NASA Astrophysics Data System (ADS)

    Yoo, Sung Jin

    2016-11-01

    This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.

  17. Functionally dissociable influences on learning rate in a dynamic environment

    PubMed Central

    McGuire, Joseph T.; Nassar, Matthew R.; Gold, Joshua I.; Kable, Joseph W.

    2015-01-01

    Summary Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data, but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals. PMID:25459409

  18. Service Mediation and Negotiation Bootstrapping as First Achievements Towards Self-adaptable Cloud Services

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Dustdar, Schahram

    Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.

  19. Optimal and robust control of a class of nonlinear systems using dynamically re-optimised single network adaptive critic design

    NASA Astrophysics Data System (ADS)

    Tiwari, Shivendra N.; Padhi, Radhakant

    2018-01-01

    Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.

  20. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  1. A Functional Cartography of Cognitive Systems

    PubMed Central

    Mattar, Marcelo G.; Cole, Michael W.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2015-01-01

    One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems—including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems—engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual variation in cognitive performance, and fatigue. PMID:26629847

  2. Metabolic gene regulation in a dynamically changing environment.

    PubMed

    Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff

    2008-08-28

    Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment.

  3. Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-01-01

    This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.

  4. Strategic tradeoffs in competitor dynamics on adaptive networks.

    PubMed

    Hébert-Dufresne, Laurent; Allard, Antoine; Noël, Pierre-André; Young, Jean-Gabriel; Libby, Eric

    2017-08-08

    Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.

  5. Robust distributed control of spacecraft formation flying with adaptive network topology

    NASA Astrophysics Data System (ADS)

    Shasti, Behrouz; Alasty, Aria; Assadian, Nima

    2017-07-01

    In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.

  6. SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients.

    PubMed

    Holden, Richard J; Carayon, Pascale; Gurses, Ayse P; Hoonakker, Peter; Hundt, Ann Schoofs; Ozok, A Ant; Rivera-Rodriguez, A Joy

    2013-01-01

    Healthcare practitioners, patient safety leaders, educators and researchers increasingly recognise the value of human factors/ergonomics and make use of the discipline's person-centred models of sociotechnical systems. This paper first reviews one of the most widely used healthcare human factors systems models, the Systems Engineering Initiative for Patient Safety (SEIPS) model, and then introduces an extended model, 'SEIPS 2.0'. SEIPS 2.0 incorporates three novel concepts into the original model: configuration, engagement and adaptation. The concept of configuration highlights the dynamic, hierarchical and interactive properties of sociotechnical systems, making it possible to depict how health-related performance is shaped at 'a moment in time'. Engagement conveys that various individuals and teams can perform health-related activities separately and collaboratively. Engaged individuals often include patients, family caregivers and other non-professionals. Adaptation is introduced as a feedback mechanism that explains how dynamic systems evolve in planned and unplanned ways. Key implications and future directions for human factors research in healthcare are discussed.

  7. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  8. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  9. Performance recovery of a class of uncertain non-affine systems with unmodelled dynamics: an indirect dynamic inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Bowen; Lin, Shuyi; Yang, Bo; Zhang, Weidong

    2018-02-01

    This paper presents an output feedback indirect dynamic inversion (IDI) approach for a class of uncertain nonaffine systems with input unmodelled dynamics. Compared with previous approaches to achieve performance recovery, the proposed method aims at dealing with a broader class of nonaffine-in-control systems with triangular structure. An IDI state feedback law is designed first, in which less knowledge of the model plant is needed compared to earlier approximate dynamic inversion methods, thus yielding more robust performance. After that, an extended high-gain observer is designed to accomplish the task with output feedback. Finally, we prove that the designed IDI controller is equivalent to an adaptive proportional-integral (PI) controller, with respect to both time response equivalence and robustness equivalence. The conclusion implies that for the studied strict-feedback non-affine systems with unmodelled dynamics, there always exits a PI controller to stabilise the systems. The effectiveness and benefits of the designed approach are verified by three examples.

  10. Gesteme-free context-aware adaptation of robot behavior in human-robot cooperation.

    PubMed

    Nessi, Federico; Beretta, Elisa; Gatti, Cecilia; Ferrigno, Giancarlo; De Momi, Elena

    2016-11-01

    Cooperative robotics is receiving greater acceptance because the typical advantages provided by manipulators are combined with an intuitive usage. In particular, hands-on robotics may benefit from the adaptation of the assistant behavior with respect to the activity currently performed by the user. A fast and reliable classification of human activities is required, as well as strategies to smoothly modify the control of the manipulator. In this scenario, gesteme-based motion classification is inadequate because it needs the observation of a wide signal percentage and the definition of a rich vocabulary. In this work, a system able to recognize the user's current activity without a vocabulary of gestemes, and to accordingly adapt the manipulator's dynamic behavior is presented. An underlying stochastic model fits variations in the user's guidance forces and the resulting trajectories of the manipulator's end-effector with a set of Gaussian distribution. The high-level switching between these distributions is captured with hidden Markov models. The dynamic of the KUKA light-weight robot, a torque-controlled manipulator, is modified with respect to the classified activity using sigmoidal-shaped functions. The presented system is validated over a pool of 12 näive users in a scenario that addresses surgical targeting tasks on soft tissue. The robot's assistance is adapted in order to obtain a stiff behavior during activities that require critical accuracy constraint, and higher compliance during wide movements. Both the ability to provide the correct classification at each moment (sample accuracy) and the capability of correctly identify the correct sequence of activity (sequence accuracy) were evaluated. The proposed classifier is fast and accurate in all the experiments conducted (80% sample accuracy after the observation of ∼450ms of signal). Moreover, the ability of recognize the correct sequence of activities, without unwanted transitions is guaranteed (sequence accuracy ∼90% when computed far away from user desired transitions). Finally, the proposed activity-based adaptation of the robot's dynamic does not lead to a not smooth behavior (high smoothness, i.e. normalized jerk score <0.01). The provided system is able to dynamic assist the operator during cooperation in the presented scenario. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Adaptive control of dynamic balance in human gait on a split-belt treadmill.

    PubMed

    Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob

    2018-05-17

    Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.

  12. Blended particle filters for large-dimensional chaotic dynamical systems

    PubMed Central

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  13. Multifractality and heteroscedastic dynamics: An application to time series analysis

    NASA Astrophysics Data System (ADS)

    Nascimento, C. M.; Júnior, H. B. N.; Jennings, H. D.; Serva, M.; Gleria, Iram; Viswanathan, G. M.

    2008-01-01

    An increasingly important problem in physics concerns scale invariance symmetry in diverse complex systems, often characterized by heteroscedastic dynamics. We investigate the nature of the relationship between the heteroscedastic and fractal aspects of the dynamics of complex systems, by analyzing the sensitivity to heteroscedasticity of the scaling properties of weakly nonstationary time series. By using multifractal detrended fluctuation analysis, we study the singularity spectra of currency exchange rate fluctuations, after partially or completely eliminating n-point correlations via data shuffling techniques. We conclude that heteroscedasticity can significantly increase multifractality and interpret these findings in the context of self-organizing and adaptive complex systems.

  14. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain.

    PubMed

    Shen, Li; Zhao, Lingyun; Hong, Bo

    2015-01-01

    Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.

  15. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain

    PubMed Central

    Shen, Li; Zhao, Lingyun; Hong, Bo

    2015-01-01

    Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry. PMID:26483641

  16. White noise analysis of Phycomyces light growth response system. I. Normal intensity range.

    PubMed Central

    Lipson, E D

    1975-01-01

    The Wiener-Lee-Schetzen method for the identification of a nonlinear system through white gaussian noise stimulation was applied to the transient light growth response of the sporangiophore of Phycomyces. In order to cover a moderate dynamic range of light intensity I, the imput variable was defined to be log I. The experiments were performed in the normal range of light intensity, centered about I0 = 10(-6) W/cm2. The kernels of the Wierner functionals were computed up to second order. Within the range of a few decades the system is reasonably linear with log I. The main nonlinear feature of the second-order kernel corresponds to the property of rectification. Power spectral analysis reveals that the slow dynamics of the system are of at least fifth order. The system can be represented approximately by a linear transfer function, including a first-order high-pass (adaptation) filter with a 4 min time constant and an underdamped fourth-order low-pass filter. Accordingly a linear electronic circuit was constructed to simulate the small scale response characteristics. In terms of the adaptation model of Delbrück and Reichardt (1956, in Cellular Mechanisms in Differentiation and Growth, Princeton University Press), kernels were deduced for the dynamic dependence of the growth velocity (output) on the "subjective intensity", a presumed internal variable. Finally the linear electronic simulator above was generalized to accommodate the large scale nonlinearity of the adaptation model and to serve as a tool for deeper test of the model. PMID:1203444

  17. Dynamic Event Tree advancements and control logic improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been donemore » in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the input space characterized by epistemic uncertainties. The consequent Dynamic Event Tree performs the exploration of the aleatory space. In the RAVEN code, a more general approach has been developed, not limiting the exploration of the epistemic space through a Monte Carlo method but using all the forward sampling strategies RAVEN currently employs. The user can combine a Latin Hyper Cube, Grid, Stratified and Monte Carlo sampling in order to explore the epistemic space, without any limitation. From this pre-sampling, the Dynamic Event Tree sampler starts its aleatory space exploration. As reported by the authors, the Dynamic Event Tree is a good fit to develop a goal-oriented sampling strategy. The DET is used to drive a Limit Surface search. The methodology that has been developed by the authors last year, performs a Limit Surface search in the aleatory space only. This report documents how this approach has been extended in order to consider the epistemic space interacting with the Hybrid Dynamic Event Tree methodology.« less

  18. Stability and diversity in collective adaptation

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Akiyama, Eizo; Crutchfield, James P.

    2005-10-01

    We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics. Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and discuss self-organization induced by the dynamics of uncertainty, giving a novel view of collective adaptation.

  19. Towards Self-adaptation for Dependable Service-Oriented Systems

    NASA Astrophysics Data System (ADS)

    Cardellini, Valeria; Casalicchio, Emiliano; Grassi, Vincenzo; Lo Presti, Francesco; Mirandola, Raffaela

    Increasingly complex information systems operating in dynamic environments ask for management policies able to deal intelligently and autonomously with problems and tasks. An attempt to deal with these aspects can be found in the Service-Oriented Architecture (SOA) paradigm that foresees the creation of business applications from independently developed services, where services and applications build up complex dependencies. Therefore the dependability of SOA systems strongly depends on their ability to self-manage and adapt themselves to cope with changes in the operating conditions and to meet the required dependability with a minimum of resources. In this paper we propose a model-based approach to the realization of self-adaptable SOA systems, aimed at the fulfillment of dependability requirements. Specifically, we provide a methodology driving the system adaptation and we discuss the architectural issues related to its implementation. To bring this approach to fruition, we developed a prototype tool and we show the results that can be achieved with a simple example.

  20. Adaptive control of artificial pancreas systems - a review.

    PubMed

    Turksoy, Kamuran; Cinar, Ali

    2014-01-01

    Artificial pancreas (AP) systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.

Top