Science.gov

Sample records for dynamically driven evolution

  1. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2010-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  2. INSTABILITY-DRIVEN DYNAMICAL EVOLUTION MODEL OF A PRIMORDIALLY FIVE-PLANET OUTER SOLAR SYSTEM

    SciTech Connect

    Batygin, Konstantin; Brown, Michael E.; Betts, Hayden

    2012-01-15

    Over the last decade, evidence has mounted that the solar system's observed state can be favorably reproduced in the context of an instability-driven dynamical evolution model, such as the 'Nice' model. To date, all successful realizations of instability models have concentrated on evolving the four giant planets onto their current orbits from a more compact configuration. Simultaneously, the possibility of forming and ejecting additional planets has been discussed, but never successfully implemented. Here we show that a large array of five-planet (two gas giants + three ice giants) multi-resonant initial states can lead to an adequate formation of the outer solar system, featuring an ejection of an ice giant during a phase of instability. Particularly, our simulations demonstrate that the eigenmodes that characterize the outer solar system's secular dynamics can be closely matched with a five-planet model. Furthermore, provided that the ejection timescale of the extra planet is short, orbital excitation of a primordial cold classical Kuiper Belt can also be avoided in this scenario. Thus, the solar system is one of many possible outcomes of dynamical relaxation and can originate from a wide variety of initial states. This deems the construction of a unique model of solar system's early dynamical evolution impossible.

  3. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.

    PubMed

    El Baidouri, Moaine; Panaud, Olivier

    2013-01-01

    Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.

  4. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures.

    PubMed

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C W

    2015-12-23

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops.

  5. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C. W.

    2015-12-01

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops.

  6. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity.

    PubMed

    Ito, Hisashi; Tanaka, Ayumi

    2014-03-01

    Organisms generate an enormous number of metabolites; however, the mechanisms by which a new metabolic pathway is acquired are unknown. To elucidate the importance of promiscuous enzyme activity for pathway evolution, the catalytic and substrate specificities of Chl biosynthetic enzymes were examined. In green plants, Chl a and Chl b are interconverted by the Chl cycle: Chl a is hydroxylated to 7-hydroxymethyl chlorophyll a followed by the conversion to Chl b, and both reactions are catalyzed by chlorophyllide a oxygenase. Chl b is reduced to 7-hydroxymethyl chlorophyll a by Chl b reductase and then converted to Chl a by 7-hydroxymethyl chlorophyll a reductase (HCAR). A phylogenetic analysis indicated that HCAR evolved from cyanobacterial 3,8-divinyl chlorophyllide reductase (DVR), which is responsible for the reduction of an 8-vinyl group in the Chl biosynthetic pathway. In addition to vinyl reductase activity, cyanobacterial DVR also has Chl b reductase and HCAR activities; consequently, three of the four reactions of the Chl cycle already existed in cyanobacteria, the progenitor of the chloroplast. During the evolution of cyanobacterial DVR to HCAR, the HCAR activity, a promiscuous reaction of cyanobacterial DVR, became the primary reaction. Moreover, the primary reaction (vinyl reductase activity) and some disadvantageous reactions were lost, but the neutral promiscuous reaction (NADH dehydrogenase) was retained in both DVR and HCAR. We also show that a portion of the Chl c biosynthetic pathway already existed in cyanobacteria. We discuss the importance of dynamic changes in promiscuous activity and of the latent pathways for metabolic evolution.

  7. Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 x 2] gridlike arrays under the pressure of metal ion coordination.

    PubMed

    Giuseppone, Nicolas; Schmitt, Jean-Louis; Lehn, Jean-Marie

    2006-12-27

    Constitutional dynamics, self-assembly, and helical-folding control are brought together in the efficient Sc(OTf)3/microwave-catalyzed transimination of helical oligohydrazone strands, yielding highly diverse dynamic libraries of interconverting constituents through assembly, dissociation, and exchange of components. The transimination-type mechanism of the ScIII-promoted exchange, as well as its regioselectivity, occurring only at the extremities of the helical strands, allow one to perform directional terminal polymerization/depolymerization processes when starting with dissymmetric strands. A particular library is subsequently brought to express quantitatively [2 x 2] gridlike metallosupramolecular arrays in the presence of ZnII ions by component recombination generating the correct ligand from the dynamic set of interconverting strands. This behavior represents a process of driven evolution of a constitutional dynamic chemical system under the pressure (coordination interaction) of an external effector (metal ions).

  8. The evolution of agricultural intensification and environmental degradation in the UK: a data-driven systems dynamics approach

    NASA Astrophysics Data System (ADS)

    Armstrong McKay, David I.; Dearing, John A.; Dyke, James G.; Poppy, Guy; Firbank, Les

    2016-04-01

    The world's population continues to grow rapidly, yet the current demand for food is already resulting in environmental degradation in many regions. As a result, an emerging challenge of the 21st century is how agriculture can simultaneously undergo sustainable intensification and be made more resilient to accelerating climate change. Key to this challenge is: a) finding the "safe and just operating space" for the global agri-environment system that both provides sufficient food for humanity and avoids crossing dangerous planetary boundaries, and b) downscaling this framework from a planetary to a regional scale in order to better inform decision making and incorporate regional dynamics within the planetary boundaries framework. Regional safe operating spaces can be defined and explored using a combination of metrics that indicate the changing status of ecosystem services (both provisioning and regulating), statistical techniques that reveal early warning signals and breakpoints, and dynamical system models of the regional agri-environment system. Initial attempts to apply this methodology have been made in developing countries (e.g. China [Dearing et al., 2012, 2014; Zhang et al., 2015]), but have not yet been attempted in more developed countries, for example the UK. In this study we assess the changes in ecosystem services in two contrasting agricultural regions in the UK, arable-dominated East England and pastoral-dominated South-West England, since the middle of the 20th Century. We identify and establish proxies and indices of various provisioning and regulating services in these two regions and analyse how these have changed over this time. We find that significant degradation of regulating services occurred in Eastern England in the early 1980s, reflecting a period of rapid intensification and escalating fertiliser usage, but that regulating services have begun to recover since 2000 mainly as a result of fertiliser usage decoupling from increasing wheat

  9. Dynamics of driven superconducting vortices

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia Olson

    1998-09-01

    Vortices in superconductors exhibit rich dynamical behaviors that are relevant to the physical properties of the material. In this thesis, we use simulations to study the dynamics of flux-gradient-driven vortices in different types of samples. We make connections between the microscopic behavior of the vortices and macroscopic experimentally observable measurements. First, we systematically quantify the effect of the pinning landscape on the macroscopic properties of vortex avalanches and vortex plastic flow. We relate the velocity field, cumulative patterns of vortex flow channels, and voltage noise measurements with statistical quantities, such as distributions of avalanche sizes. Samples with a high density of strong pinning sites produce very broad avalanche distributions. Easy-flow vortex channels appear in samples with a low pinning density, and typical avalanche sizes emerge in an otherwise broad distribution of sizes. We observe a crossover from interstitial motion in narrow channels to pin-to-pin motion in broad channels as the pin density is increased. Second, we also analyze the microscopic dynamics of vortex motion through channels that form river-like fractal networks in a variety of superconducting samples, and relate it to macroscopic measurable quantities such as the power spectrum. As a function of pinning strength, we calculate the fractal dimension, tortuosity, and the corresponding voltage noise spectrum. Above a certain pinning strength, a remarkable universal drop in both tortuosity and noise power occurs when the vortex motion changes from braiding channels to unbraided channels. Third, we also present a new dynamic phase diagram for driven vortices with varying lattice softness that indicates that, at high driving currents, at least two distinct dynamic phases of flux flow appear depending on the vortex-vortex interaction strength. When the flux lattice is soft, the vortices flow in independently moving channels with smectic structure. For

  10. Dynamics of secular evolution

    NASA Astrophysics Data System (ADS)

    Binney, James

    2013-10-01

    The material in this article was presented in five hours of lectures to the 2011 Canary Islands Winter School. The School’s theme was ‘Secular Evolution of Galaxies’ and my task was to present the underlying stellar-dynamical theory. Other lecturers were speaking on the role of bars and chemical evolution, so these topics are avoided here. The material starts with an account of the connections between isolating integrals, quasiperiodicity and angle-action variables - these variables played a prominent and unifying role throughout the lectures. This leads on to the phenomenon of resonant trap- ping and how this can lead to chaos in cuspy potentials and phase-space mixing in slowly evolving potentials. Surfaces of section and frequency analysis are introduced as diagnostics of phase-space structure. Real galactic potentials include a fluctuating part that drives the system towards unattainable thermal equilibrium. Two-body encounters are only one source of fluctuations, and all fluctuations will drive similar evolution. The orbit-averaged Fokker-Planck equation is derived, as are relations that hold between the second-order diffusion coefficients and both the power spectrum of the fluctuations and the first-order diffusion coefficients. From the observed heating of the solar neighbourhood we show that the second-order diffusion coefficients must scale as ˜ J1/2. We show that periodic spiral structure shifts angular momentum outwards, heating at the Lindblad resonances and mixing at corotation. The equation that would yield the normal modes of a stellar disk is first derived and then used to discuss the propagation of tightly wound spiral waves. The winding up of such waves is described and explains why cool stellar disks are responsive systems that amplify ambient noise. An explanation is offered of why the Lin-Shu-Kalnajs dispersion relation and even global normal-mode calculations provide a very incomplete understanding of the dynamics of stellar disks.

  11. Chemo-Dynamical Evolution of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hensler, G.

    Dwarf galaxies are characterized by low masses, by their morphological variety, and by low metallicities on average as well as by their scatter in the gas fraction-to-metallicity relation. Because of the low binding energy even under the assumption of a dark matter halo their evolution should be dominated by supernova-driven galactic-wind mass loss which inherently leads to metallicity depletion with preference of particular abundances. Since the gas phases of the interstellar medium evolve dynamically, energetically and chemically differently, their interactions have to be considered by the chemo-dynamical treatment of their evolution. 1d and recent 2d chemo-dynamical models will be presented and compared with particular concern to star-formation episodes, starbursts, star-formation self-regulation, and structural effects which are caused by different environmental conditions and initial parameters. In addition, it is studied to what amount these will affect the abundance ratios.

  12. Oxide driven strength evolution of silicon surfaces

    DOE PAGES

    Grutzik, Scott J.; Milosevic, Erik; Boyce, Brad L.; ...

    2015-11-19

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations showmore » that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Lastly, combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.« less

  13. Oxide driven strength evolution of silicon surfaces

    SciTech Connect

    Grutzik, Scott J.; Milosevic, Erik; Boyce, Brad L.; Zehnder, Alan T.

    2015-11-19

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Lastly, combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  14. Evolution: geometrical and dynamical aspects.

    PubMed

    Freguglia, Paolo; Bazzani, Armando

    2003-01-01

    We develop a possible axiomatic approach to the evolution theory that has been previously discussed in Freguglia [2002]. The axioms synthesize the fundamental ideas of evolution theory and allow a geometrical and dynamical interpretation of the generation law. Using the axioms we derive a simple reaction-diffusion model which introduces the species as self-organized stationary distribution of a finite population and simulates the evolution of a phenotypic character under the effect of an external perturbing action. The dynamical properties of the model are briefly presented using numerical simulations.

  15. Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching.

    PubMed

    Zhu, Chaoyuan; Jasper, Ahren W; Truhlar, Donald G

    2005-07-01

    Electronic energy flow in an isolated molecular system involves coupling between the electronic and nuclear subsystems, and the coupled system evolves to a statistical mixture of pure states. In semiclassical theories, nuclear motion is treated using classical mechanics, and electronic motion is treated as an open quantal system coupled to a "bath" of nuclear coordinates. We have previously shown how this can be simulated by a time-dependent Schrödinger equation with coherent switching and decay of mixing, where the decay of mixing terms model the dissipative effect of the environment on the electronic subdynamics (i.e., on the reduced dynamics of the electronic subsystem). In the present paper we reformulate the problem as a Liouville-von Neumann equation of motion (i.e., we propagate the reduced density matrix of the electronic subsystem), and we introduce the assumption of first-order linear decay. We specifically examine the cases of equal relaxation times for both longitudinal (i.e., population) decay and transverse decay (i.e., dephasing) and of longitudinal relaxation only, yielding the linear decay of mixing (LDM) and the population-driven decay of mixing (PDDM) schemes, respectively. Because we do not generally know the basis in which coherence decays, that is, the pointer basis, we judge the semiclassical methods in part by their ability to give good results in both the adiabatic and diabatic bases. The accuracy in the prediction of physical observables is shown to be robust not only with respect to basis but also with respect to the way in which demixing is incorporated into the master equation for the density matrix. The success of the PDDM scheme is particularly interesting because it incorporates the least amount of decoherence (i.e., the PDDM scheme is the most similar of the methods discussed to the fully coherent semiclassical Ehrenfest method). For both the new and previous decay of mixing schemes, four kinds of decoherent state switching

  16. The SILCC (SImulating the LifeCycle of molecular Clouds) project - II. Dynamical evolution of the supernova-driven ISM and the launching of outflows

    NASA Astrophysics Data System (ADS)

    Girichidis, Philipp; Walch, Stefanie; Naab, Thorsten; Gatto, Andrea; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian

    2016-03-01

    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We present three-dimensional (magneto)hydrodynamic simulations of the ISM in a vertically stratified box including self-gravity, an external potential due to the stellar component of the galactic disc, and stellar feedback in the form of an interstellar radiation field and supernovae (SNe). The cooling of the gas is based on a chemical network that follows the abundances of H+, H, H2, C+, and CO and takes shielding into account consistently. We vary the SN feedback by comparing different SN rates, clustering and different positioning, in particular SNe in density peaks and at random positions, which has a major impact on the dynamics. Only for random SN positions the energy is injected in sufficiently low-density environments to reduce energy losses and enhance the effective kinetic coupling of the SNe with the gas. This leads to more realistic velocity dispersions (σ _H I≈ 0.8σ _{300{-}8000 K}˜ 10-20 km s^{-1}, σ _H α ≈ 0.6σ _{8000-3× 10^5 K}˜ 20-30 km s^{-1}), and strong outflows with mass loading factors (ratio of outflow to star formation rate) of up to 10 even for solar neighbourhood conditions. Clustered SNe abet the onset of outflows compared to individual SNe but do not influence the net outflow rate. The outflows do not contain any molecular gas and are mainly composed of atomic hydrogen. The bulk of the outflowing mass is dense (ρ ˜ 10-25-10-24 g cm-3) and slow (v ˜ 20-40 km s-1) but there is a high-velocity tail of up to v ˜ 500 km s-1 with ρ ˜ 10-28-10-27 g cm-3.

  17. Driven Open Quantum Systems and Floquet Stroboscopic Dynamics

    NASA Astrophysics Data System (ADS)

    Restrepo, S.; Cerrillo, J.; Bastidas, V. M.; Angelakis, D. G.; Brandes, T.

    2016-12-01

    We provide an analytic solution to the problem of system-bath dynamics under the effect of high-frequency driving that has applications in a large class of settings, such as driven-dissipative many-body systems. Our method relies on discrete symmetries of the system-bath Hamiltonian and provides the time evolution operator of the full system, including bath degrees of freedom, without weak-coupling or Markovian assumptions. An interpretation of the solution in terms of the stroboscopic evolution of a family of observables under the influence of an effective static Hamiltonian is proposed, which constitutes a flexible simulation procedure of nontrivial Hamiltonians. We instantiate the result with the study of the spin-boson model with time-dependent tunneling amplitude. We analyze the class of Hamiltonians that may be stroboscopically accessed for this example and illustrate the dynamics of system and bath degrees of freedom.

  18. Dynamical Evolution of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.

    2016-11-01

    Dynamical simulations have become a powerful tool to study the evolution of star clusters due to hardware and software progresses in recent years. Here, I review the state of the art of N-body and other simulation techniques and show what we have learned from these simulations about the dynamical evolution of star clusters. Special attention is given to the results on the lifetimes of star clusters as a function of their environment, the internal changes of the mass functions, the influence of primordial gas expulsion on the ratio of first to second generation stars in globular clusters, and the possible presence of intermediate-mass black holes in star clusters.

  19. Dynamic signatures of driven vortex motion.

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  20. Dynamics of the L {yields} H transition, VH-mode evolution, edge localized modes and R.F. driven confinement control in tokamaks

    SciTech Connect

    Diamond, P.H.; Lebedev, V.B.; Liang, Y.M.; Gruzinov, A.V.; Gruzinov, I.; Medvedev, M.; Carreras, B.A.; Newman, D.E.; Charlton, L.; Sidikman, K.L.

    1995-02-01

    Several novel theoretical results related to L {yields} H transition physics, VH-mode evolution, Edge Localized Modes and active confinement control are presented. Critical issues are identified, results are discussed and important unresolved questions are listed. The basic physics is discussed in the contexts of current experiments and of ITER.

  1. Target-Driven Evolution of Scorpion Toxins.

    PubMed

    Zhang, Shangfei; Gao, Bin; Zhu, Shunyi

    2015-10-07

    It is long known that peptide neurotoxins derived from a diversity of venomous animals evolve by positive selection following gene duplication, yet a force that drives their adaptive evolution remains a mystery. By using maximum-likelihood models of codon substitution, we analyzed molecular adaptation in scorpion sodium channel toxins from a specific species and found ten positively selected sites, six of which are located at the core-domain of scorpion α-toxins, a region known to interact with two adjacent loops in the voltage-sensor domain (DIV) of sodium channels, as validated by our newly constructed computational model of toxin-channel complex. Despite the lack of positive selection signals in these two loops, they accumulated extensive sequence variations by relaxed purifying selection in prey and predators of scorpions. The evolutionary variability in the toxin-bound regions of sodium channels indicates that accelerated substitutions in the multigene family of scorpion toxins is a consequence of dealing with the target diversity. This work presents an example of atypical co-evolution between animal toxins and their molecular targets, in which toxins suffered from more prominent selective pressure from the channels of their competitors. Our discovery helps explain the evolutionary rationality of gene duplication of toxins in a specific venomous species.

  2. ENVIRONMENTALLY DRIVEN GLOBAL EVOLUTION OF GALAXIES

    SciTech Connect

    Cen Renyue

    2011-11-10

    Utilizing high-resolution large-scale galaxy formation simulations of the standard cold dark matter model, we examine global trends in the evolution of galaxies due to gravitational shock heating by collapse of large halos and large-scale structure. We find two major global trends. (1) The mean specific star formation rate (sSFR) at a given galaxy mass is a monotonically increasing function with increasing redshift. (2) The mean sSFR at a given redshift is a monotonically increasing function of decreasing galaxy mass that steepens with decreasing redshift. The general dimming trend with time merely reflects the general decline of gas inflow rate with increasing time. The differential evolution of galaxies of different masses with redshift is a result of gravitational shock heating of gas due to formation of large halos (groups and clusters) and large-scale structure that moves a progressively larger fraction of galaxies and their satellites into environments where gas has too high an entropy to cool to continue feeding resident galaxies. Overdense regions where larger halos are preferentially located begin to be heated earlier and have higher temperatures than lower density regions at any given time, causing sSFR of larger galaxies to fall below the general dimming trend at higher redshift than less massive galaxies and galaxies with high sSFR to gradually shift to lower density environments at lower redshift. We find that several noted cosmic downsizing phenomena are different manifestations of these general trends. We also find that the great migration of galaxies from blue cloud to red sequence as well as color-density relation, among others, may arise naturally in this picture.

  3. Does eutrophication-driven evolution change aquatic ecosystems?

    PubMed

    Alexander, Timothy J; Vonlanthen, Pascal; Seehausen, Ole

    2017-01-19

    Eutrophication increases primary production and changes the relative abundance, taxonomic composition and spatial distribution of primary producers within an aquatic ecosystem. The changes in composition and location of resources alter the distribution and flow of energy and biomass throughout the food web. Changes in productivity also alter the physico-chemical environment, which has further effects on the biota. Such ecological changes influence the direction and strength of natural and sexual selection experienced by populations. Besides altering selection, they can also erode the habitat gradients and/or behavioural mechanisms that maintain ecological separation and reproductive isolation among species. Consequently, eutrophication of lakes commonly results in reduced ecological specialization as well as genetic and phenotypic homogenization among lakes and among niches within lakes. We argue that the associated loss in functional diversity and niche differentiation may lead to decreased carrying capacity and lower resource-use efficiency by consumers. We show that in central European whitefish species radiations, the functional diversity affected by eutrophication-induced speciation reversal correlates with community-wide trophic transfer efficiency (fisheries yield per unit phosphorus). We take this as an example of how evolutionary dynamics driven by anthropogenic environmental change can have lasting effects on biodiversity and ecosystem functioning.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

  4. Sustainability of culture-driven population dynamics.

    PubMed

    Ghirlanda, Stefano; Enquist, Magnus; Perc, Matjaz

    2010-05-01

    We consider models of the interactions between human population dynamics and cultural evolution, asking whether they predict sustainable or unsustainable patterns of growth. Phenomenological models predict either unsustainable population growth or stabilization in the near future. The latter prediction, however, is based on extrapolation of current demographic trends and does not take into account causal processes of demographic and cultural dynamics. Most existing causal models assume (or derive from simplified models of the economy) a positive feedback between cultural evolution and demographic growth, and predict unlimited growth in both culture and population. We augment these models taking into account that: (1) cultural transmission is not perfect, i.e., culture can be lost; (2) culture does not always promote population growth. We show that taking these factors into account can cause radically different model behavior, such as population extinction rather than stability, and extinction rather than growth. We conclude that all models agree that a population capable of maintaining a large amount of culture, including a powerful technology, runs a high risk of being unsustainable. We suggest that future work must address more explicitly both the dynamics of resource consumption and the cultural evolution of beliefs implicated in reproductive behavior (e.g., ideas about the preferred family size) and in resource use (e.g., environmentalist stances).

  5. The evolution of information-driven safeguards

    SciTech Connect

    Budlong-sylvester, Kory W; Pilat, Joseph F

    2010-10-14

    From the adoption of the Model Additional Protocol and integrated safeguards in the 1990s, to current International Atomic Energy Agency (IAEA) efforts to deal with cases of noncompliance, the question of how the Agency can best utilize all the information available to it remains of great interest and increasing importance. How might the concept of 'information-driven' safeguards (IDS) evolve in the future? The ability of the Agency to identify and resolve anomalies has always been important and has emerged as a core Agency function in recent years as the IAEA has had to deal with noncompliance in Iran and the Democratic People's Republic of Korea (DPRK). Future IAEA safeguards implementation should be designed with the goal of facilitating and enhancing this vital capability. In addition, the Agency should utilize all the information it possesses, including its in-house assessments and expertise, to direct its safeguards activities. At the State level, knowledge of proliferation possibilities is currently being used to guide the analytical activities of the Agency and to develop inspection plans. How far can this approach be extended? Does it apply across State boundaries? Should it dictate a larger fraction of safeguards activities? Future developments in IDS should utilize the knowledge resident within the Agency to ensure that safeguards resources flow to where they are most needed in order to address anomalies first and foremost, but also to provide greater confidence in conclusions regarding the absence of undeclared nuclear activities. The elements of such a system and related implementation issues are assessed in this paper.

  6. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  7. Birth and evolution of the Rio Grande-Rio Chama fluvial system: The influence of magma-driven dynamic topography on fluvial systems over the last 8 Ma

    NASA Astrophysics Data System (ADS)

    Repasch, M. N.; Karlstrom, K. E.; Heizler, M. T.

    2015-12-01

    The Rio Grande-Rio Chama (RG-RC) fluvial system of southern Colorado and northern New Mexico preserves a record of southern Rocky Mountain erosion and sediment transport over the last 8 Ma. During this time the two rivers have evolved wildly, undergoing channel migrations, drainage capture and integration events, carving and refilling of paleocanyons, lake spill-overs, and reshaping of drainage divides. New 40Ar/39Ar basalt ages coupled with new detrital grain age population data for fluvial sediments are beginning to reconstruct the birth of the RG-RC fluvial system and elucidate the processes that drove its evolution over the last ~8 Ma. Twenty-three detrital grain samples have been collected from RG-RC river deposits ranging in age from ~8 Ma (RC) and 4.5 Ma (RG) to modern fluvial sediment. Detrital zircon age spectra for the RG reveal peaks at 25 Ma, 28 Ma, 30-35 Ma (San Juan volcanic), and 70-90Ma (San Juan Basin) in sediments deposited from 4.5 to 0 Ma. RC spectra are richer in San Juan Basin and San Juan volcanic detritus. A 2.6 Ma Totavi Lentil deposit downstream of today's RG-RC confluence is similar to the ancestral RG, while a 1.6 Ma Totavi Lentil is similar to the combined RG-RC, suggesting northward shift of the RG-RC confluence by 1.6 Ma due to Jemez Mountain volcanism. A 4.5 Ma basalt age from Black Mesa and occurrence of San Juan volcanic detritus in 3 to 5 Ma sediment suggests birth of an ancestral RG as early as 4.5 Ma. There is no record of an ancestral RG north of the Red River confluence for the 3.0 to 0.5 Ma time period, supporting prior work that northern San Luis Basin became integrated after 0.5 Ma spill-over of Lake Alamosa. We plan to add detrital sanidine dating to refine the age spectra and help further delineate drainage patterns. The RG-RC system drains a highly tectonically active region. Changes in the fluvial regime suggest: 1) long-lived source of detritus (some recycled) from the San Juan volcanic field, 2) downstream integration

  8. Ultrafast electronic dynamics driven by nuclear motion

    NASA Astrophysics Data System (ADS)

    Vendrell, Oriol

    2016-05-01

    The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.

  9. Dynamic landscapes: a model of context and contingency in evolution.

    PubMed

    Foster, David V; Rorick, Mary M; Gesell, Tanja; Feeney, Laura M; Foster, Jacob G

    2013-10-07

    Although the basic mechanics of evolution have been understood since Darwin, debate continues over whether macroevolutionary phenomena are driven by the fitness structure of genotype space or by ecological interaction. In this paper we propose a simple model capturing key features of fitness-landscape and ecological models of evolution. Our model describes evolutionary dynamics in a high-dimensional, structured genotype space with interspecies interaction. We find promising qualitative similarity with the empirical facts about macroevolution, including broadly distributed extinction sizes and realistic exploration of the genotype space. The abstraction of our model permits numerous applications beyond macroevolution, including protein and RNA evolution.

  10. Laser-driven nonlinear cluster dynamics

    SciTech Connect

    Fennel, Th.; Meiwes-Broer, K.-H.; Tiggesbaeumker, J.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.

    2010-04-15

    Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

  11. Microstructural evolution during dynamic deformation of cubic metals: copper

    SciTech Connect

    Cerreta, Ellen K; Koller, Darcie D; Bronkhorst, Curt A; Excobedo, Juan P; Hansen, Benjamin L; Patterson, Brian M; Lebensohn, Ricardo A; Livescu, Veronica; Tonks, Davis; Mourad, Hashem M; Germann, Timothy C; Perez - Bergquist, Alex; Gray Ill, George T

    2010-12-22

    Shockwave shape can influence dynamic damage evolution. Features such as rise time, pulse duration, peak shock pressure, pull back, and release rate are influenced as wave shape changes. However, their individual influence on dynamic damage evolution is not well understood. Specifically, changing from a square to triangular or Taylor wave loading profile can alter the release kinetics from peak shock pressure and the volume of material sampled during release. This creates a spatial influence. In high purity metals, because damage is often linked to boundaries within the microstructure (grain or twin), changing the volume of material sampled during release, can have a drastic influence on dynamic damage evolution as the number of boundaries or defects sampled is altered. In this study, model-driven dynamic experiments have been conducted on eu with four different grain sizes to examine, for a given shockwave shape, how the spatial effect of boundary distribution influences dynamic damage evolution. Both two and three dimensional damage characterization techniques have been utilized. This study shows the critical influence of spatial effects, in this case boundary density, on dynamic damage evolution. As the boundary density decreases, the damage evolution transitions from nucleation controlled to growth controlled. It also shows that specific boundaries, those with high Schmid factor orientations on either side, maybe a necessary condition for void formation.

  12. Evolution of protoplanetary discs with magnetically driven disc winds

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan

    2016-12-01

    Aims: We investigate the evolution of protoplanetary discs (PPDs) with magnetically driven disc winds and viscous heating. Methods: We considered an initially massive disc with 0.1 M⊙ to track the evolution from the early stage of PPDs. We solved the time evolution of surface density and temperature by taking into account viscous heating and the loss of mass and angular momentum by the disc winds within the framework of a standard α model for accretion discs. Our model parameters, turbulent viscosity, disc wind mass-loss, and disc wind torque, which were adopted from local magnetohydrodynamical simulations and constrained by the global energetics of the gravitational accretion, largely depends on the physical condition of PPDs, particularly on the evolution of the vertical magnetic flux in weakly ionized PPDs. Results: Although there are still uncertainties concerning the evolution of the vertical magnetic flux that remains, the surface densities show a large variety, depending on the combination of these three parameters, some of which are very different from the surface density expected from the standard accretion. When a PPD is in a wind-driven accretion state with the preserved vertical magnetic field, the radial dependence of the surface density can be positive in the inner region <1-10 au. The mass accretion rates are consistent with observations, even in the very low level of magnetohydrodynamical turbulence. Such a positive radial slope of the surface density strongly affects planet formation because it inhibits the inward drift or even causes the outward drift of pebble- to boulder-sized solid bodies, and it also slows down or even reversed the inward type-I migration of protoplanets. Conclusions: The variety of our calculated PPDs should yield a wide variety of exoplanet systems.

  13. A combined Event-Driven/Time-Driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E.

    2009-12-10

    A novel combined Event-Driven/Time-Driven (ED/TD) algorithm to speed-up the Molecular Dynamics simulation of rarefied gases using realistic spherically symmetric soft potentials is presented. Due to the low density regime, the proposed method correctly identifies the time that must elapse before the next interaction occurs, similarly to Event-Driven Molecular Dynamics. However, each interaction is treated using Time-Driven Molecular Dynamics, thereby integrating Newton's Second Law using the sufficiently small time step needed to correctly resolve the atomic motion. Although infrequent, many-body interactions are also accounted for with a small approximation. The combined ED/TD method is shown to correctly reproduce translational relaxation in argon, described using the Lennard-Jones potential. For densities between {rho}=10{sup -4}kg/m{sup 3} and {rho}=10{sup -1}kg/m{sup 3}, comparisons with kinetic theory, Direct Simulation Monte Carlo, and pure Time-Driven Molecular Dynamics demonstrate that the ED/TD algorithm correctly reproduces the proper collision rates and the evolution toward thermal equilibrium. Finally, the combined ED/TD algorithm is applied to the simulation of a Mach 9 shock wave in rarefied argon. Density and temperature profiles as well as molecular velocity distributions accurately match DSMC results, and the shock thickness is within the experimental uncertainty. For the problems considered, the ED/TD algorithm ranged from several hundred to several thousand times faster than conventional Time-Driven MD. Moreover, the force calculation to integrate the molecular trajectories is found to contribute a negligible amount to the overall ED/TD simulation time. Therefore, this method could pave the way for the application of much more refined and expensive interatomic potentials, either classical or first-principles, to Molecular Dynamics simulations of shock waves in rarefied gases, involving vibrational nonequilibrium and chemical reactivity.

  14. Field-driven dynamics of nematic microcapillaries

    NASA Astrophysics Data System (ADS)

    Khayyatzadeh, Pouya; Fu, Fred; Abukhdeir, Nasser Mohieddin

    2015-12-01

    Polymer-dispersed liquid-crystal (PDLC) composites long have been a focus of study for their unique electro-optical properties which have resulted in various applications such as switchable (transparent or translucent) windows. These composites are manufactured using desirable "bottom-up" techniques, such as phase separation of a liquid-crystal-polymer mixture, which enable production of PDLC films at very large scales. LC domains within PDLCs are typically spheroidal, as opposed to rectangular for an LCD panel, and thus exhibit substantially different behavior in the presence of an external field. The fundamental difference between spheroidal and rectangular nematic domains is that the former results in the presence of nanoscale orientational defects in LC order while the latter does not. Progress in the development and optimization of PDLC electro-optical properties has progressed at a relatively slow pace due to this increased complexity. In this work, continuum simulations are performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. Using a simplified elliptic cylinder (microcapillary) geometry as an approximation of spheroidal PDLC domains, the effects of geometry (aspect ratio), surface anchoring, and external field strength are studied through the use of the Landau-de Gennes model of the nematic LC phase.

  15. Dynamical evolution of comet pairs

    NASA Astrophysics Data System (ADS)

    Sosa, Andrea; Fernández, Julio A.

    2016-10-01

    Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).

  16. Asynchronous networks and event driven dynamics

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Real-world networks in technology, engineering and biology often exhibit dynamics that cannot be adequately reproduced using network models given by smooth dynamical systems and a fixed network topology. Asynchronous networks give a theoretical and conceptual framework for the study of network dynamics where nodes can evolve independently of one another, be constrained, stop, and later restart, and where the interaction between different components of the network may depend on time, state, and stochastic effects. This framework is sufficiently general to encompass a wide range of applications ranging from engineering to neuroscience. Typically, dynamics is piecewise smooth and there are relationships with Filippov systems. In this paper, we give examples of asynchronous networks, and describe the basic formalism and structure. In the following companion paper, we make the notion of a functional asynchronous network rigorous, discuss the phenomenon of dynamical locks, and present a foundational result on the spatiotemporal factorization of the dynamics for a large class of functional asynchronous networks.

  17. A User Driven Dynamic Circuit Network Implementation

    SciTech Connect

    Guok, Chin; Robertson, David; Chaniotakis, Evangelos; Thompson, Mary; Johnston, William; Tierney, Brian

    2008-10-01

    The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.

  18. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  19. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    SciTech Connect

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  20. Dynamics driven allostery in protein kinases

    PubMed Central

    Kornev, Alexandr P.; Taylor, Susan S.

    2015-01-01

    Protein kinases have very dynamic structures and their functionality strongly depends on their dynamic state. Active kinases reveal a dynamic pattern with residues clustering into semirigid communities that move in µs-ms timescale. Previously detected hydrophobic spines serve as connectors between communities. Communities do not follow the traditional subdomain structure of the kinase core or its secondary structure elements. Instead they are organized around main functional units. Integration of the communities depends on the assembly of the hydrophobic spine and phosphorylation of the activation loop. Single mutations can significantly disrupt the dynamic infrastructure and thereby interfere with long distance allosteric signaling that propagates throughout the whole molecule. Dynamics is proposed to be the underlying mechanism for allosteric regulation in protein kinases. PMID:26481499

  1. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    SciTech Connect

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time. We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.

  2. Metal-coordination-driven dynamic heteroleptic architectures.

    PubMed

    De, Soumen; Mahata, Kingsuk; Schmittel, Michael

    2010-05-01

    Dynamic heteroleptic coordination at metal centres is quite common in Nature and often related to a specific biological function, such as in zinc finger proteins and in hemoglobin for oxygen transport. To achieve the required high heteroleptic fidelity, representative biological systems avail themselves of "intramolecular" multidentate coordination using the protein backbone as a "superligand". In contrast, dynamic heteroleptic coordination at a single metal centre in solution requires to bind different freely exchanging ligands under thermodynamic control. In this tutorial review we present the emerging principles of how to assemble dissimilar ligands at dynamically exchanging metal centres, with a particular emphasis on using the precepts for the fabrication of heteroleptic supramolecular assemblies in solution.

  3. Dynamic Data Driven Applications Systems (DDDAS)

    DTIC Science & Technology

    2013-03-06

    of a spinning blade 2. Detected significant changes in the stress levels in the region with defect 3. Refined mesh, re-interpolated solution and...that is dynamically updated? Challenges I Possible Solutions How to e nsure correctness and completeness of dynamically updated workflows? Atomic... Volcanic Ash Transport & Dispersal Forecast A. Patra, M. Bursik, E. B. Pitman, P. Singla, T. Singh, M. Jones – Univ at Buffalo; M. Pavolonis Univ

  4. Dynamical Evolution: Spirals and Bars

    NASA Astrophysics Data System (ADS)

    Combes, F.

    Non-axisymmetric modes like spirals and bars are the main driver of the evolution of disks, in transferring angular momentum, and allowing mass accretion. This evolution proceeds through self-regulation and feedback mechanisms, such as bar destruction or weakening by a central mass concentration, decoupling of a nuclear bar taking over the gas radial flows and mass accretion, etc.. These internal mechanisms can also be triggered by interaction with the environment. Recent problems are discussed, like the influence of counter-rotation in the m=1 and m=2 patterns development and on mass accretion by a central AGN.

  5. Evolution of Neogene Dynamic Topography in Madagascar

    NASA Astrophysics Data System (ADS)

    Paul, J. D.; Roberts, G.; White, N. J.

    2012-12-01

    Madagascar is located on the fringes of the African superswell. Its position and the existence of a +30 mGal long wavelength free-air gravity anomaly suggest that its present-day topography is maintained by convective circulation of the sub-lithospheric mantle. Residual depth anomalies of oceanic crust encompassing the island imply that Madagascar straddles a dynamic topographic gradient. In June-July 2012, we examined geologic evidence for Neogene uplift around the Malagasy coastline. Uplifted coral reef deposits, fossil beach rock, and terraces demonstrate that the northern and southern coasts are probably being uplifted at a rate of ~0.2 mm/yr. Rates of uplift clearly vary around the coastline. Inland, extensive peneplains occur at elevations of 1 - 2 km. These peneplains are underlain by 10 - 20 m thick laterite deposits, and there is abundant evidence for rapid erosion (e.g. lavaka). Basaltic volcanism also occurred during Neogene times. These field observations can be combined with an analysis of drainage networks to determine the spatial and temporal pattern of convectively driven uplift. ~100 longitudinal river profiles were extracted from a digital elevation model of Madagascar. An inverse model is then used to minimize the misfit between observed and calculated river profiles as a function of uplift rate history. During inversion, the residual misfit decreases from ~20 to ~4. Our results suggest that youthful and rapid uplift of 1-2 km occurred at rates of 0.2-0.4 mm/yr during the last ˜15 Myr. The algorithm resolves distinct phases of uplift which generate localized swells of high topography and relief (e.g. the Hauts Plateaux). Our field observations and modeling indicate that the evolution of drainage networks may contain useful information about mantle convective processes.

  6. Spin dynamics in driven composite multiferroics

    SciTech Connect

    Wang, Zidong Grimson, Malcolm J.

    2015-09-28

    A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.

  7. Vibrational- and Laser-Driven Electronic Dynamics in the Molecules

    NASA Astrophysics Data System (ADS)

    Stolow, Albert

    2014-05-01

    Electronic dynamics within molecules can be driven by both motions of the atoms, via non-Born-Oppenheimer coupling, and by applied laser fields, driving electron motions on sub-cycle time scales. The challenging but most general case of Molecular Dynamics is where electronic and vibrational motions are fully coupled, the making and breaking of chemical bonds being the most prominent example. Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) is a ultrafast photoelectron probe of Molecular Frame dynamics in polyatomic molecules. It makes use of full 3D recoil momentum vector determination of coincident photoions and photoelectrons as a function of time, permitting observations of coupled electronic-vibrational dynamics from the Molecular Frame rather than the Lab Frame point of view. Methods in non-resonant quantum control, based on the dynamic Stark effect, have also emerged as important tools for enhancing molecular dynamics studies. In particular, molecular alignment can fix the Molecular Frame within the Lab Frame, avoiding loss of information due to orientational averaging. Provided that the molecular dynamics are fast compared to rotational dephasing, this method also permits time-resolved Molecular Frame observations. As laser fields get stronger, a sub-cycle (attosecond) physics emerges, leading to new probes of driven multi-electron dynamics in polyatomic molecules. Understanding driven multi-electron responses will be central to advancing attosecond science towards polyatomic molecules and complex systems.

  8. Nonlinear waves: Dynamics and evolution

    NASA Astrophysics Data System (ADS)

    Gaponov-Grekhov, A. V.; Rabinovich, M. I.

    Papers on nonlinear waves are presented, covering topics such as the history of studies on nonlinear dynamics since Poincare, attractors, pattern formation and the dynamics of two-dimensional structures in nonequilibirum dissipative media, the onset of spatial chaos in one-dimensional systems, and self-organization phenomena in laser thermochemistry. Additional topics include criteria for the existence of moving structures in two-component reaction-diffusion systems, space-time structures in optoelectronic devices, stimulated scattering and surface structures, and distributed wave collapse in the nonlinear Schroedinger equation. Consideration is also given to dimensions and entropies in multidimensional systems, measurement methods for correlation dimensions, quantum localization and dynamic chaos, self-organization in bacterial cells and populations, nonlinear phenomena in condensed matter, and the origin and evolutionary dynamics of Uranian rings.

  9. EUV-driven femtosecond dynamics in ethylene

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Allison, T. K.; Wright, T. W.; Hertlein, M. P.; Liu, Y.; Merdji, H.; Falcone, R. W.; Belkacem, A.

    2009-11-01

    We studied ion fragment yields from EUV-pump NIR-probe experiments performed on ethylene molecules (C2H4). Through study of the ion yields as a function of pump-probe delay we resolve molecular dynamics on the excited electronic states of the ion. The breakup channel yielding CH+ and CH+3 indicated photo-isomerization to the ethylidene configuration (HC-CH3)+ on an ultrafast timescale. This configuration is predicted to be a transient configuration for electronic relaxation. We observed this channel, and found that it takes the excited cation (C2H+4)* 50 ± 25 fs to reach the ethylidene configuration. The transient ion yield of C2H24 + at zero delay (in combination with independent synchrotron experiments) indicates other ultra-fast dynamics in short-lived intermediate states are present.

  10. Lie transformation method on quantum state evolution of a general time-dependent driven and damped parametric oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Zhang, Weiping

    2016-10-01

    A variety of dynamics in nature and society can be approximately treated as a driven and damped parametric oscillator. An intensive investigation of this time-dependent model from an algebraic point of view provides a consistent method to resolve the classical dynamics and the quantum evolution in order to understand the time-dependent phenomena that occur not only in the macroscopic classical scale for the synchronized behaviors but also in the microscopic quantum scale for a coherent state evolution. By using a Floquet U-transformation on a general time-dependent quadratic Hamiltonian, we exactly solve the dynamic behaviors of a driven and damped parametric oscillator to obtain the optimal solutions by means of invariant parameters of Ks to combine with Lewis-Riesenfeld invariant method. This approach can discriminate the external dynamics from the internal evolution of a wave packet by producing independent parametric equations that dramatically facilitate the parametric control on the quantum state evolution in a dissipative system. In order to show the advantages of this method, several time-dependent models proposed in the quantum control field are analyzed in detail.

  11. Dynamics of Membranes Driven by Actin Polymerization

    PubMed Central

    Gov, Nir S.; Gopinathan, Ajay

    2006-01-01

    A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia, and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators, and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wavelike, corresponding to membrane ruffling and actin waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions. PMID:16239328

  12. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  13. Dynamical evolution of near-Sun objects

    NASA Astrophysics Data System (ADS)

    Emel'Yanenko, Vacheslav V.; Shelyakov, Mikhail A.

    2014-07-01

    The dynamical evolution of short-period objects having perihelia at small heliocentric distances is discussed. We have investigated the motion of multiple-apparition members of the Marsden and Kracht sungrazing groups. The orbital evolution of these objects on timescales < 10 Kyr is mainly determined by the Kozai-Lidov secular perturbations. These objects are dynamically connected with high-inclination near-Earth objects. On the other hand, we have found several observed near-Earth objects that evolve in the same way, reaching small perihelion distances on short timescales in the past.

  14. Dynamical transitions of a driven Ising interface

    NASA Astrophysics Data System (ADS)

    Sahai, Manish K.; Sengupta, Surajit

    2008-03-01

    We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t) . H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve , [i.e., H(r,t)=H(r-vet) ], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large ve the interface depins and grows with Kardar-Parisi-Zhang exponents.

  15. Chaotic and ballistic dynamics in time-driven quasiperiodic lattices.

    PubMed

    Wulf, Thomas; Schmelcher, Peter

    2016-04-01

    We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct velocities is found. We argue how these transients are caused and can be understood by a hierarchy of block decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is performed.

  16. Chaotic and ballistic dynamics in time-driven quasiperiodic lattices

    NASA Astrophysics Data System (ADS)

    Wulf, Thomas; Schmelcher, Peter

    2016-04-01

    We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct velocities is found. We argue how these transients are caused and can be understood by a hierarchy of block decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is performed.

  17. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    SciTech Connect

    Cunha, R. O.; Holanda, J.; Azevedo, A.; Rezende, S. M.; Vilela-Leão, L. H.; Rodríguez-Suárez, R. L.

    2015-05-11

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2–6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  18. Groundwater hydrochemistry evolution in cyclone driven hydrological regimes, NW Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Dogramaci, S.; Grierson, P.

    2013-12-01

    lake that existed in the past, as the dynamic fractionation from brine is much different compared to that in fresh and brackish waters. Therefore, deeper brine groundwater under the Marsh developed under a different climatic regime and that the current salt in the Marsh has accumulated over at least 40,000 years but could have been as long as 700,000 years [2]. Our combined chemical and stable isotope analyses confirm the general dominance of vertical over horizontal flow in the region and decoupling of processes that control water evolution from those that control salt evolution in groundwater. [1] Dogramaci S., Skrzypek G., Dodson W., Grierson P.F., 2012, Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of sub-tropical northwest Australia. Journal of Hydrology 475: 281-293. [2] Skrzypek G., Dogramaci S., Grierson P.F., 2013, Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia. Chemical Geology (in press).

  19. Feedback-Driven Dynamic Invariant Discovery

    NASA Technical Reports Server (NTRS)

    Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz

    2014-01-01

    Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.

  20. Nonadiabatic quantum state engineering driven by fast quench dynamics

    NASA Astrophysics Data System (ADS)

    Herrera, Marcela; Sarandy, Marcelo S.; Duzzioni, Eduardo I.; Serra, Roberto M.

    2014-02-01

    There are a number of tasks in quantum information science that exploit nontransitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its "thermodynamical cost," provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.

  1. Metapopulation dynamics and the evolution of dispersal

    NASA Astrophysics Data System (ADS)

    Parvinen, Kalle

    A metapopulation consists of local populations living in habitat patches. In this chapter metapopulation dynamics and the evolution of dispersal is studied in two metapopulation models defined in discrete time. In the first model there are finitely many patches, and in the other one there are infinitely many patches, which allows to incorporate catastrophes into the model. In the first model, cyclic local population dynamics can be either synchronized or not, and increasing dispersal both synchronizes and stabilizes metapopulation dynamics. On the other hand, the type of dynamics has a strong effect on the evolution of dispersal. In case of non-synchronized metapopulation dynamics, dispersal is much more beneficial than in the case of synchronized metapopulation dynamics. Local dynamics has a substantial effect also on the possibility of evolutionary branching in both models. Furthermore, with an Allee effect in the local dynamics of the second model, even evolutionary suicide can occur. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist.

  2. Structure, dynamics, assembly, and evolution of protein complexes.

    PubMed

    Marsh, Joseph A; Teichmann, Sarah A

    2015-01-01

    The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.

  3. Nonlinear Phase Dynamics in a Driven Bosonic Josephson Junction

    SciTech Connect

    Boukobza, Erez; Moore, Michael G.; Cohen, Doron; Vardi, Amichay

    2010-06-18

    We study the collective dynamics of a driven two-mode Bose-Hubbard model in the Josephson interaction regime. The classical phase space is mixed, with chaotic and regular components, which determine the dynamical nature of the fringe visibility. For a weak off-resonant drive, where the chaotic component is small, the many-body dynamics corresponds to that of a Kapitza pendulum, with the relative phase {phi} between the condensates playing the role of the pendulum angle. Using a master equation approach we show that the modulation of the intersite potential barrier stabilizes the {phi}={pi} 'inverted pendulum' coherent state, and protects the fringe visibility.

  4. Coupling Dynamical And Collisional Evolution Of Dust In Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Charnoz, Sebastien

    2010-10-01

    Gaseous circumstellar disks are rich in dust and are thought to be both accretionaly and dynamically active. Unfortunately large bodies that could be embedded in these disks are still difficult to observe and their putative properties are indirectly inferred from the observable small dust content. It is why constraining the size distribution coupled with dust-dynamics is so critical. Unfortunately, coupling effects such as a realistic time-dependant dynamics, fragmentation and coagulation, has been recognized as numerically challenging and almost no attempt really succeeded with a generic approach. In these disks, the dust dynamics is driven by a variety of processes (gravity, gas drag, radiation pressure..) inducing a size-dependant dynamics, and, at the same time collisional evolution changes the local size distributions. These two effects are intimately coupled because the local dynamics and size-distribution determines the local collision rates, that, in-turn, determines the size-distribution and modifies the particle's dynamics. Here we report on a new algorithm that overcomes these difficulties by using a hybrid approach extending the work of Charnoz & Morbidelli (Icarus, 2004, 2007). We will briefly present the method and focus on gaseous protoplanetary disks either laminar or turbulent (the time dependant transport and dust evolution will be shown) . We will show how the taking into account of a 3D dynamics helps to determine disantengle the dust size-distribution in the disk's photosphere and in the midplane and thus may provide observational signatures of accretion. We will show how the coupling of turbulence with fragmentation may significantly affect the dust/ratio for the smallest bodies. Finally, we will show that an accurate description of the time dependant dynamics of larger dusts (those with Stokes numbers >= 1) may provide a possible path to the formation of bodies larger than the accretion barrier, through accretion in a transitory regime.

  5. Is mammalian chromosomal evolution driven by regions of genome fragility?

    PubMed Central

    Ruiz-Herrera, Aurora; Castresana, Jose; Robinson, Terence J

    2006-01-01

    Background A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. Results Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. Conclusion These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity. PMID:17156441

  6. Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, Mark G.; Schuck, Peter W.

    2017-04-01

    Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus our investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.

  7. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    SciTech Connect

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in

  8. Relaxation to equilibrium driven via indirect control in Markovian dynamics

    SciTech Connect

    Romano, Raffaele

    2007-11-15

    We prove that it is possible to modify the stationary states of a quantum dynamical semigroup, describing the irreversible evolution of a two-level system, by means of an auxiliary two-level system, a quantum probe that can be suitably prepared. The target system and the probe can be initially entangled or uncorrelated. We find that this indirect control of the stationary states is possible, even if there are no initial correlations, under suitable conditions on the dynamical parameters characterizing the evolution of the joint system.

  9. Dynamics and morphology development in electrospun fibers driven by concentration sweeps

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kyu, Thein

    2007-10-01

    The present article describes the modeling and simulation of the dynamics of the electrospinning process coupled with the spatio-temporal evolution of fiber morphology driven by concentration sweeps. The electrospinning process has been modeled based on an array of beads connected by Maxwell's elements in a cylindrical shell to describe the force balance between Coulombic and viscoelastic forces at the surface of the jet. The phase separation dynamics has been calculated in the framework of the Cahn-Hilliard time-evolution equation by incorporating Flory-Huggins free energy for liquid-liquid demixing in conjunction with solvent evaporation through the fiber surface. The simulations based on the coupling of these two processes have revealed in situ morphology development registering all structural forming processes such as polymer droplets, interconnected spinodal structure, and the porous structure along the spinline. The simulated porous fiber shows a striking resemblance to the experimental finding.

  10. Dynamic Data Driven Methods for Self-aware Aerospace Vehicles

    DTIC Science & Technology

    2015-04-08

    15. SUBJECT TERMS Dynamic data driven application systems (DDDAS); surrogate modeling; reduced order modeling; multifidelity methods; self-aware UAV...title and subtitle with volume number and part number, if applicable . On classified documents, enter the title classification in parentheses. 5a...for problems in which the Gaussian kernel has a variable bandwidth. To the best of our knowledge, all of these experiments are impossible or

  11. THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS

    SciTech Connect

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl; Rasio, Frederic A.; Umbreit, Stefan

    2015-02-10

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{sup 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  12. Interface dynamics of capillary driven flow in a tube

    NASA Astrophysics Data System (ADS)

    Ichikawa, Naoki; Satoda, Yoko; Nakada, Takeshi

    This paper describes the dynamics of a liquid driven by capillary force in a tube. The movement of a gas-liquid interface in a horizontal tube as a result of capillary action has been investigated. A theoretical analysis of the interface dynamics is presented where dimensionless numbers representing time and distance scales are introduced, and a unique functional relation is derived. Experiments were carried out with distilled water as the test liquid in glass tubes of inner diameter from 0.5 mm to 4.0 mm. The position of the gas-liquid interface as a function of time was observed. The experimental results agree well with theory.

  13. Intermittent Turbulence and SOC Dynamics in a 2-D Driven Current-Sheet Model

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vinas, A. F.; Vassiliasdis, D.; Baker, D. N.

    2005-01-01

    Borovsky et al. have shown that Earth's magnetotail plasma sheet is strongly turbulent. More recently, Borovsky and Funsten have shown that eddy turbulence dominates and have suggested that the eddy turbulence is driven by fast flows that act as jets in the plasma. Through basic considerations of energy and magnetic flux conservation, these fast flows are thought to be localized to small portions of the total plasma sheet and to be generated by magnetic flux reconnection that is similarly localized. Angelopoulos et al., using single spacecraft Geotail data, have shown that the plasma sheet turbulence exhibits signs of intermittence and Weygand et al., using four spacecraft Cluster data, have confirmed and expanded on this conclusion. Uritsky et al., using Polar UVI image data, have shown that the evolution of bright, nightside, UV auroral emission regions is consistent with many of the properties of systems in self-organized criticality (SOC). Klimas et al. have suggested that the auroral dynamics is a reflection of the dynamics of the fast flows in the plasma. sheet. Their hypothesis is that the transport of magnetic fludenergy through the magnetotail is enabled by scale-free avalanches of localized reconnection whose SOC dynamics are reflected in the auroral UV emission dynamics. A corollary of this hypothesis is that the strong, intermittent, eddy turbulence of the plasma sheet is closely related to its critical dynamics. The question then arises: Can in situ evidence for the SOC dynamics be found in the properties of the plasma sheet turbulence? A 2-dimensional numerical driven current-sheet model of the central plasma sheet has been developed that incorporates an idealized current-driven instability with a resistive MHD system. It has been shown that the model can evolve into SOC in a physically relevant parameter regime. Initial results from a study of intermittent turbulence in this model and the relationship of this turbulence to the model's known SOC

  14. A data driven nonlinear stochastic model for blood glucose dynamics.

    PubMed

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles.

  15. Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2014-01-01

    Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit-environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution.

  16. Fluctuation loops in noise-driven linear dynamical systems

    NASA Astrophysics Data System (ADS)

    Ghanta, Akhil; Neu, John C.; Teitsworth, Stephen

    2017-03-01

    Understanding the spatiotemporal structure of most probable fluctuation pathways to rarely occurring states is a central problem in the study of noise-driven, nonequilibrium dynamical systems. When the underlying system does not possess detailed balance, the optimal fluctuation pathway to a particular state and relaxation pathway from that state may combine to form a looplike structure in the system phase space called a fluctuation loop. Here, fluctuation loops are studied in a linear circuit model consisting of coupled R C elements, where each element is driven by its own independent noise source. Using a stochastic Hamiltonian approach, we determine the optimal fluctuation pathways, and analytically construct corresponding fluctuation loops. To quantitatively characterize fluctuation loops, we study the time-dependent area tensor that is swept out by individual stochastic trajectories in the system phase space. At long times, the area tensor scales linearly with time, with a coefficient that precisely vanishes when the system satisfies detailed balance.

  17. Upper-Mantle Flow Driven Dynamic Topography in Eastern Anatolia

    NASA Astrophysics Data System (ADS)

    Sengul Uluocak, Ebru; Pysklywec, Russell; Eken, Tuna; Hakan Gogus, Oguz

    2016-04-01

    Eastern Anatolia is characterized by 2 km plateau uplift -in the last 10 Myrs-, high surface heat flow distribution, shallow Curie-point depth, anomalous gravity field. Seismological observations indicate relatively high Pn and Sn attenuation and significant low seismic velocity anomalies in the region. Moreover, the surface geology is associated predominantly with volcanic rocks in which melt production through mantle upwelling (following lithospheric delamination) has been suggested. It has been long known that the topographic loading in the region cannot be supported by crustal thickness (~45 km) based on the principle of Airy isostasy. Recent global geodynamic studies carried out for evaluating the post-collisional processes imply that there is an explicit dynamic uplift in Eastern Anatolia and its adjacent regions. In this study we investigate the instantaneous dynamic topography driven by 3-D upper-mantle flow in Eastern Anatolia. For this purpose we conducted numerous thermo-mechanical models using a 2-D Arbitrary Lagrangian Eulerian (ALE) finite element method. The available P-wave tomography data extracted along 10 profiles were used to obtain depth-dependent density anomalies in the region. We present resulting dynamic topography maps and estimated 3D mantle flow velocity vectors along these 2-D cross sections for each profile. The residual topography based on crustal thickness and observed topography was calculated and compared with other independent datasets concerning geological deformation and dynamic topography predictions. The results indicate an upper mantle driven dynamic uplift correlated with the under-compensated characteristic in Eastern Anatolia. We discuss our results combined with 3D mantle flow by considering seismic anisotropy studies in the region. Initial results indicate that high dynamic uplift and the localized low Pn velocities in concurrence with Pn anisotropy structures show nearly spatial coherence in Eastern Anatolia.

  18. Overview of dynamical mechanisms of secular evolution

    NASA Astrophysics Data System (ADS)

    Pfenniger, Daniel

    2015-03-01

    Gravity-bound isolated systems, from stars, planetary systems, star clusters to galaxies, share common properties where evolution is the rule. Typically if they start forming at a well defined epoch they tend to change significantly over a timescale comparable to their present age. So evolution is never truly stopped, it just proceeds slower and slower: after a rapid, violent phase a slower, secular phase follows. In galactic astronomy for many decades the paradigm was rather that after a short violent time galaxies would settle in a stable steady state just consuming gas into stars. Actually today it appears that the progressive appearance of galaxy systematic morphologies and the slowing pace of mergers indicate that common intrinsic dynamical factors continue to shape galaxies towards similar properties irrespective of their largely different formation histories and initial conditions. Newtonian physics supplemented by a weakly dissipative component provides an amazing amount of explanations for the galaxy properties, like exponential stellar disks, spirals, bars, and peanut-shaped bulges. The purpose of this talk is to review these mechanisms of dynamical secular evolution.

  19. Early dynamical evolution of young substructured clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  20. Plasma dynamics and heating/acceleration during driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.; Inoue, Shizuo; Ono, Yasushi; Horiuchi, Ritoku

    2015-11-01

    Highlights of the plasma dynamics and energization during driven anti-parallel magnetic reconnection are presented. The MHD condition breaks down in the entire reconnection layer (the reconnection current layer, the separatrix region and the whole downstream), and the plasma dynamics is significantly different from the results of the Hall-MHD model. In particular, we explain (1) how electron and ion dynamics decouple and how the charge separation and electrostatic electric field are produced in the magnetic field reversal region (reconnection current layer and outflow exhaust) and around the separatrix regions, (2) how electrons and ions gain energy in the reconnection current layer, (3) why the electron outflow velocity in the reconnection exhaust reaches super-Alfvenic speed and the ion outflow velocity reaches Alfvenic speed and how the parallel electric field is produced, (4) how electrons are accelerated by the parallel electric field around the separatrix region, and (5) how ions gain energy when they move across the separatrix region into the downstream. Finally we show that electrons and ions gain energy mainly from the inductive reconnection driven electric field and less from the electrostatic electric field.

  1. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  2. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    PubMed

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  3. On the classical dynamics of strongly driven anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Breuer, H. P.; Dietz, K.; Holthaus, M.

    1990-12-01

    We investigate the dynamics of periodically driven anharmonic oscillators. In particular, we consider values of the coupling strength which are orders of magnitude higher than those required for the overlap of primary resonances. We observe a division of phase space into a regular and a stochastic region. Both regions are separated by a sharp chaos border which sets an upper limit to the stochastic heating of particles; its dependence on the coupling strength is studied. We construct perpetual adiabatic invariants governing regular motion. A bifurcation mechanism leading to the annihilation of resonances is explained.

  4. Early dynamical evolution of substructured stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2015-08-01

    It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.

  5. Testing the Physics and Chemistry of Radiation Driven Cloud Evolution - [C II] Mapping of IC 59 and IC 63

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.

    The interaction of newly formed stars with their natal clouds give rise to a number of dynamical and chemical effects, forming H II regions, injecting energy in the surrounding ISM and, potentially giving ride to triggered star formation. When an expanding H II region encounters density enhancements, Bright Rimmed Clouds (BRC) are formed, containing photo-dissociation regions (PDR). These provide valuable laboratories of radiation driven dynamics both for cloud dynamics and the physical and chemical evolution of the gas and dust. We propose to map the near-by pair of BRCs IC59 and IC 63, in the [C II] line, a well-known PDR tracer, with the upGREAT LFA array. These observations will complement a significant amount of existing data tracing the molecular gas and dust in the clouds. The parallel CO (J=11-10) data from the L1 channel will provide important information about the dense warm molecular gas to be compared e.g. to existing low-J CO transitions. Although at similar distance from the illuminating star gamma Cas, the two nebulae show dramatic differences in their structure. Because of their relative vicinity ( 190pc), the clouds provide a unique environment to acquire high spatial resolution observation of BRC and PDRs. Because of the high spectral resolution of upGREAT, our observations will provide detailed information about gas flows and turbulent motions, providing important constraints and test for models of radiation driven cloud evolution and the chemistry and physics of PDRs.

  6. THE MERGER-DRIVEN EVOLUTION OF MASSIVE GALAXIES

    SciTech Connect

    Robaina, Aday R.; Van der Wel, Arjen; Skelton, Rosalind E.; Meisenheimer, Klaus; Bell, Eric F.; Somerville, Rachel S.; McIntosh, Daniel H.; Wolf, Christian

    2010-08-10

    We explore the rate and impact of galaxy mergers on the massive galaxy population using the amplitude of the two-point correlation function on small scales for M {sub *} > 5 x 10{sup 10} M {sub sun} galaxies from the COSMOS and COMBO-17 surveys. Using a pair fraction derived from the Sloan Digital Sky Survey as a low-redshift benchmark, the large survey area at intermediate redshifts allows us to determine the evolution of the close-pair fraction with unprecedented accuracy for a mass-selected sample: we find that the fraction of galaxies more massive than 5 x 10{sup 10} M {sub sun} in pairs separated by less than 30 kpc in three-dimensional space evolves as F(z) = (0.0130 {+-} 0.0019) x (1 + z){sup 1.21{+-}0.25} between z = 0 and z = 1.2. Assuming a merger timescale of 0.5 Gyr, the inferred merger rate is such that galaxies with mass in excess of 10{sup 11} M {sub sun} have undergone, on average, 0.5 (0.7) mergers involving progenitor galaxies both more massive than 5 x 10{sup 10} M {sub sun} since z = 0.6 (1.2). We also study the number density evolution of massive red sequence galaxies using published luminosity functions and constraints on the M/L {sub B} evolution from the fundamental plane. Moreover, we demonstrate that the measured merger rate of massive galaxies is sufficient to explain this observed number density evolution in massive red sequence galaxies since z = 1.

  7. Dynamic steady state of periodically driven quantum systems

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.

    2016-01-01

    Using the density matrix formalism, we prove the existence of the periodic steady state for an arbitrary periodically driven system described by linear dynamic equations. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution (t →+∞ ) due to relaxation processes. The presented derivation simultaneously contains a simple and effective computational algorithm (without using either the Floquet or Fourier formalisms), which automatically guarantees a full account of all frequency components. As a particular example, for three-level Λ system we calculate the line shape and field-induced shift of the dark resonance formed by the field with a periodically modulated phase. Also we have analytically solved a basic theoretical problem of the direct frequency comb spectroscopy, when the two-level system is driven by the periodic sequence of rectangular pulses. In this case, the radical dependence of the spectroscopy line shape on pulse area is found. Moreover, the existence of quasiforbidden spectroscopic zones, in which the Ramsey fringes are significantly reduced, is predicted. Our results have a wide area of applications in laser physics, spectroscopy, atomic clocks, and magnetometry. Also they can be useful for any area of quantum physics where periodically driven systems are considered.

  8. Rapid biological speciation driven by tectonic evolution in New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.

    2016-02-01

    Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.

  9. Evolution of cooperation driven by social-welfare-based migration

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ye, Hang; Zhang, Hong

    2016-03-01

    Individuals' migration behavior may play a significant role in the evolution of cooperation. In reality, individuals' migration behavior may depend on their perceptions of social welfare. To study the relationship between social-welfare-based migration and the evolution of cooperation, we consider an evolutionary prisoner's dilemma game (PDG) in which an individual's migration depends on social welfare but not on the individual's own payoff. By introducing three important social welfare functions (SWFs) that are commonly studied in social science, we find that social-welfare-based migration can promote cooperation under a wide range of parameter values. In addition, these three SWFs have different effects on cooperation, especially through the different spatial patterns formed by migration. Because the relative efficiency of the three SWFs will change if the parameter values are changed, we cannot determine which SWF is optimal for supporting cooperation. We also show that memory capacity, which is needed to evaluate individual welfare, may affect cooperation levels in opposite directions under different SWFs. Our work should be helpful for understanding the evolution of human cooperation and bridging the chasm between studies of social preferences and studies of social cooperation.

  10. A dynamic, climate-driven model of Rift Valley fever.

    PubMed

    Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  11. Collisional and Dynamical Evolution of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    2004-01-01

    Senior Scientst S. J. Weidenschilling presents his final administrative report in the research program entitled "Collisional and Dynamical Evolution of Planetary Systems," on which he was the Principal Investigator. This research program produced the following publications: 1) "Jumping Jupiters" in binary star systems. F. Marzari, S. J. Weidenschilling, M. Barbieri and V. Granata. Astrophys. J., in press, 2005; 2) Formation of the cores of the outer planets. To appear in "The Outer Planets" (R. Kallenbach, ED), ISSI Conference Proceedings (Space Sci. Rev.), in press, 2005; 3) Accretion dynamics and timescales: Relation to chondrites. S. J. Weidenschilling and J. Cuzzi. In Meteorites and the Early Solar System LI (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005; 4) Asteroidal heating and thermal stratification of the asteroid belt. A. Ghosh, S. J.Weidenschilling, H. Y. McSween, Jr. and A. Rubin. In Meteorites and the Early Solar System I1 (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005.

  12. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  13. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  14. An opinion-driven behavioral dynamics model for addictive behaviors

    NASA Astrophysics Data System (ADS)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-01

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  15. An opinion-driven behavioral dynamics model for addictive behaviors

    SciTech Connect

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  16. Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles Michael

    1998-12-01

    We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming

  17. Numerical simulation of nonlinear dynamical systems driven by commutative noise

    SciTech Connect

    Carbonell, F. Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la

    2007-10-01

    The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations.

  18. The dynamics of radiation-driven, optically thick winds

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Nakar, Ehud; Piran, Tsvi

    2016-06-01

    Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes (dot{M} > L_Edd/c^2). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, Lk, are super-Eddington with L < Lk and L ∝ L_k^{1/3}. In the lower total luminosity regime, most of the energy is carried out by the radiation with Lk < L ≈ LEdd. In a third, low mass-loss regime (dot{M} < L_Edd/c^2), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.

  19. Dynamics of dental evolution in ornithopod dinosaurs

    NASA Astrophysics Data System (ADS)

    Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.

    2016-07-01

    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.

  20. Dynamics of dental evolution in ornithopod dinosaurs

    PubMed Central

    Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.

    2016-01-01

    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution. PMID:27412496

  1. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  2. Protoplanetary Disk Heating and Evolution Driven by Spiral Density Waves

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-11-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  3. Davydov soliton evolution in temperature gradients driven by hyperbolic waves

    NASA Astrophysics Data System (ADS)

    Herrera, J.; Maza, M. A.; Minzoni, A. A.; Smyth, Noel F.; Worthy, Annette L.

    2004-04-01

    In the present work the evolution of a Davydov soliton in an inhomogeneous medium will be considered. The Zakharov system of equations, which describes this soliton, consists of a perturbed non-linear Schrödinger (NLS) type equation plus a forced wave equation. This system is not exactly integrable for a homogeneous medium and its Lagrangian is non-local. It has recently been shown that this type of soliton has a long enough lifetime, even for non-zero temperature, so as to be a possible mechanism for the transfer of energy along an α helix. In the present work, the effect of temperature inhomogeneities on the behaviour of this soliton will be studied. As the soliton propagates through such an inhomogeneity, both dispersive and non-dispersive waves are generated. The stability of the soliton to this radiation is studied. The evolution of the Davydov soliton solution of the Zakharov equations in an inhomogeneous medium will be studied using an approximate method based on averaged conservation laws, which results in ordinary differential equations for the pulse parameters. It is shown that the inclusion of the effect of the dispersive radiation shed by the soliton for the NLS equation and the non-dispersive (hyperbolic) radiation shed by the soliton for the forced wave equation is vital for an accurate description of the evolution of the Davydov soliton. It is found that the soliton is stable even in the presence of hyperbolic radiation and that the temperature gradients have significant effects on the propagation of the soliton, even to the extent of reversing its motion.

  4. Prevolutionary dynamics and the origin of evolution.

    PubMed

    Nowak, Martin A; Ohtsuki, Hisashi

    2008-09-30

    Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active monomers that form random polymers. Prelife is a generative system that can produce information. Prevolutionary dynamics have selection and mutation, but no replication. Life marches in with the ability of replication: Polymers act as templates for their own reproduction. Prelife is a scaffold that builds life. Yet, there is competition between life and prelife. There is a phase transition: If the effective replication rate exceeds a critical value, then life outcompetes prelife. Replication is not a prerequisite for selection, but instead, there can be selection for replication. Mutation leads to an error threshold between life and prelife.

  5. Prevolutionary dynamics and the origin of evolution

    PubMed Central

    Nowak, Martin A.; Ohtsuki, Hisashi

    2008-01-01

    Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active monomers that form random polymers. Prelife is a generative system that can produce information. Prevolutionary dynamics have selection and mutation, but no replication. Life marches in with the ability of replication: Polymers act as templates for their own reproduction. Prelife is a scaffold that builds life. Yet, there is competition between life and prelife. There is a phase transition: If the effective replication rate exceeds a critical value, then life outcompetes prelife. Replication is not a prerequisite for selection, but instead, there can be selection for replication. Mutation leads to an error threshold between life and prelife. PMID:18791073

  6. Cognitive algorithms: dynamic logic, working of the mind, evolution of consciousness and cultures

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2007-04-01

    The paper discusses evolution of consciousness driven by the knowledge instinct, a fundamental mechanism of the mind which determines its higher cognitive functions. Dynamic logic mathematically describes the knowledge instinct. It overcomes past mathematical difficulties encountered in modeling intelligence and relates it to mechanisms of concepts, emotions, instincts, consciousness and unconscious. The two main aspects of the knowledge instinct are differentiation and synthesis. Differentiation is driven by dynamic logic and proceeds from vague and unconscious states to more crisp and conscious states, from less knowledge to more knowledge at each hierarchical level of the mind. Synthesis is driven by dynamic logic operating in a hierarchical organization of the mind; it strives to achieve unity and meaning of knowledge: every concept finds its deeper and more general meaning at a higher level. These mechanisms are in complex relationship of symbiosis and opposition, which leads to complex dynamics of evolution of consciousness and cultures. Modeling this dynamics in a population leads to predictions for the evolution of consciousness, and cultures. Cultural predictive models can be compared to experimental data and used for improvement of human conditions. We discuss existing evidence and future research directions.

  7. Upper- Mantle Driven Dynamic Uplift in Central Anatolia

    NASA Astrophysics Data System (ADS)

    Sengul Uluocak, Ebru; Pysklywec, Russell; Hakan Gogus, Oguz

    2016-04-01

    Based on geological and geophysical observations and interpretations of the present-day geodynamics, we propose that mantle structures beneath the crust drive a non-isostatic component of topography in Central Anatolia. Topography residuals for the region were calculated from the isostatic component of topography according to the principle of Airy isostasy while assuming crustal block is in hydrostatic equilibrium in the mantle. For the geodynamic interpretations we ran numerous 2D thermo-mechanical models based on different temperature inputs and viscous creep strength coefficients and using available P-wave tomography data along a N-S directional profile (33oE) through Central Anatolia as an estimate on the regional mantle structure. Our models are uniformly affected by widespread NE-SW oriented mantle flow obtained in the shear-wave azimuthal anisotropy studies and predict dynamic topography based on vertical components of density-driven flow in the upper mantle mainly induced by 2D temperature variations. The dynamic topography results indicate ~1 km instantaneous uplift in concordance with the under-compensated topography in the region. The data and modelling results define the region as a plateau-like uplift, slightly inflated in southern part based on dynamic topography patterns. The dynamic topography induced by upper-mantle flow provides robust new information about the main geodynamic components by showing broad consistency with independent data sets and observables for the area; such as, asthenospheric source of volcanism, gravity data, and high surface heat flow distributions.

  8. Nonconservative current-driven dynamics: beyond the nanoscale

    PubMed Central

    Todorov, Tchavdar N; Dundas, Daniel

    2015-01-01

    Summary Long metallic nanowires combine crucial factors for nonconservative current-driven atomic motion. These systems have degenerate vibrational frequencies, clustered about a Kohn anomaly in the dispersion relation, that can couple under current to form nonequilibrium modes of motion growing exponentially in time. Such motion is made possible by nonconservative current-induced forces on atoms, and we refer to it generically as the waterwheel effect. Here the connection between the waterwheel effect and the stimulated directional emission of phonons propagating along the electron flow is discussed in an intuitive manner. Nonadiabatic molecular dynamics show that waterwheel modes self-regulate by reducing the current and by populating modes in nearby frequency, leading to a dynamical steady state in which nonconservative forces are counter-balanced by the electronic friction. The waterwheel effect can be described by an appropriate effective nonequilibrium dynamical response matrix. We show that the current-induced parts of this matrix in metallic systems are long-ranged, especially at low bias. This nonlocality is essential for the characterisation of nonconservative atomic dynamics under current beyond the nanoscale. PMID:26665086

  9. Driven Nonlinear Dynamics of Two Coupled Exchange-Only Qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2014-01-01

    Inspired by the creation of a fast exchange-only qubit [Medford et al., Phys. Rev. Lett. 111, 050501 (2013)], we develop a theory describing the nonlinear dynamics of two such qubits that are capacitively coupled, when one of them is driven resonantly at a frequency equal to its level splitting. We include conditions of strong driving, where the Rabi frequency is a significant fraction of the level splitting, and we consider situations where the splitting for the second qubit may be the same as or different than the first. We demonstrate that coupling between qubits can be detected by reading the response of the second qubit, even when the coupling between them is only of about 1% of their level splittings, and we calculate entanglement between qubits. Patterns of nonlinear dynamics of coupled qubits and their entanglement are strongly dependent on the geometry of the system, and the specific mechanism of interqubit coupling deeply influences dynamics of both qubits. In particular, we describe the development of irregular dynamics in a two-qubit system, explore approaches for inhibiting it, and demonstrate the existence of an optimal range of coupling strength maintaining stability during the operational time.

  10. The Dynamical Evolution of A Tubular Leonid Persistent Train

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Nugent, David; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 m/s, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high attitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O ((sup 1)S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot easily be resolved.

  11. The Dynamical Evolution of a Tubular Leonid Persistent Train

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Nugent, David; Plane, John M. C.

    The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 ms^-1, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high altitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O (^1S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O_3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O_3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot casily be resolved.

  12. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2001-11-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically using dynamical systems theory. We develop a general theory for the averaged evolution of a comet nucleus rotation state assuming that the nucleus is a spheroid (either prolate or oblate) and that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the comet outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. Specifically, we find that a comet nucleus with a uniformly active surface will tend towards a rotation state with a nutation angle of ~ 55 degrees and an angular momentum perpendicular to the sun-perihelion direction. Conversely, a comet nucleus with an isolated active region will tend towards a zero nutation angle with its symmetry axis and angular momentum aligned parallel to the sun-perihelion direction. For active surface regions between these extremes we find 4 qualitatively different dynamical outcomes. In all cases, the theory predicts that the comet nucleus angular momentum will have a secular increase, a phenomenon that could contribute to nucleus splitting of active comets. These results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5-8715. AIN, AAV and VVS acknowledge support from Russian Foundation for Basic research via Grants 00-01-00538 and 00-01-0174 respectively. DJS acknowledges support from the PG&G program via Grant NAG5-9017.

  13. Covalent Photosensitizer-Polyoxometalate-Catalyst Dyads for Visible-Light-Driven Hydrogen Evolution.

    PubMed

    Schönweiz, Stefanie; Rommel, Sebastian A; Kübel, Joachim; Micheel, Mathias; Dietzek, Benjamin; Rau, Sven; Streb, Carsten

    2016-08-16

    A general concept for the covalent linkage of coordination compounds to bipyridine-functionalized polyoxometalates is presented. The new route is used to link an iridium photosensitizer to an Anderson-type hydrogen-evolution catalyst. This covalent dyad catalyzes the visible-light-driven hydrogen evolution reaction (HER) and shows superior HER activity compared with the non-covalent reference. Hydrogen evolution is observed over periods >1 week. Spectroscopic, photophysical, and electrochemical analyses give initial insight into the stability, electronic structure, and reactivity of the dyad. The results demonstrate that the proposed linkage concept allows synergistic covalent interactions between functional coordination compounds and reactive molecular metal oxides.

  14. Evolution of the alpha particle driven toroidicity induced Alfven mode

    SciTech Connect

    Wu, Y.; White, R.B.; Cheng, C.Z.

    1994-04-01

    The interaction of alpha particles with a toroidicity induced Alfven eigenmode is investigated self-consistently by using a kinetic dispersion relation. All important poloidal harmonics and their radial mode profiles are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. There is no significant alpha particle loss.

  15. Electromigration-driven shape evolution of two-dimensional voids

    NASA Astrophysics Data System (ADS)

    Schimschak, M.; Krug, J.

    2000-01-01

    We present a detailed numerical study of the electromigration-induced shape evolution of quasi-two-dimensional (cylindrical) voids in metallic thin films. The problem is treated within a continuum formulation which takes into account mass transport along surfaces, current crowding, and crystal anisotropy in the surface mobility. Finite strips with periodic boundary conditions in the current direction are treated as well as voids in infinite or semi-infinite films. For the strip geometry, it is shown that the linear instability of the strip edge can induce the release of voids into the interior of the film, while edge voids develop into fatal slits only in the presence of moderate (not too strong) crystalline anisotropy. Distorted voids in an infinite film typically disintegrate, but the breakup scenario is qualitatively different in isotropic and anisotropic media. A rigid boundary attracts voids and may also induce void breakup.

  16. Evolution of cooperation driven by reputation-based migration.

    PubMed

    Cong, Rui; Wu, Bin; Qiu, Yuanying; Wang, Long

    2012-01-01

    How cooperation emerges and is stabilized has been a puzzling problem to biologists and sociologists since Darwin. One of the possible answers to this problem lies in the mobility patterns. These mobility patterns in previous works are either random-like or driven by payoff-related properties such as fitness, aspiration, or expectation. Here we address another force which drives us to move from place to place: reputation. To this end, we propose a reputation-based model to explore the effect of migration on cooperation in the contest of the prisoner's dilemma. In this model, individuals earn their reputation scores through previous cooperative behaviors. An individual tends to migrate to a new place if he has a neighborhood of low reputation. We show that cooperation is promoted for relatively large population density and not very large temptation to defect. A higher mobility sensitivity to reputation is always better for cooperation. A longer reputation memory favors cooperation, provided that the corresponding mobility sensitivity to reputation is strong enough. The microscopic perception of the effect of this mechanism is also given. Our results may shed some light on the role played by migration in the emergence and persistence of cooperation.

  17. Quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube

    NASA Astrophysics Data System (ADS)

    Yasuda, Tatsuya; Goto, Susumu; Kawahara, Genta

    2014-12-01

    The quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube is investigated by means of large-eddy simulations with vanishing kinematic viscosity. By constraining the domain size so that only a single series of energy cascade events can take place, quasi-cyclic motions of multi-scale coherent vortices with a period of about 20T are realized. (Here, T denotes the turnover time of the largest eddies.) The observed cycle is composed of four periods characterized by activities of the largest- and smallest-resolvable-scale eddies. Vigorous energy cascade events, which last for about 2T, are observed between the two moments when large- and small-scale eddies are active. Even though we have examined only a special case of steady forces, such cyclic behavior of turbulence is likely to capture the essential dynamics of the regeneration cycle of multi-scale coherent structures, that is, the energy cascade in homogeneous isotropic turbulence at high Reynolds numbers.

  18. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    PubMed

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-02-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  19. ORBITAL AND MASS RATIO EVOLUTION OF PROTOBINARIES DRIVEN BY MAGNETIC BRAKING

    SciTech Connect

    Zhao, Bo; Li, Zhi-Yun

    2013-01-20

    The majority of stars reside in multiple systems, especially binaries. The formation and early evolution of binaries is a longstanding problem in star formation that is not yet fully understood. In particular, how the magnetic field observed in star-forming cores shapes the binary characteristics remains relatively unexplored. We demonstrate numerically, using an MHD version of the ENZO AMR hydro code, that a magnetic field of the observed strength can drastically change two of the basic quantities that characterize a binary system: the orbital separation and mass ratio of the two components. Our calculations focus on the protostellar mass accretion phase, after a pair of stellar 'seeds' have already formed. We find that in dense cores magnetized to a realistic level, the angular momentum of the material accreted by the protobinary is greatly reduced by magnetic braking. Accretion of strongly braked material shrinks the protobinary separation by a large factor compared to the non-magnetic case. The magnetic braking also changes the evolution of the mass ratio of unequal-mass protobinaries by producing material of low specific angular momentum that accretes preferentially onto the more massive primary star rather than the secondary. This is in contrast with the preferential mass accretion onto the secondary previously found numerically for protobinaries accreting from an unmagnetized envelope, which tends to drive the mass ratio toward unity. In addition, the magnetic field greatly modifies the morphology and dynamics of the protobinary accretion flow. It suppresses the traditional circumstellar and circumbinary disks that feed the protobinary in the non-magnetic case; the binary is fed instead by a fast collapsing pseudodisk whose rotation is strongly braked. The magnetic braking-driven inward migration of binaries from their birth locations may be constrained by high-resolution observations of the orbital distribution of deeply embedded protobinaries, especially

  20. Evolution of Neogene Dynamic Topography in Africa

    NASA Astrophysics Data System (ADS)

    Paul, Jonathan; Roberts, Gareth; White, Nicky

    2013-04-01

    The characteristic basins and swells of Africa's surface topography probably reflect patterns of convective circulation in the sub-lithospheric mantle. We have interrogated drainage networks to determine the spatial and temporal pattern of convectively driven uplift. ~560 longitudinal river profiles were extracted from a digital elevation model of Africa. An inverse model is then used to minimise the misfit between observed and calculated river profiles as a function of uplift rate history. During inversion, the residual misfit decreases from ~22 to ~5. Our results suggest that Africa's topography began to grow most rapidly after ~30 Ma at peak uplift rates of 0.1-0.15 mm/yr. The algorithm resolves distinct phases of uplift which generate localized swells of high topography and relief (e.g. the Angolan Dome). Uplift rate histories are shown to vary significantly from swell to swell. The calculated magnitudes, timing, and location of uplift agree well with local independent geological constraints, such as intense volcanism at Hoggar (42-39 Ma) and Afar (31-29 Ma), uplifted marine terraces, and warped peneplains. We have also calculated solid sediment flux histories for major African deltas which have persisted through time. This onshore record provides an important indirect constraint on the history of vertical motions at the surface, and agrees well with the offshore flux record, obtained from mapping isopachs of deltaic sediments. Our modelling and reconstructed sedimentary flux histories indicate that the evolution of drainage networks may contain useful information about mantle convective processes.

  1. Rayleigh-Taylor Instability Evolution in Ablatively Driven Cylindrical Implosions^*,**

    NASA Astrophysics Data System (ADS)

    Hsing, W. W.

    1996-11-01

    The Rayleigh-Taylor instability is an important limitation in ICF capsule designs. Significant work both theoretically and experimentally has been done to demonstrate the stabilizing effects due to material flow through the unstable region. The experimental verification has been done predominantly in planar geometry. Convergent geometry introduces effects not present in planar geometry such as shell thickening and accelerationless growth of modal amplitudes (e.g. Bell-Plesset growth). Amplitude thresholds for the nonlinear regime are reduced, since the wavelength of a mode m decreases with convergence λ ~ r/m, where r is the radius. We have investigated convergent effects using an imploding cylinder driven by x-ray ablation on the NOVA laser. By doping sections of the cylinder with high-Z materials, in conjunction with x-ray backlighting, we have measured the growth and feedthrough of the perturbations from the ablation front to the inner surface of the cylinder for various initial modes and amplitudes from early time through stagnation. Mode coupling of illumination asymmetries with material perturbations is observed, as well as phase reversal of the perturbations from near the ablation front to the inner surface of the cylinder. Imaging is performed with an x-ray pinhole camera coupled to a gated microchannel plate detector. In collaboration with C. W. Barnes, J. B. Beck, N. Hoffman (LANL), D. Galmiche, A. Richard (CEA/L-V), J. Edwards, P. Graham, B. Thomas (AWE). ^**This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  2. Cellular automata and complex dynamics of driven elastic media

    SciTech Connect

    Coppersmith, S.N.; Littlewodd, P.B.; Sibani, P.

    1995-12-01

    Several systems of importance in condensed matter physics can be modelled as an elastic medium in a disordered environment and driven by an external force. In the simplest cases, the equation of motion involves competition between a local non-linear potential (fluctuating in space) and elastic coupling, as well as relaxational (inertialess) dynamics. Despite a simple mathematical description, the interactions between many degrees of freedom lead to the emergence of time and length scales much longer than those set by the microscopic dynamics. Extensive computations have improved the understanding of the behavior of such models, but full solutions of the equations of motion for very large systems are time-consuming and may obscure important physical principles in a massive volume of output. The development of cellular automata models has been crucial, both in conceptual simplification and in allowing the collection of data on many replicas of very large systems. We will discuss how the marriage of cellular automata models and parallel computation on a MasPar MP-1216 computer has helped to elucidate the dynamical properties of these many-degree-of-freedom systems.

  3. Reentrant dynamics of driven pancake vortices in layered superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, H. J.; Wu, Wenjuan; Zhou, Wei; Shi, Z. X.; Misko, V. R.; Peeters, F. M.

    2016-07-01

    The dynamics of driven pancake vortices in layered superconductors is studied using molecular-dynamics simulations. We found that, with increasing driving force, for strong interlayer coupling, the preexisted vortex lines either directly depin or first transform to two-dimensional (2D) pinned states before they are depinned, depending on the pinning strength. In a narrow region of pinning strengths, we found an interesting repinning process, which results in a negative differential resistance. For weak interlayer coupling, individually pinned pancake vortices first form disordered 2D flow and then transform to ordered three-dimensional (3D) flow with increasing driving force. However, for extremely strong pinning, the random pinning-induced thermal-like Langevin forces melt 3D vortex lines, which results in a persistent 2D flow in the fast-sliding regime. In the intermediate regime, the peak effect is found: With increasing driving force, the moving pancake vortices first crystallize to moving 3D vortex lines, and then these 3D vortex lines are melted, leading to the appearance of a reentrant 2D flow state. Our results are summarized in a dynamical phase diagram.

  4. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  5. Dynamics of photothermally driven VO2-coated microcantilevers

    NASA Astrophysics Data System (ADS)

    Cabrera, Rafmag; Merced, Emmanuelle; Sepúlveda, Nelson; Fernández, Félix E.

    2011-11-01

    The dynamic response of VO2-coated silicon microcantilevers thermally driven over the film's insulator-to-metal transition was studied using laser light pulses directly incident on the cantilevers. The measured photothermal response revealed very high curvature changes of approximately 2500 m-1 up to pulse frequencies greater than 100 Hz and readily observable vibrations up to frequencies of a few kHz with no amplitude degradation after tens of thousands of pulses. Maximum tip amplitudes for 300-μm-long, 1-μm-thick cantilevers used in these experiments were nearly 120 μm and correspondingly less for 2-μm-thick cantilevers. The main mechanism limiting oscillation amplitude was found to be heat transport response during heating and cooling, which depends mainly on thermal conduction through the cantilever itself to the massive anchor and chip body, which acted as a heat sink at room temperature. For the laser-driven oscillations studied, damping by the surrounding air is unimportant in the range of frequencies probed. Large-curvature response is expected to extend to higher pulse frequencies for cantilevers with smaller dimensions.

  6. Describing Story Evolution from Dynamic Information Streams

    SciTech Connect

    Rose, Stuart J.; Butner, R. Scott; Cowley, Wendy E.; Gregory, Michelle L.; Walker, Julia

    2009-10-12

    Sources of streaming information, such as news syndicates, publish information continuously. Information portals and news aggregators list the latest information from around the world enabling information consumers to easily identify events in the past 24 hours. The volume and velocity of these streams causes information from prior days’ to quickly vanish despite its utility in providing an informative context for interpreting new information. Few capabilities exist to support an individual attempting to identify or understand trends and changes from streaming information over time. The burden of retaining prior information and integrating with the new is left to the skills, determination, and discipline of each individual. In this paper we present a visual analytics system for linking essential content from information streams over time into dynamic stories that develop and change over multiple days. We describe particular challenges to the analysis of streaming information and explore visual representations for showing story change and evolution over time.

  7. Solving the inverse problem of noise-driven dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Zheng, Zhigang; Niu, Haijing; Mi, Yuanyuan; Wu, Si; Hu, Gang

    2015-01-01

    Nowadays, massive amounts of data are available for analysis in natural and social systems and the tasks to depict system structures from the data, i.e., the inverse problems, become one of the central issues in wide interdisciplinary fields. In this paper, we study the inverse problem of dynamic complex networks driven by white noise. A simple and universal inference formula of double correlation matrices and noise-decorrelation (DCMND) method is derived analytically, and numerical simulations confirm that the DCMND method can accurately depict both network structures and noise correlations by using available output data only. This inference performance has never been regarded possible by theoretical derivation, numerical computation, and experimental design.

  8. Dynamic landscapes in human evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Devès, Maud; King, Geoffrey; Bailey, Geoffrey; Inglis, Robyn; Williams, Matthew; Winder, Isabelle

    2013-04-01

    Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011, Winder et al. Antiquity in press). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris, aims to develop systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. Examples are shown to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.

  9. DYNAMICS OF ASTROPHYSICAL BUBBLES AND BUBBLE-DRIVEN SHOCKS: BASIC THEORY, ANALYTICAL SOLUTIONS, AND OBSERVATIONAL SIGNATURES

    SciTech Connect

    Medvedev, Mikhail V.; Loeb, Abraham

    2013-05-10

    Bubbles in the interstellar medium are produced by astrophysical sources, which continuously or explosively deposit large amounts of energy into the ambient medium. These expanding bubbles can drive shocks in front of them, the dynamics of which is markedly different from the widely used Sedov-von Neumann-Taylor blast wave solution. Here, we present the theory of a bubble-driven shock and show how its properties and evolution are determined by the temporal history of the source energy output, generally referred to as the source luminosity law, L(t). In particular, we find the analytical solutions for a driven shock in two cases: the self-similar scaling law, L{proportional_to}(t/t{sub s} ) {sup p} (with p and t{sub s} being constants) and the finite activity time case, L{proportional_to}(1 - t/t{sub s} ){sup -p}. The latter with p > 0 describes a finite-time-singular behavior, which is relevant to a wide variety of systems with explosive-type energy release. For both luminosity laws, we derived the conditions needed for the driven shock to exist and predict the shock observational signatures. Our results can be relevant to stellar systems with strong winds, merging neutron star/magnetar/black hole systems, and massive stars evolving to supernovae explosions.

  10. Electricity Demand Evolution Driven by Storm Motivated Population Movement

    SciTech Connect

    Allen, Melissa R; Fernandez, Steven J; Fu, Joshua S; Walker, Kimberly A

    2014-01-01

    Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

  11. Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics

    SciTech Connect

    Berrada, K.

    2014-01-15

    Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.

  12. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Kevrekidis, Ioannis G.; Rowley, Clarence W.

    2015-12-01

    The Koopman operator is a linear but infinite-dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data-driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The method requires a data set of snapshot pairs and a dictionary of scalar observables, but does not require explicit governing equations or interaction with a "black box" integrator. We will show that this approach is, in effect, an extension of dynamic mode decomposition (DMD), which has been used to approximate the Koopman eigenvalues and modes. Furthermore, if the data provided to the method are generated by a Markov process instead of a deterministic dynamical system, the algorithm approximates the eigenfunctions of the Kolmogorov backward equation, which could be considered as the "stochastic Koopman operator" (Mezic in Nonlinear Dynamics 41(1-3): 309-325, 2005). Finally, four illustrative examples are presented: two that highlight the quantitative performance of the method when presented with either deterministic or stochastic data and two that show potential applications of the Koopman eigenfunctions.

  13. Dynamical evolution of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    New studies of the dynamical evolution of cometary orbits in the Oort cloud are made using a revised version of Weissman's (1982) Monte Carlo simulation model, which more accurately mimics the perturbation of comets by the giant planets. It is shown that perturbations by Saturn and Jupiter provide a substantial barrier to the diffusion of cometary perihelia into the inner solar system. Perturbations by Uranus and Neptune are rarely great enough to remove comets from the Oort cloud, but do serve to scatter the comets in the cloud in initial energy. The new model gives a population of 1.8 to 2.1 x 10 to the 12th comets for the present-day Oort cloud, and a mass of 7 to 8 earth masses. Perturbation of the Oort cloud by giant molecular clouds in the galaxy is discussed, as is evidence for a massive 'inner Oort cloud' internal to the observed one. The possibility of an unseen solar companion orbiting in the Oort cloud and causing periodic comet showers is shown to be dynamically plausible but unlikely, based on the observed cratering rate on the earth and moon.

  14. Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide

    SciTech Connect

    Freeman, Eugene Shukla, Nikhil; Datta, Suman; Stone, Greg; Engel-Herbert, Roman; Gopalan, Venkatraman; Paik, Hanjong; Moyer, Jarrett A.; Cai, Zhonghou; Wen, Haidan; Schlom, Darrell G.

    2013-12-23

    The structural evolution of tensile strained vanadium dioxide thin films was examined across the electrically driven insulator-to-metal transition by nanoscale hard X-ray diffraction. A metallic filament with rutile (R) structure was found to be the dominant conduction pathway for an electrically driven transition, while the majority of the channel area remained in the monoclinic M1 phase. The filament dimensions were estimated using simultaneous electrical probing and nanoscale X-ray diffraction. Analysis revealed that the width of the conducting channel can be tuned externally using resistive loads in series, enabling the M1/R phase ratio in the phase coexistence regime to be tuned.

  15. An opinion-driven behavioral dynamics model for addictive behaviors

    DOE PAGES

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; ...

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less

  16. Effects of interactions on periodically driven dynamically localized systems

    NASA Astrophysics Data System (ADS)

    Agarwala, Adhip; Sen, Diptiman

    2017-01-01

    It is known that there are lattice models in which noninteracting particles get dynamically localized when periodic δ -function kicks are applied with a particular strength. We use both numerical and analytical methods to study the effects of interactions in three different models in one dimension. The systems we have considered include spinless fermions with interactions between nearest-neighbor sites, the Hubbard model of spin-1/2 fermions, and the Bose-Hubbard model with on-site interactions. We derive effective Floquet Hamiltonians up to second order in the time period of kicking. Using these we show that interactions can give rise to a variety of interesting results such as two-body bound states in all three models and dispersionless few-particle bound states with more than two particles for spinless fermions and bosons. We substantiate these results by exact diagonalization and stroboscopic time evolution of systems with a few particles. We derive a pseudo-spin-1/2 limit of the Bose-Hubbard system in the thermodynamic limit and show that a special case of this has an exponentially large number of degenerate eigenstates of the effective Hamiltonian. Finally, we study the effect of changing the strength of the δ -function kicks slightly away from perfect dynamical localization; we find that a single particle remains dynamically localized for a long time after which it moves ballistically.

  17. a Unified Description of Time Dependence of Information Entropy Production and Flux in Thermal Broadband Noise-Driven Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Majee, Pradip; Goswami, Gurupada; Barik, Debashis; Bag, Bidhan Chandra

    In this paper we have studied the dynamics of thermal broadband noise-driven dynamical system in terms of information entropy at both the nonstationary and stationary states. Here, a unified description of fluctuating force is considered in a thermodynamically closed system. Based on the Fokker-Planck description of stochastic processes and the entropy balance equation, we have calculated the time-dependence of the information entropy production and entropy flux in the presence and absence of nonequilibrium constraint. Our calculation considers how the time evolution of these quantities is affected if the characteristic of noise changes from white to red or green and red to green in a unified scheme.

  18. Structure-driven nonlinear instability as the origin of the explosive reconnection dynamics in resistive double tearing modes.

    PubMed

    Janvier, M; Kishimoto, Y; Li, J Q

    2011-11-04

    The onset of abrupt magnetic reconnection events, observed in the nonlinear evolution of double tearing modes (DTM), is investigated via reduced resistive magnetohydrodynamic simulations. We have identified the critical threshold for the parameters characterizing the linear DTM stability leading to the bifurcation to the explosive dynamics. A new type of secondary instability is discovered that is excited once the magnetic islands on each rational surface reach a critical structure characterized here by the width and the angle rating their triangularization. This new instability is an island structure-driven nonlinear instability, identified as the trigger of the subsequent nonlinear dynamics which couples flow and flux perturbations. This instability only weakly depends on resistivity.

  19. Dynamics and predictability of a low-order wind-driven ocean - atmosphere model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2013-04-01

    The dynamics of a low order coupled wind-driven Ocean-Atmosphere (OA) system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear. This feature is expected to be related with the specific domain choice over which the coupled system is defined. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on his attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial (at2 + bt3 + ct4) up to purely exponential evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al, 2009). References Charney J G, Straus DM (1980) Form-Drag Instability, Multiple Equilibria and Propagating Planetary Waves in Baroclinic, Orographically Forced, Planetary Wave Systems. J Atmos Sci 37: 1157-1176. Nicolis C, Perdigao RAP, Vannitsem S (2009) Dynamics of

  20. Impact of rotation-driven particle repopulation on the thermal evolution of pulsars

    NASA Astrophysics Data System (ADS)

    Negreiros, Rodrigo; Schramm, Stefan; Weber, Fridolin

    2013-01-01

    Driven by the loss of energy, isolated rotating neutron stars (pulsars) are gradually slowing down to lower frequencies, which increases the tremendous compression of the matter inside of them. This increase in compression changes both the global properties of rotating neutron stars as well as their hadronic core compositions. Both effects may register themselves observationally in the thermal evolution of such stars, as demonstrated in this Letter. The rotation-driven particle process which we consider here is the direct Urca (DU) process, which is known to become operative in neutron stars if the number of protons in the stellar core exceeds a critical limit of around 11% to 15%. We find that neutron stars spinning down from moderately high rotation rates of a few hundred Hertz may be creating just the right conditions where the DU process becomes operative, leading to an observable effect (enhanced cooling) in the temperature evolution of such neutron stars. As it turns out, the rotation-driven DU process could explain the unusual temperature evolution observed for the neutron star in Cas A, provided the mass of this neutron star lies in the range of 1.5 to 1.9M⊙ and its rotational frequency at birth was between 40 (400 Hz) and 70% (800 Hz) of the Kepler (mass shedding) frequency, respectively.

  1. Dynamical evolution of the Oort cometary cloud

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1983-01-01

    The dynamical evolution of comets in the Oort cloud under the influence of stellar perturbations has been modeled using Monte Carlo techniques. It is shown that the cloud has been depleted over the history of the solar system. Comets are lost from the cloud by direct ejection due to close stellar encounters, diffusion of aphelia to distances beyond the sun's sphere of influence, or diffusion of perihelia into the planetary region where Jupiter and Saturn perturbations either eject them on hyperbolic trajectories or capture them to short-period orbits. The population of the cloud is estimated to be 1.0 - 1.5 x 10 to the 12th comets and the total mass is on the order of 1.9 earth masses. In addition to random passing stars, less frequent encounters with giant molecular clouds may play a significant role in randomizing the orbits of comets in the cloud and reducing the effective radius of the sun's sphere of influence.

  2. Computational Fluid Dynamics of Acoustically Driven Bubble Systems

    NASA Astrophysics Data System (ADS)

    Glosser, Connor; Lie, Jie; Dault, Daniel; Balasubramaniam, Shanker; Piermarocchi, Carlo

    2014-03-01

    The development of modalities for precise, targeted drug delivery has become increasingly important in medical care in recent years. Assemblages of microbubbles steered by acoustic pressure fields present one potential vehicle for such delivery. Modeling the collective response of multi-bubble systems to an intense, externally applied ultrasound field requires accurately capturing acoustic interactions between bubbles and the externally applied field, and their effect on the evolution of bubble kinetics. In this work, we present a methodology for multiphysics simulation based on an efficient transient boundary integral equation (TBIE) coupled with molecular dynamics (MD) to compute trajectories of multiple acoustically interacting bubbles in an ideal fluid under pulsed acoustic excitation. For arbitrary configurations of spherical bubbles, the TBIE solver self-consistently models transient surface pressure distributions at bubble-fluid interfaces due to acoustic interactions and relative potential flows induced by bubble motion. Forces derived from the resulting pressure distributions act as driving terms in the MD update at each timestep. The resulting method efficiently and accurately captures individual bubble dynamics for clouds containing up to hundreds of bubbles.

  3. Electrically driven magnetization dynamics in yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias Benjamin

    Creation and manipulation of magnetization states by spin-orbital torques are important for novel spintronics applications. Magnetic insulators were mostly ignored for this particular purpose, despite their low Gilbert damping, which makes them outstanding materials for magnonic applications and investigation of nonlinear spin-wave phenomena. Here, we demonstrate the propagation of spin-wave modes in micro-structured yttrium iron garnet (Y3Fe5O12,YIG) stripes. Spin waves propagating along the long side of the stripe are detected by means of spatially-resolved Brillouin light scattering (BLS) microscopy. The propagation distance of spin waves is determined in the linear regime, where an exponential decay of 10 μm is observed. We also explored the possibility of driving magnetization dynamics with spin Hall effects (SHE) in bilayers of YIG/Pt microstructures. For this purpose we adopted a spin-transfer torque ferromagnetic resonance (ST-FMR) approach. Here a rf charge current is passed through the Pt layer, which generates a spin-transfer torque at the interface from an oscillating spin current via the SHE. This gives rise to a resonant excitation of the magnetization dynamics. In all metallic systems the magnetization dynamics is detected via the homodyne anisotropic magnetoresistance of the ferromagnetic layer. However, since there is no charge flowing through ferromagnetic insulators there is no anisotropic magnetoresistance. Instead, we show that for the case of YIG/Pt the spin Hall magnetoresistance can be used. Our measured voltage spectra can be well fitted to an analytical model evidencing that the ST-FMR concept can be extended to insulating systems. Furthermore, we employ spatially-resolved BLS spectroscopy to map the ST-FMR driven spin dynamics. We observe the formation of a strong, self-localized spin-wave intensity in the center of the sample. This spin-wave `bullet' is created due to nonlinear cross coupling of eigenmodes existing in the magnetic

  4. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Kosovic, B; Belles, R; Chow, F K; Monache, L D; Dyer, K; Glascoe, L; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J K; Mirin, A; Neuman, S; Nitao, J; Serban, R; Sugiyama, G; Aines, R

    2007-02-22

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. In this report, we discuss the development of a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic data-driven event reconstruction capability which couples data and predictive models through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a ''''composite'' forward plume prediction which accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is non-linear. We initially developed a Markov Chain Monte

  5. Diversity waves in collapse-driven population dynamics

    DOE PAGES

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less

  6. Diversity waves in collapse-driven population dynamics

    SciTech Connect

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  7. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  8. Diversity Waves in Collapse-Driven Population Dynamics.

    PubMed

    Maslov, Sergei; Sneppen, Kim

    2015-09-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ''diversity waves'' triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak--species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  9. Diversity Waves in Collapse-Driven Population Dynamics

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2015-01-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies. PMID:26367172

  10. Companion-driven dynamics in hot Jupiter systems

    NASA Astrophysics Data System (ADS)

    Ngo, Henry; Batygin, Konstantin; Knutson, Heather A.; Lewis, Nikole K.; de Wit, Julien

    2015-08-01

    Hot Jupiters are giant planets found on orbits that lie in close proximity to their host stars. In this region, the process of tidal dissipation is believed to be generally efficient, and should act to circularize planetary orbits on timescales much shorter than the inferred ages of the observed stars. However, at time of writing, one in six known hot Jupiters have eccentricities inconsistent with zero at the three sigma level and about one in twelve have eccentricities greater than 0.2. This discrepancy hints at the existence of a dynamical mechanism that acts to maintain hot Jupiter eccentricities in face of tidal dissipation for extended periods of time. Our recent radial velocity (RV) and direct imaging surveys find that 70% of hot Jupiter systems are expected to host a distant planetary or stellar mass companion. In this work, we examine whether dynamical interactions with these long period companions could be responsible for the excited hot Jupiter eccentricities. Specifically, we consider the one of the most eccentric known hot Jupiter systems, HAT-P-2, as a case study. The inner planet in this system has a mass approximately ten times that of Jupiter, a semi-major axis of 0.07 AU, and an orbital eccentricity of 0.5. Long-term radial velocity monitoring has revealed the presence of an even more massive outer companion located beyond 4 AU with a partially constrained orbit. We examine different dynamical scenarios for this system in order to determine whether or not this outer companion might be responsible for the inner planet's unusually large orbital eccentricity, and make predictions for the short-term orbital evolution of the system.

  11. Data-driven optimization of dynamic reconfigurable systems of systems.

    SciTech Connect

    Tucker, Conrad S.; Eddy, John P.

    2010-11-01

    This report documents the results of a Strategic Partnership (aka University Collaboration) LDRD program between Sandia National Laboratories and the University of Illinois at Urbana-Champagne. The project is titled 'Data-Driven Optimization of Dynamic Reconfigurable Systems of Systems' and was conducted during FY 2009 and FY 2010. The purpose of this study was to determine and implement ways to incorporate real-time data mining and information discovery into existing Systems of Systems (SoS) modeling capabilities. Current SoS modeling is typically conducted in an iterative manner in which replications are carried out in order to quantify variation in the simulation results. The expense of many replications for large simulations, especially when considering the need for optimization, sensitivity analysis, and uncertainty quantification, can be prohibitive. In addition, extracting useful information from the resulting large datasets is a challenging task. This work demonstrates methods of identifying trends and other forms of information in datasets that can be used on a wide range of applications such as quantifying the strength of various inputs on outputs, identifying the sources of variation in the simulation, and potentially steering an optimization process for improved efficiency.

  12. Dynamic Evolution Model Based on Social Network Services

    NASA Astrophysics Data System (ADS)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  13. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2002-09-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically. We develop a general theory for the evolution of a comet nucleus' rotation state using averaging theory and assuming that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the nucleus inertia ellipsoid, its outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. In particular, we find that nuclei with nearly axisymmetric inertia ellipsoids and a uniformly active surface will tend towards a rotation state that has a nutation angle of ~ 55 degrees and its angular momentum perpendicular to the sun-perihelion direction. If such a comet nucleus has only one isolated active region, it will tend towards a zero nutation angle with its approximate symmetry axis and rotational angular momentum aligned parallel to the sun-perihelion direction. In the general case for an inertia ellipsoid that is not close to being axisymmetric we find a much richer set of possible steady-state solutions that are stable, ranging from rotation about the maximum moment of the inertia axis, to SAM and LAM non-principal axis rotation states. The resulting stable rotation states are a strong function of outgassing activity distribution, which we show using a simplified model of the comet Halley nucleus. Also, we demonstrate that comet Borrely observations are consistent with a stable rotation state. Our results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5

  14. Prediction of Combustion-Driven Dynamic Instability for High Performance Gas Turbine Combustors: Part I

    DTIC Science & Technology

    2001-06-01

    Hsiao, G., Pandalai, R., Hura, H., and Mongia , H. C., "Chropulsio a p e -Vol. o mbustor, 1998. " Combustion Dynamic Modeling for Gas Turbine...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11162 TITLE: Predicton of Combustion -Driven Dynamic Instability for...UNCLASSIFIED , Click here to view PowerPoint presentation; Press Esc to exit ,: Prediction of Combustion -Driven Dynamic Instability For High Performance Gas

  15. The Dynamics of Marangoni-Driven Local Film Drainage between Two Drops.

    PubMed

    Yeo, Leslie Y.; Matar, Omar K.; de Ortiz, E. Susana Perez; Hewitt, Geoffrey F.

    2001-09-01

    A study of Marangoni-driven local continuous film drainage between two drops induced by an initially nonuniform interfacial distribution of insoluble surfactant is reported. Using the lubrication approximation, a coupled system of fourth-order nonlinear partial differential equations was derived to describe the spatio-temporal evolution of the continuous film thickness and surfactant interfacial concentration. Numerical solutions of these governing equations were obtained using the Numerical Method of Lines with appropriate initial and boundary conditions. A full parametric study was undertaken to explore the effect of the viscosity ratio, background surfactant concentration, the surface Péclet number, and van der Waals interaction forces on the dynamics of the draining film for the case where surfactant is present in trace amounts. Marangoni stresses were found to cause large deformations in the liquid film: Thickening of the film at the surfactant leading edge was accompanied by rapid and severe thinning far upstream. Under certain conditions, this severe thinning leads directly to film rupture due to the influence of van der Waals forces. Time scales for rupture, promoted by Marangoni-driven local film drainage were compared with those associated with the dimpling effect, which accompanies the approach of two drops, and implications of the results of this study on drop coalescence are discussed. Copyright 2001 Academic Press.

  16. Mercury's Thermal Evolution, Dynamical Topography and Geoid

    NASA Astrophysics Data System (ADS)

    Ziethe, Ruth; Benkhoff, Johannes

    stagnant lid comprises roughly half the mantle after only 0.5Ga. Since the rigid lithosphere does not take part in the convection anymore, the heat coming from the interior (due to the cooling of the large core) can only be transported through the lithosphere by thermal conduction. This is a significantly less effective mechanism of heat transport than convection and hence the lithosphere forms an insulating layer. As a result, the interior is kept relatively warm.Because the mantle is relatively shallow compared to the planet's radius, and additionally the thick stagnant lid is formed relatively rapid, the convection is confined to a layer of only about 200km to 300km. Convection structures are therefore relatively small structured. The flow patterns in the early evolution show that mantle convection is characterized by numerous upwelling plumes, which are fed by the heat flow from the cooling core. These upwellings are relatively stable regarding their spatial position. As the core cools down the temperature anomalies become colder and less pronounced but not less numerous. In our calculations, a region of partial melt in the mantle forms immediately after the start of the model at a depths of roughly 220km. While in the entire lower mantle the temperature exceeds the solidus, the highest melt degrees can be found in the upwelling plumes. The partial molten region persists a significant time (up to 2.5Ga). How long the partial molten zone actually survives depends strongly on the initial conditions of the model. For instance, an outer layer with a reduced thermal conductivity would keep the lower mantle significantly warmer and a molten layer survives longer. The hot upwellings cause a surface deformation (dynamical topography) which itself causes a gravity anomaly. Due to the weak constraints of important parameters (e.g. sulfur content of the core, mantle rheology, amount and distribution of radiogenic heat sources, planetary contraction, thermal conductivity, etc

  17. Kinetics and cluster morphology evolution of shear-driven aggregation of well-stabilized colloids.

    PubMed

    Meng, Xia; Wu, Hua; Morbidelli, Massimo

    2015-01-27

    We investigate the shear-driven aggregation of polystyrene colloids that are stabilized by both fixed and surfactant charges, using a microchannel device, in various particle volume fractions. The objective is to understand how the primary particles evolve to clusters with shearing time, how the cluster morphology develops along the aggregation with the effect of breakage and restructuring, and whether non-Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions are present, affecting the kinetics. The time evolution of the primary particle conversion to big clusters is characterized by an induction time, followed by an explosive increase when the cluster size reaches a certain critical value, which confirms the self-acceleration kinetics developed in the literature. The size of the critical clusters has been quantified for the first time, and its scaling with the shear rate follows the literature prediction well. Moreover, analysis of the shear-driven kinetics confirms the presence of substantial non-DLVO interactions in the given system.

  18. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Mirin, A A; Kosovic, B

    2007-03-29

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. We have developed a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic-data-driven event reconstruction capability that couples data and predictive methods through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a 'composite' forward plume prediction that accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is nonlinear. We initially developed a Markov Chain Monte Carlo (MCMC) stochastic methodology

  19. Study of the critical behavior of the driven lattice gas model with limited nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Saracco, Gustavo P.; Rubio Puzzo, M. Leticia; Bab, Marisa A.

    2017-02-01

    In this paper the nonequilibrium critical behavior is investigated using a variant of the well-known two-dimensional driven lattice gas (DLG) model, called modified driven lattice gas (MDLG). In this model, the application of the external field is regulated by a parameter p ɛ [ 0 , 1 ] in such a way that if p = 0, the field is not applied, and it becomes the Ising model, while if p = 1, the DLG model is recovered. The behavior of the model is investigated for several values of p by studying the dynamic evolution of the system within the short-time regime in the neighborhood of a phase transition. It is found that the system experiences second-order phase transitions in all the interval of p for the density of particles ρ = 0.5. The determined critical temperatures Tc(p) are greater than the critical temperature of the Ising model TcI, and increase with p up to the critical temperature of the DLG model in the limit of infinite driving fields. The dependence of Tc(p) on p is compatible with a power-law behavior whose exponent is ψ = 0.27(3) . Furthermore, the complete set of the critical and the anisotropic exponents is estimated. For the smallest value of p, the ​dynamics and β exponents are close to that calculated for the Ising model, and the anisotropic exponent Δ is near zero. As p is increased, the exponents and Δ change, meaning that the anisotropy effects increase. For the largest value investigated, the set of exponents approaches to that reported by the most recent theoretical framework developed for the DLG model.

  20. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  1. Photoinduced biphasic hydrogen evolution: decamethylosmocene as a light-driven electron donor.

    PubMed

    Ge, Peiyu; Olaya, Astrid J; Scanlon, Micheál D; Hatay Patir, Imren; Vrubel, Heron; Girault, Hubert H

    2013-07-22

    Excitation of the weak electron donor decamethylosmocene on illumination with white light produces an excited-state species capable of reducing organically solubilized protons under biphasic conditions. Insight into the mechanism and kinetics of light-driven biphasic hydrogen evolution are obtained by analysis with gas chromatography, cyclic voltammetry, and UV/Vis and (1)H NMR spectroscopy. Formation of decamethylosmocenium hydride, which occurs prior to hydrogen evolution, is a rapid step relative to hydrogen release and takes place independently of light activation. Remarkably, hydride formation occurs with greater efficiency (ca. 90% conversion) under biphasic conditions than when the reaction is carried out in an acidified single organic phase (ca. 20% conversion). Cyclic voltammetry studies reveal that decamethylosmocene has a higher proton affinity than either decamethylferrocene or osmocene.

  2. Dynamics and predictability of a low-order wind-driven ocean-atmosphere coupled model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2014-04-01

    The dynamics of a low-order coupled wind-driven ocean-atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157-1176, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585-1604, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber ("synoptic" scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial ( at 2 + bt 3 + ct 4) up to exponential-like evolutions. These features are explained

  3. Footprints of directional selection in wild Atlantic salmon populations: evidence for parasite-driven evolution?

    PubMed

    Zueva, Ksenia J; Lumme, Jaakko; Veselov, Alexey E; Kent, Matthew P; Lien, Sigbjørn; Primmer, Craig R

    2014-01-01

    Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved.

  4. Footprints of Directional Selection in Wild Atlantic Salmon Populations: Evidence for Parasite-Driven Evolution?

    PubMed Central

    Zueva, Ksenia J.; Lumme, Jaakko; Veselov, Alexey E.; Kent, Matthew P.; Lien, Sigbjørn; Primmer, Craig R.

    2014-01-01

    Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved. PMID

  5. Evolutionary programming for goal-driven dynamic planning

    NASA Astrophysics Data System (ADS)

    Vaccaro, James M.; Guest, Clark C.; Ross, David O.

    2002-03-01

    Many complex artificial intelligence (IA) problems are goal- driven in nature and the opportunity exists to realize the benefits of a goal-oriented solution. In many cases, such as in command and control, a goal-oriented approach may be the only option. One of many appropriate applications for such an approach is War Gaming. War Gaming is an important tool for command and control because it provides a set of alternative courses of actions so that military leaders can contemplate their next move in the battlefield. For instance, when making decisions that save lives, it is necessary to completely understand the consequences of a given order. A goal-oriented approach provides a slowly evolving tractably reasoned solution that inherently follows one of the principles of war: namely concentration on the objective. Future decision-making will depend not only on the battlefield, but also on a virtual world where military leaders can wage wars and determine their options by playing computer war games much like the real world. The problem with these games is that the built-in AI does not learn nor adapt and many times cheats, because the intelligent player has access to all the information, while the user has access to limited information provided on a display. These games are written for the purpose of entertainment and actions are calculated a priori and off-line, and are made prior or during their development. With these games getting more sophisticated in structure and less domain specific in scope, there needs to be a more general intelligent player that can adapt and learn in case the battlefield situations or the rules of engagement change. One such war game that might be considered is Risk. Risk incorporates the principles of war, is a top-down scalable model, and provides a good application for testing a variety of goal- oriented AI approaches. By integrating a goal-oriented hybrid approach, one can develop a program that plays the Risk game effectively and move

  6. Evolution of a storm-driven cloudy boundary layer in the Arctic

    SciTech Connect

    Inoue, J; Kosovic, B; Curry, J A

    2003-10-24

    The cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observation from the SHEBA experiment and large-eddy simulations (LES). On 29 July 1998, a stable Arctic cloudy boundary layer event was observed after passage of a synoptic low. The local dynamic and thermodynamic structure of the boundary layer was determined from aircraft measurement including analysis of turbulence, cloud microphysics and radiative properties. After the upper cloud layer advected over the existing cloud layer, the turbulent kinetic energy budget indicated that the cloud layer below 200 m was maintained predominantly by shear production. Observations of longwave radiation showed that cloud top cooling at the lower cloud top has been suppressed by radiative effects of the upper cloud layer. Our LES results demonstrate the importance of the combination of shear mixing near the surface and radiative cooling at the cloud top in the storm-driven cloudy boundary layer. Once the low-level cloud reaches a certain height, depending on the amount of cloud-top cooling, the two sources of TKE production begin to separate in space under continuous stormy conditions, suggesting one possible mechanism for the cloud layering. The sensitivity tests suggest that the storm-driven cloudy boundary layer is flexibly switched to the shear-driven system due to the advection of upper clouds or the buoyantly driven system due to the lack of the wind shear. A comparison is made of this storm-driven boundary layer with the buoyantly driven boundary layer previously described in the literature.

  7. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  8. Visible-light-driven hydrogen evolution with polyoxometalate as electron relay

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Li, Yuexiang; Peng, Shaoqin; Lai, Hua; Yi, Zhengji

    2016-10-01

    A visible-light-driven hydrogen evolution system was constructed in one step with xanthene dye as photosensitizer, triethanolamine (TEOA) as electron donor, Pt as cocatalyst, and Keggin-type silicon-tungsten polyoxometalate (POM) as electron relay. The average rate of hydrogen evolution from the eosin Y-POM-TEOA-PtCl62- systems is 51.8 μmol h-1, and the apparent quantum yield is 8.9% during 20 h irradiation (λ>420 nm, a high-pressure Hg lamp was used as the light source). Ultraviolet-visible absorption spectra and fluorescence spectra were used to study the mechanism of charge transfer. A radical anion Dye, which generates from quenching of the triplet-excited state Dye3* by sacrificial electron donor, was considered the main species for transmitting electrons to POM and then to Pt. SiW9O3410-, derived from SiW12O404-, is the main form of POM in our reaction system, which can mediate the electron transfer from Dye to Pt, so an enhanced hydrogen evolution was realized. The present study highlights POM as electron relay in the photocatalytic hydrogen evolution process, which is expected to contribute to the development of functional and efficient artificial photosynthetic systems.

  9. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    PubMed

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  10. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-01

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  11. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity.

  12. Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields.

    PubMed

    Wang, C; Cao, J C

    2005-03-01

    We have theoretically studied current oscillation and chaotic dynamics in doped GaAsAlAs superlattices driven by crossed electric and magnetic fields. When the superlattice system is driven by a dc voltage, a stationary or dynamic electric-field domain can be obtained. We carefully studied the electric-field-domain dynamics and current self-oscillation which both display different modes with the change of magnetic field. When an ac electric field is also applied to the superlattice, a typical nonlinear dynamic system is constructed with the ac amplitude, ac frequency, and magnetic field as the control parameters. Different nonlinear behaviors show up when we tune the control parameters.

  13. Evolution of wealth in a non-conservative economy driven by local Nash equilibria

    PubMed Central

    Degond, Pierre; Liu, Jian-Guo; Ringhofer, Christian

    2014-01-01

    We develop a model for the evolution of wealth in a non-conservative economic environment, extending a theory developed in Degond et al. (2014 J. Stat. Phys. 154, 751–780 (doi:10.1007/s10955-013-0888-4)). The model considers a system of rational agents interacting in a game-theoretical framework. This evolution drives the dynamics of the agents in both wealth and economic configuration variables. The cost function is chosen to represent a risk-averse strategy of each agent. That is, the agent is more likely to interact with the market, the more predictable the market, and therefore the smaller its individual risk. This yields a kinetic equation for an effective single particle agent density with a Nash equilibrium serving as the local thermodynamic equilibrium. We consider a regime of scale separation where the large-scale dynamics is given by a hydrodynamic closure with this local equilibrium. A class of generalized collision invariants is developed to overcome the difficulty of the non-conservative property in the hydrodynamic closure derivation of the large-scale dynamics for the evolution of wealth distribution. The result is a system of gas dynamics-type equations for the density and average wealth of the agents on large scales. We recover the inverse Gamma distribution, which has been previously considered in the literature, as a local equilibrium for particular choices of the cost function. PMID:25288808

  14. Evolution of wealth in a non-conservative economy driven by local Nash equilibria.

    PubMed

    Degond, Pierre; Liu, Jian-Guo; Ringhofer, Christian

    2014-11-13

    We develop a model for the evolution of wealth in a non-conservative economic environment, extending a theory developed in Degond et al. (2014 J. Stat. Phys. 154, 751-780 (doi:10.1007/s10955-013-0888-4)). The model considers a system of rational agents interacting in a game-theoretical framework. This evolution drives the dynamics of the agents in both wealth and economic configuration variables. The cost function is chosen to represent a risk-averse strategy of each agent. That is, the agent is more likely to interact with the market, the more predictable the market, and therefore the smaller its individual risk. This yields a kinetic equation for an effective single particle agent density with a Nash equilibrium serving as the local thermodynamic equilibrium. We consider a regime of scale separation where the large-scale dynamics is given by a hydrodynamic closure with this local equilibrium. A class of generalized collision invariants is developed to overcome the difficulty of the non-conservative property in the hydrodynamic closure derivation of the large-scale dynamics for the evolution of wealth distribution. The result is a system of gas dynamics-type equations for the density and average wealth of the agents on large scales. We recover the inverse Gamma distribution, which has been previously considered in the literature, as a local equilibrium for particular choices of the cost function.

  15. Assisted stellar suicide: the wind-driven evolution of the recurrent nova T Pyxidis

    NASA Astrophysics Data System (ADS)

    Knigge, Ch.; King, A. R.; Patterson, J.

    2000-12-01

    We show that the extremely high luminosity of the short-period recurrent nova T Pyx in quiescence can be understood if this system is a wind-driven supersoft x-ray source (SSS). In this scenario, a strong, radiation-induced wind is excited from the secondary star and accelerates the binary evolution. The accretion rate is therefore much higher than in an ordinary cataclysmic binary at the same orbital period, as is the luminosity of the white dwarf primary. In the steady state, the enhanced luminosity is just sufficient to maintain the wind from the secondary. The accretion rate and luminosity predicted by the wind-driven model for T Pyx are in good agreement with the observational evidence. X-ray observations with Chandra or XMM may be able to confirm T Pyx's status as a SSS. T Pyx's lifetime in the wind-driven state is on the order of a million years. Its ultimate fate is not certain, but the system may very well end up destroying itself, either via the complete evaporation of the secondary star, or in a Type Ia supernova if the white dwarf reaches the Chandrasekhar limit. Thus either the primary, the secondary, or both may currently be committing assisted stellar suicide.

  16. Iron-Doped Carbon Nitride-Type Polymers as Homogeneous Organocatalysts for Visible Light-Driven Hydrogen Evolution.

    PubMed

    Gao, Lin-Feng; Wen, Ting; Xu, Jing-Yin; Zhai, Xin-Ping; Zhao, Min; Hu, Guo-Wen; Chen, Peng; Wang, Qiang; Zhang, Hao-Li

    2016-01-13

    Graphitic carbon nitrides have appeared as a new type of photocatalyst for water splitting, but their broader and more practical applications are oftentimes hindered by the insolubility or difficult dispersion of the material in solvents. We herein prepared novel two-dimensional (2D) carbon nitride-type polymers doped by iron under a mild one-pot method through preorganizing formamide and citric acid precursors into supramolecular structures, which eventually polycondensed into a homogeneous organocatalyst for highly efficient visible light-driven hydrogen evolution with a rate of ∼16.2 mmol g(-1) h(-1) and a quantum efficiency of 0.8%. Laser photolysis and electrochemical impedance spectroscopic measurements suggested that iron-doping enabled strong electron coupling between the metal and the carbon nitride and formed unique electronic structures favoring electron mobilization along the 2D nanomaterial plane, which might facilitate the electron transfer process in the photocatalytic system and lead to efficient H2 evolution. In combination with electrochemical measurements, the electron transfer dynamics during water reduction were depicted, and the earth-abundant Fe-based catalyst may open a sustainable strategy for conversion of sunlight into hydrogen energy and cope with current challenging energy issues worldwide.

  17. Analyses of Magnetic Structures of Active Region 11117 Evolution using a 3D Data-Driven Magnetohydrodynamic Model

    NASA Astrophysics Data System (ADS)

    Wu, Shi; Jiang, Chaowei; Feng, Xueshang

    We use the photospheric vector magnetograms obtained by Helioseismic and Magnetic Image (HMI) on-board the Solar Dynamic Observatory (SDO) as the boundary conditions for a Data-Driven CESE-MHD model (Jiang et al. 2012) to investigate the physical characteristics and evolution of magnetic field configurations in the corona before and after a solar eruptive event. Specifically, the evolution of AR11117 characteristics such as length of magnetic shear along the neutral line, current helicity, magnetic free energy and the energy flux across the photosphere due to flux emergence and surface flow are presented. The computed 3D magnetic field configuration are compared with AIA (Atmosphere Image Assembly) which shows remarkable resemblance. A topological analyses reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare is caused by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of flare, while the computed magnetic free energy drops during the flare by 10 (30) ergs which is adequate in providing the energy budget of a minor C-class confined flare as observed. Jiang, Chaowei, Xueshang, Feng, S. T Wu and Qiang Hu, Ap. J., 759:85, 2012 Nov 10

  18. Dynamics of hydrofracturing and permeability evolution in layered reservoirs

    NASA Astrophysics Data System (ADS)

    Ghani, Irfan; Koehn, Daniel; Toussaint, Renaud; Passchier, Cees

    2015-09-01

    A coupled hydro-mechanical model is presented to model fluid driven fracturing in layered porous rocks. In the model the solid elastic continuum is described by a discrete element approach coupled with a fluid continuum grid that is used to solve Darcy based pressure diffusion. The model assumes poro-elasto-plastic effects and yields real time dynamic aspects of the fracturing and effective stress evolution under the influence of excess fluid pressure gradients. We show that the formation and propagation of hydrofractures are sensitive to mechanical and tectonic conditions of the system. In cases where elevated fluid pressure is the sole driving agent in a stable tectonic system, sealing layers induce permutations between the principal directions of the local stress tensor, which regulate the growth of vertical fractures and may result in irregular pattern formation or sub-horizontal failure below the seal. Stiffer layers tend to concentrate differential stresses and lead to vertical fracture growth, whereas the layer-contact tends to fracture if the strength of the neighboring rock is comparably high. If the system has remained under extension for a longer time period, the developed hydrofractures propagate by linking up confined tensile fractures in competent layers. This leads to the growth of large-scale normal faults in the layered systems, so that subsequently the effective permeability is highly variable over time and the faults drain the system. The simulation results are shown to be consistent with some of the field observations carried out in the Oman Mountains, where abnormal fluid pressure is reported to be a significant factor in the development of several generations of local and regional fracture and fault sets.

  19. Exploring the Dynamics of Evolution and Ecology of Biological Systems

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2014-03-01

    We established the potential and flux landscape theory for evolution. We found explicitly the conventional Wright's gradient adaptive landscape based on the mean fitness is inadequate to describe the general evolutionary dynamics. We show the intrinsic potential as being Lyapunov function (monotonically decreasing in time) does exist and can define the adaptive landscape for general evolution dynamics for studying global stability. The driving force determining the dynamics can be decomposed into gradient of potential landscape and curl probability flux. Non-zero flux causes detailed balance breaking and measures how far the evolution from equilibrium state. The gradient of intrinsic potential and curl flux are perpendicular to each other in zero fluctuation limit resembling electric and magnetic forces on electrons. We quantified intrinsic energy, entropy and free energy of evolution and constructed non-equilibrium thermodynamics. The intrinsic non-equilibrium free energy is a Lyapunov function. Both intrinsic potential and free energy can be used to quantify the global stability and robustness of evolution. We investigated an example of three allele evolutionary dynamics with frequency dependent selection (detailed balance broken). We uncovered the underlying single, triple, and limit cycle attractor landscapes. We found quantitative criterions for stability through landscape topography. We also quantified evolution pathways and found paths do not follow potential gradient and are irreversible due to non-zero flux. We generalized the original Fisher's fundamental theorem to the general (i.e., frequency dependent selection) regime of evolution by linking the adaptive rate with not only genetic variance related to the potential but also the flux. We show there is an optimum potential where curl flux resulting from biotic interactions of individuals within a species or between species can sustain an endless evolution even if the physical environment is unchanged. We

  20. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  1. Dynamical variables and evolution of the universe

    NASA Astrophysics Data System (ADS)

    Bhatti, M. Zaeem-Ul-Haq; Yousaf, Z.

    One of the striking feature of inhomogeneous matter distribution under the effects of fourth-order gravity and electromagnetic field have been discussed in this manuscript. We have considered a compact spherical celestial star undergoing expansion due to the presence of higher curvature invariants of f(R) gravity and imperfect fluid. We have explored the dynamical equations and field equations in f(R) gravity. An explicit expression have been found for Weyl tensor and material variables under the dark dynamical effects. Using a viable f(R) model, some dynamical variables have been explored from splitting the Riemann curvature tensor. These dark dynamical variables are also studied for charged dust cloud with and without the constraint of constant Ricci scalar.

  2. Collective Dynamics Differentiates Functional Divergence in Protein Evolution

    PubMed Central

    Glembo, Tyler J.; Farrell, Daniel W.; Gerek, Z. Nevin; Thorpe, M. F.; Ozkan, S. Banu

    2012-01-01

    Protein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the divergence in the evolutionary path of the steroid receptor proteins. We determine the likely structure of three evolutionarily diverged ancestral steroid receptor proteins using the Zipping and Assembly Method with FRODA (ZAMF). Our predictions are within ∼2.7 Å all-atom RMSD of the respective crystal structures of the ancestral steroid receptors. Beyond static structure prediction, a particular feature of ZAMF is that it generates protein dynamics information. We investigate the differences in conformational dynamics of diverged proteins by obtaining the most collective motion through essential dynamics. Strikingly, our analysis shows that evolutionarily diverged proteins of the same family do not share the same dynamic subspace, while those sharing the same function are simultaneously clustered together and distant from those, that have functionally diverged. Dynamic analysis also enables those mutations that most affect dynamics to be identified. It correctly predicts all mutations (functional and permissive) necessary to evolve new function and ∼60% of permissive mutations necessary to recover ancestral function. PMID:22479170

  3. Nonlinear wave evolution in pressure-driven stratified flow of Newtonian and Herschel-Bulkley fluids

    NASA Astrophysics Data System (ADS)

    Valluri, Prashant; Sahu, Kirti; Ding, Hang; Spelt, Peter; Matar, Omar; Lawrence, Chris

    2007-11-01

    Pressure-driven stratified channel flow of a Newtonian fluid flowing over a Herschel-Bulkley (HB) fluid is considered. The effects of yield stress and shear-thinning rheology on the nonlinear wave evolution are studied using numerical simulations; the HB rheology is regularized at low shear rates using a bi-viscosity formulation. Two different numerical methods were used to carry out the computations: a level-set method (based on that by Spelt, J. Comput. Phys. 2005) and a diffuse-interface method (based on that by Ding et al., J. Comput. Phys., in press). The simulations, which account for fluid inertia, surface tension and gravity are validated against linear theory predictions at early times. The results at later times show the spatio-temporal evolution into the nonlinear regime wherein waves are strongly deformed, leading to the onset of drop entrainment. It is shown that the apparent viscosity in the region of the HB fluid directly involved in the onset of entrainment is almost constant; unyielded regions are confined to wave troughs at late stages of the nonlinear evolution.

  4. Phylogenetic evidence for competitively driven divergence: body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus).

    PubMed

    Moen, Daniel S; Wiens, John J

    2009-01-01

    Understanding the role of competition in explaining phenotypic diversity is a challenging problem, given that the most divergent species may no longer compete today. However, convergent evolution of extreme body sizes across communities may offer evidence of past competition. For example, many treefrog assemblages around the world have convergently evolved species with very large and small body sizes. To better understand this global pattern, we studied body-size diversification within the small, endemic radiation of Caribbean treefrogs (Osteopilus). We introduce a suite of analyses designed to help reveal the signature of past competition. Diet analyses show that Osteopilus are generalist predators and that prey size is strongly associated with body size, suggesting that body-size divergence facilitates resource partitioning. Community assembly models indicate that treefrog body-size distributions in Jamaica and Hispaniola are consistent with expectations from competition. Phylogenetic analyses show that similar body-size extremes in Jamaica and Hispaniola have originated through parallel evolution on each island, and the rate of body-size evolution in Osteopilus is accelerated relative to mainland treefrogs. Together, these results suggest that competition may have driven the rapid diversification of body sizes in Caribbean treefrogs to the extremes seen in treefrog communities around the world.

  5. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains.

  6. Lattice gas dynamics: application to driven vortices in two dimensional superconductors.

    PubMed

    Gotcheva, Violeta; Wang, Albert T J; Teitel, S

    2004-06-18

    A continuous time Monte Carlo lattice gas dynamics is developed to model driven steady states of vortices in two dimensional superconducting networks. Dramatic differences are found when compared to a simpler Metropolis dynamics. Subtle finite size effects are found at low temperature, with a moving smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales.

  7. Response of mountain plovers to plague-driven dynamics of black-tailed prairie dog colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sylvatic plague is a major factor influencing prairie dog colony dynamics in the western Great Plains. We studied the nesting response of the mountain plover (Charadrius montanus), a grassland bird that nests on prairie dog colonies, to plague-driven dynamics of prairie dog colonies at three sites i...

  8. Radiation Belt Electron Dynamics Driven by Large-Amplitude Whistlers

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.

    2013-01-01

    Acceleration of radiation belt electrons driven by oblique large-amplitude whistler waves is studied. We show analytically and numerically that this is a stochastic process; the intensity of which depends on the wave power modified by Bessel functions. The type of this dependence is determined by the character of the nonlinear interaction due to coupling between action and phase. The results show that physically significant quantities have a relatively weak dependence on the wave power.

  9. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-10-01

    Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.

  10. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    SciTech Connect

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike; and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  11. Nuclear Reactions and Stellar Evolution: Unified Dynamics

    SciTech Connect

    Bauer, W.; Strother, T.

    2007-10-26

    Motivated by the success of kinetic theory in the description of observables in intermediate and high energy heavy ion collisions, we use kinetic theory to model the dynamics of collapsing iron cores in type II supernova explosions. The algorithms employed to model the collapse, some preliminary results and predictions, and the future of the code are discussed.

  12. Internal Dynamics and Crustal Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The objective of this work is to improve understanding of the internal structure, crustal evolution, and thermal history of Mars by combining geophysical data analysis of topography, gravity and magnetics with results from analytical and computational modeling. Accomplishments thus far in this investigation include: (1) development of a new crustal thickness model that incorporates constraints from Mars meteorites, corrections for polar cap masses and other surface loads, Pratt isostasy, and core flattening; (2) determination of a refined estimate of crustal thickness of Mars from geoid/topography ratios (GTRs); (3) derivation of a preliminary estimate of the k(sub 2) gravitational Love number and a preliminary estimate of possible dissipation within Mars consistent with this value; and (4) an integrative analysis of the sequence of evolution of early Mars. During the remainder of this investigation we will: (1) extend models of degree-1 mantle convection from 2-D to 3-D; (2) investigate potential causal relationships and effects of major impacts on mantle plume formation, with primary application to Mars; (3) develop exploratory models to assess the convective stability of various Martian core states as relevant to the history of dynamo action; and (4) develop models of long-wavelength relaxation of crustal thickness anomalies to potentially explain the degree-1 structure of the Martian crust.

  13. Dynamically driven phase transformations in heterogeneous materials. II. Applications including damage

    NASA Astrophysics Data System (ADS)

    Plohr, JeeYeon N.; Clements, B. E.; Addessio, F. L.

    2006-12-01

    A model, developed for heterogeneous materials undergoing dynamically driven phase transformations in its constituents, has been extended to include the evolution of damage. Damage is described by two mechanisms: interfacial debonding between the constituents and brittle failure micro-crack growth within the constituents. The analysis is applied to silicon carbide-titanium (SiC-Ti) unidirectional metal matrix composites that undergo the following phenomena: Ti has a yield stress of approximately 0.5 GPa and above a pressure of about 2 GPa undergoes a solid-solid phase transformation. The inelastic work from plastic dissipation contributes to the temperature and pressure rise in the Ti. SiC behaves elastically below a critical stress, above which it is damaged by microcrack growth. Finally, under tensile loading, the interface between Ti and SiC debonds according to an interfacial decohesion law. Each process is first examined independently in order to understand how its characteristic behavior is manifested in the stress-strain response of the composite. The complex interplay between loading states, viscoplasticity, damage, and solid-solid phase transformations is then studied at both the micromechanics and macromechanics levels.

  14. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.

    PubMed

    He, Mo-Rigen; Samudrala, Saritha K; Kim, Gyuseok; Felfer, Peter J; Breen, Andrew J; Cairney, Julie M; Gianola, Daniel S

    2016-04-13

    The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone.

  15. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen

    PubMed Central

    He, Mo-Rigen; Samudrala, Saritha K.; Kim, Gyuseok; Felfer, Peter J.; Breen, Andrew J.; Cairney, Julie M.; Gianola, Daniel S.

    2016-01-01

    The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone. PMID:27071458

  16. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM

  17. Fluid-driven fracturing of adhered elastica: evolution of the vapour tip

    NASA Astrophysics Data System (ADS)

    Ball, Thomasina V.; Neufeld, Jerome A.

    2016-11-01

    The transient spreading of a viscous fluid beneath an elastic sheet is controlled by the dynamics at the tip. The large negative pressures needed to drive the viscous fluid into the narrowing gap necessitates a vapour tip separating the fluid front and the crack tip. Adhesion of the elastic sheet imposes a curvature at the tip giving rise to an elasto-capillary length scale and the possibility of a balance between elastic deformation and the strength of adhesion. Two dynamical regimes are therefore possible; viscosity dominant spreading controlled by the pressure in the vapour tip and adhesion dominant spreading controlled by interfacial adhesion. A series of constant flux experiments using clear PDMS elastic sheets allow for direct measurement of the vapour tip in the bending (thick sheet) limit. For small fluid fluxes, the experimental results can be explained by a constant interior pressure and a viscous boundary layer near the fluid front and result in an asymptotic model for the advance of adhesion and viscosity dominated fracture fronts resolving the vapour tip. Understanding the fluid-driven fracturing of adhered elastica provides insight into the spreading of shallow magmatic intrusions in the Earth's crust, and the fluid-driven fracturing of elastic media more generally.

  18. Capillary dynamics driven by molecular self-layering.

    PubMed

    Wu, Pingkeng; Nikolov, Alex; Wasan, Darsh

    2017-02-10

    Capillary dynamics is a ubiquitous everyday phenomenon. It has practical applications in diverse fields, including ink-jet printing, lab-on-a-chip, biotechnology, and coating. Understanding capillary dynamics requires essential knowledge on the molecular level of how fluid molecules interact with a solid substrate (the wall). Recent studies conducted with the surface force apparatus (SFA), atomic force microscope (AFM), and statistical mechanics simulation revealed that molecules/nanoparticles confined into the film/wall surfaces tend to self-layer into 2D layer/s and even 2D in-layer with increased confinement and fluid volume fraction. Here, the capillary rise dynamics of simple molecular fluids in cylindrical capillary is explained by the molecular self-layering model. The proposed model considers the role of the molecular shape on self-layering and its effect on the molecularly thin film viscosity in regards to the advancing (dynamic) contact angle. The model was tested to explain the capillary rise dynamics of fluids of spherical, cylindrical, and disk shape molecules in borosilicate glass capillaries. The good agreement between the capillary rise data and SFA data from the literature for simple fluid self-layering shows the validity of the present model. The present model provides new insights into the design of many applications where dynamic wetting is important because it reveals the significant impact of molecular self-layering close to the wall on dynamic wetting.

  19. Delay driven spatiotemporal chaos in single species population dynamics models.

    PubMed

    Jankovic, Masha; Petrovskii, Sergei; Banerjee, Malay

    2016-08-01

    Questions surrounding the prevalence of complex population dynamics form one of the central themes in ecology. Limit cycles and spatiotemporal chaos are examples that have been widely recognised theoretically, although their importance and applicability to natural populations remains debatable. The ecological processes underlying such dynamics are thought to be numerous, though there seems to be consent as to delayed density dependence being one of the main driving forces. Indeed, time delay is a common feature of many ecological systems and can significantly influence population dynamics. In general, time delays may arise from inter- and intra-specific trophic interactions or population structure, however in the context of single species populations they are linked to more intrinsic biological phenomena such as gestation or resource regeneration. In this paper, we consider theoretically the spatiotemporal dynamics of a single species population using two different mathematical formulations. Firstly, we revisit the diffusive logistic equation in which the per capita growth is a function of some specified delayed argument. We then modify the model by incorporating a spatial convolution which results in a biologically more viable integro-differential model. Using the combination of analytical and numerical techniques, we investigate the effect of time delay on pattern formation. In particular, we show that for sufficiently large values of time delay the system's dynamics are indicative to spatiotemporal chaos. The chaotic dynamics arising in the wake of a travelling population front can be preceded by either a plateau corresponding to dynamical stabilisation of the unstable equilibrium or by periodic oscillations.

  20. Meiotic recombination counteracts male-biased mutation (male-driven evolution)

    PubMed Central

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-01

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations. PMID:26791621

  1. Meiotic recombination counteracts male-biased mutation (male-driven evolution).

    PubMed

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-27

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations.

  2. Tidal and Dynamical Evolution of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2009-05-01

    We derive a realistic model for the evolution of a tidally perturbed binary, using classical theory, to examine the system just after a spin-up fission event. The spin rate of an asteroid can be increased by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect -- thermal re-radiation from an asymmetric body, which induces torques that can rotationally accelerate the body. If the asteroid is modeled as a "rubble pile", a collection of gravitationally bound gravel with no tensile strength, increasing the spin rate will lead to a fission process that would resemble that of a viscous fluidic body [Holsapple 2007]. However, high-resolution imagery of an asteroid's constituents indicates that there is a significant distribution of size scales. A specific example is the asteroid Itokawa, which appears to be two such rubble piles in contact with each other [Fujiwara 2006]. The shape of these bodies will be irregular (modeled as tri-axial ellipsoids with a gravitational potential expanded up to second order). Their motions will raise tides on the opposing body. These tides will dissipate energy, potentially providing enough energy loss for the system to settle into a stable orbit. Fissioned binary systems are always initially unstable [Scheeres 2009, 2008]. We expect tidal dissipation rates to vary widely during the initial evolution of the system, due to this instability. The model applies instantaneous tidal torques to determine energy loss. Our preliminary results indicate that tidal energy dissipation could relax the system to a state of relative equilibrium on order 100,000 years, creating systems similar to those observed. Holsapple, K. A., Icarus, 187, 2007. Fujiwara, A., Science, 312, 2006. Scheeres, D., CMDA, 2009 (Accepted Jan 10, 2009). Scheeres, D., AAS, DDA meeting #39, #9.01, 2008.

  3. Gravity-driven structures and rift basin evolution: Rio Muni Basin, offshore equatorial West Africa

    SciTech Connect

    Turner, J.P.

    1995-08-01

    Offshore Equatorial Guinea, west Africa, gravity-driven nappes, more than 1 km thick and 15 km from head to toe, provide key evidence in reconstructing the late synrift: evolution of this part of the South Atlantic margin basin system. Furthermore, Aptian-Cenomanian carbonate and clastic rocks in the nappes` allochthonous hanging walls are attracting interest as a new exploration play in west Africa. The nappes exhibit a range of geometries that suggest they share many of the same deformation processes as thin-skin thrust and linked extensional fault systems. Not only are these structures significant in their own right, representing a rare example of gravity tectonics in the virtual absence of major halokinesis, but their presence may record an other-wise undetectable process active during the transition from a rift basin to a passive continental margin. A review of Equatorial Guinea in its pre-Atlantic configuration, alongside neighboring basins in Brazil (the Sergipe-Alagoas basin) and Gabon, suggests that gravity gliding was sustained by a relatively steep, westward paleoslope promoted by east-ward offset of the locus of thermal uplift from the rift basin (i.e., a simple shear model of basin formation). In contrast to gravity-driven structures in most postrift settings, the Equatorial Guinea nappes developed at the close of the Aptian-Albian synrift episode in response to a growing bathymetric deep caused by rapid subsidence outpacing restricted sedimentation.

  4. Anharmonic dynamics of intramolecular hydrogen bonds driven by DNA breathing

    NASA Astrophysics Data System (ADS)

    Alexandrov, B. S.; Stanev, V. G.; Bishop, A. R.; Rasmussen, K. Ø.

    2012-12-01

    We study the effects of the anharmonic strand-separation dynamics of double-stranded DNA on the infrared spectra of the intramolecular base-pairing hydrogen bonds. Using the extended Peyrard-Bishop-Dauxois model for the DNA breathing dynamics coupled with the Lippincott-Schroeder potential for N-H⋯N and N-H⋯O hydrogen bonding, we identify a high-frequency (˜96 THz) feature in the infrared spectra. We show that this sharp peak arises as a result of the anharmonic base-pair breathing dynamics of DNA. In addition, we study the effects of friction on the infrared spectra. For higher temperatures (˜300 K), where the anharmonicity of DNA dynamics is pronounced, the high-frequency peak is always present irrespective of the friction strength.

  5. Time evolution of the autocorrelation function in dynamical replica theory

    NASA Astrophysics Data System (ADS)

    Sakata, A.

    2013-04-01

    Asynchronous dynamics given by the master equation in the Sherrington-Kirkpatrick (SK) spin-glass model is studied based on dynamical replica theory (DRT) with an extension to take into account the autocorrelation function. The dynamical behaviour of the system is approximately described by dynamical equations of the macroscopic quantities: magnetization, energy contributed by randomness and the autocorrelation function. The dynamical equations under the replica symmetry assumption are derived by introducing the subshell equipartitioning assumption and exploiting the replica method. The obtained dynamical equations are compared with Monte Carlo simulations, and it is demonstrated that the proposed formula describes well the time evolution of the autocorrelation function in some parameter regions. The study offers a reasonable description of the autocorrelation function in the SK spin-glass system.

  6. Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity

    NASA Astrophysics Data System (ADS)

    Ren, Quansheng; Kolwankar, Kiran M.; Samal, Areejit; Jost, Jürgen

    2012-11-01

    We study the interplay of topology and dynamics in a neural network connected with spike-timing-dependent plasticity (STDP) synapses. Stimulated with periodic spike trains, the STDP-driven network undergoes a synaptic pruning process and evolves to a residual network. We examine the variation of topological and dynamical properties of the residual network by varying two key parameters of STDP: synaptic delay and the ratio between potentiation and depression. Our extensive numerical simulations of the leaky integrate-and-fire model show that there exists two regions in the parameter space. The first corresponds to fixed-point configurations, where the distribution of peak synaptic conductances and the firing rate of neurons remain constant over time. The second corresponds to oscillating configurations, where both topological and dynamical properties vary periodically, which is a result of a fixed point becoming a limit cycle via a Hopf bifurcation. This leads to interesting questions regarding the implications of these rhythms in the topology and dynamics of the network for learning and cognitive processing.

  7. Koala Retroviruses: Evolution and Disease Dynamics.

    PubMed

    Xu, Wenqin; Eiden, Maribeth V

    2015-11-01

    A retroviral etiology for malignant neoplasias in koalas has long been suspected. Evidence for retroviral involvement was bolstered in 2000 by the isolation of a koala retrovirus (KoRV), now termed KoRV-A. KoRV-A is an endogenous retrovirus-a retrovirus that infects germ cells-a feature that makes it a permanent resident of the koala genome. KoRV-A lacks the genetic diversity of an exogenous retrovirus, a quality associated with the ability of a retrovirus to cause neoplasias. In 2013, a second KoRV isolate, KoRV-B, was obtained from koalas with lymphomas in the Los Angeles Zoo. Unlike KoRV-A, which is present in the genomes of all koalas in the United States, KoRV-B is restricted in its distribution and is associated with host pathology (neoplastic disease). Here, our current understanding of the evolution of endogenous and exogenous KoRVs, and the relationship between them, is reviewed to build a perspective on the future impact of these viruses on koala sustainability.

  8. Bar-driven evolution and quenching of spiral galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Spinoso, Daniele; Bonoli, Silvia; Dotti, Massimo; Mayer, Lucio; Madau, Piero; Bellovary, Jillian

    2017-03-01

    We analyse the outputs of the cosmological 'zoom-in' hydrodynamical simulation ErisBH to study a strong stellar bar which naturally emerges in the late evolution of the simulated Milky Way-type galaxy. We focus on the analysis of the formation and evolution of the bar and on its effects on the galactic structure, the gas distribution and the star formation. A large central region in the ErisBH disc becomes bar unstable after z ∼ 1.4, but a clear bar starts to grow significantly only after z ≃ 0.4, possibly triggered by the interaction with a massive satellite. At z ≃ 0.1, the bar stabilizes and reaches its maximum radial extent of l ≈ 2.2 kpc. As the bar grows, it becomes prone to buckling instability. The actual buckling event, observable at z ≃ 0.1, results in the formation of a boxy-peanut bulge clearly discernible at z = 0. During its early growth, the bar exerts a strong torque on the gas and drives gas inflows that enhance the nuclear star formation on sub-kpc scales. Later on, as the bar reaches its maximum length and strength, the gas within its extent is nearly all consumed into stars, leaving behind a gas-depleted region in the central ∼2 kpc. Observations would more likely identify a prominent, large-scale bar at the stage when the galactic central region has already been gas depleted, giving a hint at the fact that bar-driven quenching may play an important role in the evolution of disc-dominated galaxies.

  9. Nonlinear Dynamics of Beam-driven TAEs in NSTX

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong; Liu, Deyong; Wang, Feng

    2015-11-01

    Energetic particle modes and Alfvénic modes driven by super-Alfvénic beam ions were routinely observed in neutral beam heated plasmas on NSTX. These modes can significantly impact beam-ion transport, thus causing beam-ion redistribution and losses. Recent simulation results of TAEs show mode radial structure consistent with the reflectometer measurements of electron density fluctuations. In this paper we report on new simulations of multiple TAEs in NSTX plasmas using the M3D-K code. The results show strong interaction between TAEs and fishbone that either enhances or reduces saturation level of individual modes depending on mode number and other parameters. As beam ion beta increases beyond a threshold, mode saturation levels are found to increases sharply. Correspondingly the locally flattening regions merge together resulting in global particle transport and substantial particle loss. These results are similar to the TAE avalanche observed in NSTX.

  10. Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Castor, John I.; Rybicki, George B.

    1988-01-01

    Numerical radiation-hydrodynamics simulations of the nonlinear evolution of instabilities in radiatively driven stellar winds have been performed. The results show a strong tendency for the unstable flow to form rather sharp rarefactions in which the highest speed material has very low density. The qualitative features of the model agree well with the reqirements of displaced narrow absorption components in UV lines.

  11. Vibration analysis of cable-driven parallel robots based on the dynamic stiffness matrix method

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Courteille, Eric; Gouttefarde, Marc; Hervé, Pierre-Elie

    2017-04-01

    This paper focuses on the vibration analysis of Cable-Driven Parallel Robots (CDPRs). An oscillating model of CDPRs able to capture the dynamic behavior of the cables is derived using Lagrangian approach in conjunction with the Dynamic Stiffness Matrix method. Then, an original approach to analyze the modal interaction between the local cable modes and the global CDPR modes is presented. To illustrate this approach, numerical investigations and experimental analyses are carried out on a large-dimension 6-DOF suspended CDPR driven by 8 cables.

  12. Real-time estimation of lead-acid battery parameters: A dynamic data-driven approach

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shen, Zheng; Ray, Asok; Rahn, Christopher D.

    2014-12-01

    This short paper presents a recently reported dynamic data-driven method, Symbolic Dynamic Filtering (SDF), for real-time estimation of the state-of-health (SOH) and state-of-charge (SOC) in lead-acid batteries, as an alternative to model-based analysis techniques. In particular, SOC estimation relies on a k-NN regression algorithm while SOH estimation is obtained from the divergence between extracted features. The results show that the proposed data-driven method successfully distinguishes battery voltage responses under different SOC and SOH situations.

  13. The Evolution of Bifurcation Dynamics in Neurons

    NASA Astrophysics Data System (ADS)

    Stemmler, Martin

    2001-03-01

    The nervous system typically encodes perception and action with short voltage pulses, called spikes, traveling from cell to cell from the sensory periphery to the muscles. There is, however, no a priori reason why the nervous system could not use standard digital logic, switching once from low to high voltage (or vice versa) to convey one bit of information. The spikes in the nervous system result from ionic conductances in the neuronal membrane that are voltage-dependent; a small shift in the voltage-dependent properties would cause a cell to behave like a digital transistor, and no longer spike. Theory suggests two principles as to why neurons spike: information compression and energy efficiency. These first principles allow one to derive biophysically plausible ``learning rules" for a non-spiking neuron model to self- organize and tune its voltage-dependent conductances to approach a dynamical bifurcation point. The requirement of energy efficiency eventually forces the resulting bifurcation to become homoclinic, and thus the neuron discovers spiking. The sequence of events in the self-organization of spiking behavior is stereotypical. An examination of the evolutionary record allows one to ask whether ontogeny recapitulates phylogeny---does neuronal development echo the theoretically deduced intermediate stages of spiking behavior?

  14. Evolution properties of the community members for dynamic networks

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo

    2017-03-01

    The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.

  15. Nonlinear Evolution of the Radiation-driven Magneto-acoustic Instability

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Socrates, Aristotle

    2013-04-01

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux—the radiation-driven magneto-acoustic instability (RMI, a.k.a. the "photon bubble" instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes & Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  16. NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY

    SciTech Connect

    Fernandez, Rodrigo; Socrates, Aristotle

    2013-04-20

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  17. Gravity-driven soap film dynamics in subcritical regimes

    NASA Astrophysics Data System (ADS)

    Auliel, M. I.; Castro, F.; Sosa, R.; Artana, G.

    2015-10-01

    We undertake the analysis of soap-film dynamics with the classical approach of asymptotic expansions. We focus our analysis in vertical soap film tunnels operating in subcritical regimes with elastic Mach numbers Me=O(10-1) . Considering the associated set of nondimensional numbers that characterize this flow, we show that the flow behaves as a two-dimensional (2D) divergence free flow with variable mass density. When the soap film dynamics agrees with that of a 2D and almost constant mass density flow, the regions where the second invariant of the velocity gradient is non-null correspond to regions where the rate of change of film thickness is non-negligible.

  18. Dynamics of the driven Goodwin business cycle equation

    NASA Astrophysics Data System (ADS)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2015-10-01

    We study dynamics of the Goodwin nonlinear accelerator business cycle model with periodic forced autonomous investment Ia(t) = a(1 - cos ωt), where a and ω are the amplitude and the frequency of investment. We give examples of the parameters a and ω when the chaotic oscillations of income are possible. We find the critical values of amplitude acr (ω): if a > acr (ω) the period of the income equals to the driving period T=2π/ω.

  19. Dynamical Logic Driven by Classified Inferences Including Abduction

    NASA Astrophysics Data System (ADS)

    Sawa, Koji; Gunji, Yukio-Pegio

    2010-11-01

    We propose a dynamical model of formal logic which realizes a representation of logical inferences, deduction and induction. In addition, it also represents abduction which is classified by Peirce as the third inference following deduction and induction. The three types of inference are represented as transformations of a directed graph. The state of a relation between objects of the model fluctuates between the collective and the distinctive. In addition, the location of the relation in the sequence of the relation influences its state.

  20. Coherently driven, ultrafast electron-phonon dynamics in transport junctions

    SciTech Connect

    Szekely, Joshua E.; Seideman, Tamar

    2014-07-28

    Although the vast majority of studies of transport via molecular-scale heterojunctions have been conducted in the (static) energy domain, experiments are currently beginning to apply time domain approaches to the nanoscale transport problem, combining spatial with temporal resolution. It is thus an opportune time for theory to develop models to explore both new phenomena in, and new potential applications of, time-domain, coherently driven molecular electronics. In this work, we study the interaction of a molecular phonon with an electronic wavepacket transmitted via a conductance junction within a time-domain model that treats the electron and phonon on equal footing and spans the weak to strong electron-phonon coupling strengths. We explore interference between two coherent energy pathways in the electronic subspace, thus complementing previous studies of coherent phenomena in conduction junctions, where the stationary framework was used to study interference between spatial pathways. Our model provides new insights into phase decoherence and population relaxation within the electronic subspace, which have been conventionally treated by density matrix approaches that often rely on phenomenological parameters. Although the specific case of a transport junction is explored, our results are general, applying also to other instances of coupled electron-phonon systems.

  1. Nonequilibrium Dynamics and the Evolution of Superfluid Neutron Stars

    NASA Astrophysics Data System (ADS)

    Sauls, Jame

    2016-07-01

    The interior crust and the liquid core of neutron stars are predicted to be a mixture of neutron and proton superfluids and a liquid of relativistic electrons and muons. Quantized vortices in the neutron superfluid and quantized flux lines in the proton superconductor are topological defects of these hadronic condensates. I discuss the roles of nucleation, interaction and evolution of topological defects under non-equilibrium conditions in the context of our current understanding and models of the rotational dynamics of pulsars, as well as thermal and magnetic field evolution of neutron stars. I include some speculative ideas on possibile turbulent vortex states in neutron star interiors.

  2. Dynamic analysis of evolutive conservative systems. Discussion of eigenmode crossings

    NASA Technical Reports Server (NTRS)

    Morand, H. J. P.

    1984-01-01

    After an analysis of the close connection between the symmetries of a dynamical system and the multiplicity of its vibrational natural frequencies, it is proved by variational arguments that for a system of invariable symmetry the eigenfrequencies associated with the eigenmodes of a given symmetry type do not cross, in general, during the evolution of this system. The theory is implemented by some numerical calculations applied to the analysis of the evolution of the axisymmetric hydroelastic modes of the Ariane launch vehicle during burning of the first stage.

  3. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    SciTech Connect

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  4. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.

    PubMed

    Jäger, Sebastian; Stark, Holger; Klapp, Sabine H L

    2013-05-15

    We report computer simulation results on the cluster formation of dipolar colloidal particles driven by a rotating external field in a quasi-two-dimensional setup. We focus on the interplay between permanent dipolar and hydrodynamic interactions and its influence on the dynamic behavior of the particles. This includes their individual as well as their collective motion. To investigate these characteristics, we employ Brownian dynamics simulations of a finite system with and without hydrodynamic interactions. Our results indicate that hydrodynamic interactions have a profound impact on the dynamic behavior of the clusters and the dynamics of the clustering process.

  5. Induced photoemission from driven nonadiabatic dynamics in an avoided crossing system

    SciTech Connect

    Arasaki, Yasuki; Mizuno, Yuta; Takatsuka, Kazuo; Scheit, Simona

    2014-12-21

    When vibrational dynamics on an ionic state (large dipole moment) is coupled to that on a neutral state (small dipole moment) such as at an avoided crossing in the alkali halide system, the population transfer between the states cause oscillation of the molecular dipole, leading to dipole emission. Such dynamics may be driven by an external field. We study how the coupled wavepacket dynamics is affected by the parameters (intensity, frequency) of the driving field with the aim of making use of the photoemission as an alternative detection scheme of femtosecond and subfemtosecond vibrational and electronic dynamics or as a characteristic optical source.

  6. Rapid contemporary evolution and clonal food web dynamics.

    PubMed

    Jones, Laura E; Becks, Lutz; Ellner, Stephen P; Hairston, Nelson G; Yoshida, Takehito; Fussmann, Gregor F

    2009-06-12

    Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator-prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary 'details' that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.

  7. Long-term dynamical evolution of Tundra-type orbits

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jiang; Zhao, Chang-Yin; Hou, Yong-Gang; Zhu, Ting-Lei; Wang, Hong-Bo; Sun, Rong-Yu; Zhang, Wei

    2017-01-01

    Tundra-type orbits are elliptical geosynchronous orbits located at the critical inclination. The long-term dynamical evolution of this type of special orbit is investigated in this paper. First, the effect of Earth's gravitational potential is examined. A simplified Hamiltonian of Tundra-type orbits subjected to Earth's gravitational potential is presented through a strict magnitude comparison of the involved terms. Based on this simplified Hamiltonian with two degrees of freedom, the equilibrium points of the orbits subjected to Earth's gravitational potential and their stabilities are discussed. This simplified Hamiltonian is then reduced to a one-degree-of-freedom system dominating the intermediate-period motion of the orbits approximately. In particular, the main characteristic parameters of the intermediate-period motion for nominal Tundra-type orbits and the corresponding specific results for three Sirius satellites in such orbits are presented. Second, the effect of lunisolar perturbations is examined. A magnitude comparison elementarily illustrates that the effect of tesseral harmonics of the Earth's gravitational potential on the long timespan evolution of Tundra-type orbits is negligible compared to that of lunisolar perturbations. A simplified dynamical model including lunisolar perturbations is then presented. Based on this simplified dynamical model, the influences of lunar precession, the initial longitude of the ascending node, the initial argument of perigee, and the initial epoch on the long-term dynamical evolution of the orbits are comparatively analyzed. Finally, numerical calculations with exact perturbation models are conducted to verify the theoretical analysis and to provide more information about the dynamical evolution of Tundra-type orbits.

  8. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Mirin, A; Serban, R; Kosovic, B

    2005-03-14

    This is a collaborative LDRD Exploratory Research project involving four directorates--Energy & Environment, Engineering, NAI and Computation. The project seeks to answer the following critical questions regarding atmospheric releases--''How much material was released? When? Where? and What are the potential consequences?'' Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data. We are developing a flexible and adaptable data-driven event-reconstruction capability for atmospheric releases that provides (1) quantitative probabilistic estimates of the principal source-term parameters (e.g., the time-varying release rate and location); (2) predictions of increasing fidelity as an event progresses and additional data become available; and (3) analysis tools for sensor network design and uncertainty studies. Our computational framework incorporates multiple stochastic algorithms, operates with a range and variety of atmospheric models, and runs on multiple computer platforms, from workstations to large-scale computing resources. Our final goal is a multi-resolution capability for both real-time operational response and high fidelity multi-scale applications.

  9. Magnetostriction-driven cantilevers for dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Penedo, M.; Fernández-Martínez, I.; Costa-Krämer, J. L.; Luna, M.; Briones, F.

    2009-10-01

    An actuation mode is presented to drive the mechanical oscillation of cantilevers for dynamic atomic force microscopy. The method is based on direct mechanical excitation of the cantilevers coated with amorphous Fe-B-N thin films, by means of the film magnetostriction, i.e., the dimensional change in the film when magnetized. These amorphous magnetostrictive Fe-B-N thin films exhibit soft magnetic properties, excellent corrosion resistance in liquid environments, nearly zero accumulated stress when properly deposited, and good chemical stability. We present low noise and high resolution topographic images acquired in liquid environment to demonstrate the method capability.

  10. Frequency analysis of the laser driven nonlinear dynamics of HCN.

    PubMed

    Lopez-Pina, A; Losada, J C; Benito, R M; Borondo, F

    2016-12-28

    We study the vibrational dynamics of a model for the HCN molecule in the presence of a monochromatic laser field. The variation of the structural behavior of the system as a function of the laser frequency is analyzed in detail using the smaller alignment index, frequency maps, and diffusion coefficients. It is observed that the ergodicity of the system depends on the frequency of the excitation field, especially in its transitions from and into chaos. This provides a roadmap for the possibility of bond excitation and dissociation in this molecule.

  11. Dynamics of the driven Goodwin business cycle equation

    SciTech Connect

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2015-10-28

    We study dynamics of the Goodwin nonlinear accelerator business cycle model with periodic forced autonomous investment I{sub a}(t) = a(1 – cos ωt), where a and ω are the amplitude and the frequency of investment. We give examples of the parameters a and ω when the chaotic oscillations of income are possible. We find the critical values of amplitude a{sub cr} (ω): if a > a{sub cr} (ω) the period of the income equals to the driving period T=2π/ω.

  12. Dynamic measurements of actuators driven by AlN layers

    NASA Astrophysics Data System (ADS)

    Kacperski, Jacek; Kujawinska, Malgorzata; Leon, Sergio Camacho; Nieradko, Lukasz; Jozwik, Michal; Gorecki, Christophe

    2005-09-01

    Micro-Electro-Mechanical Systems are nowadays frequently used in many fields of industry. The number of their applications increase and their functions became more complex and demanding. Therefore precise knowledge about their static (shape, deformations, stresses) and dynamic (resonance frequencies, amplitude and phase of vibration) properties is necessary. Two beam laser interferometry is one of the most popular testing methods of micromechanical elements as a non-contact, high-accurate method allowing full-field measurement. First part of the paper present microbeam actuators designed for MEMS/MOEMS applications. The proposed structures are the straight silicon microbeams formed by KOH etching of Si wafer. Aluminium nitride (AlN) thin films are promising materials for many acoustic and optic applications in MEMS field. In the proposed architecture the actuation layer is sandwiched between two metal electrodes on the top of beam. In the second part we describe the methodology of the actuator characterization. These methods applied are: stroboscopic interferometry and active interferometry (LCOS SLM is used as a reference surface in Twyman-Green interferometer). Moreover some results of FEM analysis of the sample are shown and compared with experimental results. Dynamic measurements validate the design and simulations, and provide information for optimization of the actuator manufacturing process.

  13. Dynamic Scene Stitching Driven by Visual Cognition Model

    PubMed Central

    2014-01-01

    Dynamic scene stitching still has a great challenge in maintaining the global key information without missing or deforming if multiple motion interferences exist in the image acquisition system. Object clips, motion blurs, or other synthetic defects easily occur in the final stitching image. In our research work, we proceed from human visual cognitive mechanism and construct a hybrid-saliency-based cognitive model to automatically guide the video volume stitching. The model consists of three elements of different visual stimuli, that is, intensity, edge contour, and scene depth saliencies. Combined with the manifold-based mosaicing framework, dynamic scene stitching is formulated as a cut path optimization problem in a constructed space-time graph. The cutting energy function for column width selections is defined according to the proposed visual cognition model. The optimum cut path can minimize the cognitive saliency difference throughout the whole video volume. The experimental results show that it can effectively avoid synthetic defects caused by different motion interferences and summarize the key contents of the scene without loss. The proposed method gives full play to the role of human visual cognitive mechanism for the stitching. It is of high practical value to environmental surveillance and other applications. PMID:24688451

  14. Entropy-driven structure and dynamics in carbon nanocrystallites

    NASA Astrophysics Data System (ADS)

    McNutt, N. W.; Wang, Q.; Rios, O.; Keffer, D. J.

    2014-04-01

    New carbon composite materials are being developed that contain carbon nanocrystallites in the range of 5-17 Å in radius dispersed within an amorphous carbon matrix. Evaluating the applicability of these materials for use in battery electrodes requires a molecular-level understanding of the thermodynamic, structural, and dynamic properties of the nanocrystallites. Herein, molecular dynamics simulations reveal the molecular-level mechanisms for such experimental observations as the increased spacing between carbon planes in nanocrystallites as a function of decreasing crystallite size. As the width of this spacing impacts Li-ion capacity, an explanation of the origin of this distance is relevant to understanding anode performance. It is thus shown that the structural configuration of these crystallites is a function of entropy. The magnitude of out-of-plane ripples, binding energy between layers, and frequency of characteristic planar modes are reported over a range of nanocrystallite sizes and temperatures. This fundamental information for layered carbon nanocrystallites may be used to explain enhanced lithium ion diffusion within the carbon composites.

  15. Chaotic dynamics of flexible beams driven by external white noise

    NASA Astrophysics Data System (ADS)

    Awrejcewicz, J.; Krysko, A. V.; Papkova, I. V.; Zakharov, V. M.; Erofeev, N. P.; Krylova, E. Yu.; Mrozowski, J.; Krysko, V. A.

    2016-10-01

    Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear).

  16. Two-body relaxation driven evolution of the young stellar disk in the galactic center

    SciTech Connect

    Šubr, Ladislav; Haas, Jaroslav

    2014-05-10

    The center of our Galaxy hosts almost two hundred very young stars, a subset of which is orbiting the central supermassive black hole (SMBH) in a relatively thin disk-like structure. First analyses indicated a power-law surface density profile of the disk, Σ∝R {sup β} with β = –2. Recently, however, doubts about this profile arose. In particular, it now seems to be better described by a sort of broken power law. By means of both analytical arguments and numerical N-body modeling, we show that such a broken power-law profile is a natural consequence of the two-body relaxation of the disk. Due to the small relative velocities of the nearby stars in co-planar Keplerian orbits around the SMBH, two-body relaxation is effective enough to affect the evolution of the disk on timescales comparable to its estimated age. In the inner, densest part of the disk, the profile becomes rather flat (β ≈ –1) while the outer parts keep imprints of the initial state. Our numerical models show that the observed projected surface density profile of the young stellar disk can result from two-body relaxation driven evolution of a disk with initial single power-law profile with –2 ≲ β ≲ –1.5. In addition, we suggest that two-body relaxation may have caused a significant radial migration of the S-stars toward the central SMBH, thus playing an important role in their formation scenario.

  17. Field driven ferromagnetic phase evolution originating from the domain boundaries in antiferromagnetically coupled perpendicular anitsotropy films

    SciTech Connect

    Jones, Juanita; Hauet, Thomas; Gunther, Christian; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav

    2008-05-01

    Strong perpendicular anisotropy systems consisting of Co/Pt multilayer stacks that are antiferromagnetically coupled via thin Ru or NiO layers have been used as model systems to study the competition between local interlayer exchange and long-range dipolar interactions [1,2]. Magnetic Force Microscopy (MFM) studies of such systems reveal complex magnetic configurations with a mix of antiferromagnetic (AF) and ferromagnetic (FM) phases. However, MFM allows detecting surface stray fields only and can interact strongly with the magnetic structure of the sample, thus altering the original domain configuration of interest [3,4]. In the current study they combine magnetometry and state-of-the-art soft X-ray transmission microscopy (MXTM) to investigate the external field driven FM phase evolution originating from the domain boundaries in such antiferromagnetically coupled perpendicular anisotropy films. MXTM allows directly imaging the perpendicular component of the magnetization in an external field at sub 100 nm spatial resolution without disturbing the magnetic state of the sample [5,6]. Here they compare the domain evolution for two similar [Co(4{angstrom})/Pt(7{angstrom})]x-1/{l_brace}Co(4{angstrom})/Ru(9{angstrom})/[Co(4{angstrom})/Pt(7{angstrom})]x-1{r_brace}16 samples with slightly different Co/Pt stack thickness, i.e. slightly different strength of internal dipolar fields. After demagnetization they obtain AF domains with either sharp AF domain walls for the thinner multilayer stacks or 'tiger-tail' domain walls (one dimensional FM phase) for the thicker stacks. When increasing the external field strength the sharp domain walls in the tinner stack sample transform into the one-dimensional FM phase, which then serves as nucleation site for further FM stripe domains that spread out into all directions to drive the system towards saturation. Energy calculations reveal the subtle difference between the two samples and help to understand the observed transition, when

  18. Black hole dynamical evolution in a Lorentz-violating spacetime

    SciTech Connect

    Esposito, S.; Salesi, G.

    2011-04-15

    We consider the black hole dynamical evolution in the framework of a Lorentz-violating spacetime endowed with a Schwarzchild-like momentum-dependent metric. Large deviations from the Hawking-Bekenstein predictions are obtained, depending on the values of the Lorentz-violating parameter {lambda} introduced. A nontrivial evolution comes out, following mainly from the existence of a nonvanishing minimum mass: for large Lorentz violations, most of the black hole evaporation takes place in the initial stage, which is then followed by a stationary stage (whose duration depends on the value of {lambda}) where the mass does not change appreciably. Furthermore, for the final stage of evolution, our model predicts a sweet slow death of the black hole, whose ''slowness'' again depends on {lambda}, in contrast with the violent final explosion predicted by the standard theory.

  19. Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey; Terina, Galina

    Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J

  20. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    SciTech Connect

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-04-15

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.

  1. Autonomous Evolution of Dynamic Gaits with Two Quadruped Robots

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Takamura, Seichi; Yamamoto, Takashi; Fujita, Masahiro

    2004-01-01

    A challenging task that must be accomplished for every legged robot is creating the walking and running behaviors needed for it to move. In this paper we describe our system for autonomously evolving dynamic gaits on two of Sony's quadruped robots. Our evolutionary algorithm runs on board the robot and uses the robot's sensors to compute the quality of a gait without assistance from the experimenter. First we show the evolution of a pace and trot gait on the OPEN-R prototype robot. With the fastest gait, the robot moves at over 10/min/min., which is more than forty body-lengths/min. While these first gaits are somewhat sensitive to the robot and environment in which they are evolved, we then show the evolution of robust dynamic gaits, one of which is used on the ERS-110, the first consumer version of AIBO.

  2. Data-driven models for regional coral-reef dynamics.

    PubMed

    Żychaluk, Kamila; Bruno, John F; Clancy, Damian; McClanahan, Tim R; Spencer, Matthew

    2012-02-01

    Coral reefs have been affected by natural and anthropogenic disturbances. Coral cover has declined on many reefs, and macroalgae have increased on some. The existence of alternative stable states with high or low coral cover has been widely debated, but not clearly established. We evaluate the evidence for alternative stable states in benthic coral-reef dynamics in the Caribbean, Kenya and Great Barrier Reef (GBR), using stochastic semi-parametric models based on large numbers of time series of cover of hard corals, macroalgae and other components. Only the GBR showed a consistent short-term regional decline in coral cover. There was no evidence for regional increases in macroalgae. The equilibrium distributions of our models were close to recently observed distributions, and differed among regions. In all three regions, the equilibrium distributions were unimodal rather than bimodal, and thus did not suggest the existence of alternative stable states on a regional scale, under current conditions.

  3. Bioattractors: dynamical systems theory and the evolution of regulatory processes

    PubMed Central

    Jaeger, Johannes; Monk, Nick

    2014-01-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812

  4. Evolution of geometrically necessary dislocation density from computational dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    2009-07-01

    This paper presents a method for calculating GND densities in dislocation dynamics simulations. Evolution of suitably defined averages of GND density as well as maps showing the spatial nonuniform distribution of GNDs are analyzed under uniaxial loading. Focus is laid on the resolution dependence of the very notion of GND density, its dependence upon physical dimensions of plastically deformed specimens and its sensitivity to initial conditions. Acknowledgments Support from the National Science Foundation (CMMI-0748187) is gratefully acknowledged.

  5. Habitable Planets: Interior Dynamics and Long-Term Evolution

    NASA Astrophysics Data System (ADS)

    Tackley, Paul J.; Ammann, Michael M.; Brodholt, John P.; Dobson, David P.; Valencia, Diana

    2014-04-01

    Here, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occurs.

  6. Integrated Observations of ICME - Driven Substorm - Storm Evolution on 7 August 1998: Traditional and Non-Traditional Aspects.

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.; Torbert, R. B.

    2015-12-01

    The aim of this study is to obtain an integrated view of substorm-storm evolution in relation to well-defined interplanetary (IP) conditions, and to identify traditional and non-traditional aspects of the DP1 and DP2 current systems during substorm activity. Specifically, we report a case study of substorm/storm evolution driven by an ICME from ground observations around the oval in relation to geoeffective IP parameters (Kan-Lee electric field, E-KL, and dynamic pressure, Pdyn), geomagnetic indices (AL, SYM-H and PCN) and satellite observations (from DMSP F13 and F14, Geotail, and GOES spacecraft). A sudden enhancement of E-KL at a southward turning of the IMF led to an initial transient phase (PCN-enhancement) followed by a persistent stage of solar wind-magnetosphere-ionosphere coupling. The persistent phase terminated abruptly at a steep E-KL reduction when the ICME magnetic field turned north after a 3-hour-long interval of enhanced E-KL. The persistent phase consisted of (i) a 45-min-long substorm growth phase (DP2 current) followed by (ii) a classical substorm onset (DP1 current) in the 0100 - 0300 MLT sector, (ii) a 30-min-long expansion phase, maximizing in the same sector, and (iii) a phase lasting for 1.5 hr of 10-15 min-long DP1 events in the 2100 - 2300 and 0400 - 0600 MLT sectors. In the morning sector the expansion phase was characterized by Ps6 pulsations and omega bands. The SYM-H evolution reached the level of a major storm after a 2.5-hour-long interval of E-KL ˜5 mV/m and elevated Pdyn in the substorm expansion phase. Magetosphere - Ionosphere (M - I) coupling during a localized electrojet event at 0500 MLT in the late stage of the substorm expansion is studied by ground - satellite conjunction data (Iceland - Geotail). The DP1 and DP2 components of geomagnetic activity are discussed in relation to M - I current systems and substorm current wedge morphology.

  7. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D.

    2014-01-01

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  8. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies

    PubMed Central

    Qian, Yong-Zhong; Wasserburg, G. J.

    2012-01-01

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs. PMID:22411827

  9. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies.

    PubMed

    Qian, Yong-Zhong; Wasserburg, G J

    2012-03-27

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs.

  10. Evolution and selection of river networks: Statics, dynamics, and complexity

    PubMed Central

    Rinaldo, Andrea; Rigon, Riccardo; Banavar, Jayanth R.; Maritan, Amos; Rodriguez-Iturbe, Ignacio

    2014-01-01

    Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics—every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept. PMID:24550264

  11. On the Impact of Radiation Pressure on the Dynamics and Inner Structure of Dusty Wind-driven Shells

    NASA Astrophysics Data System (ADS)

    Martínez-González, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo

    2014-04-01

    Massive young stellar clusters are strong sources of radiation and mechanical energy. Their powerful winds and radiation pressure sweep up interstellar gas into thin expanding shells that trap the ionizing radiation produced by the central clusters affecting the dynamics and the distribution of their ionized gas. Here we continue our comparison of the star cluster winds and radiation pressure effects on the dynamics of shells around young massive clusters. We calculate the impact that radiation pressure has on the distribution of matter and thermal pressure within such shells, as well as on the density-weighted ionization parameter Uw , and put our results on the diagnostic diagram, which allows one to discriminate between the wind-dominated and radiation-dominated regimes. We found that model-predicted values of the ionization parameter agree well with typical values found in local starburst galaxies. Radiation pressure may affect the inner structure and the dynamics of wind-driven shells, but only during the earliest stages of evolution (before ~3 Myr) or if a major fraction of the star cluster mechanical luminosity is dissipated or radiated away within the star cluster volume and thus the star cluster mechanical energy output is significantly smaller than star cluster synthetic models predict. However, even in these cases radiation dominates over the wind dynamical pressure only if the exciting cluster is embedded into a high-density ambient medium.

  12. On the impact of radiation pressure on the dynamics and inner structure of dusty wind-driven shells

    SciTech Connect

    Martínez-González, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo

    2014-04-20

    Massive young stellar clusters are strong sources of radiation and mechanical energy. Their powerful winds and radiation pressure sweep up interstellar gas into thin expanding shells that trap the ionizing radiation produced by the central clusters affecting the dynamics and the distribution of their ionized gas. Here we continue our comparison of the star cluster winds and radiation pressure effects on the dynamics of shells around young massive clusters. We calculate the impact that radiation pressure has on the distribution of matter and thermal pressure within such shells, as well as on the density-weighted ionization parameter U{sub w} , and put our results on the diagnostic diagram, which allows one to discriminate between the wind-dominated and radiation-dominated regimes. We found that model-predicted values of the ionization parameter agree well with typical values found in local starburst galaxies. Radiation pressure may affect the inner structure and the dynamics of wind-driven shells, but only during the earliest stages of evolution (before ∼3 Myr) or if a major fraction of the star cluster mechanical luminosity is dissipated or radiated away within the star cluster volume and thus the star cluster mechanical energy output is significantly smaller than star cluster synthetic models predict. However, even in these cases radiation dominates over the wind dynamical pressure only if the exciting cluster is embedded into a high-density ambient medium.

  13. Capsule implosions driven by dynamic hohlraum x-rays

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2005-10-01

    Dynamic hohlraum experiments at the Z facility already implode capsules with up to 80 kJ absorbed x-ray energy. However, many challenging issues remain for ICF. The present experiments use diagnostic capsules to address two of these issues: symmetry measurement and control and building understanding of the capsule/hohlraum implosion system. A suite of x-ray spectrometers record time and space resolved spectra emitted by Ar tracer atoms in the implosion core, simultaneously from up to three different quasi-orthogonal directions. Comparing the results with simulation predictions provide severe tests of understanding. These data also can used to produce a tomographic reconstruction of the time resolved core temperature and density profiles. X-ray and neutron diagnostics are used to examine how the implosion conditions change as the capsule design changes. The capsule design changes include variations in CH wall thickness and diameter, Ge-doped CH shells, and SiO2 shells. In addition, a new campaign investigating Be capsule implosions is beginning. Be capsules may offer superior performance for dynamic hohlraum research and it may be possible to investigate NIF-relevant Be implosion issues such as the fill tube effects, sensitivity to columnar growth associated with sputtered Be capsule fabrication, and the effect of Cu dopants on implosion conditions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Dept. of Energy under contract No. DE-AC04-94AL85000. * In collaboration with G.A. Rochau, G.A. Chandler, S.A. Slutz, P.W. Lake, G. Cooper, G.S. Dunham, R.J. Leeper, R. Lemke, T.A. Mehlhorn, T.J. Nash, D.S. Nielsen, K. Peterson, C.L. Ruiz, D.B. Sinars, J. Torres, W. Varnum, Sandia; R.C. Mancini, T.J. Buris-Mog, UNR; I. Golovkin, J.J. MacFarlane, PRISM; A. Nikro, D. Steinman, J.D. Kilkenny, H. Xu, General Atomics; M. Bump, T.C. Moore, K-tech; D.G. Schroen, Schafer

  14. Storm-driven pesticide dynamics in a catchment system

    NASA Astrophysics Data System (ADS)

    Harrison, Rebecca; Freer, Jim; Michaelides, Katerina; Hurley, Steven; Howden, Nicholas; Bull, Ian

    2013-04-01

    Loss of pesticides from agricultural land in runoff and subsurface flow during rainfall events poses a significant concern for water quality, with adverse effects on drinking water and aquatic life. Pesticide mobilisation and transport is affected by runoff and erosion processes which leads to different flow pathways and pesticide residence times in a catchment. In the soil and sediment environment pesticides can be a significant component of surface water contamination because of their persistence in soil and sediment and that they have a tendency to desorb back into water over time. A lowland agricultural catchment upstream of a drinking-water supply reservoir in the South West of England is being used to investigate pesticide dynamics at the catchment scale during individual storm events. Pesticide concentration in water and suspended sediments were determined from samples taken at incremental changes in stream flow incorporating both rising and falling river levels. The study aims to determine the relative partitioning of pesticides transported in the dissolved phase or adsorbed to sediment. Analyses of soil, sediment and water from across the catchment aids understanding of the interaction between different media and can be used to determine the importance of dissolved and sediment-bound pesticide dynamics during individual storm events. Initial results imply that processes of transport and desorption are occurring in both soils and river and reservoir sediments which are likely to be an important factor for timing of pesticide movement. This suggests soil and sediment are acting as a sustained source of contamination to surface water. However; interactions between these different media are complex. Investigation of the molluscicide metaldehyde, showed this to be present in stream water at concentrations greater than 0.1 µg µl-1 nine months after application. Storm event analysis shows peak pesticide concentration in the stream to coincide with storm

  15. Dynamics of a three-level V-type atom driven by a cavity photon and microwave field

    NASA Astrophysics Data System (ADS)

    Yan-Li, Xue; Shi-Deng, Zhu; Ju, Liu; Ting-Hui, Xiao; Bao-Hua, Feng; Zhi-Yuan, Li

    2016-04-01

    We discuss the dynamics of a three-level V-type atom driven simultaneously by a cavity photon and microwave field by examining the atomic population evolution. Owing to the coupling effect of the cavity photon, periodical oscillation of the population between the two upper states and the ground state takes place, which is the well-known vacuum Rabi oscillation. Meanwhile, the population exchange between the upmost level and the middle level can occur due to the driving action of the external microwave field. The general dynamic behavior is the superposition of a fast and a slow periodical oscillation under the cooperative and competitive effect of the cavity photon and the microwave field. Numerical results demonstrate that the time evolution of the population is strongly dependent on the atom-cavity coupling coefficient g and Rabi frequency Ω e that reflects the intensity of the external microwave field. By modulating the two parameters g and Ω e, a large number of population transfer behaviors can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434017 and 11374357) and the National Basics Research Program of China (Grant No. 2013CB632704).

  16. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-04-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.

  17. The origin and dynamic evolution of chemical information transfer

    PubMed Central

    Steiger, Sandra; Schmitt, Thomas; Schaefer, H. Martin

    2011-01-01

    Although chemical communication is the most widespread form of communication, its evolution and diversity are not well understood. By integrating studies of a wide range of terrestrial plants and animals, we show that many chemicals are emitted, which can unintentionally provide information (cues) and, therefore, act as direct precursors for the evolution of intentional communication (signals). Depending on the content, design and the original function of the cue, there are predictable ways that selection can enhance the communicative function of chemicals. We review recent progress on how efficacy-based selection by receivers leads to distinct evolutionary trajectories of chemical communication. Because the original function of a cue may channel but also constrain the evolution of functional communication, we show that a broad perspective on multiple selective pressures acting upon chemicals provides important insights into the origin and dynamic evolution of chemical information transfer. Finally, we argue that integrating chemical ecology into communication theory may significantly enhance our understanding of the evolution, the design and the content of signals in general. PMID:21177681

  18. Oxidation-driven surface dynamics on NiAl(100)

    PubMed Central

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2015-01-01

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). By comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps. PMID:25548155

  19. Theory of the dynamics of evaporation-driven colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2014-03-01

    In the suspensions of colloidal particles in a volatile liquid film, deposits of the solute form near the contact line due to the flow generated by evaporation. An enticingly simple and experimentally realizable model system of this mechanism is the drying of a spilled drop of coffee on the countertop. Similarly, patterns of periodic bands or continuous solid films are commonly observed on a substrate suspended vertically in a container of the colloidal solution. In order to characterize these patterns, we develop a multiphase model that couples both the liquid and solid flows, local variation of the particle concentration, the propagation dynamics of the solid front, and the liquid-air interface deformation. For vertical liquid films, we further determine the nature of the filming-banding transition and the phase boundary in terms of the volume fraction of the colloids. The results of our theory are in good agreement with direct observations of these patterns. We gratefully acknowledge financial support from the Air Force Office of Scientific Research and the Kavli Institute for Bionano Science and Technology at Harvard University.

  20. Oxidation-driven surface dynamics on NiAl(100)

    DOE PAGES

    Qin, Hailang; Chen, Xidong; Li, Liang; ...

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  1. Oxidation-driven surface dynamics on NiAl(100)

    NASA Astrophysics Data System (ADS)

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2015-01-01

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). By comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.

  2. Oxidation-driven surface dynamics on NiAl(100)

    SciTech Connect

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.

  3. Calculating gravitationally self-consistent sea level changes driven by dynamic topography

    NASA Astrophysics Data System (ADS)

    Austermann, J.; Mitrovica, J. X.

    2015-12-01

    We present a generalized formalism for computing gravitationally self-consistent sea level changes driven by the combined effects of dynamic topography, geoid perturbations due to mantle convection, ice mass fluctuations and sediment redistribution on a deforming Earth. Our mathematical treatment conserves mass of the surface (ice plus ocean) load and the solid Earth. Moreover, it takes precise account of shoreline migration and the associated ocean loading. The new formalism avoids a variety of approximations adopted in previous models of sea level change driven by dynamic topography, including the assumption that a spatially fixed isostatic amplification of `air-loaded' dynamic topography accurately accounts for ocean loading effects. While our approach is valid for Earth models of arbitrary complexity, we present numerical results for a set of simple cases in which a pattern of dynamic topography is imposed, the response to surface mass loading assumes that Earth structure varies only with depth and that isostatic equilibrium is maintained at all times. These calculations, involving fluid Love number theory, indicate that the largest errors in previous predictions of sea level change driven by dynamic topography occur in regions of shoreline migration, and thus in the vicinity of most geological markers of ancient sea level. We conclude that a gravitationally self-consistent treatment of long-term sea level change is necessary in any effort to use such geological markers to estimate ancient ice volumes.

  4. Dynamic Data Driven Applications Systems (DDDAS) modeling for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Seetharaman, Guna; Darema, Frederica

    2013-05-01

    The Dynamic Data Driven Applications System (DDDAS) concept uses applications modeling, mathematical algorithms, and measurement systems to work with dynamic systems. A dynamic systems such as Automatic Target Recognition (ATR) is subject to sensor, target, and the environment variations over space and time. We use the DDDAS concept to develop an ATR methodology for multiscale-multimodal analysis that seeks to integrated sensing, processing, and exploitation. In the analysis, we use computer vision techniques to explore the capabilities and analogies that DDDAS has with information fusion. The key attribute of coordination is the use of sensor management as a data driven techniques to improve performance. In addition, DDDAS supports the need for modeling from which uncertainty and variations are used within the dynamic models for advanced performance. As an example, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between ATR and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements - an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and ATR.

  5. Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.

    PubMed

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  6. Driven colloidal fluids: construction of dynamical density functional theories from exactly solvable limits

    NASA Astrophysics Data System (ADS)

    Scacchi, Alberto; Krüger, Matthias; Brader, Joseph M.

    2016-06-01

    The classical dynamical density functional theory (DDFT) provides an approximate extension of equilibrium DFT to treat nonequilibrium systems subject to Brownian dynamics. However, the method fails when applied to driven systems, such as sheared colloidal dispersions. The breakdown of DDFT can be traced back to an inadequate treatment of the flow-induced distortion of the pair correlation functions. By considering the distortion of the pair correlations to second order in the flow-rate we show how to systematically correct the DDFT for driven systems. As an application of our approach we consider Poiseuille flow. The theory predicts that the particles will accumulate in spatial regions where the local shear rate is small, an effect known as shear-induced migration. We compare these predictions to Brownian dynamics simulations with generally good agreement.

  7. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    PubMed Central

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295

  8. Study of plasma pressure evolution driven by strong picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Wang, J. X.; Xu, Y. X.; Zhu, W. J.

    2017-01-01

    Through one dimensional relativistic particle-in-cell simulation of strong laser interaction with the solid-density plasma, the evolution of the plasma impact pressure behind a thin foil has been investigated in details. An energy-compression mechanism has been proposed to help optimizing the laser and plasma parameters. It has been found that by using a picosecond laser with intensity 1015 W cm-2, an impact pressure as high as several hundreds of GPa order of magnitude can be obtained. The numerical analysis demonstrates that the peak pressure is mainly resulted from the ion contribution. These results are of potential application to the laser loading upon solids in order to study the material properties under extra-high dynamic pressure.

  9. Dual-Beam Atom Laser Driven by Spinor Dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  10. Dynamic Pulse-Driven Flowering Phenology in a Semiarid Shrubland

    NASA Astrophysics Data System (ADS)

    Krell, N.; Papuga, S. A.; Kipnis, E. L.; Nelson, K.

    2014-12-01

    Elevated springtime temperature has been convincingly linked to an increasingly earlier onset of phenological activity. Studies highlighting this phenomenon have generally been conducted in ecosystems where energy is the primary limiting factor. Importantly, phenological studies in semiarid ecosystems where water is the major limiting factor are rare. In semiarid ecosystems, the timing of phenological activity is also highly sensitive to discrete moisture pulses from infrequent precipitation events. The objective of this study is to identify the triggers of flowering phenology in a semiarid creosotebush-dominated ecosystem. Creosotebush (Larrea tridentata) is a repeat-flowering evergreen shrub that is the dominant species in three of the North American deserts. We present results from six years of daily meteorological and phenological data collected within the Santa Rita Experimental Range in southern Arizona. Our site is equipped with an eddy covariance tower providing estimates of water and carbon fluxes and associated meteorological variables including precipitation and soil moisture at multiple depths. Additionally, three digital cameras distributed within the footprint of the eddy provide daily images of phenological activity. Our results highlight substantial interannual variability in flowering phenology, both in spring and summer flowering. We show that spring flowering activity tends to be associated with energy triggers (e.g. temperature, growing degree days), whereas summer flowering activity tends to be associated with moisture triggers (e.g. large precipitation events, deep soil moisture). Our study suggests that changes in frequency and duration of precipitation events will impact timing of phenological activity resulting in important consequences for vegetation dynamics and pollinator behavior.

  11. Dynamic modeling of optically pumped electrically driven terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Hamadou, A.; Thobel, J.-L.; Lamari, S.

    2017-03-01

    Based on our four-level rate equations model, we analyze through numerical simulations the dynamics of the electron density, population inversion and terahertz intensity present within the cavity of a mid-infrared optically pumped electrically driven THz quantum cascade laser. We find in particular that the mid-infrared pump intensity influences significantly the dynamical behavior of the present device. Moreover, compared to its homologue, the conventional electrically injected THz quantum cascade laser, this system presents much faster dynamics. In addition, within the premises of our model, we derive in the most general case the equation that allows for the determination of the turn-on delay time tth.

  12. Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex

    NASA Astrophysics Data System (ADS)

    Figliozzi, Patrick; Sule, Nishant; Yan, Zijie; Bao, Ying; Burov, Stanislav; Gray, Stephen K.; Rice, Stuart A.; Vaikuntanathan, Suriyanarayanan; Scherer, Norbert F.

    2017-02-01

    To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system. We also show that a superior trap is created by using a Au nanoplate mirror in a retroreflection geometry, which increases the electric field intensity, the optical drive force, and spatial confinement. Using nanoparticles versus micron sized colloids significantly reduces the surface hydrodynamic friction allowing us to access small values of optical topological charge and drive force. We quantify a further 50% reduction of hydrodynamic friction when the nanoparticles are driven over the Au nanoplate mirrors versus over a mildly electrostatically repulsive glass surface. Further, we demonstrate through experiments and electrodynamics-Langevin dynamics simulations that the optical drive force and the interparticle interactions are not constant around the ring for linearly polarized light, resulting in a strong position-dependent variation in the nanoparticle velocity. The nonuniformity in the optical drive force is also manifest as an increase in fluctuations of interparticle separation, or effective temperature, as the optical driving force is increased. Finally, we resolve an open issue in the literature on periodic modulation of interparticle separation with comparative measurements of driven 300-nm-diameter polystyrene beads that also clearly reveal the significance of electrodynamic forces and interactions in optically driven colloidal systems. Therefore, the modulations in the optical forces and electrodynamic interactions

  13. Network evolution induced by the dynamical rules of two populations

    NASA Astrophysics Data System (ADS)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t < t1 = κb) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ0 = 1. Interestingly, in the intermediate time regime (defined for t_1\\lt t\\lt t_2\\propto \\kappa_a and for which θ0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  14. Characterization of time dynamical evolution of electroencephalographic epileptic records

    NASA Astrophysics Data System (ADS)

    Rosso, Osvaldo A.; Mairal, María. Liliana

    2002-09-01

    Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of the brain dynamics. The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the qualitative variation of the signal in both time and frequency. The entropy defined from the wavelet functions is a measure of the order/disorder degree present in a time series. In consequence, this entropy evaluates over EEG time series gives information about the underlying dynamical process in the brain, more specifically of the synchrony of the group cells involved in the different neural responses. The total wavelet entropy results independent of the signal energy and becomes a good tool for detecting dynamical changes in the system behavior. In addition the total wavelet entropy has advantages over the Lyapunov exponents, because it is parameter free and independent of the stationarity of the time series. In this work we compared the results of the time evolution of the chaoticity (Lyapunov exponent as a function of time) with the corresponding time evolution of the total wavelet entropy in two different EEG records, one provide by depth electrodes and other by scalp ones.

  15. Evolution as a critical component of plankton dynamics.

    PubMed

    Fussmann, Gregor F; Ellner, Stephen P; Hairston, Nelson G

    2003-05-22

    Microevolution is typically ignored as a factor directly affecting ongoing population dynamics. We show here that density-dependent natural selection has a direct and measurable effect on a planktonic predator-prey interaction. We kept populations of Brachionus calyciflorus, a monogonont rotifer that exhibits cyclical parthenogenesis, in continuous flow-through cultures (chemostats) for more than 900 days. Initially, females frequently produced male offspring, especially at high population densities. We observed rapid evolution, however, towards low propensity to reproduce sexually, and by 750 days, reproduction had become entirely asexual. There was strong selection favouring asexual reproduction because, under the turbulent chemostat regime, males were unable to mate with females, produced no offspring, and so had zero fitness. In replicated chemostat experiments we found that this evolutionary process directly influenced the population dynamics. We observed very specific but reproducible plankton dynamics which are explained well by a mathematical model that explicitly includes evolution. This model accounts for both asexual and sexual reproduction and treats the propensity to reproduce sexually as a quantitative trait under selection. We suggest that a similar amalgam of ecological and evolutionary mechanisms may drive the dynamics of rapidly reproducing organisms in the wild.

  16. Exploring Quenching, Morphological Transformation and AGN-Driven Winds with Simulations of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Brennan, Ryan; CANDELS

    2017-01-01

    We present an examination of the spheroid growth and star formation quenching experienced by galaxies since z~3 by studying the evolution with redshift of the quiescent and spheroid-dominated fractions of galaxies from the CANDELS and GAMA surveys. We compare these fractions with predictions from a semi-analytic model which includes prescriptions for bulge growth and AGN feedback due to mergers and disk instabilities. We then subdivide our population into the four quadrants of the specific star-formation rate (sSFR)-Sersic index plane. We find that the fraction of star forming disks declines steadily while the fraction of quiescent spheroids increases with cosmic time. The fraction of star-forming spheroids and quiescent disks are both non-negligible and remain nearly constant. Our model is qualitatively successful at reproducing these fractions, suggesting a plausible explanation for the observed correlations between star formation activity and galaxy structure.Next, we study the correlation of galaxy structural properties with their location relative to the star-formation rate-stellar mass correlation, or the star forming main sequence. We find that as we move from observed galaxies above the main sequence to those below it, we see a nearly monotonic trend towards higher median Sersic index, smaller radius, lower SFR density and higher stellar mass density. Our model again qualitatively reproduces these trends, supporting a picture in which bulges and black holes co-evolve and AGN feedback plays a critical role in galaxy quenching.Finally, we examine AGN-driven winds in a suite of cosmological zoom simulations including a novel mechanical and radiation-driven AGN feedback prescription and compare the gas cycle with a matched suite of zoom simulations that include only feedback from supernovae and young stars. We find that while stellar feedback can drive mass out of galaxies, it is unlikely to be able to keep the gas from re-accreting, whereas in our AGN runs it

  17. Competition-driven network dynamics: emergence of a scale-free leadership structure and collective efficiency.

    PubMed

    Anghel, M; Toroczkai, Zoltán; Bassler, Kevin E; Korniss, G

    2004-02-06

    Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.

  18. Late Cenozoic Temporal Evolution of North American Dynamic Topography

    NASA Astrophysics Data System (ADS)

    Moucha, R.; Forte, A. M.; Rowley, D. B.; Mitrovica, J. X.; Simmons, N. A.; Grand, S. P.

    2008-12-01

    The Farallon plate was completely overridden by the North American plate by mid-Cenozoic. Although the Farallon plate ceased to exist on the surface, it continues to have a significant tectonic impact on North America. At the present time, the subducted Farallon plate drives a large-scale thermal convective cell below the southern half of North America, where downward flow in the east is driven by the dense Farallon slab and upward flow in the west is a combination of local, buoyancy-driven hot upwelling and large-scale return flow. Herein, we will explore the geodynamic implications of this convective flow throughout the late Cenozoic by carrying out backward mantle flow simulations starting with present-day heterogeneity derived from a high resolution joint seismic-geodynamic tomography model (Simmons et al., 2007) that yields excellent fits to present day surface observables (e.g. dynamic topography and the geoid). Our proposed temporal model of late Cenozoic North American mantle dynamics brings together the uplift of the Colorado Plateau in the southwestern US and offers an explanation for present-day seismicity at the New Madrid seismic zone. Furthermore, we consider the impact of this model on inferences of eustatic sea level change from measurements at the New Jersey passive margin.

  19. Scaling in driven dynamics starting in the vicinity of a quantum critical point

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Lo, Chung-Yu; Chen, Pochung

    2016-08-01

    Driven dynamics across a quantum critical point is usually described by the Kibble-Zurek scaling. Although the original Kibble-Zurek scaling requires an adiabatic initial state, it has been shown that scaling behaviors exist even when the driven dynamics is triggered from a thermal equilibrium state exactly at the critical point, in spite of the breakdown of the initial adiabaticity. In this paper, we show that the existence of the scaling behavior can be generalized to the case of the initial state being a thermal equilibrium state near the critical point. We propose a scaling theory in which the initial parameters are included as additional scaling variables due to the breakdown of the initial adiabaticity. In particular, we demonstrate that for the driven critical dynamics in a closed system, the nontrivial thermal effects are closely related to the initial distance to the critical point. We numerically confirm the scaling theory by simulating the real-time dynamics of the one-dimensional quantum Ising model at both zero and finite temperatures.

  20. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J. M.

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii-Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current.

  1. Dynamical evolution of small bodies in the Solar System

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2012-05-01

    This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses on the asteroid population but parts of the theory can be applied to other systems such as comets or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be significantly perturbed by non-gravitational forces and tidal torques on timescales less than their lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the YORP effect can result in the active endogenous evolution of asteroid systems; something that was not considered more than twenty years ago. This thesis is divided into three independent studies. The first explores the dynamics of a binary systems immediately after formation from rotational fission. The rotational fission hypothesis states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this to occur, and are often referred to as "rubble piles.'' A more complete description of the hypothesis and the ensuing dynamics is provided there. From that study a framework of asteroid evolution is assembled. It is determined that mass ratio is the most important factor for determining the outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary schema and the relevant timescales are assessed. In the second study, the role of non-gravitational and tidal torques in binary asteroid systems is explored. Understanding the competition between tides and the YORP effect provides insight into the relative abundances of the different binary morphologies and the effect of planetary flybys. The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that lead to interesting end states including stranded

  2. Electromagnetic oscillations in a driven nonlinear resonator: a description of complex nonlinear dynamics.

    PubMed

    Petrov, E Yu; Kudrin, A V

    2012-05-01

    Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating voltage and filled with a nonlinear nondispersive medium. It is assumed that the medium lacks a center of inversion and the dependence of the electric displacement on the electric field can be approximated by an exponential function. We show that the Maxwell equations are integrated exactly in this case and the field components in the cavity are represented in terms of implicit functions of special form. The driven electromagnetic oscillations in the cavity are found to display very interesting temporal behavior and their Fourier spectra contain singular continuous components. This is a demonstration of the existence of a singular continuous (fractal) spectrum in an exactly integrable system.

  3. In silico evolution of oscillatory dynamics in biochemical networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2015-03-01

    We are studying in silico evolution of complex, oscillatory network dynamics within the framework of a minimal mutational model of protein-protein interactions. In our model we consider two different types of proteins, kinase (activator) and phosphatase(inhibitor). In our model. each protein can either be phosphorylated(active) or unphospphorylated (inactive), represented by binary strings. Active proteins can modify their target based on the Michaelis-Menten kinetics of chemical equation. Reaction rate constants are directly related to sequence dependent protein-protein interaction energies. This model can be stuided for non-trivial behavior e.g. oscillations, chaos, multiple stable states. We focus here on biochemical oscillators; some questions we will address within our framework include how the oscillatory dynamics depends on number of protein species, connectivity of the network, whether evolution can readily converge on a stable oscillator if we start with random intitial parameters, neutral evolution with additional protein components and general questions of robustness and evolavability.

  4. DYNAMICAL EVOLUTION OF VISCOUS DISKS AROUND Be STARS. I. PHOTOMETRY

    SciTech Connect

    Haubois, X.; Carciofi, A. C.; Rivinius, Th.; Okazaki, A. T.; Bjorkman, J. E.

    2012-09-10

    Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard {alpha}-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk build-up as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and {alpha} viscosity parameter. The diagnostic potential of those light curves is also discussed.

  5. Structural and Molecular Evidence Suggesting Coronavirus-driven Evolution of Mouse Receptor.

    PubMed

    Peng, Guiqing; Yang, Yang; Pasquarella, Joseph R; Xu, Liqing; Qian, Zhaohui; Holmes, Kathryn V; Li, Fang

    2017-02-10

    Hosts and pathogens are locked in an evolutionary arms race. To infect mice, mouse hepatitis coronavirus (MHV) has evolved to recognize mouse CEACAM1a (mCEACAM1a) as its receptor. To elude MHV infections, mice may have evolved a variant allele from the Ceacam1a gene, called Ceacam1b, producing mCEACAM1b, which is a much poorer MHV receptor than mCEACAM1a. Previous studies showed that sequence differences between mCEACAM1a and mCEACAM1b in a critical MHV-binding CC' loop partially account for the low receptor activity of mCEACAM1b, but detailed structural and molecular mechanisms for the differential MHV receptor activities of mCEACAM1a and mCEACAM1b remained elusive. Here we have determined the crystal structure of mCEACAM1b and identified the structural differences and additional residue differences between mCEACAM1a and mCEACAM1b that affect MHV binding and entry. These differences include conformational alterations of the CC' loop as well as residue variations in other MHV-binding regions, including β-strands C' and C'' and loop C'C''. Using pseudovirus entry and protein-protein binding assays, we show that substituting the structural and residue features from mCEACAM1b into mCEACAM1a reduced the viral receptor activity of mCEACAM1a, whereas substituting the reverse changes from mCEACAM1a into mCEACAM1b increased the viral receptor activity of mCEACAM1b. These results elucidate the detailed molecular mechanism for how mice may have kept pace in the evolutionary arms race with MHV by undergoing structural and residue changes in the MHV receptor, providing insight into this possible example of pathogen-driven evolution of a host receptor protein.

  6. Analysis of planetary evolution with emphasis on differentiation and dynamics

    NASA Technical Reports Server (NTRS)

    Kaula, William M.; Newman, William I.

    1987-01-01

    In order to address the early stages of nebula evolution, a three-dimensional collapse code which includes not only hydrodynamics and radiative transfer, but also the effects of ionization and, possibly, magnetic fields is being addressed. As part of the examination of solar system evolution, an N-body code was developed which describes the latter stages of planet formation from the accretion of planetesimals. To test the code for accuracy and run-time efficiency, and to develop a stronger theoretical foundation, problems were studied in orbital dynamics. A regional analysis of the correlation in the gravity and topography fields of Venus was performed in order to determine the small and intermediate scale subsurface structure.

  7. Star-planet interactions and dynamical evolution of exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Damiani, Cilia

    2015-09-01

    The dynamical evolution of planetary systems, after the evaporation of the accretion disk, is the result of the competition between tidal dissipation and the net angular momentum loss of the system. The description of the diversity of orbital configurations, and correlations between parameters of the observed system (e.g. in the case of hot jupiters), is still limited by our understanding of the transport of angular momentum within the stars, and its effective loss by magnetic braking. After discussing the challenges of modelling tidal evolution for exoplanets, I will review recent results showing the importance of tidal interactions to test models of planetary formation. This kind of studies rely on the determination of stellar radii, masses and ages. Major advances will thus be obtained with the results of the PLATO 2.0 mission, selected as the next M-class mission of ESA's Cosmic Vision plan, that will allow the complete characterisation of host stars using asteroseismology.

  8. Star clusters as laboratories for stellar and dynamical evolution.

    PubMed

    Kalirai, Jason S; Richer, Harvey B

    2010-02-28

    Open and globular star clusters have served as benchmarks for the study of stellar evolution owing to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that established the importance of imaging stars in these systems, we focus on several recent studies that have challenged our fundamental picture of star clusters. These new studies indicate that star clusters can very well harbour multiple stellar populations, possibly formed through self-enrichment processes from the first-generation stars that evolved through post-main-sequence evolutionary phases. Correctly interpreting stellar evolution in such systems is tied to our understanding of both chemical-enrichment mechanisms, including stellar mass loss along the giant branches, and the dynamical state of the cluster. We illustrate recent imaging, spectroscopic and theoretical studies that have begun to shed new light on the evolutionary processes that occur within star clusters.

  9. Dynamical Evolution and Migration of Circumbinary Planets and Their Habitability

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.; Kley, W.; Kaltenegger, L.

    2014-03-01

    The recent success of the Kepler space telescope in detecting several circumbinary planets has raised many questions on the formation, evolution, and habitability of these objects. The detection of multiple transists in these systems points to the co-planarity of the orbital planes of the binary and planet(s), giving strong support to the idea that these planets formed in circumbinary protoplanetary disks. The proximity of some of these planets to the boundary of orbital instability around the binary suggests an evolutionary scenario in which planets form at larger distances and migrate to their present orbits. How such planets form, and how the binarity of the system affects their formation and subsequent migration are among fundamental questions that require deep understanding of the growth and evolution of solid objects in circumbinary environments, and their dynamical evolution. Given that several of the currently known circumbinary planets are in the habitable zone, the habitability of planet-hosting binary systems has also become an important topic of research. We have carried out extensive analysis of the dynamical evolution of planets in a circumbinary disk, and their habitability. The results of our hydrodynamical simulations indicate that planets migrate inward and settle near the inner edge of the circumbinary disk (the stability limit), in good agreement with the results of the observations. Our model of habitability takes into account, self-consistently, the contribution of each star to the total flux received at the top of the planet's atmosphere, producing accurate maps of the HZ of the system. We present the results of our studies and discuss their applications to the formation and habitability of the currently known Kepler circumbinary planets.

  10. Asymptotic Dynamics of Self-driven Vehicles in a Closed Boundary

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Lun; Huang, Chia-Ling

    2011-08-01

    We study the asymptotic dynamics of self-driven vehicles in a loop using a car-following model with the consideration of volume exclusions. In particular, we derive the dynamical steady states for the single-cluster case and obtain the corresponding fundamental diagrams, exhibiting two branches representative of entering and leaving the jam, respectively. By simulations we find that the speed average over all vehicles eventually reaches the same value, regardless of final clustering states. The autocorrelation functions for overall speed average and single-vehicle speed are studied, each revealing a unique time scale. We also discuss the role of noises in vehicular accelerations. Based on our observations we give trial definitions about the degree of chaoticity for general self-driven many-body systems.

  11. Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian

    2016-01-01

    Achieving effectively adiabatic dynamics in finite time is a ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods—the fast-forward technique—to driven Dirac dynamics. As our main result we find that shortcuts to adiabaticity for the (1+1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings are illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields.

  12. 2D pattern evolution constrained by complex network dynamics

    NASA Astrophysics Data System (ADS)

    da Rocha, L. E. C.; Costa, L. da F.

    2007-03-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling several complex natural and artificial systems. In the same time in which the structural intricacies of such networks are being revealed and understood, efforts have also been directed at investigating how such connectivity properties define and constrain the dynamics of systems unfolding on such structures. However, less attention has been focused on hybrid systems, i.e. involving more than one type of network and/or dynamics. Several real systems present such an organization, e.g. the dynamics of a disease coexisting with the dynamics of the immune system. The current paper investigates a specific system involving diffusive (linear and nonlinear) dynamics taking place in a regular network while interacting with a complex network of defensive agents following Erdös Rényi (ER) and Barabási Albert (BA) graph models with moveable nodes. More specifically, the complex network is expected to control, and if possible, to extinguish the diffusion of some given unwanted process (e.g. fire, oil spilling, pest dissemination, and virus or bacteria reproduction during an infection). Two types of pattern evolution are considered: Fick and Gray Scott. The nodes of the defensive network then interact with the diffusing patterns and communicate between themselves in order to control the diffusion. The main findings include the identification of higher efficiency for the BA control networks and the presence of relapses in the case of the ER model.

  13. On learning dynamics underlying the evolution of learning rules.

    PubMed

    Dridi, Slimane; Lehmann, Laurent

    2014-02-01

    In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.

  14. Dynamics of Green Sahara Periods and Their Role in Hominin Evolution

    PubMed Central

    Larrasoaña, Juan C.; Roberts, Andrew P.; Rohling, Eelco J.

    2013-01-01

    Astronomically forced insolation changes have driven monsoon dynamics and recurrent humid episodes in North Africa, resulting in green Sahara Periods (GSPs) with savannah expansion throughout most of the desert. Despite their potential for expanding the area of prime hominin habitats and favouring out-of-Africa dispersals, GSPs have not been incorporated into the narrative of hominin evolution due to poor knowledge of their timing, dynamics and landscape composition at evolutionary timescales. We present a compilation of continental and marine paleoenvironmental records from within and around North Africa, which enables identification of over 230 GSPs within the last 8 million years. By combining the main climatological determinants of woody cover in tropical Africa with paleoenvironmental and paleoclimatic data for representative (Holocene and Eemian) GSPs, we estimate precipitation regimes and habitat distributions during GSPs. Their chronology is consistent with the ages of Saharan archeological and fossil hominin sites. Each GSP took 2–3 kyr to develop, peaked over 4–8 kyr, biogeographically connected the African tropics to African and Eurasian mid latitudes, and ended within 2–3 kyr, which resulted in rapid habitat fragmentation. We argue that the well-dated succession of GSPs presented here may have played an important role in migration and evolution of hominins. PMID:24146882

  15. Dynamics of green Sahara periods and their role in hominin evolution.

    PubMed

    Larrasoaña, Juan C; Roberts, Andrew P; Rohling, Eelco J

    2013-01-01

    Astronomically forced insolation changes have driven monsoon dynamics and recurrent humid episodes in North Africa, resulting in green Sahara Periods (GSPs) with savannah expansion throughout most of the desert. Despite their potential for expanding the area of prime hominin habitats and favouring out-of-Africa dispersals, GSPs have not been incorporated into the narrative of hominin evolution due to poor knowledge of their timing, dynamics and landscape composition at evolutionary timescales. We present a compilation of continental and marine paleoenvironmental records from within and around North Africa, which enables identification of over 230 GSPs within the last 8 million years. By combining the main climatological determinants of woody cover in tropical Africa with paleoenvironmental and paleoclimatic data for representative (Holocene and Eemian) GSPs, we estimate precipitation regimes and habitat distributions during GSPs. Their chronology is consistent with the ages of Saharan archeological and fossil hominin sites. Each GSP took 2-3 kyr to develop, peaked over 4-8 kyr, biogeographically connected the African tropics to African and Eurasian mid latitudes, and ended within 2-3 kyr, which resulted in rapid habitat fragmentation. We argue that the well-dated succession of GSPs presented here may have played an important role in migration and evolution of hominins.

  16. Nonstationary current-driven dynamics of vortex domain walls in films with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Dubovik, M. N.; Filippov, B. N.; Korzunin, L. G.

    2017-02-01

    Micromagnetic simulation of a current-driven vortex domain wall motion in a film with in-plane anisotropy was carried out. The current density values j >jc were considered corresponding to the nonstationary motion, with the domain wall structure dynamic transformation occurred. A nonlinear dependence of the jc value on the film thickness was obtained. The nonstationary motion regime existence restricted the possibility to increase the domain wall velocity by increasing j and decreasing the damping parameter.

  17. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    SciTech Connect

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  18. Dynamical Phase Transition in a Model for Evolution with Migration

    NASA Astrophysics Data System (ADS)

    Waclaw, Bartłomiej; Allen, Rosalind J.; Evans, Martin R.

    2010-12-01

    We study a simple quasispecies model for evolution in two different habitats, with different fitness landscapes, coupled through one-way migration. Our key finding is a dynamical phase transition at a critical value of the migration rate, at which the time to reach the steady state diverges. The genetic composition of the population is qualitatively different above and below the transition. Using results from localization theory, we show that the critical migration rate may be very small—demonstrating that evolutionary outcomes can be very sensitive to even a small amount of migration.

  19. In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis

    PubMed Central

    Longo, Elson; Avansi, Waldir; Bettini, Jefferson; Andrés, Juan; Gracia, Lourdes

    2016-01-01

    The study of the interaction of electron irradiation with matter and the response of the material to the passage of electrons is a very challenging problem. However, the growth mechanism observed during nanostructural evolution appears to be a broad and promising scientific field in nanotechnology. We report the in situ TEM study of nanostructural evolution of electron-driven silver (Ag) nanocrystals through an additive-free synthetic procedure. Observations revealed the direct effect of the electron beam on the morphological evolution of Ag nanocrystals through different mechanisms, such as mass transport, site-selective coalescence, and an appropriate structural configuration after coalescence leading to a more stable configuration. A fundamental understanding of the growth and formation mechanisms of Ag nanocrystals, which interact with the electron beam, is essential to improve the nanocrystal shape-control mechanisms as well as the future design and study of nanomaterials. PMID:26979671

  20. Structure and dynamics of plasma interfaces in laser-driven hohlraums

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Sio, H.; Frenje, J. A.; Séguin, F. H.; Birkel, A.; Petrasso, R. D.; Wilks, S. C.; Amendt, P. A.; Remington, B. A.; Masson-Laborde, P.-E.; Laffite, S.; Tassin, V.; Betti, R.; Sanster, T. C.; Fitzsimmons, P.; Farrell, M.

    2016-10-01

    Understanding the structure and dynamics of plasma interfaces in laser-driven hohlraums is important because of their potential effects on capsule implosion dynamics. To that end, a series of experiments was performed to explore critical aspects of the hohlraum environment, with particular emphasis on the role of self-generated spontaneous electric and magnetic fields at plasma interfaces, including the interface between fill-gas and Au-blowoff. The charged fusion products (3-MeV DD protons and 14.7-MeV D3He protons generated in shock-driven, D3He filled backlighter capsule) pass through the subject hohlraum and form images on CR-39 nuclear track detectors, providing critical information. Important physics topics, including ion diffusive mix and Rayleigh-Taylor instabilities, will be studied to illuminate ion kinetic dynamics and hydrodynamic instability at plasma interfaces in laser-driven hohlraums. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  1. On the dynamical evolution of the Orion Trapezium

    NASA Astrophysics Data System (ADS)

    Allen, Christine.; Costero, Rafael; Ruelas-Mayorga, Alex; Sánchez, L. J.

    2017-01-01

    We discuss recent observational data on the transverse and radial velocities, as well as on the masses of the main components of the Orion Trapezium. Based on the most reliable values of these quantities we study the dynamical evolution of ensembles of multiple systems mimicking the Orion Trapezium. To this end we conduct numerical N -body integrations using the observed masses, planar positions and velocities, radial velocities, and random line-of-sight (z) positions for all components. We include perturbations in these quantities compatible with the observational errors. We find the dynamical lifetimes of such systems to be quite short, of the order of 10 to 50 thousand years. The end result of the simulations is usually a tight binary, or sometimes a hierarchical triple. The properties of the evolved systems are studied at different values of the crossing times. The frequency distributions of the major semiaxes and eccentricities of the resulting binaries are discussed and compared with observations.

  2. Dynamic structural network evolution in compressed granular systems

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James; Daniels, Karen; Bassett, Danielle

    The heterogeneous dynamic behavior of granular packings under shear or compression is not well-understood. In this study, we use novel techniques from network science to investigate the structural evolution that occurs in compressed granular systems. Specifically, we treat particles as network nodes, and pressure-dependent forces between particles as layer-specific network edges. Then, we use a generalization of community detection methods to multilayer networks, and develop quantitative measures that characterize changes in the architecture of the force network as a function of pressure. We observe that branchlike domains reminiscent of force chains evolve differentially as pressure is applied: topological characteristics of these domains at rest predict their coalescence or dispersion under pressure. Our methods allow us to study the dynamics of mesoscale structure in granular systems, and provide a direct way to compare data from systems under different external conditions or with different physical makeup.

  3. Dynamic mode locking in a driven colloidal system: experiments and theory

    NASA Astrophysics Data System (ADS)

    Juniper, Michael P. N.; Zimmermann, Urs; Straube, Arthur V.; Besseling, Rut; Aarts, Dirk G. A. L.; Löwen, Hartmut; Dullens, Roel P. A.

    2017-01-01

    In this article we examine the dynamics of a colloidal particle driven by a modulated force over a sinusoidal optical potential energy landscape. Coupling between the competing frequencies of the modulated drive and that of particle motion over the periodic landscape leads to synchronisation of particle motion into discrete modes. This synchronisation manifests as steps in the average particle velocity, with mode locked steps covering a range of average driving velocities. The amplitude and frequency dependence of the steps are considered, and compared to results from analytic theory, Langevin dynamics simulations, and dynamic density functional theory. Furthermore, the critical driving velocity is studied, and simulation used to extend the range of conditions accessible in experiments alone. Finally, state diagrams from experiment, simulation, and theory are used to show the extent of the dynamically locked modes in two dimensions, as a function of both the amplitude and frequency of the modulated drive.

  4. Molecular dynamics on nonequilibrium motion of a colloidal particle driven by an external torque

    NASA Astrophysics Data System (ADS)

    Yoo, Donghwan; Jung, Youngkyun; Kwon, Chulan

    2017-03-01

    We investigate the motion of a colloidal particle driven out of equilibrium by an external torque. We use molecular dynamics simulation as an alternative to the Langevin dynamics. We prepare a heat bath composed of thousands of particles interacting with each other through the Lennard–Jones potential and impose the Langevin thermostat to maintain the heat bath in equilibrium. We consider a single colloidal particle interacting with with the particles of the heat bath also by the Lennard–Jones potential, without applying any types of dissipative or fluctuating forces used in Langevin dynamics. We set up simulation protocol fit for the overdamped limit as in real experiments, by increasing the size and mass of the colloidal particle. We study nonequilibrium fluctuations for work and heat produced incessantly in time and compare the results with those obtained from the previous studies via the overdamped Langevin dynamics. We confirm the Gallavotti–Cohen symmetry and the fluctuation theorem.

  5. Quantum system driven by incoherent a.c fields: Multi-crossing Landau Zener dynamics

    NASA Astrophysics Data System (ADS)

    Jipdi, M. N.; Fai, L. C.; Tchoffo, M.

    2016-10-01

    The paper investigates the multi-crossing dynamics of a Landau-Zener (LZ) system driven by two sinusoidal a.c fields applying the Dynamic Matrix approach (DMA). The system is shown to follow one-crossing and multi-crossing dynamics for low and high frequency regime respectively. It is shown that in low frequency regime, the resonance phenomenon occurs and leads to the decoupling of basis states; the effective gap vanishes and then the complete blockage of the system. For high frequency, the system achieves multi-crossing dynamics with two fictitious crossings; the system models a Landau-Zener-Stückelberg (LZS) interferometer with critical parameters that tailor probabilities. The system is then shown to depend only on the phase that permits the easiest control with possible application in implementing logic gates.

  6. Nonequilibriun Dynamic Phases of Driven Vortex Lattices in Superconductors with Periodic Pinning Arrays

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson, C. J.; Nori, F.

    1998-03-01

    We present results from extensive simulations of driven vortex lattices interacting with periodic pinning arrays. Changing an applied driving force produces an exceptionally rich variety of distinct dynamic phases which include over a dozen well defined plastic flow phases. Transitions between different dynamical phases are marked by sharp jumps in the V(I) curves that coincide with distinct changes in the vortex trajectories and vortex lattice order. A series of dynamical phase diagrams are presented which outline the onset of the different dynamical phases (C. Reichhardt, C.J. Olson, and F. Nori, Phys. Rev. Lett. 78), 2648 (1997); and to be published. Videos are avaliable at http://www-personal.engin.umich.edu/ñori/. Using force balance arguments, several of the phase boundaries can be derived analyticaly.

  7. MYStIX: Dynamical evolution of young clusters

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.

    2014-08-01

    The spatial structure of young stellar clusters in Galactic star-forming regions provides insight into these clusters’ dynamical evolution---a topic with implications for open questions in star-formation and cluster survival. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) provides a sample of >30,000 young stars in star-forming regions (d<3.6 kpc) that contain at least one O-type star. We use the finite mixture model analysis to identify subclusters of stars and determine their properties: including subcluster radii, intrinsic numbers of stars, central density, ellipticity, obscuration, and age. In 17 MYStIX regions we find 142 subclusters, with a diverse radii and densities and age spreads of up to ~1 Myr in a region. There is a strong negative correlation between subcluster radius and density, which indicates that embedded subclusters expand but also gain stars as they age. Subcluster expansion is also shown by a positive radius--age correlation, which indicates that subclusters are expanding at <1 km/s. The subcluster ellipticity distribution and number--density relation show signs of a hierarchical merger scenario, whereby young stellar clusters are built up through mergers of smaller clumps, causing evolution from a clumpy spatial distribution of stars (seen in some regions) to a simpler distribution of stars (seen in other regions). Many of the simple young stellar clusters show signs of dynamically relaxation, even though they are not old enough for this to have occurred through two-body interactions. However, this apparent contradiction might be explained if small subcluster, which have shorter dynamical relaxation times, can produce dynamically relaxed clusters through hierarchical mergers.

  8. Quantum dynamics of incoherently driven V-type systems: Analytic solutions beyond the secular approximation

    NASA Astrophysics Data System (ADS)

    Dodin, Amro; Tscherbul, Timur V.; Brumer, Paul

    2016-06-01

    Closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath, relevant to light harvesting processes, are obtained and discussed. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter ζ = /1 2 ( γ 1 + γ 2) / Δ p , where γi are the radiative decay rates of the excited levels i = 1, 2, and Δ p = √{ Δ 2 + ( 1 - p 2) γ 1 γ 2 } depends on the excited-state level splitting Δ > 0 and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit (ζ ≫ 1), approach a long-lived quasi-steady state in the overdamped limit (ζ ≪ 1), and display an intermediate behavior at critical damping (ζ = 1). The sudden incoherent turn-on is shown to generate a mixture of excited eigenstates |e1> and |e2> and their in-phase coherent superposition | ϕ + > = /1 √{ r 1 + r 2 } ( √{ r 1 } | e 1 > + √{ r 2 } | e 2 >) , which is remarkably long-lived in the overdamped limit (where r1 and r2 are the incoherent pumping rates). Formation of this coherent superposition enhances the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, additional asymptotic quasistationary coherences are identified, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when r1 = r2 and the transition dipole moments are fully aligned.

  9. Quantum dynamics of incoherently driven V-type systems: Analytic solutions beyond the secular approximation.

    PubMed

    Dodin, Amro; Tscherbul, Timur V; Brumer, Paul

    2016-06-28

    Closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath, relevant to light harvesting processes, are obtained and discussed. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter ζ=12(γ1+γ2)/Δp, where γi are the radiative decay rates of the excited levels i = 1, 2, and Δp=Δ(2)+(1-p(2))γ1γ2 depends on the excited-state level splitting Δ > 0 and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit (ζ ≫ 1), approach a long-lived quasi-steady state in the overdamped limit (ζ ≪ 1), and display an intermediate behavior at critical damping (ζ = 1). The sudden incoherent turn-on is shown to generate a mixture of excited eigenstates |e1〉 and |e2〉 and their in-phase coherent superposition |ϕ+〉=1r1+r2(r1|e1〉+r2|e2〉), which is remarkably long-lived in the overdamped limit (where r1 and r2 are the incoherent pumping rates). Formation of this coherent superposition enhances the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, additional asymptotic quasistationary coherences are identified, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when r1 = r2 and the transition dipole moments are fully aligned.

  10. Schumpeterian economic dynamics as a quantifiable model of evolution

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Klimek, Peter; Hanel, Rudolf

    2010-07-01

    We propose a simple quantitative model of Schumpeterian economic dynamics. New goods and services are endogenously produced through combinations of existing goods. As soon as new goods enter the market, they may compete against already existing goods. In other words, new products can have destructive effects on existing goods. As a result of this competition mechanism, existing goods may be driven out from the market—often causing cascades of secondary defects (Schumpeterian gales of destruction). The model leads to generic dynamics characterized by phases of relative economic stability followed by phases of massive restructuring of markets—which could be interpreted as Schumpeterian business 'cycles'. Model time series of product diversity and productivity reproduce several stylized facts of economics time series on long timescales, such as GDP or business failures, including non-Gaussian fat tailed distributions and volatility clustering. The model is phrased in an open, non-equilibrium setup which can be understood as a self-organized critical system. Its diversity dynamics can be understood by the time-varying topology of the active production networks.

  11. Evolution and dynamics of a matter creation model

    NASA Astrophysics Data System (ADS)

    Pan, S.; Haro, J. de; Paliathanasis, A.; Slagter, R. J.

    2016-08-01

    In a flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, we consider the expansion of the universe powered by the gravitationally induced `adiabatic' matter creation. To demonstrate how matter creation works well with the expanding universe, we have considered a general creation rate and analysed this rate in the framework of dynamical analysis. The dynamical analysis hints the presence of a non-singular universe (without the big bang singularity) with two successive accelerated phases, one at the very early phase of the universe (i.e. inflation), and the other one describes the current accelerating universe, where this early, late accelerated phases are associated with an unstable fixed point (i.e. repeller) and a stable fixed point (attractor), respectively. We have described this phenomena by analytic solutions of the Hubble function and the scale factor of the FLRW universe. Using Jacobi last multiplier method, we have found a Lagrangian for this matter creation rate describing this scenario of the universe. To match with our early physics results, we introduce an equivalent dynamics driven by a single scalar field, discuss the associated observable parameters and compare them with the latest Planck data sets. Finally, introducing the teleparallel modified gravity, we have established an equivalent gravitational theory in the framework of matter creation.

  12. Molecular dynamics for irradiation driven chemistry: application to the FEBID process*

    NASA Astrophysics Data System (ADS)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-10-01

    A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package capable to operate with a large library of classical potentials, many-body force fields and their combinations. IDMD opens a broad range of possibilities for modelling of irradiation driven modifications and chemistry of complex molecular systems ranging from radiotherapy cancer treatments to the modern technologies such as focused electron beam deposition (FEBID). As an example, the new methodology is applied for studying the irradiation driven chemistry caused by FEBID of tungsten hexacarbonyl W(CO)6 precursor molecules on a hydroxylated SiO2 surface. It is demonstrated that knowing the interaction parameters for the fragments of the molecular system arising in the course of irradiation one can reproduce reasonably well experimental observations and make predictions about the morphology and molecular composition of nanostructures that emerge on the surface during the FEBID process.

  13. Hydrodynamic-flow-driven phase evolution in a polymer blend film modified by diblock copolymers

    NASA Astrophysics Data System (ADS)

    Rysz, J.; Ermer, H.; Budkowski, A.; Bernasik, A.; Lekki, J.; Juengst, G.; Brenn, R.; Kowalski, K.; Camra, J.; Lekka, M.; Jedliński, J.

    We have studied surface-directed phase separation in thin films of deuterated polystyrene and poly(bromostyrene) (with 22.7% of monomers brominated) using ^{{3}}He nuclear reaction analysis, dynamic secondary ion mass spectroscopy and atomic force microscopy combined with preferential dissolution. The crossover from competing to neutral surfaces of the critical blend film (cast onto Au) was commenced: polyisoprene-polystyrene diblock copolymers were added and segregated to both surfaces reducing in a tuneable manner the effective interactions. Two main stages of phase evolution are characterised by i) the growth of two surface layers and by ii) the transition from the four-layer to the final bilayer morphology. For increasing copolymer content the kinetics of the first stage is hardly affected but the amplitude of composition oscillations is reduced indicating more fragmented inner layers. As a result, a faster mass flow to the surfaces and an earlier completion of the second stage were observed. The hydrodynamic flow mechanism, driving both stages, is evidenced by nearly linear growth of the surface layer and by mass flow channels extending from the surface layer into the bulk. The final bilayer structure, formed even for the surfaces covered by strongly overlapped copolymers, is indicative of long-range (antisymmetric) surface forces.

  14. Random Evolution of Idiotypic Networks: Dynamics and Architecture

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.

  15. Adaptive network dynamics and evolution of leadership in collective migration

    NASA Astrophysics Data System (ADS)

    Pais, Darren; Leonard, Naomi E.

    2014-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.

  16. Dynamic evolution of genomes and the concept of genome space.

    PubMed

    Bellgard, M I; Itoh, T; Watanabe, H; Imanishi, T; Gojobori, T

    1999-05-18

    A new era in the elucidation of genome evolution has been heralded with the availability of numerous genome sequences. With these data, it has been possible to study evolutionary processes at a greater level of detail in order to characterize features such as gene shuffling, genome rearrangements, base bias composition, and horizontal gene transfer. In this paper, we discuss the evolutionary implications of significant rearrangements within genomes as well as characteristic genomic regions that have been conserved across genomes. This is based on our analysis of orthologous and paralogous genes. We argue that genome plasticity has most likely contributed substantially to the dynamic evolution of genomes. We also describe the characteristic mosaic features of an archaea genome that is comprised of both bacterial and eukaryal elements. Here we investigate base compositional differences as well as the similarity of this species' genes to either bacteria or eukarya. We conclude that these features can be largely explained by the mechanism of horizontal gene transfer. Finally, we introduce the concept of genome space which is defined as the entire set of genomes of all living organisms. We explain its usefulness to describe as well as to gain deeper insight into the general features of the dynamic genomic evolutionary process.

  17. Vortex evolution and dynamics during turbulence-flame interaction

    NASA Astrophysics Data System (ADS)

    Haffner, Eileen; Peter Hamlington Collaboration, Dr.; Alexei Poludnenko Collaboration, Dr.; Elaine Oran Collaboration, Dr.; Melissa A. Green Collaboration, Dr.

    2016-11-01

    Individual vortex structures are tracked in dynamic three-dimensional vortex-flame interactions using results from a previously-published implicit LES of premixed hydrogen and air combustion. The evolution of the vortices are visualized using isosurfaces of the Q criterion coupled with isosurfaces of the fuel mass fraction throughout the flame brush. Structures with high magnitude vorticity are observed to persist through the flame brush, whereas weaker vortices lose vorticity magnitude due to fluid stretching effects and volume expansion when interacting with the flame brush. The flame itself can also create new vortex structures both within and outside of the flame brush, which has been shown in previous two-dimensional simulations and experiments. The individual terms of the vorticity evolution equation were calculated to further explore the dynamics of the vorticity within the flame brush, such as: stretch due to compressibility effects, tilt due to changes in the velocity gradients, and vorticity generation and destruction due to baroclinic torque (misalignment of the pressure and density gradients). The baroclinic torque is the potential generator for new structures that appear within the flame brush. Using these calculations we can obtain a better idea of the physical phenomenon that is occurring within and after the flame brush.

  18. Neutrino Transport in Black Hole-Neutron Star Binaries: Dynamical Mass Ejection and Neutrino-Driven Wind

    NASA Astrophysics Data System (ADS)

    Kyutoku, K.; Kiuchi, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K.

    2016-10-01

    We present our recent results of numerical-relativity simulations of black hole-neutron star binary mergers incorporating approximate neutrino transport. We in particular discuss dynamical mass ejection and neutrino-driven wind.

  19. Interplay of interfacial noise and curvature-driven dynamics in two dimensions

    NASA Astrophysics Data System (ADS)

    Roy, Parna; Sen, Parongama

    2017-02-01

    We explore the effect of interplay of interfacial noise and curvature-driven dynamics in a binary spin system. An appropriate model is the generalized two-dimensional voter model proposed earlier [M. J. de Oliveira, J. F. F. Mendes, and M. A. Santos, J. Phys. A: Math. Gen. 26, 2317 (1993), 10.1088/0305-4470/26/10/006], where the flipping probability of a spin depends on the state of its neighbors and is given in terms of two parameters, x and y . x =0.5 andy =1 correspond to the conventional voter model which is purely interfacial noise driven, while x =1 and y =1 correspond to the Ising model, where coarsening is fully curvature driven. The coarsening phenomena for 0.5 dynamical behavior of the relevant quantities show characteristic differences from both x =0.5 and 1. The most remarkable result is the existence of two time scales for x ≥xc where xc≈0.7 . On the other hand, we have studied the exit probability which shows Ising-like behavior with a universal exponent for any value of x >0.5 ; the effect of x appears in altering the value of the parameter occurring in the scaling function only.

  20. Collective Dynamics of Belief Evolution under Cognitive Coherence and Social Conformity.

    PubMed

    Rodriguez, Nathaniel; Bollen, Johan; Ahn, Yong-Yeol

    2016-01-01

    Human history has been marked by social instability and conflict, often driven by the irreconcilability of opposing sets of beliefs, ideologies, and religious dogmas. The dynamics of belief systems has been studied mainly from two distinct perspectives, namely how cognitive biases lead to individual belief rigidity and how social influence leads to social conformity. Here we propose a unifying framework that connects cognitive and social forces together in order to study the dynamics of societal belief evolution. Each individual is endowed with a network of interacting beliefs that evolves through interaction with other individuals in a social network. The adoption of beliefs is affected by both internal coherence and social conformity. Our framework may offer explanations for how social transitions can arise in otherwise homogeneous populations, how small numbers of zealots with highly coherent beliefs can overturn societal consensus, and how belief rigidity protects fringe groups and cults against invasion from mainstream beliefs, allowing them to persist and even thrive in larger societies. Our results suggest that strong consensus may be insufficient to guarantee social stability, that the cognitive coherence of belief-systems is vital in determining their ability to spread, and that coherent belief-systems may pose a serious problem for resolving social polarization, due to their ability to prevent consensus even under high levels of social exposure. We argue that the inclusion of cognitive factors into a social model could provide a more complete picture of collective human dynamics.

  1. A few points on the dynamical evolution of the young solar system

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2014-05-01

    The phenomenon of planetesimal-driven giant planet migration in the early history of our planetary system has become increasingly recognized as a key process for understanding the overall solar system architecture and its dynamical evolution. The dynamical structure of the Kuiper belt indicates that such migration caused Neptune's orbit to expand outward from its birth orbit by about 10 AU. It follows from energy and angular momentum conservation that a few tens of earth-masses of leftover planetesimals were ejected from the early solar system, and that Jupiter migrated inward by a few tenths of an AU. The orbital distribution of asteroids near resonances provides independent estimates of Jupiter's and Saturn's migration. An initially slow migration of the giant planets may have been accelerated during a brief but dramatic orbital instability due to planet-planet resonant encounters. While there is compelling evidence in the outer solar system for the above scenario, there is also tension with the observed properties of the inner solar system: the migration of the giant planets, with or without resonant encounters, would have caused severe, potentially destabilizing, perturbations on the inner planets’ orbits. I will describe these considerations and some ideas for resolving this crisis in our understanding of the dynamical history of the solar system.

  2. Collective Dynamics of Belief Evolution under Cognitive Coherence and Social Conformity

    PubMed Central

    Rodriguez, Nathaniel; Bollen, Johan

    2016-01-01

    Human history has been marked by social instability and conflict, often driven by the irreconcilability of opposing sets of beliefs, ideologies, and religious dogmas. The dynamics of belief systems has been studied mainly from two distinct perspectives, namely how cognitive biases lead to individual belief rigidity and how social influence leads to social conformity. Here we propose a unifying framework that connects cognitive and social forces together in order to study the dynamics of societal belief evolution. Each individual is endowed with a network of interacting beliefs that evolves through interaction with other individuals in a social network. The adoption of beliefs is affected by both internal coherence and social conformity. Our framework may offer explanations for how social transitions can arise in otherwise homogeneous populations, how small numbers of zealots with highly coherent beliefs can overturn societal consensus, and how belief rigidity protects fringe groups and cults against invasion from mainstream beliefs, allowing them to persist and even thrive in larger societies. Our results suggest that strong consensus may be insufficient to guarantee social stability, that the cognitive coherence of belief-systems is vital in determining their ability to spread, and that coherent belief-systems may pose a serious problem for resolving social polarization, due to their ability to prevent consensus even under high levels of social exposure. We argue that the inclusion of cognitive factors into a social model could provide a more complete picture of collective human dynamics. PMID:27812210

  3. Thermally Driven and Cytoskeletal-Assisted Dynamics of the Mitochondrial Reticulum

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle K.; Marcus, Andrew H.

    2003-05-01

    We report Fourier imaging correlation spectroscopy (FICS) and digital video fluorescence microscopy (DVFM) measurements of the dynamics of the mitochondrial reticulum in living osteosarcoma cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, which lead to complex multi-exponential relaxations that occur over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments (actin) and microtubules (tubulin). These filaments work with motor proteins to translate organelles through the cell. We studied the dynamics of osteosarcoma cells labeled with red fluorescent protein in the mitochondrial matrix space using DVFM and FICS. Cells were then treated with cytoskeletal destabilizing drugs. Analysis of microscopy data allows for us to determine whether dynamic processes are diffusive or driven (by the cytoskeleton or collective dynamics). In FICS experiments, the control cells exhibit a unique pattern of dynamics that are then simplified when the cytoskeleton is depolymerized. Upon depolymerization, the dynamics of the organelle appear primarily diffusive.

  4. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  5. Dynamic Off-Equilibrium Transition in Systems Slowly Driven across Thermal First-Order Phase Transitions

    NASA Astrophysics Data System (ADS)

    Pelissetto, Andrea; Vicari, Ettore

    2017-01-01

    We study the off-equilibrium behavior of systems with short-range interactions, slowly driven across a thermal first-order transition, where the equilibrium dynamics is exponentially slow. We consider a dynamics that starts in the high-T phase at time t =ti<0 and ends at t =tf>0 in the low-T phase, with a time-dependent temperature T (t )/Tc≈1 -t /ts, where ts is the protocol time scale. A general off-equilibrium scaling (OS) behavior emerges in the limit of large ts. We check it at the first-order transition of the two-dimensional q -state Potts model with q =20 and 10. The numerical results show evidence of a dynamic transition, where the OS functions show a spinodal-like singularity. Therefore, the general mean-field picture valid for systems with long-range interactions is qualitatively recovered, provided the time dependence is appropriately (logarithmically) rescaled.

  6. Coordination, Organisation and Model-driven Approaches for Dynamic, Flexible, Robust Software and Services Engineering

    NASA Astrophysics Data System (ADS)

    Nieves, Juan Carlos; Padget, Julian; Vasconcelos, Wamberto; Staikopoulos, Athanasios; Cliffe, Owen; Dignum, Frank; Vázquez-Salceda, Javier; Clarke, Siobhán; Reed, Chris

    Enterprise systems are increasingly composed of (and even functioning as) components in a dynamic, digital ecosystem. On the one hand, this new situation requires flexible, spontaneous and opportunistic collaboration activities to be identified and established among (electronic) business parties. On the other, it demands engineering methods that are able to integrate new functionalities and behaviours into running systems composed by active, distributed, interdependent processes. Here we present a multi-level architecture that combines organisational and coordination theories with model driven development, for the implementation, deployment and management of dynamic, flexible and robust service-oriented business applications, combined with a service layer that accommodates semantic service description, fine-grained semantic service discovery and the dynamic adaptation of services to meet changing circumstances.

  7. Primary Surface Particle Motion as a Mechanism for YORP-Driven Binary Asteroid Evolution

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.; Scheeres, D. J.

    2008-09-01

    Within the largest class of binary asteroid systems -- asynchronous binaries typified by 1999 KW4 -- we hypothesize continued YORP spin-up of the rapidly rotating primary leads to recurring episodic lofting motion of primary equator regolith. We theorize this is a mechanism for transporting YORP-injected angular momentum from primary spin into the mutual orbit. This both enables binary primaries to continue to spin at near surface fission rates and produces continued orbit expansion on time scales several times faster than expansion predicted by tidal dissipation alone. This is distinct from the Binary Yorp (BYORP) phenomenon, not studied in this work but to be added to it later. We evaluate our hypotheses using a combination of techniques for an example binary system. First high-fidelity dynamic simulation of surface-originating particles in the full-detail gravity field of the binary components, themselves propagated according to the full two body problem, gives particle final disposition (return impact, transfer impact, escape). Trajectory end states found for regolith lofted at different initial primary spin rates and relative poses are collected into probability matrices, allowing probabilistic propagation of surface particles for long durations at low computational cost. We track changes to mass, inertia dyad, rotation state, and centroid position and velocity for each component in response to this mapped particle motion. This allows tracking of primary, secondary, and mutual orbit angular momenta over time, clearly demonstrating the angular momentum transfer mechanism and validating our hypotheses. We present current orbit expansion rates and estimated orbit size doubling times consistent with this mechanism, for a few binary systems. We also discuss ramifications of this type of rapid binary evolution towards separation, including the frequency with which "divorced binaries" on similar heliocentric orbits are produced, formation of triple systems such as

  8. Safety-Information-Driven Human Mobility Patterns with Metapopulation Epidemic Dynamics

    PubMed Central

    Wang, Bing; Cao, Lang; Suzuki, Hideyuki; Aihara, Kazuyuki

    2012-01-01

    With the help of mass media, people receive information concerning the status of an infectious disease to guide their mobility. Herein, we develop a theoretical framework to investigate the safety-information-driven human mobility with metapopulation epidemic dynamics. Individuals respond to the safety information of a city by taking safe moves (passing cities with a more number of healthy individuals) or unsafe moves (passing cities with a less number of healthy individuals). Our findings show that the critical threshold depends on mobility in such a way that personal execution of safe moves unexpectedly promotes the global spread of a disease, while unsafe moves counterintuitively cause a locally, relatively small outbreak size. Our analysis underlines the role of safety consideration in the spatial spread of an infectious disease with clear implications for the model of mobility driven by individuals' benefit. PMID:23189237

  9. Safety-Information-Driven Human Mobility Patterns with Metapopulation Epidemic Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Cao, Lang; Suzuki, Hideyuki; Aihara, Kazuyuki

    2012-11-01

    With the help of mass media, people receive information concerning the status of an infectious disease to guide their mobility. Herein, we develop a theoretical framework to investigate the safety-information-driven human mobility with metapopulation epidemic dynamics. Individuals respond to the safety information of a city by taking safe moves (passing cities with a more number of healthy individuals) or unsafe moves (passing cities with a less number of healthy individuals). Our findings show that the critical threshold depends on mobility in such a way that personal execution of safe moves unexpectedly promotes the global spread of a disease, while unsafe moves counterintuitively cause a locally, relatively small outbreak size. Our analysis underlines the role of safety consideration in the spatial spread of an infectious disease with clear implications for the model of mobility driven by individuals' benefit.

  10. Experimental study of curvature-driven flute instability in the gas-dynamic trap

    SciTech Connect

    Ivanov, A.A.; Anikeev, A.V.; Bagryansky, P.A.; Bocharov, V.N.; Deichuli, P.P.; Karpushov, A.N.; Maximov, V.V.; Pod'minogin, A.A.; Rogozin, A.I.; Salikova, T.V.; Tsidulko, Y.A. )

    1994-05-01

    A curvature-driven flute instability will be excited in the magnetized plasmas if the magnetic field lines curve toward the entire plasma boundary. Conditions under which it can be effectively stabilized in axisymmetric geometry have been experimentally studied in a gas-dynamic trap (GDT) at Novosibirsk. Flexible design of the experimental device and the availability of neutral beams and ion cyclotron heating enabled the pressure-weighted curvature to be varied over a wide range. The stability limits were thus measured and compared with those predicted by the modified Rosenbluth--Longmire criterion. Characteristics of unstable curvature-driven flute modes were also measured and found to conform to a theory including finite ion Larmor radius (FLR) effects. Stable operation during neutral beam injection was achieved with a cusp end cell, resulting in an increase in [ital T][sub [ital e

  11. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  12. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  13. Shock-driven chemistry and reactive wave dynamics in liquid benzene

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Sheffield, Stephen A.; Coe, Joshua D.

    2017-01-01

    Benzene (C6H6) is a stable molecule because of its electronic structure - aromatic stability is derived from its delocalized, π-bonded, 6-membered planar ring structure. Under extreme P,T conditions benzene has been shown to be chemically reactive. Benzene principal shock Hugoniot states have been reported previously by several groups, at both high and low pressures. Cusps (or discontinuities) in the shock Hugoniot provide evidence that chemical reactions take place under shockwave compression of benzene at input pressure conditions above 13 GPa. In other shock-driven experiments, spectral changes have been observed in benzene near this cusp condition, indicating that the cusp is associated with shock-driven chemical reaction(s). In this work, a series of gas-gun-driven plate impact experiments were performed to measure and quantify the details associated with shock-driven reactive flow in benzene. Using embedded electromagnetic gauges (with up to 10 Lagrangian gauge positions in-material in a single experiment) multiple, evolving wave structures have been measured in benzene when the inputs were above 13 GPa, with the details changing as the input pressure was increased. Detailed insights into the volume changes associated with the chemical reaction(s), reaction rates, and estimates of the bulk moduli of reaction intermediates and products were obtained from the mutiple wave structures and their evolution. Using this new experimental data (along with the older experimental data from others), the benzene reactant and product Hugoniot loci have been modeled by thermodynamically complete equations of state (EOS).

  14. Adaptive evolution of reproductive and vegetative traits driven by breeding systems.

    PubMed

    Verdú, Miguel; Gleiser, Gabriela

    2006-01-01

    The evolution of inflorescence size, a key trait in reproductive success, was studied in the genus Acer under a perspective of adaptive evolution. Breeding systems, hypothesized to indicate different levels of mating competition, were considered as the selective scenarios defining different optima of inflorescence size. Larger inflorescences, which increase male fitness by generating larger floral displays, were hypothesized to be selected under scenarios with higher competition with unisexuals. An identical approach was used to test if the same selective regimes could be driving the evolution of leaf size, a vegetative trait that was found to be correlated with inflorescence size. A Brownian motion model of inflorescence/leaf-size evolution (which cannot distinguish between changes caused by pure drift processes and changes caused by natural selection in rapidly and randomly changing environments) was compared with several adaptive Ornstein-Uhlenbeck (OU) models, which can quantify the effects of both stochasticity and natural selection. The best-fitting model for inflorescence/leaf-size evolution was an OU model with three optima that increased with the level of mating competition. Both traits evolved under the same selective regimes and in the same direction, confirming a pattern of correlated evolution. These results show that a selective regime hypothetically related to the evolution of a reproductive trait can also explain the evolution of a vegetative trait.

  15. Current driven magnetization dynamics of a self-polarised synthetic ferrimagnet

    SciTech Connect

    Jenkins, A. S.; Lacoste, B.; Geranton, G.; Gusakova, D.; Dieny, B.; Ebels, U.; Buda-Prejbeanu, L. D.

    2014-02-28

    Spin torque driven excitations in spin valves and tunnel junctions are often investigated for a two magnetic layer system for which a polarizer (fixed magnetization) and a free layer can be distinguished. In the search for improved microwave properties and to understand the role of different coupling mechanisms between the magnetic layers, here, the excitation spectrum of an exchange coupled two layer synthetic ferrimagnet (SyF) system is investigated numerically with spin momentum transfer acting on both layers simultaneously. This self-polarised two layer system does not contain an external polarizer, and excitation of coupled modes arises due to the mutual spin transfer torque and the Ruderman-Kittel-Kasuya-Yosida interlayer exchange coupling. The current-field state diagrams of static and dynamic states are reported as a function of the interlayer exchange coupling strength. The numerically determined critical boundaries are well reproduced by an analytical stability analysis. The dynamic steady states reveal an optic-like mode at low magnetic fields, which becomes progressively acoustic-like for increased magnetic fields and currents. The frequency of these modes can be tuned by the film thickness and the strength of the interlayer exchange interaction. The results presented here will provide an important guide for designing spin torque oscillators that exploit the dynamic coupling between layers and, furthermore, they will provide a basis to test analytical models of spin torque driven coupled excitations.

  16. Data-Driven Engineering of Social Dynamics: Pattern Matching and Profit Maximization

    PubMed Central

    Peng, Huan-Kai; Lee, Hao-Chih; Pan, Jia-Yu; Marculescu, Radu

    2016-01-01

    In this paper, we define a new problem related to social media, namely, the data-driven engineering of social dynamics. More precisely, given a set of observations from the past, we aim at finding the best short-term intervention that can lead to predefined long-term outcomes. Toward this end, we propose a general formulation that covers two useful engineering tasks as special cases, namely, pattern matching and profit maximization. By incorporating a deep learning model, we derive a solution using convex relaxation and quadratic-programming transformation. Moreover, we propose a data-driven evaluation method in place of the expensive field experiments. Using a Twitter dataset, we demonstrate the effectiveness of our dynamics engineering approach for both pattern matching and profit maximization, and study the multifaceted interplay among several important factors of dynamics engineering, such as solution validity, pattern-matching accuracy, and intervention cost. Finally, the method we propose is general enough to work with multi-dimensional time series, so it can potentially be used in many other applications. PMID:26771830

  17. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  18. Bus Vent Design Evolution for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2010-01-01

    As a spacecraft undergoes ascent in a launch vehicle, its pressure environment transitions from one atmosphere to high vacuum in a matter of minutes. Venting of internal cavities is necessary to prevent the buildup of pressure differentials across cavity walls. Opposing the need to vent these volumes freely into space are thermal, optical, and electrostatic requirements for limiting or prohibiting the intrusion of unwanted energy into the same cavities. Bus vent design evolution is discussed for the Solar Dynamics Observatory. Design changes were influenced by a number of factors and concerns, such as contamination control, electrostatic discharge, changes in bus material, and driving fairing ascent pressure for a launch vehicle that was just entering service as this satellite project had gotten underway.

  19. Evolution of Secondary Software Businesses: Understanding Industry Dynamics

    NASA Astrophysics Data System (ADS)

    Tyrväinen, Pasi; Warsta, Juhani; Seppänen, Veikko

    Primary software industry originates from IBM's decision to unbundle software-related computer system development activities to external partners. This kind of outsourcing from an enterprise internal software development activity is a common means to start a new software business serving a vertical software market. It combines knowledge of the vertical market process with competence in software development. In this research, we present and analyze the key figures of the Finnish secondary software industry, in order to quantify its interaction with the primary software industry during the period of 2000-2003. On the basis of the empirical data, we present a model for evolution of a secondary software business, which makes explicit the industry dynamics. It represents the shift from internal software developed for competitive advantage to development of products supporting standard business processes on top of standardized technologies. We also discuss the implications for software business strategies in each phase.

  20. Dynamic evolution of venom proteins in squamate reptiles.

    PubMed

    Casewell, Nicholas R; Huttley, Gavin A; Wüster, Wolfgang

    2012-01-01

    Phylogenetic analyses of toxin gene families have revolutionised our understanding of the origin and evolution of reptile venoms, leading to the current hypothesis that venom evolved once in squamate reptiles. However, because of a lack of homologous squamate non-toxin sequences, these conclusions rely on the implicit assumption that recruitments of protein families into venom are both rare and irreversible. Here we use sequences of homologous non-toxin proteins from two snake species to test these assumptions. Phylogenetic and ancestral-state analyses revealed frequent nesting of 'physiological' proteins within venom toxin clades, suggesting early ancestral recruitment into venom followed by reverse recruitment of toxins back to physiological roles. These results provide evidence that protein recruitment into venoms from physiological functions is not a one-way process, but dynamic, with reversal of function and/or co-expression of toxins in different tissues. This requires a major reassessment of our previous understanding of how animal venoms evolve.

  1. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks

    PubMed Central

    Gerstein, Mark

    2016-01-01

    Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem’s gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally–e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the “state” and “control” in the model refer to its own (internal) and another subsystem’s (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model’s parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with

  2. Dynamic analysis of a grid-connected induction generator driven by a wave-energy turbine through hunting networks

    SciTech Connect

    Narayanan, S.S.Y.; Murthy, B.K.; Rao, G.S.

    1995-12-31

    The presence of forced oscillations occurring in a Wells Turbine driven grid-connected induction generator enables one to seek a solution by considering the analogy between the dynamics of the Wells turbine driven systems with those associated with diesel-engine driven generators or electric motors driving reciprocating compressors, where also such forced oscillations occur, although there they occur in synchronism with shaft-position or speed. This difference is taken into account and the hunting network theory, which has hitherto been applied to the dynamic analysis of motors driving reciprocating compressors, is here applied to analyze the dynamics of a Wells Turbine driven grid-connected induction generator. The method enables the generator current, power and slip to be predicted from a knowledge of the shaft-torque harmonics. The result is compared with that obtained through d-q analysis.

  3. Two-rate periodic protocol with dynamics driven through many cycles

    NASA Astrophysics Data System (ADS)

    Kar, Satyaki

    2017-02-01

    We study the long time dynamics in closed quantum systems periodically driven via time dependent parameters with two frequencies ω1 and ω2=r ω1 . Tuning of the ratio r there can unleash plenty of dynamical phenomena to occur. Our study includes integrable models like Ising and X Y models in d =1 and the Kitaev model in d =1 and 2 and can also be extended to Dirac fermions in graphene. We witness the wave-function overlap or dynamic freezing that occurs within some small/ intermediate frequency regimes in the (ω1,r ) plane (with r ≠0 ) when the ground state is evolved through a single cycle of driving. However, evolved states soon become steady with long driving, and the freezing scenario gets rarer. We extend the formalism of adiabatic-impulse approximation for many cycle driving within our two-rate protocol and show the near-exact comparisons at small frequencies. An extension of the rotating wave approximation is also developed to gather an analytical framework of the dynamics at high frequencies. Finally we compute the entanglement entropy in the stroboscopically evolved states within the gapped phases of the system and observe how it gets tuned with the ratio r in our protocol. The minimally entangled states are found to fall within the regime of dynamical freezing. In general, the results indicate that the entanglement entropy in our driven short-ranged integrable systems follow a genuine nonarea law of scaling and show a convergence (with a r dependent pace) towards volume scaling behavior as the driving is continued for a long time.

  4. Terahertz-driven magnetism dynamics in the orthoferrite DyFeO3

    NASA Astrophysics Data System (ADS)

    Reid, A. H. M.; Rasing, Th.; Pisarev, R. V.; Dürr, H. A.; Hoffmann, M. C.

    2015-02-01

    Terahertz (THz) driven magnetization dynamics are explored in the orthoferrite DyFeO3. A high-field, single cycle THz pulse is used to excite magnon modes in the crystal together with other resonances. Both quasi-ferromagnetic and quasi-antiferromagnetic magnon modes are excited and appear in time-resolved measurements of the Faraday rotation. Other modes are also observed in the measurements of the time-resolved linear birefringence. Analysis of the excitation process reveals that despite larger than expected electro-optical susceptibility, it is mainly the THz magnetic field that couples to the quasi-ferromagnetic and quasi-antiferromagnetic magnon branches.

  5. Partial Tuning of Dynamical Controllers by Data-Driven Loop-Shaping

    NASA Astrophysics Data System (ADS)

    Saeki, Masami; Sugitani, Yosuke

    In this paper, a data-driven design method that gives a desirable loop-shape is proposed for a single input plant. This method is applicable to the tuning of a static feedback gain and also that of the output matrix of a dynamical controller by using a transient response of the plant. Constraints on the feedback gain are derived from the maximum sensitivity and complementary sensitivity conditions based on the unfalsified control idea. A solution is obtained by solving a linear matrix inequality, where the integral gain of the loop transfer function is maximized subject to the constraints. Usefulness is demonstrated by two numerical examples.

  6. Mean-field and quantum-fluctuation dynamics in the driven dispersive Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Mavrogordatos, Th.; Szafulski, P.; Ginossar, E.; Szymańska, M. H.

    2016-12-01

    In this work we investigate the regime of amplitude bistability in the driven dissipative Jaynes-Cummings (JC) model. We study the semiclassical equation dynamics in contrast to entangled cavity-photon and qubit quantum trajectories, discussing our results in the context of an out-of-equilibrium first order quantum dissipative phase transition for a single JC resonator. Finally, we compare the switching process between metastable states for the two system degrees of freedom by examining a single realization of the random qubit vector in the Bloch sphere next to the intracavity amplitude quasi distributions at given time instants.

  7. Dynamic Data-Driven Prognostics and Condition Monitoring of On-board Electronics

    DTIC Science & Technology

    2012-08-27

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...W911NF-08-C-0065 665502 Form Approved OMB NO. 0704-0188 54937-MA-ST2.2 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...To) 12-Sep-2008 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 11-Sep-2010 Dynamic Data-Driven Prognostics and Condition Monitoring

  8. Laser driven quasi-isentropic compression experiments (ICE) for dynamically loading materials at high strain rates

    SciTech Connect

    Smith, R; Eggert, J; Celliers, P; Jankowski, A; Lorenz, T; Moon, S; Edwards, M J; Collins, G

    2006-03-30

    We demonstrate the recently developed technique of laser driven isentropic compression (ICE) for dynamically compressing Al samples at high loading rates close to the room temperature isentrope and up to peak stresses above 100GPa. Upon analysis of the unloading profiles from a multi-stepped Al/LiF target a continuous path through Stress-Density space may be calculated. For materials with phase transformations ramp compression techniques reveals the location of equilibrium phase boundaries and provide information on the kinetics of the lattice re-ordering.

  9. Dynamic phase transitions of a driven Ising chain in a dissipative cavity

    NASA Astrophysics Data System (ADS)

    Luo, Xi-Wang; Zhang, Yu-Na; Zhou, Xingxiang; Guo, Guang-Can; Zhou, Zheng-Wei

    2016-11-01

    We study the nonequilibrium quantum phase transition of an Ising chain in a dissipative cavity driven by an external transverse light field. When driving and dissipation are in balance, the system can reach a nonequilibrium steady state which undergoes a superradiant phase transition as the driving strength increases. Interestingly, the superradiant field changes the effective bias of the Ising chain in return and drives its own transition between the ferromagnetic and the paramagnetic phase. We study the rich physics in this system with sophisticated behavior and investigate important issues in its dynamics such as the stability of the system and criticality of the phase transition.

  10. Nonparametric and data-driven data assimilation for the reconstruction of complex geophysical dynamics

    NASA Astrophysics Data System (ADS)

    Tandeo, Pierre; Ailliot, Pierre; Ruiz, Juan; Hannart, Alexis; Chapron, Bertrand; Cuzol, Anne; Monbet, Valérie; Le Goff, Clément; Lguensat, Redouane; Fablet, Ronan

    2015-04-01

    Nowadays, ocean, atmosphere and climate sciences face a deluge of data pouring from space, in situ monitoring as well as numerical simulations. The availability of these different data sources offer new opportunities, still largely underexploited, to improve the understanding, modeling and reconstruction of geophysical dynamics. The classical way to reconstruct the space-time dynamics of a geophysical system from observation series relies on data assimilation methods, which perform multiple runs of the known dynamical model. This classical framework may have severe limitations including its computational cost, the lack of consistency of the model with respect to the observed data, modeling uncertainties. Here, we explore an alternative approach and develop a fully data-driven framework. We assume that a representative catalog of examples of the space-time dynamics of the geophysical system of interest is available. Depending on the case-study, such a catalog may be issued from observations as well as numerical simulations. Based on this catalog, we combine machine learning and statistical sampling to address data assimilation as follows. The key idea is to design a nonparametric sampler of the dynamics of the considered geophysical system from the available catalog. We focus in this work on analog (also referred to as nearest-neighbor) methods. They provide us the mean for sampling forecast members with no online evaluation of the physical model. The combination of these members with the observations resorts to the classical stochastic filtering techniques, such as ensemble Kalman or particle filters and smoothers. As a proof concept, we demonstrate the relevance of the proposed data assimilation method for Lorenz-63 and Lorenz-96 chaotic dynamics. We compare different nonparametric sampling schemes as well as stochastic filters and evaluate how the size of the catalog and the dimensionality of the system affect assimilation performance. We show that our

  11. Effects of grain size evolution on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin

  12. Dynamical evolution and spatial mixing of multiple population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2013-03-01

    Numerous spectroscopic and photometric observational studies have provided strong evidence for the widespread presence of multiple stellar populations in globular clusters. In this paper, we study the long-term dynamical evolution of multiple population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars. In previous studies, we have suggested that SG stars formed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time-scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration. Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: (1) a flat inner part; (2) a declining part in which FG stars are increasingly dominant and (3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). Until mixing is complete and the NSG/NFG profile is flat over the entire cluster, the radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The time-scale for complete mixing depends on the SG initial concentration, but in all cases complete mixing is expected only for clusters in advanced evolutionary phases, having lost at least 60-70 per cent of their mass due to two-body relaxation (in addition to the early FG loss due to the cluster expansion triggered by SNII ejecta and gas expulsion).The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the

  13. The Dimensionality of Stochasticaly Driven Systems and the Limits of Predictability of Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Goode, B.; Doxas, I.; Cary, J. R.; Horton, W.

    2001-12-01

    In contrast to tropospheric weather, where the solar radiation is essentially constant, the solar wind has periods of large excursions. It can therefore be argued that the limits of predicatability of the Solar-Wind driven Magnetosphere-Ionosphere System has two components, the intrinsic deterministic chaos of the magnetospheric dynamics, which can be observed even during extended periods of constant driving, as in magnetic cloud events, and the externally imposed variation of the Solar Wind driver.l The variability due to the driver is explored by considering the properties of well known stochastic systems, like the Lorenz and Rossler systems, under various driving conditions. We show that the observed propoerties of the combined system (eg dimensionality) exhibit an abrupt transition from that of the driven system to that of the driver. The transitions takes place at a normalized driving amplitude (amplitude of driver over amplitude of driven system) equal to unity, and has a half-width of less than a factor of two. The narrow width of the transition region suggests that the external component of unpredictability is limited to transitions between well defined stochastic states.

  14. Plasma Formation and Evolution on Cu, Al, Ti, and Ni Surfaces Driven by a Mega-Ampere Current Pulse

    NASA Astrophysics Data System (ADS)

    Yates, Kevin C.

    Metal alloy mm-diameter rods have been driven by a 1-MA, 100-ns current pulse from the Zebra z-pinch. The intense current produces megagauss surface magnetic fields that diffuse into the load, ohmically heating the metal until plasma forms. Because the radius is much thicker than the skin depth, the magnetic field reaches a much higher value than around a thin-wire load. With the "barbell" load design, plasma formation in the region of interest due to contact arcing or electron avalanche is avoided, allowing for the study of ohmically heated loads. Work presented here will show first evidence of a magnetic field threshold for plasma formation in copper 101, copper 145, titanium, and nickel, and compare with previous work done with aluminum. Copper alloys 101 and 145, titanium grade II, and nickel alloy 200 form plasma when the surface magnetic field reaches 3.5, 3.0, 2.2, and 2.6 megagauss, respectively. Varying the element metal, as well as the alloy, changes multiple physical properties of the load and affects the evolution of the surface material through the multiple phase changes. Similarities and differences between these metals will be presented, giving motivation for continued work with different material loads. During the current rise, the metal is heated to temperatures that cause multiple phase changes. When the surface magnetic field reaches a threshold, the metal ionizes and the plasma becomes pinched against the underlying cooler, dense material. Diagnostics fielded have included visible light radiometry, two-frame shadowgraphy (266 and 532 nm wavelengths), time-gated EUV spectroscopy, single-frame/2ns gated imaging, and multi-frame/4ns gated imaging with an intensified CCD camera (ICCD). Surface temperature, expansion speeds, instability growth, time of plasma formation, and plasma uniformity are determined from the data. The time-period of potential plasma formation is scrutinized to understand if and when plasma forms on the surface of a heated

  15. Sex Speeds Adaptation by Altering the Dynamics of Molecular Evolution

    PubMed Central

    McDonald, Michael J.; Rice, Daniel P.; Desai, Michael M.

    2016-01-01

    Sex and recombination are pervasive throughout nature despite their substantial costs1. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology2,3. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation4. Theory has proposed a number of distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect)5,6 or by separating them from deleterious load (the ruby in the rubbish effect)7,8. Previous experiments confirm that sex can increase the rate of adaptation9–17, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here, we present the first comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  16. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    PubMed Central

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  17. An Adaptive Multipopulation Differential Evolution With Dynamic Population Reduction.

    PubMed

    Ali, Mostafa Z; Awad, Noor H; Suganthan, Ponnuthurai Nagaratnam; Reynolds, Robert G

    2016-10-25

    Developing efficient evolutionary algorithms attracts many researchers due to the existence of optimization problems in numerous real-world applications. A new differential evolution algorithm, sTDE-dR, is proposed to improve the search quality, avoid premature convergence, and stagnation. The population is clustered in multiple tribes and utilizes an ensemble of different mutation and crossover strategies. In this algorithm, a competitive success-based scheme is introduced to determine the life cycle of each tribe and its participation ratio for the next generation. In each tribe, a different adaptive scheme is used to control the scaling factor and crossover rate. The mean success of each subgroup is used to calculate the ratio of its participation for the next generation. This guarantees that successful tribes with the best adaptive schemes are only the ones that guide the search toward the optimal solution. The population size is dynamically reduced using a dynamic reduction method. Comprehensive comparison of the proposed heuristic over a challenging set of benchmarks from the CEC2014 real parameter single objective competition against several state-of-the-art algorithms is performed. The results affirm robustness of the proposed approach compared to other state-of-the-art algorithms.

  18. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  19. Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

    PubMed Central

    Roach, Shane M.; Song, Dong; Berger, Theodore W.

    2012-01-01

    Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947

  20. Evolution of rill networks on soil-mantled experimental landscapes driven by rainfall and baselevel adjustments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted using a soil-mantled flume subjected to simulated rain and downstream baselevel lowering to quantify the growth, development, and evolution of rill networks. Digital elevation models constructed using photogrammetric techniques greatly facilitated data acquisition and ana...

  1. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  2. Cycle-averaged dynamics of a periodically driven, closed-loop circulation model

    NASA Technical Reports Server (NTRS)

    Heldt, T.; Chang, J. L.; Chen, J. J. S.; Verghese, G. C.; Mark, R. G.

    2005-01-01

    Time-varying elastance models have been used extensively in the past to simulate the pulsatile nature of cardiovascular waveforms. Frequently, however, one is interested in dynamics that occur over longer time scales, in which case a detailed simulation of each cardiac contraction becomes computationally burdensome. In this paper, we apply circuit-averaging techniques to a periodically driven, closed-loop, three-compartment recirculation model. The resultant cycle-averaged model is linear and time invariant, and greatly reduces the computational burden. It is also amenable to systematic order reduction methods that lead to further efficiencies. Despite its simplicity, the averaged model captures the dynamics relevant to the representation of a range of cardiovascular reflex mechanisms. c2004 Elsevier Ltd. All rights reserved.

  3. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon

    NASA Astrophysics Data System (ADS)

    Johnson, Steven

    With femtosecond time resolution, x-ray diffraction offers unique capabilities to observe directly the dynamics of long range order. When the x-ray energy is tuned near a core-level transition is is possible in many systems to selectively study the dynamics of long-range order of valence properties such as orbital ordering or magnetic spin. Here I discuss show how resonantly enhanced magnetic scattering can be used to quantitatively measure the character and magnitude of spin motion in a coherent electromagnon in TbMnO3 driven by a THz frequency electromagnetic field. We observe a 4° rotation of the antiferromagnetically ordered spin spiral plane, a result consistent with a previously published model that suggests this may be a viable route for ultrafast domain switching in multiferroics.

  4. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome

    PubMed Central

    Yang, Jing; Tan, Hua; Huang, Shanqian; Cui, Yujun; Dong, Lu; Ma, Chaofeng; Ma, Changan; Zhou, Sen; Wu, Xiaoxu; Zhang, Yanyun; Wang, Jingjun; Yang, Ruifu; Stenseth, Nils Chr.; Xu, Bing

    2017-01-01

    Zoonoses are increasingly recognized as an important burden on global public health in the 21st century. High-resolution, long-term field studies are critical for assessing both the baseline and future risk scenarios in a world of rapid changes. We have used a three-decade-long field study on hantavirus, a rodent-borne zoonotic pathogen distributed worldwide, coupled with epidemiological data from an endemic area of China, and show that the shift in the ecological dynamics of Hantaan virus was closely linked to environmental fluctuations at the human-wildlife interface. We reveal that environmental forcing, especially rainfall and resource availability, exert important cascading effects on intra-annual variability in the wildlife reservoir dynamics, leading to epidemics that shift between stable and chaotic regimes. Our models demonstrate that bimodal seasonal epidemics result from a powerful seasonality in transmission, generated from interlocking cycles of agricultural phenology and rodent behavior driven by the rainy seasons. PMID:28141833

  5. Stochastic dynamics and control of a driven nonlinear spin chain: the role of Arnold diffusion

    NASA Astrophysics Data System (ADS)

    Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.

    2009-09-01

    We study a chain of nonlinear interacting spins driven by a static and a time-dependent magnetic field. The aim is to identify the conditions for the locally and temporally controlled spin switching. Analytical and full numerical calculations show the possibility of stochastic control if the underlying semiclassical dynamics is chaotic. This is achievable by tuning the external field parameters according to the method described in this paper. We show analytically for a finite spin chain that Arnold diffusion is the underlying mechanism for the present stochastic control. Quantum mechanically we consider the regime where the classical dynamics is regular or chaotic. For the latter we utilize the random matrix theory. The efficiency and the stability of the non-equilibrium quantum spin states are quantified by the time dependence of the Bargmann angle related to the geometric phases of the states.

  6. The Dynamical Response of Dark Matter to Galaxy Evolution Affects Direct-Detection Experiments

    NASA Astrophysics Data System (ADS)

    Petersen, Michael; Katz, Neal; Weinberg, Martin

    2017-01-01

    Over a handful of rotation periods, dynamical processes in barred galaxies induce non-axisymmetric structure in dark matter halos. Using n-body simulations of a Milky Way-like barred galaxy, we identify both a trapped dark-matter component, a shadow bar, and a strong response wake in the dark-matter distribution that affects the predicted dark-matter detection rates for current and future experiments. We find that the magnitude of the combined stellar and shadow bar evolution makes a 30% increase in disk-plane density. This is significantly larger that of previously claimed deviations from the standard halo model. The dark-matter density and kinematic wakes driven by the Milky Way bar increase the detectability of dark matter overall, especially for the experiments with higher minimum velocities. These astrophysical features increase the detection rate by more than a factor of two when compared to the standard halo model and by a factor of ten for experiments with high minimum recoil energy thresholds. These same features increase (decrease) the annual modulation for low (high) minimum recoil energy experiments. We present physical arguments for why these dynamics are generic for barred galaxies such as the Milky Way rather than contingent on a specific galaxy model.

  7. Beyond genome sequencing: lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer.

    PubMed

    Blundell, Jamie R; Levy, Sasha F

    2014-12-01

    Evolving cellular communities, such as the gut microbiome, pathogenic infections, and cancer, consist of large populations of ~10(7)-10(14) cells. Because of their large population sizes, adaptation within these populations can be driven by many beneficial mutations that never rise above extremely low frequencies. Genome sequencing methods such as clonal, single cell, or whole population sequencing are poorly suited to detect these rare beneficial lineages, and, more generally, to characterize which mutations are most important to the population dynamics. Here, we introduce an alternative approach: high-resolution lineage tracking with DNA barcodes. In contrast to whole genome sequencing, lineage tracking can detect a beneficial mutation at an extremely low frequency within the population, and estimate its time of occurrence and fitness effect. Many lineage trajectories can be observed in parallel, allowing one to observe the population dynamics in exquisite detail. We describe some of the technical and analytical challenges to lineage tracking with DNA barcodes and discuss its applications to studies of evolution, infectious disease and cancer.

  8. A unified N-body and statistical treatment of stellar dynamics. III - Early postcollapse evolution of globular clusters

    NASA Technical Reports Server (NTRS)

    Mcmillan, S. L. W.

    1986-01-01

    The period immediately following the core collapse phase in the evolution of a globular cluster is studied using a hybrid N-body/Fokker-Planck stellar dynamical code. Several core oscillations of the type predicted in earlier work are seen. The oscillations are driven by the formation, hardening, and ejection of binaries by three-body processes, and appear to decay on a timescale of about 10 to the 7th yr, for the choice of 'typical' cluster parameters made here. There is no evidence that they are gravothermal in nature. The mechanisms responsible for the decay are discussed in some detail. The distribution of hard binaries produced by the oscillations is compared with theoretical expectations and the longer term evolution of the system is considered.

  9. Entanglement generation in periodically driven integrable systems: Dynamical phase transitions and steady state

    NASA Astrophysics Data System (ADS)

    Sen, Arnab; Nandy, Sourav; Sengupta, K.

    2016-12-01

    We study a class of periodically driven d -dimensional integrable models and show that after n drive cycles with frequency ω , pure states with non-area-law entanglement entropy Sn(l ) ˜lα (n ,ω ) are generated, where l is the linear dimension of the subsystem, and d -1 ≤α (n ,ω )≤d . The exponent α (n ,ω ) eventually approaches d (volume law) for large enough l when n →∞ . We identify and analyze the crossover phenomenon from an area (S ˜ld -1 for d ≥1 ) to a volume (S ˜ld ) law and provide a criterion for their occurrence which constitutes a generalization of Hastings's theorem to driven integrable systems in one dimension. We also find that Sn generically decays to S∞ as (ω/n ) (d +2 )/2 for fast and (ω/n ) d /2 for slow periodic drives; these two dynamical phases are separated by a topological transition in the eigenspectrum of the Floquet Hamiltonian. This dynamical transition manifests itself in the temporal behavior of all local correlation functions and does not require a critical point crossing during the drive. We find that these dynamical phases show a rich re-entrant behavior as a function of ω for d =1 models and also discuss the dynamical transition for d >1 models. Finally, we study entanglement properties of the steady state and show that singular features (cusps and kinks in d =1 ) appear in S∞ as a function of ω whenever there is a crossing of the Floquet bands. We discuss experiments which can test our theory.

  10. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  11. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming

  12. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    SciTech Connect

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  13. An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm

    SciTech Connect

    Donev, A; Garcia, A L; Alder, B J

    2007-07-30

    A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.

  14. The dynamics of information-driven coordination phenomena: A transfer entropy analysis

    PubMed Central

    Borge-Holthoefer, Javier; Perra, Nicola; Gonçalves, Bruno; González-Bailón, Sandra; Arenas, Alex; Moreno, Yamir; Vespignani, Alessandro

    2016-01-01

    Data from social media provide unprecedented opportunities to investigate the processes that govern the dynamics of collective social phenomena. We consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed networks of influence among geolocalized subunits in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social subunits. In the absence of clear exogenous driving, social collective phenomena can be represented as endogenously driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data. PMID:27051875

  15. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  16. Photoassociation dynamics driven by second- and third-order phase-modulated laser fields

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Chen, Mao-Du; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin

    2016-05-01

    We investigate theoretically the photoassociation dynamics of ultracold 85Rb atoms driven by second- and third-order phase-modulated laser fields. The interplay between the second-order and third-order terms of the phase-modulated pulse has an obvious influence on photoassociation dynamics. The different combinations of the second-order and third-order phase coefficients lead to different pulse shapes. Most of the molecular population in the excited electronic state driven only by the third-order phase pulses can be distributed in a single vibrational level. The second-order term of the phase-modulated pulse can change the instantaneous frequency, and therefore the final population is distributed on several resonant vibrational levels, instead of concentrating on a single level. Although the second- and third-order phase-modulated pulse covers more resonant vibrational levels, the total population on the resonant vibrational levels is much smaller than that controlled only by the third-order phase pulse. In particular, the third-order term of the phase-modulated pulse can weaken the ‘multiple interaction’ to some degree.

  17. Experimental verification of dynamics modulation in a periodically-driven neon glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Miller, P. M.; Koepke, M. E.; Gunell, H.

    2010-11-01

    Two ionization wave modes in a driven neon glow discharge alternate as the dominant mode as their response to the driving force alternates between spatiotemporal and temporal periodic pulling. This phenomenon, termed dynamics modulation, was first noted by Koepke, Weltmann, and Selcher [1], who saw two limited but representative cases and proposed a mechanism [2] by which it occurs. Dynamics modulation is reproduced experimentally in a neon glow discharge plasma. The system is periodically driven near a non-dominant mode using a narrow-band ring dye laser tuned to a wavelength near the metastable neon transition at 588.35 nm. A spatially-fixed photodiode with a narrow band filter that selectively passes the primary neon spectral line at 640 nm is used to acquire the time series of luminosity oscillations. These experimental data are used to verify the proposed mechanism and explore the resulting implications for spontaneous unidirectional mode transitions that occur with a change in discharge current.[4pt] [1] M. E. Koepke, K.-D. Weltmann, and C. A. Selcher, Bull. Am. Phys. Soc. 40, 1716 (1995).[0pt] [2] K. -D. Weltmann, M. E. Koepke, and C. A. Selcher, Phys. Rev. E 62, 2773, (2000).

  18. Dynamic Structure Factor and Transport Coefficients of a Homogeneously Driven Granular Fluid in Steady State

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo

    2011-03-01

    We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.

  19. Stochastic Optimal Regulation of Nonlinear Networked Control Systems by Using Event-Driven Adaptive Dynamic Programming.

    PubMed

    Sahoo, Avimanyu; Jagannathan, Sarangapani

    2017-02-01

    In this paper, an event-driven stochastic adaptive dynamic programming (ADP)-based technique is introduced for nonlinear systems with a communication network within its feedback loop. A near optimal control policy is designed using an actor-critic framework and ADP with event sampled state vector. First, the system dynamics are approximated by using a novel neural network (NN) identifier with event sampled state vector. The optimal control policy is generated via an actor NN by using the NN identifier and value function approximated by a critic NN through ADP. The stochastic NN identifier, actor, and critic NN weights are tuned at the event sampled instants leading to aperiodic weight tuning laws. Above all, an adaptive event sampling condition based on estimated NN weights is designed by using the Lyapunov technique to ensure ultimate boundedness of all the closed-loop signals along with the approximation accuracy. The net result is event-driven stochastic ADP technique that can significantly reduce the computation and network transmissions. Finally, the analytical design is substantiated with simulation results.

  20. Vortex formation and dynamics in two-dimensional driven-dissipative condensates

    NASA Astrophysics Data System (ADS)

    Hebenstreit, F.

    2016-12-01

    We investigate the real-time evolution of lattice bosons in two spatial dimensions whose dynamics is governed by a Markovian quantum master equation. We employ the Wigner-Weyl phase space quantization and derive the functional integral for open quantum many-body systems that determines the time evolution of the Wigner function. Using the truncated Wigner approximation, in which quantum fluctuations are only taken into account in the initial state whereas the dynamics is governed by classical evolution equations, we study the buildup of long-range correlations due to the action of non-Hermitean quantum jump operators that constitute a mechanism for dissipative cooling. Starting from an initially disordered state corresponding to a vortex condensate, the dissipative process results in the annihilation of vortex-antivortex pairs and the establishment of quasi-long-range order at late times. We observe that a finite vortex density survives the cooling process, which disagrees with the analytically constructed vortex-free Bose-Einstein condensate at asymptotic times. This indicates that quantum fluctuations beyond the truncated Wigner approximation need to be included to fully capture the physics of dissipative Bose-Einstein condensation.

  1. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    SciTech Connect

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro E-mail: stakeru@nagoya-u.jp

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  2. The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution

    SciTech Connect

    Flippo, Kirk Adler; DeVolder, Barbara Gloria; Doss, Forrest William; Kline, John L.; Merritt, Elizabeth Catherine; Loomis, Eric Nicholas; Capelli, Deanna; Schmidt, Derek William; Schmitt, Mark J

    2016-05-26

    The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Lastly, four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.

  3. Noise-driven signal transmission device using molecular dynamics of organic polymers

    NASA Astrophysics Data System (ADS)

    Asakawa, Naoki; Kanki, Teruo; Tanaka, Hidekazu

    2014-03-01

    Stochastic threshold devices using trap-filling transition coupled with molecular dynamics in poly(3-alkyl thiophene)s [P3ATs] were fabricated as potential key devices for noise-driven bio-inspired sensors and infor- mation processors. This article deals with variable-temperature direct current conductivity and alternating current impedance measurements for vertical-type device elements of Au/regioregular poly(3-decylthiophene) [RR-P3DT] (thickness:100nm)/Au, which show multiple conducting states and quasi-stochastic transitions between these states. Noise measurements indicate the ω-2-type (if V < VTFT = 10V) and ω-1-type (if V > VTFT) power spectral densities, where V and VTFT are an applied voltage and the voltage for trap-filling transition(TFT),respectively. The noise generation is due to TFT that associated with twist dynamics of π-conjugated polymers near the order-disorder phase transition. At 298K, the quasi-stochastic behavior is more noticeable for RR-P3DT than poly(3-hexylthiophene) [RR-P3HT]. The dynamics of the order-disorder phase transition (ODT) for powder samples were also investigated by differential scanning calorimetry (DSC) measurements and high-resolution solid-state C NMR spectroscopy, and the correlation of molecular structure and dynamics with electric properties was discussed.

  4. Noise-driven signal transmission device using molecular dynamics of organic polymers

    NASA Astrophysics Data System (ADS)

    Asakawa, Naoki; Umemura, Koichiro; Fujise, Shinya; Yazawa, Koji; Shimizu, Tadashi; Tansho, Masataka; Kanki, Teruo; Tanaka, Hidekazu

    2014-01-01

    Stochastic threshold devices using a trap-filling transition (TFT) coupled with molecular dynamics in poly(3-alkylthiophene)s were fabricated as potential key devices for noise-driven bioinspired sensors and information processors. This article deals with variable-temperature direct current conductivity and alternating current impedance measurements for vertical-type device elements of Au/regioregular poly(3-decylthiophene) ((RR-P3DT) (thickness: 100 nm)/Au, which show multiple conducting states and quasi-stochastic transitions between these states. Noise measurements indicate the ω-2-type (if VVTFT) power spectral densities, where V and VTFT are an applied voltage and the voltage for TFT, respectively. The noise generation is due to the TFT associated with twist dynamics of π-conjugated polymers near the order-disorder phase transition (ODT). At 298 K, the quasi-stochastic behavior is more noticeable for RR-P3DT than poly(3-hexylthiophene). The quasi-stochastic property is employed to a stochastic one-directional signal transmitting device using optical-electric conversion. The dynamics of ODT for powder samples were also investigated by differential scanning calorimetry measurements and high-resolution solid-state C13 nuclear magnetic resonance spectroscopy, and the correlation of the molecular structure and dynamics with electric properties was discussed.

  5. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  6. Dynamic Phases in Driven Vortex Lattices in Superconductors with Periodic Pinning Arrays.

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson, C. J.; Nori, F.

    1997-03-01

    In an extensive series of simulations of driven vortices interacting with periodic pinning arrays, an extremely rich variety of novel plastic flow phases, very distinct from those observed in random arrays, are found as a function of applied driving force. We show that signatures of the transitions between these different dynamical phases appear as pronounced jumps and dips in the I-V curves, coinciding with marked changes in the microscopic structure and flow behavior of the vortex lattice. When the number of vortices is greater than the number of pinning sites, we observe up to six distinct dynamical phases, including a pinned phase, a flow of interstitial vortices between pinned vortices, a disordered flow, a 1D flow along the pinning rows, and a homogeneous flow. By varying a wide range of microscopic pinning parameters, including pinning strength, size, density, and degree of ordering, as well as varying temperature and commensurability, we obtain a series of dynamic phase diagrams. A short video will also be presented to highlight these different dynamic phases.

  7. The Role of Group Dynamics in the Evolution of Galaxies out to z ~ 1

    NASA Astrophysics Data System (ADS)

    Hou, Annie; Parker, L. C.; Harris, W. E.; Group Environment; Evolution Collaboration (GEEC)

    2013-01-01

    It is well known that the properties of observed galaxies depend, at least on some part, on the properties of their host environments. We are particularly interested in investigating how the dynamics of the group environment influence galaxy evolution. We study the dynamical state of massive galaxy groups over a wide range of redshifts (0 < z < 1), using the Sloan Digital Sky Survey (SDSS), Group Environment and Evolution Collaboration (GEEC) and higher redshift GEEC2 catalogs. We look for both substructure and non-Gaussian velocity distributions in all of our systems in order to determine the dynamical state. We then use panchromatic data to study the observed galaxy properties (i.e. colour, blue fractions, star formation rates) as function of the dynamical state of their host group. In this work we are probing both the dynamical evolution of groups and the importance of group dynamics on galaxy evolution at a wide range of redshifts.

  8. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.

    PubMed

    Lade, Robert K; Hippchen, Erik J; Macosko, Christopher W; Francis, Lorraine F

    2017-03-28

    Microchannels have applications in microfluidic devices, patterns for micromolding, and even flexible electronic devices. Three-dimensional (3D) printing presents a promising alternative manufacturing route for these microchannels due to the technology's relative speed and the design freedom it affords its users. However, the roughness of 3D printed surfaces can significantly influence flow dynamics inside of a microchannel. In this work, open microchannels are fabricated using four different 3D printing techniques: fused deposition modeling (FDM), stereolithography (SLA), selective laser sintering, and multi jet modeling. Microchannels printed with each technology are evaluated with respect to their surface roughness, morphology, and how conducive they are to spontaneous capillary filling. Based on this initial assessment, microchannels printed with FDM and SLA are chosen as models to study spontaneous, capillary-driven flow dynamics in 3D printed microchannels. Flow dynamics are investigated over short (∼10(-3) s), intermediate (∼1 s), and long (∼10(2) s) time scales. Surface roughness causes a start-stop motion down the channel due to contact line pinning, while the cross-sectional shape imparted onto the channels during the printing process is shown to reduce the expected filling velocity. A significant delay in the onset of Lucas-Washburn dynamics (a long-time equilibrium state where meniscus position advances proportionally to the square root of time) is also observed. Flow dynamics are assessed as a function of printing technology, print orientation, channel dimensions, and liquid properties. This study provides the first in-depth investigation of the effect of 3D printing on microchannel flow dynamics as well as a set of rules on how to account for these effects in practice. The extension of these effects to closed microchannels and microchannels fabricated with other 3D printing technologies is also discussed.

  9. Driven apart: the evolution of ploidy differences between the sexes under antagonistic selection.

    PubMed

    Immler, Simone; Otto, Sarah Perin

    2014-01-01

    Sexual reproduction in eukaryotes implies a biphasic life cycle with alternating haploid and diploid phases. The nature of the biphasic life cycle varies markedly across taxa, and often either the diploid or the haploid phase is predominant. Why some taxa spend a major part of their life cycle as diploids and others as haploids remains a conundrum. Furthermore, ploidy levels may not only vary across life cycle phases but may also differ between males and females. The existence of two life cycle phases and two sexes bears a high potential for antagonistic selection, which in turn may influence the evolution of ploidy levels. We explored the evolution of ploidy levels when selection depends on both ploidy and sex. Our analyses show that antagonistic selection may drive the ploidy levels between males and females apart. In a subsequent step, we explicitly explored the evolution of arrhenotoky (i.e., haploid males and diploid females) in the context of antagonistic selection. Our model shows that selection on arrhenotoky depends on male fitness but evolves regardless of the fitness consequences to females. Overall we provide a plausible explanation for the evolution of sex differences in ploidy levels, a principle that can be extended to any system with asymmetric inheritance.

  10. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.

    PubMed

    Scheel, Bettina M; Hausdorf, Bernhard

    2014-07-01

    We studied the highly dynamic evolution of mitochondrial ribosomal proteins (MRPs) in Holozoa. Most major clades within Holozoa are characterized by gains and/or losses of MRPs. The usefulness of gains of MRPs as rare genomic changes in phylogenetics is undermined by the high frequency of secondary losses. However, phylogenetic analyses of the MRP sequences provide evidence for the Acrosomata hypothesis, a sister group relationship between Ctenophora and Bilateria. An extensive restructuring of the mitochondrial genome and, as a consequence, of the mitochondrial ribosomes occurred in the ancestor of metazoans. The last MRP genes encoded in the mitochondrial genome were either moved to the nuclear genome or were lost. The strong decrease in size of the mitochondrial genome was probably caused by selection for rapid replication of mitochondrial DNA during oogenesis in the metazoan ancestor. A phylogenetic analysis of MRPL56 sequences provided evidence for a horizontal gene transfer of the corresponding MRP gene between metazoans and Dictyostelidae (Amoebozoa). The hypothesis that the requisition of additional MRPs compensated for a loss of rRNA segments in the mitochondrial ribosomes is corroborated by a significant negative correlation between the number of MRPs and length of the rRNA. Newly acquired MRPs evolved faster than bacterial MRPs and positions in eukaryote-specific MRPs were more strongly affected by coevolution than positions in prokaryotic MRPs in accordance with the necessity to fit these proteins into the pre-existing structure of the mitoribosome.

  11. A Dynamic Model for the Evolution of Protein Structure.

    PubMed

    Tal, Guy; Boca, Simina Maria; Mittenthal, Jay; Caetano-Anollés, Gustavo

    2016-05-01

    Domains are folded structures and evolutionary building blocks of protein molecules. Their three-dimensional atomic conformations, which define biological functions, can be coarse-grained into levels of a hierarchy. Here we build global dynamical models for the evolution of domains at fold and fold superfamily (FSF) levels. We fit the models with data from phylogenomic trees of domain structures and evaluate the distributions of the resulting parameters and their implications. The trees were inferred from a census of domain structures in hundreds of genomes from all three superkingdoms of life. The models used birth-death differential equations with the global abundances of structures as state variables, with one set of equations for folds and another for FSFs. Only the transitions present in the tree are assumed possible. Each fold or FSF diversifies in variants, eventually producing a new fold or FSF. The parameters specify rates of generation of variants and of new folds or FSFs. The equations were solved for the parameters by simplifying the trees to a comb-like topology, treating branches as emerging directly from a trunk. We found that the rate constants for folds and FSFs evolved similarly. These parameters showed a sharp transient change at about 1.5 Gyrs ago. This time coincides with a period in which domains massively combined in proteins and their arrangements distributed in novel lineages during the rise of organismal diversification. Our simulations suggest that exploration of protein structure space occurs through coarse-grained discoveries that undergo fine-grained elaboration.

  12. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    NASA Astrophysics Data System (ADS)

    Moskalenko, Andrey S.; Zhu, Zhen-Gang; Berakdar, Jamal

    2017-02-01

    This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver

  13. Geologic Evolution of Eastern Hellas, Mars: Styles and Timing of Volatile-driven Activity

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.

    2004-01-01

    The east rim of the Hellas basin and the surrounding highlands comprise a geologically significant region for evaluating volatile abundance, volatile distribution and cycling, and potential changes in Martian environmental conditions. This region of the Martian surface exhibits landforms shaped by a diversity of geologic processes and has a well-preserved geologic record, with exposures of Noachian, Hesperian, and Amazonian units, as well as spans a wide range in both latitude and elevation due to the magnitude of Hellas basin. In addition, geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide important ingredients for creating habitats for potential Martian life.

  14. Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas; Hoge, Susan

    2008-01-01

    The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the

  15. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization

    SciTech Connect

    Frierdich, Andrew J.; Luo, Yun; Catalano, Jeffrey G.

    2011-11-17

    Microbially driven iron redox cycling in soil and sedimentary systems, including during diagenesis and fluid migration, may activate secondary abiotic reactions between aqueous Fe(II) and solid Fe(III) oxides. These reactions catalyze dynamic recrystallization of iron oxide minerals through localized and simultaneous oxidative adsorption of Fe(II) and reductive dissolution of Fe(III). Redox-active trace elements undergo speciation changes during this process, but the impact redox-driven recrystallization has on redox-inactive trace elements associated with iron oxides is uncertain. Here we demonstrate that Ni is cycled through the minerals goethite and hematite during redox-driven recrystallization. X-ray absorption spectroscopy demonstrates that during this process adsorbed Ni becomes progressively incorporated into the minerals. Kinetic studies using batch reactors containing aqueous Fe(II) and Ni preincorporated into iron oxides display substantial release of Ni to solution. We conclude that iron oxide recrystallization activated by aqueous Fe(II) induces cycling of Ni through the mineral structure, with adsorbed Ni overgrown in regions of Fe(II) oxidative adsorption and incorporated Ni released in regions of reductive dissolution of structural Fe(III). The redistribution of Ni among the mineral bulk, mineral surface, and aqueous solution appears to be thermodynamically controlled and catalyzed by Fe(II). Our work suggests that important proxies for ocean composition on the early Earth may be invalid, identifies new processes controlling micronutrient availability in soil, sedimentary, and aquatic ecosystems, and points toward a mechanism for trace element mobilization during diagenesis and enrichment in geologic fluids.

  16. Origin and dynamical evolution of Neptune Trojans - II. Long-term evolution

    NASA Astrophysics Data System (ADS)

    Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T.

    2011-03-01

    Following our earlier work studying the formation of the Neptunian Trojan population during the planet's migration, we present results examining the eventual fate of the Trojan clouds produced in that work. A large number of Trojans were followed under the gravitational influence of the giant planets for a period of at least 1 Gyr. We find that the stability of Neptunian Trojans seems to be strongly correlated to their initial post-migration orbital elements, with those objects that survive as Trojans for billions of years, displaying negligible orbital evolution. The great majority of these survivors began the integrations with small eccentricities (e < 0.2) and small libration amplitudes (A < 30°-40°). The survival rate of 'pre-formed' Neptunian Trojans [which in general survived on dynamically cold orbits (e < 0.1, i < 5°-10°)] varied between ˜5 and 70 per cent, depending on the precise detail of their initial orbits. In contrast, the survival rate of 'captured' Trojans (on final orbits spread across a larger region of the e-i element space) was markedly lower, ranging between 1-10 per cent after 4 Gyr. Taken in concert with our earlier work and the broad i-distribution of the observed Trojan population, we note that planetary formation scenarios, which involve the slow migration (a few tens of millions of years) of Neptune from an initial planetary architecture that is both resonant and compact (aN < 18 au), provide the most promising fit of those we considered to the observed Trojan population. In such scenarios, we find that the present-day Trojan population would number ˜1 per cent of that which was present at the end of the planet's migration (i.e. survival rate of ˜1 per cent), with the bulk being sourced from captured, rather than pre-formed objects. We note, however, that even those scenarios still fail to reproduce the presently observed portion of the Neptune Trojan population moving on orbits with e < 0.1 but i > 20°. Dynamical integrations of

  17. How much does weather-driven vegetation dynamics matter in land surface modelling?

    NASA Astrophysics Data System (ADS)

    Ingwersen, Joachim; Streck, Thilo

    2016-04-01

    Land surface models (LSM) are an essential part of weather and climate models as they provide the lower boundary condition for the atmospheric models. In state-of-the-art LSMs the seasonal vegetation dynamics is "frozen". The seasonal variation of vegetation state variables, such as leaf area index or green vegetation fraction, are prescribed in lookup tables. Hence, a year-by-year variation in the development of vegetation due to changing weather conditions cannot be considered. For climate simulations, this is obviously a severe drawback. The objective of the present study was to quantify the potential error in the simulation of land surface exchange processes resulting from "frozen" vegetation dynamics. For this purpose we simulated energy and water fluxes from a winter wheat stand and a maize stand in Southwest Germany. In a first set of simulations, six years (2010 to 2015) were simulated considering weather-driven vegetation dynamics. For this purpose, we coupled the generic crop growth model GECROS with the NOAH-MP model (NOAHMP-GECROS). In a second set of simulations all vegetation-related state variables of the 2010 simulation were written to an external file and were used to overwrite the vegetation-related state variables of the simulations of the years 2011-2015. The difference between both sets was taken as a measure for the potential error introduced to the LSM due to the assumption of a "frozen" vegetation dynamics. We will present first results and discuss the impact of "frozen" vegetation dynamics on climate change simulations.

  18. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    PubMed Central

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2016-01-01

    Objective The goal of this study was to develop a physiologically plausible, computationally robust model for the muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of 3 compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations. PMID:26087477

  19. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    NASA Astrophysics Data System (ADS)

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2015-08-01

    Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.

  20. Dynamics of driven transitions between minima of a complex energy landscapes

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    We recently modeled cellular interconvertion dynamics by using an epigenetic landscape model inspired by neural network models. Given an arbitrary set of patterns, the model can be used to construct an energy landscape in which those patterns are the global minima. Here we study the transitions between stable states of the landscapes thus constructed, under the effect of an external driving force. We consider three different cases: i) choosing the patterns to be random and independendently distributed ii) choosing a set of patterns directly derived from the experimental cellular transcription factor expression data for a representative set of cell types in an organism and iii) choosing randomly generated trees of hierarchically correlated patterns, inspired by biology. For each of the three cases, we study the stability of the global minima against thermal fluctuations and external driving forces, and the dynamics of the driven transitions away from global minima. We compare the results obtained in the three cases defined above, and in particular we explore to what degree the correlations between patterns affect the transition dynamics.

  1. Translocation dynamics of a short polymer driven by an oscillating force.

    PubMed

    Pizzolato, Nicola; Fiasconaro, Alessandro; Adorno, Dominique Persano; Spagnolo, Bernardo

    2013-02-07

    We study the translocation dynamics of a short polymer moving in a noisy environment and driven by an oscillating force. The dynamics is numerically investigated by solving a Langevin equation in a two-dimensional domain. We consider a phenomenological cubic potential with a metastable state to model the polymer-pore interaction and the entropic free energy barrier characterizing the translocation process. The mean first translocation time of the center of inertia of polymers shows a nonmonotonic behavior, with a minimum, as a function of the number of the monomers. The dependence of the mean translocation time on the polymer chain length shows a monotonically increasing behavior for high values of the number of monomers. Moreover, the translocation time shows a minimum as a function of the frequency of the oscillating forcing field for all the polymer lengths investigated. This finding represents the evidence of the resonant activation phenomenon in the dynamics of polymer translocation, whose occurrence is maintained for different values of the noise intensity.

  2. System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.

    2010-12-01

    Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.

  3. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2016-09-01

    We numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinal to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. We map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.

  4. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts.

    PubMed

    Budroni, M A; Rongy, L; De Wit, A

    2012-11-14

    A reaction-diffusion-convection (RDC) model is introduced to analyze convective dynamics around horizontally traveling fronts due to combined buoyancy- and surface tension-driven flows in vertical solution layers open to the air. This isothermal model provides a means for a comparative study of the two effects via tuning two key parameters: the solutal Rayleigh number Ra, which rules the buoyancy influence, and the solutal Marangoni number Ma governing the intensity of surface effects at the interface between the reacting solution and air. The autocatalytic front dynamics is probed by varying the relative importance of Ra and Ma and the resulting RDC patterns are quantitatively characterized through the analysis of the front mixing length and the topology of the velocity field. Steady asymptotic regimes are found when the bulk and the surface contributions to fluid motions act cooperatively i.e. when Ra and Ma have the same sign. Complex dynamics may arise when these numbers are of opposite signs and the two effects thus compete in an antagonistic configuration. Typically, spatiotemporal oscillations are observed as the control parameters are set in the region (Ra < 0, Ma > 0). Periodic behaviour develops here even in the absence of any double-diffusive interplay, which in previous literature was identified as a possible source of complexity.

  5. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    NASA Astrophysics Data System (ADS)

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F.; Friend, Richard H.; Reisner, Erwin

    2016-09-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm-2 at 0 V versus RHE with an onset potential as positive as 0.95+/-0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ~1 h under continuous illumination.

  6. Real World Data Driven Evolution of Volvo Cars' Side Impact Protection Systems and their Effectiveness.

    PubMed

    Jakobsson, Lotta; Lindman, Magdalena; Svanberg, Bo; Carlsson, Henrik

    2010-01-01

    This study analyses the outcome of the continuous improved occupant protection over the last two decades for front seat near side occupants in side impacts based on a real world driven working process. The effectiveness of four generations of improved side impact protection are calculated based on data from Volvo's statistical accident database of Volvo Cars in Sweden. Generation I includes vehicles with a new structural and interior concept (SIPS). Generation II includes vehicles with structural improvements and a new chest airbag (SIPSbag). Generation III includes vehicles with further improved SIPS and SIPSbag as well as the new concept with a head protecting Inflatable Curtain (IC). Generation IV includes the most recent vehicles with further improvements of all the systems plus advanced sensors and seat belt pretensioner activation. Compared to baseline vehicles, vehicles of generation I reduce MAIS2+ injuries by 54%, generation II by 61% and generation III by 72%. For generation IV effectiveness figures cannot be calculated because of the lack of MAIS2+ injuries. A continuous improved performance is also seen when studying the AIS2+ pelvis, abdomen, chest and head injuries separately. By using the same real world driven working process, future improvements and possibly new passive as well as active safety systems, will be developed with the aim of further improved protection to near side occupants in side impacts.

  7. The nonlinear evolution of driven nonlinear ion acoustic waves with kinetic electrons

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Brunner, Stephan; Valeo, Ernest; Divol, Laurent; Still, Charles

    2006-10-01

    The stimulated Brillouin scattering (SBS) of laser light from hot plasma drives ion acoustic waves to large amplitudes particularly if the phase velocity is much greater than the ion thermal velocity for all ion species, that is, ZTe/Ti >>1 where Z is the charge state of the ion, and Te and Ti are the electron and ion temperatures. In fluid simulations of the SBS from CO2 and Krypton plasmas, ad hoc limits on the amplitude of the driven ion waves were required to match the measured reflectivity. Because ZTe/Ti >>1, ion kinetics are unlikely to play a role in the saturation of ion waves. Here, we study the effect of electron trapping which produces a positive frequency shift in quantitative agreement with theory (see abstract by S. Brunner et al., this meeting) and the role of electron kinetics on the decay instability of the driven ion wave. Further, we apply these results to modeling of experiments where ZTe/Ti >>1 [e.g., Glenzer et al., PRL 86, 2565 (2001), L. Divol, et al., Physics of Plasmas 10, 1822 (2003)].

  8. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator.

    PubMed

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-11-01

    In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k-ɛ model, RNG k-ɛ model, realizable k-ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.

  9. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2013-03-28

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  10. Non-equilibrium molecular dynamics simulation of the unstirred layer in the osmotically driven flow

    NASA Astrophysics Data System (ADS)

    Konno, Keito; Itano, Tomoaki; Seki, Masako

    2015-11-01

    We studied the solvent flows driven by the osmotic pressure difference across the semi-permeable membrane. The flow penetrating from the low concentration side transports away solutes adjacent of the membrane, so that the concentration is reduced significantly only at the vicinity of the membrane. It is expected that the relatively low solute concentration develops into a thin boundary layer in the vicinity of the membrane in the case of absence of external stirring process, which is termed as un-stirred layer (USL). To investigate concentration distribution in USL, we carried out non-equilibrium molecular dynamics simulations. The flows driven by th osmotic pressure are idealized as 2 dimensional hard disk model, which is composed of solvent and solute molecules. The membrane is modeled as a medium composed of stationary parallel rods distributed by a spatial interval, which is less than the diameter of the solute molecules. The following results were obtained from the numerical simulation. First, the thickness of USL, which was estimated from the obtained concentration distribution, is on the order of a length determined by mean free path. Second, USL was semicircle the center of which is on the end of pore of membrane.

  11. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  12. A new model for biological effects of radiation and the driven force of molecular evolution

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  13. A phylogenomic data-driven exploration of viral origins and evolution

    PubMed Central

    Nasir, Arshan; Caetano-Anollés, Gustavo

    2015-01-01

    The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the “viral supergroup” and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts. PMID:26601271

  14. Drift-driven evolution of electric signals in a Neotropical knifefish.

    PubMed

    Picq, Sophie; Alda, Fernando; Bermingham, Eldredge; Krahe, Rüdiger

    2016-09-01

    Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication.

  15. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    NASA Technical Reports Server (NTRS)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  16. Thermally driven transverse transports and magnetic dynamics on a topological surface capped with a ferromagnet strip

    NASA Astrophysics Data System (ADS)

    Deng, Ming-Xun; Zhong, Ming; Zheng, Shi-Han; Qiu, Jian-Ming; Yang, Mou; Wang, Rui-Qiang

    2016-02-01

    We theoretically study thermally driven transport of the Dirac fermions on the surface of a topological insulator capped with a ferromagnet strip. The generation and manipulation of anomalous Hall and Nernst effects are analyzed, in which the in-plane magnetization of the ferromagnet film is found to take a decisive role. This scenario is distinct from that modulated by Berry phase where the in-plane magnetization is independent. We further discuss the thermal spin-transfer torque as a backaction of the thermoelectric transports on the magnetization and calculate the dynamics of the anomalous Hall and Nernst effects self-consistently. It is found that the magnitude of the long-time steady Hall and Nernst conductance is determined by competition between the magnetic anisotropy and current-induced effective anisotropy. These results open up a possibility of magnetically controlling the transverse thermoelectric transports or thermally manipulating the magnet switching.

  17. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles

    NASA Astrophysics Data System (ADS)

    Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.

    2016-11-01

    The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ˜11 % can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while the electron energy can be finely tuned in the last acceleration section.

  18. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D. ||||

    1995-10-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, {ital Regular} {ital and} {ital Stochastic} {ital Motion} (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, {ital S}{approx_gt}1 GW/cm{sup 2}. We also discuss the possibility of experimentally observing this transition.

  19. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steven H.; Landen, Otto L.

    2013-11-01

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS) models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps) due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sent a ˜1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM) deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα - 2.76keV) backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  20. GLOBAL SIMULATIONS OF THE MAGNETIC FIELD EVOLUTION IN BARRED GALAXIES UNDER THE INFLUENCE OF THE COSMIC-RAY-DRIVEN DYNAMO

    SciTech Connect

    Kulpa-Dybel, K.; Otmianowska-Mazur, K.; Kulesza-Zydzik, B.; Kowal, G.; Hanasz, M.; Woltanski, D.; Kowalik, K.

    2011-06-01

    We present three-dimensional global numerical simulations of the cosmic-ray (CR) driven dynamo in barred galaxies. We study the evolution of the interstellar medium of the barred galaxy in the presence of non-axisymmetric component of the potential, i.e., the bar. The magnetohydrodynamical dynamo is driven by CRs, which are continuously supplied to the disk by supernova (SN) remnants. No magnetic field is present at the beginning of simulations but one-tenth of SN explosions is a source of a small-scale randomly oriented dipolar magnetic field. In all models we assume that 10% of 10{sup 51} erg SN kinetic energy output is converted into CR energy. To compare our results directly with the observed properties of galaxies, we construct realistic maps of polarized radio emission. The main result is that the CR-driven dynamo can amplify weak magnetic fields up to a few {mu}G within a few Gyr in barred galaxies. The obtained e-folding time is equal to 300 Myr and the magnetic field reaches equipartition at time t {approx} 4.0 Gyr. Initially, the completely random magnetic field evolves into large-scale structures. An even (quadrupole-type) configuration of the magnetic field with respect to the galactic plane can be observed. Additionally, the modeled magnetic field configuration resembles maps of the polarized intensity observed in barred galaxies. Polarization vectors are distributed along the bar and between spiral arms. Moreover, the drift of magnetic arms with respect to the spiral pattern in the gas density distribution is observed during the entire simulation time.

  1. Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models

    NASA Astrophysics Data System (ADS)

    Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido

    2016-06-01

    We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.

  2. Data-driven reduced order model for prediction of wind turbine wake dynamics

    NASA Astrophysics Data System (ADS)

    Debnath, Mithu; Santoni, Christian; Rotea, Mario A.; Leonardi, Stefano; Iungo, Giacomo Valerio

    2015-11-01

    Wind turbine wakes are highly turbulent flows for which coherent vorticity structures lead to complex dynamics and instabilities. In this study, high-fidelity large eddy simulations (LES) data of a utility-scale wind turbine is analyzed through proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) in order to detect the main dynamic contributions to the temporal and spatial evolution of a wind turbine wake. Eigenmodes obtained from modal decomposition are clustered as a function of their physical origin, energy, spectral contribution and growth rate. A subset of the eigenmodes is then selected accordingly to a customized objective function in order to represent an optimal blend of the different dynamic contributions. The selected eigenmodes are embedded in a time-marching algorithm enabling the prediction of the wake velocity field and loads on downstream turbines. This reduced order model is characterized by a relatively low rank compared to the dimension of the physical space of the original LES data, thus by a low computational cost. The reduced order model is then embedded within a Kalman filter in order to perform data assimilation of new available observations in order to maximize agreement between the forecast and observations.

  3. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    PubMed Central

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  4. Venom down under: dynamic evolution of Australian elapid snake toxins.

    PubMed

    Jackson, Timothy N W; Sunagar, Kartik; Undheim, Eivind A B; Koludarov, Ivan; Chan, Angelo H C; Sanders, Kate; Ali, Syed A; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G

    2013-12-18

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) 'taipoxin/paradoxin' subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and

  5. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    ERIC Educational Resources Information Center

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  6. Velocity evolution of electro-magnetically driven shock wave for beam-dissociated hydrogen interaction experiment

    NASA Astrophysics Data System (ADS)

    Kondo, Kotaro; Oguri, Yoshiyuki

    2016-03-01

    We present the velocity measurements in electro-magnetic shock tube for beam interaction experiment by three methods; laser refraction, photodiode for self-emission, and high speed framing camera. The laser refraction showed that the average shock velocity was 6.7 km/s when the initial pressure was 1000 Pa and the initial charging voltage was 16 kV. The self-emissions from piston discharge plasma were measured by photodiodes and by high speed framing camera. The measurements showed that the duration between shock and piston was up to 8 microseconds with a 400-mm propagation in the shock tube, which is enough time as dissociation target for beam interaction experiment.The complementary velocity measurement is significant for understanding the electro-magnetically driven shock physics.

  7. Efficient Conjugated Polymer-Methyl Viologen Electron Transfer System for Controlled Photo-Driven Hydrogen Evolution.

    PubMed

    Lu, Huan; Hu, Rong; Bai, Haotian; Chen, Hui; Lv, Fengting; Liu, Libing; Wang, Shu; Tian, He

    2017-03-13

    Photo-driven hydrogen production has been a good strategy in solar energy utilization. In this work, we use a water-soluble negatively charged polythiophene derivative as photosensitizer to produce hydrogen from aqueous solution containing methyl viologen (MV2+), ethylenediaminetetraacetic acid disodium salt (EDTA) and a colloidal platinum catalyst upon exposure to Xenon lamp (> 420 nm) or natural sunlight. The supramolecular assembly and dis-assembly processes of MV2+ and cucurbit[8]uril (CB[8]) was further used to reversibly "turn-on" and "turn-off" hydrogen generation of the polymer system. This research offers a proof-of-concept to control hydrogen generation in demand, which is an advantage for hydrogen utilization and storage.

  8. Shock-driven Rayleigh-Taylor/Richtmyer-Meshkov ripple evolution measurements using the split target geometry

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Huntington, C. M.; MacLaren, S. A.; Raman, K. S.; Baumann, T.; Bender, J.; Benedetti, L. R.; Holder, J. P.; Savage, L.; Seugling, R. M.; Simmons, L.; Wang, P.; Flippo, K. A.; Perry, T. S.

    2016-10-01

    The study of singly or multiply shocked Rayleigh-Taylor/Richtmyer-Meshkov systems usually uses an opaque, denser material to track the perturbed interface that is driven into a lower density, more transparent material. A difficulty of this setup is the obscuration of small-scale features, especially of the lighter material by the opaque denser material, can change the mix-width measurement. To mitigate this, we use a split target where one half produces a conventional radiograph, while the other provides an inverse image, where the light material is opaque and the dense material is transparent. Here we present first measurements from re-shock experiments at the NIF, which use such a split target geometry to investigate the mix-width for initial single mode and 2D multimode perturbations. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-696884.

  9. Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV

    PubMed Central

    Liu, Yan; Zhou, Guanghe; Wang, Xifeng; Elena, Santiago F.

    2011-01-01

    Barley yellow dwarf virus (BYDV) species PAV occurs frequently in irrigated wheat fields worldwide and can be efficiently transmitted by aphids. Isolates of BYDV-PAV from different countries show great divergence both in genomic sequences and pathogenicity. Despite its economical importance, the genetic structure of natural BYDV-PAV populations, as well as of the mechanisms maintaining its high diversity, remain poorly explored. In this study, we investigate the dynamics of BYDV-PAV genome evolution utilizing time-structured data sets of complete genomic sequences from 58 isolates from different hosts obtained worldwide. First, we observed that BYDV-PAV exhibits a high frequency of homologous recombination. Second, our analysis revealed that BYDV-PAV genome evolves under purifying selection and at a substitution rate similar to other RNA viruses (3.158×10−4 nucleotide substitutions/site/year). Phylogeography analyses show that the diversification of BYDV-PAV can be explained by local geographic adaptation as well as by host-driven adaptation. These results increase our understanding of the diversity, molecular evolutionary characteristics and epidemiological properties of an economically important plant RNA virus. PMID:21326861

  10. AMOCMIP: Probabilistic projections of future AMOC evolution driven by global warming and Greenland Ice Sheet melt.

    NASA Astrophysics Data System (ADS)

    Bakker, P.; Ohgaito, R.; Abe-Ouchi, A.; Swingedouw, D.; Saenko, O.; Marsland, S. J.; Bi, D.; Schmittner, A.; Hu, A.; Mernild, S. H.; Yin, J.; Beadling, R. L.; Lenaerts, J.; van den Broeke, M.

    2015-12-01

    We present results of a community effort to use state-of-the-science climate models to simulate the impact of the partial melt of the Greenland Ice Sheet on the Atlantic Meridional Overturning Circulation (AMOC) under future global warming: the AMOC Model Intercomparison Project (AMOCMIP). The evolution of the AMOC is one of the key uncertainties of future climate projections. Climate models taking part in CMIP5 showed that over the 21st century the AMOC might reduce by 20-30% under the intermediate Representative Concentration Pathways (RCP) 4.5 scenario and by 36-44% under the high-end RCP8.5 scenario relative to preindustrial values. However, these projections didn't include the predicted partial melting of the Greenland Ice Sheet. Using a combination of observations and regional climate model experiments, realistic scenarios of the future mass loss of the Greenland Ice Sheet are constructed for different RCPs that span the next three centuries. These melt water scenarios have been included in various climate models to investigate its role in the simulated future evolution of the climate in general and more specifically the AMOC. To rigorously quantify the uncertainties of the AMOC projections and the probability of a future AMOC collapse we have used an AMOC emulator. This physics-based approach allows us to include uncertainties in the AMOC's sensitivity to temperature and salinity changes, as well as uncertainties of future global warming, polar amplification and melt rates of the Greenland Ice Sheet. Based on the first AMOCMIP simulations of future AMOC evolution forced by changes in greenhouse-gas concentrations and Greenland Ice Sheet melt, we will present probabilistic projections of future AMOC changes and the probability of an AMOC collapse.

  11. A Modular, Data Driven System: Architecture for GSFC Ground Systems: GSFC's Mission Services Evolution Center (GMSEC)

    NASA Technical Reports Server (NTRS)

    Cary, Everett; Smith, Danford

    2004-01-01

    The GSFC Mission Services Evolution Center (GMSEC) was established in 2001 to coordinate ground and flight data systems development and services at NASA's Goddard Space Flight Center (GSFC). GMSEC system architecture represents a new way to build the next generation systems to be used for a variety of missions for years to come. The old approach was to find or build the best products available and integrate them into a reusable system to meet everyone's needs. The new approach assumes that needs, products, and technology will change.

  12. Disentangling the Dynamical Mechanisms for Cluster Galaxy Evolution

    DTIC Science & Technology

    2008-02-01

    explanation of the nature of the color-magnitude relation as effectively an age -mass relation resolves the dilemma faced by the conventional explanation, that...in-fallers from the field region. The existence of the morphology-density relation over several orders-of-magnitude variation of local sur- face ...color evolution of the BO galaxies in their sample is much faster than the morphologial evolution. In the secular evolution scenario, these two

  13. Formation and Dynamical Evolution of the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, William F.

    2015-08-01

    Asteroids are critical to our desire to unravel the origin of the Solar System because they supply unique, relatively pristine snapshots of the environment in which the Earth formed and evolved. This is due to the fact that, although the asteroids and Earth have followed very different evolutionary pathways, they all formed from the same set of physical processes and share a common ancestry. The asteroid belt presents a particular challenge to understanding terrestrial planet formation because of its small mass. Models of the protoplanetary disk suggest the region between 2-3 AU should contain roughly 3 Earth masses, while less than 0.001 of an Earth mass is actually found there.A long-standing explanation for the asteroid belt's small mass is that it is due to the gravitational influence of Jupiter and Saturn. Some have suggested protoplanets grew there before they were dynamically removed from the asteroid belt by resonances with the gas giants. This left the asteroid belt dynamically excited (which is observed) and heavily depleted in mass. More recently, however, detailed models have shown that this process produces an asteroid belt that is inconsistent with observations.Two recent models propose new ways to match asteroid belt constraints. The first, the so-called ‘Grand Tack’ scenario, uses the results of hydrodynamic simulations to show that Jupiter (and Saturn) migrated both inward and outward across the asteroid belt while interacting with the protoplanetary gas disk. The Grand Tack not only reproduces the mass and mixture of spectral types in the asteroid belt, but it also truncates the planetesimal disk from which the terrestrial planets form, potentially explaining why Mars is less massive than Earth. In a second scenario, planetesimals that form directly from cm- to meter-sized objects, known as “pebbles”, are rapidly converted to 100 to 1000 km asteroid-like object that subsequently grow by accreting even more pebbles. Pebble accretion models

  14. Microsecond evolution of laser driven blast waves, the influence of shock asymmetries and the resulting development of magnetic fields

    NASA Astrophysics Data System (ADS)

    Tubman, Eleanor; Crowston, R.; Lam, G.; Dimoline, G.; Alraddadi, R.; Doyle, H.; Meinecke, J.; Cross, J.; Bolis, R.; Lamb, D.; Tzeferacos, P.; Doria, D.; Reville, B.; Ahmed, H.; Borghesi, M.; Gregori, G.; Woolsey, N.

    2015-11-01

    The ability to recreate scaled conditions of a supernova remnant within a laboratory environment is of great interest for informing the understanding of the evolution of galactic magnetic fields. The experiments rely on a near point explosion driven by one sided laser illumination producing a plasma, surrounded by a background gas. The subsequent shock and blast waves emerge following an initial ballistic phase into a self-similar expansion. Studies have been undertaken into the evolution of shock asymmetries which lead to magnetic field generation via the Biermann battery mechanism. Here we use the Vulcan laser facility, with targets such as carbon rods and plastic spheres placed in ambient gases of argon, helium or hydrogen, to produce the blast waves. These conditions allow us to study the asymmetries of the shocks using multi-frame imaging cameras, interferometry, and spectroscopy, while measuring the resulting magnetic fields with B-dot probes. The velocity of the shock and the temporal resolution of the asymmetries can be acquired on a single shot by the multi-framing cameras, and comparison with the measured B-dot fields allow for detailed inferences to be made.

  15. The dynamics of nestedness predicts the evolution of industrial ecosystems.

    PubMed

    Bustos, Sebastián; Gomez, Charles; Hausmann, Ricardo; Hidalgo, César A

    2012-01-01

    In economic systems, the mix of products that countries make or export has been shown to be a strong leading indicator of economic growth. Hence, methods to characterize and predict the structure of the network connecting countries to the products that they export are relevant for understanding the dynamics of economic development. Here we study the presence and absence of industries in international and domestic economies and show that these networks are significantly nested. This means that the less filled rows and columns of these networks' adjacency matrices tend to be subsets of the fuller rows and columns. Moreover, we show that their nestedness remains constant over time and that it is sustained by both, a bias for industries that deviate from the networks' nestedness to disappear, and a bias for the industries that are missing according to nestedness to appear. This makes the appearance and disappearance of individual industries in each location predictable. We interpret the high level of nestedness observed in these networks in the context of the neutral model of development introduced by Hidalgo and Hausmann (2009). We show that the model can reproduce the high level of nestedness observed in these networks only when we assume a high level of heterogeneity in the distribution of capabilities available in countries and required by products. In the context of the neutral model, this implies that the high level of nestedness observed in these economic networks emerges as a combination of both, the complementarity of inputs and heterogeneity in the number of capabilities available in countries and required by products. The stability of nestedness in industrial ecosystems, and the predictability implied by it, demonstrates the importance of the study of network properties in the evolution of economic networks.

  16. The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems

    PubMed Central

    Bustos, Sebastián; Gomez, Charles; Hausmann, Ricardo; Hidalgo, César A.

    2012-01-01

    In economic systems, the mix of products that countries make or export has been shown to be a strong leading indicator of economic growth. Hence, methods to characterize and predict the structure of the network connecting countries to the products that they export are relevant for understanding the dynamics of economic development. Here we study the presence and absence of industries in international and domestic economies and show that these networks are significantly nested. This means that the less filled rows and columns of these networks' adjacency matrices tend to be subsets of the fuller rows and columns. Moreover, we show that their nestedness remains constant over time and that it is sustained by both, a bias for industries that deviate from the networks' nestedness to disappear, and a bias for the industries that are missing according to nestedness to appear. This makes the appearance and disappearance of individual industries in each location predictable. We interpret the high level of nestedness observed in these networks in the context of the neutral model of development introduced by Hidalgo and Hausmann (2009). We show that the model can reproduce the high level of nestedness observed in these networks only when we assume a high level of heterogeneity in the distribution of capabilities available in countries and required by products. In the context of the neutral model, this implies that the high level of nestedness observed in these economic networks emerges as a combination of both, the complementarity of inputs and heterogeneity in the number of capabilities available in countries and required by products. The stability of nestedness in industrial ecosystems, and the predictability implied by it, demonstrates the importance of the study of network properties in the evolution of economic networks. PMID:23185326

  17. Dynamic evolution of translation initiation mechanisms in prokaryotes

    PubMed Central

    Nakagawa, So; Niimura, Yoshihito; Miura, Kin-ichiro; Gojobori, Takashi

    2010-01-01

    It is generally believed that prokaryotic translation is initiated by the interaction between the Shine-Dalgarno (SD) sequence in the 5′ UTR of an mRNA and the anti-SD sequence in the 3′ end of a 16S ribosomal RNA. However, there are two exceptional mechanisms, which do not require the SD sequence for translation initiation: one is mediated by a ribosomal protein S1 (RPS1) and the other used leaderless mRNA that lacks its 5′ UTR. To understand the evolutionary changes of the mechanisms of translation initiation, we examined how universal the SD sequence is as an effective initiator for translation among prokaryotes. We identified the SD sequence from 277 species (249 eubacteria and 28 archaebacteria). We also devised an SD index that is a proportion of SD-containing genes in which the differences of GC contents are taken into account. We found that the SD indices varied among prokaryotic species, but were similar within each phylum. Although the anti-SD sequence is conserved among species, loss of the SD sequence seems to have occurred multiple times, independently, in different phyla. For those phyla, RPS1-mediated or leaderless mRNA-used mechanisms of translation initiation are considered to be working to a greater extent. Moreover, we also found that some species, such as Cyanobacteria, may acquire new mechanisms of translation initiation. Our findings indicate that, although translation initiation is indispensable for all protein-coding genes in the genome of every species, its mechanisms have dynamically changed during evolution. PMID:20308567

  18. Dynamic evolution process of turbulent channel flow after opposition control

    NASA Astrophysics Data System (ADS)

    Ge, Mingwei; Tian, De; Yongqian, Liu

    2017-02-01

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of and <-u‧v‧> in the viscous sublayer. Project supported by the National Natural Science Foundation of China (Grant No. 11402088 and Grant No. 51376062) , State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS15005), and ‘the Fundamental Research Funds for the Central Universities’ (Grant No.2014MS33).

  19. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water.

    PubMed

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M; Warnan, Julien; Kuehnel, Moritz F; Friend, Richard H; Reisner, Erwin

    2016-09-06

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm(-2) at 0 V versus RHE with an onset potential as positive as 0.95±0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ∼1 h under continuous illumination.

  20. A model of the evolution of larval feeding rate in Drosophila driven by conflicting energy demands.

    PubMed

    Mueller, Laurence D; Barter, Thomas T

    2015-02-01

    Energy allocation is believed to drive trade-offs in life history evolution. We develop a physiological and genetic model of energy allocation that drives evolution of feeding rate in a well-studied model system. In a variety of stressful environments Drosophila larvae adapt by altering their rate of feeding. Drosophila larvae adapted to high levels of ammonia, urea, and the presence of parasitoids evolve lower feeding rates. Larvae adapted to crowded conditions evolve higher feeding rates. Feeding rates should affect gross food intake, metabolic rates, and efficiency of food utilization. We develop a model of larval net energy intake as a function of feeding rates. We show that when there are toxic compounds in the larval food that require energy for detoxification, larvae can maximize their energy intake by slowing their feeding rates. While the reduction in feeding rates may increase development time and decrease competitive ability, we show that genotypes with lower feeding rates can be favored by natural selection if they have a sufficiently elevated viability in the toxic environment. This work shows how a simple phenotype, larval feeding rates, may be of central importance in adaptation to a wide variety of stressful environments via its role in energy allocation.

  1. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    PubMed Central

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F.; Friend, Richard H.; Reisner, Erwin

    2016-01-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of −9.8 mA cm−2 at 0 V versus RHE with an onset potential as positive as 0.95±0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ∼1 h under continuous illumination. PMID:27595974

  2. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.

    PubMed

    Pan, Yun-xiang; Zhuang, Huaqiang; Hong, Jindui; Fang, Zheng; Liu, Hai; Liu, Bin; Huang, Yizhong; Xu, Rong

    2014-09-01

    In this work, CdS quantum dots (QDs) supported on Ga2O3 and In2O3 are applied for visible-light-driven H2 evolution from aqueous solutions that contain lactic acid. With Pt as the cocatalyst, the H2 evolution rates on CdS/Pt/Ga2O3 and CdS/Pt/In2O3 are as high as 995.8 and 1032.2 μmol h(-1), respectively, under visible light (λ>420 nm) with apparent quantum efficiencies of 43.6 and 45.3% obtained at 460 nm, respectively. These are much higher than those on Pt/CdS (108.09 μmol h(-1)), Pt/Ga2O3 (0.12 μmol h(-1)), and Pt/In2O3 (0.05 μmol h(-1)). The photocatalysts have been characterized thoroughly and their band structures and photocurrent responses have been measured. The band alignment between the CdS QDs and In2O3 can lead to interfacial charge separation, which cannot occur between the CdS QDs and Ga2O3. Among the various possible factors that contribute to the high H2 evolution rates on CdS/Pt/oxide, the surface properties of the metal oxides play important roles, which include (i) the anchoring of CdS QDs and Pt nanoparticles for favorable interactions and (ii) the efficient trapping of photogenerated electrons from the CdS QDs because of surface defects (such as oxygen defects) based on photoluminescence and photocurrent studies.

  3. What has driven the evolution of multiple cone classes in visual systems: object contrast enhancement or light flicker elimination?

    PubMed Central

    2013-01-01

    Background Two competing theories have been advanced to explain the evolution of multiple cone classes in vertebrate eyes. These two theories have important, but different, implications for our understanding of the design and tuning of vertebrate visual systems. The ‘contrast theory’ proposes that multiple cone classes evolved in shallow-water fish to maximize the visual contrast of objects against diverse backgrounds. The competing ‘flicker theory’ states that multiple cone classes evolved to eliminate the light flicker inherent in shallow-water environments through antagonistic neural interactions, thereby enhancing object detection. However, the selective pressures that have driven the evolution of multiple cone classes remain largely obscure. Results We show that two critical assumptions of the flicker theory are violated. We found that the amplitude and temporal frequency of flicker vary over the visible spectrum, precluding its cancellation by simple antagonistic interactions between the output signals of cones. Moreover, we found that the temporal frequency of flicker matches the frequency where sensitivity is maximal in a wide range of fish taxa, suggesting that the flicker may actually enhance the detection of objects. Finally, using modeling of the chromatic contrast between fish pattern and background under flickering illumination, we found that the spectral sensitivity of cones in a cichlid focal species is optimally tuned to maximize the visual contrast between fish pattern and background, instead of to produce a flicker-free visual signal. Conclusions The violation of its two critical assumptions substantially undermines support for the flicker theory as originally formulated. While this alone does not support the contrast theory, comparison of the contrast and flicker theories revealed that the visual system of our focal species was tuned as predicted by the contrast theory rather than by the flicker theory (or by some combination of the two

  4. Nonlinear dynamics of a strongly driven single spin solid state qubit

    NASA Astrophysics Data System (ADS)

    Coppersmith, S. N.; Jullien, Thibaut; Scarlino, P.; Kawakami, E.; Ward, D. R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Eriksson, M. A.; Vandersypen, L. M. K.

    This talk will discuss how dynamical systems theory can yield new insight into some exotic behavior found in experiments on strongly driven quantum spins in silicon/silicon-germanium heterostructures. Spin resonance experiments were performed by using ac voltages to drive an electron wavefunction in a strong magnetic field gradient. Nontrivial dependence of the resonance frequency on applied power, including the observation of multiple resonant frequencies at one power, are shown to be consistent with frequency-dependent attenuation in the high-frequency lines. The method of analysis is very similar to that presented in the course on nonlinear dynamics that Leo Kadanoff developed at the University of Chicago in the early 1990's. This work was supported in part by ARO (W911NF-12-0607). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at UW-Madison.

  5. Dynamic Failure Mode Transitions in 7075Al Expanding rings driven by Electromagnetic loading

    NASA Astrophysics Data System (ADS)

    Liu, Mingtao; Tang, Tiegang; Guo, Zhaoliang; Fan, Cheng

    Dynamic failure mode transitions are observed in 7075Al electromagnetic expanding rings with a typical size of 3mm in thickness and 0.5mm in height. The rings are driven to maximum expanding velocities ranged from 60m/s to 180m/s, corresponding to strain rates of about 3000 to 9000 per second. At lower strain rates, the fractures of the rings are dominated by the hoop tensile stress, and the cracks are along the radial direction. At higher strain rates, the fractures of the rings are dominated by the maximum shear stress, and the cracks are lie along with an angle of about 45 degree with the radial direction. While the rings deform at medium strain rates, a mixed failure mode is observed, which simultaneously consists of tensile fracture and shear fracture. The failure strains of the specimen and the numbers of the fragmentations were measured after testing. The failure strains show a maximum value as the strain rate increasing, but the numbers of the fragmentations increase firstly, then decrease and then increase again. These phenomena were found to have a close relationship with the dynamic failure mode transitions.

  6. The dynamics of capillary-driven two-phase flow: the role of nanofluid structural forces.

    PubMed

    Nikolov, Alex; Zhang, Hua

    2015-07-01

    Capillary-driven flows are fundamental phenomena and are involved in many key technological processes, such as oil recovery through porous rocks, ink-jet printing, the bubble dynamics in a capillary, microfluidic devices and labs on chips. Here, we discuss and propose a model for the oil displacement dynamics from the capillary by the nanofluid (which is composed of a liquid suspension of nanoparticles); we elucidate the physics of the novelty of the phenomenon and its application. The oil displacement by the nanofluid flow is a multi-stage phenomenon, first leading to the oil film formation on the capillary wall, its break-up, and retraction over the capillary wall; this lead to the formation of the oil double concave meniscus. With time, the process repeats itself, leading to the formation of a regular "necklace" of oil droplets inside the capillary. Finally, the oil droplets are separated by the nanofluid film from the capillary wall. The light reflected differential interferometry technique is applied to investigate the nanofluid interactions with the glass wall. We find nanoparticles tend to self-structure into multiple layers close to the solid wall, which cause the structural forces to arise that lead to the oil displacement from the capillary. This research is expected to benefit the understanding of nanofluid phenomena in a capillary and promote their use in technological applications.

  7. Dynamic Stark effect, light emission, and entanglement generation in a laser-driven quantum optical system

    NASA Astrophysics Data System (ADS)

    Pagel, D.; Alvermann, A.; Fehske, H.

    2017-01-01

    We calculate the emission spectra, the Glauber g(2 ) function, and the entanglement of formation for two-level emitters coupled to a single cavity mode and subject to an external laser excitation. To evaluate these quantities we couple the system to environmental degrees of freedom, which leads to dissipative dynamics. Because of the periodic time dependence of the system Hamiltonian, the coefficients of the Markovian master equation are constant only if Floquet states are used as the computational basis. Studying the emission spectra, we show that the dynamic Stark effect first appears in second order of the laser intensity. For the Glauber function, we find clearly distinguished parameter regimes of super- and sub-Poissonian light emission and explain the additional features appearing for finite laser intensity in terms of the quasienergy spectrum of the driven emitter-cavity system. Finally, we analyze the temperature and emitter-cavity-coupling regimes where entanglement among the emitters is generated and show that the laser excitation leads to a decrease of entanglement.

  8. Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2016-10-01

    An emission spectrometer (450-850 nm) using a high-throughput, high numerical aperture (N.A. = 0.3) prism spectrograph with stepped fiberoptic coupling, 32 fast photomultipliers and thirty-two 1.25 GHz digitizers is described. The spectrometer can capture single-shot events with a high dynamic range in amplitude and time (nanoseconds to milliseconds or longer). Methods to calibrate the spectrometer and verify its performance and accuracy are described. When a reference thermal source is used for calibration, the spectrometer can function as a fast optical pyrometer. Applications of the spectrometer are illustrated by using it to capture single-shot emission transients from energetic materials or reactive materials initiated by kmṡs-1 impacts with laser-driven flyer plates. A log (time) data analysis method is used to visualize multiple kinetic processes resulting from impact initiation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) or a Zr/CuO nanolaminate thermite. Using a gray body algorithm to interpret the spectral radiance from shocked HMX, a time history of temperature and emissivity was obtained, which could be used to investigate HMX hot spot dynamics. Finally, two examples are presented showing how the spectrometer can avoid temperature determination errors in systems where thermal emission is accompanied by atomic or molecular emission lines.

  9. Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system

    NASA Astrophysics Data System (ADS)

    Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.

    2016-08-01

    We numerically solve the underdamped Langevin equation to obtain the trajectories of a particle in a sinusoidal potential driven by a temporally sinusoidal force in a medium with coefficient of friction periodic in space as the potential but with a phase difference. With the appropriate choice of system parameters, like the mean friction coefficient and the period of the applied field, only two kinds of periodic trajectories are obtained for all possible initial conditions at low noise strengths: one with a large amplitude and a large phase lag with respect to the applied field and the other with a small amplitude and a small phase lag. Thus, the periodic potential system is effectively mapped dynamically into a bistable system. Though the directional asymmetry, brought about only by the frictional inhomogeneity, is weak we find both the phenomena of stochastic resonance, with ready explanation in terms of the two dynamical states of trajectories, and ratchet effect simultaneously in the same parameter space. We analyze the results in detail attempting to find plausible explanations for each.

  10. Field-driven dynamics of microcapillaries filled with nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fu, Fred; Khayyatzadeh, Pouya; Abukhdeir, Nasser M.

    Polymer-dispersed liquid crystal (PDLC) composites have long been a focus of study for their unique electro-optical properties and the feasibility of manufacturing them on a large scale, resulting in applications such as switchable windows. LC domains within PDLCs are typically spheroidal, as opposed to rectangular in LCD technology, and thus exhibit substantially different behaviour in the presence of an external field. In this work, continuum simulations were performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. A simplified elliptic cylinder (microcapillary) geometry is used and the effects of varying aspect ratio, surface anchoring, and external field strength were studied using the Landau-de Gennes model. The observed nematic formation and reorientation dynamics were found to be governed by the presence and motion of defects within the domain. Aspect ratio was found to strongly influence domain texture by providing regions of high curvature to which defects are attracted. Simulations also predict the presence of a geometry-controlled transition from nematic order enhanced by an external field (low aspect ratio) to nematic order frustrated by an external field (high aspect ratio). This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.

  11. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2

    PubMed Central

    Piserchio, Andrea; Ramakrishan, Venkatesh; Wang, Hsin; Kaoud, Tamer S.; Arshava, Boris; Dutta, Kaushik; Dalby, Kevin N.; Ghose, Ranajeet

    2015-01-01

    The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS. PMID:26054059

  12. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors

    PubMed Central

    Ren, Jiaping; Wang, Xinjie; Manocha, Dinesh

    2016-01-01

    We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each individual insect. Furthermore, we model the noise as a constructive force at the collective level and present a technique to generate noise-induced insect movements in a large swarm that are similar to those observed in real-world trajectories. We use a data-driven formulation that is based on pre-recorded insect trajectories. We also present a novel evaluation metric and a statistical validation approach that takes into account various characteristics of insect motions. In practice, the combination of Curl noise function with our dynamics model is used to generate realistic swarm simulations and emergent behaviors. We highlight its performance for simulating large flying swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors, including aggregation, migration, phase transition, and escape responses. PMID:27187068

  13. Data-driven reverse engineering of signaling pathways using ensembles of dynamic models.

    PubMed

    Henriques, David; Villaverde, Alejandro F; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R

    2017-02-01

    Despite significant efforts and remarkable progress, the inference of signaling networks from experimental data remains very challenging. The problem is particularly difficult when the objective is to obtain a dynamic model capable of predicting the effect of novel perturbations not considered during model training. The problem is ill-posed due to the nonlinear nature of these systems, the fact that only a fraction of the involved proteins and their post-translational modifications can be measured, and limitations on the technologies used for growing cells in vitro, perturbing them, and measuring their variations. As a consequence, there is a pervasive lack of identifiability. To overcome these issues, we present a methodology called SELDOM (enSEmbLe of Dynamic lOgic-based Models), which builds an ensemble of logic-based dynamic models, trains them to experimental data, and combines their individual simulations into an ensemble prediction. It also includes a model reduction step to prune spurious interactions and mitigate overfitting. SELDOM is a data-driven method, in the sense that it does not require any prior knowledge of the system: the interaction networks that act as scaffolds for the dynamic models are inferred from data using mutual information. We have tested SELDOM on a number of experimental and in silico signal transduction case-studies, including the recent HPN-DREAM breast cancer challenge. We found that its performance is highly competitive compared to state-of-the-art methods for the purpose of recovering network topology. More importantly, the utility of SELDOM goes beyond basic network inference (i.e. uncovering static interaction networks): it builds dynamic (based on ordinary differential equation) models, which can be used for mechanistic interpretations and reliable dynamic predictions in new experimental conditions (i.e. not used in the training). For this task, SELDOM's ensemble prediction is not only consistently better than predictions

  14. Data-driven reverse engineering of signaling pathways using ensembles of dynamic models

    PubMed Central

    Henriques, David; Villaverde, Alejandro F.; Banga, Julio R.

    2017-01-01

    Despite significant efforts and remarkable progress, the inference of signaling networks from experimental data remains very challenging. The problem is particularly difficult when the objective is to obtain a dynamic model capable of predicting the effect of novel perturbations not considered during model training. The problem is ill-posed due to the nonlinear nature of these systems, the fact that only a fraction of the involved proteins and their post-translational modifications can be measured, and limitations on the technologies used for growing cells in vitro, perturbing them, and measuring their variations. As a consequence, there is a pervasive lack of identifiability. To overcome these issues, we present a methodology called SELDOM (enSEmbLe of Dynamic lOgic-based Models), which builds an ensemble of logic-based dynamic models, trains them to experimental data, and combines their individual simulations into an ensemble prediction. It also includes a model reduction step to prune spurious interactions and mitigate overfitting. SELDOM is a data-driven method, in the sense that it does not require any prior knowledge of the system: the interaction networks that act as scaffolds for the dynamic models are inferred from data using mutual information. We have tested SELDOM on a number of experimental and in silico signal transduction case-studies, including the recent HPN-DREAM breast cancer challenge. We found that its performance is highly competitive compared to state-of-the-art methods for the purpose of recovering network topology. More importantly, the utility of SELDOM goes beyond basic network inference (i.e. uncovering static interaction networks): it builds dynamic (based on ordinary differential equation) models, which can be used for mechanistic interpretations and reliable dynamic predictions in new experimental conditions (i.e. not used in the training). For this task, SELDOM’s ensemble prediction is not only consistently better than predictions

  15. WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires

    NASA Astrophysics Data System (ADS)

    Altintas, I.; Block, J.; Braun, H.; de Callafon, R. A.; Gollner, M. J.; Smarr, L.; Trouve, A.

    2013-12-01

    Recent studies confirm that climate change will cause wildfires to increase in frequency and severity in the coming decades especially for California and in much of the North American West. The most critical sustainability issue in the midst of these ever-changing dynamics is how to achieve a new social-ecological equilibrium of this fire ecology. Wildfire wind speeds and directions change in an instant, and first responders can only be effective when they take action as quickly as the conditions change. To deliver information needed for sustainable policy and management in this dynamically changing fire regime, we must capture these details to understand the environmental processes. We are building an end-to-end cyberinfrastructure (CI), called WIFIRE, for real-time and data-driven simulation, prediction and visualization of wildfire behavior. The WIFIRE integrated CI system supports social-ecological resilience to the changing fire ecology regime in the face of urban dynamics and climate change. Networked observations, e.g., heterogeneous satellite data and real-time remote sensor data is integrated with computational techniques in signal processing, visualization, modeling and data assimilation to provide a scalable, technological, and educational solution to monitor weather patterns to predict a wildfire's Rate of Spread. Our collaborative WIFIRE team of scientists, engineers, technologists, government policy managers, private industry, and firefighters architects implement CI pathways that enable joint innovation for wildfire management. Scientific workflows are used as an integrative distributed programming model and simplify the implementation of engineering modules for data-driven simulation, prediction and visualization while allowing integration with large-scale computing facilities. WIFIRE will be scalable to users with different skill-levels via specialized web interfaces and user-specified alerts for environmental events broadcasted to receivers before

  16. Dehydration-driven evolution of topological complexity in ethylamonium uranyl selenates

    NASA Astrophysics Data System (ADS)

    Gurzhiy, Vladislav V.; Krivovichev, Sergey V.; Tananaev, Ivan G.

    2017-03-01

    Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules, (C2H8N)2[(UO2)(SeO4)2(H2O)](H2O) (I), (C2H8N)3[(UO2)(SeO4)2(HSeO4)] (II), (C2H8N)[(UO2)(SeO4)(HSeO3)] (III), and (C2H8N)(H3O)[(UO2)(SeO4)2(H2O)] (IV) have been prepared by isothermal evaporation from aqueous solutions. Uranyl-containing 1D and 2D units have been investigated using topological approach and information-based complexity measurements that demonstrate the evolution of structural units and the increase of topological complexity with the decrease of H2O content.

  17. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth

    NASA Astrophysics Data System (ADS)

    Bayerlein, Bernd; Zaslansky, Paul; Dauphin, Yannicke; Rack, Alexander; Fratzl, Peter; Zlotnikov, Igor

    2014-12-01

    Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.

  18. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth.

    PubMed

    Bayerlein, Bernd; Zaslansky, Paul; Dauphin, Yannicke; Rack, Alexander; Fratzl, Peter; Zlotnikov, Igor

    2014-12-01

    Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.

  19. Visible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts

    PubMed Central

    Sprick, Reiner Sebastian; Bonillo, Baltasar; Clowes, Rob; Guiglion, Pierre; Brownbill, Nick J.; Slater, Benjamin J.; Blanc, Frédéric; Zwijnenburg, Martijn A.

    2015-01-01

    Abstract Linear poly(p‐phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co‐polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co‐polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride. PMID:26696450

  20. Visible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts

    PubMed Central

    Sprick, Reiner Sebastian; Bonillo, Baltasar; Clowes, Rob; Guiglion, Pierre; Brownbill, Nick J.; Slater, Benjamin J.; Blanc, Frédéric; Zwijnenburg, Martijn A.

    2015-01-01

    Abstract Linear poly(p‐phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co‐polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co‐polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride. PMID:27478279

  1. Finger evolution of a gas bubble driven by atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Shiu, Jia-Hau; Chu, Hong-Yu

    2016-12-01

    We report the generation and evolution of a finger-shaped bubble in liquid by dielectric discharge setup. The spherical gas bubble is deformed into a finger-shaped bubble after the ignition of plasma. The presence of the filamentary discharge in the bubble not only provides the local heating to the bubble, it also changes the distribution of the electric field in the bubble and the bubble mutually provides the pathway to the discharge. The reduced surface tension on the liquid-gas interface due to the rise of temperature by plasma heating and the nonuniform electric field caused by the presence of filamentary discharge might induce the concave-shaped bubble. We also observe the formation of the quasi-two-dimensional bubble, which is generated from the bubble and attached on one side of the electrodes. It is found that the discharge induces the growth of the periodic fluctuations in the thin layer of gas.

  2. Evolution of substrate specificity in a retained enzyme driven by gene loss.

    PubMed

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka E; Verduzco-Castro, Ernesto A; Michalska, Karolina; Wu, Chenggang; Noda-García, Lianet; Babnigg, Gyorgy; Endres, Michael; Medina-Ruíz, Sofía; Santoyo-Flores, Julián; Carrillo-Tripp, Mauricio; Ton-That, Hung; Joachimiak, Andrzej; Henry, Christopher S; Barona-Gómez, Francisco

    2017-03-31

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.

  3. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    PubMed

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-08-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  4. Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation

    PubMed Central

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-01-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. PMID:22927829

  5. Quaternary landscape evolution driven by slab-pull mechanisms in the Granada Basin (Central Betics)

    NASA Astrophysics Data System (ADS)

    Pérez-Peña, J. V.; Azañón, J. M.; Azor, A.; Booth-Rea, G.; Galve, J. P.; Roldán, F. J.; Mancilla, F.; Giaconia, F.; Morales, J.; Al-Awabdeh, M.

    2015-11-01

    The Granada Basin is one of the largest Neogene-Quaternary intramontane basins of the Betic Cordillera in SE Spain. The landscape evolution in this basin is complex and does not respond to a simple model of headward erosion following river capture of a former endorheic catchment. In the NE border of the basin, the drainage network is highly incised and reveals two different stages of river development since the Pleistocene. The older drainage network presents low incision, being locally controlled by ENE-WSW open folds. The present-day drainage network features deep incised valleys with a well-defined local base-level controlled by NW-SE normal faults. The ENE-WSW open folds were generated by compressional stresses and affect a geomorphic surface that caps the local sedimentary sequence. These folds are thought to reactivate a Pliocene roll-over formed in the hanging wall of ENE-WSW normal faults that bound the Granada Basin to the north and the deepest Pliocene depocenter. On the contrary, Quaternary depocenters are located in the hanging wall of the NW-SE-oriented normal faults that control the present-day drainage network (NW-SE oriented). The activity of these faults also contributes to the erosion of the Pliocene depocenter located to the north, thus suggesting a southwestward migration of the loci of extension to the center of the basin. The broad-scale scenario envisaged to explain the Pliocene-Quaternary evolution of the NE border of the Granada Basin is one dominated by mantle slab-pull coeval with the Africa-Iberia continuous convergence.

  6. Public debates driven by incomplete scientific data: The cases of evolution theory, global warming and H1N1 pandemic influenza

    NASA Astrophysics Data System (ADS)

    Galam, Serge

    2010-09-01

    Public debates driven by incomplete scientific data where nobody can claim absolute certainty, due to the current state of scientific knowledge, are studied. The cases of evolution theory, global warming and H1N1 pandemic influenza are investigated. The first two are of controversial impact while the third is more neutral and resolved. To adopt a cautious balanced attitude based on clear but inconclusive data appears to be a lose-out strategy. In contrast overstating arguments with incorrect claims which cannot be scientifically refuted appears to be necessary but not sufficient to eventually win a public debate. The underlying key mechanisms of these puzzling and unfortunate conclusions are identified using the Galam sequential probabilistic model of opinion dynamics (Galam, 2002 [4], Galam, 2005 [18], Galam and Jacobs, 2007 [19]). It reveals that the existence of inflexible agents and their respective proportions are the instrumental parameters to determine the faith of incomplete scientific data in public debates. Acting on one’s own inflexible proportion modifies the topology of the flow diagram, which in turn can make irrelevant initial supports. On the contrary focusing on open-minded agents may be useless given some topologies. When the evidence is not as strong as claimed, the inflexibles rather than the data are found to drive the opinion of the population. The results shed a new but disturbing light on designing adequate strategies to win a public debate.

  7. Defect and damage evolution quantification in dynamically-deformed metals using orientation-imaging microscopy

    SciTech Connect

    Gray, George T., III; Livescu, Veronica; Cerreta, Ellen K

    2010-03-18

    Orientation-imaging microscopy offers unique capabilities to quantify the defects and damage evolution occurring in metals following dynamic and shock loading. Examples of the quantification of the types of deformation twins activated, volume fraction of twinning, and damage evolution as a function of shock loading in Ta are presented. Electron back-scatter diffraction (EBSD) examination of the damage evolution in sweeping-detonation-wave shock loading to study spallation in Cu is also presented.

  8. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach

    DTIC Science & Technology

    2012-09-30

    COVERED - 4 . TITLE AND SUBTITLE Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach 5a. CONTRACT...mwheeler/maproom/RMM/ 4 • As the Madden-Julian oscillation (MJO) moves eastward from the Indian to the Pacific ocean, it typically accelerates, becomes

  9. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  10. A Model for Gas Dynamics and Chemical Evolution of the Fornax Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen

    We present an empirical model for the halo evolution, global gas dynamics and chemical evolution of Fornax, the brightest Milky Way (MW) dwarf spheroidal galaxy (dSph). Assuming a global star formation rate psi(t) = lambda*(t)[Mg( t)/M[solar masses

  11. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    PubMed

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density.

  12. Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy

    NASA Astrophysics Data System (ADS)

    Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu

    2016-07-01

    Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.

  13. Long pulse laser driven shock wave loading for dynamic materials experiments

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Greenfield, S. R.; Paisley, D. L.; Johnson, R. P.; Shimada, T.; Byler, D. D.; Loomis, E. N.; DiGiacomo, S. N.; Patterson, B. M.; McClellan, K. J.; Dickerson, R. M.; Peralta, P. D.; Koskelo, A. C.; Tonks, D. L.

    2008-05-01

    We present two laser driven shock wave loading techniques utilizing long pulse lasers, laser-launched flyer plate and confined laser ablation, and their applications to shock physics. The full width at half maximum of the drive laser pulse ranges from 100 ns to 10 μs, and its energy, from 10 J to 1000 J. The drive pulse is smoothed with a holographic optical element to achieve spatial homogeneity in loading. We characterize the flyer plate during flight and dynamically loaded target with temporally and spatially resolved diagnostics. The long duration and high energy of the drive pulse allow for shockless acceleration of thick flyer plates with 8 mm diameter and 0.1-2 mm thickness. With transient imaging displacement interferometry and line-imaging velocimetry, we demonstrate that the planarity (bow and tilt) of the loading is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible in particular when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation enables flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These dynamic loading techniques using long pulse lasers (0.1-10 μs) along with short pulse lasers (1-10 ns) can be an accurate, versatile and efficient complement to conventional shock wave loading for investigating such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples, in a wide range of strain rates and pressures at meso- and macroscopic scales.

  14. A Pathophysiological Model-Driven Communication for Dynamic Distributed Medical Best Practice Guidance Systems.

    PubMed

    Hosseini, Mohammad; Jiang, Yu; Wu, Poliang; Berlin, Richard B; Ren, Shangping; Sha, Lui

    2016-11-01

    There is a great divide between rural and urban areas, particularly in medical emergency care. Although medical best practice guidelines exist and are in hospital handbooks, they are often lengthy and difficult to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical technicians (EMT) during patient transport. In this paper, we propose the concept of distributed executable medical best practice guidance systems to assist adherence to best practice from the time that a patient first presents at a rural hospital, through diagnosis and ambulance transfer to arrival and treatment at a regional tertiary hospital center. We codify complex medical knowledge in the form of simplified distributed executable disease automata, from the thin automata at rural hospitals to the rich automata in the regional center hospitals. However, a main challenge is how to efficiently and safely synchronize distributed best practice models as the communication among medical facilities, devices, and professionals generates a large number of messages. This complex problem of patient diagnosis and transport from rural to center facility is also fraught with many uncertainties and changes resulting in a high degree of dynamism. A critically ill patient's medical conditions can change abruptly in addition to changes in the wireless bandwidth during the ambulance transfer. Such dynamics have yet to be addressed in existing literature on telemedicine. To address this situation, we propose a pathophysiological model-driven message exchange communication architecture that ensures the real-time and dynamic requirements of synchronization among distributed emergency best practice models are met in a reliable and safe manner. Taking the signs, symptoms, and progress of stroke patients transported across a geographically distributed healthcare network as the motivating use case, we implement our communication system and apply it to our developed best practice

  15. Combinatorial optimization using dynamical phase transitions in driven-dissipative systems

    NASA Astrophysics Data System (ADS)

    Leleu, Timothée; Yamamoto, Yoshihisa; Utsunomiya, Shoko; Aihara, Kazuyuki

    2017-02-01

    The dynamics of driven-dissipative systems is shown to be well-fitted for achieving efficient combinatorial optimization. The proposed method can be applied to solve any combinatorial optimization problem that is equivalent to minimizing an Ising Hamiltonian. Moreover, the dynamics considered can be implemented using various physical systems as it is based on generic dynamics—the normal form of the supercritical pitchfork bifurcation. The computational principle of the proposed method relies on an hybrid analog-digital representation of the binary Ising spins by considering the gradient descent of a Lyapunov function that is the sum of an analog Ising Hamiltonian and archetypal single or double-well potentials. By gradually changing the shape of the latter potentials from a single to double well shape, it can be shown that the first nonzero steady states to become stable are associated with global minima of the Ising Hamiltonian, under the approximation that all analog spins have the same amplitude. In the more general case, the heterogeneity in amplitude between analog spins induces the stabilization of local minima, which reduces the quality of solutions to combinatorial optimization problems. However, we show that the heterogeneity in amplitude can be reduced by setting the parameters of the driving signal near a regime, called the dynamic phase transition, where the analog spins' DC components map more accurately the global minima of the Ising Hamiltonian which, in turn, increases the quality of solutions found. Last, we discuss the possibility of a physical implementation of the proposed method using networks of degenerate optical parametric oscillators.

  16. Competition-colonization dynamics: An ecology approach to quasispecies dynamics and virulence evolution in RNA viruses.

    PubMed

    Ojosnegros, Samuel; Beerenwinkel, Niko; Domingo, Esteban

    2010-07-01

    A single and purified clone of foot-and-mouth disease virus diversified in cell culture into two subpopulations that were genetically distinct. The subpopulation with higher virulence was a minority and was suppressed by the dominant but less virulent one. These two populations follow the competitioncolonization dynamics described in ecology. Virulent viruses can be regarded as colonizers because they killed the cells faster and they spread faster. The attenuated subpopulation resembles competitors because of its higher replication efficiency in coinfected cells. Our results suggest a new model for the evolution of virulence which is based on interactions between components of the quasispecies. Competition between viral mutants takes place at two levels, intracellular competition and competition for new cells. The two strategies are subjected to densitydependent selection.

  17. Spinor dynamics-driven formation of a dual-beam atom laser.

    PubMed

    Lundblad, N; Thompson, R J; Aveline, D C; Maleki, L

    2006-10-30

    We demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of an all-optical F = 1 spinor Bose-Einstein condensate whose Zeeman sublevel populations have been coherently evolved through spin dynamics. The condensate is formed through all-optical means using a single-beam running-wave dipole trap. We create a condensate in the magnetic field-insensitive m(F) = 0 state, and drive coherent spin-mixing evolution through adiabatic compression of the initially weak trap. Such dual beams, number-correlated through the angular momentum-conserving reaction 2m(0) ?m(+1) +m(-1), have been proposed as tools to explore entanglement and squeezing in Bose-Einstein condensates, and have potential use in precision phase measurements.

  18. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  19. Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics.

    PubMed

    Veshtort, Mikhail; Griffin, Robert G

    2011-10-07

    Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R(2)). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two (13)C nuclei and about ten (1)H nuclei from their nearest environment. Spin diffusion constants computed by this

  20. Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics

    PubMed Central

    Veshtort, Mikhail; Griffin, Robert G.

    2011-01-01

    Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method

  1. Divergent prion strain evolution driven by PrPC expression level in transgenic mice

    PubMed Central

    Le Dur, Annick; Laï, Thanh Lan; Stinnakre, Marie-George; Laisné, Aude; Chenais, Nathalie; Rakotobe, Sabine; Passet, Bruno; Reine, Fabienne; Soulier, Solange; Herzog, Laetitia; Tilly, Gaëlle; Rézaei, Human; Béringue, Vincent; Vilotte, Jean-Luc; Laude, Hubert

    2017-01-01

    Prions induce a fatal neurodegenerative disease in infected host brain based on the refolding and aggregation of the host-encoded prion protein PrPC into PrPSc. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Constrained interactions between PrPC and different PrPSc strains can in turn lead to certain PrPSc (sub)populations being selected for cross-species transmission, or even produce mutation-like events. By contrast, prion strains are generally conserved when transmitted within the same species, or to transgenic mice expressing homologous PrPC. Here, we compare the strain properties of a representative sheep scrapie isolate transmitted to a panel of transgenic mouse lines expressing varying levels of homologous PrPC. While breeding true in mice expressing PrPC at near physiological levels, scrapie prions evolve consistently towards different strain components in mice beyond a certain threshold of PrPC overexpression. Our results support the view that PrPC gene dosage can influence prion evolution on homotypic transmission. PMID:28112164

  2. Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    1994-05-01

    HETEROEPITAXIAL THIN FILMS are subjected to very large stresses, typically in the giga-Pascal range, due to lattice mismatch. Their applications in microelectronic devices have drawn a growing research effort which involves, in part, a better understanding of the processes by which defects such as cracks and dislocations are nucleated in a thin layer structure. One of the possible defect mechanisms is related to a stress-induced morphological instability which tends to roughen the film surface by mass diffusion during film growth or annealing. A major objective of this paper is to show that a few invariance properties of the strain energy density and the chemical potential in a heteroepitaxial structure can be utilized to obtain some valuable information concerning the equilibrium profile, the stress concentration and the formation of cusp-like stress singularities without having to resort to full-scale numerical studies. The process of cusp-formation requires a critical film thickness H cr which is independent of the Matthews critical thickness h erfor misfit dislocation formation by propagation of threading dislocations within the film. Calculations show that H cr is significantly larger than h cr for a wide range of misfit strain, suggesting that nucleation of threading dislocations via cusp-formation could be critical in the overall process of strain relaxation in this type of film. Finally, a "phase" diagram is constructed to categorize important consequences of the surface evolution based on the instability wavelength and average film thickness.

  3. Molecular conductance at finite voltage: bias driven evolution of Kohn-Sham-orbitals

    NASA Astrophysics Data System (ADS)

    Koentopp, Max; Evers, Ferdinand; Burke, Kieron

    2006-03-01

    Ground state density functional theory calculations yield the exact electron density if the exact exchange-correlation functional is employed. The evolution of the equilibrium density with parametric changes in the Hamiltonian, e.g. realized by a change in the electrostatic potential, can provide crucial information about transport properties, like the Coulomb blockade. To test our ideas, we perform model calculations using the quantum chemistry package TURBOMOLE for a diode molecule, which exhibits the structure of a double quantum dot and has been investigated experimentally [1]. In particular, we explain the origin of the characteristic peak structure in the differential conductance. Our results are consistent with the interpretation that the stepwise increase of the conductance occurs when the number of occupied levels of one of the dots, that have an energy above the lowest unoccupied level of the other dot, increases by one.[1] M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von Hänisch, F. Weigend, F. Evers, H. Weber, M. Mayor, Proc. Nat. Acad. Sci. USA 102, 8815 (2005).

  4. Evolution of nanostructure and specific surface area during thermally driven dehydration of Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Pimminger, H.; Habler, G.; Freiberger, N.; Abart, R.

    2016-01-01

    The thermally induced dehydration of micrometer-sized particles of Mg(OH)2 was investigated experimentally at ambient pressure and temperatures ranging from 350 to 1300 °C. Reaction progress is correlated with the evolution of the specific surface area and of the particle internal nanostructure. The maximum specific surface area of about 320 m2/g corresponding to a 70-fold increase relative to the starting material is obtained after heat treatment at 350 °C for about 2 h. This is due to the formation of a highly porous, particle-internal nanostructure comprised of newly crystallized strictly aligned, cube-shaped and nanometer-sized crystals of MgO and about 50 vol% porosity. Associated with the dehydration, intensive fracturing and defoliation occurs parallel to the (0001) plane of the original Mg(OH)2 or (111) of the topotaxially grown MgO. After heat treatment at increasingly higher temperatures, enhanced coarsening and sintering of the MgO crystals and healing of cracks leads to a successive decrease of the specific surface area. After heat treatment at 1300 °C for 2.5 h, the specific surface area has decreased to 5 m2/g close to the value typical for the original Mg(OH)2.

  5. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    SciTech Connect

    Xu, S. F.; Zhong, X. X.

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  6. Evolution of opsin expression in birds driven by sexual selection and habitat.

    PubMed

    Bloch, Natasha I

    2015-01-07

    Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I