Simulations of Cold Electroweak Baryogenesis: quench from portal coupling to new singlet field
NASA Astrophysics Data System (ADS)
Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders
2018-01-01
We compute the baryon asymmetry generated from Cold Electroweak Baryogenesis, when a dynamical Beyond-the-Standard-Model scalar singlet field triggers the spinodal transition. Using a simple potential for this additional field, we match the speed of the quench to earlier simulations with a "by-hand" mass flip. We find that for the parameter subspace most similar to a by-hand transition, the final baryon asymmetry shows a similar dependence on quench time and is of the same magnitude. For more general parameter choices the Higgs-singlet dynamics can be very complicated, resulting in an enhancement of the final baryon asymmetry. Our results validate and generalise results of simulations in the literature and open up the Cold Electroweak Baryogenesis scenario to further model building.
The role of the baryon junction in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Vance, Stephen Earl
The non-perturbative nature of the conserved baryon number of nuclei is investigated by studying the role of the baryon junction in relativistic heavy-ion collisions. The junction, J, of a baryon originates in the Standard Model of Strong Interactions (QCD) and is the vertex which connects the color flux (Wilson) lines flowing from the three valence quarks. In high energy interactions, the baryon junction can play a dynamical role through the Regge exchange of junction states. We show that the junction exchange provides a natural mechanism for the transport of baryon number into the central rapidity region and has the remarkable ability to produce valence hyperons, including W- baryons. This mechanism is used to describe the observed baryon stopping and associated hyperon production in nucleus-nucleus collisions at the CERN SPS. We also show that junction - antijunction excitations or JJ loops provide a new mechanism for baryon pair production and lead to enhanced hyperon and antihyperon production. The combination of these two mechanisms is able to explain part of the anomalous hyperon production observed in Pb + Pb collisions at the SPS. Using the junction initial state dynamics, final state strangeness exchange interactions are shown to further enhance hyperon production and are proposed as an explanation of the remaining anomalous hyperon production. With larger phase space (higher energy) accessible at the newly constructed BNL RHIC facility, we propose that the observation of valence W- baryons in pp collisions will be a decisive observable to confirm the junction exchange picture of baryon number transport. In addition, we note that novel rapidity correlations between baryons and antibaryons of completely different quark flavors, like D++(uuu) and W+( ss s) , are predicted by the JJ loop mechanism. For numerical calculations of multiparticle observables associated with these junction mechanisms, we developed the HIJING/BB¯ nuclear event generator. HIJING/BB¯ was then coupled to the General Cascade Program (GCP) to study the role of the final state flavor changing interactions.
Bosonic-seesaw portal dark matter
NASA Astrophysics Data System (ADS)
Ishida, Hiroyuki; Matsuzaki, Shinya; Yamaguchi, Yuya
2017-10-01
We discuss a new type of Higgs-portal dark matter (DM) production mechanism, called the bosonic-seesaw portal (BSP) scenario. The BS provides the dynamical origin of the electroweak symmetry breaking, triggered by mixing between the elementary Higgs and a composite Higgs generated by a new-color strong dynamics, hypercolor (HC). At the HC strong coupling scale, the classical-scale invariance assumed in the model is dynamically broken, as well as the "chiral" symmetry present in the HC sector. In addition to the composite Higgs, HC baryons emerge to potentially be stable because of the unbroken HC baryon number symmetry. Hence the lightest HC baryon can be a DM candidate. Of interest in the present scenario is that HC pions can be as heavy as the HC baryon due to the possibly enhanced explicit "chiral"-breaking effect triggered after the BS mechanism, so the HC baryon pair cannot annihilate into HC pions. As in the standard setup of the freeze-in scenario, it is assumed that the DM was never in the thermal equilibrium, which ends up with no thermal abundance. It is then the non-thermal BSP process that crucially comes into the game below the HC scale: the HC baryon significantly couples to the standard-model Higgs via the BS mechanism, and can non-thermally be produced from the thermal plasma below the HC scale, which turns out to allow the TeV mass scale for the composite baryonic DM, much smaller than the generic bound placed in the conventional thermal freeze-out scenario, to account for the observed relic abundance. Thus the DM can closely be related to the mechanism of the electroweak symmetry breaking.
Parity partners in the baryon resonance spectrum
Lu, Ya; Chen, Chen; Roberts, Craig D.; ...
2017-07-28
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Parity partners in the baryon resonance spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ya; Chen, Chen; Roberts, Craig D.
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
On the Generation of the Hubble Sequence Through an Internal Secular Dynamical Process
2004-01-01
is apparently brought about by the fact that spiral galaxies still have varying reserves of baryonic dark matter to form stars, therefore as the...central baryonic dark matter supply, thus the ellipticals in more advanced stage of evolution (which also generally have larger L) will experi- ence...This view is particularly favored by the currently popular hierarchical clustering/cold dark matter (CDM) paradigm of structure formation and evolution
Weak decays of heavy hadrons into dynamically generated resonances
Oset, Eulogio; Liang, Wei -Hong; Bayar, Melahat; ...
2016-01-28
In this study, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allowmore » for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances.« less
Lepton-flavored electroweak baryogenesis
NASA Astrophysics Data System (ADS)
Guo, Huai-Ke; Li, Ying-Ying; Liu, Tao; Ramsey-Musolf, Michael; Shu, Jing
2017-12-01
We explore lepton-flavored electroweak baryogenesis, driven by C P -violation in leptonic Yukawa sector, using the τ -μ system in the two Higgs doublet model as an example. This setup generically yields, together with the flavor-changing decay h →τ μ , a tree-level Jarlskog invariant that can drive dynamical generation of baryon asymmetry during a first-order electroweak phase transition and results in C P -violating effects in the decay h →τ τ . We find that the observed baryon asymmetry can be generated in parameter space compatible with current experimental results for the decays h →τ μ , h →τ τ , and τ →μ γ , as well as the present bound on the electric dipole moment of the electron. The baryon asymmetry generated is intrinsically correlated with the C P -violating decay h →τ τ and the flavor-changing decay h →τ μ , which thus may serve as "smoking guns" to test lepton-flavored electroweak baryogenesis.
Multistrange Meson-Baryon Dynamics and Resonance Generation
NASA Astrophysics Data System (ADS)
Khemchandani, K. P.; Martínez Torres, A.; Hosaka, A.; Nagahiro, H.; Navarra, F. S.; Nielsen, M.
2018-05-01
In this talk I review our recent studies on meson-baryon systems with strangeness - 1 and - 2. The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to - 1 or - 2. The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe-Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness - 1, we find evidence for the existence of some hyperons such as: Λ(2000), Σ(1750), Σ(1940), Σ(2000). More recently, in the study of strangeness - 2 systems we have found two narrow resonances which can be related to Ξ (1690) and Ξ(2120). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.
Molecular Ωc states generated from coupled meson-baryon channels
NASA Astrophysics Data System (ADS)
Debastiani, V. R.; Dias, J. M.; Liang, W. H.; Oset, E.
2018-05-01
We have investigated Ωc states that are dynamically generated from the meson-baryon interaction. We use an extension of the local hidden gauge to obtain the interaction from the exchange of vector mesons. We show that the dominant terms come from the exchange of light vectors, where the heavy quarks are spectators. This has as a consequence that heavy quark symmetry is preserved for the dominant terms in the (1 /mQ ) counting, and also that the interaction in this case can be obtained from the SU(3) chiral Lagrangians. We show that for a standard value for the cutoff regulating the loop, we obtain two states with JP=1/2 - and two more with JP=3/2 -, three of them in remarkable agreement with three experimental states in mass and width. We also make predictions at higher energies for states of vector-baryon nature.
Baryogenesis via dark matter-induced symmetry breaking in the early Universe
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy; Trodden, Mark
2017-11-01
We put forward a new proposal for generating the baryon asymmetry of the universe by making use of the dynamics of a U (1) scalar field coupled to dark matter. High dark matter densities cause the U (1) symmetry to break spontaneously so that the field acquires a large vacuum expectation value. The symmetry is restored when the density redshifts below a critical value, resulting in the coherent oscillation of the scalar field. A net B - L number can be generated either via baryon number-conserving couplings to the standard model or through small symmetry-violating operators and the subsequent decay of the scalar condensate.
Towards Lattice QCD Baryon Forces at the Physical Point: First Results
NASA Astrophysics Data System (ADS)
Doi, Takumi; Aoki, Sinya; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
Lattice QCD calculations of baryon forces are performed for the first time with (almost) physical quark masses. Nf = 2 + 1 dynamical clover fermion gauge configurations are generated at the lattice spacing of a ≃ 0.085 fm on a (96a)4 ≃ (8.2 fm)4 lattice with quark masses corresponding to (mπ,mK) ≃ (146,525) MeV. Baryon forces are calculated using the time-dependent HAL QCD method. In this report, we study ΞΞ and NN systems both in 1S0 and 3S1-3D1 channels, and the results for the central and tensor forces as well as phase shifts in the ΞΞ (1S0) channel are presented.
Prediction of Narrow N* and {Lambda}* Resonances with Hidden Charm above 4 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Apartado 22085, 46071 Valencia; Molina, R.
2010-12-03
The interaction between various charmed mesons and charmed baryons is studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. Several meson-baryon dynamically generated narrow N{sup *} and {Lambda}{sup *} resonances with hidden charm are predicted with mass above 4 GeV and width smaller than 100 MeV. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and can be looked for in the forthcoming PANDA/FAIR experiments.
NASA Astrophysics Data System (ADS)
Topor Pop, V.; Gyulassy, M.; Barrette, J.; Gale, C.
2011-10-01
With the HIJING/B¯B v2.0 heavy ion event generator, we explore the phenomenological consequences of several high parton density dynamical effects predicted in central Pb+Pb collisions at the Large Hadron Collider (LHC) energies. These include (1) jet quenching due to parton energy loss (dE/dx), (2) strangeness and hyperon enhancement due to strong longitudinal color field (SCF), and (3) enhancement of baryon-to-meson ratios due to baryon-antibaryon junction (J¯J) loops and SCF effects. The saturation/minijet cutoff scale p0(s,A) and effective string tension κ(s,A) are constrained by our previous analysis of LHC p+p data and recent data on the charged multiplicity for Pb+Pb collisions reported by the ALICE collaboration. We predict the hadron flavor dependence (mesons and baryons) of the nuclear modification factor RAA(pT) and emphasize the possibility that the baryon anomaly could persist at the LHC up to pT˜10 GeV, well beyond the range observed in central Au+Au collisions at RHIC energies.
Baryonic matter perturbations in decaying vacuum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S., E-mail: rodrigovonmarttens@gmail.com, E-mail: wiliam.ricaldi@ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br
2014-08-01
We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbativemore » level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.« less
Structure of the Roper resonance from lattice QCD constraints
NASA Astrophysics Data System (ADS)
Wu, Jia-jun; Leinweber, Derek B.; Liu, Zhan-wei; Thomas, Anthony W.
2018-05-01
Two different effective field theory descriptions of the pion-nucleon scattering data are constructed to describe the region of the Roper resonance. In one, the resonance is the result of strong rescattering between coupled meson-baryon channels, while in the other the resonance has a large bare-baryon (or quark-model-like) component. The predictions of these two scenarios are compared with the latest lattice QCD simulation results in this channel. We find that the second scenario is not consistent with lattice QCD results, whereas the first agrees with those constraints. In that preferred scenario, the mass of the quark-model-like state is approximately 2 GeV, with the infinite-volume Roper resonance best described as a resonance generated dynamically through strongly coupled meson-baryon channels.
The production of π±, K±, p and p¯ in p-Pb collisions at sNN = 5.02 TeV
NASA Astrophysics Data System (ADS)
Tabassam, U.; Ali, Y.; Suleymanov, M.; Bhatti, A. S.; Ajaz, M.
2018-06-01
In this study, we are reporting comprehensive results on π±, K±, p and p¯ production in the transverse momentum range of 0 < pT < 4 GeV/c at midrapidity of 0 < y < 0.5 GeV/c, in p-Pb collisions at sNN = 5.02 TeV. HIJING 1.0 and UrQMD 3.4 event generators are used to perform simulations and the results are compared with the ALICE and RHIC data. It is observed from the comparison that the yields for the baryons are more complex compared to the mesons and the complexity in baryons is due to the striping dynamics (spectators, leading particles of projectiles) of inner nucleus protons and neutrons. Though all the mesons could be produced during the interaction, they have maximum longitudinal momentum pL; baryons and mesons could be produced as a result of decay of massive baryon-resonances. Yields for the π± mesons are greater than the yield for the K± mesons. These are the well-known results from the RHIC data, which stated that the Cronin Effect is mainly due to π± mesons that can be produced as a result of multi-particle inner nucleus cascade. There exists the regions where yields for the K± mesons and baryons are same that may be due to the appearance of parton nature. The code used in simulation includes the parton dynamics earlier than it is included in the experiment.
Baryon bags in strong coupling QCD
NASA Astrophysics Data System (ADS)
Gattringer, Christof
2018-04-01
We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.
Study of a possible S = + 1 dynamically generated baryonic resonance
NASA Astrophysics Data System (ADS)
Sarkar, Sourav; Oset, E.; Vicente Vacas, M. J.
2005-05-01
Starting from the lowest-order chiral Lagrangian for the interaction of the baryon decuplet with the octet of pseudoscalar mesons we find an attractive interaction in the ΔK channel with L = 0 and I = 1, while the interaction is repulsive for I = 2. The attractive interaction leads to a pole in the second Riemann sheet of the complex plane and manifests itself in a large strength of the ΔK scattering amplitude close to the ΔK threshold, which is not the case for I = 2. However, we also make a study of uncertainties in the model and conclude that the existence of this pole depends sensitively upon the input used and can disappear within reasonable variations of the input parameters. We take advantage to study the stability of the other poles obtained for the {{3}/{2}}- dynamically generated resonances of the model and conclude that they are stable and not contingent to reasonable changes in the input of the theory.
Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardall, Christian Y.
In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less
Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis
Cardall, Christian Y.
2017-12-15
In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, G.W.; Gentile, G.; Diaferio, A.
2014-10-01
In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less
Simulations of cold electroweak baryogenesis: dependence on the source of CP-violation
NASA Astrophysics Data System (ADS)
Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders
2018-05-01
We compute the baryon asymmetry created in a tachyonic electroweak symmetry breaking transition, focusing on the dependence on the source of effective CP-violation. Earlier simulations of Cold Electroweak Baryogenesis have almost exclusively considered a very specific CP-violating term explicitly biasing Chern-Simons number. We compare four different dimension six, scalar-gauge CP-violating terms, involving both the Higgs field and another dynamical scalar coupled to SU(2) or U(1) gauge fields. We find that for sensible values of parameters, all implementations can generate a baryon asymmetry consistent with observations, showing that baryogenesis is a generic outcome of a fast tachyonic electroweak transition.
Baryogenesis in nonminimally coupled f (R ) theories
NASA Astrophysics Data System (ADS)
Ramos, M. P. L. P.; Páramos, J.
2017-11-01
We generalize the mechanism for gravitational baryogensis in the context of f (R ) theories of gravity, including a nonminimal coupling between curvature and matter. In these models, the baryon asymmetry is generated through an effective coupling between the Ricci scalar curvature and the net baryon current that dynamically breaks Charge conjugation, parity and time reversal (C P T ) invariance. We study the combinations of characteristic mass scales and exponents for both nontrivial functions present in the modified action functional and establish the allowed region for these parameters: we find that very small deviations from general relativity are consistent with the observed baryon asymmetry and lead to temperatures compatible with the subsequent formation of the primordial abundances of light elements. In particular, we show the viability of a power-law nonminimal coupling function f2(R )˜Rn with 0
Twin Higgs Asymmetric Dark Matter.
García García, Isabel; Lasenby, Robert; March-Russell, John
2015-09-18
We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20 GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.
Matter-antimatter asymmetry induced by a running vacuum coupling
NASA Astrophysics Data System (ADS)
Lima, J. A. S.; Singleton, D.
2017-12-01
We show that a CP-violating interaction induced by a derivative coupling between the running vacuum and a non-conserving baryon current may dynamically break CPT and trigger baryogenesis through an effective chemical potential. By assuming a non-singular class of running vacuum cosmologies which provides a complete cosmic history (from an early inflationary de Sitter stage to the present day quasi-de Sitter acceleration), it is found that an acceptable baryon asymmetry is generated for many different choices of the model parameters. It is interesting that the same ingredient (running vacuum energy density) addresses several open cosmological questions/problems: avoids the initial singularity, provides a smooth exit for primordial inflation, alleviates both the coincidence and the cosmological constant problems, and, finally, is also capable of explaining the generation of matter-antimatter asymmetry in the very early Universe.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background
Floerchinger, Stefan; Martinez, Mauricio
2015-12-11
Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. Here, we examine how the time evolution of linear perturbations depends on the equation of statemore » as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.« less
Effect of finite particle number sampling on baryon number fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinheimer, Jan; Koch, Volker
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
Effect of finite particle number sampling on baryon number fluctuations
Steinheimer, Jan; Koch, Volker
2017-09-28
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamba, Kazuharu
2006-12-15
The generation of the baryon asymmetry of the Universe from the hypermagnetic helicity, the physical interpretation of which is given in terms of hypermagnetic knots, is studied in inflationary cosmology, taking into account the breaking of the conformal invariance of hypercharge electromagnetic fields through both a coupling with the dilaton and with a pseudoscalar field. It is shown that, if the electroweak phase transition is strongly first order and the present amplitude of the generated magnetic fields on the horizon scale is sufficiently large, a baryon asymmetry with a sufficient magnitude to account for the observed baryon-to-entropy ratio can bemore » generated.« less
Baryon inhomogeneity generation in the quark-gluon plasma phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layek, Biswanath; Mishra, Ananta P.; Srivastava, Ajit M.
2006-05-15
We discuss the possibility of generation of baryon inhomogeneities in a quark-gluon plasma phase due to moving Z(3) interfaces. By modeling the dependence of effective mass of the quarks on the Polyakov loop order parameter, we study the reflection of quarks from collapsing Z(3) interfaces and estimate resulting baryon inhomogeneities in the context of the early universe. We argue that in the context of certain low energy scale inflationary models, it is possible that large Z(3) walls arise at the end of the reheating stage. Collapse of such walls could lead to baryon inhomogeneities which may be separated by largemore » distances near the QCD scale. Importantly, the generation of these inhomogeneities is insensitive to the order, or even the existence, of the quark-hadron phase transition. We also briefly discuss the possibility of formation of quark nuggets in this model, as well as baryon inhomogeneity generation in relativistic heavy-ion collisions.« less
Genuine quark state versus dynamically generated structure for the Roper resonance
NASA Astrophysics Data System (ADS)
Golli, B.; Osmanović, H.; Širca, S.; Švarc, A.
2018-03-01
In view of the recent results of lattice QCD simulation in the P 11 partial wave that has found no clear signal for the three-quark Roper state we investigate a different mechanism for the formation of the Roper resonance in a coupled channel approach including the π N , π Δ , and σ N channels. We fix the pion-baryon vertices in the underlying quark model while the s -wave sigma-baryon interaction is introduced phenomenologically with the coupling strength, the mass, and the width of the σ meson as free parameters. The Laurent-Pietarinen expansion is used to extract the information about the S -matrix pole. The Lippmann-Schwinger equation for the K matrix with a separable kernel is solved to all orders. For sufficiently strong σ N N coupling the kernel becomes singular and a quasibound state emerges at around 1.4 GeV, dominated by the σ N component and reflecting itself in a pole of the S matrix. The alternative mechanism involving a (1s ) 22 s quark resonant state is added to the model and the interplay of the dynamically generated state and the three-quark resonant state is studied. It turns out that for the mass of the three-quark resonant state above 1.6 GeV the mass of the resonance is determined solely by the dynamically generated state, nonetheless, the inclusion of the three-quark resonant state is imperative to reproduce the experimental width and the modulus of the resonance pole.
Transition form factors of the N*(1535) as a dynamically generated resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jido, D.; Doering, M.; Oset, E.
2008-06-15
We discuss how electromagnetic properties provide useful tests of the nature of resonances, and we study these properties for the N*(1535) that appears dynamically generated from the strong interaction of mesons and baryons. Within this coupled-channels chiral unitary approach, we evaluate the A{sub 1/2} and S{sub 1/2} helicity amplitudes as a function of Q{sup 2} for the electromagnetic N*(1535){yields}{gamma}*N transition. Within the same formalism we evaluate the cross section for the reactions {gamma}N{yields}{eta}N. We find a fair agreement for the absolute values of the transition amplitudes, as well as for the Q{sup 2} dependence of the amplitudes, within theoretical andmore » experimental uncertainties discussed in the article. The ratios obtained between the S{sub 1/2} and A{sub 1/2} for the neutron or proton states of the N*(1535) are in qualitative agreement with experiment and there is agreement on the signs. The same occurs for the ratio of cross sections for the {eta} photoproduction on neutron and proton targets in the vicinity of the N*(1535) energy. The global results support the idea of this resonance as being dynamically generated, hence, largely built up from meson baryon components. However, the details of the model indicate that an admixture with a genuine quark state is also demanded that could help obtain a better agreement with experimental data.« less
Baryon asymmetry from primordial black holes
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Iso, Satoshi
2017-03-01
We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming the presence of microscopic baryon (or lepton) number violation, and the presence of an effective CP-violating operator such as ∂αF (R…)Jα , where F (R…) is a scalar function of the Riemann tensor and Jα is a baryonic (leptonic) current, the time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH emanates asymmetric Hawking radiation between baryons (leptons) and antibaryons (leptons). Though the operator is higher-dimensional and largely suppressed by a high mass scale M* , we show that a sufficient amount of asymmetry can be generated for a wide range of parameters of the PBH mass MPBH , its abundance ΩPBH , and the scale M*.
Dynamically generated N* and {Lambda}* resonances in the hidden charm sector around 4.3 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, E-46071 Valencia; Molina, R.
2011-07-15
The interactions of D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. A series of meson-baryon dynamically generated relatively narrow N* and {Lambda}* resonances are predicted around 4.3 GeV in the hidden charm sector. We make estimates of production cross sections of these predicted resonances in p-barp collisions for the experiment of antiproton annihilation at Darmstadt (PANDA) at the forthcoming GSI Facility for Antiproton and Ion Research (FAIR) facility.
Unified origin for baryonic visible matter and antibaryonic dark matter.
Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean
2010-11-19
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
Separated matter and antimatter domains with vanishing domain walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.
2015-10-01
We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.
New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy
NASA Astrophysics Data System (ADS)
Russell, Esra
We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.
Baryons as Fock states of 3,5,... Quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
Propagation of heavy baryons in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo
2016-12-01
The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.
The Baryonic Collapse Efficiency of Galaxy Groups in the RESOLVE and ECO Surveys
NASA Astrophysics Data System (ADS)
Eckert, Kathleen D.; Kannappan, Sheila J.; Lagos, Claudia del P.; Baker, Ashley D.; Berlind, Andreas A.; Stark, David V.; Moffett, Amanda J.; Nasipak, Zachary; Norris, Mark A.
2017-11-01
We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a galform semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at the group-integrated cold baryonic mass {M}{bary}{cold} ˜ 1011 {M}⊙ . The SAM, however, has significantly fewer groups at the transition mass ˜1011 {M}⊙ and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with a slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ˜2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of {M}{halo}˜ {10}11.4-12 {M}⊙ , which we label “nascent groups.” Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses.
Dark matter and the baryon asymmetry of the universe.
Farrar, Glennys R; Zaharijas, Gabrijela
2006-02-03
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Ducati, M. B. Gay; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; Torres, E. López; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.
2017-08-01
Two-particle angular correlations were measured in pp collisions at √{s} = 7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon-anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.
Plausible explanation for the {Delta}{sub 5/2}{sup +}(2000) puzzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Jujun; Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001; Martinez Torres, A.
2011-05-15
From a Faddeev calculation for the {pi}-({Delta}{rho}){sub N{sub 5/2}{sup -}{sub (1675)}} system we show the plausible existence of three dynamically generated I(J{sup P})=3/2(5/2{sup +}) baryon states below 2.3 GeV, whereas only two resonances, {Delta}{sub 5/2{sup +}}(1905)(****) and {Delta}{sub 5/2{sup +}}(2000)(**), are cataloged in the Particle Data Book Review. Our results give theoretical support to data analyses extracting two distinctive resonances, {Delta}{sub 5/2{sup +}}({approx}1740) and {Delta}{sub 5/2{sup +}}({approx}2200), from which the mass of {Delta}{sub 5/2{sup +}}(2000)(**) is estimated. We propose that these two resonances should be cataloged instead of {Delta}{sub 5/2{sup +}}(2000). This proposal gets further support from the possible assignmentmore » of the other baryon states found in the approach in the I=1/2,3/2 with J{sup P}=1/2{sup +},3/2{sup +},5/2{sup +} sectors to known baryonic resonances. In particular, {Delta}{sub 1/2{sup +}}(1750)(*) is naturally interpreted as a {pi}N{sub 1/2{sup -}}(1650) bound state.« less
Magnetic properties of confined holographic QCD
NASA Astrophysics Data System (ADS)
Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew
2013-12-01
We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the confined phase where chiral symmetry is broken. The D8-brane Chern-Simons term holographically encodes the axial anomaly and generates a gradient of the η' meson, which carries a non-vanishing baryon charge. Above a critical value of the chemical potential, there is a second-order phase transition to a mixed phase which includes also ordinary baryonic matter. However, at fixed baryon charge density, the matter is purely η'-gradient above a critical magnetic field.
Gas dynamics in tidal dwarf galaxies: Disc formation at z = 0
NASA Astrophysics Data System (ADS)
Lelli, Federico; Duc, Pierre-Alain; Brinks, Elias; Bournaud, Frédéric; McGaugh, Stacy S.; Lisenfeld, Ute; Weilbacher, Peter M.; Boquien, Médéric; Revaz, Yves; Braine, Jonathan; Koribalski, Bärbel S.; Belles, Pierre-Emmanuel
2015-12-01
Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting and merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can only form from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291, we analyse existing H I data from the Very Large Array (VLA), while for NGC 7252 we present new H I observations from the Jansky VLA, together with long-slit and integral-field optical spectroscopy. For all six TDGs, the H I emission can be described by rotating disc models. These H I discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consistent with the observed baryonic masses, implying that TDGs are devoid of dark matter. This puts constraints on putative "dark discs" (either baryonic or non-baryonic) in the progenitor galaxies. Moreover, TDGs seem to systematically deviate from the baryonic Tully-Fisher relation. These results provide a challenging test for alternative theories like MOND. Based on observations made with ESO telescopes at Paranal Observatory under programmes 65.O-0563, 67.B-0049, and 083.B-0647.Appendices are available in electronic form at http://www.aanda.orgThe reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A113
Few-body quark dynamics for doubly heavy baryons and tetraquarks
NASA Astrophysics Data System (ADS)
Richard, Jean-Marc; Valcarce, Alfredo; Vijande, Javier
2018-03-01
We discuss the adequate treatment of the three- and four-body dynamics for the quark model picture of double-charm baryons and tetraquarks. We stress that the variational and Born-Oppenheimer approximations give energies very close to the exact ones, while the diquark approximation might be somewhat misleading. The Hall-Post inequalities also provide very useful lower bounds that exclude the possibility of stable tetraquarks for some mass ratios and some color wave functions.
Spectroscopy of triply charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; ...
2014-10-14
The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.
Multistrange Baryon elliptic flow in Au+Au collisions at square root of sNN=200 GeV.
Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gupta, N; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2005-09-16
We report on the first measurement of elliptic flow v2(pT) of multistrange baryons Xi- +Xi+ and Omega- + Omega+ in heavy-ion collisions. In minimum-bias Au+Au collisions at square root of s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The pT dependence of v2 of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider.
High baryon and energy densities achievable in heavy-ion collisions at √{sN N}=39 GeV
NASA Astrophysics Data System (ADS)
Ivanov, Yu. B.; Soldatov, A. A.
2018-02-01
Baryon and energy densities, which are reached in central Au+Au collisions at collision energy of √{sN N}= 39 GeV, are estimated within the model of three-fluid dynamics. It is shown that the initial thermalized mean proper baryon and energy densities in a sizable central region approximately are nB/n0≈ 10 and ɛ ≈ 40 GeV/fm3, respectively. The study indicates that the deconfinement transition at the stage of interpenetration of colliding nuclei makes the system quite opaque. The final fragmentation regions in these collisions are formed not only by primordial fragmentation fireballs, i.e., the baryon-rich matter passed through the interaction region (containing approximately 30% of the total baryon charge), but also by the baryon-rich regions of the central fireball pushed out to peripheral rapidities by the subsequent almost one-dimensional expansion of the central fireball along the beam direction.
NASA Astrophysics Data System (ADS)
Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang
2010-06-01
An upgraded (second) version of the package GENXICC (A Generator for Hadronic Production of the Double Heavy Baryons Ξ, Ξ and Ξ by C.H. Chang, J.X. Wang and X.G. Wu [its first version in: Comput. Phys. Comm. 177 (2007) 467]) is presented. Users, with this version being implemented in PYTHIA and a GNU C compiler, may simulate full events of these processes in various experimental environments conveniently. In comparison with the previous version, in order to implement it in PYTHIA properly, a subprogram for the fragmentation of the produced double heavy diquark to the relevant baryon is supplied and the interface of the generator to PYTHIA is changed accordingly. In the subprogram, with explanation, certain necessary assumptions (approximations) are made in order to conserve the momenta and the QCD 'color' flow for the fragmentation. Program summaryProgram title: GENXICC2.0 Catalogue identifier: ADZJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 102 482 No. of bytes in distributed program, including test data, etc.: 1 469 519 Distribution format: tar.gz Programming language: Fortran 77/90 Computer: Any LINUX based on PC with FORTRAN 77 or FORTRAN 90 and GNU C compiler as well Operating system: Linux RAM: About 2.0 MByte Classification: 11.2 Catalogue identifier of previous version: ADZJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 177 (2007) 467 Does the new version supersede the previous version?: No Nature of problem: Hadronic production of double heavy baryons Ξ, Ξ and Ξ Solution method: The code is based on NRQCD framework. With proper options, it can generate weighted and un-weighted events of hadronic double heavy baryon production. When the hadronizations of the produced jets and double heavy diquark are taken into account in the production, the upgraded version with proper interface to PYTHIA can generate full events. Reasons for new version: Responding to the feedback from users, we improve the generator mainly by carefully completing the 'final non-perturbative process', i.e. the formulation of the double heavy baryon from relevant intermediate diquark. In the present version, the information for fragmentation about momentum-flow and the color-flow, that is necessary for PYTHIA to generate full events, is retained although reasonable approximations are made. In comparison with the original version, the upgraded one can implement it in PYTHIA properly to do the full event simulation of the double heavy baryon production. Summary of revisions:We try to explain the treatment of the momentum distribution of the process more clearly than the original version, and show how the final baryon is generated through the typical intermediate diquark precisely. We present color flow of the involved processes precisely and the corresponding changes for the program are made. The corresponding changes of the program are explained in the paper. Restrictions: The color flow, particularly, in the piece of code programming of the fragmentation from the produced colorful double heavy diquark into a relevant double heavy baryon, is treated carefully so as to implement it in PYTHIA properly. Running time: It depends on which option is chosen to configure PYTHIA when generating full events and also on which mechanism is chosen to generate the events. Typically, for the most complicated case with gluon-gluon fusion mechanism to generate the mixed events via the intermediate diquark in (cc)[ and (cc)[ states, under the option, IDWTUP=1, to generate 1000 events, takes about 20 hours on a 1.8 GHz Intel P4-processor machine, whereas under the option, IDWTUP=3, even to generate 106 events takes about 40 minutes on the same machine.
The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons
NASA Astrophysics Data System (ADS)
Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop
2018-05-01
We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States
NASA Astrophysics Data System (ADS)
Beitel, M.; Gallmeister, K.; Greiner, C.
2017-01-01
Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω--baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.
Asymmetric dark matter, baryon asymmetry and lepton number violation
NASA Astrophysics Data System (ADS)
Frandsen, Mads T.; Hagedorn, Claudia; Huang, Wei-Chih; Molinaro, Emiliano; Päs, Heinrich
2018-07-01
We study the effect of lepton number violation (LNV) on baryon asymmetry, generated in the early Universe, in the presence of a dark sector with a global symmetry U(1)X, featuring asymmetric dark matter (ADM). We show that in general LNV, observable at the LHC or in neutrinoless double beta decay experiments, cannot wash out a baryon asymmetry generated at higher scales, unlike in scenarios without such dark sector. An observation of LNV at the TeV scale may thus support ADM scenarios. Considering several models with different types of dark matter (DM), we find that the DM mass is of the order of a few GeV or below in our scenario.
NASA Astrophysics Data System (ADS)
Aoki, Katsuki; Mukohyama, Shinji
2017-11-01
We propose a scenario that can naturally explain the observed dark matter-baryon ratio in the context of bimetric theory with a chameleon field. We introduce two additional gravitational degrees of freedom, the massive graviton and the chameleon field, corresponding to dark matter and dark energy, respectively. The chameleon field is assumed to be nonminimally coupled to dark matter, i.e., the massive graviton, through the graviton mass terms. We find that the dark matter-baryon ratio is dynamically adjusted to the observed value due to the energy transfer by the chameleon field. As a result, the model can explain the observed dark matter-baryon ratio independently from the initial abundance of them.
NASA Astrophysics Data System (ADS)
Ramsey-Musolf, Michael J.; White, Graham; Winslow, Peter
2018-06-01
We propose a scenario that generates the observed baryon asymmetry of the Universe through a multistep phase transition in which SU(3) color symmetry is first broken and then restored. A spontaneous violation of B -L conservation leads to a contribution to the baryon asymmetry that becomes negligible in the final phase. The baryon asymmetry is therefore produced exclusively through the electroweak mechanism in the intermediate phase. We illustrate this scenario with a simple model that reproduces the observed baryon asymmetry. We discuss how future electric dipole moment and collider searches may probe this scenario, though future electric dipole moment searches would require an improved sensitivity of several orders of magnitude.
Pure gravity mediation and spontaneous B–L breaking from strong dynamics
Babu, Kaladi S.; Schmitz, Kai; Yanagida, Tsutomu T.
2016-04-01
In pure gravity mediation (PGM), the most minimal scheme for the mediation of supersymmetry (SUSY) breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B–L, the Abelian gauge symmetry associated with the difference between baryon number Band lepton number L. The F-term of the SUSY-breakingmore » field then not only breaks SUSY, but also B–L, which relates the respective spontaneous breaking of SUSY and B–Lat a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, Λ N~m 3/2. Furthermore, assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m 3/2≳1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B–Lis identified as a weakly gauged flavor symmetry. We also discuss the effect of the B–L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B–LD-term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
NASA Astrophysics Data System (ADS)
Schramm, David N.
1992-07-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
NASA Astrophysics Data System (ADS)
Schramm, D. N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA
NASA Astrophysics Data System (ADS)
Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group
2017-01-01
The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.
NASA Astrophysics Data System (ADS)
Kamada, Kohei
2018-05-01
It has been considered that baryogenesis models without a generation of B -L asymmetry such as the GUT baryogenesis do not work since the asymmetry is washed out by the electroweak sphalerons. Here, we point out that helical hypermagnetic fields can be generated through the chiral magnetic effect with a chiral asymmetry generated in such baryogenesis models. The helical hypermagnetic fields then produce baryon asymmetry mainly at the electroweak symmetry breaking, which remains until today. Therefore, the baryogenesis models without B -L asymmetry can still be the origin of the present baryon asymmetry. In particular, if it can produce chiral asymmetry mainly carried by right-handed electrons of order of 10-3 in terms of the chemical potential to temperature ratio, the resultant present-day baryon asymmetry can be consistent with our Universe, although simple realizations of the GUT baryogenesis are hard to satisfy the condition. We also argue the way to overcome the difficulty in the GUT baryogenesis. The intergalactic magnetic fields with B0˜10-16 - 17 G and λ0˜10-2 - 3 pc are the smoking gun of the baryogenesis scenario as discussed before.
Dynamic field theory and equations of motion in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu; Petrov, Alexander N., E-mail: alex.petrov55@gmail.com
2014-11-15
We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equationsmore » in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of these equations with the bare stress–energy tensor of the baryonic matter. We explicitly work out the covariant field equations of the successive post-Friedmannian approximations of Einstein’s equations in cosmology and derive equations of motion of large and small scale inhomogeneities of dark matter and dark energy. We apply these equations to derive the post-Friedmannian equations of motion of baryonic matter comprising stars, galaxies and their clusters.« less
NASA Astrophysics Data System (ADS)
Allahverdi, Rouzbeh; Dev, P. S. Bhupal; Dutta, Bhaskar
2018-04-01
We study a simple TeV-scale model of baryon number violation which explains the observed proximity of the dark matter and baryon abundances. The model has constraints arising from both low and high-energy processes, and in particular, predicts a sizable rate for the neutron-antineutron (n - n bar) oscillation at low energy and the monojet signal at the LHC. We find an interesting complementarity among the constraints arising from the observed baryon asymmetry, ratio of dark matter and baryon abundances, n - n bar oscillation lifetime and the LHC monojet signal. There are regions in the parameter space where the n - n bar oscillation lifetime is found to be more constraining than the LHC constraints, which illustrates the importance of the next-generation n - n bar oscillation experiments.
NASA Astrophysics Data System (ADS)
Fong, Chee Sheng
2015-10-01
The cosmic matter-antimatter asymmetry can be generated through baryon number conserving decays of heavy particles that produce asymmetries in the two final states that carry equal and opposite baryon number in which one of them couples directly or indirectly to electroweak sphalerons. The final state that participates in electroweak sphalerons will have its baryon asymmetry partly reprocessed to a lepton asymmetry while the other remains chemically decoupled from the thermal bath or cloistered with its baryon content frozen. The key condition for this mechanism to work is for the decoupled particles to remain cloistered until after electroweak sphalerons freeze out and then the subsequent decays of the particles will inject an unbalanced baryon asymmetry in the thermal bath giving rise to a net nonzero baryon asymmetry. Such a condition implies weakly coupled particles and if produced in a collider could give signatures of long-lived (on a collider timescale) particles. We discuss such a scenario with a type-I seesaw model extended by a new colored scalar.
Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations
NASA Astrophysics Data System (ADS)
Ayyar, Venkitesh; DeGrand, Thomas; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.; Shamir, Yigal; Svetitsky, Benjamin
2018-06-01
We use lattice simulations to compute the baryon spectrum of SU(4) lattice gauge theory coupled to dynamical fermions in the fundamental and two-index antisymmetric (sextet) representations simultaneously. This model is closely related to a composite Higgs model in which the chimera baryon made up of fermions from both representations plays the role of a composite top-quark partner. The dependence of the baryon masses on each underlying fermion mass is found to be generally consistent with a quark-model description and large-Nc scaling. We combine our numerical results with experimental bounds on the scale of the new strong sector to estimate a lower bound on the mass of the top-quark partner. We discuss some theoretical uncertainties associated with this estimate.
Gravitational baryogenesis in running vacuum models
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.; Pan, Supriya; Nunes, Rafael C.
2017-08-01
We study the gravitational baryogenesis mechanism for generating baryon asymmetry in the context of running vacuum models. Regardless of whether these models can produce a viable cosmological evolution, we demonstrate that they produce a nonzero baryon-to-entropy ratio even if the universe is filled with conformal matter. This is a sound difference between the running vacuum gravitational baryogenesis and the Einstein-Hilbert one, since in the latter case, the predicted baryon-to-entropy ratio is zero. We consider two well known and most used running vacuum models and show that the resulting baryon-to-entropy ratio is compatible with the observational data. Moreover, we also show that the mechanism of gravitational baryogenesis may constrain the running vacuum models.
Staggered heavy baryon chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{supmore » 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.« less
Baryon production from cluster hadronisation
NASA Astrophysics Data System (ADS)
Gieseke, Stefan; Kirchgaeßer, Patrick; Plätzer, Simon
2018-02-01
We present an extension to the colour reconnection model in the Monte Carlo event generator Herwig to account for the production of baryons and compare it to a series of observables for soft physics. The new model is able to improve the description of charged-particle multiplicities and hadron flavour observables in pp collisions.
Quantum Numbers of Recently Discovered Ωc0 Baryons from Lattice QCD
NASA Astrophysics Data System (ADS)
Padmanath, M.; Mathur, Nilmani
2017-07-01
We present the ground and excited state spectra of Ωc0 baryons with spin up to 7 /2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five Ωc0 baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states Ωc(3000 )0 and Ωc(3050 )0 have spin-parity JP=1 /2-, the states Ωc(3066 )0 and Ωc(3090 )0 have JP=3 /2-, whereas Ωc(3119 )0 is possibly a 5 /2- state.
Quantum Numbers of Recently Discovered Ω_{c}^{0} Baryons from Lattice QCD.
Padmanath, M; Mathur, Nilmani
2017-07-28
We present the ground and excited state spectra of Ω_{c}^{0} baryons with spin up to 7/2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five Ω_{c}^{0} baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states Ω_{c}(3000)^{0} and Ω_{c}(3050)^{0} have spin-parity J^{P}=1/2^{-}, the states Ω_{c}(3066)^{0} and Ω_{c}(3090)^{0} have J^{P}=3/2^{-}, whereas Ω_{c}(3119)^{0} is possibly a 5/2^{-} state.
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2017-08-24
We measured two-particle angular correlations in pp collisions at √s=7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon–baryon and anti-baryon–anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an openmore » question.« less
Phenomenology of nonperturbative charm in the nucleon
Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.
2014-04-02
We perform a comprehensive analysis of the role of nonperturbative (or intrinsic) charm in the nucleon, generated through Fock state expansions of the nucleon wave function involving five-quark virtual states represented by charmed mesons and baryons. We consider contributions from a variety of charmed meson-baryon states and find surprisingly dominant effects from the D¯ *0 Λ c + configuration. We pay particular attention to the existence and persistence of high-x structure for intrinsic charm, and the x dependence of the c-c¯ asymmetry predicted in meson-baryon models. We discuss how studies of charmed baryons and mesons in hadronic reactions can bemore » used to constrain models, and outline future measurements that could further illuminate the intrinsic charm component of the nucleon.« less
NASA Astrophysics Data System (ADS)
Coy, Rupert; Frigerio, Michele; Ibe, Masahiro
2017-10-01
The clockwork mechanism is a novel method for generating a large separation between the dynamical scale and interaction scale of a theory. We demonstrate how the mechanism can arise from a sequence of strongly-coupled sectors. This framework avoids elementary scalar fields as well as ad hoc continuous global symmetries, both of which are subject to serious stability issues. The clockwork factor, q, is determined by the consistency of the strong dynamics. The preserved global U(1) of the clockwork appears as an accidental symmetry, resulting from discrete or U(1) gauge symmetries, and it is spontaneously broken by the chiral condensates. We apply such a dynamical clockwork to construct models with an effectively invisible QCD axion from TeV-scale strong dynamics. The axion couplings are determined by the localisation of the Standard Model interactions along the clockwork sequence. The TeV spectrum includes either coloured hadrons or vector-like quarks. Dark matter can be accounted for by the axion or the lightest neutral baryons, which are accidentally stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GYULASSY,M.; KHARZEEV,D.; XU,N.
2002-03-28
One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topologicalmore » gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.« less
Chiral gravitational waves and baryon superfluid dark matter
NASA Astrophysics Data System (ADS)
Alexander, Stephon; McDonough, Evan; Spergel, David N.
2018-05-01
We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.
The mass discrepancy acceleration relation in a ΛCDM context
NASA Astrophysics Data System (ADS)
Di Cintio, Arianna; Lelli, Federico
2016-02-01
The mass discrepancy acceleration relation (MDAR) describes the coupling between baryons and dark matter (DM) in galaxies: the ratio of total-to-baryonic mass at a given radius anticorrelates with the acceleration due to baryons. The MDAR has been seen as a challenge to the Λ cold dark matter (ΛCDM) galaxy formation model, while it can be explained by Modified Newtonian Dynamics. In this Letter, we show that the MDAR arises in a ΛCDM cosmology once observed galaxy scaling relations are taken into account. We build semi-empirical models based on ΛCDM haloes, with and without the inclusion of baryonic effects, coupled to empirically motivated structural relations. Our models can reproduce the MDAR: specifically, a mass-dependent density profile for DM haloes can fully account for the observed MDAR shape, while a universal profile shows a discrepancy with the MDAR of dwarf galaxies with M⋆ < 109.5 M⊙, a further indication suggesting the existence of DM cores. Additionally, we reproduce slope and normalization of the baryonic Tully-Fisher relation (BTFR) with 0.17 dex scatter. These results imply that in ΛCDM (I) the MDAR is driven by structural scaling relations of galaxies and DM density profile shapes, and (II) the baryonic fractions determined by the BTFR are consistent with those inferred from abundance-matching studies.
Heating up the Baryonic Branch with U-duality: a unified picture of conifold black holes
NASA Astrophysics Data System (ADS)
Cáceres, Elena; Núñez, Carlos; Pando Zayas, Leopoldo A.
2011-03-01
We study different aspects of a U-duality recently presented by Maldacena and Martelli and apply it to non-extremal backgrounds. In particular, starting from new non-extremal wrapped D5 branes we generate new non-extremal generalizations of the Baryonic Branch of the Klebanov-Strassler solution. We also elaborate on different conceptual aspects of these U-dualities, like its action on (extremal and non-extremal) Dp branes, dual models for Yang-Mills-like theories, generic asymptotics and decoupling limit of the generated solutions.
GENXICC2.1: An improved version of GENXICC for hadronic production of doubly heavy baryons
NASA Astrophysics Data System (ADS)
Wang, Xian-You; Wu, Xing-Gang
2013-03-01
We present an improved version of GENXICC, which is a generator for hadronic production of the doubly heavy baryons Ξcc, Ξbc and Ξbb and has been introduced by C.H. Chang, J.X. Wang and X.G. Wu [Comput. Phys. Commun. 177 (2007) 467; Comput. Phys. Commun. 181 (2010) 1144]. In comparison with the previous GENXICC versions, we update the program in order to generate the unweighted baryon events more effectively under various simulation environments, whose distributions are now generated according to the probability proportional to the integrand. One Les Houches Event (LHE) common block has been added to produce a standard LHE data file that contains useful information of the doubly heavy baryon and its accompanying partons. Such LHE data can be conveniently imported into PYTHIA to do further hadronization and decay simulation, especially, the color-flow problem can be solved with PYTHIA8.0. NEW VERSION PROGRAM SUMMARYTitle of program: GENXICC2.1 Program obtained from: CPC Program Library Reference to original program: GENXICC Reference in CPC: Comput. Phys. Commun. 177, 467 (2007); Comput. Phys. Commun. 181, 1144 (2010) Does the new version supersede the old program: No Computer: Any LINUX based on PC with FORTRAN 77 or FORTRAN 90 and GNU C compiler as well Operating systems: LINUX Programming language used: FORTRAN 77/90 Memory required to execute with typical data: About 2.0 MB No. of bytes in distributed program: About 2 MB, including PYTHIA6.4 Distribution format: .tar.gz Nature of physical problem: Hadronic production of doubly heavy baryons Ξcc, Ξbc and Ξbb. Method of solution: The upgraded version with a proper interface to PYTHIA can generate full production and decay events, either weighted or unweighted, conveniently and effectively. Especially, the unweighted events are generated by using an improved hit-and-miss approach. Reasons for new version: Responding to the feedback from users of CMS and LHCb groups at the Large Hadron Collider, and based on the recent improvements of PYTHIA on the color-flow problem, we improve the efficiency for generating the unweighted events, and also improve the color-flow part for further hadronization. Especially, an interface has been added to import the output production events into a suitable form for PYTHIA8.0 simulation, in which the color-flow during the simulation can be correctly set. Typical running time: It depends on which option is chosen to match PYTHIA when generating the full events and also on which mechanism is chosen to generate the events. Typically, for the dominant gluon-gluon fusion mechanism to generate the mixed events via the intermediate diquarks in (cc)[3S1]3¯ and (cc)[1S0]6 states, setting IDWTUP=3 and unwght =.true., it takes 30 min to generate 105 unweighted events on a 2.27 GHz Intel Xeon E5520 processor machine; setting IDWTUP=3 and unwght =.false. or IDWTUP=1 and IGENERATE=0, it only needs 2 min to generate the 105 baryon events (the fastest way, for theoretical purposes only). As a comparison, for previous GENXICC versions, if setting IDWTUP=1 and IGENERATE=1, it takes about 22 hours to generate 1000 unweighted events. Keywords: Event generator; Doubly heavy baryons; Hadronic production. Summary of the changes (improvements): (1) The scheme for generating unweighted events has been improved; (2) One Les Houches Event (LHE) common block has been added to record the standard LHE data in order to be the correct input for PYTHIA8.0 for later simulation; (3) We present the code for connecting GENXICC to PYTHIA8.0, where three color-flows have to be correctly set for later simulation. More specifically, we present the changes together with their detailed explanations in the following:
Magnetic properties of four dimensional fermions
NASA Astrophysics Data System (ADS)
Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew
2013-12-01
We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the chiral symmetric phase. We find that a new form of baryonic matter shows up, and we investigate its properties. We find a generated axial current, a reduction in the amount of charge participating in dissipative interactions and a metamagnetic like phase transition at low temperature.
Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding
de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.
2015-02-27
We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less
A small amount of mini-charged dark matter could cool the baryons in the early Universe.
Muñoz, Julian B; Loeb, Abraham
2018-05-01
The dynamics of our Universe is strongly influenced by pervasive-albeit elusive-dark matter, with a total mass about five times the mass of all the baryons 1,2 . Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter 5-9 . Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction-less than one per cent-of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1-100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Nicholson, Amy; Chang, Chia Cheng; Rinaldi, Enrico; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Vranas, Pavlos; Walker-Loud, André
2018-03-01
There are many outstanding problems in nuclear physics which require input and guidance from lattice QCD calculations of few baryons systems. However, these calculations suffer from an exponentially bad signal-to-noise problem which has prevented a controlled extrapolation to the physical point. The variational method has been applied very successfully to two-meson systems, allowing for the extraction of the two-meson states very early in Euclidean time through the use of improved single hadron operators. The sheer numerical cost of using the same techniques in two-baryon systems has so far been prohibitive. We present an alternate strategy which offers some of the same advantages as the variational method while being significantly less numerically expensive. We first use the Matrix Prony method to form an optimal linear combination of single baryon interpolating fields generated from the same source and different sink interpolating fields. Very early in Euclidean time this optimal linear combination is numerically free of excited state contamination, so we coin it a calm baryon. This calm baryon operator is then used in the construction of the two-baryon correlation functions. To test this method, we perform calculations on the WM/JLab iso-clover gauge configurations at the SU(3) flavor symmetric point with mπ 800 MeV — the same configurations we have previously used for the calculation of two-nucleon correlation functions. We observe the calm baryon significantly removes the excited state contamination from the two-nucleon correlation function to as early a time as the single-nucleon is improved, provided non-local (displaced nucleon) sources are used. For the local two-nucleon correlation function (where both nucleons are created from the same space-time location) there is still improvement, but there is significant excited state contamination in the region the single calm baryon displays no excited state contamination.
Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Wetzel, Andrew
2018-04-01
I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.
The baryonic self similarity of dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alard, C., E-mail: alard@iap.fr
2014-06-20
The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominatedmore » regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.« less
Pattern of (Multi)strange (Anti)baryon Production and Search for Deconfinement
NASA Astrophysics Data System (ADS)
Rafelski, Johann
1998-04-01
We study (multi)strange particle abundances obtained recently in relativistic heavy ion collisions and determine thermal and chemical source parameters(J. Letessier et al., Phys. Lett. B410 (1997) 315--322 hep-ph/9710310 and: Acta Physica Polonica in press, hep- ph/9710340). These are primarily constrained by (multi)strange (anti)baryon relative abundances, which have been measured for Pb--Pb 158 A GeV interactions(I. Kralik, for WA97 collaboration, QM97 Tsukuba, to appear in Nucl. Phys. A) and S-S/W/Pb 200 A GeV interactions(See: proceedings of S'96-Budapest, APH N.S., Heavy Ion Physics 4 (1996) vii--x). We have extended our analysis and have now determined the properties of the particle source using the fitted macro canonical parameters, allowing as required for non-equilibrium dynamics of the locally thermal fireball. We find that in the 158 A GeV Pb--Pb collisions the entropy per baryon, energy per baryon, strangeness per baryon implied by particle spectra are all in the range of values associated commonly with the deconfined QGP phase.
Is the continuous matter creation cosmology an alternative to ΛCDM?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F., E-mail: fabris@pq.cnpq.br, E-mail: pacheco@oca.eu, E-mail: oliver.piattella@pq.cnpq.br
2014-06-01
The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, amore » fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology.« less
Dynamical initial-state model for relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chun; Schenke, Bjorn
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less
Dynamical initial-state model for relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Shen, Chun; Schenke, Björn
2018-02-01
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.
Dynamical initial-state model for relativistic heavy-ion collisions
Shen, Chun; Schenke, Bjorn
2018-02-15
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less
Omega-Omega interaction on the Lattice
NASA Astrophysics Data System (ADS)
Yamada, Masanori; Halqcd Collaboration
2014-09-01
We report our results of central potential between two Omega baryons from 2+1 flavor full Lattice QCD simulation. In the past studies, there is a possibility that some decouplet baryons have a bound state. However, almost all decuplet baryons are unstable due to decays via the strong interaction. An exception is the Omega decuplte baryon, which is stable against the strong decays, so its interaction is suitable to be investigated. It is, however, still difficult to investigate the Omega-Omega interaction experimentally due to its short-life time via weak decays. Therefore, the lattice QCD study for the Omega-Omega interaction is necessary and important. We present results obtained by the extension of the HAL QCD method to the system of two decuplet baryons. Our numerical results are obtained from 2+1 flavor full QCD gauge configurations at L ~ 2 . 9 fm mπ ~ 701 MeV and mΩ ~ 1966 MeV, generated by the PACS-CS Collaboration. We find that the Omega-Omega interaction is strong attractive, but it's not strong enough to make a bound state at out simulation set up.
Counts of galaxy clusters as cosmological probes: the impact of baryonic physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguera-Antolínez, Andrés; Porciani, Cristiano, E-mail: abalan@astro.uni-bonn.de, E-mail: porciani@astro.uni-bonn.de
2013-04-01
The halo mass function from N-body simulations of collisionless matter is generally used to retrieve cosmological parameters from observed counts of galaxy clusters. This neglects the observational fact that the baryonic mass fraction in clusters is a random variable that, on average, increases with the total mass (within an overdensity of 500). Considering a mock catalog that includes tens of thousands of galaxy clusters, as expected from the forthcoming generation of surveys, we show that the effect of a varying baryonic mass fraction will be observable with high statistical significance. The net effect is a change in the overall normalizationmore » of the cluster mass function and a milder modification of its shape. Our results indicate the necessity of taking into account baryonic corrections to the mass function if one wants to obtain unbiased estimates of the cosmological parameters from data of this quality. We introduce the formalism necessary to accomplish this goal. Our discussion is based on the conditional probability of finding a given value of the baryonic mass fraction for clusters of fixed total mass. Finally, we show that combining information from the cluster counts with measurements of the baryonic mass fraction in a small subsample of clusters (including only a few tens of objects) will nearly optimally constrain the cosmological parameters.« less
Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS
Mokeev, Victor I.
2018-04-06
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states of distinctively different structure. Advances in the evaluation of resonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented in this paper. For the first time, analyses ofmore » $$\\pi^0p$$, $$\\pi^+n$$, $$\\eta p$$, and $$\\pi^+\\pi^-p$$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$ GeV$^2$. Consistent results on resonance electroexcitation amplitudes determined from different exclusive channels validate a credible extraction of these fundamental quantities. Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $$\\Delta(1232)3/2^+$$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$ GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. Finally, a search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.« less
Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokeev, Victor I.
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states of distinctively different structure. Advances in the evaluation of resonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented in this paper. For the first time, analyses ofmore » $$\\pi^0p$$, $$\\pi^+n$$, $$\\eta p$$, and $$\\pi^+\\pi^-p$$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$ GeV$^2$. Consistent results on resonance electroexcitation amplitudes determined from different exclusive channels validate a credible extraction of these fundamental quantities. Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $$\\Delta(1232)3/2^+$$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$ GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. Finally, a search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.« less
The impact of baryonic matter on gravitational lensing by galaxy clusters
NASA Astrophysics Data System (ADS)
Lee, Brandyn E.; King, Lindsay; Applegate, Douglas; McCarthy, Ian
2017-01-01
Since the bulk of the matter comprising galaxy clusters exists in the form of dark matter, gravitational N-body simulations have historically been an effective way to investigate large scale structure formation and the astrophysics of galaxy clusters. However, upcoming telescopes such as the Large Synoptic Survey Telescope are expected to have lower systematic errors than older generations, reducing measurement uncertainties and requiring that astrophysicists better quantify the impact of baryonic matter on the cluster lensing signal. Here we outline the effects of baryonic processes on cluster density profiles and on weak lensing mass and concentration estimates. Our analysis is done using clusters grown in the suite of cosmological hydrodynamical simulations known as cosmo-OWLS.
ASSESSING ASTROPHYSICAL UNCERTAINTIES IN DIRECT DETECTION WITH GALAXY SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloane, Jonathan D.; Buckley, Matthew R.; Brooks, Alyson M.
2016-11-01
We study the local dark matter velocity distribution in simulated Milky Way-mass galaxies, generated at high resolution with both dark matter and baryons. We find that the dark matter in the solar neighborhood is influenced appreciably by the inclusion of baryons, increasing the speed of dark matter particles compared to dark matter-only simulations. The gravitational potential due to the presence of a baryonic disk increases the amount of high velocity dark matter, resulting in velocity distributions that are more similar to the Maxwellian Standard Halo Model than predicted from dark matter-only simulations. Furthermore, the velocity structures present in baryonic simulationsmore » possess a greater diversity than expected from dark matter-only simulations. We show that the impact on the direct detection experiments LUX, DAMA/Libra, and CoGeNT using our simulated velocity distributions, and explore how resolution and halo mass within the Milky Way’s estimated mass range impact the results. A Maxwellian fit to the velocity distribution tends to overpredict the amount of dark matter in the high velocity tail, even with baryons, and thus leads to overly optimistic direct detection bounds on models that are dependent on this region of phase space for an experimental signal. Our work further demonstrates that it is critical to transform simulated velocity distributions to the lab frame of reference, due to the fact that velocity structure in the solar neighborhood appears when baryons are included. There is more velocity structure present when baryons are included than in dark matter-only simulations. Even when baryons are included, the importance of the velocity structure is not as apparent in the Galactic frame of reference as in the Earth frame.« less
Low-lying baryon spectrum with two dynamical twisted mass fermions
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Baron, R.; Carbonell, J.; Drach, V.; Guichon, P.; Jansen, K.; Korzec, T.; Pène, O.
2009-12-01
The masses of the low-lying baryons are evaluated using two degenerate flavors of twisted mass sea quarks corresponding to pseudoscalar masses in the range of about 270-500 MeV. The strange valence quark mass is tuned to reproduce the mass of the kaon in the physical limit. The tree-level Symanzik improved gauge action is employed. We use lattices of spatial size 2.1 and 2.7 fm at two values of the lattice spacing with r0/a=5.22(2) and r0/a=6.61(3). We check for both finite volume and cutoff effects on the baryon masses. We performed a detailed study of the chiral extrapolation of the octet and decuplet masses using SU(2) χPT. The lattice spacings determined using the nucleon mass at the physical point are consistent with the values extracted using the pion decay constant. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. The baryon masses that we find after taking the continuum limit and extrapolating to the physical limit are in good agreement with experiment.
Baryon spectrum with Nf=2+1+1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Drach, V.; Jansen, K.; Kallidonis, C.; Koutsou, G.
2014-10-01
The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing a=0.094, 0.082 and 0.065 fm determined from the nucleon mass. We check for both finite volume and cutoff effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) χPT. After taking the continuum limit and extrapolating to the physical pion mass our results are in good agreement with experiment. We provide predictions for the mass of the doubly charmed Ξcc*, as well as of the doubly and triply charmed Ωs that have not yet been determined experimentally.
CP asymmetries in Strange Baryon Decays
NASA Astrophysics Data System (ADS)
Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo
2018-01-01
While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)
NASA Astrophysics Data System (ADS)
Borah, Debasish; Das, Mrinal Kumar; Mukherjee, Ananya
2018-06-01
We study the possibility of generating nonzero reactor mixing angle θ13 and baryon asymmetry of the Universe within the framework of an A4 flavor symmetric model. Using the conventional type I seesaw mechanism we construct the Dirac and Majorana mass matrices that give rise to the correct light neutrino mass matrix. Keeping the right-handed neutrino mass matrix structure trivial so that it gives rise to a (quasi) degenerate spectrum of heavy neutrinos suitable for resonant leptogenesis at TeV scale, we generate the nontrivial structure of Dirac neutrino mass matrix that can lead to the light neutrino mixing through the type I seesaw formula. Interestingly, such a setup naturally leads to nonzero θ13 due to the existence of antisymmetric contraction of the product of two triplet representations of A4. Such an antisymmetric part of the triplet products usually vanishes for right-handed neutrino Majorana mass terms, leading to μ -τ symmetric scenarios in the most economical setups. We constrain the model parameters from the requirement of producing the correct neutrino data as well as baryon asymmetry of the Universe for right-handed neutrino mass scale around TeV. The A4 symmetry is augmented by additional Z3×Z2 symmetry to make sure that the splitting between right-handed neutrinos required for resonant leptogenesis is generated only by next to leading order terms, making it naturally small. We find that the inverted hierarchical light neutrino masses give more allowed parameter space consistent with neutrino and baryon asymmetry data.
Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions
NASA Astrophysics Data System (ADS)
Famaey, Benoit; Khoury, Justin; Penco, Riccardo
2018-03-01
The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter (DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. As a proof of principle, we present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. For consistency with direct detection constraints, our DM particles must be either very light (m ll mb) or very heavy (mgg mb), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. In this exploratory paper, we focus on the heavy DM/cooling case because it is technically simpler, since the average energy exchanged turns out to be approximately constant throughout galaxies. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light of the unusual density dependence of the cross section of DM particles.
Neutrino assisted GUT baryogenesis revisited
NASA Astrophysics Data System (ADS)
Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan
2018-03-01
Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.
NASA Astrophysics Data System (ADS)
Janik, Małgorzata Anna
2018-02-01
Two-particle correlations as a function of Δη and Δφ are used in many colliding systems to study a wide range of physical phenomena. Examples include the collective behavior of the quark-gluon plasma medium, jets, quantum statistics or Coulomb effects, conservation laws, and resonance decays. In this work, measurements of the correlations of identified particles and their antiparticles (for π, K, p, Λ) are reported in pp collisions at √s = 7 TeV at low transverse momenta. The analysis reveals differences in particle production between baryons and mesons. The correlation functions for mesons exhibit the expected peak dominated by the effects of mini-jet fragmentation and are reproduced well by general purpose Monte Carlo generators. For baryon pairs where both particles have the same baryon number, an anti-correlation structure is observed instead of a peak centered at (Δη, Δφ) = (0, 0); an observation which presents a challenge to models typically used to describe pp data (PYTHIA, PHOJET). This baryon anti-correlation is further interpreted in the context of baryon production mechanisms in the fragmentation processes.
Quark seesaw mechanism, dark U (1 ) symmetry, and the baryon-dark matter coincidence
NASA Astrophysics Data System (ADS)
Gu, Pei-Hong; Mohapatra, Rabindra N.
2017-09-01
We attempt to understand the baryon-dark matter coincidence problem within the quark seesaw extension of the standard model where parity invariance is used to solve the strong C P problem. The S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry of this model is extended by a dark U (1 )X group plus inclusion of a heavy neutral vector-like fermion χL ,R charged under the dark group which plays the role of dark matter. All fermions are Dirac type in this model. Decay of heavy scalars charged under U (1 )X leads to simultaneous asymmetry generation of the dark matter and baryons after sphaleron effects are included. The U (1 )X group not only helps to stabilize the dark matter but also helps in the elimination of the symmetric part of the dark matter via χ -χ ¯ annihilation. For dark matter mass near the proton mass, it explains why the baryon and dark matter abundances are of similar magnitude (the baryon-dark matter coincidence problem). This model is testable in low threshold (sub-keV) direct dark matter search experiments.
Universal effective hadron dynamics from superconformal algebra
Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter; ...
2016-05-25
An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin–spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Ourmore » analysis is consistently applied to the excitation spectra of the π , ρ , K , K* and Φ meson families as well as to the N , Δ, Λ, Σ, Σ* , Ξ and Ξ* in the baryon sector. Here, we also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.« less
The Formation of the First Cosmic Structures and the Physics of the z ~ 20 Universe
NASA Astrophysics Data System (ADS)
O'Leary, Ryan M.; McQuinn, Matthew
2012-11-01
We perform a suite of cosmological simulations in the ΛCDM paradigm of the formation of the first structures in the universe prior to astrophysical reheating and reionization (15 <~ z < 200). These are the first simulations initialized in a manner that self-consistently accounts for the impact of pressure on the rate of growth of modes, temperature fluctuations in the gas, and the dark matter-baryon supersonic velocity difference. Even with these improvements, these are still difficult times to simulate accurately as the Jeans length of the cold intergalactic gas must be resolved while also capturing a representative sample of the universe. We explore the box size and resolution requirements to meet these competing objectives. Our simulations support the finding of recent studies that the dark matter-baryon velocity difference has a surprisingly large impact on the accretion of gas onto the first star-forming minihalos (which have masses of ~106 M ⊙). In fact, the halo gas is often significantly downwind of such halos and with lower densities in the simulations in which the baryons have a bulk flow with respect to the dark matter, modulating the formation of the first stars by the local value of this velocity difference. We also show that dynamical friction plays an important role in the nonlinear evolution of the dark matter-baryon differential velocity, acting to erase this velocity difference quickly in overdense gas, as well as sourcing visually apparent bow shocks and Mach cones throughout the universe. We use simulations with both the GADGET and Enzo cosmological codes to test the robustness of these conclusions. The comparison of these codes' simulations also provides a relatively controlled test of these codes themselves, allowing us to quantify some of the tradeoffs between the algorithms. For example, we find that particle coupling in GADGET between the gas and dark matter particles results in spurious growth that mimics nonlinear growth in the matter power spectrum for standard initial setups. This coupling is alleviated by using adaptive gravitational softening for the gas. In a companion paper, we use the simulations presented here to make detailed estimates for the impact of the dark matter-baryon velocity differential on redshifted 21 cm radiation. The initial conditions generator used in this study, CICSASS, can be publicly downloaded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Marco
2015-11-09
We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of themore » cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Marco, E-mail: mf627@cornell.edu
2015-11-01
We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of themore » cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.« less
Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten
2018-06-01
We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.
Dynamical coupled-channels study of pi N --> pi pi N reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamano, Hiroyuki; Julia Diaz, Bruno; Lee, Tsung-Shung
2009-01-01
As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C76, 065201 (2007). The channels included are pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N resonant components. The non-resonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16more » bare excited nucleon (N^*) states which are dressed by the non-resonant interactions as constrained by the unitarity condition. The available total cross section data of pi^+ p --> pi^+ pi^+ n, pi^+ pi^0 and pi^- p --> pi^+ pi^- n, pi^- pi^0 n, pi^0 pi^0 n can be reproduced to a very large extent both in magnitudes and energy-dependence. Possible improvements of the model are investigated, in p« less
Prediction of narrow N* and {Lambda}* with hidden charm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia; Molina, R.
2011-10-24
The interaction between various charmed mesons and charmed baryons, such as D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Six narrow N* and {Lambda}* resonances are dynamically generated with mass above 4 GeV and width smaller than 100 MeV. These predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks. We make estimates of production cross sections of these predicted resonances in p-barp collisions for PANDA at the forthcoming FAIR facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Irshad; Gnedin, Nickolay Y.
Baryonic effects are amongst the most severe systematics to the tomographic analysis of weak lensing data which is the principal probe in many future generations of cosmological surveys like LSST, Euclid etc.. Modeling or parameterizing these effects is essential in order to extract valuable constraints on cosmological parameters. In a recent paper, Eifler et al. (2015) suggested a reduction technique for baryonic effects by conducting a principal component analysis (PCA) and removing the largest baryonic eigenmodes from the data. In this article, we conducted the investigation further and addressed two critical aspects. Firstly, we performed the analysis by separating the simulations into training and test sets, computing a minimal set of principle components from the training set and examining the fits on the test set. We found that using only four parameters, corresponding to the four largest eigenmodes of the training set, the test sets can be fitted thoroughly with an RMSmore » $$\\sim 0.0011$$. Secondly, we explored the significance of outliers, the most exotic/extreme baryonic scenarios, in this method. We found that excluding the outliers from the training set results in a relatively bad fit and degraded the RMS by nearly a factor of 3. Therefore, for a direct employment of this method to the tomographic analysis of the weak lensing data, the principle components should be derived from a training set that comprises adequately exotic but reasonable models such that the reality is included inside the parameter domain sampled by the training set. The baryonic effects can be parameterized as the coefficients of these principle components and should be marginalized over the cosmological parameter space.« less
Large scale structure from the Higgs fields of the supersymmetric standard model
NASA Astrophysics Data System (ADS)
Bastero-Gil, M.; di Clemente, V.; King, S. F.
2003-05-01
We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, |n-1|˜0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum.
Observing the baryon cycle in hydrodynamic cosmological simulations
NASA Astrophysics Data System (ADS)
Vander Vliet, Jacob Richard
An understanding of galaxy evolution requires an understanding of the flow of baryons in and out of a galaxy. The accretion of baryons is required for galaxies to form stars, while stars eject baryons out of the galaxy through stellar feedback mechanisms such as supernovae, stellar winds, and radiation pressure. The interplay between outfiowing and infalling material form the circumgalactic medium (CGM). Hydrodynamic simulations provide understanding of the connection between stellar feedback and the distribution and kinematics of baryons in the CGM. To compare simulations and observations properly the simulated CGI must be observed in the same manner as the real CGM. I have developed the Mockspec code to generate synthetic quasar absorption line observations of the CGM in cosmological hydrodynamic simulations. Mockspec generates synthetic spectra based on the phase; lnetallicity, and kinematics of CGM gas and mimics instrumental effects. Mockspec includes automated analysis of the spectra and identifies the gas responsible for the absorption. Mockspec was applied to simulations of dwarf galaxies at low redshift to examine the observable effect different feedback models have on the CGM. While the different feedback models had strong effects on the galaxy, they all produced a similar CGM that failed match observations. Mockspec was applied to the VELA simulation suite of high redshift, high mass galaxies to examine the variance of the CGM across different galaxies in different environments. The observed CGM showed little variation between the different galaxies and almost no evolution from z=4 to z=1. The VELAs were not able to generate a CGM to match the observations. The properties of cells responsible for the absorption were compared to the derived properties from Voigt Profile decomposition. VP modeling was found to accurately describe the HI and MgII absorbing gas but failed for high ionization species such as CIV and OVI, which do not arise in the coherent structures assumed by modelling. The technique of mock QAL is useful for testing the accuracy of the simulated CGM and for verifying observational techniques. but not for differentiating between feedback prescriptions in dwarf galaxies.
GENXICC: A generator for hadronic production of the double heavy baryons ΞccΞcc, ΞbcΞbc and ΞbbΞbb
NASA Astrophysics Data System (ADS)
Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang
2007-09-01
We write down a generator program for the hadronic production of the double-heavy baryons Ξ, Ξ and Ξ according to relevant publications. We name it as GENXICC and we test it by comparing its numerical results with those in references. It is written in a PYTHIA-compatible format and it can be easily implemented into PYTHIA. GENXICC is also written in modularization manner, with make, a GNU C compiler, one may apply the generator to various situations or experimental environments very conveniently. Program summaryProgram title:GENXICC Catalogue identifier:ADZJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:99 252 No. of bytes in distributed program, including test data, etc.:1 432 846 Distribution format:tar.gz Programming language:FORTRAN77/90 Computer:Any LINUX based on PC with FORTRAN77 or FORTRAN90 and GNU C compiler installed Operating systems:LINUX RAM:About 2.0 MB Classification:11.2 Nature of problem:Hadronic production of a double-heavy baryons: Ξ, Ξ and Ξ. Solution method:The production of the double-heavy baryons is realized by producing a binding double-heavy diquark either (QQ)[3]3¯,6 ( Q,Q=b,c) or (QQ)[1]3¯,6, which is in color anti-triplet 3¯ or color sextuplet 6 and in S-wave triplet or singlet configuration, respectively, and then by absorbing a proper light quark non-perturbatively. For the production of the various double-heavy baryons Ξ, Ξ and Ξ, the 'gluon-gluon fusion' mechanism, being the most important, is written precisely in the generator, but two additional mechanisms, i.e. the 'gluon-charm collision' and the 'charm-charm collision' ones, only for Ξ ( Ξcc+ or Ξcc++) are written. Furthermore, all the mechanisms are treated consistently within the general-mass flavor-number (GM-VFN) scheme. Specially, to deal with the amplitude and in order to save CPU time as much as possible, the 'improved helicity-approach' is applied for the most complicated gluon-gluon fusion mechanism. The code with a proper option can generate weighted and unweighted events accordingly as user's wish. Moreover, an interface to PYTHIA is provided to meet ones' needs to generate the 'complete events' of Ξ, i.e. to do the 'showers' of the partons appearing in the initial and final states of the subprocess, and the hadronization for final obtained 'showers', etc. Restrictions:In GENXICC, the approach to the hadronic production in terms of a 'complete αs4 calculation' via the production of a binding diquark state either (QQ)[3]3¯ or (QQ)[1]6 ( Q=c,b) for Ξ and Ξ production, and via that of a binding diquark state of (bc)[3]3¯ or (bc)[1]3¯ or (bc)[3]6 or (bc)[1]6 for Ξ is available, but the contributions from the other higher Fock states of the diquark states are not involved. Considering the needs of comparisons and applications in most cases, three mechanisms and their consistent summation for the hadronic production of Ξ are available. But for most purposes and applications to the baryons Ξ and Ξ, which contain b-quark(s) (much heavier than c-quark), only the 'gluon-gluon fusion' mechanism for the production is accurate enough, therefore, here only the 'gluon-gluon fusion' mechanism is available. Moreover, since the polarization of the double-heavy baryons is also strongly effected by hadronization of the double-heavy diquark produced via the mechanisms considered here, so in the present generator only the unpolarized production for the baryons are available. Running time:It depends on which option one chooses to match PYTHIA when generating the events and also on which mechanism is chosen for generating the events. Typically, for the most complicated case via gluon-gluon mechanism to generate the mixed events via the intermediate diquark in (cc)[3]3¯ and (cc)[1]6 states, then on a 1.8 GHz Intel P4-processor PC-machine, if taking IDWTUP=1 for PYTHIA option (the meaning will be explained later on), it takes about 20 hours to generate 1000 events, whereas, if IDWTUP=3 (the meaning will be explained later on), it takes only about 40 minutes to generate 10 6 events. In fact, there are two kinds of states for Ξ, i.e. one is that the inside b and c are symmetric in 'flavor space' and the other is that b and c are antisymmetric in 'flavor space' similar to the case for the baryons Λ and Σ. Let us call them as Ξ for symmetric one and Ξ for antisymmetric one when we need to distinguish them. Due to the electromagnetic interaction between the quarks, for instance, the two kinds of states may have different masses (degeneracy broken).
Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago
NASA Astrophysics Data System (ADS)
Genzel, R.; Schreiber, N. M. Förster; Übler, H.; Lang, P.; Naab, T.; Bender, R.; Tacconi, L. J.; Wisnioski, E.; Wuyts, S.; Alexander, T.; Beifiori, A.; Belli, S.; Brammer, G.; Burkert, A.; Carollo, C. M.; Chan, J.; Davies, R.; Fossati, M.; Galametz, A.; Genel, S.; Gerhard, O.; Lutz, D.; Mendel, J. T.; Momcheva, I.; Nelson, E. J.; Renzini, A.; Saglia, R.; Sternberg, A.; Tacchella, S.; Tadaki, K.; Wilman, D.
2017-03-01
In the cold dark matter cosmology, the baryonic components of galaxies—stars and gas—are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius—a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high-redshift) Universe efficiently condensed at the centres of dark-matter haloes when gas fractions were high and dark matter was less concentrated.
Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.
Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D
2017-03-15
In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high-redshift) Universe efficiently condensed at the centres of dark-matter haloes when gas fractions were high and dark matter was less concentrated.
The flat density profiles of massive, and relaxed galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popolo, A. Del, E-mail: adelpopolo@oact.inaf.it
2014-07-01
The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction.more » Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total mass density profile which is NFW-like, clusters having more massive BCGs at their centers must contain less DM in their center. Consequently the inner profile has a flatter slope.« less
How does non-linear dynamics affect the baryon acoustic oscillation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, Naonori S.; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: dns@astro.princeton.edu
2014-02-01
We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do notmore » guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.« less
Flavor structure of Λ baryons from lattice QCD: From strange to charm quarks
NASA Astrophysics Data System (ADS)
Gubler, Philipp; Takahashi, Toru T.; Oka, Makoto
2016-12-01
We study Λ baryons of spin-parity 1/2± with either a strange or charm valence quark in full 2 +1 flavor lattice QCD. Multiple S U (3 ) singlet and octet operators are employed to generate the desired single baryon states on the lattice. Via the variational method, the couplings of these states to the different operators provide information about the flavor structure of the Λ baryons. We make use of the gauge configurations of the PACS-CS Collaboration and chirally extrapolate the results for the masses and S U (3 ) flavor components to the physical point. We furthermore gradually change the hopping parameter of the heaviest quark from strange to charm to study how the properties of the Λ baryons evolve as a function of the heavy quark mass. It is found that the baryon energy levels increase almost linearly with the quark mass. Meanwhile, the flavor structure of most of the states remains stable, with the exception of the lowest 1/2- state, which changes from a flavor singlet Λ to a Λc state with singlet and octet components of comparable size. Finally, we discuss whether our findings can be interpreted with the help of a simple quark model and find that the negative-parity Λc states can be naturally explained as diquark excitations of the light u and d quarks. On the other hand, the quark-model picture does not appear to be adequate for the negative-parity Λ states, suggesting the importance of other degrees of freedom to describe them.
Modeling the Impact of Baryons on Subhalo Populations with Machine Learning
NASA Astrophysics Data System (ADS)
Nadler, Ethan O.; Mao, Yao-Yuan; Wechsler, Risa H.; Garrison-Kimmel, Shea; Wetzel, Andrew
2018-06-01
We identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score. We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.
Radial-orbit instability in modified Newtonian dynamics
NASA Astrophysics Data System (ADS)
Nipoti, Carlo; Ciotti, Luca; Londrillo, Pasquale
2011-07-01
The stability of radially anisotropic spherical stellar systems in modified Newtonian dynamics (MOND) is explored by means of numerical simulations performed with the N-body code N-MODY. We find that Osipkov-Merritt MOND models require for stability larger minimum anisotropy radii than equivalent Newtonian systems (ENSs) with the dark matter, and also than purely baryonic Newtonian models with the same density profile. The maximum value for stability of the Fridman-Polyachenko-Shukhman parameter in MOND models is lower than in ENSs, but higher than in Newtonian models with no dark matter. We conclude that MOND systems are substantially more prone to radial-orbit instability than ENSs with dark matter, while they are able to support a larger amount of kinetic energy stored in radial orbits than purely baryonic Newtonian systems. An explanation of these results is attempted and their relevance to the MOND interpretation of the observed kinematics of globular clusters, dwarf spheroidal and elliptical galaxies is briefly discussed.
Accurate initial conditions in mixed dark matter-baryon simulations
NASA Astrophysics Data System (ADS)
Valkenburg, Wessel; Villaescusa-Navarro, Francisco
2017-06-01
We quantify the error in the results of mixed baryon-dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations is of the order of few to 10 per cent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using a mix of general-relativistic gauges so as to approximate Newtonian gravity, namely longitudinal-gauge velocities with synchronous-gauge densities and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that dark matter and baryons experience a scale-dependent growth after photon decoupling, which results in directions of velocity that are not the same as their direction of displacement. We compare the outcome of hydrodynamic simulations with these four approximations to our reference simulation, all setup with the same random seed and simulated using gadget-III.
Axion domain wall baryogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
2015-07-01
We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domainmore » wall annihilation and its implications for the future gravitational wave experiments.« less
Electroweak baryogenesis, electric dipole moments, and Higgs diphoton decays
Chao, Wei; Ramsey-Musolf, Michael J.
2014-10-30
Here, we study the viability of electroweak baryogenesis in a two Higgs doublet model scenario augmented by vector-like, electroweakly interacting fermions. Considering a limited, but illustrative region of the model parameter space, we obtain the observed cosmic baryon asymmetry while satisfying present constraints from the non-observation of the permanent electric dipole moment (EDM) of the electron and the combined ATLAS and CMS result for the Higgs boson diphoton decay rate. The observation of a non-zero electron EDM in a next generation experiment and/or the observation of an excess (over the Standard Model) of Higgs to diphoton events with the 14more » TeV LHC run or a future e +e – collider would be consistent with generation of the observed baryon asymmetry in this scenario.« less
Vadai, Yishay; Poznanski, Dovi; Baron, Dalya; ...
2017-08-14
In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadai, Yishay; Poznanski, Dovi; Baron, Dalya
In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less
Particle physics in the very early universe
NASA Technical Reports Server (NTRS)
Schramm, D. N.
1981-01-01
Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.
Ludlow, Aaron D; Benítez-Llambay, Alejandro; Schaller, Matthieu; Theuns, Tom; Frenk, Carlos S; Bower, Richard; Schaye, Joop; Crain, Robert A; Navarro, Julio F; Fattahi, Azadeh; Oman, Kyle A
2017-04-21
We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the eagle suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different prescriptions for unresolved stellar and active galactic nuclei feedback, resulting in diverse populations of galaxies by the present day. Some of them reproduce observed galaxy scaling relations, while others do not. However, regardless of the feedback implementation, all of our galaxies follow closely a simple relationship between the total and baryonic acceleration profiles, consistent with recent observations of rotationally supported galaxies. The relation has small scatter: Different feedback implementations-which produce different galaxy populations-mainly shift galaxies along the relation rather than perpendicular to it. Furthermore, galaxies exhibit a characteristic acceleration g_{†}, above which baryons dominate the mass budget, as observed. These observations, consistent with simple modified Newtonian dynamics, can be accommodated within the standard cold dark matter paradigm.
Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Hernquist, Lars; Marinacci, Federico; Springel, Volker; Li, Yuexing
2017-04-01
We study the orbital properties of dark matter haloes by combining a spectral method and cosmological simulations of Milky Way-sized Galaxies. We compare the dynamics and orbits of individual dark matter particles from both hydrodynamic and N-body simulations, and find that the fraction of box, tube and resonant orbits of the dark matter halo decreases significantly due to the effects of baryons. In particular, the central region of the dark matter halo in the hydrodynamic simulation is dominated by regular, short-axis tube orbits, in contrast to the chaotic, box and thin orbits dominant in the N-body run. This leads to a more spherical dark matter halo in the hydrodynamic run compared to a prolate one as commonly seen in the N-body simulations. Furthermore, by using a kernel-based density estimator, we compare the coarse-grained phase-space densities of dark matter haloes in both simulations and find that it is lower by ˜0.5 dex in the hydrodynamic run due to changes in the angular momentum distribution, which indicates that the baryonic process that affects the dark matter is irreversible. Our results imply that baryons play an important role in determining the shape, kinematics and phase-space density of dark matter haloes in galaxies.
Structure of the nucleon's low-lying excitations
NASA Astrophysics Data System (ADS)
Chen, Chen; El-Bennich, Bruno; Roberts, Craig D.; Schmidt, Sebastian M.; Segovia, Jorge; Wan, Shaolong
2018-02-01
A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to perform a comparative study of the four lightest (I =1 /2 ,JP=1 /2±) baryon isospin doublets in order to elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike, electromagnetically active quark-quark (diquark) correlations within all baryons; and in these doublets, isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In the two lightest (1 /2 ,1 /2+) doublets, however, scalar and pseudovector diquarks are overwhelmingly dominant. The associated rest-frame wave functions are largely S -wave in nature; and the first excited state in this 1 /2+ channel has the appearance of a radial excitation of the ground state. The two lightest (1 /2 ,1 /2-) doublets fit a different picture: accurate estimates of their masses are obtained by retaining only pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are predominantly P -wave in nature, but possess measurable S -wave components. Moreover, the first excited state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field theory, all differences between positive- and negative-parity channels must owe to chiral symmetry breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that can validate the contrasts drawn herein between the structure of the four lightest (1 /2 ,1 /2±) doublets will prove valuable in testing links between emergent mass generation and observable phenomena and, plausibly, thereby revealing dynamical features of confinement.
The Evolution of the Tully-Fisher Relation between z ˜ 2.3 and z ˜ 0.9 with KMOS3D
NASA Astrophysics Data System (ADS)
Übler, H.; Förster Schreiber, N. M.; Genzel, R.; Wisnioski, E.; Wuyts, S.; Lang, P.; Naab, T.; Burkert, A.; van Dokkum, P. G.; Tacconi, L. J.; Wilman, D. J.; Fossati, M.; Mendel, J. T.; Beifiori, A.; Belli, S.; Bender, R.; Brammer, G. B.; Chan, J.; Davies, R.; Fabricius, M.; Galametz, A.; Lutz, D.; Momcheva, I. G.; Nelson, E. J.; Saglia, R. P.; Seitz, S.; Tadaki, K.
2017-06-01
We investigate the stellar mass and baryonic mass Tully-Fisher relations (TFRs) of massive star-forming disk galaxies at redshift z˜ 2.3 and z˜ 0.9 as part of the {{KMOS}}3{{D}} integral field spectroscopy survey. Our spatially resolved data allow reliable modeling of individual galaxies, including the effect of pressure support on the inferred gravitational potential. At fixed circular velocity, we find higher baryonic masses and similar stellar masses at z˜ 2.3 as compared to z˜ 0.9. Together with the decreasing gas-to-stellar mass ratios with decreasing redshift, this implies that the contribution of dark matter to the dynamical mass on the galaxy scale increases toward lower redshift. A comparison to local relations reveals a negative evolution of the stellar and baryonic TFR zero points from z = 0 to z˜ 0.9, no evolution of the stellar TFR zero point from z˜ 0.9 to z˜ 2.3, and a positive evolution of the baryonic TFR zero point from z˜ 0.9 to z˜ 2.3. We discuss a toy model of disk galaxy evolution to explain the observed nonmonotonic TFR evolution, taking into account the empirically motivated redshift dependencies of galactic gas fractions and the relative amount of baryons to dark matter on galaxy and halo scales. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.
Modeling the Impact of Baryons on Subhalo Populations with Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadler, Ethan O.; Mao, Yao -Yuan; Wechsler, Risa H.
Here, we identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score.more » We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.« less
Modeling the Impact of Baryons on Subhalo Populations with Machine Learning
Nadler, Ethan O.; Mao, Yao -Yuan; Wechsler, Risa H.; ...
2018-06-01
Here, we identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score.more » We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Patrizia
2007-01-01
Since LEPS collaboration reported the first evidence for a S=+1 baryon resonance in early 2003 with a mass of 1.54 GeV, dubbed Θ+, more than ten experiments have confirmed this exotic state, among these two carried out at Jefferson Laboratory. At the same time, there are a number of experiments, mostly at high energies, that report null results. To try to clarify this situation, during the past year, The CLAS Collaboration at Jefferson Laboratory has undertaken a second generation high-statistics experimental program to search for exotics baryons. Here the preliminary results from these experiments are reported.
NASA Astrophysics Data System (ADS)
Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis
2016-05-01
In central Au-Au collisions at top RHIC energy, two-particle correlation measurements with identified hadron trigger have shown attenuation of near-side proton triggered jetlike yield at intermediate transverse momentum (p T ),2
The Ξ* and Ωη Interaction Within a Chiral Unitary Approach
NASA Astrophysics Data System (ADS)
Xu, Si-Qi; Xie, Ju-Jun; Chen, Xu-Rong; Jia, Duo-Jie
2016-01-01
In this work we study the interaction of the coupled channels Ωη and {\\Xi}\\ast\\bar{K} within the chiral unitary approach. The systems under consideration have total isospins 0, strangeness S = -3, and spin 3/2. We study the s wave interaction which implies that the possible resonances generated in the system can have spin-parity JP = 3/2-. The unitary amplitudes in coupled channels develop poles that can be associated with some known baryonic resonances. We find there is a dynamically generated 3/2- Ω state with mass around 1800 MeV, which is in agreement with the predictions of the five-quark model. Supported by the National Basic Research Program (973 Program Grant No. 2014CB845406), and the National Natural Science Foundation of China under Grant Nos. 11475227, 11265014, and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China No. Y5KF151CJ1
Baryon-antibaryon dynamics in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Seifert, E.; Cassing, W.
2018-04-01
The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.
Dynamics of Hyperon Production
NASA Astrophysics Data System (ADS)
Sibirtsev, A.
2007-11-01
The progress of strangeness physics at COSY in both experimental and theoretical aspects is reviewed. It is argued that the dynamics of hyperon production involves excitation of baryons and that it is feasible to study their properties such as mass and total width. It is shown that under certain kinematical cuts the resonance signal can be isolated from the effect due to the final state interaction. Recent puzzles concerning the Σ-hyperon production are discussed.
What do gas-rich galaxies actually tell us about modified Newtonian dynamics?
Foreman, Simon; Scott, Douglas
2012-04-06
It has recently been claimed that measurements of the baryonic Tully-Fisher relation (BTFR), a power-law relationship between the observed baryonic masses and outer rotation velocities of galaxies, support the predictions of modified Newtonian dynamics for the slope and scatter in the relation, while challenging the cold dark matter (CDM) paradigm. We investigate these claims, and find that (1) the scatter in the data used to determine the BTFR is in conflict with observational uncertainties on the data, (2) these data do not make strong distinctions regarding the best-fit BTFR parameters, (3) the literature contains a wide variety of measurements of the BTFR, many of which are discrepant with the recent results, and (4) the claimed CDM "prediction" for the BTFR is a gross oversimplification of the complex galaxy-scale physics involved. We conclude that the BTFR is currently untrustworthy as a test of CDM. © 2012 American Physical Society
The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates
NASA Astrophysics Data System (ADS)
Henson, Monique A.; Barnes, David J.; Kay, Scott T.; McCarthy, Ian G.; Schaye, Joop
2017-03-01
We use the BAHAMAS (BAryons and HAloes of MAssive Systems) and MACSIS (MAssive ClusterS and Intercluster Structures) hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the subgrid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3500 clusters with masses greater than 1014 M⊙ at z = 0. We start by characterizing the clusters in terms of their spin, shape and density profile, before considering the bias in both weak lensing and hydrostatic mass estimates. Whilst including baryonic effects leads to more spherical, centrally concentrated clusters, the median weak lensing mass bias is unaffected by the presence of baryons. In both the dark matter only and hydrodynamic simulations, the weak lensing measurements underestimate cluster masses by ≈10 per cent for clusters with M200 ≤ 1015 M⊙ and this bias tends to zero at higher masses. We also consider the hydrostatic bias when using both the true density and temperature profiles, and those derived from X-ray spectroscopy. When using spectroscopic temperatures and densities, the hydrostatic bias decreases as a function of mass, leading to a bias of ≈40 per cent for clusters with M500 ≥ 1015 M⊙. This is due to the presence of cooler gas in the cluster outskirts. Using mass weighted temperatures and the true density profile reduces this bias to 5-15 per cent.
Spectroscopy of singly, doubly, and triply bottom baryons
NASA Astrophysics Data System (ADS)
Wei, Ke-Wei; Chen, Bing; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng
2017-06-01
Recently, some singly bottom baryons have been established experimentally, but none of the doubly or triply bottom baryons have been observed. Under the Regge phenomenology, the mass of an unobserved ground-state doubly or triply bottom baryon is expressed as a function of masses of the well-established light baryons and singly bottom baryons. Then, the values of Regge slopes and Regge intercepts for baryons containing one, two, or three bottom quarks are calculated. After that, the masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. Our predictions may be useful for the discovery of these baryons and their JP assignments.
Meson and baryon spectrum for QCD with two light dynamical quarks
NASA Astrophysics Data System (ADS)
Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas
2010-08-01
We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 163×32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4), and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results for ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular, at small pion masses. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.
Emergence of a dark force in corpuscular gravity
NASA Astrophysics Data System (ADS)
Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M.
2018-02-01
We investigate the emergent laws of gravity when dark energy and the de Sitter space-time are modeled as a critical Bose-Einstein condensate of a large number of soft gravitons NG. We argue that this scenario requires the presence of various regimes of gravity in which NG scales in different ways. Moreover, the local gravitational interaction affecting baryonic matter can be naturally described in terms of gravitons pulled out from this dark energy condensate (DEC). We then explain the additional component of the acceleration at galactic scales, commonly attributed to dark matter, as the reaction of the DEC to the presence of baryonic matter. This additional dark force is also associated to gravitons pulled out from the DEC and correctly reproduces the modified Newtonian dynamics (MOND) acceleration. It also allows for an effective description in terms of general relativity sourced by an anisotropic fluid. We finally calculate the mass ratio between the contribution of the apparent dark matter and the baryonic matter in a region of size r at galactic scales and show that it is consistent with the Λ CDM predictions.
Properties of JP=1/2+ baryon octets at low energy
NASA Astrophysics Data System (ADS)
Kaur, Amanpreet; Gupta, Pallavi; Upadhyay, Alka
2017-06-01
The statistical model in combination with the detailed balance principle is able to phenomenologically calculate and analyze spin- and flavor-dependent properties like magnetic moments (with effective masses, with effective charge, or with both effective mass and effective charge), quark spin polarization and distribution, the strangeness suppression factor, and \\overline{d}-\\overline{u} asymmetry incorporating the strange sea. The s\\overline{s} in the sea is said to be generated via the basic quark mechanism but suppressed by the strange quark mass factor ms>m_{u,d}. The magnetic moments of the octet baryons are analyzed within the statistical model, by putting emphasis on the SU(3) symmetry-breaking effects generated by the mass difference between the strange and non-strange quarks. The work presented here assumes hadrons with a sea having an admixture of quark gluon Fock states. The results obtained have been compared with theoretical models and experimental data.
Theoretical Astrophysics - Volume 3, Galaxies and Cosmology
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
2002-12-01
1. Overview: galaxies and cosmology; 2. Galactic structure and dynamics; 3. Friedmann model of the universe; 4. Thermal history of the universe; 5. Structure formation; 6. Cosmic microwave background radiation; 7. Formation of baryonic structures; 8. Active galactic nuclei; 9. Intergalactic medium and absorption systems; 10. Cosmological observations.
Dynamics of Proton Spin: Role of qqq Force
NASA Astrophysics Data System (ADS)
Mitra, A. N.
The analytic structure of the qqq wave function, obtained recently in the high momentum regime of QCD, is employed for the formulation of baryonic transition amplitudes via quark loops. A new aspect of this study is the role of a direct (Y -shaped, Mercedes-Benz type) qqq force in generating the qqq wave function The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. The dynamics of this 3-body force shows up through a characteristic singularity in the hypergeometric differential equation for the 3D wave function ϕ, corresponding to a negative eigenvalue of the spin operator iσ1·σ2 × σ3 which is an integral part of the qqq force. As a first application of this wave function to the problem of the proton spin anomaly, the two-gluon contribution to the anomaly yields an estimate of the right sign, although somewhat smaller in magnitude.
Chiral dynamics of the p wave in K-p and coupled states
NASA Astrophysics Data System (ADS)
Jido, D.; Oset, E.; Ramos, A.
2002-11-01
We perform an evaluation of the p-wave amplitudes of meson-baryon scattering in the strangeness S=-1 sector starting from the lowest order chiral Lagrangians and introducing explicitly the Σ* field with couplings to the meson-baryon states obtained using SU(6) symmetry. The N/D method of unitarization is used, equivalent, in practice, to the use of the Bethe-Salpeter equation with a cutoff. The procedure leaves no freedom for the p-waves once the s-waves are fixed and thus one obtains genuine predictions for the p-wave scattering amplitudes, which are in good agreement with experimental results for differential cross sections, as well as for the width and partial decay widths of the Σ*(1385).
Baryon acoustic oscillation intensity mapping of dark energy.
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick
2008-03-07
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
Large N{sub c}, constituent quarks, and N, {Delta} charge radii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchmann, Alfons J.; Lebed, Richard F.
2000-11-01
We show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N{sub c} limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N{sub c} baryon observables; here we apply it to the case of charge radii of the N and {Delta} states, using minimal dynamical assumptions. For example, one finds the relation r{sub p}{sup 2}-r{sub {Delta}{sup +}}{sup 2}=r{sub n}{sup 2}-r{sub {Delta}{sup 0}}{sup 2} to be broken only by three-body, O(1/N{sub c}{sup 2}) effects for any N{sub c}.
NASA Astrophysics Data System (ADS)
Carvalho, F.; Gonçalves, V. P.; Navarra, F. S.; Spiering, D.
2018-04-01
Exclusive vector meson photoproduction associated with a leading baryon (B =n ,Δ+,Δ0 ) in p p and p A collisions at RHIC and LHC energies is investigated using the color dipole formalism and taking into account nonlinear effects in the QCD dynamics. In particular, we compute the cross sections for ρ , ϕ and J /Ψ production together with a Δ and compare the predictions with those obtained for a leading neutron. Our results show that the V +Δ cross section is almost 30% of the V +n one. Our results also show that a future experimental analysis of these processes is, in principle, feasible and can be useful to study leading particle production.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-01
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2 +1 ) -flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV ≤T ≤300 MeV and baryon chemical potentials 0 ≤μB≤400 MeV . Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Magnetic moments of the lowest-lying singly heavy baryons
NASA Astrophysics Data System (ADS)
Yang, Ghil-Seok; Kim, Hyun-Chul
2018-06-01
A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.
GE781: a Monte Carlo package for fixed target experiments
NASA Astrophysics Data System (ADS)
Davidenko, G.; Funk, M. A.; Kim, V.; Kuropatkin, N.; Kurshetsov, V.; Molchanov, V.; Rud, S.; Stutte, L.; Verebryusov, V.; Zukanovich Funchal, R.
The Monte Carlo package for the fixed target experiment B781 at Fermilab, a third generation charmed baryon experiment, is described. This package is based on GEANT 3.21, ADAMO database and DAFT input/output routines.
Existence of diproton-like particles in 3+1 lattice QCD with two flavors and strong coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, A. Francisco
2011-02-01
Starting from quarks, gluons, and their dynamics, we consider the existence of two-baryon bound states of total isospin I=1 in an imaginary-time formulation of a strongly coupled 3+1-dimensional SU(3){sub c} lattice QCD with two flavors and 4x4 spin matrices, defined using the Wilson action. For a small hopping parameter {kappa}>0 and a much smaller gauge coupling 0<{beta}<<{kappa}<<1 (heavy quarks and large glueball mass), using a ladder approximation to a lattice Bethe-Salpeter equation, diproton-like bound states are found in the I=1 isospin sector, with asymptotic masses -6ln{kappa} and binding energies of order {kappa}{sup 2}. By isospin symmetry, for each diproton theremore » is also a dineutron bound state with the same mass and binding energy. The dominant two-baryon interaction is an energy-independent spatial range-one potential with an O({kappa}{sup 2}) strength. There is also an attraction arising from gauge field correlations associated with six overlapping bonds, but it is subdominant. The overall range-one potential results from a quark-antiquark exchange with no meson exchange interpretation (wrong spin indices). The repulsive or attractive nature of the interaction does depend on the isospin and spin of the two-baryon states. A novel representation in term of permanents is obtained for the spin, isospin interaction between the baryons, which is valid for any isospin sector.« less
NASA Astrophysics Data System (ADS)
Khan, Mehbub; Hao, Yun; Hsu, Jong-Ping
2018-01-01
Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian) groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.
Hadron spectroscopy with dynamical chirally improved fermions
NASA Astrophysics Data System (ADS)
Gattringer, Christof; Hagen, Christian; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas
2009-03-01
We simulate two dynamical, mass-degenerate light quarks on 163×32 lattices with a spatial extent of 2.4 fm using the chirally improved Dirac operator. The simulation method, the implementation of the action, and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground-state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.
Shedding light on baryonic dark matter.
Silk, J
1991-02-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Puget, J. L.
1972-01-01
Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.
Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.
Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu
2009-02-06
We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.
Around the Way: Testing ΛCDM with Milky Way Stellar Stream Constraints
NASA Astrophysics Data System (ADS)
Dai, Biwei; Robertson, Brant E.; Madau, Piero
2018-05-01
Recent analyses of the Pal 5 and GD-1 tidal streams suggest that the inner dark matter halo of the Milky Way is close to spherical, in tension with predictions from collisionless N-body simulations of cosmological structure formation. We use the Eris simulation to test whether the combination of dissipative physics and hierarchical structure formation can produce Milky Way–like galaxies whose dark matter halos match the tidal stream constraints from the GD-1 and Pal 5 clusters. We use a dynamical model of the simulated Eris galaxy to generate many realizations of the GD-1 and Pal 5 tidal streams, marginalize over observational uncertainties in the cluster galactocentric positions and velocities, and compare with the observational constraints. We find that the total density and potential of Eris contributed by baryons and dark matter satisfies constraints from the existing Milky Way stellar stream data, as the baryons both round and redistribute the dark matter during the dissipative formation of the galaxy, and provide a centrally concentrated mass distribution that rounds the inner potential. The Eris dark matter halo or a spherical Navarro–Frenk–White dark matter work comparably well in modeling the stream data. In contrast, the equivalent dark matter–only ErisDark simulation produces a prolate halo that cannot reproduce the observed stream data. The ongoing Gaia mission will provide decisive tests of the consistency between {{Λ }}{CDM} and Milky Way streams, and should distinguish between models like Eris and more spherical halos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr
We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less
Phases of kinky holographic nuclear matter
NASA Astrophysics Data System (ADS)
Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija
2016-10-01
Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.
NASA Astrophysics Data System (ADS)
Wu, Po-Feng
2018-02-01
Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.
Dynamical constraints on the dark matter distribution in the Milky Way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pato, Miguel; Iocco, Fabio; Bertone, Gianfranco, E-mail: migpato@gmail.com, E-mail: fabio.iocco.astro@gmail.com, E-mail: g.bertone@uva.nl
2015-12-01
An accurate knowledge of the dark matter distribution in the Milky Way is of crucial importance for galaxy formation studies and current searches for particle dark matter. In this paper we set new dynamical constraints on the Galactic dark matter profile by comparing the observed rotation curve, updated with a comprehensive compilation of kinematic tracers, with that inferred from a wide range of observation-based morphologies of the bulge, disc and gas. The generalised Navarro-Frenk-White (NFW) and Einasto dark matter profiles are fitted to the data in order to determine the favoured ranges of local density, slope and scale radius. Formore » a representative baryonic model, a typical local circular velocity v{sub 0}=230 km/s and a distance of the Sun to the Galactic centre R{sub 0}=8 kpc, we find a local dark matter density ρ{sub 0} = 0.420{sup +0.021}{sub −0.018} (2σ) ± 0.025 GeV/cm{sup 3} (ρ{sub 0} = 0.420{sup +0.019}{sub −0.021} (2σ) ± 0.026 GeV/cm{sup 3}) for NFW (Einasto), where the second error is an estimate of the systematic due to baryonic modelling. Apart from the Galactic parameters, the main sources of uncertainty inside and outside the solar circle are baryonic modelling and rotation curve measurements, respectively. Upcoming astronomical observations are expected to reduce all these uncertainties substantially over the coming years.« less
NASA Astrophysics Data System (ADS)
Ponomareva, Anastasia A.; Verheijen, Marc A. W.; Papastergis, Emmanouil; Bosma, Albert; Peletier, Reynier F.
2018-03-01
In this paper, we investigate the statistical properties of the Baryonic Tully-Fisher relation (BTFr) for a sample of 32 galaxies with accurate distances based on Cepheïds and/or TRGB stars. We make use of homogeneously analysed photometry in 18 bands ranging from the far-ultraviolet to 160 μm, allowing us to investigate the effect of the inferred stellar mass-to-light ratio (ϒ⋆) on the statistical properties of the BTFr. Stellar masses of our sample galaxies are derived with four different methods based on full SED fitting, studies of stellar dynamics, near-infrared colours, and the assumption of the same Υ_{\\star }^{[3.6]} for all galaxies. In addition, we use high-quality, resolved H I kinematics to study the BTFr based on three kinematic measures: Wi_{50} from the global H I profile, and Vmax and Vflat from the rotation curve. We find the intrinsic perpendicular scatter, or tightness, of our BTFr to be σ⊥ = 0.026 ± 0.013 dex, consistent with the intrinsic tightness of the 3.6 μm luminosity-based Tully-Fisher relation (TFr). However, we find the slope of the BTFr to be 2.99 ± 0.2 instead of 3.7 ± 0.1 for the luminosity-based TFr at 3.6 μm. We use our BTFr to place important observational constraints on theoretical models of galaxy formation and evolution by making comparisons with theoretical predictions based on either the Λ cold dark matter framework or modified Newtonian dynamics.
Baryon axial charges from chirally improved fermions - first results
NASA Astrophysics Data System (ADS)
Engel, G.; Gattringer, C.; Glozman, L. Y.; Lang, C. B.; Limmer, M.; Mohler, D.; Schäfer, A.
We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-smeared interpolators to suppress contaminations from excited states.
A new look at the Y tetraquarks and Ω _c baryons in the diquark model
NASA Astrophysics Data System (ADS)
Ali, Ahmed; Maiani, Luciano; Borisov, Anatoly V.; Ahmed, Ishtiaq; Aslam, M. Jamil; Parkhomenko, Alexander Ya.; Polosa, Antonio D.; Rehman, Abdur
2018-01-01
We analyze the hidden charm P-wave tetraquarks in the diquark model, using an effective Hamiltonian incorporating the dominant spin-spin, spin-orbit and tensor interactions. We compare with other P-wave systems such as P-wave charmonia and the newly discovered Ω _c baryons, analysed recently in this framework. Given the uncertain experimental situation on the Y states, we allow for different spectra and discuss the related parameters in the diquark model. In addition to the presently observed ones, we expect many more states in the supermultiplet of L=1 diquarkonia, whose J^{PC} quantum numbers and masses are worked out, using the parameters from the currently preferred Y-states pattern. The existence of these new resonances would be a decisive footprint of the underlying diquark dynamics.
Baryon Acoustic Oscillation Intensity Mapping of Dark Energy
NASA Astrophysics Data System (ADS)
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick
2008-03-01
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
Fluctuations in the quark-meson model for QCD with isospin chemical potential
NASA Astrophysics Data System (ADS)
Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen
2013-01-01
We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif
In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less
Effects of overlapping strings in pp collisions
Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; ...
2015-03-26
In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less
NASA Astrophysics Data System (ADS)
Kamano, Hiroyuki
2018-05-01
We give an overview of our recent efforts to extract electromagnetic transition form factors for N^* and Δ^* baryon resonances through a global analysis of the single-pion electroproductions off the proton within the ANL-Osaka dynamical coupled-channels approach. Preliminary results for the extracted form factors associated with Δ(1232)3/2^+ and the Roper resonance are presented, with emphasis on the complex-valued nature of the transition form factors defined by poles.
Phases of New Physics in the BAO Spectrum
NASA Astrophysics Data System (ADS)
Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias
2017-11-01
We show that the phase of the spectrum of baryon acoustic oscillations (BAO) is immune to the effects of nonlinear evolution. This suggests that any new physics that contributes to the initial phase of the BAO spectrum, such as extra light species in the early universe, can be extracted reliably at late times. We provide three arguments in support of our claim: first, we point out that a phase shift of the BAO spectrum maps to a characteristic sign change in the real space correlation function and that this feature cannot be generated or modified by nonlinear dynamics. Second, we confirm this intuition through an explicit computation, valid to all orders in cosmological perturbation theory. Finally, we provide a nonperturbative argument using general analytic properties of the linear response to the initial oscillations. Our result motivates measuring the phase of the BAO spectrum as a robust probe of new physics.
Decays of excited baryons in DTU
NASA Astrophysics Data System (ADS)
Żenczykowski, P.
1981-03-01
Properties of the decays of excited strange baryons into ground state baryon and pseudoscalar meson are examined in the framework of the linear baryonic string model. The agreement between the predictions and the data is good. The single model's parameter ɛ, the deviation of which from 1 measures SU (3) breaking, is found to decrease with increasing internal orbital angular momentum of a baryon.
Dynamical coupled-channels study of {pi}N {right arrow} {pi pi}N reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamano, H.; Julia-Diaz, B.; Lee, T.-S. H.
As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N {yields} {pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N {yields} {pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{Delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The datamore » of total cross sections and {pi}N and {pi}{pi} invariant mass distributions of {pi} + p {yields} {pi} + {pi} + n, {pi} + {pi}0p and {pi} - p {yields} {pi} + {pi} - n, {pi} - {pi}0p,{pi}0{pi}0n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{Delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.« less
Recombination era magnetic fields from axion dark matter
Banik, Nilanjan; Christopherson, Adam J.
2016-02-04
We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10 –23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.
Shedding light on baryonic dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.
NASA Astrophysics Data System (ADS)
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.
2018-03-01
In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.
First measurement of Ξc0 production in pp collisions at √{ s } = 7 TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhaduri, P. P.; Bhasin, A.; Bhat, I. R.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guittiere, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iddon, J. P.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Li, X. L.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Liu, A.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, A. P.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Neskovic, G.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, H.; Ohlson, A.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reshetin, A.; Reygers, K.; Riabov, V.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogalev, R.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Roslon, K.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shirinkin, S.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Sputowska, I.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Toppi, M.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vermunt, L.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wegrzynek, A.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Xu, R.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yun, E.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, Y.; Zichichi, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2018-06-01
The production of the charm-strange baryon Ξc0 is measured for the first time at the LHC via its semileptonic decay into eΞ+-νe in pp collisions at √{ s } = 7 TeV with the ALICE detector. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 1
IMPROVED SPECTROPHOTOMETRIC CALIBRATION OF THE SDSS-III BOSS QUASAR SAMPLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margala, Daniel; Kirkby, David; Dawson, Kyle
2016-11-10
We present a model for spectrophotometric calibration errors in observations of quasars from the third generation of the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) and describe the correction procedure we have developed and applied to this sample. Calibration errors are primarily due to atmospheric differential refraction and guiding offsets during each exposure. The corrections potentially reduce the systematics for any studies of BOSS quasars, including the measurement of baryon acoustic oscillations using the Ly α forest. Our model suggests that, on average, the observed quasar flux in BOSS is overestimated by ∼19% at 3600 Å and underestimatedmore » by ∼24% at 10,000 Å. Our corrections for the entire BOSS quasar sample are publicly available.« less
Supersymmetry across the light and heavy-light hadronic spectrum. II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.
We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less
Supersymmetry across the light and heavy-light hadronic spectrum. II.
Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.
2017-02-15
We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less
Λ CDM is Consistent with SPARC Radial Acceleration Relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, B. W.; Wadsley, J. W., E-mail: kellerbw@mcmaster.ca
2017-01-20
Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond Λ CDM . In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 Λ CDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data.more » These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.« less
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less
Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas
NASA Astrophysics Data System (ADS)
Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst
2018-03-01
The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.
Searching for the missing baryons in clusters
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-01-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229
The dark-baryonic matter mass relation for observational verification in Verlinde's emergent gravity
NASA Astrophysics Data System (ADS)
Shen, Jian Qi
2018-06-01
Recently, a new interesting idea of origin of gravity has been developed by Verlinde. In this scheme of emergent gravity, where horizon entropy, microscopic de Sitter states and relevant contribution to gravity are involved, an entropy displacement resulting from matter behaves as a memory effect and can be exhibited at sub-Hubble scales, namely, the entropy displacement and its "elastic" response would lead to emergent gravity, which gives rise to an extra gravitational force. Then galactic dark matter effects may origin from such extra emergent gravity. We discuss some concepts in Verlinde's theory of emergent gravity and point out some possible problems or issues, e.g., the gravitational potential caused by Verlinde's emergent apparent dark matter may no longer be continuous in spatial distribution at ordinary matter boundary (such as a massive sphere surface). In order to avoid the unnatural discontinuity of the extra emergent gravity of Verlinde's apparent dark matter, we suggest a modified dark-baryonic mass relation (a formula relating Verlinde's apparent dark matter mass to ordinary baryonic matter mass) within this framework of emergent gravity. The modified mass relation is consistent with Verlinde's result at relatively small scales (e.g., R<3h_{70}^{-1} Mpc). However, it seems that, compared with Verlinde's relation, at large scales (e.g., gravitating systems with R>3h_{70}^{-1} Mpc), the modified dark-baryonic mass relation presented here might be in better agreement with the experimental curves of weak lensing analysis in the recent work of Brouwer et al. Galactic rotation curves are compared between Verlinde's emergent gravity and McGaugh's recent model of MOND (Modified Newtonian Dynamics established based on recent galaxy observations). It can be found that Verlinde rotational curves deviate far from those of McGaugh MOND model when the MOND effect (or emergent dark matter) dominates. Some applications of the modified dark-baryonic mass relation inspired by Verlinde's emergent gravity will be addressed for galactic and solar scales. Potential possibilities to test this dark-baryonic mass relation as well as apparent dark matter effects, e.g., planetary perihelion precession at Solar System scale, will be considered. This may enable to place some constraints on the magnitudes of the MOND characteristic acceleration at the small solar scale.
Baryons and baryon resonances in nuclear matter
NASA Astrophysics Data System (ADS)
Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu
2018-01-01
Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.
NASA Astrophysics Data System (ADS)
Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei
2018-01-01
The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.
A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Adam J.; /SLAC
2007-10-15
In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for themore » double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their decay modes provide constraints for phenomenological models of quark interactions through quantum chromodynamics. My discovery of the two new charm-strange baryons {Xi}{sub c}(3055){sup +} and {Xi}{sub c}(3123){sup +} influences our theoretical understanding of charm-strange baryon states.« less
Dynamical instability of a charged gaseous cylinder
NASA Astrophysics Data System (ADS)
Sharif, M.; Mumtaz, Saadia
2017-10-01
In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.
QCD in heavy quark production and decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiss, J.
1997-06-01
The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effectivemore » Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.« less
NASA Astrophysics Data System (ADS)
Co, Raymond T.; Harigaya, Keisuke; Nomura, Yasunori
2017-03-01
We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U (1 )D , which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U (1 )D quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U (1 )D gauge boson. Alternatively, if the dark pion stays light due to a specific U (1 )D charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.
Co, Raymond T; Harigaya, Keisuke; Nomura, Yasunori
2017-03-10
We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U(1)_{D}, which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U(1)_{D} quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U(1)_{D} gauge boson. Alternatively, if the dark pion stays light due to a specific U(1)_{D} charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.
Baryonic contributions to the dilepton spectra in relativistic heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleicher, M.; Dutt-mazumder, A. K.; Gale, C.
2017-05-09
We investigate the baryonic contributions to the dilepton yield in high energy heavy ion collisions within the context of a transport model. The relative contribution of the baryonic and mesonic sources are examined. It is observed that most dominant among the baryonic channels is the decay of N*(1520) and mostly confined in the region below the rho peak. In a transport theory implementation we find the baryonic contribution to the lepton pair yield to be small.
Chiral Lagrangian with Heavy Quark-Diquark Symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie Hu; Thomas Mehen
2005-11-29
We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1/m{sub Q}) symmetry violating operators. The theory is used to predict the electromagnetic decay width of the J=3/2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong decay widths of low lying excited doubly heavy baryons.
Exotic triple-charm deuteronlike hexaquarks
NASA Astrophysics Data System (ADS)
Chen, Rui; Wang, Fu-Lai; Hosaka, Atsushi; Liu, Xiang
2018-06-01
Adopting the one-boson-exchange model, we perform a systematic investigation of interactions between a doubly charmed baryon (Ξc c) and an S -wave charmed baryon (Λc, Σc(*), and Ξc(',*)). Both the S - D mixing effect and coupled-channel effect are considered in this work. Our results suggest that there may exist several possible triple-charm deuteronlike hexaquarks. Meanwhile, we further study the interactions between a doubly charmed baryon and an S -wave anticharmed baryon. We find that a doubly charmed baryon and an S -wave anticharmed baryon can be easily bound together to form shallow molecular hexaquarks. These heavy flavor hexaquarks predicted here can be accessible at future experiment like LHCb.
Mass and residue of Λ (1405) as hybrid and excited ordinary baryon
NASA Astrophysics Data System (ADS)
Azizi, K.; Barsbay, B.; Sundu, H.
2018-03-01
The nature of the Λ (1405) has been a puzzle for decades, whether it is a standard three-quark baryon, a hybrid baryon or a baryon-meson molecule. More information on the decay channels of this particle and its strong, weak and electromagnetic interactions with other hadrons is needed to clarify its internal organization. The residue of this particle is one of the main inputs in investigation of its decay properties in many approaches. We calculate the mass and residue of the Λ (1405) state in the context of QCD sum rules considering it as a hybrid baryon with three-quark-one-gluon content as well as an excited ordinary baryon with quantum numbers I(JP)=0(1/2-). The comparison of the obtained results on the mass with the average experimental value presented in PDG allows us to interpret this state as a hybrid baryon.
Baryon-antibaryon annihilation and reproduction in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Seifert, E.; Cassing, W.
2018-02-01
The quark rearrangement model for baryon-antibaryon annihilation and reproduction (B B ¯↔3 M )—incorporated in the Parton-Hadron-String Dynamics (PHSD) transport approach—is extended to the strangeness sector. A derivation of the transition probabilities for the three-body processes is presented and a strangeness suppression factor for the invariant matrix element squared is introduced to account for the higher mass of the strange quark compared to the light up and down quarks. In simulations of the baryon-antibaryon annihilation and reformation in a box with periodic boundary conditions, we demonstrate that our numerical implementation fulfills detailed balance on a channel-by-channel basis for more than 2000 individual 2 ↔3 channels. Furthermore, we study central Pb+Pb collisions within PHSD from 11.7 A GeV to 158 A GeV and investigate the impact of the additionally implemented reaction channels in the strangeness sector. We find that the new reaction channels have a visible impact essentially only on the rapidity spectra of antibaryons. The spectra with the additional channels in the strangeness sector are closer to the experimental data than without for all antihyperons. Due to the chemical redistribution between baryons-antibaryons and mesons we find a slightly larger production of antiprotons thus moderately overestimating the available experimental data. We additionally address the question if the antibaryon spectra (with strangeness) from central heavy-ion reactions at these energies provide further information on the issue of chiral symmetry restoration and deconfinement. However, by comparing transport results with and without partonic phase as well as including and excluding effects from chiral symmetry restoration we find no convincing signals in the strange antibaryon sector for either transition due to the strong final-state interactions.
NASA Astrophysics Data System (ADS)
Kim, June-Young; Kim, Hyun-Chul
2018-06-01
The self-consistent chiral quark-soliton model is a relativistic pion mean-field approach in the large Nc limit, which describes both light and heavy baryons on an equal footing. In the limit of the infinitely heavy mass of the heavy quark, a heavy baryon can be regarded as Nc-1 valence quarks bound by the pion mean fields, leaving the heavy quark as a color static source. The structure of the heavy baryon in this scheme is mainly governed by the light-quark degrees of freedom. Based on this framework, we evaluate the electromagnetic form factors of the lowest-lying heavy baryons. The rotational 1 /Nc and strange current quark mass corrections in linear order are considered. We discuss the electric charge and magnetic densities of heavy baryons in comparison with those of the nucleons. The results of the electric charge radii of the positive-charged heavy baryons show explicitly that the heavy baryon is a compact object. The electric form factors are presented. The form factor of Σc++ is compared with that from a lattice QCD. We also discuss the results of the magnetic form factors. The magnetic moments of the baryon sextet with spin 1 /2 and the magnetic radii are compared with other works and the lattice data.
The Structure of Dark Matter Halos in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Burkert, A.
1995-07-01
Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.
Constraints on baryonic dark matter in the Galactic halo and Local Group
NASA Technical Reports Server (NTRS)
Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris
1992-01-01
A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.
Aznauryan, Inna G.; Burkert, Volker D.
2015-07-01
We report on the determination of the electrocouplings for the transition from the proton to the N (1675) -5/ 2 resonance state using recent differential cross section data on ep → eπ +n by the CLAS collaboration at 1.8 ≤ Q² < 4.5GeV². The data have been analyzed using two different approaches, the unitary isobar model and fixed-t dispersion relations. The extracted γ*p → N (1675) -5/ 2 helicity amplitudes show considerable coupling through the A P 1/2 amplitude, that is significantly larger than predicted three-quark contribution to this amplitude. The amplitude A P 3/2 is much smaller. Both resultsmore » are consistent with the predicted sizes of the meson-baryon contributions at Q² ≥ 1.8 GeV² from the dynamical coupled-channel model.« less
An Improved Signal Model for Axion Dark Matter Searches
NASA Astrophysics Data System (ADS)
Lentz, Erik; ADMX Collaboration
2017-01-01
To date, most direct detection searches for axion dark matter, such as those by the Axion Dark Matter eXperiment (ADMX) microwave cavity search, have assumed a signal shape based on an isothermal spherical model of the Milky Way halo. Such a model is not capable of capturing contributions from realistic infall, nor from a baryonic disk. Modern N-Body simulations of structure formation can produce realistic Milky Way-like halos which include the influences of baryons, infall, and environmental influences. This talk presents an analysis of the Romulus25 N-Body simulation in the context of direct dark matter axion searches. An improved signal shape and an account of the relevant halo dynamics are given. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.
NASA Astrophysics Data System (ADS)
Kamada, Kohei; Long, Andrew J.
2016-12-01
We elaborate upon the model of baryogenesis from decaying magnetic helicity by focusing on the evolution of the baryon number and magnetic field through the Standard Model electroweak crossover. The baryon asymmetry is determined by a competition between the helical hypermagnetic field, which sources baryon number, and the electroweak sphaleron, which tends to wash out baryon number. At the electroweak crossover, both of these processes become inactive; the hypermagnetic field is converted into an electromagnetic field, which does not source baryon number, and the weak gauge boson masses grow, suppressing the electroweak sphaleron reaction. An accurate prediction of the relic baryon asymmetry requires a careful treatment of the crossover. We extend our previous study [K. Kamada and A. J. Long, Phys. Rev. D 94, 063501 (2016)], taking into account the gradual conversion of the hypermagnetic into the electromagnetic field. If the conversion is not completed by the time of sphaleron freeze-out, as both analytic and numerical studies suggest, the relic baryon asymmetry is enhanced compared to previous calculations. The observed baryon asymmetry of the Universe can be obtained for a primordial magnetic field that has a present-day field strength and coherence length of B0˜10-17 G and λ0˜10-3 pc and a positive helicity. For larger B0 the baryon asymmetry is overproduced, which may be in conflict with blazar observations that provide evidence for an intergalactic magnetic field of strength B0≳10-14 - 16 G .
Leptogenesis from spin-gravity coupling following inflation.
Mohanty, Subhendra; Prasanna, A R; Lambiase, G
2006-02-24
The energy levels of the left- and the right-handed neutrinos are split in the background of gravitational waves generated during inflation, which, in presence of lepton-number-violating interactions, gives rise to a net lepton asymmetry at equilibrium. Lepton number violation is achieved by the same dimension five operator which gives rise to neutrino masses after electroweak symmetry breaking. A net baryon asymmetry of the same magnitude can be generated from this lepton asymmetry by electroweak sphaleron processes.
Testing Verlinde's emergent gravity in early-type galaxies
NASA Astrophysics Data System (ADS)
Tortora, C.; Koopmans, L. V. E.; Napolitano, N. R.; Valentijn, E. A.
2018-01-01
Emergent Gravity (EG) has been proposed to resolve the missing mass problem in galaxies, replacing the potential of dark matter (DM) by the effect of the entropy displacement of dark energy by baryonic matter. This apparent DM depends only on the baryonic mass distribution and the present-day value of the Hubble parameter. In this paper we test the EG proposition, formalized by Verlinde for a spherical and isolated mass distribution using the central dynamics (Sloan Digital Sky Survey velocity dispersion, σ) and the K-band light distribution in a sample of 4032 massive (M_{\\star }≳ 10^{10} M_{⊙}) and local early-type galaxies (ETGs) from the SPIDER datasample. Our results remain unaltered if we consider the sample of 750 roundest field galaxies. Using these observations we derive the predictions by EG for the stellar mass-to-light ratio (M/L) and the initial mass function (IMF). We demonstrate that, consistently with a classical Newtonian framework with a DM halo component or alternative theories of gravity as MOdified Newtonian Dynamics (MOND), the central dynamics can be fitted if the IMF is assumed non-universal and systematically changing with σ. For the case of EG, we find lower, but still acceptable, stellar M/L if compared with the DM-based Navarro, Frenk & White (NFW) model and with MOND, but pretty similar to adiabatically contracted DM haloes and with expectations from spectral gravity-sensitive features. If the strain caused by the entropy displacement would be not maximal, as adopted in the current formulation, then the dynamics of ETGs could be reproduced with larger M/L.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-06-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-01-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density. Images Fig. 3 Fig. 5 PMID:11607393
Dynamics of the diffusive DM-DE interaction – Dynamical system approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haba, Zbigniew; Stachowski, Aleksander; Szydłowski, Marek, E-mail: zhab@ift.uni.wroc.pl, E-mail: aleksander.stachowski@uj.edu.pl, E-mail: marek.szydlowski@uj.edu.pl
We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initialmore » conditions. We also fit the model parameters using astronomical observation: SNIa, H ( z ), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.« less
Self-acceleration in scalar-bimetric theories
NASA Astrophysics Data System (ADS)
Brax, Philippe; Valageas, Patrick
2018-05-01
We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the Universe couple to metrics which are constructed as functions of these two gravitational metrics. More precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of the Universe can be easily obtained at the background level in these models by appropriately choosing the coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic energy. This requires the scalar coupling functions to show variations of order unity during the accelerated expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data. On the other hand, we can deduce strong requirements on putative UV completions by analyzing the stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time evolution of Newton's constant requires an efficient screening mechanism that both damps the fifth force on small scales and decouples the local value of Newton constant from its cosmological value. This cannot be achieved by a quasistatic chameleon mechanism and requires going beyond the quasistatic regime and probably using derivative screenings, such as Kmouflage or Vainshtein screening, on small scales.
A Mass Census of the Nearby Universe with RESOLVE and ECO
NASA Astrophysics Data System (ADS)
Eckert, Kathleen D.; Kannappan, Sheila; Stark, David; Moffett, Amanda J.; Norris, Mark A.; Berlind, Andreas A.; Hall, Kirsten; Baker, Ashley; Snyder, Elaine M.; Bittner, Ashley; Hoversten, Erik A.; Lagos, Claudia; Nasipak, Zachary; RESOVE Team
2017-01-01
The low-mass slope of the galaxy stellar mass function is significantly shallower than that of the theoretical dark matter halo mass function, leading to several possible interpretations including: 1) stellar mass does not fully represent galaxy mass, 2) galaxy formation becomes increasingly inefficient in lower mass halos, and 3) environmental effects, such as stripping and merging, may change the mass function. To investigate these possible scenarios, we present the census of stellar, baryonic (stars + cold gas), and dynamical masses of galaxies and galaxy groups for the RESOLVE and ECO surveys. RESOLVE is a highly complete volume-limited survey of ~1500 galaxies, enabling direct measurement of galaxy mass functions without statistical completeness corrections down to baryonic mass Mb ~ 10^9 Msun. ECO provides a larger data set (~10,000 galaxies) complete down to Mb ~ 10^9.4 Msun. We show that the baryonic mass function has a steeper low-mass slope than the stellar mass function due to the large population of low-mass, gas-rich galaxies. The baryonic mass function’s low-mass slope, however, is still significantly shallower than that of the dark matter halo mass function. A more direct probe of total galaxy mass is its characteristic velocity, and we present RESOLVE’s preliminary galaxy velocity function, which combines ionized-gas rotation curves, stellar velocity dispersions, and estimates from scaling relations. The velocity function also diverges from the dark matter halo velocity function at low masses. To study the effect of environment, we break the mass functions into different group halo mass bins, finding complex substructure, including a depressed and flat low-mass slope for groups with halo masses ~10^11.4-12 Msun, which we refer to as the nascent group regime, with typical membership of 2-4 galaxies. This substructure is suggestive of efficient merging or gas stripping in nascent groups, which we find also have large scatter in their cold-baryon fractions, possibly pointing to diversity in hot halo gas content in this regime. This work is supported by NSF grant AST-0955368, the NC Space Grant Graduate Research Fellowship Program, and a UNC Royster Society Dissertation Completion Fellowship.
Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations
NASA Astrophysics Data System (ADS)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander
2018-01-01
Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite systems have no clear coherent rotation. Their overall evolution indicate that the DoS may be part of large scale filamentary structure. Our results show that baryonic processes may be the key to solve many long standing theoretical problems.
Addressing the missing matter problem in galaxies through a new fundamental gravitational radius
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozziello, S.; Jovanović, P.; Jovanović, V. Borka
We demonstrate that the existence of a Noether symmetry in f ( R ) theories of gravity gives rise to a further gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies without the dark matter hypothesis.
Dynamical coupled-channels study of {pi}N{yields}{pi}{pi}N reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamano, H.; Julia-Diaz, B.; Department d'Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona E-08028 Barcelona
As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N{yields}{pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N{yields}{pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The data of total cross sectionsmore » and {pi}N and {pi}{pi} invariant mass distributions of {pi}{sup +}p{yields}{pi}{sup +}{pi}{sup +}n,{pi}{sup +}{pi}{sup 0}p and {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n,{pi}{sup -}{pi}{sup 0}p,{pi}{sup 0}{pi}{sup 0}n reactions from threshold to the invariant mass W=2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo
We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction asmore » a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.« less
Large-Nc sum rules for charmed baryons at subleading orders
NASA Astrophysics Data System (ADS)
Heo, Yonggoo; Lutz, Matthias F. M.
2018-05-01
Sum rules for the low-energy constants of the chiral SU(3) Lagrangian with charmed baryons of spin JP=1 /2+ and JP=3 /2+ baryons are derived from large-Nc QCD. We consider the large-Nc operator expansion at subleading orders for current-current correlation functions in the charmed baryon-ground states for two scalar and two axial-vector currents.
Symétries et nomenclature des baryons: Proposition d'une nouvelle nomenclature
NASA Astrophysics Data System (ADS)
Landry, Gaëtan
Baryons, such as protons and neutrons, are matter particles made of three quarks. Their current nomenclature is based on the concept of isospin, introduced by Werner Heisenberg in 1932 to explain the similarity between the masses of protons and neutrons, as well as the similarity of their behaviour under the strong interaction. It is a refinement of a nomenclature designed in 1964, before the acceptance of the quark model, for light baryons. A historical review of baryon physics before the advent of the quark model is given to understand the motivations behind the light baryon nomenclature. Then, an overview of the quark model is given to understand the extensions done to this nomenclature in 1986, as well as to understand the physics of baryons and of properties such as isospin and flavour quantum numbers. Since baryon properties are in general explained by the quark model, a nomenclature based on isospin leads to several issues of physics and of clarity. To resolve these issues, the concepts of isospin and mass groups are generalized to all flavours of quarks, the Gell-Mann--Okubo formalism is extended to generalized mass groups, and a baryon nomenclature based on the quark model, reflecting modern knowledge, is proposed.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l P=0⁺] ground state and excited baryons, and the [56,2 +] and [70}},1 -] excited states are analyzed. The analyses are carried out to order O(1/N c) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubomore » and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less
Hadron resonance gas with repulsive interactions and fluctuations of conserved charges
Huovinen, Pasi; Petreczky, Peter
2017-12-11
We discuss the role of repulsive baryon-baryon interactions in a hadron gas using relativistic virial expansion and repulsive mean field approaches. The fluctuations of the baryon number as well as strangeness-baryon correlations are calculated in the hadron resonance gas with repulsive interactions and compared with the recent lattice QCD results. In particular, we calculate the difference between the second and fourth order fluctuations and correlations of baryon number and strangeness, that have been proposed as probes of deconfinement. We show that for not too high temperatures these differences could be understood in terms of repulsive interactions.
NASA Astrophysics Data System (ADS)
Suganuma, H.; Fukushima, M.; Toki, H.
The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off-diagonal Gluon Phase in the Maximally Abelian Gauge * On the Colour Confinement and the Minimal Surface * Glueball Mass and String Tension of SU(2) Gluodynamics from Abelian Monopoles and Strings * Application of the Non-Perturbative Renormalization Group to the Nambu-Jona-Lasinio Model at Finite Temperature and Density * Confining Flux-Tube and Hadrons in QCD * Gauge Symmetry Breakdown due to Dynamical Higgs Scalar * Spatial Structure of Quark Cooper Pairs * New Approach to Axial Coupling Constants in the QCD Sum Rule and Instanton Effects * String Breaking on a Lattice * Bethe-Salpeter Approach for Mesons within the Dual Ginzburg-Landau Theory * Gauge Dependence and Matching Procedure of a Nonrelativistic QCD Boundstate Formalism * A Mathematical Approach to the SU(2)-Quark Confinement * Simulations of Odd Flavors QCD by Hybrid Monte Carlo * Non-Perturbative Renormalization Group Analysis of Dynamical Chiral Symmetry Breaking with Beyond Ladder Contributions * Charmonium Physics in Finite Temperature Lattice QCD * From Meson-Nucleon Scattering to Vector Mesons in Nuclear Matter * Symposium Program * List of Participants
The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies
NASA Astrophysics Data System (ADS)
Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.
2013-09-01
We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass surface densities (Σdyn). By subtracting our observed atomic and inferred molecular gas mass surface densities from Σdyn, we derived the stellar mass surface densities (Σ∗), and thus have absolute measurements of all dominant baryonic components of the galaxies. Using K-band surface brightness profiles (IK), we calculated the K-band mass-to-light ratio of the stellar disks (Υ∗ = Σ∗/IK) and adopted the radial mean (overline{mls}) for each galaxy to extrapolate Σ∗ beyond the outermost kinematic measurement. The derived overline{mls} of individual galaxies are consistent with all galaxies in the sample having equal Υ∗. We find a sample average and scatter of mlab overline{mls}mrab = 0.31 ± 0.07. Rotation curves of the baryonic components were calculated from their deprojected mass surface densities. These were used with circular-speed measurements to derive the structural parameters of the dark-matter halos, modeled as either a pseudo-isothermal sphere (pISO) or a Navarro-Frenk-White (NFW) halo. In addition to our dynamically determined mass decompositions, we also performed alternative rotation-curve decompositions by adopting the traditional maximum-disk hypothesis. However, the galaxies in our sample are submaximal, such that at 2.2 disk scale lengths (hR) the ratios between the baryonic and total rotation curves (Fb2.2hR) are less than 0.75. We find this ratio to be nearly constant between 1-6hR within individual galaxies. We find a sample average and scatter of mlab Fb2.2hRmrab = 0.57 ± 0.07, with trends of larger Fb2.2hR for more luminous and higher-surface-brightness galaxies. To enforce these being maximal, we need to scale Υ∗ by a factor 3.6 on average. In general, the dark-matter rotation curves are marginally better fit by a pISO than by an NFW halo. For the nominal-Υ∗ (submaximal) case, we find that the derived NFW-halo parameters have values consistent with ΛCDM N-body simulations, suggesting that the baryonic matter in our sample of galaxies has only had a minor effect on the dark-matter distribution. In contrast, maximum-Υ∗ decompositions yield halo-concentration parameters that are too low compared to the ΛCDM simulations. Appendix is available in electronic form at http://www.aanda.org
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
A new method to quantify the effects of baryons on the matter power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch
2015-12-01
Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less
Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation
NASA Astrophysics Data System (ADS)
Hsueh, Jen-Wei; Despali, Giulia; Vegetti, Simona; Xu, Dandan; Fassnacht, Christopher D.; Metcalf, R. Benton
2018-04-01
The flux ratios in the multiple images of gravitationally lensed quasars can provide evidence for dark matter substructure in the halo of the lensing galaxy if the flux ratios differ from those predicted by a smooth model of the lensing galaxy mass distribution. However, it is also possible that baryonic structures in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies. In this work, we present the first statistical analysis of flux-ratio anomalies due to baryons from a numerical simulation perspective. We select galaxies with various morphological types in the Illustris simulation and ray trace through the simulated haloes, which include baryons in the main lensing galaxies but exclude any substructures, in order to explore the pure baryonic effects. Our ray-tracing results show that the baryonic components can be a major contribution to the flux-ratio anomalies in lensed quasars and that edge-on disc lenses induce the strongest anomalies. We find that the baryonic components increase the probability of finding high flux-ratio anomalies in the early-type lenses by about 8 per cent and by about 10-20 per cent in the disc lenses. The baryonic effects also induce astrometric anomalies in 13 per cent of the mock lenses. Our results indicate that the morphology of the lens galaxy becomes important in the analysis of flux-ratio anomalies when considering the effect of baryons, and that the presence of baryons may also partially explain the discrepancy between the observed (high) anomaly frequency and what is expected due to the presence of subhaloes as predicted by the cold dark matter simulations.
Extragalactic magnetic fields unlikely generated at the electroweak phase transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, Jacques M.; Banerjee, Robi, E-mail: jwagstaff@hs.uni-hamburg.de, E-mail: banerjee@hs.uni-hamburg.de
2016-01-01
In this paper we show that magnetic fields generated at the electroweak phase transition are most likely too weak to explain the void magnetic fields apparently observed today unless they have considerable helicity. We show that, in the simplest estimates, the helicity naturally produced in conjunction with the baryon asymmetry is too small to explain observations, which require a helicity fraction at least of order 10{sup −14}–10{sup −10} depending on the void fields constraint used. Therefore new mechanisms to generate primordial helicity are required if magnetic fields generated during the electroweak phase transition should explain the extragalactic fields.
Exploratory study of possible resonances in heavy meson - heavy baryon coupled-channel interactions
NASA Astrophysics Data System (ADS)
Shen, Chao-Wei; Rönchen, Deborah; Meißner, Ulf-G.; Zou, Bing-Song
2018-01-01
We use a unitary coupled-channel model to study the \\bar{{{D}}}{{{Λ }}}{{c}}-\\bar{{{D}}}{{{Σ }}}{{c}} interactions. In our calculation, SU(3) flavor symmetry is applied to determine the coupling constants. Several resonant and bound states with different spin and parity are dynamically generated in the mass range of the recently observed pentaquarks. The approach is also extended to the hidden beauty sector to study the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions. As the b-quark mass is heavier than the c-quark mass, there are more resonances observed for the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions and they are more tightly bound. Supported by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetry and the Emergence of Structure in QCD” (NSFC 11621131001, DFG TR110), as well as an NSFC fund (11647601). The work of UGM was also supported by the CAS President’s International Fellowship Initiative (PIFI) (2017VMA0025)
NASA Astrophysics Data System (ADS)
Auriemma, Giulio
2003-12-01
The origin of the asymmetry between matter and antimatter that is evident in our part of the Universe is one of the open questions in cosmology, because the CPT symmetry between matter and antimatter seems to be absolutely conserved at microscopic level. We repeat here the classical proofs which exclude the viability of a Universe baryon symmetric on the average, or the observed asymmetry as an initial conditions. The current understanding is that the asymmetry should have been dynamically generated before nucleosynthesis, by B, C, and CP violating processes, acting out of thermodynamical equilibrium, as suggested by Sakharov in the 70's. The physical realizations of these conditions would be possible, in principle, also in the framework of the Standard Model of elementary particles, but the present limits on the mass of the higgs particle exclude this possibility. Finally we present the model of baryogenesis through leptogenesis, which is allowed by a minimal extension of the Standard Model, which has the appeal of being testable in future long-baseline neutrino oscillation experiments.
NASA Astrophysics Data System (ADS)
Auriemma, G.
2005-06-01
The origin of the asymmetry between matter and antimatter that is evident in our part of the Universe is one of the open questions in cosmology, because the CPT symmetry between matter and antimatter seems to be absolutely conserved at microscopic level. We repeat here the classical proofs which exclude the viability of a Universe baryon symmetric on the average, or the observed asymmetry as an initial condition. The current understanding is that the asymmetry should have been dynamically generated before nucleosynthesis, by B, C, and CP-violating processes, acting out of thermodynamical equilibrium, as suggested by Sakharov in the 70's. The physical realizations of these conditions would be possible, in principle, also in the framework of the Standard Model of elementary particles, but the present limits on the mass of the Higgs particle exclude this possibility. Finally we present the model of baryogenesis through leptogenesis, which is allowed by a minimal extension of the Standard Model, which has the appeal of being testable in future long-baseline neutrino oscillation experiments.
Role of the N*(1535 ) in the Λc+→K¯0η p decay
NASA Astrophysics Data System (ADS)
Xie, Ju-Jun; Geng, Li-Sheng
2017-09-01
The nonleptonic weak decay of Λc+→K¯0η p is analyzed from the viewpoint of probing the N*(1535 ) resonance, which has a big decay branching ratio to η N . Up to an arbitrary normalization, the invariant mass distribution of η p is calculated with both the chiral unitary approach and an effective Lagrangian model. Within the chiral unitary approach, the N*(1535 ) resonance is dynamically generated from the final-state interaction of mesons and baryons in the strangeness zero sector. For the effective Lagrangian model, we take a Breit-Wigner formula to describe the distribution of the N*(1535 ) resonance. It is found that the behavior of the N*(1535 ) resonance in the Λc+→K¯0N*(1535 )→K¯0η p decay within the two approaches is different. The proposed Λc+ decay mechanism can provide valuable information on the properties of the N*(1535 ) and can in principle be tested by facilities such as BEPC II and SuperKEKB.
NASA Astrophysics Data System (ADS)
Mayer, L.
2012-07-01
We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.
Mass formulas for {Xi}{sub c} and {Xi}{sub b} baryons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, T. M.; Zamiralov, V. S.; Ozpineci, A.
The importance of taking into account the mixing of the heavy cascade baryons {Xi} and {Xi}' that have new quantum numbers in analyzing their properties is shown. The Ono quark model is considered by way of example. The masses of the new baryons and the {Xi}-{Xi}' mixing angles are obtained. The same approach is applied to the interpolating currents of these baryons within QCD sum rules.
Energy dependence of p¯/p ratio in p+p collisions
NASA Astrophysics Data System (ADS)
Singha, Subhash; Netrakanti, Pawan Kumar; Kumar, Lokesh; Mohanty, Bedangadas
2010-10-01
We compiled the experimentally measured p¯/p ratio at midrapidity in p+p collisions from s=23 to 7000 GeV and compared it to various mechanisms of baryon production as implemented in the pythia, phojet, and Heavy Ion Jet Interaction Generator (HIJING)/B-B¯ models. For the models studied with default settings, phojet has the best agreement with the measurements, pythia gives a higher value for s<200 GeV, and the ratios from HIJING/B-B¯ are consistently lower for all the s studied. A comparison of the data to different mechanisms of baryon production as implemented in pythia shows that through a suitable tuning of the suppression of diquark-antidiquark pair production in the color field relative to quark-antiquark production and allowing the diquarks to split according to the popcorn scheme, a fairly reasonable description of the measured p¯/p ratio for s<200 GeV is given. A comparison of the beam energy dependence of the p¯/p ratio in p+p and nucleus-nucleus (A + A) collisions at midrapidity shows that the baryon production is significantly more for A + A collisions relative to p+p collisions for s<200 GeV. We also carry out a phenomenological fit to the ybeam dependence of the p¯/p ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Subhash; Mohanty, Bedangadas; Netrakanti, Pawan Kumar
We compiled the experimentally measured p-bar/p ratio at midrapidity in p+p collisions from {radical}(s)=23 to 7000 GeV and compared it to various mechanisms of baryon production as implemented in the pythia, phojet, and Heavy Ion Jet Interaction Generator (HIJING)/B-B models. For the models studied with default settings, phojet has the best agreement with the measurements, pythia gives a higher value for {radical}(s)<200 GeV, and the ratios from HIJING/B-B are consistently lower for all the {radical}(s) studied. A comparison of the data to different mechanisms of baryon production as implemented in pythia shows that through a suitable tuning of the suppressionmore » of diquark-antidiquark pair production in the color field relative to quark-antiquark production and allowing the diquarks to split according to the popcorn scheme, a fairly reasonable description of the measured p-bar/p ratio for {radical}(s)<200 GeV is given. A comparison of the beam energy dependence of the p-bar/p ratio in p+p and nucleus-nucleus (A + A) collisions at midrapidity shows that the baryon production is significantly more for A + A collisions relative to p+p collisions for {radical}(s)<200 GeV. We also carry out a phenomenological fit to the y{sub beam} dependence of the p-bar/p ratio.« less
Universal fitting formulae for baryon oscillation surveys
NASA Astrophysics Data System (ADS)
Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analysed by dividing out the overall shape of the power spectrum before fitting a simple decaying sinusoid to the oscillations. The fitting formulae reproduce the simulation results with a fractional scatter of 7 per cent (10 per cent) in the tangential (radial) directions over a wide range of input parameters. We also indicate how sparse-sampling strategies may enhance the effective survey area if the sampling scale is much smaller than the projected baryon oscillation scale.
Weak decays of triply heavy baryons
NASA Astrophysics Data System (ADS)
Wang, Wei; Xu, Ji
2018-05-01
After the experimental establishment of doubly heavy baryons, baryons with three quarks are the last missing pieces of the lowest-lying baryon multiplets in the quark model. In this work, we study semileptonic and nonleptonic weak decays of triply heavy baryons, Ωcc c ++, Ωcc b +, Ωcb b 0, and Ωbb b -. Decay amplitudes for various channels are parametrized in terms of a few SU(3) irreducible amplitudes. We point out that branching fractions for Cabibbo-allowed processes, Ωcc c ++→(Ξcc ++K¯0,Ξcc ++K-π+,Ωcc +π+,Ξc+D+,Ξc'D+,ΛcD+K¯0,Ξc+D0π+,Ξc0D+π+), may reach a few percent. We suggest our experimental colleagues to perform a search at hadron colliders and the electron and positron collisions in the future, which will presumably lead to discoveries of triply heavy baryons and complete the baryon multiplets. Using the expanded amplitudes, we derive a number of relations for the partial widths that can be examined in the future.
From quarks and gluons to baryon form factors.
Eichmann, Gernot
2012-04-01
I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.
Measuring the dark matter equation of state and its cosmological consequences
NASA Astrophysics Data System (ADS)
Domínguez Romero, Mariano Javier de León; Ruiz, Andrés Nicolás
2012-10-01
We explore the consequences of the measurements of the equation of state of dark matter7, on the homogenous FRW universe dynamics and build an alternative cosmological scenario to the concordance ΛCDM universe. The new paradigm is based on the introduction of an effective scalar field replacing the undetected components of the dark sector: dark matter and dark energy in the form of a cosmological constant. The scalar field obeys a barotropic equation of state p = ωρ with ω = -1/3 and dominates the cosmological dynamics in the last 14.27 Gyr, in a universe with an age of 14.83 Gyr . Before that epoch, baryons and photons drove the general behaviour of the universe as in the standard ΛCDM scenario. We compute a minimal set of cosmological parameters which allow us to reproduce several observational results such us baryon abundance, constrains on the age of the universe, the astronomical scale of distance and the high redshift supernova data with a high degree of precision. However, it should be emphasized that the new model is not accelerating, instead expands asymptotically towards an Einstein Static Universe. We briefly mention the possible mechanisms behind the origin of such dominant component and analyze the prospective of reproducing the success of the standard cosmological model explaining the process of structure formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartfiel, Brandon; /SLAC
The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -}more » in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.« less
Baryon acoustic oscillations in the Ly α forest of BOSS quasars
Busca, N. G.; Delubac, T.; Rich, J.; ...
2013-04-04
In this paper, we report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the Lyα forest of high-redshift quasars. The study uses 48,640 quasars in the redshift rangemore » $$2.1\\le z \\le 3.5$$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range 20 h -1 Mpc < r < 200 h -1. A peak in the correlation function is seen at a separation equal to $$(1.01\\pm0.03)$$ times the distance expected for the BAO peak within a concordance $$\\Lambda$$CDM cosmology. This first detection of the BAO peak at high redshift, when the universe was strongly matter dominated, results in constraints on the angular diameter distance D A and the expansion rate $H$ at $z=2.3$ that, combined with priors on $$H_0$$ and the baryon density, require the existence of dark energy. Combined with constraints derived from Cosmic Microwave Background (CMB) observations, this result implies $$H(z=2.3)=(224\\pm8){\\rm km\\,s^{-1}Mpc^{-1}}$$, indicating that the time derivative of the cosmological scale parameter $$\\dot{a}=H(z=2.3)/(1+z)$$ is significantly greater than that measured with BAO at $$z\\sim0.5$$. This demonstrates that the expansion was decelerating in the range 0.7 < z < 2.3 , as expected from the matter domination during this epoch. Finally, combined with measurements of H 0, one sees the pattern of deceleration followed by acceleration characteristic of a dark-energy dominated universe.« less
Towards Precision Spectroscopy of Baryonic Resonances
NASA Astrophysics Data System (ADS)
Döring, Michael; Mai, Maxim; Rönchen, Deborah
2017-01-01
Recent progress in baryon spectroscopy is reviewed. In a common effort, various groups have analyzed a set of new high-precision polarization observables from ELSA. The Jülich-Bonn group has finalized the analysis of pion-induced meson-baryon production, the potoproduction of pions and eta mesons, and (almost) the KΛ final state. As data become preciser, statistical aspects in the analysis of excited baryons become increasingly relevant and several advances in this direction are proposed.
Strangeness Production in 19.6 GeV Collisions at the Relativistic Heavy Ion Collider
2010-05-12
Baryons Figure 1.3: Well known Mesons Figure 1.4: Phase Diagram of Nuclear Matter Figure 1.5: The author and his advisor together with MIDN 3/C...7. Conclusions and Outlook Acknowledgements 3 List of Figures Figure 1.1: Nucleus Breakdown Figure 1.2: Well known Baryons and Anti...AntiBaryon/ Baryon Ration from experiments around the globe 6 List of Symbols and Acronyms AGS – Alternating
Towards precision spectroscopy of baryonic resonances
Doring, Michael; Mai, Maxim; Ronchen, Deborah
2017-01-26
Recent progress in baryon spectroscopy is reviewed. In a common effort, various groups have analyzed a set of new high-precision polarization observables from ELSA. The Julich-Bonn group has finalized the analysis of pion-induced meson-baryon production, the potoproduction of pions and eta mesons, and (almost) the KΛ final state. Lastly, as data become preciser, statistical aspects in the analysis of excited baryons become increasingly relevant and several advances in this direction are proposed.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
The link between the baryonic mass distribution and the rotation curve shape
NASA Astrophysics Data System (ADS)
Swaters, R. A.; Sancisi, R.; van der Hulst, J. M.; van Albada, T. S.
2012-09-01
The observed rotation curves of disc galaxies, ranging from late-type dwarf galaxies to early-type spirals, can be fitted remarkably well simply by scaling up the contributions of the stellar and H I discs. This 'baryonic scaling model' can explain the full breadth of observed rotation curves with only two free parameters. For a small fraction of galaxies, in particular early-type spiral galaxies, H I scaling appears to fail in the outer parts, possibly due to observational effects or ionization of H I. The overall success of the baryonic scaling model suggests that the well-known global coupling between the baryonic mass of a galaxy and its rotation velocity (known as the baryonic Tully-Fisher relation) applies at a more local level as well, and it seems to imply a link between the baryonic mass distribution and the distribution of total mass (including dark matter).
NASA Astrophysics Data System (ADS)
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent observations showed that a significant population of baryons was contained in both a) a population of not easily detected galaxies (i.e. they had been missed for decades) and b) in intergalactic space. In 1999, the balloon borne Boomerang experiment gave good evidence that space was flat (total energy density = 1). Around this same time, various lines of evidence suggested that the ``cosmological constant'' (Lambda) maybe non-zero meaning we now live in a three component universe of baryons, dark matter and dark energy. The WMAP mission a few years later then produced our current cosmological truth that 5% of the Universe is baryons, 20% is Dark Matter, and 75% is Dark energy. What happened to Dark Matter dominance? Where did it go? Is this a fine tuned Universe? Our current cosmological truth, as defined by the WMAP results, rests on two important assumptions: a) that we fully understand gravity as a long range force and that alternative models, such as Modified Newtonian Dynamics (MOND) can therefore be dismissed and b) observationally we are fully confident that we understand supernova explosion physics to the point that they can be used as reliable cosmological indicators. This talk will attempt to summarize this evolution of cosmological truths, cast doubt on the certainty of the previously stated assumptions, and to culturally suggest that we should not continue with arrogance of Aristotle is assuring ourselves that we do in fact, know the ``truth''.
NASA Astrophysics Data System (ADS)
Li, Zhibin; Chen, Yidian; Li, Danning; Huang, Mei
2018-01-01
We investigate the baryon number susceptibilities up to fourth order along different freeze-out lines in a holographic QCD model with a critical end point (CEP), and we propose that the peaked baryon number susceptibilities along the freeze-out line can be used as a clean signature to locate the CEP in the QCD phase diagram. On the temperature and baryon chemical potential plane, the cumulant ratio of the baryon number susceptibilities (up to fourth order) forms a ridge along the phase boundary, and develops a sword-shaped “mountain” standing upright around the CEP in a narrow and oblate region. The measurement of baryon number susceptibilities from heavy-ion collision experiments is along the freeze-out line. If the freeze-out line crosses the foot of the CEP mountain, then one can observe the peaked baryon number susceptibilities along the freeze-out line, and the kurtosis of the baryon number distributions has the highest magnitude. The data from the first phase of the beam energy scan program at the Relativistic Heavy Ion Collider indicates that there should be a peak of the kurtosis of the baryon number distribution at a collision energy of around 5 GeV, which suggests that the freeze-out line crosses the foot of the CEP mountain and the summit of the CEP should be located nearby, around a collision energy of 3-7 GeV. Supported by NSFC (11275213, and 11261130311) (CRC 110 by DFG and NSFC), CAS key project KJCX2-EW-N01, and Youth Innovation Promotion Association of CAS
Discovery potentials of doubly charmed baryons
NASA Astrophysics Data System (ADS)
Yu, Fu-Sheng; Jiang, Hua-Yu; Li, Run-Hui; Lü, Cai-Dian; Wang, Wei; Zhao, Zhen-Xing
2018-05-01
The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, {{{\\Xi }}}{{cc}}++ and {{{\\Xi }}}{{cc}}+, which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes, {{{\\Xi }}}{{cc}}++\\to {{{Λ }}}{{c}}+{{{K}}}-{{{π }}}+{{{π }}}+ and {{{\\Xi }}}{{c}}+{{{π }}}+ are the most favorable decay modes for experiments to search for doubly heavy baryons. Supported by National Natural Science Foundation of China (11505083, 11505098, 11647310, 11575110, 11375208, 11521505, 11621131001, 11235005, 11447032, U1732101) and Natural Science Foundation of Shanghai (15DZ2272100)
Octet baryons in large magnetic fields
NASA Astrophysics Data System (ADS)
Deshmukh, Amol; Tiburzi, Brian C.
2018-01-01
Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios. These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields.
Forming supermassive black holes by accreting dark and baryon matter
NASA Astrophysics Data System (ADS)
Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan
2006-01-01
Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal galaxies with σb being the stellar velocity dispersion in the galactic bulge; in our scenario, the central SMBH formation precedes that of the galactic bulge.
Cosmological baryon number domain structure from symmetry-breaking in grand unified field theories
NASA Technical Reports Server (NTRS)
Brown, R. W.; Stecker, F. W.
1979-01-01
It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big-bang can lead more naturally to a baryon symmetric cosmology with a domain structure than to a totally baryon asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryemadhi, Abaz
The results from Tevatron in the baryonic sector are presented. The lifetime of {lambda}b {yields} J/{psi}{lambda}, the observation of hadronic decay of {lambda}b {yields} {lambda}c{pi}, the semileptonic decays of {lambda}b {yields} {lambda}c{mu}{nu}, the hadronization of the b-baryons, and the {lambda}b decays to {lambda}b {yields} p{pi} and {lambda}b {yields} pK are discussed. These measurements paint a nice picture of our understanding of the beauty baryons.
Cosmological baryon-number domain structure from symmetry breaking in grand unified field theories
NASA Technical Reports Server (NTRS)
Brown, R. W.; Stecker, F. W.
1979-01-01
It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big bang can lead more naturally to a baryon-symmetric cosmology with a domain structure than to a totally baryon-asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.
Tracing the Energetics of the Universe with Constellation-X: Example Scientific Investigations
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann
2008-01-01
Constellation-X will enable us to trace the energetics of a broad range of astrophysical phenomena owing to its capabilities for high spectral resolution X-ray spectroscopy. The dominant baryonic component of galaxy clusters and groups resides in the X-ray bandpass, and the hot phase of the ISM in galaxies harbors the heavy metal production from previous generation of stars. This talk will focus on a few example science questions that are expected to be important during the Constellation-X era. These include the nature of the missing baryons expected to reside in the hot portion of the Warm Hot Intergalactic Medium, which Constellation-X will address via absorption spectroscopy studies of background AGN. We will also discuss spatially resolved spectroscopy of metal enrichment and the effects of turbulence in clusters & groups and of starburst galaxy winds which deposit energy & metals into the Intergalactic Medium.
Baryon asymmetry from leptogenesis with four zero neutrino Yukawa textures
NASA Astrophysics Data System (ADS)
Adhikary, Biswajit; Ghosal, Ambar; Roy, Probir
2011-01-01
The generation of the right amount of baryon asymmetry η of the Universe from supersymmetric leptogenesis is studied within the type-I seesaw framework with three heavy singlet Majorana neutrinos Ni (i = 1,2,3) and their superpartners. We assume the occurrence of four zeroes in the neutrino Yukawa coupling matrix Yν, taken to be μτ symmetric, in the weak basis where Ni (with real masses Mi > 0) and the charged leptons lα (α = e,μ,τ) are mass diagonal. The quadrant of the single nontrivial phase, allowed in the corresponding light neutrino mass matrix mν, gets fixed and additional constraints ensue from the requirement of matching η with its observed value. Special attention is paid to flavor effects in the washout of the lepton asymmetry. We also comment on the role of small departures from high scale μτ symmetry due to RG evolution.
Can the baryon asymmetry arise from initial conditions?
Krnjaic, Gordan
2017-08-01
In this letter, we quantify the challenge of explaining the baryon asymmetry using initial conditions in a universe that undergoes inflation. Contrary to lore, we find that such an explanation is possible if netmore » $B-L$ number is stored in a light bosonic field with hyper-Planckian initial displacement and a delicately chosen field velocity prior to inflation. However, such a construction may require extremely tuned coupling constants to ensure that this asymmetry is viably communicated to the Standard Model after reheating; the large field displacement required to overcome inflationary dilution must not induce masses for Standard Model particles or generate dangerous washout processes. While these features are inelegant, this counterexample nonetheless shows that there is no theorem against such an explanation. We also comment on potential observables in the double $$\\beta$$-decay spectrum and on model variations that may allow for more natural realizations.« less
Unified TeV scale picture of baryogenesis and dark matter.
Babu, K S; Mohapatra, R N; Nasri, Salah
2007-04-20
We present a simple extension of the minimal supersymmetric standard model which provides a unified picture of cosmological baryon asymmetry and dark matter. Our model introduces a gauge singlet field N and a color triplet field X which couple to the right-handed quark fields. The out-of-equilibrium decay of the Majorana fermion N mediated by the exchange of the scalar field X generates adequate baryon asymmetry for MN approximately 100 GeV and MX approximately TeV. The scalar partner of N (denoted N1) is naturally the lightest SUSY particle as it has no gauge interactions and plays the role of dark matter. The model is experimentally testable in (i) neutron-antineutron oscillations with a transition time estimated to be around 10(10)sec, (ii) discovery of colored particles X at LHC with mass of order TeV, and (iii) direct dark matter detection with a predicted cross section in the observable range.
NASA Astrophysics Data System (ADS)
Hussain, Nur; Bhattacharjee, Buddhadeb
2017-08-01
Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, P. R.
The authors review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modeled by both the bag and flux tube models. The low lying hybrid baryon is N 1/2{sup +} with a mass of 1.5 - 1.8 GeV. Hybrid baryons can be produced in the glue rich processes of diffractive {gamma}N and {pi}N production, {Psi} decays and p{bar p} annihilation. We review the current status of research on three quarks with a gluonic excitation, called a hybrid baryon. The excitation is not an orbital or radial excitation betweenmore » the quarks. Hybrid baryons have also been reviewed elsewhere. The Mercedes-Benz logl in Figure 1 indicates two possible views of the confining interaction of three quarks, an essential issue in the study of hybrid baryons. In the logo the three points where the Y shape meets the boundary circle should be identified with the three quarks. There are two possibilities fo rthe interaction of the quarks: (1) a pairwise interaction of the quarks represented by the circle, or (2) a Y shaped interaction between the quarks, represented by the Y-shape in the logo.« less
Division H Commission 33: Structure & Dynamics of the Galactic System
NASA Astrophysics Data System (ADS)
Nordström, Birgitta; Bland-Hawthorn, Joss; Wyse, Rosemary; Athanassoula, Lia; Feltzing, Sofia; Jog, Chanda; Lockman, Jay; Minniti, Dante; Robin, Annie
2016-04-01
Research on the structure and dynamics of the Galactic System covers a large field of research, from formation scenarios to long-term evolution and secular processes. Today we speak of near-field cosmology where the oldest parts of the Galaxy are used to probe back to early times, e.g. studying the chemical signatures of the oldest star clusters and dwarf galaxies to learn about the byproducts of the first stars. Some of the most detailed work relates to the structure of the dark matter and baryons in order to compare with expectation from N-body models. Secular processes have been identified (e.g. stellar migration) where material within the Galaxy is being reorganized by dynamical resonances and feedback processes.
Holographic heavy ion collisions with baryon charge
Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...
2016-09-19
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, Victor Mukhamedovich
Here, we measure the forward-backward asymmetries AFB of charged Ξ and Ω baryons produced inmore » $$p\\overline{p}$$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at √s = 1.96 TeV as a function of the baryon rapidity y. We find that the asymmetries AFB for charged Ξ and Ω baryons are consistent with zero within statistical uncertainties.« less
Abazov, Victor Mukhamedovich
2016-06-01
Here, we measure the forward-backward asymmetries AFB of charged Ξ and Ω baryons produced inmore » $$p\\overline{p}$$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at √s = 1.96 TeV as a function of the baryon rapidity y. We find that the asymmetries AFB for charged Ξ and Ω baryons are consistent with zero within statistical uncertainties.« less
New narrow baryons and dibaryons observed in inelastic pp scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatischeff, B.; Willis, N.; Comets, M. P.
Several narrow exotic baryonic states have been recently observed at 1004, 1044, and possibly at 1094 MeV, from the study of pp{yields}p{pi}{sup +}X reaction at different energies (T{sub p}=1520, 1805 and 2100 MeV) and angles from 0 deg. up to 17 deg. (lab.). The small widths: a few MeV, indicate a possible interpretation within multiquark baryons or baryonic resonances. A phenomonological mass formula for two clusters of quarks, predicts masses, quite close to the experimental ones.
Strange matter in compact stars
NASA Astrophysics Data System (ADS)
Klähn, Thomas; Blaschke, David B.
2018-02-01
We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.
NASA Astrophysics Data System (ADS)
Nesbet, Robert K.
2018-05-01
Velocities in stable circular orbits about galaxies, a measure of centripetal gravitation, exceed the expected Kepler/Newton velocity as orbital radius increases. Standard Λ cold dark matter (ΛCDM) attributes this anomaly to galactic dark matter. McGaugh et al. have recently shown for 153 disc galaxies that observed radial acceleration is an apparently universal function of classical acceleration computed for observed galactic baryonic mass density. This is consistent with the empirical modified Newtonian dynamics (MOND) model, not requiring dark matter. It is shown here that suitably constrained ΛCDM and conformal gravity (CG) also produce such a universal correlation function. ΛCDM requires a very specific dark matter distribution, while the implied CG non-classical acceleration must be independent of galactic mass. All three constrained radial acceleration functions agree with the empirical baryonic v4 Tully-Fisher relation. Accurate rotation data in the nominally flat velocity range could distinguish between MOND, ΛCDM, and CG.
Observational constraint on dynamical evolution of dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yungui; Cai, Rong-Gen; Chen, Yun
2010-01-01
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of Ω{sub m0}. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at z = 0.22, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parametermore » w(z) of dark energy. We find no significant evidence for evolving w(z). With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift is improved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.« less
Study of a quadratic redshift-based correction in f(R) gravity with Baryonic matter
NASA Astrophysics Data System (ADS)
Masoudi, Mozhgan; Saffari, Reza
2015-08-01
This paper is considered as a second-order redshift-based corrections in derivative of modified gravitational action, f(R), to explain the late time acceleration which is appeared by Supernova Type Ia (SNeIa) without considering the dark components. Here, we obtained the cosmological dynamic parameters of universe for this redshift depended corrections. Next, we used the recent data of SNeIa Union2, shift parameter of the cosmic background radiation, Baryon acoustic oscillation from sloan digital sky survey (SDSS), and combined analysis of these observations to put constraints on the parameters of the selected F(z) model. It is very interesting that the well-known age problem of the three old objects for combined observations can be alleviated in this model. Finally, the reference action will be constructed in terms of its Taylor expansion. Also, we show that the reconstructed action definitely pass the solar system and stability of the cosmological solution tests.
From quarks and gluons to baryon form factors
Eichmann, Gernot
2012-01-01
I briefly summarize recent results for nucleon and Δ(1232) electromagnetic, axial and transition form factors in the Dyson–Schwinger approach. The calculation of the current diagrams from the quark–gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects. PMID:26766879
Diagrammatic representation of scalar QCD and sign problem at nonzero chemical potential
NASA Astrophysics Data System (ADS)
Bruckmann, Falk; Wellnhofer, Jacob
2018-01-01
We consider QCD at strong coupling with scalar quarks coupled to a chemical potential. Performing the link integrals we present a diagrammatic representation of the path integral weight. It is based on mesonic and baryonic building blocks, in close analogy to fermionic QCD. Likewise, the baryon loops are subject to a manifest conservation of the baryon number. The sign problem is expected to disappear in this representation and we do confirm this for three flavors, where a scalar baryon can be built and, thus, a dependence on the chemical potential occurs. For higher flavor number, we analyze examples for a potential sign problem in the baryon sector and conjecture that all weights are positive upon exploring the current conservation of each flavor.
On the search for the electric dipole moment of strange and charm baryons at LHC
NASA Astrophysics Data System (ADS)
Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.
2017-03-01
Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.
Critical point in the phase diagram of primordial quark-gluon matter from black hole physics
NASA Astrophysics Data System (ADS)
Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo
2017-11-01
Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.
NASA Astrophysics Data System (ADS)
Vogelsberger, Mark; Genel, Shy; Springel, Volker; Torrey, Paul; Sijacki, Debora; Xu, Dandan; Snyder, Greg; Nelson, Dylan; Hernquist, Lars
2014-10-01
We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of (106.5 Mpc)3, has a dark mass resolution of 6.26 × 106 M⊙, and an initial baryonic matter mass resolution of 1.26 × 106 M⊙. At z = 0 gravitational forces are softened on scales of 710 pc, and the smallest hydrodynamical gas cells have an extent of 48 pc. We follow the dynamical evolution of 2 × 18203 resolution elements and in addition passively evolve 18203 Monte Carlo tracer particles reaching a total particle count of more than 18 billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. Here we describe the simulation suite, and contrast basic predictions of our model for the present-day galaxy population with observations of the local universe. At z = 0 our simulation volume contains about 40 000 well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at z = 0. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disc galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime, the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.
The connection between dark and baryonic matter in the process of galaxy formation
NASA Astrophysics Data System (ADS)
Trujillo, Sebastian
2014-01-01
Current galaxy formation theory still struggles to explain many essential galaxy properties. This thesis addresses these problems in the context of the interplay between baryons and dark matter in the concordance cosmological model. In the first part, we investigate galaxy abundance and scaling relations using a compilation of observational data along with large-scale cosmological simulations of dark matter (DM). We find that the standard cosmological model, in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits all basic statistics of galaxies more massive than the Large Magellanic Cloud (LMC). This zero-parameter model predicts the observed luminosity-velocity relation of early-and late-type galaxies, as well as the clustering of bright galaxies and the observed abundance of galaxies as a function of circular velocity. However, we find that all DM halos more massive than the LMC are much more abundant than the galaxies they host. Motivated by the model's shortcomings, in the second part we study the effect of baryons on galaxy formation using numerical simulations that include gas physics. We implement a model of star formation (SF) and stellar feedback based directly on observations of star-forming regions, where stellar feedback from massive stars includes radiation pressure, photoheating, supernovae, and stellar winds. We find that stellar radiation has a strong effect at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component, and yielding rising SF histories that reproduce many observations. Stellar feedback produces bulgeless discs with rotation curves and baryon fractions in excellent agreement with data. Feedback-driven blowouts reduce the central DM density of a dwarf, relieving tension between ACDM and observations. Based on these results, we begin to characterize the baryon cycle of galaxies and its imprint on studies of the circumgalactic medium (CGM). We find that feedback has a large impact on the exchange of gas and metals between the galaxy and the halo. This is evidenced in the spatial distribution of various gas phases and in the kinematics of accretion and outflows. We conclude that synergy between simulations and absorption-line studies is essential for disentangling the physics of galaxy formation in the context of ACDM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.
In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test ofmore » the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.« less
The baryon content of groups and clusters of galaxies
NASA Astrophysics Data System (ADS)
Roussel, H.; Sadat, R.; Blanchard, A.
2000-09-01
We have analyzed the properties of a sample of 33 groups and clusters of galaxies for which both optical and X-ray data were available in the literature. This sample was built to examine the baryon content and to check for trends over a decade in temperature down to 1 keV. We examine the relative contribution of galaxies and ICM to baryons in clusters through the gas-to-stellar mass ratio (Mgas/M*). We find that the typical stellar contribution to the baryonic mass is between 5 and 20%, at the virial radius. The ratio (Mgas/M*) is found to be roughly independent of temperature. Therefore, we do not confirm the trend of increasing gas-to-stellar mass ratio with increasing temperature as previously claimed. We also determine the absolute values and the distribution of the baryon fraction with the density contrast delta with respect to the critical density. Virial masses are estimated from two different mass estimators: one based on the isothermal hydrostatic equation (IHE), the other based on scaling law models (SLM), the calibration being taken from numerical simulations. Comparing the two methods, we find that SLM lead to less dispersed baryon fractions over all density contrasts and that the derived mean absolute values are significantly lower than IHE mean values: at delta =500, the baryon fractions (gas fractions) are 11.5-13.4% (10.3-12%) and ~ 20% (17%) respectively. We show that this is not due to the uncertainties on the outer slope beta of the gas density profile but is rather indicating that IHE masses are less reliable. Examining the shape of the baryon fraction profiles, we find that cluster baryon fractions estimated from SLM follow a scaling law. Moreover, we do not find any strong evidence of increasing baryon (gas) fraction with temperature: hotter clusters do not have a higher baryon fraction than colder ones, neither do we find the slope beta to increase with temperature. The absence of clear trends between fb and Mgas/M* with temperature is consistent with the similarity of baryon fraction profiles and suggests that non-gravitational processes such as galaxy feedback, necessary to explain the observed luminosity-temperature relationship, do not play a dominant rôle in heating the intra-cluster gas on the virial scale. Tables~1 to 6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference
NASA Astrophysics Data System (ADS)
Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.
The Table of Contents for the book is as follows: * Probing the Structure of Nucleons in the Resonance Region * Pion Photoproduction Results from MAMI * Pion Production and Compton Scattering at LEGS * Electroproduction Multipoles from ELSA * Baryon Resonance Production at Jefferson Lab at High Q2 * A Dynamical Model for the Resonant Multipoles and the Δ Structure * Relations between N and Δ Electromagnetic Form Factors * Measurement of the Recoil Polarization in the [p(ěc e ,{e^prime}ěc p ){π ^0}] Reaction at the Energy of the Δ(1232) Resonance * Electroproduction Results from CLAS * S11 (1535) Resonance Production at Jefferson Lab at High Q2 * η and η' Electro- and Photoproduction with the CEBAF Large Acceptance Spectrometer * η Production in Hadronic Interactions * Electromagnetic Production of η and η' Mesons * The Crystal Barrel Experiment at ELSA * Measurement of π-p → Neutrals Using the Crystal Ball * π+π0 and η Photoproduction at GRAAL * Partial Wave Analysis of Pion Photoproduction with Constraints from Fixed-t Dispersion Relations * N* Resonances in e+e- Collisions at BEPC * What is the Structure of the Roper Resonance? * Hybrid Baryon Signatures * Mixing Angles Determination via the Process γp → ηp * SU(6) Breaking Effects in the Nucleon Elastic Electromagnetic Form Factors * The Hypercentral Constituent Quark Model * Baryon Resonance Decays Within Constituent Quark Models * Pion Production Model - Connection between Dynamics and Quark Models * N* Investigation via Two Pion Electroproduction with the CLAS Detector at Jefferson Laboratory * Isobar Model for Studies of N* Excitation in Charged Double Pion Production by Real and Virtual Photons * Double Pion Photoproduction in the Second Resonance Region * CLAS Electroproduction of ω(783) Mesons * Electromagnetic Production of Vector Mesons at Low Energies * Polarized Target Developments for GRAAL and Prospects * Analytic Structure of a Multichannel Model * Missing Nucleon Resonances in Kaon Production with Pions and Photons * Hyperon Electroproduction with CLAS * From Bjorken to Drell-Hearn-Gerasimov Sum Rules * GDH Measurements at Mainz * Double Polarization Measurements in Inclusive Inelastic e - p Scattering * Measurement of Inclusive Spin Asymmetries and Sum Rules on 3He and the Neutron * Polarization and Out-of-Plane Responses in Pion and ETA Electroproduction * Polarization Observables in π+ Electroproduction with CLAS * Pion Electroproduction on the Nucleon and the Generalized GDH Sum Rule * Virtual Compton Scattering in the Resonance Region * What We Know about the Theoretical Foundation of Duality in Electron Scattering * Hadron Structure in Lattice QCD: Exploring the Gluon Wave Functional * N* Spectrum in Lattice QCD * Baryon Spectrum in the Large Nc Limit * Deeply Virtual Photon and Meson Electroproduction * Why N*'s are Important * Participant List
Phenomenological QCD equation of state for massive neutron stars
Kojo, Toru; Powell, Philip D.; Song, Yifan; ...
2015-02-03
Here, we construct an equation of state for massive neutron stars based on quantum chromodynamics phenomenology. Our primary purpose is to delineate the relevant ingredients of equations of state that simultaneously have the required stiffness and satisfy constraints from thermodynamics and causality. These ingredients are (i) a repulsive density-density interaction, universal for all flavors, (ii) the color-magnetic interaction active from low to high densities, (iii) confining effects, which become increasingly important as the baryon density decreases, and (iv) nonperturbative gluons, which are not very sensitive to changes of the quark density. We use the following “3-window” description: At baryon densitiesmore » below about twice normal nuclear density, 2n 0, we use the Akmal-Pandharipande-Ravenhall (APR) equation of state, and at high densities, ≥(4–7)n 0, we use the three-flavor Nambu-Jona-Lasinio (NJL) model supplemented by vector and diquark interactions. In the transition density region, we smoothly interpolate the hadronic and quark equations of state in the chemical potential-pressure plane. Requiring that the equation of state approach APR at low densities, we find that the quark pressure in nonconfining models can be larger than the hadronic pressure, unlike in conventional equations of state. We show that consistent equations of state of stiffness sufficient to allow massive neutron stars are reasonably tightly constrained, suggesting that gluon dynamics remains nonperturbative even at baryon densities ~10n 0.« less
Baryon chiral perturbation theory combined with the 1 /Nc expansion in SU(3): Framework
NASA Astrophysics Data System (ADS)
Fernando, I. P.; Goity, J. L.
2018-03-01
Baryon chiral perturbation theory combined with the 1 /Nc expansion is implemented for three flavors. Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the ξ -expansion, in which the 1 /Nc and the low-energy power countings are linked according to 1 /Nc=O (ξ )=O (p ). The renormalization to O (ξ3) necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.
NASA Astrophysics Data System (ADS)
Crede, Volker
2013-03-01
The spectrum of excited baryons serves as an excellent probe of quantum chromodynamics (QCD). In particular, highly-excited baryon resonances are sensitive to the details of quark confinement which is only poorly understood within QCD. Facilities worldwide such as Jefferson Lab, ELSA, and MAMI, which study the systematics of hadron spectra in photo- and electroproduction experiments, have accumulated a large amount of data in recent years including unpolarized cross section and polarization data for a large variety of meson-production reactions. These are important steps toward complete experiments that will allow us to unambiguously determine the scattering amplitude in the underlying reactions and to identify the broad and overlapping baryon resonance contributions. Several new nucleon resonances have been proposed and changes to the baryon listing in the 2012 Review of Particle Physics reflect the progress in the field.
Baryon spectra and antiparticle-to-particle ratios from the improved AMPT model
NASA Astrophysics Data System (ADS)
He, Yuncun; Lin, Zi-Wei
2018-02-01
The current version of a multi-phase transport (AMPT) model with string melting can reasonably describe the dN/dy yields, pT spectra and anisotropic flows of pions and kaons at low pT in heavy ion collisions at RHIC and LHC energies, although it failed to reproduce the dN/dy and pT spectra of baryons. In this work, we improve the quark coalescence mechanism in AMPT by removing the forced separate number conservations of mesons, baryons and antibaryons in each event. We find that the improved AMPT model can better describe the yields at midrapidity, the pT spectra and elliptic flow of low-pT baryons in comparison with the experimental data. Antiparticle-to-particle ratios of strange baryons are also significantly improved.
Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.
Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso
2013-12-12
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.
The Compressed Baryonic Matter experiment at FAIR
NASA Astrophysics Data System (ADS)
Höhne, Claudia
2018-02-01
The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.
Baryogenesis in extended inflation. 2: Baryogenesis via primordial black holes
NASA Technical Reports Server (NTRS)
Barrow, John D.; Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.
1990-01-01
Baryogenesis at the end of extended inflation is studied. Extended inflation is brought to an end by the collisions of bubble walls surrounding regions of true vacuum, a process which produces particles well out of thermal equilibrium. The possibility that the wall collisions may provide a significant density of primordial black holes is considered and their possible role in generating a baryon asymmetry is examined.
Baryonic distributions in galaxy dark matter haloes - II. Final results
NASA Astrophysics Data System (ADS)
Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.
2018-06-01
Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.
NASA Astrophysics Data System (ADS)
Ahmed, Sheehan H.; Brooks, Alyson M.; Christensen, Charlotte R.
2017-04-01
We investigate whether the inclusion of baryonic physics influences the formation of thin, coherently rotating planes of satellites such as those seen around the Milky Way and Andromeda. For four Milky Way-mass simulations, each run both as dark matter-only and with baryons included, we are able to identify a planar configuration that significantly maximizes the number of plane satellite members. The maximum plane member satellites are consistently different between the dark matter-only and baryonic versions of the same run due to the fact that satellites are both more likely to be destroyed and to infall later in the baryonic runs. Hence, studying satellite planes in dark matter-only simulations is misleading, because they will be composed of different satellite members than those that would exist if baryons were included. Additionally, the destruction of satellites in the baryonic runs leads to less radially concentrated satellite distributions, a result that is critical to making planes that are statistically significant compared to a random distribution. Since all planes pass through the centre of the galaxy, it is much harder to create a plane of a given height from a random distribution if the satellites have a low radial concentration. We identify Andromeda's low radial satellite concentration as a key reason why the plane in Andromeda is highly significant. Despite this, when corotation is considered, none of the satellite planes identified for the simulated galaxies are as statistically significant as the observed planes around the Milky Way and Andromeda, even in the baryonic runs.
Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Cohen, Thomas D.
2013-11-01
We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.
Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-12-03
Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
Growth rate in the dynamical dark energy models.
Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina
Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.
NASA Astrophysics Data System (ADS)
Sekiguchi, Yuichiro; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke
2016-06-01
We perform neutrino radiation-hydrodynamics simulations for the merger of asymmetric binary neutron stars in numerical relativity. Neutron stars are modeled by soft and moderately stiff finite-temperature equations of state (EOS). We find that the properties of the dynamical ejecta such as the total mass, neutron richness profile, and specific entropy profile depend on the mass ratio of the binary systems for a given EOS in a unique manner. For a soft EOS (SFHo), the total ejecta mass depends weakly on the mass ratio, but the average of electron number per baryon (Ye ) and specific entropy (s ) of the ejecta decreases significantly with the increase of the degree of mass asymmetry. For a stiff EOS (DD2), with the increase of the mass asymmetry degree, the total ejecta mass significantly increases while the average of Ye and s moderately decreases. We find again that only for the SFHo, the total ejecta mass exceeds 0.01 M⊙ irrespective of the mass ratio chosen in this paper. The ejecta have a variety of electron number per baryon with an average approximately between Ye˜0.2 and ˜0.3 irrespective of the EOS employed, which is well suited for the production of the rapid neutron capture process heavy elements (second and third peaks), although its averaged value decreases with the increase of the degree of mass asymmetry.
NASA Astrophysics Data System (ADS)
Thakur, Dhananjaya; Jakhar, Sunil; Garg, Prakhar; Sahoo, Raghunath
2017-04-01
The recent net-proton fluctuation results of the STAR (Solenoidal Tracker At RHIC) experiment from the beam energy scan (BES) program at the BNL Relativistic Heavy Ion Collider (RHIC) have drawn much attention to exploring the QCD critical point and the nature of deconfinement phase transition. There has been much speculation that the nonmonotonic behavior of κ σ2 of the produced protons around √{sN N} = 19.6 GeV in the STAR results may be due to the existence of a QCD critical point. However, the experimentally measured proton distributions contain protons from heavy resonance decays, from baryon stopping, and from direct production processes. These proton distributions are used to estimate the net-proton number fluctuation. Because it is difficult to disentangle the protons from the above-mentioned sources, it is better to devise a method which will account for the directly produced baryons (protons) to study the dynamical fluctuation at different center-of-mass energies. This is because it is assumed that any associated criticality in the system could affect the particle production mechanism and hence the dynamical fluctuation in various conserved numbers. In the present work, we demonstrate a method to estimate the number of stopped protons at RHIC BES energies for central 0-5% Au +Au collisions within STAR acceptance and discuss its implications on the net-proton fluctuation results.
Non-thermal emission and dynamical state of massive galaxy clusters from CLASH sample
NASA Astrophysics Data System (ADS)
Pandey-Pommier, M.; Richard, J.; Combes, F.; Edge, A.; Guiderdoni, B.; Narasimha, D.; Bagchi, J.; Jacob, J.
2016-12-01
Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of them) different types of non-thermal radio emitting components, viz., 'haloes', 'mini-haloes', 'relics' and 'phoenix' within their Intra Cluster Medium (ICM). The radio haloes show steep (α = -1.2) and ultra steep (α < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.
Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.
Milgrom, Mordehai
2013-07-26
The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0.
Baryon spectroscopy and the omega minus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samios, N.P.
1994-12-31
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.
Finite volume effects in the chiral extrapolation of baryon masses
NASA Astrophysics Data System (ADS)
Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.
2014-09-01
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.
Baryogenesis via particle-antiparticle oscillations
Ipek, Seyda; March-Russell, John
2016-06-29
CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O(100GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1)R-symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Hence, taking bino to be the lightest U(1) R-symmetric particle, and assuming it decays via baryon-number-violating interactions, we showmore » that bino-antibino oscillations can produce the baryon asymmetry of the Universe.« less
Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD
NASA Astrophysics Data System (ADS)
Hall, Jonathan M. M.; Leinweber, Derek B.
2016-11-01
Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crede, Volker
The spectrum of excited baryons serves as an excellent probe of quantum chromodynamics (QCD). In particular, highly-excited baryon resonances are sensitive to the details of quark confinement which is only poorly understood within QCD. Facilities worldwide such as Jefferson Lab, ELSA, and MAMI, which study the systematics of hadron spectra in photo- and electroproduction experiments, have accumulated a large amount of data in recent years including unpolarized cross section and polarization data for a large variety of meson-production reactions. These are important steps toward complete experiments that will allow us to unambiguously determine the scattering amplitude in the underlying reactionsmore » and to identify the broad and overlapping baryon resonance contributions. Several new nucleon resonances have been proposed and changes to the baryon listing in the 2012 Review of Particle Physics reflect the progress in the field.« less
NASA Astrophysics Data System (ADS)
Li, Ming; Kapusta, Joseph I.
2017-01-01
In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.
Search for Baryon-Number Violating Ξb0 Oscillations
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombacher, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration
2017-11-01
A search for baryon-number violating Ξb0 oscillations is performed with a sample of p p collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb-1 . The baryon number at the moment of production is identified by requiring that the Ξb0 come from the decay of a resonance Ξb*-→Ξb0π- or Ξb'-→Ξb0π-, and the baryon number at the moment of decay is identified from the final state using the decays Ξb0→Ξc+π-,Ξc+→p K-π+. No evidence of baryon-number violation is found, and an upper limit at the 95% confidence level is set on the oscillation rate of ω <0.08 ps-1, where ω is the associated angular frequency.
NASA Astrophysics Data System (ADS)
Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman
2018-06-01
We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.
Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goity, Jose Luis; Calle Cordon, Alvaro
In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.
Hydrodynamic collimation of gamma-ray-burst fireballs
Levinson; Eichler
2000-07-10
Analytic solutions are presented for the hydrodynamic collimation of a relativistic fireball by a surrounding baryonic wind emanating from a torus. The opening angle is shown to be the ratio of the power output of the inner fireball to that of the exterior baryonic wind. The gamma ray burst 990123 might thus be interpreted as a baryon-poor jet (BPJ) with an energy output of order 10(50) erg or less, collimated by a baryonic wind from a torus with an energy output of order 10(52.5) erg, roughly the geometric mean of the BPJ and its isotropic equivalent.
Connecting LHC signals with deep physics at the TeV scale and baryogenesis
NASA Astrophysics Data System (ADS)
Shu, Jing
We address in this dissertation two primary questions aimed at deciphering collider signals at the Large Hadron Collider (LHC) to give a deep and concrete understanding of the TeV scale physics and to interpret the origin of baryon asymmetry in our universe. We are at a stage of exploring new physics at the terascale which is responsible for the electroweak symmetry breaking (EWSB) in the Standard Model (SM) of particle physics. The LHC, which begins its operation this year, will break us into such a new energy frontier and seek for the possible signals of new physics. Theorists have come up with many possible models beyond SM to explain the origin of EWSB. However, how we will determine the underlying physics from LHC data is still an open question. In the first part of this dissertation, we consider several examples to connect the expected LHC signals to the underlying physics in a completely model independent way. We first explore the Randall-Sundrum (RS) scenario, and use the collider signals of first Kaluza-Klein (KK) excitations of gluons to discriminate several commonly considered theories which attempt to render RS consistent with precision electroweak data. We then investigate top compositeness. We derive a bound for the energy scale of right handed top compositeness from top pair production at the Tevatron, and we find that the cross section to produce four tops will be greatly amplified by 3 orders of magnitude. We next consider the possibilities that the gauge symmetry in the underlying theory is violated in the incomplete theory that we can reconstruct from the LHC observables. We derive a model independent bound on the scale of new physics from unitarity of the S-matrix if we observe a new massive vector boson with nonzero axial couplings to fermions at LHC. Finally, we derive a generalized Landau-Yang theorem and apply it to the Z' decay into two Z bosons. We show that there is a phase shift in the azimuthal angle distribution in the normalized differential cross section and the anomalous coupling of Z'-Z-Z can be discriminated from the regular one at the 3s level when both Z bosons decay leptonically at the LHC. The origin of baryon asymmetry of the Universe (BAU) remains an important, unsolved problem for particle physics and cosmology, and is one of the motivations to search for possible new physics beyond SM. In the second part of this dissertation, we attempt to account for the baryon number generation in our universe through some novel mechanisms. We first systematically investigate models of baryogenesis from spontaneously Lorentz violating background (SLVB). We find that the sphaleron transitions will generate a nonzero B+L asymmetry in the presence of SLVB and we identify two scenarios of interest. We then consider the possibilities to generate a baryon asymmetry through an earlier time phase transition and address the question whether or not we can still test the baryogenesis mechanism at LHC/ILC if the electroweak phase transition is not strongly first order. We find a general framework and realize this idea in the top flavor model. We show that the realistic baryon density can be achieved in the natural parameter space of topflavor model.
NASA Astrophysics Data System (ADS)
Yao, De-Liang
2018-02-01
We calculate the masses and sigma terms of the doubly charmed baryons up to next-to-next-to-next-to-leading order [i.e., O (p4) ] in a covariant baryon chiral perturbation theory by using the extended-on-mass-shell renormalization scheme. Their expressions both in infinite and finite volumes are provided for chiral extrapolation in lattice QCD. As a first application, our chiral results of the masses are confronted with the existing lattice QCD data in the presence of finite-volume corrections. Up to O (p3) , all relevant low-energy constants can be well determined. As a consequence, we obtain the physical values for the masses of Ξc c and Ωc c baryons by extrapolating to the physical limit. Our determination of the Ξc c mass is consistent with the recent experimental value by LHCb Collaboration, however, larger than the one by SELEX Collaboration. In addition, we predict the pion-baryon and strangeness-baryon sigma terms, as well as the mass splitting between the Ξc c and Ωc c states. Their quark mass dependences are also discussed. The numerical procedure can be applied to the chiral results of O (p4) order, where more unknown constants are involved, when more data are available for unphysical pion masses.
The baryonic mass function of galaxies.
Read, J I; Trentham, Neil
2005-12-15
In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Observation of the doubly strange b-Baryon Ω b -
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose de Jesus Hernandez Orduna
2011-02-01
This thesis reports the first experimental evidence of the doubly strange b-baryon Ω b - (ssb) following the decay channel Ω b - → J/Ψ(1S) μ +μ - Ω - Λ K - p π - in pmore » $$\\bar{p}$$ collisions at √s = 1.96 Tev. Using approximately 1.3 fb -1 of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 ± 4.9(stat) ± 0.8(syst) Ω b - signal events at 6.165 ± 0.010(stat) ± 0.013(syst) GeV/c 2 with a corresponding significance of 5.4 σ, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10 -8. The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be or what their masses are. The search goes on for a more complete theory, and in particular an unified field theory describing the strong, weak, and electromagnetic forces. Twelve elementary particles are known in the Standard Model: the Fermions. They have spin -1/2 and obey the Pauli Exclusion Principle. Fermions are divided into six Quarks: up u, down d, charm c, strange s, top t and, bottom b; and six Leptons: electron e, muon μ, ττ, electron neutrino v e, muon neutrino v μ and, τ neutrino v τ. Quarks interact via the strong force because they carry color charge, electromagnetically because of their electric charge and via the weak nuclear interaction because of the weak isospin. Quarks form color-neutral composite particles known as Hadrons which are divided in Mesons, containing a quark and an antiquark and Baryons, made up three quarks. Leptons have no color charge and can not interact via the strong force. Only three of them have electric charge, hence interact electromagnetically. The motion of non-electrically charged leptons, the neutrinos, is influenced only by the weak nuclear interaction. Every fermion have an associated antiparticle. For quarks, the antiparticle carry opposite electric charge, color charge and baryon number. For leptons, the antiparticle carry opposite electric charge and lepton number. Fermions are suitably grouped together considering their properties and three generations of them are defined. A higher generation fermion have greater mass than those in lower generations. Charged members of the first generation do not decay and form the ultimate building blocks for all the baryonic matter we know about. Charged members of higher generations have very short half lives and are found normally in high-energy environments. Non-electrically charged fermions do not decay and rarely interact with baryonic matter. The way particles interact and influence each other in the Standard Model is result from matter particles exchanging other particles, known as Force Mediating Particles. They are believed to be the reason of the existence of the forces and interactions between particles observed in the laboratory and the universe. Force mediating particles have spin 1, i.e., they are Bosons, and do not follow the Pauli Exclusion Principle. The types of force mediating particles are: the photon γ, three gauge bosons W ± and Z and, eight gluons g. Photons have no mass, the theory of Quantum Electrodynamics describe them very well and are responsible for mediation of the electromagnetic force between electrically charged particles. Gauge bosons are massive, being Z heavier than W ±. They are responsible for the mediation of the weak interactions between particles of different flavors but W ± act only on left-handed particles and right-handed antiparticles while Z with both left-handed particles and antiparticles. Due to the electric charge of W ±, they couple also to electromagnetic interactions. Photons and the three gauge bosons are grouped together and collectively mediate the electroweak interactions. Finally, gluons have no mass, the theory of Quantum Chromodynamics describe them and are responsible for the mediation of the strong interactions between particles with color charge. Having an effective color charge, gluons can interact among themselves. The Higgs Boson is the only particle in the SM without direct experimental evidence. Its detection would help in the explanation of the difference between massive bosons mediating the weak force and the massless photon mediating the electromagnetism.« less
PROSPECTS FOR PENTAQUARK SEARCHES IN E+D- ANNIHILATIONS AND VV COLLISIONS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ARMSTRONG,S.; MELLADO,B.; WU,S.L.
2004-06-28
Recent strong experimental evidence of a narrow exotic S = +1 baryon resonance, {Theta}{sup +}, suggests the existence of other exotic baryons. We discuss the prospects of confirming earlier experimental evidence of {Theta}{sup +} and the observation of additional hypothetical exotic baryons in e{sup +}e{sup -} annihilations and {gamma}{gamma} collisions at LEP and B Factories.
Spectroscopy of the Ωccb baryon in the hypercentral constituent quark model
NASA Astrophysics Data System (ADS)
Shah, Zalak; Rai, Ajay Kumar
2018-05-01
We extract the mass spectrum of the triply heavy baryon {{{Ω }}}{{ccb}} using the hypercentral constituent quark model. The first order correction is also added to the potential term of the Hamiltonian. The radial and orbital excited state masses are determined, and the Regge trajectories and magnetic moments for this baryon are also given.
Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John; Freeman, K. C.
2016-02-01
Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.
Σ--antihyperon correlations in Z0 decay and investigation of the baryon production mechanism
NASA Astrophysics Data System (ADS)
Abbiendi, G.; Ainsley, C.; Åkesson, P. F.; Alexander, G.; Anagnostou, G.; Anderson, K. J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R. J.; Batley, R. J.; Bechtle, P.; Behnke, T.; Bell, K. W.; Bell, P. J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, R. M.; Burckhart, H. J.; Campana, S.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, M.; de Roeck, A.; de Wolf, E. A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J. W.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwé, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G. G.; Harel, A.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Herten, G.; Heuer, R. D.; Hill, J. C.; Horváth, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T. R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Krämer, T.; Krasznahorkay, A.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G. D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S. L.; Loebinger, F. K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A. J.; Mashimo, T.; Mättig, P.; McKenna, J.; McPherson, R. A.; Meijers, F.; Menges, W.; Merritt, F. S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H. A.; O'Neale, S. W.; Oh, A.; Oreglia, M. J.; Orito, S.; Pahl, C.; Pásztor, G.; Pater, J. R.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Pooth, O.; Przybycień, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J. M.; Rossi, A. M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E. K. G.; Schaile, A. D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schörner-Sadenius, T.; Schröder, M.; Schumacher, M.; Seuster, R.; Shears, T. G.; Shen, B. C.; Sherwood, P.; Skuja, A.; Smith, A. M.; Sobie, R.; Söldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Ströhmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M. A.; Torrence, E.; Toya, D.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turner-Watson, M. F.; Ueda, I.; Ujvári, B.; Vollmer, C. F.; Vannerem, P.; Vértesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G. W.; Wilson, J. A.; Wolf, G.; Wyatt, T. R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.
2009-12-01
Data collected around sqrt{s}=91 GeV by the OPAL experiment at the LEP e+e- collider are used to study the mechanism of baryon formation. As the signature, the fraction of Σ- hyperons whose baryon number is compensated by the production of a overline{Σ-},overline{Λ} or overline{Ξ-} antihyperon is determined. The method relies entirely on quantum number correlations of the baryons, and not rapidity correlations, making it more model independent than previous studies. Within the context of the JETSET implementation of the string hadronization model, the diquark baryon production model without the popcorn mechanism is strongly disfavored with a significance of 3.8 standard deviations including systematic uncertainties. It is shown that previous studies of the popcorn mechanism with Λ overline{Λ} and p\\uppi overline{p} correlations are not conclusive, if parameter uncertainties are considered.
On the nature of the newly discovered Ω states
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2017-06-01
The mass and residue of the ground-state, as well as the first orbital and radial excitations of the heavy ΩQ baryons with Q being b or c quark, for both J=1/2 and J=3/2 are calculated by means of the QCD two-point sum rule method using the general forms for the interpolating currents. In the calculations the quark, gluon and mixed vacuum condensates up to ten dimensions are taken into account. We compare our results for the masses of Ω_b- and Ω_c0 baryons with the existing predictions of other theoretical works. Our results for the charmed baryons are confronted with the experimental data of the LHCb Collaboration to understand the nature of the recently observed narrow Ω_c0 resonances. The predictions for the masses of the Ω_b- baryons with the same quantum numbers may shed light on future experimental searches for the corresponding bottom baryons.
Search for Baryon-Number Violating Ξ_{b}^{0} Oscillations.
Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombacher, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S
2017-11-03
A search for baryon-number violating Ξ_{b}^{0} oscillations is performed with a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb^{-1}. The baryon number at the moment of production is identified by requiring that the Ξ_{b}^{0} come from the decay of a resonance Ξ_{b}^{*-}→Ξ_{b}^{0}π^{-} or Ξ_{b}^{'-}→Ξ_{b}^{0}π^{-}, and the baryon number at the moment of decay is identified from the final state using the decays Ξ_{b}^{0}→Ξ_{c}^{+}π^{-},Ξ_{c}^{+}→pK^{-}π^{+}. No evidence of baryon-number violation is found, and an upper limit at the 95% confidence level is set on the oscillation rate of ω<0.08 ps^{-1}, where ω is the associated angular frequency.
NASA Astrophysics Data System (ADS)
Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.
2016-10-01
We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
Study of the s - s bar asymmetry in the proton
NASA Astrophysics Data System (ADS)
Goharipour, Muhammad
2018-05-01
The study of s - s bar asymmetry is essential to better understand of the structure of nucleon and also the perturbative and nonperturbative mechanisms for sea quark generation. Actually, the nature and dynamical origins of this asymmetry have always been an interesting subject to research both experimentally and theoretically. One of the most powerful models can lead to s - s bar asymmetry is the meson-baryon model (MBM). In this work, using a simplified configuration of this model suggested by Pumplin, we calculate the s - s bar asymmetry for different values of cutoff parameter Λ, to study the dependence of model to this parameter and also to estimate the theoretical uncertainty imposed on the results due to its uncertainty. Then, we study the evolution of distributions obtained both at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) using different evolution schemes. It is shown that the evolution of the intrinsic quark distributions from a low initial scale, as suggested by Chang and Pang, is not a good choice at NNLO using variable flavor number scheme (VFNS).
HI and Low Metal Ions at the Intersection of Galaxies and the CGM
NASA Astrophysics Data System (ADS)
Oppenheimer, Benjamin
2017-08-01
Over 1000 COS orbits have revealed a surprisingly complex picture of circumgalactic gas flows surrounding the diversity of galaxies in the evolved Universe. Cosmological hydrodynamic simulations have only begun to confront the vast amount of galaxy formation physics, chemistry, and dynamics revealed in the multi-ion CGM datasets. We propose the next generation of EAGLE zoom simulations, called EAGLE Cosmic Origins, to model HI and low metal ions (C II, Mg II, & Si II) throughout not just the CGM but also within the galaxies themselves. We will employ a novel, new chemistry solver, CHIMES, to follow time-dependent ionization, chemistry, and cooling of 157 ionic and molecular species, and include multiple ionization sources from the extra-galactic background, episodic AGN, and star formation. Our aim is to understand the complete baryon cycle of inflows, outflows, and gas recycling traced over 10 decades of HI column densities as well as the complex kinematic information encoded low ion absorption spectroscopy. This simulation project represents a pilot program for a larger suite of zoom simulations, which will be publicly released and lead to additional publications.
Search for popcorn mesons in events with two charmed baryons
NASA Astrophysics Data System (ADS)
Hartfiel, Brandon
The physics of this dissertation is divided into two parts. The first part measures the Λc → pi kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c, which is just below the Υ(4s) resonance. The data sample consists of 15,400 Λc baryons from 9.46 fb-1 of integrated luminosity collected with the BaBar detector at the PEP-II asymmetric B factory at the Stanford Linear Accelerator Center. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the Λc → K0p mode, and look for events with a Λc+ and a Λ c- in order to look for "popcorn" mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb-1. We find 619 events after background subtraction. After a subtraction of 1.06+/-.09 charged pions coming from decays of known resonances to Λc + npi, we are left with 2.63+/-.21 additional charged pious in each of these events. This is significantly higher than the .5 popcorn mesons per bayon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
Cosmology and particle physics
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam
2003-03-07
We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.
ΛGR Centennial: Cosmic Web in Dark Energy Background
NASA Astrophysics Data System (ADS)
Chernin, A. D.
The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.
The Universe Adventure - What is Dark Matter?
scientists today believe to be Dark Matter (DM). In fact, DM is most probably non-baryonic, meaning it does , scientists are convinced that 70-90% of matter in The Universe is non-baryonic DM and that ordinary luminous the Universe's matter must be non-baryonic dark matter. The degree to which light is bent by galaxies
D-Wave Heavy Baryons from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Mao, Qiang; Chen, Hua-Xing; Hosaka, Atsushi; Liu, Xiang; Zhu, Shi-Lin
We study the D-wave heavy baryons using the method of QCD sum rules in the framework of heavy quark effective theory. Our results suggest that the Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) complete two D-wave SU(3) flavor 3¯F charmed baryon doublets of JP = 3/2+ and 5/2+.
String junction as a baryonic constituent
NASA Astrophysics Data System (ADS)
Kalashnikova, Yu. S.; Nefediev, A. V.
1996-02-01
We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.
Triple product asymmetries in Λ b and Ξ 0 b decays
Gronau, Michael; Rosner, Jonathan L.
2015-07-28
In this study, the LHCb experiment is capable of studying four-body decays of the b-flavored baryons Λ b and Ξ 0 b to charmless final states consisting of charged pions, kaons, and baryons. We remark on the search in such modes for CP-violating triple product asymmetries and for CP rate asymmetries relative to decays involving charmed baryons.
Second feature of the matter two-point function
NASA Astrophysics Data System (ADS)
Tansella, Vittorio
2018-05-01
We point out the existence of a second feature in the matter two-point function, besides the acoustic peak, due to the baryon-baryon correlation in the early Universe and positioned at twice the distance of the peak. We discuss how the existence of this feature is implied by the well-known heuristic argument that explains the baryon bump in the correlation function. A standard χ2 analysis to estimate the detection significance of the second feature is mimicked. We conclude that, for realistic values of the baryon density, a SKA-like galaxy survey will not be able to detect this feature with standard correlation function analysis.
Modelling baryonic effects on galaxy cluster mass profiles
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke
2018-06-01
Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.
Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, I. P.; Goity, J. L.
Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less
Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework
Fernando, I. P.; Goity, J. L.
2018-03-14
Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less
Searches for the baryon- and lepton-number violating decays B0→Λc+l-, B-→Λl-, and B-→Λ¯l-
NASA Astrophysics Data System (ADS)
Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Buenger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.
2011-05-01
Searches for B mesons decaying to final states containing a baryon and a lepton are performed, where the baryon is either Λc or Λ and the lepton is a muon or an electron. These decays violate both baryon and lepton number and would be a signature of physics beyond the standard model. No significant signal is observed in any of the decay modes, and upper limits in the range (3.2-520)×10-8 are set on the branching fractions at the 90% confidence level.
QCD sum rules study of meson-baryon sigma terms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkol, Gueray; Oka, Makoto; Turan, Guersevil
2008-11-01
The pion-baryon sigma terms and the strange-quark condensates of the octet and the decuplet baryons are calculated by employing the method of QCD sum rules. We evaluate the vacuum-to-vacuum transition matrix elements of two baryon interpolating fields in an external isoscalar-scalar field and use a Monte Carlo-based approach to systematically analyze the sum rules and the uncertainties in the results. We extract the ratios of the sigma terms, which have rather high accuracy and minimal dependence on QCD parameters. We discuss the sources of uncertainties and comment on possible strangeness content of the nucleon and the Delta.
Coupled-channel approach to strangeness S = -2 baryon-bayron interactions in lattice QCD
NASA Astrophysics Data System (ADS)
Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko
2015-11-01
Baryon-baryon interactions with strangeness S=-2 with flavor SU(3) breaking are calculated for the first time by using the HAL QCD method extended to the coupled-channel system in lattice QCD. The potential matrices are extracted from the Nambu-Bethe-Salpeter wave functions obtained by the 2+1-flavor gauge configurations of the CP-PACS/JLQCD Collaborations with a physical volume of (1.93 fm)^3 and with m_{π }/m_K=0.96, 0.90, 0.86. The spatial structure and the quark mass dependence of the potential matrix in the baryon basis and in the SU(3) basis are investigated.
Regge Trajectories of triply heavy baryons
NASA Astrophysics Data System (ADS)
Rai, Ajay Kumar; Shah, Zalak
2017-12-01
Ω ccc , Ω bbb , Ω bcc and Ω ccb baryons are considerable theoretical interest in a baryonic analogue of heavy quarkonium because of the color-singlet bound state of three heavy quark (c,b) combination inside. Regge trajectories are concerned with the mass spectrum of the particles so that the present study exhibits the regge trajectories obtained from excited states of four experimentally unknown triply heavy Ω baryons. The trajectories are plotted in (n, M 2) and (J, M 2) planes which are helpful to determine the unknown quantum number and JP values. The calculations have computed in Hypercentral Constituent Quark Model with hyper coulomb plus linear potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crede, Volker; Roberts, Winston
The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1?2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new statesmore » and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.« less
The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos
NASA Astrophysics Data System (ADS)
Sameie, Omid; Creasey, Peter; Yu, Hai-Bo; Sales, Laura V.; Vogelsberger, Mark; Zavala, Jesús
2018-06-01
We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.
Spectrum and Structure of Excited Baryons with CLAS
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2017-01-01
In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator. Talk presented at the CRC-16 Symposium, Bonn University, June 6-9, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alarcón, J. M.; Hiller Blin, A. N.; Vicente Vacas, M. J.
2017-05-08
The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. In this paper, we calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b=O(Mmore » $$-1\\atop{π}$$) using methods of relativistic chiral effective field theory (χ EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M$$2\\atop{π}$$ are calculated using relativistic χEFT including octet and decuplet baryons. The χEFT calculations are extended into the ρ meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. Finally, the approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.« less
Freeze-out of baryon number in low-scale leptogenesis
NASA Astrophysics Data System (ADS)
Eijima, S.; Shaposhnikov, M.; Timiryasov, I.
2017-11-01
Low-scale leptogenesis provides an economic and testable description of the origin of the baryon asymmetry of the Universe. In this scenario, the baryon asymmetry of the Universe is reprocessed from the lepton asymmetry by electroweak sphaleron processes. Provided that sphalerons are fast enough to maintain equilibrium, the values of the baryon and lepton asymmetries are related to each other. Usually, this relation is used to find the value of the baryon asymmetry at the time of the sphaleron freeze-out. To put in other words, the formula which is valid only when the sphalerons are fast, is applied at the moment when they are actually switched off. In this paper, we examine the validity of such a treatment. To this end, we solve the full system of kinetic equations for low-scale leptogenesis. This system includes equations describing the production of the lepton asymmetry in oscillations of right-handed neutrinos, as well as a separate kinetic equation for the baryon asymmetry. We show that for some values of the model parameters, the corrections to the standard approach are sizeable. We also present a feasible improvement to the ordinary procedure, which accounts for these corrections.
Baryon masses and axial couplings in the combined 1/N{sub c} and Chiral expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvaro Calle Cordon, Jose Goity
The effective theory for baryons with a combined 1/N{sub c} and chiral expansions is analyzed for non-strange baryons. Results for baryon masses and axial couplings are obtained in the small scale expansion, to be coined as the {xi}-expansion, in which the 1/N{sub c} and the low energy power countings are linked according to 1/N{sub c}=O({xi})=O(p). Masses and axial couplings are analyzed to O({xi}{sup 3}) and O({xi}{sup 2}) respectively, which correspond to next-to-next to leading order evaluations, and require one-loop contributions in the effective theory. The role of the spin-flavor approximate symmetry in baryons, consequence of the large N{sub c} limit,more » is manifested in the physical world with N{sub c}=3 in a significant way, as the analysis of its breaking in the masses and the axial couplings show. Applications to the recent lattice QCD results on baryon masses and the nucleon's axial coupling are presented. It is shown that those results are naturally described within the effective theory at the order considered in the {xi}-expansion.« less
Axino LSP baryogenesis and dark matter
Monteux, Angelo; Shin, Chang Sub
2015-05-01
We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft Xt terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitinomore » can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be Script O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 104-105 GeV in the gravitino dark matter scenario.« less
Phase transitions and baryogenesis from decays
Shuve, Brian; Tamarit, Carlos
2017-10-18
Here, we study scenarios in which the baryon asymmetry is generated from the decay of a particle whose mass originates from the spontaneous breakdown of a symmetry. This is realized in many models, including low-scale leptogenesis and theories with classical scale invariance. Symmetry breaking in the early universe proceeds through a phase transition that gives the parent particle a time-dependent mass, which provides an additional departure from thermal equilibrium that could modify the efficiency of baryogenesis from out-of-equilibrium decays. We characterize the effects of various types of phase transitions and show that an enhancement in the baryon asymmetry from decaysmore » is possible if the phase transition is of the second order, although such models are typically fine-tuned. We also stress the role of new annihilation modes that deplete the parent particle abundance in models realizing such a phase transition, reducing the efficacy of baryogenesis. A proper treatment of baryogenesis in such models therefore requires the inclusion of the effects we study in this paper.« less
Mass Spectra of Ds and Ωc in Lattice QCD with Nf = 2 + 1 + 1 Domain-Wall Quarks
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai
2018-03-01
We perform hybrid Monte Carlo simulation of lattice QCD with Nf = 2+1+1 optimal domain-wall quarks on the 323 × 64 lattice with lattice spacing a 0:06 fm, and generate a gauge ensemble with physical s and c quarks, and pion mass 280 MeV. Using 2-quark (meson) and 3-quark (baryon) interpolating operators, the mass spectra of the lowest-lying states containing s and c quarks (Ds and Ωc) are extracted [1], which turn out in good agreement with the high energy experimental values, together with the predictions of the charmed baryons which have not been observed in experiments. For the five new narrow c states observed by the LHCb Collaboration [2], the lowest-lying Ωc(3000) agrees with our predicted mass 3015(29)(34) MeV of the lowest-lying Ωc with JP = 1/2-. This implies that JP of Ωc(3000) is 1/2-.
Phase transitions and baryogenesis from decays
NASA Astrophysics Data System (ADS)
Shuve, Brian; Tamarit, Carlos
2017-10-01
We study scenarios in which the baryon asymmetry is generated from the decay of a particle whose mass originates from the spontaneous breakdown of a symmetry. This is realized in many models, including low-scale leptogenesis and theories with classical scale invariance. Symmetry breaking in the early universe proceeds through a phase transition that gives the parent particle a time-dependent mass, which provides an additional departure from thermal equilibrium that could modify the efficiency of baryogenesis from out-of-equilibrium decays. We characterize the effects of various types of phase transitions and show that an enhancement in the baryon asymmetry from decays is possible if the phase transition is of the second order, although such models are typically fine-tuned. We also stress the role of new annihilation modes that deplete the parent particle abundance in models realizing such a phase transition, reducing the efficacy of baryogenesis. A proper treatment of baryogenesis in such models therefore requires the inclusion of the effects we study in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bautista, Julian E.; Busca, Nicolas G.; Bailey, Stephen
We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Lyα forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Lyα forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to developmore » and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at the time of the Data Release 11.« less
NASA Astrophysics Data System (ADS)
Li, Xin; Tang, Li; Lin, Hai-Nan
2017-05-01
We compare six models (including the baryonic model, two dark matter models, two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves. For the dark matter models, we assume NFW profile and core-modified profile for the dark halo, respectively. For the modified Newtonian dynamics models, we discuss Milgrom’s MOND theory with two different interpolation functions, the standard and the simple interpolation functions. For the modified gravity, we focus on Moffat’s MSTG theory. We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies. We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model. It is found that none of the six models can fit all the galaxy rotation curves well. Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter. MOND can fit the largest number of galaxies, and only one galaxy can be best fitted by the MSTG model. Core-modified model fits about half the LSB galaxies well, but no HSB galaxies, while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies. This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well. Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547305 and 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)
The effect of gas physics on the halo mass function
NASA Astrophysics Data System (ADS)
Stanek, R.; Rudd, D.; Evrard, A. E.
2009-03-01
Cosmological tests based on cluster counts require accurate calibration of the space density of massive haloes, but most calibrations to date have ignored complex gas physics associated with halo baryons. We explore the sensitivity of the halo mass function to baryon physics using two pairs of gas-dynamic simulations that are likely to bracket the true behaviour. Each pair consists of a baseline model involving only gravity and shock heating, and a refined physics model aimed at reproducing the observed scaling of the hot, intracluster gas phase. One pair consists of billion-particle resimulations of the original 500h-1Mpc Millennium Simulation of Springel et al., run with the smoothed particle hydrodynamics (SPH) code GADGET-2 and using a refined physics treatment approximated by pre-heating (PH) at high redshift. The other pair are high-resolution simulations from the adaptive-mesh refinement code ART, for which the refined treatment includes cooling, star formation and supernova feedback (CSF). We find that, although the mass functions of the gravity-only (GO) treatments are consistent with the recent calibration of Tinker et al. (2008), both pairs of simulations with refined baryon physics show significant deviations. Relative to the GO case, the masses of ~1014h-1Msolar haloes in the PH and CSF treatments are shifted by the averages of -15 +/- 1 and +16 +/- 2 per cent, respectively. These mass shifts cause ~30 per cent deviations in number density relative to the Tinker function, significantly larger than the 5 per cent statistical uncertainty of that calibration.
Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies
NASA Astrophysics Data System (ADS)
González-Morales, Alma X.; Marsh, David J. E.; Peñarrubia, Jorge; Ureña-López, Luis A.
2017-12-01
It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with ma ∼ 10-22 eV are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here, we use realistic kinematic mock data catalogues of Milky Way (MW) dSph's to show that the 'mass-anisotropy degeneracy' in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components, this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with reported stellar subcomponents, Fornax and Sculptor, and assuming that the halo profile has not been acted on by baryons, yields core radii rc > 1.5 and 1.2 kpc, respectively, and ma < 0.4 × 10-22 eV at 97.5 per cent confidence. These bounds are in tension with the number of observed satellites derived from simple (but conservative) estimates of the subhalo mass function in MW-like galaxies. We discuss how baryonic feedback might affect our results, and the impact of such a small axion mass on the growth of structures in the Universe.
Heavy baryons as polarimeters at colliders
Galanti, Mario; Giammanco, Andrea; Grossman, Yuval; ...
2015-11-10
In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of the new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Lambda(b) and Lambda(c), respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Lambda(b) decays, and the c-quark polarization using Lambda(+)(c) -> pK(-)pi(+) decays. For calibrating both measurementsmore » we suggest to use t (t) over bar samples in which these polarizations can be measured with precision of order 10% using 100thfb(-1) of data in Run 2 of the LHC. Measurements of the transverse polarization in QCD events at ATLAS, CMS and LHCb are motivated as well. The proposed measurements give access to nonperturbative QCD parameters relevant to the dynamics of the hadronization process.« less
Dynamics of the baryonic component in hierarchical clustering universes
NASA Technical Reports Server (NTRS)
Navarro, Julio
1993-01-01
I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.
Gravitational wave as probe of superfluid dark matter
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Liu, Tong-Bo; Wang, Shao-Jiang
2018-02-01
In recent years, superfluid dark matter (SfDM) has become a competitive model of emergent modified Newtonian dynamics (MOND) scenario: MOND phenomenons naturally emerge as a derived concept due to an extra force mediated between baryons by phonons as a result of axionlike particles condensed as superfluid at galactic scales; Beyond galactic scales, these axionlike particles behave as normal fluid without phonon-mediated MOND-like force between baryons, therefore SfDM also maintains the usual success of Λ CDM at cosmological scales. In this paper, we use gravitational waves (GWs) to probe the relevant parameter space of SfDM. GWs through Bose-Einstein condensate (BEC) could propagate with a speed slightly deviation from the speed-of-light due to the change in the effective refractive index, which depends on the SfDM parameters and GW-source properties. We find that Five hundred meter Aperture Spherical Telescope (FAST), Square Kilometre Array (SKA) and International Pulsar Timing Array (IPTA) are the most promising means as GW probe of relevant parameter space of SfDM. Future space-based GW detectors are also capable of probing SfDM if a multimessenger approach is adopted.
Isobaric Reconstruction of the Baryonic Acoustic Oscillation
NASA Astrophysics Data System (ADS)
Wang, Xin; Yu, Hao-Ran; Zhu, Hong-Ming; Yu, Yu; Pan, Qiaoyin; Pen, Ue-Li
2017-06-01
In this Letter, we report a significant recovery of the linear baryonic acoustic oscillation (BAO) signature by applying the isobaric reconstruction algorithm to the nonlinear matter density field. Assuming only the longitudinal component of the displacement being cosmologically relevant, this algorithm iteratively solves the coordinate transform between the Lagrangian and Eulerian frames without requiring any specific knowledge of the dynamics. For dark matter field, it produces the nonlinear displacement potential with very high fidelity. The reconstruction error at the pixel level is within a few percent and is caused only by the emergence of the transverse component after the shell-crossing. As it circumvents the strongest nonlinearity of the density evolution, the reconstructed field is well described by linear theory and immune from the bulk-flow smearing of the BAO signature. Therefore, this algorithm could significantly improve the measurement accuracy of the sound horizon scale s. For a perfect large-scale structure survey at redshift zero without Poisson or instrumental noise, the fractional error {{Δ }}s/s is reduced by a factor of ˜2.7, very close to the ideal limit with the linear power spectrum and Gaussian covariance matrix.
Doubly charmed baryon production in heavy ion collisions
NASA Astrophysics Data System (ADS)
Yao, Xiaojun; Müller, Berndt
2018-04-01
We give an estimate of Ξcc ++ production rate and transverse momentum spectra in relativistic heavy ion collisions. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by Monte Carlo simulations. For 2.76 TeV Pb-Pb collisions with 0-10% centrality, the number of Ξcc ++ produced in the transverse momentum range 0-5 GeV and rapidity from -1 to 1 is roughly 0.02 per collision. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be formed. The number of Ξcc ++ produced in the same kinematic region is about 0.0125 per collision. We discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.
Quark-mass dependence of the H dibaryon in Λ Λ scattering
NASA Astrophysics Data System (ADS)
Yamaguchi, Yasuhiro; Hyodo, Tetsuo
2016-12-01
We study the quark mass dependence of the H dibaryon in the strangeness S =-2 baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data by the HAL QCD collaboration in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson pole in the Λ Λ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the N Ξ threshold at the physical point. The H dibaryon is unbound at the physical point, and a resonance appears just below the N Ξ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the Λ Λ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of the "H matter" in the unphysical quark mass region.
Nonlinear evolution of baryon acoustic oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman
2008-01-15
We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less
Gamma-rays and the case for baryon symmetric big-bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1977-01-01
The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1-200 MeV range, and a mechanism for galaxy formation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.
The priority of internal symmetries in particle physics
NASA Astrophysics Data System (ADS)
Kantorovich, Aharon
2003-12-01
In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.
NASA Astrophysics Data System (ADS)
Jiang, Hai
The study of identified particles from deuteron(d)+gold(Au) collisions provide a crucial reference to investigate nuclear effects observed in Au+Au collisions where a thermalized partonic state - Quark Gluon Plasma (QGP) - is thought to have been created. The measurements of transverse mass (mT) and momentum (pT) spectra at mid-rapidity (| y| < 1) for the identified strange hadrons: K0S , Λ + Λ and xi- + xi+ from d+Au collisions are presented. The measured pT covers 0.4 < p T < 6.0 GeV/c for K0S and Λ + Λ and 0.6 < pT < 5.0 GeV/c for xi- + xi+. These particles were reconstructed from the topological characteristics of their weak decays in the STAR Time Projection Chamber (TPC). The mT spectra of these particles are well described by a double exponential function which can be understood by two component models: soft (thermal) hadron production at low mT and hard hadron production at high mT. The integrated yields (dN/dy) and mean pT (< pT >) of these particles are calculated from the fit functions for different centralities. The dN/dy normalized to the number of participants (Npart) increase with Npart. The Λ(Λ ) dN/dy values at the mid-rapidity and forward rapidity regions agree with the EPOS model calculations. The measured Λ/ K0S ratios show the greatest baryon enhancement at pT ˜ 2 GeV/c in d+Au collisions. The strangeness enhancement going from d+Au to Au+Au collisions grows with the number of strange quark in a hadron. The magnitude of the enhancement is in the same order as the SPS measurement. The nuclear modification factors RCP normalized to binary collisions indicate that the Cronin effect in d+Au collisions has a distinct particle type dependence. The RCP ratios show a distinct baryon versus meson dependence: the RCP for xi- + xi+ follows that for Λ + Λ while the R CP for the φ is close to that for the K0S . The mechanism based on initial hadron or parton multiple scattering is not sufficient to explain this particle type dependence. Hadronization processes through multi-parton dynamics such as coalescence and recombination models are likely to be important for explaining baryon enhancement and the Cronin effect in high-energy d+Au collisions.
Effects of neutrino mass hierarchies on dynamical dark energy models
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Nunes, Rafael C.; Pan, Supriya; Mota, David F.
2017-05-01
We investigate how three different possibilities of neutrino mass hierarchies, namely normal, inverted, and degenerate, can affect the observational constraints on three well-known dynamical dark energy models, namely the Chevallier-Polarski-Linder, logarithmic, and the Jassal-Bagla-Padmanabhan parametrizations. In order to impose the observational constraints on the models, we performed a robust analysis using Planck 2015 temperature and polarization data, supernovae type Ia from the joint light curve analysis, baryon acoustic oscillation distance measurements, redshift space distortion characterized by f (z )σ8(z ) data, weak gravitational lensing data from the Canada-France-Hawaii Telescope Lensing Survey, and cosmic chronometer data plus the local value of the Hubble parameter. We find that different neutrino mass hierarchies return similar fits on almost all model parameters and mildly change the dynamical dark energy properties.
Brodsky, Stanley J.
2018-01-01
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?
Fuller; Pruet; Abazajian
2000-09-25
We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.
Establishing low-lying doubly charmed baryons
NASA Astrophysics Data System (ADS)
Chen, Hua-Xing; Mao, Qiang; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin
2017-08-01
We systematically study the S -wave doubly charmed baryons using the method of QCD sum rules. Our results suggest that the Ξcc ++ recently observed by LHCb can be well identified as the S -wave Ξc c state of JP=1 /2+. We study its relevant Ωc c state, the mass of which is predicted to be around 3.7 GeV. We also systematically study the P -wave doubly charmed baryons, the masses of which are predicted to be around 4.1 GeV. Especially, there can be several excited doubly charmed baryons in this energy region, and we suggest searching for them in order to study the fine structure of the strong interaction.
Large Nc equivalence and baryons
NASA Astrophysics Data System (ADS)
Blake, Mike; Cherman, Aleksey
2012-09-01
In the large Nc limit, gauge theories with different gauge groups and matter content sometimes turn out to be “large Nc equivalent,” in the sense of having a set of coincident correlation functions. Large Nc equivalence has mainly been explored in the glueball and meson sectors. However, a recent proposal to dodge the fermion sign problem of QCD with a quark number chemical potential using large Nc equivalence motivates investigating the applicability of large Nc equivalence to correlation functions involving baryon operators. Here we present evidence that large Nc equivalence extends to the baryon sector, under the same type of symmetry realization assumptions as in the meson sector, by adapting the classic Witten analysis of large Nc baryons.
Searches for Bound Neutron-Antineutron Oscillation in Liquid Argon Time Projection Chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewes, Jeremy E.T.
2017-01-01
The next-generation Deep Underground Neutrino Experiment’s liquid argon detector represents an opportunity to probe previously unexplored parameter space for beyond-Standard Model processes. One such process is baryon number violating neutron-antineutron oscillation, the observation of which would have profound implications on our understanding of the origin of the matter-antimatter asymmetry in the universe, and provide strong hints as to the nature of neutrino mass. A GENIE n
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duerr, Michael; Perez, Pavel Fileviez; Smirnov, Juri
We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. Here, we refer to this new Higgs as “Baryonic Higgs”. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and W W searches at the Large Hadron Collider, needed to find a lower bound on the scale atmore » which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. Finally, we also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.« less
Azaria, P.; Konik, R. M.; Lecheminant, P.; ...
2016-08-03
In our paper we study a (1+1)-dimensional version of the famous Nambu–Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ, is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ=0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phasesmore » with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). Finally, the QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).« less
Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton
NASA Astrophysics Data System (ADS)
Kubarovsky, V.; Guo, L.; Weygand, D. P.; Stoler, P.; Battaglieri, M.; Devita, R.; Adams, G.; Li, Ji; Nozar, M.; Salgado, C.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Ciciani, L.; Cole, P. L.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gothe, R.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Holtrop, M.; Hu, J.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Longhi, A.; Lukashin, K.; Major, R. W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mozer, M. U.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; O'Brien, J. T.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.
2004-01-01
The reaction γp→π+K-K+n was studied at Jefferson Laboratory using a tagged photon beam with an energy range of 3 5.47GeV. A narrow baryon state with strangeness S=+1 and mass M=1555±10 MeV/c2 was observed in the nK+ invariant mass spectrum. The peak’s width is consistent with the CLAS resolution (FWHM=26 MeV/c2), and its statistical significance is (7.8±1.0)σ. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by the chiral soliton model for the Θ+ baryon. In addition, the pK+ invariant mass distribution was analyzed in the reaction γp→K-K+p with high statistics in search of doubly charged exotic baryon states. No resonance structures were found in this spectrum.
Duerr, Michael; Perez, Pavel Fileviez; Smirnov, Juri
2017-09-20
We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. Here, we refer to this new Higgs as “Baryonic Higgs”. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and W W searches at the Large Hadron Collider, needed to find a lower bound on the scale atmore » which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. Finally, we also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.« less
The baryon vector current in the combined chiral and 1/Nc expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Mendieta, Ruben; Goity, Jose L
2014-12-01
The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions aremore » in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.« less
Chiral symmetry and pentaquarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitri Diakonov
2004-07-01
Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.
NASA Technical Reports Server (NTRS)
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Balance of baryon number in the quark coalescence model
NASA Astrophysics Data System (ADS)
Bialas, A.; Rafelski, J.
2006-02-01
The charge and baryon balance functions are studied in the coalescence hadronization mechanism of quark-gluon plasma. Assuming that in the plasma phase the qqbar pairs form uncorrelated clusters whose decay is also uncorrelated, one can understand the observed small width of the charge balance function in the Gaussian approximation. The coalescence model predicts even smaller width of the baryon-antibaryon balance function: σBBbar /σ+ - =√{ 2 / 3 }.
Non-conservation of global charges in the Brane Universe and baryogenesis
NASA Astrophysics Data System (ADS)
Dvali, Gia; Gabadadze, Gregory
1999-08-01
We argue that global charges, such as baryon or lepton number, are not conserved in theories with the Standard Model fields localized on the brane which propagates in higher-dimensional space-time. The global-charge non-conservation is due to quantum fluctuations of the brane surface. These fluctuations create ``baby branes'' that can capture some global charges and carry them away into the bulk of higher-dimensional space. Such processes are exponentially suppressed at low-energies, but can be significant at high enough temperatures or energies. These effects can lead to a new, intrinsically high-dimensional mechanism of baryogenesis. Baryon asymmetry might be produced due either to ``evaporation'' into the baby branes, or creation of the baryon number excess in collisions of two Brane Universes. As an example we discuss a possible cosmological scenario within the recently proposed ``Brane Inflation'' framework. Inflation is driven by displaced branes which slowly fall on top of each other. When the branes collide inflation stops and the Brane Universe reheats. During this non-equilibrium collision baryon number can be transported from one brane to another one. This results in the baryon number excess in our Universe which exactly equals to the hidden ``baryon number'' deficit in the other Brane Universe. © 1999
Bazavov, A.; Ding, H. -T.; Hegde, P.; ...
2017-10-27
In this paper, we present results for the ratios of mean (M B), variance (σmore » $$2\\atop{B}$$), skewness (S B) and kurtosis (κ B) of net baryon-number fluctuations obtained in lattice QCD calculations with physical values of light and strange quark masses. Using next-to-leading order Taylor expansions in baryon chemical potential we find that qualitative features of these ratios closely resemble the corresponding experimentally measured cumulants ratios of net proton-number fluctuations for beam energies down to √sNN ≥ 19.6 GeV. We show that the difference in cumulant ratios for the mean net baryon-number, M B/σ$$2\\atop{B}$$ = χ$$B\\atop{1}$$ (T, µ B)/χ$$B\\atop{2}$$ (T, µ B) and the normalized skewness, S Bσ B = χ$$B\\atop{3}$$ (T, µB)/χ2 (T, µB ), nat-urally arises in QCD thermodynamics. Moreover, we establish a close relation between skewness and kurtosis ratios, S Bσ$$B\\atop{3}$$/M B = χ$$B\\atop{3}$$ (T, µ B)/χ$$B\\atop{1}$$ (T,µ B) and κ Bσ$$2\\atop{B}$$ = χ$$B\\atop{4}$$ (T,μ B)/χ$$B\\atop{2}$$ (T,μ B), valid at small values of the baryon chemical potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazavov, A.; Ding, H. -T.; Hegde, P.
In this paper, we present results for the ratios of mean (M B), variance (σmore » $$2\\atop{B}$$), skewness (S B) and kurtosis (κ B) of net baryon-number fluctuations obtained in lattice QCD calculations with physical values of light and strange quark masses. Using next-to-leading order Taylor expansions in baryon chemical potential we find that qualitative features of these ratios closely resemble the corresponding experimentally measured cumulants ratios of net proton-number fluctuations for beam energies down to √sNN ≥ 19.6 GeV. We show that the difference in cumulant ratios for the mean net baryon-number, M B/σ$$2\\atop{B}$$ = χ$$B\\atop{1}$$ (T, µ B)/χ$$B\\atop{2}$$ (T, µ B) and the normalized skewness, S Bσ B = χ$$B\\atop{3}$$ (T, µB)/χ2 (T, µB ), nat-urally arises in QCD thermodynamics. Moreover, we establish a close relation between skewness and kurtosis ratios, S Bσ$$B\\atop{3}$$/M B = χ$$B\\atop{3}$$ (T, µ B)/χ$$B\\atop{1}$$ (T,µ B) and κ Bσ$$2\\atop{B}$$ = χ$$B\\atop{4}$$ (T,μ B)/χ$$B\\atop{2}$$ (T,μ B), valid at small values of the baryon chemical potential.« less
NASA Astrophysics Data System (ADS)
Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.
2012-10-01
Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.
NEUTRON-STAR MERGER EJECTA AS OBSTACLES TO NEUTRINO-POWERED JETS OF GAMMA-RAY BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Just, O.; Janka, H.-T.; Schwarz, N.
2016-01-10
We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS–NS) and neutron star–black hole (NS–BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS–NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially highmore » Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS–BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS–NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS–NS mergers.« less
Analytic prediction of baryonic effects from the EFT of large scale structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Perko, Ashley; Senatore, Leonardo, E-mail: mattlew@stanford.edu, E-mail: perko@stanford.edu, E-mail: senatore@stanford.edu
2015-05-01
The large scale structures of the universe will likely be the next leading source of cosmological information. It is therefore crucial to understand their behavior. The Effective Field Theory of Large Scale Structures provides a consistent way to perturbatively predict the clustering of dark matter at large distances. The fact that baryons move distances comparable to dark matter allows us to infer that baryons at large distances can be described in a similar formalism: the backreaction of short-distance non-linearities and of star-formation physics at long distances can be encapsulated in an effective stress tensor, characterized by a few parameters. Themore » functional form of baryonic effects can therefore be predicted. In the power spectrum the leading contribution goes as ∝ k{sup 2} P(k), with P(k) being the linear power spectrum and with the numerical prefactor depending on the details of the star-formation physics. We also perform the resummation of the contribution of the long-wavelength displacements, allowing us to consistently predict the effect of the relative motion of baryons and dark matter. We compare our predictions with simulations that contain several implementations of baryonic physics, finding percent agreement up to relatively high wavenumbers such as k ≅ 0.3 hMpc{sup −1} or k ≅ 0.6 hMpc{sup −1}, depending on the order of the calculation. Our results open a novel way to understand baryonic effects analytically, as well as to interface with simulations.« less
Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies
NASA Astrophysics Data System (ADS)
Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.
2018-03-01
The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, M.; Fujiwara, Y.
Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less
SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kormendy, John; Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au
2016-02-01
Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences betweenmore » S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.« less
Mixing {Xi}--{Xi}' Effects and Static Properties of Heavy {Xi}'s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, T. M.; Ozpineci, A.; Zamiralov, V. S.
It is shown the importance of mixing of heavy baryons {Xi}--{Xi}' with the new quantum numbers for analysis of its characteristics. The quark model of Ono is used as an example. Masses of new baryons as well as mixing angles of the states {Xi}--{Xi}' are obtained. The same reasoning is shown to be valid for the interpolating currents of these baryons in the framework of the QCD sum rules.
NASA Astrophysics Data System (ADS)
McCracken, M. E.; Bellis, M.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Pereira, S. Anefalos; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, E.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Moody, C. I.; Moriya, K.; Camacho, C. Munoz; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-10-01
We present a search for ten baryon number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ →m ℓ) and conserve either the sum or the difference of baryon and lepton number (B ±L ). The tenth decay mode (Λ →p ¯ π+ ) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4 - 200 )×10-7 at the 90% confidence level.
Halo density profiles and baryon physics
NASA Astrophysics Data System (ADS)
Del Popolo, A.; Li, Xi-Guo
2017-08-01
The radial dependence of the pseudo phase-space density, ρ( r)/ σ 3( r) is studied. We find that the pseudo phase-space density for halos consisting both of dark matter and baryons is approximately a power-law only down to 0.1% of the virial radius while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. Halos consisting just of dark matter, as the one in dark matter only simulations, are characterized by an approximately power-law behavior. The results argue against universality of the pseudo phase-space density, when the baryons effect are included, and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in [1].
Matrix theory for baryons: an overview of holographic QCD for nuclear physics.
Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro
2013-10-01
We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.
The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calle Cordon, Alvaro C.; DeGrand, Thomas A.; Goity, Jose L.
Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon massesmore » as well as in the hyperfine splittings.« less
Complex Langevin dynamics and zeroes of the fermion determinant
NASA Astrophysics Data System (ADS)
Aarts, Gert; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu
2017-05-01
QCD at nonzero baryon chemical potential suffers from the sign problem, due to the complex quark determinant. Complex Langevin dynamics can provide a solution, provided certain conditions are met. One of these conditions, holomorphicity of the Langevin drift, is absent in QCD since zeroes of the determinant result in a meromorphic drift. We first derive how poles in the drift affect the formal justification of the approach and then explore the various possibilities in simple models. The lessons from these are subsequently applied to both heavy dense QCD and full QCD, and we find that the results obtained show a consistent picture. We conclude that with careful monitoring, the method can be justified a posteriori, even in the presence of meromorphicity.
Constraining inverse-curvature gravity with supernovae.
Mena, Olga; Santiago, José; Weller, Jochen
2006-02-03
We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07
Baryogenesis and dark matter through a Higgs asymmetry.
Servant, Géraldine; Tulin, Sean
2013-10-11
In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs boson plays a key role in two main theories of baryogenesis, namely, electroweak baryogenesis and leptogenesis. In this Letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs boson and discuss the associated signatures.
NASA Astrophysics Data System (ADS)
Brodsky, S. J.
2017-07-01
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s ( Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes also determines a scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics.
Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Gonzalez-Perez, Violeta; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Ruchayskiy, Oleg
2017-07-01
N-body dark matter simulations of structure formation in the Λ cold dark matter (ΛCDM) model predict a population of subhaloes within Galactic haloes that have higher central densities than inferred for the Milky Way satellites, a tension known as the 'too big to fail' problem. Proposed solutions include baryonic effects, a smaller mass for the Milky Way halo and warm dark matter (WDM). We test these possibilities using a semi-analytic model of galaxy formation to generate luminosity functions for Milky Way halo-analogue satellite populations, the results of which are then coupled to the Jiang & van den Bosch model of subhalo stripping to predict the subhalo Vmax functions for the 10 brightest satellites. We find that selecting the brightest satellites (as opposed to the most massive) and modelling the expulsion of gas by supernovae at early times increases the likelihood of generating the observed Milky Way satellite Vmax function. The preferred halo mass is 6 × 1011 M⊙, which has a 14 per cent probability to host a Vmax function like that of the Milky Way satellites. We conclude that the Milky Way satellite Vmax function is compatible with a CDM cosmology, as previously found by Sawala et al. using hydrodynamic simulations. Sterile neutrino-WDM models achieve a higher degree of agreement with the observations, with a maximum 50 per cent chance of generating the observed Milky Way satellite Vmax function. However, more work is required to check that the semi-analytic stripping model is calibrated correctly for each sterile neutrino cosmology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunayama, Tomomi; Padmanabhan, Nikhil; Heitmann, Katrin
Precision measurements of the large scale structure of the Universe require large numbers of high fidelity mock catalogs to accurately assess, and account for, the presence of systematic effects. We introduce and test a scheme for generating mock catalogs rapidly using suitably derated N-body simulations. Our aim is to reproduce the large scale structure and the gross properties of dark matter halos with high accuracy, while sacrificing the details of the halo's internal structure. By adjusting global and local time-steps in an N-body code, we demonstrate that we recover halo masses to better than 0.5% and the power spectrum tomore » better than 1% both in real and redshift space for k =1 h Mpc{sup −1}, while requiring a factor of 4 less CPU time. We also calibrate the redshift spacing of outputs required to generate simulated light cones. We find that outputs separated by Δ z =0.05 allow us to interpolate particle positions and velocities to reproduce the real and redshift space power spectra to better than 1% (out to k =1 h Mpc{sup −1}). We apply these ideas to generate a suite of simulations spanning a range of cosmologies, motivated by the Baryon Oscillation Spectroscopic Survey (BOSS) but broadly applicable to future large scale structure surveys including eBOSS and DESI. As an initial demonstration of the utility of such simulations, we calibrate the shift in the baryonic acoustic oscillation peak position as a function of galaxy bias with higher precision than has been possible so far. This paper also serves to document the simulations, which we make publicly available.« less
SPQR - Spectroscopy: Prospects, Questions & Results
NASA Astrophysics Data System (ADS)
Pennington, M. R.
2014-06-01
Tremendous progress has been made in mapping out the spectrum of hadrons over the past decade with plans to make further advances in the decade ahead. Baryons and mesons, both expected and unexpected, have been found, the results of precision experiments often with polarized beams, polarized targets and sometimes polarization of the final states. All these hadrons generate poles in the complex energy plane that are consequences of the strong coupling regime of QCD. They reveal how this works.
Angular momentum properties of haloes and their baryon content in the Illustris simulation
NASA Astrophysics Data System (ADS)
Zjupa, Jolanta; Springel, Volker
2017-04-01
The angular momentum properties of virialized dark matter haloes have been measured with good statistics in collisionless N-body simulations, but an equally accurate analysis of the baryonic spin is still missing. We employ the Illustris simulation suite, one of the first simulations of galaxy formation with full hydrodynamics that produces a realistic galaxy population in a sizeable volume, to quantify the baryonic spin properties for more than ˜320 000 haloes. We first compare the systematic differences between different spin parameter and halo definitions, and the impact of sample selection criteria on the derived properties. We confirm that dark-matter-only haloes exhibit a close to self-similar spin distribution in mass and redshift of lognormal form. However, the physics of galaxy formation radically changes the baryonic spin distribution. While the dark matter component remains largely unaffected, strong trends with mass and redshift appear for the spin of diffuse gas and the formed stellar component. With time, the baryons staying bound to the halo develop a misalignment of their spin vector with respect to dark matter, and increase their specific angular momentum by a factor of ˜1.3 in the non-radiative case and ˜1.8 in the full physics setup at z = 0. We show that this enhancement in baryonic spin can be explained by the combined effect of specific angular momentum transfer from dark matter on to gas during mergers and from feedback expelling low specific angular momentum gas from the halo. Our results challenge certain models for spin evolution and underline the significant changes induced by baryonic physics in the structure of haloes.
Baryon Effective Theories and Phenomenology in the 1/N c Expansion
NASA Astrophysics Data System (ADS)
Fernando, Ishara Priyasad
Chiral perturbation theory (ChPT) and the 1/Nc expansion provide systematic frameworks to investigate the strong interaction at low energy. There are two main focuses of this dissertation. First, analyzing the masses of baryons in the framework of the 1/Nc expansion, using the available physical masses and masses calculated in lattice QCD. Second, combining both ChPT and the 1/Nc expansion into a single framework and applying it to the phenomenology of baryons with three light-quark flavors. In the first focus, the baryon states are organized into irreducible representa- tions of SU(6) x O(3), where the [56, ℓ P = 0+] contains the ground state and radially excited baryons, and the [56, 2+] and [70, 1 -] contain orbitally excited states are analyzed. The analyses are carried out to O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations and the famous Gell-Mann-Okubo (GMO) and Equal-Spacing (ES) relations are tested. Also, the quark mass dependence of the operator coefficients for baryon mass is discussed. In the second focus, a small scale expansion of the combined approach is defined as the xi-expansion, in which the power counting of 1/Nc and chiral expansions are linked as O(p) = O(1/Nc) = O(xi). A calculation of one-loop corrections to the ground state baryon masses, vector and axial-vector currents up to O(xi 3) is presented. Moreover, the physical and lattice QCD masses are considered in order to understand the quark mass dependence, along with an analysis of the violations to GMO, ES and Gursey-Radicati (GR) mass relations, and their dependence on Nc.
The Detection of Faint Space Objects Using Solid State Imaging Detectors.
1983-12-31
are con.iposed of baryonic matter . New arguments were presented against halos being composed of planets or asteroids. D. Hegyi was also invited to...being made up of baryonic matter . 5.0 THE CHARGE-COUPLED DEVICE IMAGING SYSTEM Our major hardware improvement during the past year is a stainless steel...Hegyi Department of Physics University of Michigan Ann Arbor, Michigan ABSIR:CT The problems with massive halos being composed of baryonic matter are
Study of compressed baryonic matter at FAIR: JINR participation
NASA Astrophysics Data System (ADS)
Derenovskaya, O.; Kurilkin, P.; Gusakov, Yu.; Ivanov, V.; Ladygin, V.; Ladygina, N.; Malakhov, A.; Peshekhonov, V.; Zinchenko, A.
2017-11-01
The scientific goal of the CBM (Compressed Baryonic Matter) experiment at FAIR (Darmstadt) is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The results of JINR participation in the development of different sub-projects of the CBM experiment are presented.
XMM-NEWTON DETECTS A HOT GASEOUS HALO IN THE FASTEST ROTATING SPIRAL GALAXY UGC 12591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Xinyu; Anderson, Michael E.; Bregman, Joel N.
2012-08-20
We present our XMM-Newton observation of the fastest rotating spiral galaxy UGC 12591. We detect hot gas halo emission out to 80 kpc from the galaxy center, and constrain the halo gas mass to be smaller than 4.5 Multiplication-Sign 10{sup 11} M{sub Sun }. We also measure the temperature of the hot gas as T = 0.64 {+-} 0.03 keV. Combining our x-ray constraints and the near-infrared and radio measurements in the literature, we find a baryon mass fraction of 0.03-0.05 in UGC 12591, suggesting a missing baryon mass of 70% compared with the cosmological mean value. Combined with anothermore » recent measurement in NGC 1961, the result strongly argues that the majority of missing baryons in spiral galaxies do not reside in their hot halos. We also find that UGC 12591 lies significantly below the baryonic Tully-Fisher relationship. Finally, we find that the baryon fractions of massive spiral galaxies are similar to those of galaxy groups with similar masses, indicating that the baryon loss is ultimately controlled by the gravitational potential well. The cooling radius of this gas halo is small, similar to NGC 1961, which argues that the majority of the stellar mass of this galaxy is not assembled as a result of cooling of this gas halo.« less
The segregation of baryons and dark matter during halo assembly
NASA Astrophysics Data System (ADS)
Liao, Shihong; Gao, Liang; Frenk, Carlos S.; Guo, Qi; Wang, Jie
2017-09-01
The standard galaxy formation theory assumes that baryons and dark matter are initially well mixed before becoming segregated due to radiative cooling. We use non-radiative hydrodynamical simulations to explicitly examine this assumption and find that baryons and dark matter can also be segregated due to different characteristics of gas and dark matter during the buildup of the halo. As a result, baryons in many haloes do not originate from the same Lagrangian region as the dark matter. When using the fraction of corresponding dark matter and gas particles in the initial conditions (the 'paired fraction') as a proxy of the dark matter and gas segregation strength of a halo, on average about 25 per cent of the baryonic and dark matter of the final halo are segregated in the initial conditions. This is at odds with the assumption of the standard galaxy formation model. A consequence of this effect is that the baryons and dark matter of the same halo initially experience different tidal torques and thus their angular momentum vectors are often misaligned. The degree of the misalignment is largely preserved during later halo assembly and can be understood with the tidal torque theory. The result challenges the precision of some semi-analytical approaches that utilize dark matter halo merger trees to infer properties of gas associated with dark matter haloes.
Calculations of kaonic nuclei based on chiral meson-baryon amplitudes
NASA Astrophysics Data System (ADS)
Gazda, Daniel; Mareš, Jiří
2013-09-01
In-medium KbarN scattering amplitudes developed within a chirally motivated coupled-channel model are used to construct K- nuclear potentials for calculations of K- nuclear quasi-bound states. Self-consistent evaluations yield K- potential depths -Re VK(ρ0) of order 100 MeV. Dynamical polarization effects and two-nucleon KbarNN→YN absorption modes are discussed. The widths ΓK of allK- nuclear quasi-bound states are comparable or even larger than the corresponding binding energies BK, exceeding considerably the energy level spacing.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4.5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization of singular potentials and power counting / M.P. Valderrrama. The challenge of calculating Baryon-Baryon scattering from lattice QCD / S.R. Beane. Precise absolute np scattering cross section and the charged [Pie symbol] NN coupling constant / S. E. Vigdor. Probing hadronic parity violation using few nucleon systems / S.A. Page. Extracting the neutron-neutron scattering length from neutron-deuteron breakup / C.R. Howell. Extraction of [equationl] from [Pie symbol]-d --> [equation] / A. Grudestig. The three- and four-body system with large scattering length / L. Platter. 3N and 4N systems and the Ay puzzle / T. Clegg. Recent progress in nuclear lattice simulations with effective field theory / D. Lee. Few-body studies at KVI / J.G. Messchendorp. Results of three nucleon experiments from RIKEN / K. Sekiguchi. A new opportunity to measure the total photoabsorption cross section of helium / P. T. Debevec. Three-body photodisintegration of 3He with double polarizations / X. Zong. Large two-pion exchange contributions to the pp --> pp[Pie symbol]0 reaction / F. Myhrer. Towards a systematic theory of nuclear forces / E. Epelbaum. Ab initio calculations of eletromagnetic reactions in light nuclei / W. Leidemann. Electron scattering from a polarized deuterium target at BLAST / R. Fatemi. Neutron-neutron scattering length from the reaction [equation] / V. Lensky. Renormalization group analysis of nuclear current operators / S.X. Nakamura. Recent results and future plans at MAX-LAB / K.G. Fissum. Nucleon polarizabilities from deutron compton scattering, and its lessons for chiral power counting / H. W. Grie hammer. Compton scattering on HE-3 / D. Choudhury -- pt. D. Hadron structure and Meson-Baryon interactions. Summary of the working group on Hadron structure and Meson-Baryon interactions / G. Feldman and T.R. Hemmert. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice discretization errors in chiral effective field theories / B.C. Tiburzi. SU(3)-breaking effects in hyperon semileptonic decays from lattice QCD / S. Simula. Uncertainty bands for chiral extrapolations / B.U. Musch. Update of the nucleon electromagnetic form factors / C. B. Crawford. N and N to ? transition from factors from lattice QCD / C. Alexandrou. The [equation] transition at low Q2 and the pionic contribution / S. Stave. Strange Quark CoNtributions to the form factors of the nucleon / F. Benmokhtar. Dynamical polarizabilities of the nucleon / B. Pasquini. Hadron magnetic moments and polarizabilities in lattice QCD / F.X. Lee. Spin-dependent compton scattering from 3He and the neutron spin polarizabilities / H. Gao. Chiral dynamics from Dyson-Schwinger equations / C.D. Roberts. Radiative neutron [Beta symbol]-decay in effective field theory / S. Gardner. Comparison between different renormalization schemes for co-variant BChPT / T.A. Gail. Non-perturbative study of the light pseudoscalar masses in chiral dynamics / José Antonio Oller. Masses and widths of hadrons in nuclear matter / M. Kotulla. Chiral effective field theory at finite density / R.J. Furnstahl. The K-nuclear interaction: a search fro deeply bound K-nuclear clusters / P. Camerini. Moments of GPDs from lattice QCD / D.G. Richards. Generalized parton distributions in effective field theory / J.W. Chen. Near-threshold pion production: experimental update / M.W. Ahmed. Pion photoproduction near threshold theory update / L. Tiator.
Elastic and transition form factors of the Δ(1232)
Segovia, Jorge; Chen, Chen; Cloet, Ian C.; ...
2013-12-10
Predictions obtained with a confining, symmetry-preserving treatment of a vector Ⓧ vector contact interaction at leading-order in a widely used truncation of QCD’s Dyson–Schwinger equations are presented for Δ and Ω baryon elastic form factors and the γN → Δ transition form factors. This simple framework produces results that are practically indistinguishable from the best otherwise available, an outcome which highlights that the key to describing many features of baryons and unifying them with the properties of mesons is a veracious expression of dynamical chiral symmetry breaking in the hadron bound-state problem. The following specific results are of particular interest.more » The Δ elastic form factors are very sensitive to m Δ. Hence, given that the parameters which define extant simulations of lattice-regularised QCD produce Δ-resonance masses that are very large, the form factors obtained therewith are a poor guide to properties of the Δ(1232). Considering the Δ-baryon’s quadrupole moment, whilst all computations produce a negative value, the conflict between theoretical predictions entails that it is currently impossible to reach a sound conclusion on the nature of the Δ-baryon’s deformation in the infinite momentum frame. Furthermore, results for analogous properties of the Ω baryon are less contentious. In connection with the N → Δ transition, the Ash-convention magnetic transition form factor falls faster than the neutron’s magnetic form factor and nonzero values for the associated quadrupole ratios reveal the impact of quark orbital angular momentum within the nucleon and Δ; and, furthermore, these quadrupole ratios do slowly approach their anticipated asymptotic limits.« less
Anomalous dynamics triggered by a non-convex equation of state in relativistic flows
NASA Astrophysics Data System (ADS)
Ibáñez, J. M.; Marquina, A.; Serna, S.; Aloy, M. A.
2018-05-01
The non-monotonicity of the local speed of sound in dense matter at baryon number densities much higher than the nuclear saturation density (n0 ≈ 0.16 fm-3) suggests the possible existence of a non-convex thermodynamics which will lead to a non-convex dynamics. Here, we explore the rich and complex dynamics that an equation of state (EoS) with non-convex regions in the pressure-density plane may develop as a result of genuinely relativistic effects, without a classical counterpart. To this end, we have introduced a phenomenological EoS, the parameters of which can be restricted owing to causality and thermodynamic stability constraints. This EoS can be regarded as a toy model with which we may mimic realistic (and far more complex) EoSs of practical use in the realm of relativistic hydrodynamics.
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
Semileptonic decays of Λ _c baryons in the relativistic quark model
NASA Astrophysics Data System (ADS)
Faustov, R. N.; Galkin, V. O.
2016-11-01
Motivated by recent experimental progress in studying weak decays of the Λ _c baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ _c→ Λ lν _l and Λ _c→ nlν _l decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data.
McCracken, Michael E.
2015-10-09
We present a search for ten baryon-number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ → mΙ) and conserve either the sum or the difference of baryon and lepton number (Β ± L). The tenth decay mode (Λ → p¯π +) represents a difference in baryon number of two units and no difference in lepton number. Furthermore, we observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4more » – 200) x 10 7 at the 90% confidence level.« less
Testing the low scale seesaw and leptogenesis
NASA Astrophysics Data System (ADS)
Drewes, Marco; Garbrecht, Björn; Gueter, Dario; Klarić, Juraj
2017-08-01
Heavy neutrinos with masses below the electroweak scale can simultaneously generate the light neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. The requirement to explain these phenomena imposes constraints on the mass spectrum of the heavy neutrinos, their flavour mixing pattern and their CP properties. We first combine bounds from different experiments in the past to map the viable parameter regions in which the minimal low scale seesaw model can explain the observed neutrino oscillations, while being consistent with the negative results of past searches for physics beyond the Standard Model. We then study which additional predictions for the properties of the heavy neutrinos can be made based on the requirement to explain the observed baryon asymmetry of the universe. Finally, we comment on the perspectives to find traces of heavy neutrinos in future experimental searches at the LHC, NA62, BELLE II, T2K, SHiP or a future high energy collider, such as ILC, CEPC or FCC-ee. If any heavy neutral leptons are discovered in the future, our results can be used to assess whether these particles are indeed the common origin of the light neutrino masses and the baryon asymmetry of the universe. If the magnitude of their couplings to all Standard Model flavours can be measured individually, and if the Dirac phase in the lepton mixing matrix is determined in neutrino oscillation experiments, then all model parameters can in principle be determined from this data. This makes the low scale seesaw a fully testable model of neutrino masses and baryogenesis.
The /a/m ratio of the baryonic matter and the black holes demography in galaxies
NASA Astrophysics Data System (ADS)
Curir, Anna; Mazzei, Paola
2001-06-01
The last years have seen a big progress in establishing the existence of supermassive black holes in the centers of galaxies. There are numerous very good cases [MNRAS 291 (1997) 219] where observations require a deep potential well. These observations raise the problem of when and how they formed and eventually when they gain most of their mass. The formation of a stationary black-hole is constrained by the conditions M>3 M ⊙ and cJ/ GM2≡ a/ m<1, J and M being the angular momentum and the total mass of the configuration which has collapsed to the hole. In this paper we analyze the behaviour of the a/ m ratio of the baryonic content in a protogalaxy, "primordial" scenario, and in a hot galaxy, "evolved" scenario, endowed with a suitable angular momentum distribution. In both the cases the baryonic matter is embedded in the gravitational potential generated by a cosmological Dark Matter (DM) halo. We deduce that the "primordial" scenario is less favourable to the black hole formation than the "evolved" one. Moreover, in the "evolved" scenario we find a twofold behaviour of the a/ m parameter which reflects the observed bimodal distribution of the central brightness in early-type galaxies and agrees with their corresponding degree of nuclear activity. As suggested by results of our SPH simulations of barred galaxies, the treatment of the dissipative processes and the inclusion of the star formation further improve the previous framework showing that barred galaxies provide very good environment for black hole formation.
Baryon asymmetry and gravitational waves from pseudoscalar inflation
NASA Astrophysics Data System (ADS)
Jiménez, Daniel; Kamada, Kohei; Schmitz, Kai; Xu, Xun-Jie
2017-12-01
In models of inflation driven by an axion-like pseudoscalar field, the inflaton, a, may couple to the standard model hypercharge via a Chern-Simons-type interaction, Script L ⊃ a/(4Λ) Ftilde F. This coupling results in explosive gauge field production during inflation, especially at its last stage, which has interesting phenomenological consequences: For one thing, the primordial hypermagnetic field is maximally helical. It is thus capable of sourcing the generation of nonzero baryon number, via the standard model chiral anomaly, around the time of electroweak symmetry breaking. For another thing, the gauge field production during inflation feeds back into the primordial tensor power spectrum, leaving an imprint in the stochastic background of gravitational waves (GWs). In this paper, we focus on the correlation between these two phenomena. Working in the approximation of instant reheating, we (1) update the investigation of baryogenesis via hypermagnetic fields from pseudoscalar inflation and (2) examine the corresponding implications for the GW spectrum. We find that successful baryogenesis requires a suppression scale Λ of around Λ ~ 3 × 1017 GeV, which corresponds to a relatively weakly coupled axion. The gauge field production at the end of inflation is then typically accompanied by a peak in the GW spectrum at frequencies in the MHz range or above. The detection of such a peak is out of reach of present-day technology; but in the future, it may serve as a smoking-gun signal for baryogenesis from pseudoscalar inflation. Conversely, models that do yield an observable GW signal suffer from the overproduction of baryon number, unless the reheating temperature is lower than the electroweak scale.
Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen
2002-06-24
comparison of any baryon and antibaryon by almost a factor of CP606, Non-Neutral Plasma Physics IV, edited by F. Anderegg et al. © 2002 American...antiprotons 3 _one-electron .1 eV quantum cyclotron 0.001 K FIGURE 1. Particle energies a million. An improved baryon CPT test (e.g. involving cold...more precise tests of CPT invariance with baryons and leptons than have been realized so far. The pursuit of cold antihydrogen thus began some time ago
Lattice QCD studies on baryon interactions in the strangeness -2 sector with physical quark masses
NASA Astrophysics Data System (ADS)
Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya
2018-03-01
We investigate baryon-baryon (BB) interactions in the strangeness S = -2 sector via the coupled-channel HAL QCD method which enables us to extract the scattering observables from Nambu-Bethe-Salpeter (NBS) wave function on the lattice. The simulations are performed with (almost) physical quark masses (mπ = 146MeV) and a huge lattice volume of La = 8.1fm. We discuss the fate of H-dibaryon state through the ΛΛ and NΞ coupled-channel scatterings
Baryon symmetric big-bang cosmology. [matter-antimatter symmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Multicharmed Baryon Production in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Zhao, Jiaxing; Zhuang, Pengfei
2017-03-01
We study nuclear medium effect on multicharmed baryon production in relativistic heavy ion collisions. By solving the three-quark Schroedinger equation at finite temperature, we calculate the wave functions and Wigner functions for doubly and triply charmed baryons Ξ_{cc} and Ω_{ccc}. Their production in nuclear collisions is largely enhanced due to the combination of uncorrelated charm quarks in the quark-gluon plasma. It is most probable to discover these new particles in heavy ion collisions at the RHIC and LHC energies.
Evolution of the baryon fraction in the Local Group: accretion versus feedback at low and high z
NASA Astrophysics Data System (ADS)
Peirani, Sébastien; Jung, Intae; Silk, Joseph; Pichon, Christophe
2012-12-01
Using hydrodynamical zoom simulations in the standard Λ cold dark matter cosmology, we investigate the evolution of the distribution of baryons (gas and stars) in a Local Group-type universe. First, with standard star formation and supernova feedback prescriptions, we find that the mean baryonic fraction value estimated at the virial radius of the two main central objects (i.e. the Milky Way and Andromeda) is decreasing over time and is 10-15 per cent lower than the universal value 0.166, at z = 0. This decrease is mainly due to the fact that the amount of accretion of dissipative gas on to the halo, especially at low redshift, is in general much lower than that of the dissipationless dark matter. Indeed, a significant part of the baryons does not collapse on to the haloes and remains in their outskirts, mainly in the form of warm hot intergalactic medium (WHIM). Moreover, during the formation of each object, some dark matter and baryons are also expelled through merger events via tidal disruption. In contrast to baryons, expelled dark matter can be more efficiently re-accreted on to the halo, enhancing both the reduction of fb inside Rv and the increase of the mass of WHIM outside Rv. Varying the efficiency of supernova feedback at low redshift does not seem to significantly affect these trends. Alternatively, when a significant fraction of the initial gas in the main objects is released at high redshifts by more powerful sources of feedback, such as active galactic nuclei from intermediate-mass black holes in lower mass galaxies, the baryonic fraction at the virial radius can have a lower value (fb˜0.12) at low redshift. Hence, physical mechanisms able to drive the gas out of the virial radius at high redshifts will have a stronger impact on the deficit of baryons in the mass budget of Milky Way-type galaxies at present times than those that expel the gas in the longer, late phases of galaxy formation.
Double polarisation experiments in meson photoproduction
NASA Astrophysics Data System (ADS)
Hartmann, Jan
2016-11-01
One of the remaining challenges within the standard model is to gain a good understanding of QCD in the non-perturbative regime. A key step towards this aim is baryon spectroscopy, investigating the spectrum and the properties of baryon resonances. To gain access to resonances with small πN partial width, photoproduction experiments provide essential information. Partial wave analyses need to be performed to extract the contributing resonances. Here, a complete experiment is required to unambiguously determine the contributing amplitudes. This involves the measurement of carefully chosen single and double polarisation observables. In a joint endeavour by MAMI, ELSA, and Jefferson Laboratory, a new generation of experiments with polarised beams, polarised proton and neutron targets, and 4π particle detectors have been performed in recent years. Many results of unprecedented quality were recently published by all three experiments, and included by the various partial wave analysis groups in their analyses, leading to substantial improvements, e.g. a more precise determination of resonance parameters. An overview of recent results is given, with an emphasis on results from the CBELSA/TAPS experiment, and their impact on our understanding of the nucleon excitation spectrum is discussed.
Matter-antimatter asymmetry and dark matter from torsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poplawski, Nikodem J.
2011-04-15
We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions,more » which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.« less
Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbietti, L.
2016-01-22
The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence ofmore » a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popolo, A. Del; Delliou, M. Le, E-mail: adelpopolo@oact.inaf.it, E-mail: delliou@ift.unesp.br
2014-12-01
We continue the study of the impact of baryon physics on the small scale problems of the ΛCDM model, based on a semi-analytical model (Del Popolo, 2009). With such model, we show how the cusp/core, missing satellite (MSP), Too Big to Fail (TBTF) problems and the angular momentum catastrophe can be reconciled with observations, adding parent-satellite interaction. Such interaction between dark matter (DM) and baryons through dynamical friction (DF) can sufficiently flatten the inner cusp of the density profiles to solve the cusp/core problem. Combining, in our model, a Zolotov et al. (2012)-like correction, similarly to Brooks et al. (2013),more » and effects of UV heating and tidal stripping, the number of massive, luminous satellites, as seen in the Via Lactea 2 (VL2) subhaloes, is in agreement with the numbers observed in the MW, thus resolving the MSP and TBTF problems. The model also produces a distribution of the angular spin parameter and angular momentum in agreement with observations of the dwarfs studied by van den Bosch, Burkert, and Swaters (2001)« less
Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...
2011-07-13
We report measurements of the resonance properties of Λ c(2595) + and Λ c(2595) + baryons in their decays to Λ c +π +π - as well as Σ c(2455) ++,0 and Σ c(2455) ++,0 baryons in their decays to Λ c +π ± final states. These measurements are performed using data corresponding to 5.2 fb -1 of integrated luminosity from pp̄ collisions at √s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. In addition, exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averagesmore » for Σ c states, and significantly smaller uncertainties than the world averages for excited Λ c + states.« less
Inference from the small scales of cosmic shear with current and future Dark Energy Survey data
MacCrann, N.; Aleksić, J.; Amara, A.; ...
2016-11-05
Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model tomore » account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.« less
The relative impact of baryons and cluster shape on weak lensing mass estimates of galaxy clusters
NASA Astrophysics Data System (ADS)
Lee, B. E.; Le Brun, A. M. C.; Haq, M. E.; Deering, N. J.; King, L. J.; Applegate, D.; McCarthy, I. G.
2018-05-01
Weak gravitational lensing depends on the integrated mass along the line of sight. Baryons contribute to the mass distribution of galaxy clusters and the resulting mass estimates from lensing analysis. We use the cosmo-OWLS suite of hydrodynamic simulations to investigate the impact of baryonic processes on the bias and scatter of weak lensing mass estimates of clusters. These estimates are obtained by fitting NFW profiles to mock data using MCMC techniques. In particular, we examine the difference in estimates between dark matter-only runs and those including various prescriptions for baryonic physics. We find no significant difference in the mass bias when baryonic physics is included, though the overall mass estimates are suppressed when feedback from AGN is included. For lowest-mass systems for which a reliable mass can be obtained (M200 ≈ 2 × 1014M⊙), we find a bias of ≈-10 per cent. The magnitude of the bias tends to decrease for higher mass clusters, consistent with no bias for the most massive clusters which have masses comparable to those found in the CLASH and HFF samples. For the lowest mass clusters, the mass bias is particularly sensitive to the fit radii and the limits placed on the concentration prior, rendering reliable mass estimates difficult. The scatter in mass estimates between the dark matter-only and the various baryonic runs is less than between different projections of individual clusters, highlighting the importance of triaxiality.
Decays of J/psi (3100) to baryon final states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, M.W.
We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of threemore » body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.« less
Ionized and Molecular Gas Kinematics in a z = 1.4 Star-forming Galaxy
NASA Astrophysics Data System (ADS)
Übler, H.; Genzel, R.; Tacconi, L. J.; Förster Schreiber, N. M.; Neri, R.; Contursi, A.; Belli, S.; Nelson, E. J.; Lang, P.; Shimizu, T. T.; Davies, R.; Herrera-Camus, R.; Lutz, D.; Plewa, P. M.; Price, S. H.; Schuster, K.; Sternberg, A.; Tadaki, K.; Wisnioski, E.; Wuyts, S.
2018-02-01
We present deep observations of a z = 1.4 massive, star-forming galaxy (SFG) in molecular and ionized gas at comparable spatial resolution (CO 3–2, NOrthern Extended Millimeter Array (NOEMA); Hα, Large Binocular Telescope (LBT)). The kinematic tracers agree well, indicating that both gas phases are subject to the same gravitational potential and physical processes affecting the gas dynamics. We combine the one-dimensional velocity and velocity dispersion profiles in CO and Hα to forward-model the galaxy in a Bayesian framework, combining a thick exponential disk, a bulge, and a dark matter halo. We determine the dynamical support due to baryons and dark matter, and find a dark matter fraction within one effective radius of {f}DM}(≤slant {R}e)={0.18}-0.04+0.06. Our result strengthens the evidence for strong baryon-dominance on galactic scales of massive z ∼ 1–3 SFGs recently found based on ionized gas kinematics alone. Based on observations carried out with the IRAM Interferometer NOEMA. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Based on observations carried out with the LBT. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam, and Heidelberg University; The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.
The Bar Mode Instability in Deleptonizing Fizzlers
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, R. H.
2009-01-01
Core collapse in massive rotating nonmagnetic stars may hangup before neutron star densities are reached when rotationally supported or partially rotation supported, hot, lepton-rich objects known as fizzlers form. For typical massive core masses, fizzlers may form if the core has angular momentum J > 1049 g cm2 s-1. Newly formed fizzlers are stable to secular and dynamic nonaxisymmetric instabilities because of the high electron fraction per baryon, Ye > 0.3, and high entropy per baryon, Sn = 1-2 k of fizzler material, and the long-term evolution of a fizzler to neutron star density is driven by deleptonization and cooling of the lepton-rich fizzler material. Both processes lead to pressure loss which causes the fizzler to contract and spin-up. All deleptonizing fizzlers eventually become subject to gravito-rotation-driven nonaxisymmetric instabilities before they reach neutron star density. We study the development of barlike instabilities in deleptonizing fizzlers. We find that vigorous growth in barlike modes occurs only after the bar mode dynamic instability threshold is passed. Because barlike modes break axial symmetry, a burst of gravitational wave (GW) radiation is produced as barlike modes develop. For typical fizzler properties, the GW radiation will have frequency 300-600 Hz with strains of 10-23-10-23, for fizzlers at distances of 15 Mpc ( Virgo cluster of galaxies). Fizzlers in the Virgo cluster would be easily detectable by the gravitational wave obervatory LIGO if the barlike mode persisted for several hundred cycles. We find that barlike modes in fizzlers persist for at least 15-30 cycles in our simulations, depending on the deleptonization rate.
Production du baryon Sigma+ dans les collisions e+e- au LEP
NASA Astrophysics Data System (ADS)
Joly, Andre
Les mécanismes de production des baryons dans les interactions e+e- font l'objet de nombreuses études. De plus, les modes de production des baryons étranges semblent faire appel A des processus spécifiques, qui sont encore mal compris. Notre étude de la production des baryons Σ+ dans les interactions e+e- nous permet de formuler certaines remarques sur l'état des connaîssances acquises sur le sujet. Une methode de reconstruction originale et des critères de sélection spécifiques ont été développés afin d'identifier des baryons Σ+ de haute Energie ( ES+ > 5 GeV), partir de leur canal de désintégration en un proton et un π0 (S+-->p+p0 ). Trois mesures principales sont réalisées à partir de notre échantillon de baryons reconstruits. Le nombre mesuré de baryons Σ+ produits par événement e +e- à 91 GeV est de:
Energy dependence of strangeness production and event-byevent fluctuations
NASA Astrophysics Data System (ADS)
Rustamov, Anar
2018-02-01
We review the energy dependence of strangeness production in nucleus-nucleus collisions and contrast it with the experimental observations in pp and p-A collisions at LHC energies as a function of the charged particle multiplicities. For the high multiplicity final states the results from pp and p-Pb reactions systematically approach the values obtained from Pb-Pb collisions. In statistical models this implies an approach to the thermodynamic limit, where differences of mean multiplicities between various formalisms, such as Canonical and Grand Canonical Ensembles, vanish. Furthermore, we report on event-by-event net-proton fluctuations as measured by STAR at RHIC/BNL and by ALICE at LHC/CERN and discuss various non-dynamical contributions to these measurements, which should be properly subtracted before comparison to theoretical calculations on dynamical net-baryon fluctuations.
Tracing the Angular Dependence of the CGM
NASA Astrophysics Data System (ADS)
Nattinger, Michael; Christensen, Charlotte
2017-01-01
The circumgalactic media (CGM) is enriched with metals through a process called the baryon cycle, which may play a significant role in the regulation of star formation. While the relationship between the CGM’s baryonic makeup and impact parameter is well documented, the relationship between the baryonic distribution of the CGM and the azimuthal angle out of the plane of the galaxy remains an open question. We investigated the angular distribution of baryons in the CGM by creating mock-absorption line spectra for a high-resolution simulation of a Milky Way-like galaxy at redshift zero. By comparison with data from the Cosmic Origins Spectrograph-Halos survey, we determined that our equivalent widths of HI, MgII, CIII, SiII, and SiIII are consistent with observations. Using our data, we found that low ionization state material is more prevalent at low azimuthal angles and that high ionization state material is more prevalent at high angles within the virial radius. We attributed this increased ionization to higher temperatures at high angles. We also found that the highest metallicity levels appear at high and low azimuthal angles, with lower metallicities at middle angles. This evidence supports the recycled accretion model of CGM baryon flow.
A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Congyao; Yu, Qingjuan; Lu, Youjun, E-mail: yuqj@pku.edu.cn
2016-04-01
Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared withmore » the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.« less
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter
2015-11-01
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ underlying confinement and the masses of light-quark hadrons determines the scale ΛMS¯ controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The data for the effective coupling defined from the Bjorken sum rule αg1(Q2) are remarkably consistent with the Gaussian form predicted by LF holographic QCD. The result is an effective coupling defined at all momenta. The predicted value ΛMS¯(NF=3)=0.440mρ=0.341±0.024GeV is in agreement with the world average 0.339±0.010GeV. We thus can connect ΛMS¯ to hadron masses. The analysis applies to any renormalization scheme.
Prospects of detecting baryon and quark superfluidity from cooling neutron stars
Page; Prakash; Lattimer; Steiner
2000-09-04
Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.
Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, S.J.; Kamyshkov, Y.A.
1996-11-01
These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.
NASA Technical Reports Server (NTRS)
Schramm, David N.
1990-01-01
It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.
Evolution of the distribution of baryons in a simulated Local Group Universe
NASA Astrophysics Data System (ADS)
Peirani, S.
2012-12-01
Using hydrodynamical zoom simulations in the standard ΛCDM cosmology, we have investigated the evolution of the distribution of baryons (gas and stars) in a local group-type universe. We found that physical mechanisms able to drive the gas out of the virial radius at high redshifts (such as AGN) will have a stronger impact on the deficit of baryons in the mass budget of Milky Way type-galaxies at present times than those that expel the gas in the longer, late phases of galaxy formation.
Masses and Regge trajectories of triply heavy Ω_{ccc} and Ω_{bbb} baryons
NASA Astrophysics Data System (ADS)
Shah, Zalak; Rai, Ajay Kumar
2017-10-01
The excited state masses of triply charm and triply bottom Ω baryons are exhibited in the present study. The masses are computed for 1 S-5 S, 1 P-5 P, 1 D-4 D and 1 F-2 F states in the Hypercentral Constituent Quark Model (hCQM) with the hyper Coulomb plus linear potential. The triply charm/bottom baryon masses are experimentally unknown so that the Regge trajectories are plotted using computed masses to assign the quantum numbers of these unknown states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
NASA Astrophysics Data System (ADS)
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration
2017-12-01
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the S U (3 ) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of ≈806 MeV ). Specifically, the S -wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of Lüscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The leading-order low-energy scattering parameters in the two-nucleon systems that were previously obtained at these quark masses are determined with a refined analysis, and the scattering parameters in two other channels containing the Σ and Ξ baryons are constrained for the first time. It is found that the values of these parameters are consistent with an approximate S U (6 ) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-Nc limit of QCD. The two distinct S U (6 )-invariant interactions between two baryons are constrained for the first time at this value of the quark masses, and their values indicate an approximate accidental S U (16 ) symmetry. The S U (3 ) irreps containing the N N (1S0), N N (3S1) and 1/√{2 } (Ξ0n +Ξ-p )(3S1) channels unambiguously exhibit a single bound state, while the irrep containing the Σ+p (3S1) channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.
Chiu, I.; Mohr, J. J.; McDonald, M.; ...
2018-05-16
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the strong mass and weak redshift trends in the stellar mass scaling relation suggest a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called 'missing baryons' outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; Mohr, J. J.; McDonald, M.
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
NASA Astrophysics Data System (ADS)
Chiu, I.; Mohr, J. J.; McDonald, M.; Bocquet, S.; Desai, S.; Klein, M.; Israel, H.; Ashby, M. L. N.; Stanford, A.; Benson, B. A.; Brodwin, M.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bayliss, M.; Benoit-Lévy, A.; Bertin, E.; Bleem, L.; Brooks, D.; Buckley-Geer, E.; Bulbul, E.; Capasso, R.; Carlstrom, J. E.; Rosell, A. Carnero; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; García-Bellido, J.; Garmire, G.; Gaztanaga, E.; Gerdes, D. W.; Gonzalez, A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, N.; Gutierrez, G.; Hlavacek-L, J.; Honscheid, K.; James, D. J.; Jeltema, T.; Kraft, R.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Murray, S.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sanchez, E.; Saro, A.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sharon, K.; Smith, R. C.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Stalder, B.; Stern, C.; Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.
2018-05-01
We estimate total mass (M500), intracluster medium (ICM) mass (MICM) and stellar mass (M⋆) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses M500 ≳ 2.5 × 1014M⊙ and redshift 0.2 < z < 1.25 from the 2500 ° ^2 South Pole Telescope SPT-SZ survey. The total masses M500 are estimated from the SZE observable, the ICM masses MICM are obtained from the analysis of Chandra X-ray observations, and the stellar masses M⋆ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) griz optical photometry and WISE or Spitzer near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past ≈9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.
Measurement of matter-antimatter differences in beauty baryon decays
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; , A. A. Alves, Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; D'Argent, P.; Romeu, J. Arnau; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; Beuzekom, M. Van; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Camboni, A.; Campana, P.; Perez, D. Campora; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Sobral, C. M. Costa; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Marinho, F. Da Cunha; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; Francisco, O. De Aguiar; Bruyn, K. De; Capua, S. De; Cian, M. De; Miranda, J. M. De; Paula, L. De; Serio, M. De; Simone, P. De; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Buono, L. Del; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Canto, A. Di; Dijkstra, H.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Albor, V. Fernandez; Prieto, A. Fernandez; Ferrari, F.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Lima, V. Franco; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Martin, L. M. Garcia; Pardiñas, J. Garcıa; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Cazon, B. R. Gruberg; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; Herwijnen, E. Van; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Gac, R. Le; Leerdam, J. Van; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Cid, E. Lemos; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Martinez, M. Lucio; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Rodriguez, J. Molina; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Goicochea, J. M. Otalora; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Olloqui, E. Picatoste; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Pernas, M. Ramos; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; Reis, A. C. Dos; Alepuz, C. Remon; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Lopez, J. A. Rodriguez; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Vidal, A. Romero; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Valls, P. Ruiz; Silva, J. J. Saborido; Sadykhov, E.; Sagidova, N.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; de Oliveira, L. Silva; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; de Paula, B. Souza; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; Tilburg, J. Van; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Vecchi, S.; Veghel, M. Van; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Vries, J. A. De; Sierra, C. Vázquez; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.
2017-04-01
Differences in the behaviour of matter and antimatter have been observed in K and B meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as CP violation. Here, using data from the LHCb experiment at the Large Hadron Collider, we search for CP-violating asymmetries in the decay angle distributions of Λb0 baryons decaying to pπ-π+π- and pπ-K+K- final states. These four-body hadronic decays are a promising place to search for sources of CP violation both within and beyond the standard model of particle physics. We find evidence for CP violation in Λb0 to pπ-π+π- decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for CP violation in the baryon sector.
NASA Astrophysics Data System (ADS)
Niiyama, M.; Sumihama, M.; Nakano, T.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Berger, M.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chang, M.-C.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Choi, Y.; Cinabro, D.; Dash, N.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jin, Y.; Joffe, D.; Joo, K. K.; Julius, T.; Karyan, G.; Kato, Y.; Katrenko, P.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Luo, T.; Masuda, M.; Matsuda, T.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Pardi, S.; Park, H.; Pedlar, T. K.; Piilonen, L. E.; Pulvermacher, C.; Ritter, M.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seidl, R.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Starič, M.; Sumiyoshi, T.; Takizawa, M.; Tanida, K.; Tenchini, F.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Varner, G.; Vossen, A.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, Y.; Widmann, E.; Williams, K. M.; Won, E.; Yamashita, Y.; Ye, H.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration
2018-04-01
We measure the inclusive production cross sections of hyperons and charmed baryons from e+e- annihilation using a 800 fb-1 data sample taken near the ϒ (4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S =-1 hyperons follow an exponential function with a single slope parameter except for the Σ (1385 )+resonance. Suppression for Σ (1385 )+ and Ξ (1530 )0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λc+ states over Σc states is observed. This observation suggests a diquark structure for these baryons.
Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model
NASA Astrophysics Data System (ADS)
Lü, Qi-Fang; Wang, Kai-Lei; Xiao, Li-Ye; Zhong, Xian-Hui
2017-12-01
We study the mass spectra and radiative decays of doubly heavy baryons within the diquark picture in a relativized quark model. The mass of the JP=1 /2+ Ξc c ground state is predicted to be 3606 MeV, which is consistent with the mass of Ξcc ++(3621 ) newly observed by the LHCb Collaboration. The predicted mass gap between two S -wave states, Ξcc * (JP=3 /2+) and Ξc c (JP=1 /2+), is 69 MeV. Furthermore, the radiative transitions of doubly heavy baryons are also estimated by using the realistic wave functions obtained from relativized quark model. The radiative decay widths of Ξcc *++→Ξcc ++γ and Ξcc *+→Ξcc +γ are predicted to be about 7 and 4 keV, respectively. These predictions of doubly heavy baryons can provide helpful information for future experimental searches.
Octet baryon masses and sigma terms from an SU(3) chiral extrapolation
NASA Astrophysics Data System (ADS)
Young, R. D.; Thomas, A. W.
2010-01-01
We report an analysis of the impressive new lattice simulation results for octet baryon masses in 2+1-flavor QCD. The analysis is based on a low-order expansion about the chiral SU(3) limit in which the symmetry breaking arises from terms linear in the quark masses plus the variation of the Goldstone boson masses in the leading chiral loops. The baryon masses evaluated at the physical light-quark masses are in remarkable agreement with the experimental values, with a model dependence considerably smaller than the rather small statistical uncertainty. From the mass formulas one can evaluate the sigma commutators for all octet baryons. This yields an accurate value for the pion-nucleon sigma commutator. It also yields the first determination of the strangeness sigma term based on 2+1-flavor lattice QCD and, in general, the sigma commutators provide a resolution to the difficult issue of fine-tuning the strange-quark mass.
Life Outside the Golden Window: Statistical Angles on the Signal-to-Noise Problem
NASA Astrophysics Data System (ADS)
Wagman, Michael
2018-03-01
Lattice QCD simulations of multi-baryon correlation functions can predict the structure and reactions of nuclei without encountering the baryon chemical potential sign problem. However, they suffer from a signal-to-noise problem where Monte Carlo estimates of observables have quantum fluctuations that are exponentially larger than their average values. Recent lattice QCD results demonstrate that the complex phase of baryon correlations functions relates the baryon signal-to-noise problem to a sign problem and exhibits unexpected statistical behavior resembling a heavy-tailed random walk on the unit circle. Estimators based on differences of correlation function phases evaluated at different Euclidean times are discussed that avoid the usual signal-to-noise problem, instead facing a signal-to-noise problem as the time interval associated with the phase difference is increased, and allow hadronic observables to be determined from arbitrarily large-time correlation functions.
QCD inequalities for the nucleon mass and the free energy of baryonic matter.
Cohen, Thomas D
2003-07-18
The positivity of the integrand of certain Euclidean space functional integrals for two flavor QCD with degenerate quark masses implies that the free energy per unit volume for QCD with a baryon chemical potential mu(B) (and zero isospin chemical potential) is greater than the free energy with an isospin chemical potential mu(I)=(2 mu(B)/N(c)) (and zero baryon chemical potential). The same result applies to QCD with any number of heavy flavors in addition to the two light flavors so long as the chemical potential is understood as applying to the light quark contributions to the baryon number. This relation implies a bound on the nucleon mass: there exists a particle X in QCD (presumably the pion) such that M(N)> or =(N(c) m(X)/2 I(X)) where m(X) is the mass of the particle and I(X) is its isospin.
Big-bang nucleosynthesis and the baryon density of the universe.
Copi, C J; Schramm, D N; Turner, M S
1995-01-13
For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niiyama, M.; Sumihama, M.; Nakano, T.
Here, we measure the inclusive production cross sections of hyperons and charmed baryons from e +e - annihilation using a 800 fb -1 data sample taken near the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S = -1 hyperons follow an exponential function with a single slope parameter except for the Σ(1385) + resonance. Suppression for Σ(1385) + and Ξ(1530) 0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λmore » $$+\\atop{c}$$ states over Σ c states is observed. This observation suggests a diquark structure for these baryons.« less
Niiyama, M.; Sumihama, M.; Nakano, T.; ...
2018-04-09
Here, we measure the inclusive production cross sections of hyperons and charmed baryons from e +e - annihilation using a 800 fb -1 data sample taken near the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S = -1 hyperons follow an exponential function with a single slope parameter except for the Σ(1385) + resonance. Suppression for Σ(1385) + and Ξ(1530) 0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λmore » $$+\\atop{c}$$ states over Σ c states is observed. This observation suggests a diquark structure for these baryons.« less
NASA Astrophysics Data System (ADS)
Mainieri, V.; Popesso, P.
2017-12-01
This conference focussed on the "baryon cycle", namely the flow of baryons through galaxies. The following aspects were discussed: a) the gas inflow into systems through streams of pristine gas or as drizzles of recycled material; b) the conversion of this gas into stars; and c) the ejection of gas enriched with heavy elements through powerful outflows. Understanding these different but mutually connected phases is of fundamental importance when studying the details of galaxy formation and evolution through cosmic time. This conference was held following the month-long workshop of the Munich Institute for Astro- and Particle Physics (MIAPP) entitled: "In & out: What rules the galaxy baryon cycle?" It therefore provided an opportunity to share the main outcomes of the MIAPP workshop with a larger audience, including many young outstanding scientists who could not attend the MIAPP workshop.
Nonmesonic weak decay dynamics from proton spectra of Λ-hypernuclei
NASA Astrophysics Data System (ADS)
Krmpotić, Franjo; de Conti, Cláudio
2014-12-01
A novel comparison between the data and the theory is proposed for the nonmesonic (NM) weak decay of hypernuclei. Instead of confronting the primary decay rates, as is usually done, we focus our attention on the effective decay rates that are straightforwardly related with the number of emitted particles. Proton kinetic energy spectra of {}5Λ He, {}7Λ Li, {}9Λ Be, {}11Λ B, {}12Λ C, {}13Λ C, {}15Λ N and {}16Λ O, measured by FINUDA, are evaluated theoretically. The independent particle shell model (IPSM) is used as the nuclear structure framework, while the dynamics is described by the one-meson-exchange (OME) potential. Only for the {}5Λ He, {}7Λ Li and {}12Λ C hypernuclei it is possible to make a comparison with the data, since for the rest there is no published experimental information on number of produced hypernuclei. Considering solely the one-nucleon-induced (1N-NM) decay channel, the theory reproduces correctly the shapes of all three spectra at medium and high energies (Ep ≳ 40 MeV). Yet, it greatly overestimates their magnitudes, as well as the corresponding transition rates when the full OME (π + K + η + ρ + ω + K*) model is used. The agreement is much improved when only the π + K mesons with soft dipole cutoff parameters participate in the decay process. We find that the IPSM is a fair first-order approximation to disentangle the dynamics of the 1N-NM decay, the knowledge of which is indispensable to inquire about the baryon-baryon strangeness-flipping interaction. It is shown that the IPSM provides very useful insights regarding the determination the 2N-NM decay rate. In a new analysis of the FINUDA data, we derive two results for this quantity with one of them close to that obtained previously.
Star formation onset in baryonic disks: The role of a triaxial halo
NASA Astrophysics Data System (ADS)
Mazzei, P.; Curir, A.
2001-06-01
We investigate the effects of the onset of star formation on the growth of bar instability using a smooth particle hydrodynamics code implemented to account for chemo-photometric evolution from UV to near-IR wavelengths. We analyze the role of a non axisymmetric dark matter halo on the bar triggering and the feedback due to the ongoing star formation rate in the disk. We find that the dark matter halo plays a very important role in the evolution of the luminous matter. The star formation rate (SFR) depends indeed both on its mass, which leads the total gravitational field, and on its dynamical state. Stronger initial bursts of star formation are triggered in the more massive unrelaxed haloes than in the relaxed ones, which are also the more concentrated at the beginning. We point out further that the dark matter concentration is different in haloes with a different initial triaxiality ratio, suggesting a dependence of the SFR also on the halo geometry. By mapping the predicted B surface brightness of the new stars formed, we find that a luminous bar along the whole disk develops only in the first stages of such an instability, then later, new stars are born in the inner regions and the bar is reduced to the central 3-4 kpc. After 1.7 Gyr the young stellar component shows stronger bars in the presence of the relaxed haloes with a lower initial triaxiality ratio; strong bars still appear in the old star isodensity contours of the same systems, at variance with our results when star formation is switched off. The formation of new stars causes indeed a lower dynamical coupling between dark matter and baryonic particles, which lengthens the life-time of the bar. Colours and metallicity gradients of new stars allow us to understand deeply the observational consequences of initial geometry and dynamical state of the halo on the star formation process.
Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation
NASA Astrophysics Data System (ADS)
Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars
2017-12-01
We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.
NASA Astrophysics Data System (ADS)
Creasey, Peter; Sameie, Omid; Sales, Laura V.; Yu, Hai-Bo; Vogelsberger, Mark; Zavala, Jesús
2017-06-01
Galactic rotation curves are a fundamental constraint for any cosmological model. We use controlled N-body simulations of galaxies to study the gravitational effect of baryons in a scenario with collisionless cold dark matter (CDM) versus one with a self-interacting dark matter (SIDM) component. In particular, we examine the inner profiles of the rotation curves in the velocity range Vmax = [30-250] km s-1, whose diversity has been found to be greater than predicted by the ΛCDM scenario. We find that the scatter in the observed rotation curves exceeds that predicted by dark matter only mass-concentration relations in either the CDM nor SIDM models. Allowing for realistic baryonic content and spatial distributions, however, helps create a large variety of rotation curve shapes, which is in a better agreement with observations in the case of self-interactions due to the characteristic cored profiles being more accommodating to the slowly rising rotation curves than CDM. We find individual fits to model two of the most remarkable outliers of similar Vmax, UGC 5721 and IC 2574 - the former a cusp-like rotation curve and the latter a seemingly 8-kpc-cored profile. This diversity in SIDM arises as permutations of overly concentrated haloes with compact baryonic distributions versus underdense haloes with extended baryonic discs. The SIDM solution is promising and its feasibility ultimately depends on the sampling of the halo mass-concentration relation and its interplay with the baryonic profiles, emphasizing the need for a better understanding of the frequency of extreme outliers present in current observational samples.
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; ...
2017-12-28
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaritsky, Dennis; Courtois, Helene; Sorce, Jenny
We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of H I spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, whichmore » we find to be 3.5 ± 0.2 (Δlog M {sub baryon}/Δlog v{sub c} ), implies that on average a nearly constant fraction (∼0.4) of all baryons expected to be in a halo are 'condensed' onto the central region of rotationally supported galaxies. The condensed baryon fraction, M {sub baryon}/M {sub total}, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, v {sub c} , between 60 and 250 km s{sup –1}, but is extended to v{sub c} ∼ 10 km s{sup –1} using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally ≤ a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v{sub c} < 250 km s{sup –1} and typically introduce no more than a factor of two range in the resulting M {sub baryon}/M {sub total}. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the BTF holds great promise, but awaits improved determinations of the stellar masses.« less
THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION
Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; ...
2015-12-01
As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg 2 . First, a "CORE" quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g < 22 or r < 22) should return ~70 deg -2 quasars at redshifts 0.9 < z < 2.2 and ~7 deg -2more » z > 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 deg -2 z > 2.1 quasars to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS north (south) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew
2013-03-15
This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver formore » these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smee, Stephen A.; Gunn, James E.; Uomoto, Alan
2013-07-12
We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measuremore » redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.« less
NASA Astrophysics Data System (ADS)
Peters, Aaron; Brown, Michael L.; Kay, Scott T.; Barnes, David J.
2018-03-01
We use a combination of full hydrodynamic and dark matter only simulations to investigate the effect that supercluster environments and baryonic physics have on the matter power spectrum, by re-simulating a sample of supercluster sub-volumes. On large scales we find that the matter power spectrum measured from our supercluster sample has at least twice as much power as that measured from our random sample. Our investigation of the effect of baryonic physics on the matter power spectrum is found to be in agreement with previous studies and is weaker than the selection effect over the majority of scales. In addition, we investigate the effect of targeting a cosmologically non-representative, supercluster region of the sky on the weak lensing shear power spectrum. We do this by generating shear and convergence maps using a line-of-sight integration technique, which intercepts our random and supercluster sub-volumes. We find the convergence power spectrum measured from our supercluster sample has a larger amplitude than that measured from the random sample at all scales. We frame our results within the context of the Super-CLuster Assisted Shear Survey (Super-CLASS), which aims to measure the cosmic shear signal in the radio band by targeting a region of the sky that contains five Abell clusters. Assuming the Super-CLASS survey will have a source density of 1.5 galaxies arcmin-2, we forecast a detection significance of 2.7^{+1.5}_{-1.2}, which indicates that in the absence of systematics the Super-CLASS project could make a cosmic shear detection with radio data alone.
NASA Astrophysics Data System (ADS)
Gomer, Matthew R.; Williams, Liliya L. R.
2018-04-01
The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.
The dark components of the Universe are slowly clarified
NASA Astrophysics Data System (ADS)
Burdyuzha, V. V.
2017-02-01
The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a "crisis" before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10—5-10-3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was "repeated" by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.
Strangeness S =-1 hyperon-nucleon scattering in covariant chiral effective field theory
NASA Astrophysics Data System (ADS)
Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bingwei
2016-07-01
Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness S =-1 . In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the Y N scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively similar at leading order.
Meson and baryon dispersion relations with Brillouin fermions
NASA Astrophysics Data System (ADS)
Dürr, Stephan; Koutsou, Giannis; Lippert, Thomas
2012-12-01
We study the dispersion relations of mesons and baryons built from Brillouin quarks on one Nf=2 gauge ensemble provided by QCDSF. For quark masses up to the physical strange quark mass, there is hardly any improvement over the Wilson discretization, if either action is link-smeared and tree-level clover improved. For quark masses in the range of the physical charm quark mass, the Brillouin action still shows a perfect relativistic behavior, while the Wilson action induces severe cutoff effects. As an application we determine the masses of the Ωc0, Ωcc+ and Ωccc++ baryons on that ensemble.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raduta, Ad. R.; Gulminelli, F.; Oertel, M.
2015-02-24
We discuss the thermodynamics of compressed baryonic matter with strangeness within non-relativistic mean-field models with effective interactions. The phase diagram of the full baryonic octet under strangeness equilibrium is built and discussed in connection with its relevance for core-collapse supernovae and neutron stars. A simplified framework corresponding to (n, p, Λ)(+e)-mixtures is employed in order to test the sensitivity of the existence of a phase transition on the (poorely constrained) interaction coupling constants and the compatibility between important hyperonic abundances and 2M{sub ⊙} neutron stars.
NASA Astrophysics Data System (ADS)
Stavinskiy, A. V.
2017-09-01
A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.
BM@N and MPD experiments at NICA
NASA Astrophysics Data System (ADS)
Kekelidze, Vladimir; Kolesnikov, Vadim; Sorin, Alexander
2018-02-01
The project NICA (Nuclotron-based Ion Collider fAcility) aims to study hot and baryon rich QCD matter in heavy ion collisions in the energy range = 4 - 11 GeV. The rich heavy-ion physics program will be performed at two experiments, BM@N (Baryonic Matter at Nuclotron) at beams extracted from the Nuclotron, and at MPD (Multi-Purpose Detector) at the NICA collider. This program covers a variety of phenomena in strongly interacting matter of the highest baryonic density, which includes study of collective effects, production of hyperon and hypernuclei, in-medium modification of meson properties, and event-by-event fluctuations.
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Brown, R. W.
1979-01-01
Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.
Cosmological baryon and lepton number in the presence of electroweak fermion-number violation
NASA Technical Reports Server (NTRS)
Harvey, Jeffrey A.; Turner, Michael S.
1990-01-01
In the presence of rapid fermion-number violation due to nonperturbative electroweak effects certain relations between the baryon number of the Universe and the lepton numbers of the Universe are predicted. In some cases the electron-neutrino asymmetry is exactly specified in terms of the baryon asymmetry. Without introducing new particles, beyond the usual quarks and leptons, it is necessary that the Universe possess a nonzero value of B - L prior to the epoch of fermion-number violation if baryon and lepton asymmetries are to survive. Contrary to intuition, even though electroweak processes violate B + L, a nonzero value of B + L persists after the epoch of rapid fermion-number violation. If the standard model is extended to include lepton-number violation, for example through Majorana neutrino masses, then electroweak processes will reduce the baryon number to zero even in the presence of an initial B - L unless 20 M(sub L) approximately greater than the square root of (T(sub B - L) m(sub P1)) where M(sub L) sets the scale of lepton number violation and T(sub B - L) is the temperature at which a B - L asymmetry is produced. In many models this implies that neutrinos must be so light that they cannot contribute appreciably to the mass density of the Universe.
Quark-level analogue of nuclear fusion with doubly heavy baryons.
Karliner, Marek; Rosner, Jonathan L
2017-11-01
The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ c ) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4 He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.
NASA Astrophysics Data System (ADS)
Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.
2016-05-01
We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.
Semileptonic decays of charmed and beauty baryons with heavy sterile neutrinos in the final state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramazanov, Sabir; Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312
We obtain tree-level estimates of various differential branching ratios of heavy baryon decays with massive sterile neutrinos {nu}{sub x} in the final state. Generally, charmed baryons are found to be less promising than charmed mesons, in contrast to b hadrons. In the latter case, branching ratios of beauty mesons and baryons into sterile neutrinos are of the same order. As a consequence, at high energies beauty baryons give contribution to sterile neutrino production comparable to the contribution of beauty mesons (up to about 15%). Experimental limits on active-to-sterile mixing are quite strong for neutrinos lighter than D mesons but formore » heavier neutrinos they are weaker. As an example, for neutrino masses in the range 2 GeV < or approx. m{sub {nu}{sub x}} < or approx. 2.5 GeV, current data imply that the bounds on {lambda}{sub b}-hyperon branching ratios into sterile neutrinos are Br({lambda}{sub b}{yields}{lambda}{sub c}+e{sup -}+{nu}{sub x}) < or approx. 1.3x10{sup -5}-1.7x10{sup -6} and Br({lambda}{sub b}{yields}{lambda}{sub c}+{mu}{sup -}+{nu}{sub x}) < or approx. 3.9x10{sup -7}-1.4x10{sup -7}.« less
Cross-section measurement for quasi-elastic production of charmed baryons in νN interactions
NASA Astrophysics Data System (ADS)
Kayis-Topaksu, A.; Onengüt, G.; van Dantzig, R.; de Jong, M.; Melzer, O.; Oldeman, R. G. C.; Pesen, E.; Spada, F. R.; Visschers, J. L.; Güler, M.; Köse, U.; Serin-Zeyrek, M.; Sever, R.; Tolun, P.; Zeyrek, M. T.; Catanesi, M. G.; de Serio, M.; Ieva, M.; Muciaccia, M. T.; Radicioni, E.; Simone, S.; Bülte, A.; Winter, K.; van de Vyver, B.; Vilain, P.; Wilquet, G.; Pittoni, G. L.; Saitta, B.; di Capua, E.; Ogawa, S.; Shibuya, H.; Artamonov, A.; Chizhov, M.; Doucet, M.; Hristova, I. R.; Kawamura, T.; Kolev, D.; Meinhard, H.; Panman, J.; Papadopoulos, I. M.; Ricciardi, S.; Rozanov, A.; Tsenov, R.; Uiterwijk, J. W. E.; Zucchelli, P.; Goldberg, J.; Chikawa, M.; Arik, E.; Song, J. S.; Yoon, C. S.; Kodama, K.; Ushida, N.; Aoki, S.; Hara, T.; Delbar, T.; Favart, D.; Grégoire, G.; Kalinin, S.; Maklioueva, I.; Gorbunov, P.; Khovansky, V.; Shamanov, V.; Tsukerman, I.; Bruski, N.; Frekers, D.; Hoshino, K.; Kawada, J.; Komatsu, M.; Miyanishi, M.; Nakamura, M.; Nakano, T.; Narita, K.; Niu, K.; Niwa, K.; Nonaka, N.; Sato, O.; Toshito, T.; Buontempo, S.; Cocco, A. G.; D'Ambrosio, N.; de Lellis, G.; De Rosa, G.; di Capua, F.; Ereditato, A.; Fiorillo, G.; Marotta, A.; Messina, M.; Migliozzi, P.; Pistillo, C.; Scotto Lavina, L.; Strolin, P.; Tioukov, V.; Nakamura, K.; Okusawa, T.; Dore, U.; Loverre, P. F.; Ludovici, L.; Righini, P.; Rosa, G.; Santacesaria, R.; Satta, A.; Barbuto, E.; Bozza, C.; Grella, G.; Romano, G.; Sirignano, C.; Sorrentino, S.; Sato, Y.; Tezuka, I.; CHORUS Collaboration
2003-11-01
A study of quasi-elastic production of charmed baryons in charged-current interactions of neutrinos with the nuclear emulsion target of CHORUS is presented. In a sample of about 46 000 interactions located in the emulsion, candidates for decays of short-lived particles were identified by using new automatic scanning systems and later confirmed through visual inspection. Criteria based both on the topological and kinematical characteristics of quasi-elastic charm production allowed a clear separation between events of this type and those in which charm is produced in deep inelastic processes. A final sample containing 13 candidates consistent with quasi-elastic production of a charmed baryon with an estimated background of 1.7 events was obtained. At the average neutrino energy of 27 GeV the cross-section for the total quasi-elastic production of charmed baryons relative to the νN charged-current cross-section was measured to be σ(QE)/σ(CC)=(0.23+0.12-0.06(stat)+0.02-0.03(syst))×10-2. Through an analysis of the topology at the production and decay vertices the relative cross-sections were measured separately for singly (Λc+,Σc+,Σc+∗) and doubly (Σc++,Σc++∗) charged baryons.
The qqqqq components and hidden flavor contributions to the baryon magnetic moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, C. S.; Li, Q. B.; Riska, D. O.
2006-11-15
The contributions from the qqqqq components to the magnetic moments of the octet as well as the {delta}{sup ++} and {omega}{sup -} decuplet baryons are calculated for the configurations that are expected to have the lowest energy if the hyperfine interaction depends on both spin and flavor. The contributions from the uu,dd, and the ss components are given separately. It is shown that addition of qqqqq admixtures to the ground state baryons can improve the overall description of the magnetic moments of the baryon octet and decuplet in the quark model without SU(3) flavor symmetry breaking, beyond that of themore » different constituent masses of the strange and light-flavor quarks. The explicit flavor (and spin) wave functions for all the possible configurations of the qqqqq components with light and strange qq pairs are given for the baryon octet and decuplet. Admixtures of {approx}10% of the qqqqq configuration where the flavor-spin symmetry is [4]{sub FS}[22]{sub F}[22]{sub S}, which is likely to have the lowest energy, in particular reduces the deviation from the empirical values of the magnetic moments {sigma}{sup -} and the {xi}{sup 0} compared with the static qqq quark model.« less
Quark-level analogue of nuclear fusion with doubly heavy baryons
NASA Astrophysics Data System (ADS)
Karliner, Marek; Rosner, Jonathan L.
2017-11-01
The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λc) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.
{lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yuming; Lue Caidian; Shen Yuelong
2009-10-01
Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less
NASA Astrophysics Data System (ADS)
Somogyi, Gábor; Smith, Robert E.
2010-01-01
We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. DPRVDAQ1550-7998 73, 063519 (2006)10.1103/PhysRevD.73.063519] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid—the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ˜3% on scales of order k˜0.05hMpc-1 at z=10, and by ˜0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ˜15% on scales k˜0.05hMpc-1 at z=10, and by ˜3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the two- and one-component fluid approaches, then we find excellent agreement, with deviations being <0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe cannot be achieved through an effective mean-mass one-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than <1% over the full range of scales and times considered.
The Nonlinear Evolution of Massive Stellar Core Collapses That ``Fizzle''
NASA Astrophysics Data System (ADS)
Imamura, James N.; Pickett, Brian K.; Durisen, Richard H.
2003-04-01
Core collapse in a massive rotating star may pause before nuclear density is reached, if the core contains total angular momentum J>~1049 g cm2 s-1. In such aborted or ``fizzled'' collapses, temporary equilibrium objects form that, although rapidly rotating, are secularly and dynamically stable because of the high electron fraction per baryon Ye>0.3 and the high entropy per baryon Sb/k~1-2 of the core material at neutrino trapping. These fizzled collapses are called ``fizzlers.'' In the absence of prolonged infall from the surrounding star, the evolution of fizzlers is driven by deleptonization, which causes them to contract and spin up until they either become stable neutron stars or reach the dynamic instability point for barlike modes. The barlike instability case is of current interest because the bars would be sources of gravitational wave (GW) radiation. In this paper, we use linear and nonlinear techniques, including three-dimensional hydrodynamic simulations, to study the behavior of fizzlers that have deleptonized to the point of reaching dynamic bar instability. The simulations show that the GW emission produced by bar-unstable fizzlers has rms strain amplitude r15h=10-23 to 10-22 for an observer on the rotation axis, with wave frequency of roughly 60-600 Hz. Here h is the strain and r15= (r/15 Mpc) is the distance to the fizzler in units of 15 Mpc. If the bars that form by dynamic instability can maintain GW emission at this level for 100 periods or more, they may be detectable by the Laser Interferometer Gravitational-Wave Observatory at the distance of the Virgo Cluster. They would be detectable as burst sources, defined as sources that persist for ~10 cycles or less, if they occurred in the Local Group of galaxies. The long-term behavior of the bars is the crucial issue for the detection of fizzler events. The bars present at the end of our simulations are dynamically stable but will evolve on longer timescales because of a variety of effects, such as shock heating, infall, deleptonization, and cooling, as well as gravitational radiation and Newtonian gravitational coupling to surrounding material. Long-term simulations including these effects will be necessary to determine the ultimate fate and GW production of fizzlers with certainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S. J.
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
Brodsky, S. J.
2017-07-11
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations
NASA Astrophysics Data System (ADS)
Dvali, Gia; Gußmann, Alexander
2016-12-01
We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubert, B.; Bona, M.; Boutigny, D.
We present a study of excited charm-strange baryon states produced in e{sup +}e{sup -} annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 384 fb{sup -1} recorded with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings at the Stanford Linear Accelerator Center. We study strong decays of charm-strange baryons to {lambda}{sub c}{sup +}K{sub S}{sup 0}, {lambda}{sub c}{sup +}K{sup -}, {lambda}{sub c}{sup +}K{sup -}{pi}{sup +}, {lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}, {lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}, and {lambda}{sub c}{sup +}K{sup -}{pi}{sup +}{pi}{sup -}. This study confirmsmore » the existence of the states {xi}{sub c}(2980){sup +}, {xi}{sub c}(3077){sup +}, and {xi}{sub c}(3077){sup 0}, with a more accurate determination of the {xi}{sub c}(2980){sup +} mass and width. We also present evidence for two new states, {xi}{sub c}(3055){sup +} and {xi}{sub c}(3123){sup +}, decaying through the intermediate-resonant modes {sigma}{sub c}(2455){sup ++}K{sup -} and {sigma}{sub c}(2520){sup ++}K{sup -}, respectively. For each of these baryons, we measure the yield in each final state, determine the statistical significance, and calculate the product of the production cross section and branching fractions. We also measure the masses and widths of these excited charm-strange baryons.« less
NASA Astrophysics Data System (ADS)
Kazin, Eyal A.; Sánchez, Ariel G.; Cuesta, Antonio J.; Beutler, Florian; Chuang, Chia-Hsun; Eisenstein, Daniel J.; Manera, Marc; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Ross, Ashley J.; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Xu, Xiaoying; Brinkmann, J.; Joel, Brownstein; Nichol, Robert C.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel
2013-10-01
We analyse the 2D correlation function of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of massive galaxies of the ninth data release to measure cosmic expansion H and the angular diameter distance DA at a mean redshift of
Baryons and their Effects on Planes of Satellites Around Milky Way-Mass Galaxies
NASA Astrophysics Data System (ADS)
Ahmed, Sheehan H.
2017-01-01
Both the Milky Way and Andromeda have thin, coherently rotating planes of satellites. In this study I try to find similar satellite planes around four different Milky Way-mass simulations, each run both as dark matter-only and with baryons included. In all halos I am able to identify a planar configuration that significantly maximizes the number of satellites that are members of a plane. The member satellites that make up this maximum plane are consistently different between the dark matter-only and baryonic versions of the same run. In the baryonic runs, satellites are more likely to be destroyed through interactions with the disk, and substructure tends to infall later. Hence, studying satellite planes in dark matter-only simulations is misleading, because they will be composed of different satellite members than those that would exist if baryons were included. Additionally, baryonic runs tend to have less radially concentrated satellite distributions. Since all planes pass through the center of the galaxy, it is much harder to create a plane containing a large number of satellites from a random distribution if the satellites have a low radial concentration. Andromeda’s low radial satellite concentration is possibly a key reason behind why the plane in Andromeda is highly significant. Despite this, when co-rotation is considered, none of the satellite planes identified for the simulated galaxies are as statistically significant as the observed planes around the Milky Way and Andromeda. I will then show that co-rotation in our satellite planes can be attributed to how the satellites are accreted through filaments from the cosmic web. When two sets of opposing filaments contribute, coherent planes are more likely to form, when there are no well-defined filaments, there is a lack of coherent satellite rotation.
Possible signals of vacuum dynamics in the Universe
NASA Astrophysics Data System (ADS)
Peracaula, Joan Solà; de Cruz Pérez, Javier; Gómez-Valent, Adrià
2018-05-01
We study a generic class of time-evolving vacuum models which can provide a better phenomenological account of the overall cosmological observations as compared to the ΛCDM. Among these models, the running vacuum model (RVM) appears to be the most motivated and favored one, at a confidence level of ˜3σ. We further support these results by computing the Akaike and Bayesian information criteria. Our analysis also shows that we can extract fair signals of dynamical dark energy (DDE) by confronting the same set of data to the generic XCDM and CPL parametrizations. In all cases we confirm that the combined triad of modern observations on Baryonic Acoustic Oscillations, Large Scale Structure formation, and the Cosmic Microwave Background, provide the bulk of the signal sustaining a possible vacuum dynamics. In the absence of any of these three crucial data sources, the DDE signal can not be perceived at a significant confidence level. Its possible existence could be a cure for some of the tensions existing in the ΛCDM when confronted to observations.
Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs
NASA Astrophysics Data System (ADS)
Chhotray, Atul; Lazzati, Davide
2018-05-01
We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph < Rsat regime. Our results reveal new phases of fireball evolution: a transition phase with a radial extent of several orders of magnitude - the fireball transitions from Γ ∝ R to Γ ∝ R0, a post-photospheric acceleration phase - where fireballs accelerate beyond the photosphere and a Thomson-dominated acceleration phase - characterized by slow acceleration of optically thick, matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.
The Modified Dynamics is Conducive to Galactic Warp Formation
NASA Astrophysics Data System (ADS)
Brada, Rafael; Milgrom, Mordehai
2000-03-01
There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.
Probing the Hot and Energetic Universe: X-rays and Astrophysics
NASA Astrophysics Data System (ADS)
Bautz, Marshall; Kraft, Ralph
2016-03-01
X-ray observations are a cornerstone of our understanding of the formation and evolution of structure in the Universe, from solar-system-sized supermassive black holes (SMBH) to the largest galaxy clusters. At the most basic level, a significant fraction of the energy output in the Universe is in X-rays, and much of this emission traces the response of baryonic matter to the inexorable, gravity-driven growth of cosmic structure. At present, for example, half or more of the baryons in the Universe reside in a hot (>1 MK) X-ray-emitting phase. We discuss some of the remarkable progress that has been made in understanding the broad outlines of these processes with the current generation of X-ray observatories. We summarize the potential of recently launched and forthcoming X-ray observatories to track the development of large-scale cosmic structure and to understand the physics linking the growth of SMBH with that of the (many orders of magnitude larger) galaxies and clusters which host them. We briefly review nearer-term prospects for smaller, focussed missions, including one that will soon exploit pulsating X-ray emission from neutron stars to probe the equation of state of matter at nuclear densities.
NASA Astrophysics Data System (ADS)
Saga, Shohei; Tashiro, Hiroyuki; Yokoyama, Shuichiro
2018-02-01
We provide a new bound on the amplitude of primordial magnetic fields (PMFs) by using a novel mechanism, magnetic reheating. The damping of the magnetohydrodynamics fluid motions in a primordial plasma brings the dissipation of the PMFs. In the early Universe with z ≳ 2 × 106, cosmic microwave background (CMB) photons are quickly thermalized with the dissipated energy and shift to a different Planck distribution with a new temperature. In other words, the PMF dissipation changes the baryon-to-photon number ratio, and we name such a process magnetic reheating. From the current baryon-to-photon number ratio obtained from the big bang nucleosynthesis and CMB observations, we put the strongest constraint on the PMFs on small scales which CMB observations cannot access, B0 ≲ 1.0 μG at the scales 104 < k < 108 h Mpc-1. Moreover, when the PMF spectrum is given in a blue power-law type, the magnetic reheating puts a quite strong constraint, for example, B0 ≲ 10-17, 10-23, and 10-29 nG at 1 comoving Mpc for nB = 1.0, 2.0, and 3.0, respectively. This constraint would give an impact on generation mechanisms of PMFs in the early Universe.
Black-hole-regulated star formation in massive galaxies.
Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn
2018-01-18
Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.
The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.
Scannapieco; Ferrara; Broadhurst
2000-06-10
We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.
Black-hole-regulated star formation in massive galaxies
NASA Astrophysics Data System (ADS)
Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn
2018-01-01
Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.
Baryon Asymmetry of the Universe (1/2)
None
2017-12-09
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
Baryon Asymmetry of the Universe (2/2)
None
2017-12-09
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
THE EIGHTFOLD WAY: A THEORY OF STRONG INTERACTION SYMMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gell-Mann, M.
1961-03-15
A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is sscribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X/sup o/ having I = 0. A ninth vector meson coupled to the baryon current can be accomodated natarallymore » in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e/sup -/ , and mu /sup -/, which may throw light on the structure of weak interactions. (D. L.C.)« less
Reconciling threshold and subthreshold expansions for pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Siemens, D.; Ruiz de Elvira, J.; Epelbaum, E.; Hoferichter, M.; Krebs, H.; Kubis, B.; Meißner, U.-G.
2017-07-01
Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion-nucleon amplitude in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order in the small-scale expansion, we address the question to what extent this tension can be mitigated by including the Δ (1232) as an explicit degree of freedom and/or using a covariant formulation of baryon ChPT. We find that the inclusion of the Δ indeed reduces the low-energy constants to more natural values and thereby improves consistency between threshold and subthreshold kinematics. In addition, even in the Δ-less theory the resummation of 1 /mN corrections in the covariant scheme improves the results markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon sector of ChPT that so far have evaded a profound theoretical explanation.