Science.gov

Sample records for dynamically generated open

  1. Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.

  2. OMG: Open Molecule Generator.

    PubMed

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  3. OMG: Open Molecule Generator

    PubMed Central

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck. PMID:22985496

  4. Nonlinear vortex dynamics in open nonequilibrium systems with bulk mass loss and a generation mechanism for tornadoes and typhoons

    SciTech Connect

    Pashitskii, E. A.

    2010-06-15

    Based on a general model of nonlinear vortex dynamics in open thermodynamically nonequilibrium systems with bulk or surface mass losses, an analysis is presented of the mechanism of generation of violent atmospheric vortices (tornadoes, typhoons, cyclones) associated with the formation of deep cloud systems by intense condensation of water vapor from moist air cooled below the dew point. Simple particular solutions to the Navier-Stokes equations are found that describe both axisymmetric and nonaxisymmetric incompressible vortex motions involving radial and vertical flows with viscous dissipation vanishing identically everywhere except for a thin shear layer at the boundary of the condensation region. It is shown that the nonlinear convective and local Coriolis forces generated by radial inflow in the presence of a background vorticity due to a global Coriolis force (the Earth's rotation) accelerate the solid-body rotation in the vortex core either exponentially or in a nonlinear regime of finite-time blow-up. Due to updrafts, such a vortex is characterized by a strong helicity. This mechanism explains a number of observed properties and characteristics of the structure and evolution of tornadoes and typhoons. Upper estimates are found for the kinetic energies of violent atmospheric vortices. It is shown that increase in rotational kinetic energy of atmospheric vortices with constant vortex-core radii is consistent with energy and momentum conservation, because radial inflow continually supplies the required amount of rotational kinetic energy drawn from the ambient atmosphere to an open system.

  5. Baryons with open beauty dynamically generated from meson-baryon interaction in the extended local hidden gauge approach

    NASA Astrophysics Data System (ADS)

    Liang, Wei-Hong; Xiao, C. W.; Oset, E.

    2016-05-01

    In this talk we review the results about the interaction of B ¯N , B ¯Δ, B ¯*N and B ¯*Δ states with beauty B = 1, together with their coupled channels, using the extended local hidden gauge approach. The Λb(5912) and Λb(5920) observed in the experiment are dynamically generated from the meson-baryon interaction, and they couple mostly to B ¯*N , which are degenerate with the Weinberg-Tomozawa interaction. In addition, three more states with I = 0 and eight more states with I = 1 are predicted.

  6. Dynamics of an open metabolic cycle at the surface of a charged membrane II. Multiple steady states and oscillatory behavior generated by electric repulsion effects

    NASA Astrophysics Data System (ADS)

    Mulliert, Guillermo; Kellershohn, Nicolas; Ricard, Jacques

    1990-12-01

    If an open metabolic cycle, made up with two antagonistic enzyme reactions, takes place at the surface of a charged membrane, the electric partitioning of the two charged reaction intermediates may generate the existence of three steady states. Two of these steady states are stable and another one is unstable. This means that the steady-state concentration of the reaction intermediate, S 1, may display a hysteresis loop when plotted versus the input rate of matter in the system. Similarly there exists a hysteresis loop of the electric potential at the surface of the membrane when the input rate of matter is varied. This type of dynamic behavior implies that the open multi-enzyme system is able to sense not only the intensity of a chemical signal (the input rate) but also the direction of variation of this signal, that is, whether this signal is being increased, or decreased. Another remarkable property of electric partitioning of charged reaction intermediates is that when increasing the substrate concentration, the local pH in the membrane rises. If the reaction rate of the bound enzyme decreases under the these conditions, the overall system may display sustained oscillations and limit cycle of the two reaction intermediates, as well as of the electric partition coefficient. The existence of sustained oscillations at the surface of the membrane may be viewed as a device which increases the efficiency of the metabolic cycle. These remarkable nonlinear properties of the open enzyme network are not properties of the enzyme network but of the partitioning of the reaction intermediates in the network.

  7. Quantum speed limits in open system dynamics.

    PubMed

    del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F

    2013-02-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

  8. OCSEGen: Open Components and Systems Environment Generator

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana

    2014-01-01

    To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.

  9. Characterization of open-cycle coal-fired MHD generators

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  10. Generative models of conformational dynamics.

    PubMed

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.

  11. Dynamics of Mouth Opening in Hydra

    PubMed Central

    Carter, Jason A.; Hyland, Callen; Steele, Robert E.; Collins, Eva-Maria S.

    2016-01-01

    Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo. PMID:26958895

  12. Dynamics of Mouth Opening in Hydra.

    PubMed

    Carter, Jason A; Hyland, Callen; Steele, Robert E; Collins, Eva-Maria S

    2016-03-08

    Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  14. Dynamical generation of Majorana masses

    SciTech Connect

    Abada, A.; Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J. )

    1990-09-01

    We address the general question of the dynamical generation of Majorana masses through quartic interactions of the Nambu--Jona-Lasinio (NJL) type that have both chiral and lepton-number invariances. We make composite the Higgs field of the schemes of spontaneous breaking of the leptonic number; we can thus assign to it a leptonic number {vert bar}{ital L}{vert bar}=2 in a natural way. We consider a Weyl field and write a quartic self-interaction for this field that dynamically breaks chiral and fermion-number invariances and exhibits a whole spectrum of composite particles with different quantum numbers, in addition to a Goldstone Majoron. We compare in detail the Dirac and the Majorana cases. The vacuum degeneracy is the same in both cases, but the vacuum invariances are not. For a single fermion species, we have for the Dirac case a U(1){sub {ital V}{minus}{ital A}}{times}U(1){sub {ital V}+{ital A}} invariance that breaks down to U(1){sub {ital V}} and for the Majorana case a single U(1) invariance that breaks down to the identity {ital open}1. In general the Schwinger-Dyson equation is not the same for both cases, since for Majorana fermions we have propagators of several types. However, in the particular case of a NJL {ital contact} interaction (for Majorana fermions this is {ital the} {ital only} {ital nonvanishing} {ital contact} {ital quartic}/{ital B} {ital interaction}), and with a convenient convention for the coupling, the Schwinger-Dyson equation turns out to have the same form for Dirac and for Majorana fermions. The bound-state boson spectrum is quite different in both cases: for the Dirac case, one has a spectrum {sup 2{ital S}+1}{ital L}{sub {ital J}}({ital S}=0,1) {ital J}{sup {ital P}{ital C}}=0{sup {minus}+},1{sup {minus}{minus}},0{sup ++},1{sup ++},1{sup +{minus}},2{sup ++},. . .

  15. Dynamic Participation in Interdistrict Open Enrollment

    ERIC Educational Resources Information Center

    Lavery, Lesley; Carlson, Deven

    2015-01-01

    Interdistrict open enrollment is the nation's largest and most widespread school choice program, but our knowledge of these programs is limited. Drawing on 5 years of student-level data from the universe of public school attendees in Colorado, we perform a three-stage analysis to examine the dynamics of student participation in the state's…

  16. Dynamic Participation in Interdistrict Open Enrollment

    ERIC Educational Resources Information Center

    Lavery, Lesley; Carlson, Deven

    2015-01-01

    Interdistrict open enrollment is the nation's largest and most widespread school choice program, but our knowledge of these programs is limited. Drawing on 5 years of student-level data from the universe of public school attendees in Colorado, we perform a three-stage analysis to examine the dynamics of student participation in the state's…

  17. Quantum Simulation for Open-System Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry

    2013-03-01

    Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.

  18. Generative Models of Conformational Dynamics

    PubMed Central

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358

  19. Generating Dynamic System Matrices for Dynamic SPECT

    SciTech Connect

    2011-02-01

    The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation of the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed

  20. Next Generation Suspension Dynamics Algorithms

    SciTech Connect

    Schunk, Peter Randall; Higdon, Jonathon; Chen, Steven

    2014-12-01

    This research project has the objective to extend the range of application, improve the efficiency and conduct simulations with the Fast Lubrication Dynamics (FLD) algorithm for concentrated particle suspensions in a Newtonian fluid solvent. The research involves a combination of mathematical development, new computational algorithms, and application to processing flows of relevance in materials processing. The mathematical developments clarify the underlying theory, facilitate verification against classic monographs in the field and provide the framework for a novel parallel implementation optimized for an OpenMP shared memory environment. The project considered application to consolidation flows of major interest in high throughput materials processing and identified hitherto unforeseen challenges in the use of FLD in these applications. Extensions to the algorithm have been developed to improve its accuracy in these applications.

  1. Automatic Generation of Audio Content for Open Learning Resources

    ERIC Educational Resources Information Center

    Brasher, Andrew; McAndrew, Patrick

    2009-01-01

    This paper describes how digital talking books (DTBs) with embedded functionality for learners can be generated from content structured according to the OU OpenLearn schema. It includes examples showing how a software transformation developed from open source components can be used to remix OpenLearn content, and discusses issues concerning the…

  2. Open Source, Meet "User-Generated Science"

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2009-01-01

    This article discusses Research Blogging, a community-run nonprofit organization that is promoting a suite of blogging software to scholars. Research Blogging itself does two things. First, it extends an invitation to a community, and it is open to anyone. Second, it requires its users to follow guidelines. The combination of rigorous guidelines…

  3. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  4. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  5. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  6. Towards a Theory of Metastability in Open Quantum Dynamics.

    PubMed

    Macieszczak, Katarzyna; Guţă, Mădălin; Lesanovsky, Igor; Garrahan, Juan P

    2016-06-17

    By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states-distinct from the asymptotic stationary state-is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces.

  7. Experimental serpentinization of dunite cores at 150-200ºC and 150 bar: Importance of open system dynamics for hydrogen generation and stabilization of ferric-rich serpentine

    NASA Astrophysics Data System (ADS)

    Luhmann, A. J.; Tutolo, B. M.; Bagley, B. C.; Mildner, D. F. R.; Seyfried, W. E., Jr.

    2015-12-01

    Tectonic processes often exhume mantle peridotite to environments near the Earth's surface, where serpentinization occurs and involves the hydration of peridotite at relatively low temperatures. This process oxidizes ferrous iron in olivine, which produces hydrogen (H2), creating environments that are conducive to abiotic synthesis of organic compounds and H2-based microbial communities. To understand better chemical and physical processes associated with serpentinization, two flow-through experiments (>30 days) were conducted at 150 and 200°C and 150 bar on intact dunite cores. Permeability decreased by a factor of 31 during the 200°C experiment, more than an order of magnitude larger than that at 150°C. Furthermore, H2 and methane concentrations exceeded 600 µmol/kg and 300 µmol/kg during the 200°C experiment, and were one and two orders of magnitude higher, respectively, than the 150°C experiment. H2 was primarily generated during the conversion of olivine to ferric serpentine at 200°C, since vibrating sample magnetometer analysis indicated little to no magnetite production. Secondary mineralization was identified on the core from this experiment, but X-ray computed tomography scans indicated little change. Furthermore, (ultra) small-angle neutron scattering datasets indicated that any change in nano-porosity and surface area was smaller than the natural variability of the dunite. Even though there was little evidence of alteration, the initial stage of serpentinization at 200°C was sufficient to produce a dramatic effect on flow fields in the core. Furthermore, this experiment generated significant dissolved H2 concentrations, while simulating open system dynamics. Thus, the experimental data provide insight on mass transfer processes in open geochemical systems, which effectively prevent highly elevated H2 concentrations due to continual loss. We speculate that this process is responsible for stabilizing unusually ferric-rich serpentine in nature.

  8. Open dynamic behaviour of financial markets

    NASA Astrophysics Data System (ADS)

    Gong, F. F.; Gong, F. X.; Gong, F. Y.

    2006-02-01

    Open dynamic behaviour of financial markets with internal interactions between agents and with external “fields” from other systems are investigated using the approach of Grossman and Stiglitz for inefficient markets, and Keynes for interference of the market using physics of finance (referred to hereafter as phynance). The simulation results indicate that the NYSE data analyzed in Plerou, V. et al., Nature 421, 130 (2003) can be fitted by an equation of order parameter Φ and local deviation R of type: -(R+0.03) Φ+ 0.6 Φ3 + 0.02 = 0, which is shown to be in remarkable agreement with Plerou's data.

  9. Dynamics and thermodynamics of open chemical networks

    NASA Astrophysics Data System (ADS)

    Esposito, Massimiliano

    Open chemical networks (OCN) are large sets of coupled chemical reactions where some of the species are chemostated (i.e. continuously restored from the environment). Cell metabolism is a notable example of OCN. Two results will be presented. First, dissipation in OCN operating in nonequilibrium steady-states strongly depends on the network topology (algebraic properties of the stoichiometric matrix). An application to oligosaccharides exchange dynamics performed by so-called D-enzymes will be provided. Second, at low concentration the dissipation of OCN is in general inaccurately predicted by deterministic dynamics (i.e. nonlinear rate equations for the species concentrations). In this case a description in terms of the chemical master equation is necessary. A notable exception is provided by so-called deficiency zero networks, i.e. chemical networks with no hidden cycles present in the graph of reactant complexes.

  10. Zeno dynamics in quantum open systems.

    PubMed

    Zhang, Yu-Ran; Fan, Heng

    2015-06-23

    Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states.

  11. Zeno dynamics in quantum open systems

    PubMed Central

    Zhang, Yu-Ran; Fan, Heng

    2015-01-01

    Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840

  12. Dynamic Courseware Generation on the WWW.

    ERIC Educational Resources Information Center

    Vassileva, Julita; Deters, Ralph

    1998-01-01

    The Dynamic Courseware Generator (DCG), which runs on a Web server, was developed for the authoring of adaptive computer-assisted learning courses. It generates an individual course according to the learner's goals and previous knowledge, and dynamically adapts the course according to the learner's success in knowledge acquisition. The tool may be…

  13. Dynamic Open Inquiry Performances of High-School Biology Students

    ERIC Educational Resources Information Center

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological…

  14. A swirl generator case study for OpenFOAM

    NASA Astrophysics Data System (ADS)

    Petit, O.; Bosioc, A. I.; Nilsson, H.; Muntean, S.; Susan-Resiga, R. F.

    2010-08-01

    This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-epsilon model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against designed velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and designed profiles. This case study was presented at the 5th OpenFOAM Workshop, held in Gothenburg, Sweden, as a tutorial on how to treat turbomachinery applications in OpenFOAM.

  15. Open Source Next Generation Visualization Software for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  16. The new generation of OpenGL support in ROOT

    NASA Astrophysics Data System (ADS)

    Tadel, M.

    2008-07-01

    OpenGL has been promoted to become the main 3D rendering engine of the ROOT framework. This required a major re-modularization of OpenGL support on all levels, from basic window-system specific interface to medium-level object-representation and top-level scene management. This new architecture allows seamless integration of external scene-graph libraries into the ROOT OpenGL viewer as well as inclusion of ROOT 3D scenes into external GUI and OpenGL-based 3D-rendering frameworks. Scene representation was removed from inside of the viewer, allowing scene-data to be shared among several viewers and providing for a natural implementation of multi-view canvas layouts. The object-graph traversal infrastructure allows free mixing of 3D and 2D-pad graphics and makes implementation of ROOT canvas in pure OpenGL possible. Scene-elements representing ROOT objects trigger automatic instantiation of user-provided rendering-objects based on the dictionary information and class-naming convention. Additionally, a finer, per-object control over scene-updates is available to the user, allowing overhead-free maintenance of dynamic 3D scenes and creation of complex real-time animations. User-input handling was modularized as well, making it easy to support application-specific scene navigation, selection handling and tool management.

  17. Universal signal generator for dynamic cell stimulation.

    PubMed

    Piehler, Andreas; Ghorashian, Navid; Zhang, Ce; Tay, Savaş

    2017-06-27

    Dynamic cell stimulation is a powerful technique for probing gene networks and for applications in stem cell differentiation, immunomodulation and signaling. We developed a robust and flexible method and associated microfluidic devices to generate a wide-range of precisely formulated dynamic chemical signals to stimulate live cells and measure their dynamic response. This signal generator is capable of digital to analog conversion (DAC) through combinatoric selection of discrete input concentrations, and outperforms existing methods by both achievable resolution, dynamic range and simplicity in design. It requires no calibration, has minimal space requirements and can be easily integrated into microfluidic cell culture devices. The signal generator hardware and software we developed allows to choose the waveform, period and amplitude of chemical input signals and features addition of well-defined chemical noise to study the role of stochasticity in cellular information processing.

  18. Disk magnetocumulative generator with an explosive opening switch

    NASA Astrophysics Data System (ADS)

    Demidov, V. A.; Boriskin, A. S.; Kazakov, S. A.; Tatsenko, O. M.; Vlasov, Yu. V.; Shapovalov, E. V.; Romanov, A. P.; Filippov, A. V.; Golosov, S. N.; Moiseenko, A. N.; Schetnikov, E. I.; Yanenko, V. A.; Kutumov, S. V.; Kazakova, N. R.; Volodchenkov, S. I.; Grushko, V. V.; Nikolaev, N. I.; Yusupov, R. R.; Galanova, S. V.; Sevastyanov, A. S.; Kostin, V. V.; Pikar', A. S.; Korolev, P. V.; Kruchinin, V. A.; Parfenov, A. D.; Toropova, T. A.

    2015-01-01

    This paper presents the results of tests of a facility based on a ten-element disk magnetocumulative generator and an explosive opening switch. A current of 10 MA with a characteristic rise time of ≈0.5 µs was obtained by breaking a circuit with a current of 18 MA in a load with an inductance of 16 nH, which is equivalent to the inductance of the chamber with a multiwire liner.

  19. Osmosis-Based Pressure Generation: Dynamics and Application

    PubMed Central

    Li, Suyi; Billeh, Yazan N.; Wang, K. W.; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators. PMID:24614529

  20. Osmosis-based pressure generation: dynamics and application.

    PubMed

    Bruhn, Brandon R; Schroeder, Thomas B H; Li, Suyi; Billeh, Yazan N; Wang, K W; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  1. Teachers' Performances during a Practical Dynamic Open Inquiry Process

    ERIC Educational Resources Information Center

    Zion, Michal; Schanin, Ilana; Shmueli, Ester Rimerman

    2013-01-01

    The research goal of this study was to determine whether teachers who participated in an inquiry-based course were able to internalize a dynamic open inquiry process. This study focused on 25 science teachers who participated in an annual inquiry-based academic course. Several teaching tools helped teachers employ an open inquiry process. We…

  2. Teachers' Performances during a Practical Dynamic Open Inquiry Process

    ERIC Educational Resources Information Center

    Zion, Michal; Schanin, Ilana; Shmueli, Ester Rimerman

    2013-01-01

    The research goal of this study was to determine whether teachers who participated in an inquiry-based course were able to internalize a dynamic open inquiry process. This study focused on 25 science teachers who participated in an annual inquiry-based academic course. Several teaching tools helped teachers employ an open inquiry process. We…

  3. Open science: Investigating precipitation cycles in dynamically downscaled data using openly available radar data and open source software

    NASA Astrophysics Data System (ADS)

    Collis, Scott; helmus, Jonathan; Kotamarthi, Rao; Wang, Jiali; Feng, Yan; Ghate, Virendra

    2016-04-01

    In order to assess infrastructure resilience to climate change in urban centers, climate model output is needed at spatial resolutions required for urban planning. This is most commonly achieved using either empirical or dynamic downscaling at present. The utility of these downscaling methods for assessments depends on having estimates of biases in the models estimate climate variables and their extremes, surface temperature and precipitation as an example, developed using historical data sets. Since precipitation is a multi-scale stochastic process direct comparison with observations is challenging and even modern data sets work at scales too coarse to capture extreme events. Gauge data requires a direct hit by a storm to see the highest rain rates, often leading to an underestimation in the 1-100 year rainfall. This is exacerbated by phenomena such as training that can cause very high gradients in accumulation. This presentation details a long-term (multi-year) study of precipitation derived from open data from the NOAA Next-Generation Radar (NEXRAD) network. Two locations are studied; Portland, Maine, location for a pilot study conducted by the US Department of Homeland Security's on regional resilience to climate change and the Southern Great Plains of Oklahoma, home to the Department of Energy's ARM program. Both are located within 40km of a NEXRAD radar allowing retrievals of rainfall rates on the order of one kilometer using the Python-ARM Radar Toolkit (Py-ART). Both the diurnal and season cycle of precipitation is studied and compared to WRF dynamically downscaled precipitation rates. This project makes heavy use of open source community tools such as project Jupyter and the Scientific Python ecosystem to manage and process 10's of TB of data on midrange cluster infrastructure. Both the meteorological aspects and the data infrastructure and architecture will be discussed.

  4. Ambit-Tautomer: An Open Source Tool for Tautomer Generation.

    PubMed

    Kochev, Nikolay T; Paskaleva, Vesselina H; Jeliazkova, Nina

    2013-06-01

    We present a new open source tool for automatic generation of all tautomeric forms of a given organic compound. Ambit-Tautomer is a part of the open source software package Ambit2. It implements three tautomer generation algorithms: combinatorial method, improved combinatorial method and incremental depth-first search algorithm. All algorithms utilize a set of fully customizable rules for tautomeric transformations. The predefined knowledge base covers 1-3, 1-5 and 1-7 proton tautomeric shifts. Some typical supported tautomerism rules are keto-enol, imin-amin, nitroso-oxime, azo-hydrazone, thioketo-thioenol, thionitroso-thiooxime, amidine-imidine, diazoamino-diazoamino, thioamide-iminothiol and nitrosamine-diazohydroxide. Ambit-Tautomer uses a simple energy based system for tautomer ranking implemented by a set of empirically derived rules. A fine-grained output control is achieved by a set of post-generation filters. We performed an exhaustive comparison of the Ambit-Tautomer Incremental algorithm against several other software packages which offer tautomer generation: ChemAxon Marvin, Molecular Networks MN.TAUTOMER, ACDLabs, CACTVS and the CDK implementation of the algorithm, based on the mobile H atoms listed in the InChI. According to the presented test results, Ambit-Tautomer's performance is either comparable to or better than the competing algorithms. Ambit-Tautomer module is available for download as a Java library, a command line application, a demo web page or OpenTox API compatible Web service. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Investigating non-Markovian dynamics of quantum open systems

    NASA Astrophysics Data System (ADS)

    Chen, Yusui

    Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple

  6. The dynamics of laser droplet generation

    NASA Astrophysics Data System (ADS)

    Krese, Blaž; Perc, Matjaž; Govekar, Edvard

    2010-03-01

    We propose an experimental setup allowing for the characterization of laser droplet generation in terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force, and light-metal interaction, undulating pendant droplets are formed at the molten end, which eventually completely detach from the wire as a consequence of their increasing mass. We capture the dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring the temperature of the wire end and the pendant droplets. The time series is subsequently generated as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods of nonlinear time series analysis to reconstruct the phase space from the observed variable and test it against determinism and stationarity. After establishing that the observed laser droplet generation is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov exponents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all the exponents, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet generation, we outline industrial applications of the process and point out the significance of our findings for future attempts at mathematical modeling.

  7. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB

    PubMed Central

    Mansouri, Misagh; Reinbolt, Jeffrey A.

    2013-01-01

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351

  8. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.

    PubMed

    Mansouri, Misagh; Reinbolt, Jeffrey A

    2012-05-11

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Relativistic quantum metrology in open system dynamics.

    PubMed

    Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang

    2015-01-22

    Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself.

  10. Relativistic Quantum Metrology in Open System Dynamics

    PubMed Central

    Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang

    2015-01-01

    Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself. PMID:25609187

  11. Modeling community population dynamics with the open-source language R.

    PubMed

    Green, Robin; Shou, Wenying

    2014-01-01

    The ability to explain biological phenomena with mathematics and to generate predictions from mathematical models is critical for understanding and controlling natural systems. Concurrently, the rise in open-source software has greatly increased the ease at which researchers can implement their own mathematical models. With a reasonably sound understanding of mathematics and programming skills, a researcher can quickly and easily use such tools for their own work. The purpose of this chapter is to expose the reader to one such tool, the open-source programming language R, and to demonstrate its practical application to studying population dynamics. We use the Lotka-Volterra predator-prey dynamics as an example.

  12. General non-Markovian dynamics of open quantum systems.

    PubMed

    Zhang, Wei-Min; Lo, Ping-Yuan; Xiong, Heng-Na; Tu, Matisse Wei-Yuan; Nori, Franco

    2012-10-26

    We present a general theory of non-Markovian dynamics for open systems of noninteracting fermions (bosons) linearly coupled to thermal environments of noninteracting fermions (bosons). We explore the non-Markovian dynamics by connecting the exact master equations with the nonequilibirum Green's functions. Environmental backactions are fully taken into account. The non-Markovian dynamics consists of nonexponential decays and dissipationless oscillations. Nonexponential decays are induced by the discontinuity in the imaginary part of the self-energy corrections. Dissipationless oscillations arise from band gaps or the finite band structure of spectral densities. The exact analytic solutions for various non-Markovian thermal environments show that non-Markovian dynamics can be largely understood from the environmental-modified spectra of open systems.

  13. Dynamical aspects of behavior generation under constraints

    PubMed Central

    Harter, Derek; Achunala, Srinivas

    2007-01-01

    Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain–environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints. PMID:19003514

  14. Dynamics of open bosonic quantum systems in coherent state representation

    SciTech Connect

    Dalvit, D. A. R.; Berman, G. P.; Vishik, M.

    2006-01-15

    We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.

  15. Glucans monomer-exchange dynamics as an open chemical network

    SciTech Connect

    Rao, Riccardo Esposito, Massimiliano; Lacoste, David

    2015-12-28

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  16. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB

    PubMed Central

    Lee, Leng-Feng

    2016-01-01

    Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB

  17. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.

    PubMed

    Lee, Leng-Feng; Umberger, Brian R

    2016-01-01

    Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This

  18. Quantum dynamics in open quantum-classical systems.

    PubMed

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  19. Generative modelling of regulated dynamical behavior in cultured neuronal networks

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Baruchi, Itay; Persi, Erez; Ben-Jacob, Eshel

    2004-04-01

    The spontaneous activity of cultured in vitro neuronal networks exhibits rich dynamical behavior. Despite the artificial manner of their construction, the networks’ activity includes features which seemingly reflect the action of underlying regulating mechanism rather than arbitrary causes and effects. Here, we study the cultured networks dynamical behavior utilizing a generative modelling approach. The idea is to include the minimal required generic mechanisms to capture the non-autonomous features of the behavior, which can be reproduced by computer modelling, and then, to identify the additional features of biotic regulation in the observed behavior which are beyond the scope of the model. Our model neurons are composed of soma described by the two Morris-Lecar dynamical variables (voltage and fraction of open potassium channels), with dynamical synapses described by the Tsodyks-Markram three variables dynamics. The model neuron satisfies our self-consistency test: when fed with data recorded from a real cultured networks, it exhibits dynamical behavior very close to that of the networks’ “representative” neuron. Specifically, it shows similar statistical scaling properties (approximated by similar symmetric Lévy distribution with finite mean). A network of such M-L elements spontaneously generates (when weak “structured noise” is added) synchronized bursting events (SBEs) similar to the observed ones. Both the neuronal statistical scaling properties within the bursts and the properties of the SBEs time series show generative (a new discussed concept) agreement with the recorded data. Yet, the model network exhibits different structure of temporal variations and does not recover the observed hierarchical temporal ordering, unless fed with recorded special neurons (with much higher rates of activity), thus indicating the existence of self-regulation mechanisms. It also implies that the spontaneous activity is not simply noise-induced. Instead, the

  20. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data

    PubMed Central

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H. L.; Onami, Shuichi

    2015-01-01

    Motivation: Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. Results: We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. Availability and implementation: A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Contact: sonami@riken.jp Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:25414366

  1. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data.

    PubMed

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi

    2015-04-01

    Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  2. IR image generation of space target based on OpenGL

    NASA Astrophysics Data System (ADS)

    Shen, Tongsheng; Guo, Ming; Wang, Chenggang

    2007-11-01

    IR Scene simulation has been an important way to design and assess the IR sensor, and the key of simulation is the generation of IR scene image. Based on OpenGL, the method of IR image generation is proposed. The geometry model is constructed with professional CAD software, and the observer location is determined after scene transformation. The full infrared model of space target is built based on infrared physics and heat transfer, which includes the radiation, convection, conduction between different parts of the space target, and which also includes the radiation, convection of environment. Radiance of space target is converted to gray value, and properties of scene are defined according to the gray level. After a series of processing, dynamic IR images are generated with the technology of double buffering.

  3. Dynamical and thermodynamical control of Open Quantum Walks

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    2014-03-01

    Over the last few years dynamical properties and limit distributions of Open Quantum Walks (OQWs), quantum walks driven by dissipation, have been intensely studied [S. Attal et. al. J. Stat. Phys. 147, Issue 4, 832 (2012)]. For some particular cases of OQWs central limit theorems have been proven [S. Attal, N. Guillotin, C. Sabot, ``Central Limit Theorems for Open Quantum Random Walks,'' to appear in Annales Henri Poincaré]. However, only recently the connection between the rich dynamical behavior of OQWs and the corresponding microscopic system-environment models has been established. The microscopic derivation of an OQW as a reduced system dynamics on a 2-nodes graph [I. Sinayskiy, F. Petruccione, Open Syst. Inf. Dyn. 20, 1340007 (2013)] and its generalization to arbitrary graphs allow to explain the dependance of the dynamical behavior of the OQW on the temperature and coupling to the environment. For thermal environments we observe Gaussian behaviour, whereas at zero temperature population trapping and ``soliton''-like behaviour are possible. Physical realizations of OQWs in quantum optical setups will be also presented. This work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  4. Learning generative models of molecular dynamics

    PubMed Central

    2012-01-01

    We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 reg-ularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories. PMID:22369071

  5. Learning generative models of molecular dynamics.

    PubMed

    Razavian, Narges Sharif; Kamisetty, Hetunandan; Langmead, Christopher J

    2012-01-01

    We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 regularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories.

  6. The dynamical Casimir effect generates entanglement

    NASA Astrophysics Data System (ADS)

    Felicetti, Simone; Sanz, Mikel; Lamata, Lucas; Romero, Guillermo; Johansson, Göran; Delsing, Per; Solano, Enrique

    2014-03-01

    The existence of vacuum fluctuations, i.e., the presence of virtual particles in empty space, represents one of the most distinctive results of quantum mechanics. It is also known, under the name of dynamical Casimir effect, that fast-oscillating boundary conditions can generate real excitations out of the vacuum fluctuations. Long-awaited, the first experimental demonstration of this phenomenon has been realized only recently, in the framework of superconducting circuits [C. M. Wilson et al. Nature 479, 376-379 (2011)]. In this contribution, we will discuss novel theoretical results, showing that the dynamical Casimir effect can be exploited to generate bipartite and multipartite entanglement among qubits. We will also present a superconducting circuit design which can feasibly implement the model considered with current technology. Our scheme is composed of a SQUID device side-coupled to two transmission line resonators, each one interacting with a superconducting qubit. Such proposal can be straightforwardly generalized to the multipartite case, and it can be scaled up to build strongly correlated cavity lattices for quantum simulation and quantum computation. The authors acknowledge support from Spanish MINECO FIS2012-36673-C03-02; UPV/EHU UFI 11/55;Basque Government IT472-10; SOLID, CCQED, PROMISCE and SCALEQIT EU projects.

  7. Dynamic control of plasmon generation by an individual quantum system.

    PubMed

    Große, Christoph; Kabakchiev, Alexander; Lutz, Theresa; Froidevaux, Romain; Schramm, Frank; Ruben, Mario; Etzkorn, Markus; Schlickum, Uta; Kuhnke, Klaus; Kern, Klaus

    2014-10-08

    Controlling light on the nanoscale in a similar way as electric currents has the potential to revolutionize the exchange and processing of information. Although light can be guided on this scale by coupling it to plasmons, that is, collective electron oscillations in metals, their local electronic control remains a challenge. Here, we demonstrate that an individual quantum system is able to dynamically gate the electrical plasmon generation. Using a single molecule in a double tunnel barrier between two electrodes we show that this gating can be exploited to monitor fast changes of the quantum system itself and to realize a single-molecule plasmon-generating field-effect transistor operable in the gigahertz range. This opens new avenues toward atomic scale quantum interfaces bridging nanoelectronics and nanophotonics.

  8. Multi-Fluid Moment Simulations of Ganymede using the Next-Generation OpenGGCM

    NASA Astrophysics Data System (ADS)

    Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Raeder, J.

    2015-12-01

    We coupled the multi-fluid moment code Gkeyll[1,2] to the next-generation OpenGGCM[3], and studied the reconnection dynamics at the Ganymede. This work is part of our effort to tackle the grand challenge of integrating kinetic effects into global fluid models. The multi-fluid moment model integrates kinetic effects in that it can capture crucial kinetic physics like pressure tensor effects by evolving moments of the Vlasov equations for each species. This approach has advantages over previous models: desired kinetic effects, together with other important effects like the Hall effect, are self-consistently embedded in the moment equations, and can be efficiently implemented, while not suffering from severe time-step restriction due to plasma oscillation nor artificial whistler modes. This model also handles multiple ion species naturally, which opens up opportunties in investigating the role of oxygen in magnetospheric reconnection and improved coupling to ionosphere models. In this work, the multi-fluid moment solver in Gkeyll was wrapped as a time-stepping module for the high performance, highly flexible next-generation OpenGGCM. Gkeyll is only used to provide the local plasma solver, while computational aspects like parallelization and boundary conditions are handled entirely by OpenGGCM, including interfacing to other models like ionospheric boundary conditions provided by coupling with CTIM [3]. The coupled code is used to study the dynamics near Ganymede, and the results are compared with MHD and Hall MHD results by Dorelli et al. [4]. Hakim, A. (2008). Journal of Fusion Energy, 27, 36-43. Hakim, A., Loverich, J., & Shumlak, U. (2006). Journal of Computational Physics, 219, 418-442. Raeder, J., Larson, D., Li, W., Kepko, E. L., & Fuller-Rowell, T. (2008). Space Science Reviews, 141(1-4), 535-555. Dorelli, J. C., Glocer, A., Collinson, G., & Tóth, G. (2015). Journal of Geophysical Research: Space Physics, 120.

  9. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  10. Next Generation Carbon-Nitrogen Dynamics Model

    NASA Astrophysics Data System (ADS)

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  11. Open boundary molecular dynamics of sheared star-polymer melts.

    PubMed

    Sablić, Jurij; Praprotnik, Matej; Delgado-Buscalioni, Rafael

    2016-02-28

    Open boundary molecular dynamics (OBMD) simulations of a sheared star polymer melt under isothermal conditions are performed to study the rheology and molecular structure of the melt under a fixed normal load. Comparison is made with the standard molecular dynamics (MD) in periodic (closed) boxes at a fixed shear rate (using the SLLOD dynamics). The OBMD system exchanges mass and momentum with adjacent reservoirs (buffers) where the external pressure tensor is imposed. Insertion of molecules in the buffers is made feasible by implementing there a low resolution model (blob-molecules with soft effective interactions) and then using the adaptive resolution scheme (AdResS) to connect with the bulk MD. Straining with increasing shear stress induces melt expansion and a significantly different redistribution of pressure compared with the closed case. In the open sample, the shear viscosity is also a bit lowered but more stable against the viscous heating. At a given Weissenberg number, molecular deformations and material properties (recoverable shear strain and normal stress ratio) are found to be similar in both setups. We also study the modelling effect of normal and tangential friction between monomers implemented in a dissipative particle dynamics (DPD) thermostat. Interestingly, the tangential friction substantially enhances the elastic response of the melt due to a reduction of the kinetic stress viscous contribution.

  12. Dynamics of non-Markovian open quantum systems

    NASA Astrophysics Data System (ADS)

    de Vega, Inés; Alonso, Daniel

    2017-01-01

    Open quantum systems (OQSs) cannot always be described with the Markov approximation, which requires a large separation of system and environment time scales. An overview is given of some of the most important techniques available to tackle the dynamics of an OQS beyond the Markov approximation. Some of these techniques, such as master equations, Heisenberg equations, and stochastic methods, are based on solving the reduced OQS dynamics, while others, such as path integral Monte Carlo or chain mapping approaches, are based on solving the dynamics of the full system. The physical interpretation and derivation of the various approaches are emphasized, how they are connected is explored, and how different methods may be suitable for solving different problems is examined.

  13. Adversarial inferencing for generating dynamic adversary behavior

    NASA Astrophysics Data System (ADS)

    Surman, Joshua M.; Hillman, Robert G.; Santos, Eugene, Jr.

    2003-09-01

    In the current world environment, the rapidly changing dynamics of organizational adversaries are increasing the difficulty for Military Analysts and Planners to accurately predict potential actions. As an integral part of the planning process, we need to assess our planning strategies against the range of potential adversarial actions. This dynamic world environment has established a necessity to develop tools to assist in establishing hypotheses for future adversary actions. Our research investigated the feasibility to utilize an adversarial tool as the core element within a predictive simulation to establish emergent adversarial behavior. It is our desire to use this intelligent adversary to generate alternative futures in performing Course of Action (COA) analysis. Such a system will allow planners to gauge and evaluate the effectiveness of alternative plans under varying actions and reactions. This research focuses on one of many possible techniques required to address the technical challenge of generating intelligent adversary behaviors. This development activity addresses two research components. First, establish an environment in which to perform the feasibility experiment and analysis. The proof of concept performed to analyze and assess this feasibility of utilizing an adversarial inferencing system to provide emergent adversary behavior is discussed. Second, determine if the appropriate interfaces can be reasonably established to provide integration with an existing force structure simulation framework. The authors also describe the envisioned simulation system and the software development performed to extend the inferencing engine and system interface toward that goal. The experimental results of observing emergent adversary behavior by applying the simulated COAs to the adversary model will be discussed. The research addresses numerous technological challenges in developing the necessary methodologies and tools for a software-based COA analysis

  14. Generative technique for dynamic infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cao, Zhiguo; Zhang, Tianxu

    2001-09-01

    The generative technique of the dynamic infrared image was discussed in this paper. Because infrared sensor differs from CCD camera in imaging mechanism, it generates the infrared image by incepting the infrared radiation of scene (including target and background). The infrared imaging sensor is affected deeply by the atmospheric radiation, the environmental radiation and the attenuation of atmospheric radiation transfers. Therefore at first in this paper the imaging influence of all kinds of the radiations was analyzed and the calculation formula of radiation was provided, in addition, the passive scene and the active scene were analyzed separately. Then the methods of calculation in the passive scene were provided, and the functions of the scene model, the atmospheric transmission model and the material physical attribute databases were explained. Secondly based on the infrared imaging model, the design idea, the achievable way and the software frame for the simulation software of the infrared image sequence were introduced in SGI workstation. Under the guidance of the idea above, in the third segment of the paper an example of simulative infrared image sequences was presented, which used the sea and sky as background and used the warship as target and used the aircraft as eye point. At last the simulation synthetically was evaluated and the betterment scheme was presented.

  15. A Dynamical Evolution Study of 40 2MASS Open Clusters

    NASA Astrophysics Data System (ADS)

    Güneş, Orhan; Karataş, Yüksel; Bonatto, Charles

    2017-05-01

    We investigate the dynamical evolution of 40 open clusters (OCs) by means of their astrophysical parameters derived from field-decontaminated 2MASS photometry. We find a bifurcation in the planes core radius vs. age and cluster radius vs. age, in which part of the clusters appear to expand with time probably due to the presence of stellar black holes while others seem to shrink due to dynamical relaxation. Mass functions (MFs) are built for 3/4 of the sample (31 OCs), which are used to search for indications of mass segregation and external dynamical processes by means of relations among astrophysical, structural and evolutionary parameters. We detect a flattening of MF slopes ocurring at the evolutionary parameters τ_{core}≤ 32 and τ_{overall}≤ 30, respectively. Within the uncertainties involved, the overall MF slopes of 14 out of 31 OCs with m_{overall} > 500 M_{⊙} are consistent with Kroupa's initial mass function, implying little or no dynamical evolution for these clusters. The remaining 17 OCs with MF slopes departing from that of Kroupa show mild/large scale mass segregation due to dynamical evolution.

  16. Hierarchy of Stochastic Pure States for Open Quantum System Dynamics

    NASA Astrophysics Data System (ADS)

    Suess, D.; Eisfeld, A.; Strunz, W. T.

    2014-10-01

    We derive a hierarchy of stochastic evolution equations for pure states (quantum trajectories) for open quantum system dynamics with non-Markovian structured environments. This hierarchy of pure states (HOPS) is generally applicable and provides the exact reduced density operator as an ensemble average over normalized states. The corresponding nonlinear equations are presented. We demonstrate that HOPS provides an efficient theoretical tool and apply it to the spin-boson model, the calculation of absorption spectra of molecular aggregates, and energy transfer in a photosynthetic pigment-protein complex.

  17. Critical dynamics on a large human Open Connectome network

    NASA Astrophysics Data System (ADS)

    Ódor, Géza

    2016-12-01

    Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.

  18. Dynamical phase transition in the open Dicke model

    PubMed Central

    Klinder, Jens; Keßler, Hans; Wolke, Matthias; Mathey, Ludwig; Hemmerich, Andreas

    2015-01-01

    The Dicke model with a weak dissipation channel is realized by coupling a Bose–Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp–Lieb–Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions. PMID:25733892

  19. Ehrenfest approach to open double-well dynamics.

    PubMed

    Choi, Stephen; Onofrio, Roberto; Sundaram, Bala

    2015-10-01

    We consider an Ehrenfest approximation for a particle in a double-well potential in the presence of an external environment schematized as a finite resource heat bath. This allows us to explore how the limitations in the applicability of Ehrenfest dynamics to nonlinear systems are modified in an open system setting. Within this framework, we have identified an environment-induced spontaneous symmetry breaking mechanism, and we argue that the Ehrenfest approximation becomes increasingly valid in the limit of strong coupling to the external reservoir, either in the form of an increasing number of oscillators or increasing temperature. The analysis also suggests a rather intuitive picture for the general phenomenon of quantum tunneling and its interplay with classical thermal activation processes, which may be of relevance in physical chemistry, ultracold atom physics, and fast-switching dynamics such as in superconducting digital electronics.

  20. Time-correlated blip dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Wiedmann, Michael; Stockburger, Jürgen T.; Ankerhold, Joachim

    2016-11-01

    The non-Markovian dynamics of open quantum systems is still a challenging task, particularly in the nonperturbative regime at low temperatures. While the stochastic Liouville-von Neumann equation (SLN) provides a formally exact tool to tackle this problem for both discrete and continuous degrees of freedom, its performance deteriorates for long times due to an inherently nonunitary propagator. Here we present a scheme that combines the SLN with projector operator techniques based on finite dephasing times, gaining substantial improvements in terms of memory storage and statistics. The approach allows for systematic convergence and is applicable in regions of parameter space where perturbative methods fail, up to the long-time domain. Findings are applied to the coherent and incoherent quantum dynamics of two- and three-level systems. In the long-time domain sequential and superexchange transfer rates are extracted and compared to perturbative predictions.

  1. Critical dynamics on a large human Open Connectome network.

    PubMed

    Ódor, Géza

    2016-12-01

    Extended numerical simulations of threshold models have been performed on a human brain network with N=836733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.

  2. SFO-Project: The New Generation of Sharable, Editable and Open-Access CFD Tutorials

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Javaherchi, Ardeshir; Aliseda, Alberto

    2016-11-01

    One of the most common approaches to develop a Computational Fluid Dynamic (CFD) simulation for a new case study of interest is to search for the most similar, previously developed and validated CFD simulation among other works. A simple search would result into a pool of written/visual tutorials. However, users should spend significant amount of time and effort to find the most correct, compatible and valid tutorial in this pool and further modify it toward their simulation of interest. SFO is an open-source project with the core idea of saving the above-mentioned time and effort. This is done via documenting/sharing scientific and methodological approaches to develop CFD simulations for a wide spectrum of fundamental and industrial case studies in three different CFD solvers; STAR-CCM +, FLUENT and Open FOAM (SFO). All of the steps and required files of these tutorials are accessible and editable under the common roof of Github (a web-based Git repository hosting service). In this presentation we will present the current library of 20 + developed CFD tutorials, discuss the idea and benefit of using them, their educational values and explain how the next generation of open-access and live resource of CFD tutorials can be built further hand-in-hand within our community.

  3. Digital computer program for generating dynamic turbofan engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.; Szuch, J. R.; Westerkamp, E. J.

    1983-01-01

    This report describes DIGTEM, a digital computer program that simulates two spool, two-stream turbofan engines. The turbofan engine model in DIGTEM contains steady-state performance maps for all of the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. Altogether there are 16 state variables and state equations. DIGTEM features a backward-differnce integration scheme for integrating stiff systems. It trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off-design points and iterates to a balanced engine condition. Transients can also be run. They are generated by defining controls as a function of time (open-loop control) in a user-written subroutine (TMRSP). DIGTEM has run on the IBM 370/3033 computer using implicit integration with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is generalized in the aerothermodynamic treatment of components.

  4. Open architecture applied to next-generation weapons

    NASA Astrophysics Data System (ADS)

    Rose, Leo J.; Shaver, Jonathan; Young, Quinn; Christensen, Jacob

    2014-06-01

    The Air Force Research Laboratory (AFRL) has postulated a new weapons concept known as Flexible Weapons to define and develop technologies addressing a number of challenges. Initial studies on capability attributes of this concept have been conducted and AFRL plans to continue systems engineering studies to quantify metrics against which the value of capabilities can be assessed. An important aspect of Flexible Weapons is having a modular "plug-n-play" hardware and software solution, supported by an Open Architecture and Universal Armament Interface (UAI) common interfaces. The modular aspect of Flexible Weapons is a means to successfully achieving interoperability and composability at the weapon level. Interoperability allows for vendor competition, timely technology refresh, and avoids costs by ensuring standard interfaces widely supported in industry, rather than an interface unique to a particular vendor. Composability provides for the means to arrange an open end set of useful weapon systems configurations. The openness of Flexible Weapons is important because it broadens the set of computing technologies, software updates, and other technologies to be introduced into the weapon system, providing the warfighter with new capabilities at lower costs across the life cycle. One of the most critical steps in establishing a Modular, Open Systems Architecture (MOSA) for weapons is the validation of compliance with the standard.

  5. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  6. Integrating open-source software applications to build molecular dynamics systems.

    PubMed

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  7. Highly dynamically evolved intermediate-age open clusters

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Dias, Wilton S.; Sampedro, Laura M.

    2017-04-01

    We present a comprehensive UBVRI and Washington CT1T2 photometric analysis of seven catalogued open clusters, namely: Ruprecht 3, 9, 37, 74, 150, ESO 324-15 and 436-2. The multiband photometric data sets in combination with 2MASS photometry and Gaia astrometry for the brighter stars were used to estimate their structural parameters and fundamental astrophysical properties. We found that Ruprecht 3 and ESO 436-2 do not show self-consistent evidence of being physical systems. The remained studied objects are open clusters of intermediate age (9.0 ≤ log(t yr-1) ≤ 9.6), of relatively small size (rcls ∼ 0.4-1.3 pc) and placed between 0.6 and 2.9 kpc from the Sun. We analysed the relationships between core, half-mass, tidal and Jacoby radii as well as half-mass relaxation times to conclude that the studied clusters are in an evolved dynamical stage. The total cluster masses obtained by summing those of the observed cluster stars resulted to be ∼10-15 per cent of the masses of open clusters of similar age located closer than 2 kpc from the Sun. We found that cluster stars occupy volumes as large as those for tidally filled clusters.

  8. Smart Kirigami open honeycombs in shape changing actuation and dynamics

    NASA Astrophysics Data System (ADS)

    Neville, R. M.; Scarpa, F.; Leng, J.

    2017-04-01

    Kirigami is the ancient Japanese art of cutting and folding paper, widespread in Asia since the 17th century. Kirigami offers a broader set of geometries and topologies than classical fold/valleys Origami, because of the presence of cuts. Moreover, Kirigami can be readily applied to a large set of composite and smart 2D materials, and can be used to up-scaled productions with modular molding. We describe the manufacturing and testing of a topology of Kirigami cellular structures defined as Open Honeycombs. Open Honeycombs (OHs) can assume fully closed shape and be alike classical hexagonal centresymmetric honeycombs, or can vary their morphology by tuning the opening angle and rotational stiffness of the folds. We show the performance of experimental PEEK OHs with cable actuation and morphing shape characteristics, and the analogous morphing behavior of styrene SMPs under combined mechanical and thermal loading. We also show the dynamic (modal analysis) behavior of OHs configurations parameterized against their geometry characteristics, and the controllable modal density characteristics that one could obtain by tuning the topology and folding properties.

  9. Mantle flow and dynamic topography associated with slab window opening

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-05-01

    A slab window is defined as an 'hole' in the subducting lithosphere. In the classical view, slab windows develop where a spreading ridge intersects a subduction zone. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. In this work, we perform dynamically self-consistent mantle-scale laboratory models, to evaluate how the opening of a window in the subducting panel influences the geometry and the kinematics of the slab, the mantle circulation pattern and, finally, the overriding plate dynamic topography. The adopted setup consists in a two-layer linearly viscous system simulating the roll-back of a fixed subducting plate (simulated using silicone putty) into the upper mantle (simulated using glucose syrup). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We find that the geometry and the kinematics of the slab are only minorly affected by the opening of a slab window. On the contrary, slab induced mantle circulation, quantified using Feature Tracking image analysis technique, is strongly modified and produces a peculiar non-isostatic topographic signal on the overriding plate. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compare them to the Patagonian subduction zone finding that anomalous backarc volcanism that developed since middle Miocene could result from the lateral flowage of subslab mantle, and that part of the Patagonian uplift could be dynamically supported.

  10. The generator coordinate Dirac-Fock method for open-shell atomic systems

    NASA Astrophysics Data System (ADS)

    Malli, Gulzari L.; Ishikawa, Yasuyuki

    1998-11-01

    Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.

  11. Internal wave generation from tidal flow exiting a constricted opening

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Pawlowicz, Richard

    2017-01-01

    The southern Strait of Georgia, British Columbia, often contains packets of large, near-surface internal waves. Wave crests at the leading edge of the packet, spaced a few hundred meters apart, can have a longitudinal extent of more than 10 km. It has long been assumed that these waves are generated by tidal flow through narrow passages and channels at the Strait's southern boundaries, but no actual link has ever been made between these waves and a specific passage or generation mechanism. Here we identify the location and extent of a number of these large packets at specific times using mosaics of photogrammetrically rectified oblique air photos. Wave speeds are determined by analyzing a time sequence of images, with water column measurements used to subtract effects of tidal advection. The location and extent of these internal waves are then compared with the predicted location and extent of hypothetical waves generated in different passages, at different stages of the tide, which are then propagated through a predicted time-varying barotropic flow field. It is found that the observed waves are most likely generated near or after the time of the peak flood tide, or peak inflow into the Strait. They are therefore inconsistent with generation mechanisms involving the release and upstream propagation of waves by the relaxation of an ebb tide. Instead they are probably associated with the nonlinear adjustment of conditions at the edge of an inflowing injection of relatively weakly stratified water.

  12. OpenCL parallel integration of ordinary differential equations: Applications in computational dynamics

    NASA Astrophysics Data System (ADS)

    Rodríguez, Marcos; Blesa, Fernando; Barrio, Roberto

    2015-07-01

    In many physical problems the use of numerical simulations presents the only path to obtain insight into the behavior and evolution of the system of interest. GPU, CPU and MIC technologies are frequently employed for simulations on computational dynamics and we present results comparing different schemes for the numerical integration of ordinary differential systems (ODEs) in these architectures. The use of adapted methods with low memory storage (Low storage Runge-Kutta methods) gives good results for low precision studies, whereas the Taylor series method provides a powerful technique for high precision. We show how the computation of several dynamics indicators, such as a fast chaos indicator (FLI) or a phase shift indicator in small neuron networks (Central Pattern Generators), can be efficiently computed on these architectures by means of the numerical ODE methods executed through OpenCL. This high computational time reduction allows real-time simulations or generating video media.

  13. Quantum-gravity induced Lorentz violation and dynamical mass generation

    SciTech Connect

    Mavromatos, Nick E.

    2011-01-15

    In the eprint by Jean Alexandre [arXiv:1009.5834], a minimal extension of (3+1)-dimensional quantum electrodynamics has been proposed, which includes Lorentz violation (LV) in the form of higher-(spatial)-derivative isotropic terms in the gauge sector, suppressed by a mass scale M. The model can lead to dynamical mass generation for charged fermions. In this article, I elaborate further on this idea and I attempt to connect it to specific quantum-gravity models, inspired from string/brane theory. Specifically, in the first part of the article, I comment briefly on the gauge dependence of the dynamical mass generation in the approximations of J. Alexandre [arXiv:1009.5834.], and I propose a possible avenue for obtaining the true gauge-parameter-independent value of the mass by means of pinch technique argumentations. In the second part of the work, I embed the LV QED model into multibrane world scenarios with a view to provide a geometrical way of enhancing the dynamical mass to phenomenologically realistic values by means of bulk warp metric factors, in an (inverse) Randall-Sundrum hierarchy. Finally, in the third part of this paper, I demonstrate that such Lorentz-violating QED models may represent parts of a low-energy effective action (of Finsler-Born-Infeld type) of open strings propagating in quantum D0-particle stochastic space-time foam backgrounds, which are viewed as consistent quantum-gravity configurations. To capture correctly the quantum-fluctuating nature of the foam background, I replace the D0-recoil-velocity parts of this action by appropriate gradient operators in three-space, keeping the photon field part intact. This is consistent with the summation over world-sheet genera in the first-quantized string approach. I identify a class of quantum orderings which leads to the LV QED action of J. Alexandre, arXiv:1009.5834. In this way I argue, following the logic in that work, that the D-foam can lead to dynamically generated masses for charged

  14. Open-system dynamics of entanglement: a key issues review.

    PubMed

    Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz

    2015-04-01

    One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and

  15. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  16. Model and simulation of Krause model in dynamic open network

    NASA Astrophysics Data System (ADS)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  17. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  18. Thermofield dynamics extension of the open string field theory

    NASA Astrophysics Data System (ADS)

    Botta Cantcheff, M.; Scherer Santos, R. J.

    2016-03-01

    We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation of open-string field theory. We extend the states space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is interpreted as a theory whose fields would encode the statistical information of open strings. The physical spectrum of the free theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST) charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of closed strings. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that different sectors of fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it of which the results at tree level agree with those of the conventional theory.

  19. Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-12-01

    We present dynamically self-consistent mantle-scale laboratory models that have been conducted to improve our understanding of the influence of slab window opening on subduction dynamics, mantle flow and associated dynamic topography over geological time scales. The adopted setup consists of a two-layer linearly viscous system simulating the subduction of a fixed plate of silicone (lithosphere) under negative buoyancy in a viscous layer of glucose syrup (mantle). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We found that the opening of a slab window does not produce consistent changes of the geometry and the kinematics of the slab. On the contrary, slab-induced mantle circulation, quantified both in the vertical and horizontal sections using the Feature Tracking image analysis technique, is strongly modified. In particular, rollback subduction and the opening of the slab window generate a complex mantle circulation pattern characterized by the presence of poloidal and toroidal components, with the importance of each evolving according to kinematic stages. Mantle coming from the oceanic domain floods through the slab window, indenting the supra-slab mantle zone and producing its deformation without any mixing between mantle portions. The opening of the slab window and the upwelling of sub-slab mantle produce a regional-scale non-isostatic topographic uplift of the overriding plate that would correspond to values ranging between ca. 1 and 5 km in nature. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compared them to the tectonics and volcanism of the Patagonian subduction zone. We found that the anomalous backarc volcanism that has been developing since the middle Miocene could result from the lateral flow of sub

  20. Open-system dynamics and mixing in magma mushes

    NASA Astrophysics Data System (ADS)

    Bergantz, G. W.; Schleicher, J. M.; Burgisser, A.

    2015-10-01

    Magma dominantly exists in a slowly cooling crystal-rich or mushy state. Yet, observations of complexly zoned crystals, some formed in just one to ten years, as well as time-transgressive crystal fabrics imply that magmas mix and transition rapidly from a locked crystal mush to a mobile and eruptable fluid. Here we use a discrete-element numerical model that resolves crystal-scale granular interactions and fluid flow, to simulate the open-system dynamics of a magma mush. We find that when new magma is injected into a reservoir from below, the existing magma responds as a viscoplastic material: fault-like surfaces form around the edges of the new injection creating a central mixing bowl of magma that can be unlocked and become fluidized, allowing for complex mixing. We identify three distinct dynamic regimes that depend on the rate of magma injection. If the magma injection rate is slow, the intruded magma penetrates and spreads by porous media flow through the crystal mush. With increasing velocity, the intruded magma creates a stable cavity of fluidized magma that is isolated from the rest of the reservoir. At higher velocities still, the entire mixing bowl becomes fluidized. Circulation within the mixing bowl entrains crystals from the walls, bringing together crystals from different parts of the reservoir that may have experienced different physiochemical environments and leaving little melt unmixed. We conclude that both granular and fluid dynamics, when considered simultaneously, can explain observations of complex crystal fabrics and zoning observed in many magmatic systems.

  1. PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT MINE HIGHWALLS

    EPA Science Inventory



    Exposed, open pit mine highwalls contribute significantly to the production of acid mine

    drainage (AMD) thus causing environmental concerns upon closure of an operating mine. Available information on the generation of AMD from open-pit mine highwalls is very limit...

  2. PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT MINE HIGHWALLS

    EPA Science Inventory



    Exposed, open pit mine highwalls contribute significantly to the production of acid mine

    drainage (AMD) thus causing environmental concerns upon closure of an operating mine. Available information on the generation of AMD from open-pit mine highwalls is very limit...

  3. Generation of high-current electron beam in a wide-aperture open discharge

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Zakrevsky, Dm. E.; Gugin, P. P.

    2011-10-01

    In the present study, it was examined generation of nanosecond-duration electron-beam (EB) pulses by a wide-aperture open discharge burning in helium or in a mixture of helium with nitrogen and water vapor. In the experiments, a discharge cell with coaxial electrode geometry, permitting radial injection of the electron beam into operating lasing medium, was used, with the cathode having radius 2.5 cm and length 12 cm. It was shown possible to achieve an efficient generation of a high-intensity electron beam (EB pulse power ˜250 MW and EB pulse energy up to 4 J) in the kiloampere range of discharge currents (up to 26 kA at ˜12 kV discharge voltage). The current-voltage characteristics of the discharge proved to be independent of the working-gas pressure. The existence of an unstable dynamic state of EB, conditioned by the presence of an uncompensated space charge accumulated in the discharge cell due to the exponential growth of the current in time during discharge initiation and the hyperbolic growth of current density in the direction towards the tube axis, was revealed. The obtained pulsed electron beam was used to excite the self-terminated laser on He 21P10-21S0 transition. The oscillations developing in the discharge cell at high discharge currents put limit to the pumping energy and emissive power of the laser excited with the radially converging electron beam.

  4. Properties of earthquakes generated by fault dynamics

    NASA Technical Reports Server (NTRS)

    Carlson, J. M.; Langer, J. S.

    1989-01-01

    A model for fault dynamics consisting of a uniform chain of blocks and springs pulled slowly across a rough surface is presented. The only nonlinear element of the model is a slip-stick friction force between the blocks and the surface. It is found that this model gives rise to events of all sizes. The numerical evaluation of the distribution of earthquake magnitudes results in a power-law spectrum similar to what is observed in nature. Like certain other dissipative dynamical systems, the observed large fluctuations in earthquake magnitude persist because the system is in a state of marginal stability.

  5. Feasibility of the inflow disk generator for open-cycle MHD power generation

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Lear, W. E.; Eustis, R. H.

    1981-01-01

    A feasibility study of the inflow disk MHD generator for baseload applications was performed. Each design element, i.e., the combustor, the inlet flow path, the generator channel, the diffuser and the magnet, was studied in detail in order to provide a comprehensive assessment of the inflow disk generator. Based on these results, the performance of the inflow disk generator was calculated for two different thermal inputs: 1250 MW(th) and 2500 MW(th). It was shown that the performance of the inflow disk generator is similar to that of the diagonal generator within the uncertainty of the analysis.

  6. Dynamics of the coronas of open star clusters

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Putkov, S. I.; Seleznev, A. F.

    2014-12-01

    A method for distinguishing coronas in models of open star clusters is proposed. The method uses trajectories of stars that do not leave the coronas over time intervals t comparable to the mean lifetime τ of the clusters. Corona models are constructed for six numerical cluster models, and the direction and character of the dynamical evolution of the coronas are determined. Retrograde stellar motions are dominant in the coronas. In spite of some signs of dynamical instability of the coronas (small densities compared to the critical density and accelerated expansion of the coronas), the formation of close-toequilibrium density and phase-density distributions at distances from one to three cluster tidal radii from the cluster center can be seen. Approximations are constructed for the corona and cluster phase density using distributions that depend on three parameters (the parameters of the stellar motion in the Lindblad rotating coordinate system). This temporary equilibrium of the corona is due to balance in the number of starsmoving from the central areas of the cluster to the corona, and from the corona to the corona periphery or beyond. Evidence that corona stars can be gravitationally bound at distances out to four tidal radii from the cluster center is found: the presence of nearly periodic retrograde mean motions of a large number of corona stars in the Galactic plane; 91-99% of corona stars satisfy the gravitational binding criterion of Ross, Mennim and Heggie over time intervals that are close to the mean cluster lifetime. The escape rate from the corona is estimated for t ≥ τ, and found to be from 0.03 to 0.23 of the number of corona stars per violent relaxation time.

  7. Dynamics and stability of wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.; Nolan, P. J.

    1981-01-01

    Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered.

  8. Quantum speed-up dynamical crossover in open systems

    NASA Astrophysics Data System (ADS)

    Wu, W.-J.; Yan, K.; Xie, Y.-Q.; Wu, Yinzhong; Hao, Xiang

    We put forward a measure for evaluating quantum speed limit for arbitrary mixed states of open systems by means of trace distance. Compared with some present measures, it can provide an optimal bound to the speed of the evolution. The dynamical crossover from no speedup region to speedup region happens during the spontaneous decay of an atom. The evolution is characteristic of the alternating behavior between quantum acceleration and deceleration in the strong coupling case. Under the condition of detuning, the evolution can be initially accelerated and then decelerated to a normal process either in the weak or strong coupling regime. In accordance with the uncertainty relation, we demonstrate that the potential capacity for quantum speedup evolution is closely related to the energy feedback from the reservoir to the system. The negative decay rate for the evolution results in the speedup process where the photons previously emitted by the atom are reabsorbed at a later time. The values of the spontaneous decay rate become positive after a long enough time, which results in the evolution with no speedup potential.

  9. Automatic code generation from the OMT-based dynamic model

    SciTech Connect

    Ali, J.; Tanaka, J.

    1996-12-31

    The OMT object-oriented software development methodology suggests creating three models of the system, i.e., object model, dynamic model and functional model. We have developed a system that automatically generates implementation code from the dynamic model. The system first represents the dynamic model as a table and then generates executable Java language code from it. We used inheritance for super-substate relationships. We considered that transitions relate to states in a state diagram exactly as operations relate to classes in an object diagram. In the generated code, each state in the state diagram becomes a class and each event on a state becomes an operation on the corresponding class. The system is implemented and can generate executable code for any state diagram. This makes the role of the dynamic model more significant and the job of designers even simpler.

  10. Openness, Dynamic Specialization, and the Disaggregated Future of Higher Education

    ERIC Educational Resources Information Center

    Wiley, David; Hilton, John, III

    2009-01-01

    Openness is a fundamental value underlying significant changes in society and is a prerequisite to changes institutions of higher education need to make in order to remain relevant to the society in which they exist. There are a number of ways institutions can be more open, including programs of open sharing of educational materials. Individual…

  11. Rise and fall of quantum and classical correlations in open-system dynamics

    SciTech Connect

    Khasin, Michael; Kosloff, Ronnie

    2007-07-15

    Interacting quantum systems evolving from an uncorrelated composite initial state generically develop quantum correlations--entanglement. As a consequence, a local description of interacting quantum systems is impossible as a rule. A unitarily evolving (isolated) quantum system generically develops extensive entanglement: the magnitude of the generated entanglement will increase without bounds with the effective Hilbert space dimension of the system. It is conceivable that coupling of the interacting subsystems to local dephasing environments will restrict the generation of entanglement to such extent that the evolving composite system may be considered as approximately disentangled. This conjecture is addressed in the context of some common models of a bipartite system with linear and nonlinear interactions and local coupling to dephasing environments. Analytical and numerical results obtained imply that the conjecture is generally false. Open dynamics of the quantum correlations is compared to the corresponding evolution of the classical correlations and a qualitative difference is found.

  12. Automation Framework for Flight Dynamics Products Generation

    NASA Technical Reports Server (NTRS)

    Wiegand, Robert E.; Esposito, Timothy C.; Watson, John S.; Jun, Linda; Shoan, Wendy; Matusow, Carla

    2010-01-01

    XFDS provides an easily adaptable automation platform. To date it has been used to support flight dynamics operations. It coordinates the execution of other applications such as Satellite TookKit, FreeFlyer, MATLAB, and Perl code. It provides a mechanism for passing messages among a collection of XFDS processes, and allows sending and receiving of GMSEC messages. A unified and consistent graphical user interface (GUI) is used for the various tools. Its automation configuration is stored in text files, and can be edited either directly or using the GUI.

  13. DCG & GTE: Dynamic Courseware Generation with Teaching Expertise.

    ERIC Educational Resources Information Center

    Vassileva, Julita

    1998-01-01

    Discusses the place of GTE (Generic Tutoring Environment) as an approach to bridging the gap between computer-assisted learning and intelligent tutoring systems; describes DCG (dynamic courseware generation) which allows dynamic planning of the contents of an instructional course; and considers combining GTE with DCG. (Author/LRW)

  14. Aging in Subdiffusion Generated by a Deterministic Dynamical System

    NASA Astrophysics Data System (ADS)

    Barkai, Eli

    2003-03-01

    We investigate aging behavior in a simple dynamical system: a nonlinear map which generates subdiffusion deterministically. Asymptotic behaviors of the diffusion process are described using aging continuous time random walks. We show how these processes are described by an aging diffusion equation which is of fractional order. Our work demonstrates that aging behavior can be found in deterministic low dimensional dynamical systems.

  15. Generating quantum states through spin chain dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Alastair

    2017-04-01

    The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.

  16. Lessons learned in the generation of biomedical research datasets using Semantic Open Data technologies.

    PubMed

    Legaz-García, María del Carmen; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2015-01-01

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources. Such heterogeneity makes difficult not only the generation of research-oriented dataset but also its exploitation. In recent years, the Open Data paradigm has proposed new ways for making data available in ways that sharing and integration are facilitated. Open Data approaches may pursue the generation of content readable only by humans and by both humans and machines, which are the ones of interest in our work. The Semantic Web provides a natural technological space for data integration and exploitation and offers a range of technologies for generating not only Open Datasets but also Linked Datasets, that is, open datasets linked to other open datasets. According to the Berners-Lee's classification, each open dataset can be given a rating between one and five stars attending to can be given to each dataset. In the last years, we have developed and applied our SWIT tool, which automates the generation of semantic datasets from heterogeneous data sources. SWIT produces four stars datasets, given that fifth one can be obtained by being the dataset linked from external ones. In this paper, we describe how we have applied the tool in two projects related to health care records and orthology data, as well as the major lessons learned from such efforts.

  17. Generating Conjectures in Dynamic Geometry: The Maintaining Dragging Model

    ERIC Educational Resources Information Center

    Baccaglini-Frank, Anna; Mariotti, Maria Alessandra

    2010-01-01

    Research has shown that the tools provided by dynamic geometry systems (DGSs) impact students' approach to investigating open problems in Euclidean geometry. We particularly focus on cognitive processes that might be induced by certain ways of dragging in Cabri. Building on the work of Arzarello, Olivero and other researchers, we have conceived a…

  18. Generating Conjectures in Dynamic Geometry: The Maintaining Dragging Model

    ERIC Educational Resources Information Center

    Baccaglini-Frank, Anna; Mariotti, Maria Alessandra

    2010-01-01

    Research has shown that the tools provided by dynamic geometry systems (DGSs) impact students' approach to investigating open problems in Euclidean geometry. We particularly focus on cognitive processes that might be induced by certain ways of dragging in Cabri. Building on the work of Arzarello, Olivero and other researchers, we have conceived a…

  19. Generation of open biomedical datasets through ontology-driven transformation and integration processes.

    PubMed

    Carmen Legaz-García, María Del; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2016-06-03

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources, which makes difficult the integrated exploitation of such data. The Semantic Web paradigm offers a natural technological space for data integration and exploitation by generating content readable by machines. Linked Open Data is a Semantic Web initiative that promotes the publication and sharing of data in machine readable semantic formats. We present an approach for the transformation and integration of heterogeneous biomedical data with the objective of generating open biomedical datasets in Semantic Web formats. The transformation of the data is based on the mappings between the entities of the data schema and the ontological infrastructure that provides the meaning to the content. Our approach permits different types of mappings and includes the possibility of defining complex transformation patterns. Once the mappings are defined, they can be automatically applied to datasets to generate logically consistent content and the mappings can be reused in further transformation processes. The results of our research are (1) a common transformation and integration process for heterogeneous biomedical data; (2) the application of Linked Open Data principles to generate interoperable, open, biomedical datasets; (3) a software tool, called SWIT, that implements the approach. In this paper we also describe how we have applied SWIT in different biomedical scenarios and some lessons learned. We have presented an approach that is able to generate open biomedical repositories in Semantic Web formats. SWIT is able to apply the Linked Open Data principles in the generation of the datasets, so allowing for linking their content to external repositories and creating linked open datasets. SWIT datasets may contain data from multiple sources and schemas, thus becoming integrated datasets.

  20. Dynamics of the Open Closed Field Line Boundary

    NASA Astrophysics Data System (ADS)

    Spanswick, E.; Roy, E.; Nishimura, T.; Unick, C.; Jackel, B. J.; Donovan, E.

    2015-12-01

    In most cases, large-scale features of the auroral distribution are the projection, along magnetic field lines, of corresponding magnetospheric features. The poleward boundary of the oval is a key example of such a feature. At almost all local times, this is most often interpreted as the ionospheric marker of the latitudinal transition between open lobe and closed central plasma sheet field lines. Earlier work by Blanchard et al. [J. Geophys. Res., 1995 & 1997] used ground-based photometric observations of 630 nm "redline" aurora and in situ particle observations from simultaneous DMSP overflights to demonstrate that the poleward boundary of the redline aurora is a particularly robust signature of the poleward boundary of the plasma sheet. Owing to the orbits of the DMSP spacecraft and the relative newness of the photometer program (CANOPUS) that provided the optical observations, the Blanchard results represent a limited sampling of magnetic local time and a limited number of events. In this paper we revisit the Blanchard et al study, using particle data from the NASA FAST satellite and the DMSP program, together with redline observations obtained by ground-based All-Sky Imagers. Our results indicate that the Blanchard technique for identifying the polar cap boundary holds true for essentially all magnetic local times on the night side, but that the picture is more nuanced than previously appreciated. Here we present these results, and discuss specific examples where the technique does not work (and explore why). Furthermore, this work is motivated by a new extensive network of highly sensitive redline imagers that has been deployed across northern and central Canada which provides high time resolution large-scale snapshots of the instantaneous polar cap boundary. This in turn enables us to explore magnetospheric dynamics at the interface between the lobe and central plasma sheet in fundamentally new and exciting ways.

  1. Can Generating Representations Enhance Learning with Dynamic Visualizations?

    ERIC Educational Resources Information Center

    Zhang, Zhihui Helen; Linn, Marcia C.

    2011-01-01

    This study explores the impact of asking middle school students to generate drawings of their ideas about chemical reactions on integrated understanding. Students explored atomic interactions during hydrogen combustion using a dynamic visualization. The generation group drew their ideas about how the reaction takes place at the molecular level.…

  2. Can Generating Representations Enhance Learning with Dynamic Visualizations?

    ERIC Educational Resources Information Center

    Zhang, Zhihui Helen; Linn, Marcia C.

    2011-01-01

    This study explores the impact of asking middle school students to generate drawings of their ideas about chemical reactions on integrated understanding. Students explored atomic interactions during hydrogen combustion using a dynamic visualization. The generation group drew their ideas about how the reaction takes place at the molecular level.…

  3. Phase control in an open Λ-type system with spontaneously generated coherence

    NASA Astrophysics Data System (ADS)

    Cui, Ni; Fan, Xi-Jun; Li, Ai-Yun; Liu, Cheng-Pu; Gong, Shang-Qing; Xu, Zhi-Zhan

    2007-03-01

    This paper investigates the control role of the relative phase between the probe and driving fields on the gain, dispersion and populations in an open Λ system with spontaneously generated coherence (SGC). It shows that by adjusting the value of the relative phase, a change from lasing with inversion to lasing without inversion can be realized; the values and frequency spectrum regions of the inversionless gain and dispersion can be obviously varied; high refractive index with zero absorption and electromagnetically induced transparency can be achieved. It is also found that when the driving field is resonant, the shapes of the dispersion and the gain curves versus the probe detuning are very similar if the relative phase of the dispersion lags π/2 than that of the gain, however for the off-resonant driving field the similarity will disappear; the gain, dispersion and populations are periodical functions of the relative phase, the modulation period is always 2π the contribution of SGC to the inversionless gain and dispersion is much larger than that of the dynamically induced coherence.

  4. Generating functionals for autonomous latching dynamics in attractor relict networks

    PubMed Central

    Linkerhand, Mathias; Gros, Claudius

    2013-01-01

    Coupling local, slowly adapting variables to an attractor network allows to destabilize all attractors, turning them into attractor ruins. The resulting attractor relict network may show ongoing autonomous latching dynamics. We propose to use two generating functionals for the construction of attractor relict networks, a Hopfield energy functional generating a neural attractor network and a functional based on information-theoretical principles, encoding the information content of the neural firing statistics, which induces latching transition from one transiently stable attractor ruin to the next. We investigate the influence of stress, in terms of conflicting optimization targets, on the resulting dynamics. Objective function stress is absent when the target level for the mean of neural activities is identical for the two generating functionals and the resulting latching dynamics is then found to be regular. Objective function stress is present when the respective target activity levels differ, inducing intermittent bursting latching dynamics. PMID:23784373

  5. OPEN PROBLEM: Orbits' statistics in chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Arnold, V.

    2008-07-01

    This paper shows how the measurement of the stochasticity degree of a finite sequence of real numbers, published by Kolmogorov in Italian in a journal of insurances' statistics, can be usefully applied to measure the objective stochasticity degree of sequences, originating from dynamical systems theory and from number theory. Namely, whenever the value of Kolmogorov's stochasticity parameter of a given sequence of numbers is too small (or too big), one may conclude that the conjecture describing this sequence as a sample of independent values of a random variables is highly improbable. Kolmogorov used this strategy fighting (in a paper in 'Doklady', 1940) against Lysenko, who had tried to disprove the classical genetics' law of Mendel experimentally. Calculating his stochasticity parameter value for the numbers from Lysenko's experiment reports, Kolmogorov deduced, that, while these numbers were different from the exact fulfilment of Mendel's 3 : 1 law, any smaller deviation would be a manifestation of the report's number falsification. The calculation of the values of the stochasticity parameter would be useful for many other generators of pseudorandom numbers and for many other chaotically looking statistics, including even the prime numbers distribution (discussed in this paper as an example).

  6. Asymmetries in mouth opening during word generation in male stuttering and non-stuttering participants.

    PubMed

    Code, Chris; Lincoln, Michelle; Dredge, Rebekah

    2005-09-01

    We examined lateral asymmetries in mouth opening in right-handed male stuttering (N = 11) and non-stuttering (N = 14) participants. Lateral asymmetries in mouth opening were video-recorded and analysed in participants while they generated words beginning with the bilabial phones /b, p, m/. Non-stuttering participants showed an expected preference for right mouth opening during the task, whereas a group of stuttering participants who were matched for sex and age produced a left or bilateral pattern of mouth opening. Analysis of variance revealed the difference between the groups to be significant (p < .001). However, there was more variability in the lateral mouth asymmetries in the stuttering participants. We interpret this finding as adding some support for the hypothesis that aberrant hemispheric control for speech is involved in stuttering. Asymmetric mouth openings appear to have no direct linguistic function, and we discuss the possible implications of the phenomenon for models of speech planning and programming.

  7. Coordinating the Commons: Diversity & Dynamics in Open Collaborations

    ERIC Educational Resources Information Center

    Morgan, Jonathan T.

    2013-01-01

    The success of Wikipedia demonstrates that open collaboration can be an effective model for organizing geographically-distributed volunteers to perform complex, sustained work at a massive scale. However, Wikipedia's history also demonstrates some of the challenges that large, long-term open collaborations face: the core community of Wikipedia…

  8. Coordinating the Commons: Diversity & Dynamics in Open Collaborations

    ERIC Educational Resources Information Center

    Morgan, Jonathan T.

    2013-01-01

    The success of Wikipedia demonstrates that open collaboration can be an effective model for organizing geographically-distributed volunteers to perform complex, sustained work at a massive scale. However, Wikipedia's history also demonstrates some of the challenges that large, long-term open collaborations face: the core community of Wikipedia…

  9. Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.

    PubMed

    Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J

    2015-08-21

    In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).

  10. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    PubMed

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.

  11. Vertical hydraulic generators experience with dynamic air gap monitoring

    SciTech Connect

    Pollock, G.B.; Lyles, J.F )

    1992-12-01

    Until recently, dynamic monitoring of the rotor to stator air gap of hydraulic generators was not practical. Cost effective and reliable dyamic air gap monitoring equipment has been developed in recent years. Dynamic air gap monitoring was originally justified because of the desire of the owner to minimize the effects of catastrophic air gap failure. However, monitoring air gaps on a time basis has been shown to be beneficial by assisting in the assessment of hydraulic generator condition. The air gap monitor provides useful information on rotor and stator condition and generator vibration. The data generated by air gap monitors will assist managers in the decision process with respect to the timing and extent of required maintenance for a particular generating unit.

  12. IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah B.; Paschalidis, Vasileios; Haas, Roland; Mösta, Philipp; Shapiro, Stuart L.

    2015-09-01

    In the extreme violence of merger and mass accretion, compact objects like black holes and neutron stars are thought to launch some of the most luminous outbursts of electromagnetic and gravitational wave energy in the Universe. Modeling these systems realistically is a central problem in theoretical astrophysics, but has proven extremely challenging, requiring the development of numerical relativity codes that solve Einstein's equations for the spacetime, coupled to the equations of general relativistic (ideal) magnetohydrodynamics (GRMHD) for the magnetized fluids. Over the past decade, the Illinois numerical relativity (ILNR) group's dynamical spacetime GRMHD code has proven itself as a robust and reliable tool for theoretical modeling of such GRMHD phenomena. However, the code was written ‘by experts and for experts’ of the code, with a steep learning curve that would severely hinder community adoption if it were open-sourced. Here we present IllinoisGRMHD, which is an open-source, highly extensible rewrite of the original closed-source GRMHD code of the ILNR group. Reducing the learning curve was the primary focus of this rewrite, with the goal of facilitating community involvement in the code's use and development, as well as the minimization of human effort in generating new science. IllinoisGRMHD also saves computer time, generating roundoff-precision identical output to the original code on adaptive-mesh grids, but nearly twice as fast at scales of hundreds to thousands of cores.

  13. A femtosecond stimulated Raman spectroscopic study on the oxazine ring opening dynamics of structurally-modified indolobenzoxazines

    NASA Astrophysics Data System (ADS)

    Redeckas, Kipras; Toliautas, Stepas; Steponavičiūtė, Rasa; Šačkus, Algirdas; Sulskus, Juozas; Vengris, Mikas

    2016-06-01

    Steady-state and time-resolved femtosecond stimulated Raman scattering spectroscopic methods were applied to elucidate the photodynamics and the oxazine ring opening contingency in phenyl-substituted indolobenzoxazine systems. Using wavelength- and pulse duration-tunable multi-pulse techniques, we have measured the (static) stimulated Raman spectra of the chemically ring-opened indolobenzoxazines, and the (dynamic) femto-to-nanosecond time- and wavenumber-resolved spectra of their photo-generated species. The two experimental realizations show a notable vibronic disparity, thereby indicating the structural difference between the chemically bond-cleaved and the UV excitation produced species.

  14. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

    PubMed

    Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari

    2017-04-20

    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

  15. The dynamic response of upstream DNA to transcription-generated torsional stress.

    PubMed

    Kouzine, Fedor; Liu, Juhong; Sanford, Suzanne; Chung, Hye-Jung; Levens, David

    2004-11-01

    The torsional stress caused by counter-rotation of the transcription machinery and template generates supercoils in a closed topological domain, but has been presumed to be too short-lived to be significant in an open domain. This report shows that transcribing RNA polymerases dynamically sustain sufficient torsion to perturb DNA structure even on linear templates. Assays to capture and measure transcriptionally generated torque and to trap short-lived perturbations in DNA structure and conformation showed that the transient forces upstream of active promoters are large enough to drive the supercoil-sensitive far upstream element (FUSE) of the human c-myc into single-stranded DNA. An alternative non-B conformation of FUSE found in stably supercoiled DNA is not accessible dynamically. These results demonstrate that dynamic disturbance of DNA structure provides a real-time measure of ongoing genetic activity.

  16. Dynamic Loads Generation for Multi-Point Vibration Excitation Problems

    NASA Technical Reports Server (NTRS)

    Shen, Lawrence

    2011-01-01

    A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.

  17. THE EVOLUTION OF OPEN MAGNETIC FLUX DRIVEN BY PHOTOSPHERIC DYNAMICS

    SciTech Connect

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K. E-mail: lionel@predsci.com E-mail: titovv@predsci.com

    2011-04-20

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view, the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and coworkers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet-it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20 R{sub sun} to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions-the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open- and closed-field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  18. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2010-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  19. Integrating expert systems with dynamic programming in generation expansion planning

    SciTech Connect

    David, A.K.; Rong-da, Z.

    1989-08-01

    Interactive software developed for integrating engineering experience and judgement from the planning dept. with a powerful mathematic optimisation method is described. The excessive size of the state space generated by conventional multidimensional dynamic programming is reduced to real world engineering proportions by rule based procedures for implementing Windows in state space and Controls in policy space. Project Frames describing generation options and State Frames describing future conditions of the system are established and manipulated by rules. Dynamic programming simultaneously tracks a feasible set of sub-optimal scenarios. The program is interactive and is written in PROLOG with numerically intensive portions in C.

  20. Evaluation of the open time of calcium channels at variation potential generation in wheat leaf cells.

    PubMed

    Katicheva, Lyubov; Sukhov, Vladimir; Bushueva; Bushueva, Albina; Vodeneev, Vladimir

    2015-01-01

    The role of ions in the generation and mechanism of propagation of variation potential (VP) has been widely investigated. It is likely that Ca(2+) influx via calcium channels is an initial stage of VP; however, development of long-term membrane depolarization requires prolonged open times of calcium channels. We investigated depolarization time in the present study. It was shown that local burning induced VP in wheat seedling and the electrical response was suppressed under EGTA presence. Depolarization formation, which may indicate open time of calcium channels at VP generation, was observed up to 30 s after reaction induction when calcium ions were added to initially calcium-free medium. Long-term calcium channel open time may be the reason for long membrane depolarization at VP and may also be connected with the type of channels participating in wound reaction propagation.

  1. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  2. Computer-Assisted Reading and Discovery for Student-Generated Text in Massive Open Online Courses

    ERIC Educational Resources Information Center

    Reich, Justin; Tingley, Dustin; Leder-Luis, Jetson; Roberts, Margaret E.; Stewart, Brandon M.

    2015-01-01

    Dealing with the vast quantities of text that students generate in Massive Open Online Courses (MOOCs) and other large-scale online learning environments is a daunting challenge. Computational tools are needed to help instructional teams uncover themes and patterns as students write in forums, assignments, and surveys. This paper introduces to the…

  3. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  4. Portable dynamic pressure generator for static and dynamic calibration of in situ pressure transducers

    NASA Technical Reports Server (NTRS)

    Bolt, P. A.; Hess, R. W.; Davis, W. T.

    1983-01-01

    A portable dynamic pressure generator was developed to meet the requirements of determining the dynamic sensitivities of in situ pressure transducers at low frequencies. The device is designed to operate in a frequency range of 0 to 100 Hz, although it was only tested up to 30 Hz, and to generate dynamic pressures up to 13.8 kPa (2 psi). A description of the operating characteristics and instrumentation used for pressure, frequency, and displacement measurements is given. The pressure generator was used to statically and dynamically calibrate transducers. Test results demonstrated that a difference an exist between the static and dynamic sensitivity of a transducer, confirming the need for dynamic calibrations of in situ pressure transducers.

  5. Telomere dynamics may link stress exposure and ageing across generations

    PubMed Central

    Haussmann, Mark F.; Heidinger, Britt J.

    2015-01-01

    Although exposure to stressors is known to increase disease susceptibility and accelerate ageing, evidence is accumulating that these effects can span more than one generation. Stressors experienced by parents have been reported to negatively influence the longevity of their offspring and even grand offspring. The mechanisms underlying these long-term, cross-generational effects are still poorly understood, but we argue here that telomere dynamics are likely to play an important role. In this review, we begin by surveying the current connections between stress and telomere dynamics. We then lay out the evidence that exposure to stressors in the parental generation influences telomere dynamics in offspring and potentially subsequent generations. We focus on evidence in mammalian and avian studies and highlight several promising areas where our understanding is incomplete and future investigations are critically needed. Understanding the mechanisms that link stress exposure across generations requires interdisciplinary studies and is essential to both the biomedical community seeking to understand how early adversity impacts health span and evolutionary ecologists interested in how changing environmental conditions are likely to influence age-structured population dynamics. PMID:26538535

  6. Telomere dynamics may link stress exposure and ageing across generations.

    PubMed

    Haussmann, Mark F; Heidinger, Britt J

    2015-11-01

    Although exposure to stressors is known to increase disease susceptibility and accelerate ageing, evidence is accumulating that these effects can span more than one generation. Stressors experienced by parents have been reported to negatively influence the longevity of their offspring and even grand offspring. The mechanisms underlying these long-term, cross-generational effects are still poorly understood, but we argue here that telomere dynamics are likely to play an important role. In this review, we begin by surveying the current connections between stress and telomere dynamics. We then lay out the evidence that exposure to stressors in the parental generation influences telomere dynamics in offspring and potentially subsequent generations. We focus on evidence in mammalian and avian studies and highlight several promising areas where our understanding is incomplete and future investigations are critically needed. Understanding the mechanisms that link stress exposure across generations requires interdisciplinary studies and is essential to both the biomedical community seeking to understand how early adversity impacts health span and evolutionary ecologists interested in how changing environmental conditions are likely to influence age-structured population dynamics.

  7. Generation of a Multicomponent Library of Disulfide Donor-Acceptor Architectures Using Dynamic Combinatorial Chemistry

    PubMed Central

    Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R.

    2015-01-01

    We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines. PMID:26193265

  8. A Constraint Generation Approach to Learning Stable Linear Dynamical Systems

    DTIC Science & Technology

    2008-01-01

    and † denotes the Moore - Penrose inverse . Eq. (3) asks  to minimize the error in predicting the state at time t + 1 from the state at time t. Given...A Constraint Generation Approach to Learning Stable Linear Dynamical Systems Sajid M. Siddiqi Byron Boots Geoffrey J. Gordon January 2008...REPORT DATE JAN 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE A Constraint Generation Approach to Learning

  9. Open-Source Programming for Automated Generation of Graphene Raman Spectral Maps

    NASA Astrophysics Data System (ADS)

    Vendola, P.; Blades, M.; Pierre, W.; Jedlicka, S.; Rotkin, S. V.

    Raman microscopy is a useful tool for studying the structural characteristics of graphene deposited onto substrates. However, extracting useful information from the Raman spectra requires data processing and 2D map generation. An existing home-built confocal Raman microscope was optimized for graphene samples and programmed to automatically generate Raman spectral maps across a specified area. In particular, an open source data collection scheme was generated to allow the efficient collection and analysis of the Raman spectral data for future use. NSF ECCS-1509786.

  10. Optimal design of semiconductor opening switches for use in the inductive stage of high power pulse generators

    NASA Astrophysics Data System (ADS)

    Engelko, A.; Bluhm, H.

    2004-05-01

    Semiconductor opening switches (SOS) are able to interrupt currents at density levels of up to 10 kA/cm2 in less than 10 ns, operate at repetition rates up to 1 kHz, and possess lifetimes of more than 1011 pulses. If stacked, SOS diodes can hold off voltage levels up to several 100 kV. They are therefore ideal for the design of compact high voltage pulse generators of the GW-class for industrial applications. The aim of this work was to improve our understanding of the opening process in a semiconductor diode of SOS-type with a doping profile of p+pnn+ structure, obtainable through diffusion from the surfaces. To simulate the physical processes inside this diode the code POSEOSS was developed. It contains a detailed physical model of charge carrier transport under the influence of density gradients and electric fields and considers all relevant generation and recombination processes. It possesses a large degree of flexibility and is easy to use, and thus allows to carry out parameter studies to determine the influence of different physical quantities, such as doping and impurity levels, on the performance of the device. When applying the code some interesting results concerning the plasma dynamics during the opening process in the switch have been found. In particular, using realistic values for the charge carrier mobility, it was found that the opening process starts first at the n-n+ boundary. Also it has been possible to derive the physical conditions for the occurrence of the SOS-effect. Based on the simulation results a simplified SOS equivalent circuit model has been developed. This model can be used in the circuit simulation program PSPICE. A pulse generator scheme based on inductive storage is proposed, in which power multiplication is achieved by unloading the inductors, previously charged in series, in parallel. This scheme can be considered as the inductive equivalent of a Marx-generator. PSPICE simulations of such a scheme based on semiconductor opening

  11. Tracking dynamics of magma migration in open-conduit systems

    NASA Astrophysics Data System (ADS)

    Valade, Sébastien; Lacanna, Giorgio; Coppola, Diego; Laiolo, Marco; Pistolesi, Marco; Donne, Dario Delle; Genco, Riccardo; Marchetti, Emanuele; Ulivieri, Giacomo; Allocca, Carmine; Cigolini, Corrado; Nishimura, Takeshi; Poggi, Pasquale; Ripepe, Maurizio

    2016-11-01

    Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input rate. During the 2014 flank eruption of Stromboli, this magma input preceded the effusive eruption by several months. When the new lateral effusive vent opened on the Sciara del Fuoco slope, the effusion was accompanied by a large ground deflation, a deepening of the VLP seismic source, and the cessation of summit explosive activity. Such observations suggest the drainage of a superficial magma reservoir confined between the crater terrace and the effusive vent. We show how this model successfully reproduces the measured rate of effusion, the observed rate of ground deflation, and the deepening of the VLP seismic source. This study also demonstrates the ability of the geophysical network to detect superficial magma recharge within an open-conduit system and to track magma drainage during the effusive crisis, with a great impact on hazard assessment.

  12. Designing Guidance for Interpreting Dynamic Visualizations: Generating versus Reading Explanations

    ERIC Educational Resources Information Center

    Ryoo, Kihyun; Linn, Marcia C.

    2014-01-01

    We compared designs of guidance to support students while interacting with dynamic visualizations of complex scientific phenomena in inquiry instruction. Three hundred thirty-two 7th-grade students were randomly assigned to either a reading or a generating condition and completed a web-based inquiry unit focusing on energy concepts in…

  13. Development and Design of a Dynamic Multimedia Item Generation Mechanism

    ERIC Educational Resources Information Center

    Weng, Ting-Sheng

    2012-01-01

    This research applies multimedia technology to design a dynamic item generation method that can adaptively adjust the difficulty level of items according to the level of the testee. The method is based on interactive testing software developed by Flash Actionscript, and provides a testing solution for users by automatically distributing items of…

  14. Development and Design of a Dynamic Multimedia Item Generation Mechanism

    ERIC Educational Resources Information Center

    Weng, Ting-Sheng

    2012-01-01

    This research applies multimedia technology to design a dynamic item generation method that can adaptively adjust the difficulty level of items according to the level of the testee. The method is based on interactive testing software developed by Flash Actionscript, and provides a testing solution for users by automatically distributing items of…

  15. Neural network approaches to dynamic collision-free trajectory generation.

    PubMed

    Yang, S X; Meng, M

    2001-01-01

    In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.

  16. Designing Guidance for Interpreting Dynamic Visualizations: Generating versus Reading Explanations

    ERIC Educational Resources Information Center

    Ryoo, Kihyun; Linn, Marcia C.

    2014-01-01

    We compared designs of guidance to support students while interacting with dynamic visualizations of complex scientific phenomena in inquiry instruction. Three hundred thirty-two 7th-grade students were randomly assigned to either a reading or a generating condition and completed a web-based inquiry unit focusing on energy concepts in…

  17. Thermoelectric Generator Design in Dynamic Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Kiziroglou, M. E.; Becker, Th; Wright, S. W.; Yeatman, E. M.; Evans, J. W.; Wright, P. K.

    2016-11-01

    This paper reports an analysis of thermoelectric generator design for dynamic thermoelectric harvesting. In such devices, the available energy for a given temperature cycle is finite and determined by the heat storage unit capacity. It is shown by simulation and experimentally that specific thermoelectric generator designs can increase the energy output, by optimizing the balance between heat leakage and dynamic response delay. A 3D printed, doublewall heat storage unit is developed for the experiments. Output energy of 30 J from 7.5 gr of phase change material, from a temperature cycle between ± 22 °C is demonstrated, enough to supply typical duty-cycled wireless sensor platforms. These results may serve as guidelines for the design and fabrication of dynamic thermoelectric harvesters for applications involving environments with moderate temperature fluctuations.

  18. Using open data in near real time disaster analysis and knowledge generation

    NASA Astrophysics Data System (ADS)

    She, Jun

    2017-04-01

    This presentation will address the value of using open operational geo data in near real time disaster analysis and knowledge generation. In the past, mechanism analysis of a meteo-hyrological extreme event may take month and years with lots of resources since there exist many kinds of restrictions on the model and observation data, e.g., in availability, accessibility, adequacy in resolution, quality and delivery time etc. In recent years, thanks to the open data and open service programs such as Copernicus, EMODnet (European Marine Observation Data Network) and data sharing activities in ROOSs (Regional Operational Oceanography Systems) and national agencies, the disaster analysis become a much faster and efficient procedure. The study will present such a case study for analyzing a hundred-year storm event in January 2017 which affects Danish and German coasts in western Baltic Sea. The event and its forecasts have caused lots of attention in Danish and German media. However, the explanations on how the storm surge is formed and why the prediction is good or bad in this or that country are still largely absent in the media reports. All the data and plots used in the analysis are from open sources. It is found that with the open data, the spatiotemporal variation and the internal links between weather, sea level and water mass movements can be well understood. New knowledge on key factors for the unusual high waters in the western Baltic is obtained from this analysis. Finally, recommendations for using open operational data in generating open science are given.

  19. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Ruble, T.E.

    2002-01-01

    This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.

  20. Scale generation via dynamically induced multiple seesaw mechanisms

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroyuki; Matsuzaki, Shinya; Okawa, Shohei; Omura, Yuji

    2017-04-01

    We propose a model which accounts for the dynamical origin of the electroweak symmetry breaking (EWSB), directly linking to the mass generation of dark matter (DM) candidates and active neutrinos. The standard model (SM) is weakly charged under the U (1 )B -L gauge symmetry, in conjunction with newly introduced three right-handed Majorana neutrinos and the U (1 )B -L Higgs. The model is built on the classical scale invariance, that is dynamically broken by a new strongly coupled sector, that is called the hypercolor (HC) sector, which is also weakly coupled to the U (1 )B-L gauge. At the HC strong scale, the simultaneous breaking of the EW and U (1 )B-L gauge symmetries is triggered by dynamically induced multiple seesaw mechanisms, namely bosonic seesaw mechanisms. Thus, all of the origins of masses are provided singly by the HC dynamics: that is what we call the dynamical scalegenesis. We also find that a HC baryon, with a mass on the order of a few TeV, can be stabilized by the HC baryon number and the U (1 )B-L charge, so identified as a DM candidate. The relic abundance of the HC-baryon DM can be produced dominantly via the bosonic-seesaw portal process, and the HC-baryon DM can be measured through the large magnetic moment coupling generated from the HC dynamics, or the U (1 )B-L-gauge boson portal in direct detection experiments.

  1. Dynamic investigation of Drosophila myocytes with second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Catherine; Stewart, Bryan; Cisek, Richard; Prent, Nicole; Major, Arkady; Barzda, Virginijus

    2006-09-01

    The functional dynamics and structure of both larval and adult Drosophila melanogaster muscle were investigated with a nonlinear multimodal microscope. Imaging was carried out using a home built microscope capable of recording the multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation signals simultaneously at a scanning rate of up to ~12 frames/sec. The sample was excited by a home built femtosecond Ti:Sapphire laser at 840 nm, or by a Yb-ion doped potassium gadolinium tungstate (Yb:KGW) crystal based oscillator at 1042 nm. There was no observable damage detected in the myocyte after prolonged scanning with either of the lasers. Microscopic second harmonic generation (SHG) appears particularly strong in the myocytes. This allows the fast contraction dynamics of the myocytes to be followed. The larger sarcomere size observed in the larvae myocytes is especially well suited for studying the contraction dynamics. Microscopic imaging of muscle contractions showed different relaxation and contraction rates. The SHG intensities were significantly higher in the relaxed state of the myocyte compared to the contracted state. The imaging also revealed disappearance of SHG signal in highly stretched sarcomeres, indicating that SHG diminishes in the disordered structures. The study illustrates that SHG microscopy, combined with other nonlinear contrast mechanisms, can help to elucidate physiological mechanisms of contraction. This study also provides further insight into the mechanisms of harmonic generation in biological tissue and shows that crystalline arrangement of macromolecules has a determining factor for the high efficiency second harmonic generation from the bulk structures.

  2. A multistage ab initio quantum wavepacket dynamics formalism for electronic structure and dynamics in open systems

    NASA Astrophysics Data System (ADS)

    Pacheco, Alexander B.; Iyengar, Srinivasan S.

    2010-07-01

    We propose a multistage quantum wavepacket dynamical treatment for the study of delocalized electronic systems as well as electron transport through donor-bridge-acceptor systems such as those found in molecular-wire/electrode networks. The full donor-bridge-acceptor system is treated through a rigorous partitioning scheme that utilizes judiciously placed offsetting absorbing and emitting boundary conditions. These facilitate a computationally efficient and potentially accurate treatment of the long-range coupling interactions between the bridge and donor/acceptor systems and the associated open system boundary conditions. Time-independent forms of the associated, partitioned equations are also derived. In the time-independent form corresponding to the bridge system, coupling to donor and acceptor, that is long-range interactions, is completely accounted. For the time-dependent study, the quantum dynamics of the electronic flux through the bridge-donor/acceptor interface is constructed using an accurate and efficient representation of the discretized quantum-mechanical free-propagator. A model for an electrode-molecular wire-electrode system is used to test the accuracy of the scheme proposed. Transmission probability is obtained directly from the probability density of the electronic flux in the acceptor region. Conductivity through the molecular wire is computed using a wavepacket flux correlation function.

  3. Dynamic computer-generated nonlinear-optical holograms

    NASA Astrophysics Data System (ADS)

    Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng

    2017-08-01

    We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.

  4. Maps and inverse maps in open quantum dynamics

    SciTech Connect

    Jordan, Thomas F.

    2010-10-15

    Two kinds of maps that describe evolution of states of a subsystem coming from dynamics described by a unitary operator for a larger system, maps defined for fixed mean values and maps defined for fixed correlations, are found to be quite different for the same unitary dynamics in the same situation in the larger system. An affine form is used for both kinds of maps to find necessary and sufficient conditions for inverse maps. All the different maps with the same homogeneous part in their affine forms have inverses if and only if the homogeneous part does. Some of these maps are completely positive; others are not, but the homogeneous part is always completely positive. The conditions for an inverse are the same for maps that are not completely positive as for maps that are. For maps defined for fixed mean values, the homogeneous part depends only on the unitary operator for the dynamics of the larger system, not on any state or mean values or correlations. Necessary and sufficient conditions for an inverse are stated several different ways: in terms of the maps of matrices, basis matrices, density matrices, or mean values. The inverse maps are generally not tied to the dynamics the way the maps forward are. A trace-preserving completely positive map that is unital cannot have an inverse that is obtained from any dynamics described by any unitary operator for any states of a larger system.

  5. Generations of solvable discrete-time dynamical systems

    NASA Astrophysics Data System (ADS)

    Bihun, Oksana; Calogero, Francesco

    2017-05-01

    A technique is introduced which allows to generate—starting from any solvable discrete-time dynamical system involving N time-dependent variables—new, generally nonlinear, generations of discrete-time dynamical systems, also involving N time-dependent variables and being as well solvable by algebraic operations (essentially by finding the N zeros of explicitly known polynomials of degree N). The dynamical systems constructed using this technique may also feature large numbers of arbitrary constants, and they need not be autonomous. The solvable character of these models allows to identify special cases with remarkable time evolutions: for instance, isochronous or asymptotically isochronous discrete-time dynamical systems. The technique is illustrated by a few examples.

  6. Towards automatically generating graphical user interfaces from openEHR archetypes.

    PubMed

    Schuler, Thilo; Garde, Sebastian; Heard, Sam; Beale, Thomas

    2006-01-01

    One of the main challenges in the field of Electronic Health Records (EHRs) is semantic interoperability. To utilise the full potential of interoperable EHR systems they have to be accepted by their users, the health care providers. Good Graphical User Interfaces (GUIs) that support customisation and data validation play a decisive role for user acceptance and data quality. This study investigates the use of openEHR archetypes to automatically generate coherent, customizable, data-validating GUIs. Using the Mozilla XML User Interface Language (XUL) a series of prototypes has been developed. The results show that the automatic generation of GUIs from openEHR archetypes is feasible in principle. Although XUL revealed some problems, the advantages of XML-based GUI languages are evident.

  7. Simulation of Coherent Diffraction Radiation Generation by Pico-Second Electron Bunches in an Open Resonator

    NASA Astrophysics Data System (ADS)

    Sukhikh, L. G.; Potylitsyn, A. P.; Verigin, D. A.

    2016-07-01

    In this report we present new approach for calculation of processes of diffraction radiation generation, storage and decay in an open resonator based on generalized surface current method. The radiation characteristics calculated using the developed approach were compared with those calculated using Gaussian-Laguerre modes method. The comparison shows reasonable coincidence of the results that allows to use developed method for investigation of more complicated resonators.

  8. Self-generated overvoltages due to open-phasing of ungrounded-wye delta transformer banks

    SciTech Connect

    Walling, R.A.; Hartana, R.K.; Ros, W.J.

    1995-01-01

    Disconnecting one phase of an ungrounded-wye delta transformer bank from the source can result In severe overvoltages due to neutral shirt and ferroresonance. Neutral shirt overvoltages are quantified and their Impact on metal-oxide surge arresters are evaluated. Ferroresonance is shown by test data to occur when low-loss banks, 15 kV and higher, are open phased. Design and operating practices to eliminate or mitigate these self-generated overvoltages are discussed.

  9. A dynamical model for generating synthetic Phonocardiogram signals

    PubMed Central

    Almasi, Ali; Shamsollahi, Mohammad-Bagher; Senhadji, Lotfi

    2011-01-01

    In this paper we introduce a dynamical model for Phonocardiogram (PCG) signal which is capable of generating realistic synthetic PCG signals. This model is based on PCG morphology and consists of three ordinary differential equations and can represent various morphologies of normal PCG signals. Beat-to-beat variation in PCG morphology is significant so model parameters vary from beat to beat. This model is inspired of Electrocardiogram (ECG) dynamical model proposed by McSharry et al. and can be employed to assess biomedical signal processing techniques. PMID:22255630

  10. ERCOT's Dynamic Model of Wind Turbine Generators: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

    2005-08-01

    By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

  11. Dynamic simulation and safety evaluation of high-speed trains meeting in open air

    NASA Astrophysics Data System (ADS)

    Li, Songyan; Zheng, Zhijun; Yu, Jilin; Qian, Chunqiang

    2016-04-01

    Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method. The variations of degrees of freedom (DOFs: horizontal movement, roll angle, and yaw angle), the lateral wheel-rail force, the derailment coefficient, and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specified speeds. Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed, but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment. The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened. The pressure pulse has significant effects on the train DOFs, and the evaluations of these safety indexes are strongly suggested in practice. The pressure pulse has a limited effect on the derailment coefficient and the lateral wheel-rail force, and, thus, their further evaluations may be not necessary.

  12. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    SciTech Connect

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

    2010-06-02

    We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

  13. Driven Open Quantum Systems and Floquet Stroboscopic Dynamics

    NASA Astrophysics Data System (ADS)

    Restrepo, S.; Cerrillo, J.; Bastidas, V. M.; Angelakis, D. G.; Brandes, T.

    2016-12-01

    We provide an analytic solution to the problem of system-bath dynamics under the effect of high-frequency driving that has applications in a large class of settings, such as driven-dissipative many-body systems. Our method relies on discrete symmetries of the system-bath Hamiltonian and provides the time evolution operator of the full system, including bath degrees of freedom, without weak-coupling or Markovian assumptions. An interpretation of the solution in terms of the stroboscopic evolution of a family of observables under the influence of an effective static Hamiltonian is proposed, which constitutes a flexible simulation procedure of nontrivial Hamiltonians. We instantiate the result with the study of the spin-boson model with time-dependent tunneling amplitude. We analyze the class of Hamiltonians that may be stroboscopically accessed for this example and illustrate the dynamics of system and bath degrees of freedom.

  14. Implicit Formulation of Muscle Dynamics in OpenSim

    NASA Technical Reports Server (NTRS)

    Humphreys, Brad; Dembia, Chris; Lewandowski, Beth; Van Den Bogert, Antonie

    2017-01-01

    . Instead, the system dynamics are transformed to discrete time and the optimizer is constrained such that the solution is not considered to be a valid unless the dynamic equations are satisfied at all time points. The simulation and optimization are effectively done simultaneously. Due to the implicit integration, time steps can be more coarse than in a differential equation solver. In a gait scenario this means that that the model constraints and cost function are evaluated at 100 nodes in the gait cycle versus 10,000 integration steps in a variable-step forward dynamic simulation. Furthermore, no time is wasted on accurate simulations of movements that are far from the optimum. Constrained optimization algorithms require a Jacobian matrix that contains the partial derivatives of each of the dynamic constraints with respect to of each of the state and control variables at all time points. This is a large but sparse matrix. An implicit dynamics formulation requires computation of the dynamic residuals f as a function of the states x and their derivatives, and controls u:f(x, dxdt, u) 0If the dynamics of musculoskeletal system are formulated implicitly, the Jacobian elements are often available analytically, eliminating the need for numerical differentiation; this is obviously computationally advantageous. Additionally, implicit formulation of musculoskeletal dynamics do not suffer from singularities from low mass bodies, zero muscle activation, or other stiff system or

  15. Dynamic model of open shell structures buried in poroelastic soils

    NASA Astrophysics Data System (ADS)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  16. Pore opening dynamics in the exocytosis of serotonin

    NASA Astrophysics Data System (ADS)

    Ramirez-Santiago, Guillermo; Cercos, Montserrat G.; Martinez-Valencia, Alejandro; Salinas Hernandez, Israel; Rodríguez-Sosa, Leonardo; de-Miguel, Francisco F.

    2015-03-01

    The current view of the exocytosis of transmitter molecules is that it starts with the formation of a fusion pore that connects the intravesicular and the extracellular spaces, and is completed by the release of the rest of the transmitter contained in the vesicle upon the full fusion and collapse of the vesicle with the plasma membrane. However, under certain circumstances, a rapid closure of the pore before the full vesicle fusion produces only a partial release of the transmitter. Here we show that whole release of the transmitter occurs through fusion pores that remain opened for tens of milliseconds without vesicle collapse. This was demonstrated through amperometric measurements of serotonin release from electrodense vesicles in the axon of leech Retzius neurons and mathematical modelling. By modeling transmitter release with a diffusion equation subjected to boundary conditions that are defined by the experiment, we showed that those pores with a fast half rise time constant remained opened and allowed the full quantum release without vesicle collapse, whereas pores with a slow rise time constant closed rapidly, thus producing partial release. We conclude that a full transmitter release may occur through the fusion pore in the absence of vesicle collapse. This work was founded by a DGAPA-UNAM grants IN200914 and IN118410 CONACYT GRANT 130031, and CONACyT doctoral fellowships.

  17. Dynamical generation of maximally entangled states in two identical cavities

    SciTech Connect

    Alexanian, Moorad

    2011-11-15

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  18. Tricomplex Dynamical Systems Generated by Polynomials of Odd Degree

    NASA Astrophysics Data System (ADS)

    Parisé, Pierre-Olivier; Rochon, Dominic

    In this paper, we give the exact interval of the cross section of the Multibrot sets generated by the polynomial zp + c where z and c are complex numbers and p > 2 is an odd integer. Furthermore, we show that the same Multibrots defined on the hyperbolic numbers are always squares. Moreover, we give a generalized 3D version of the hyperbolic Multibrot set and prove that our generalization is an octahedron for a specific 3D slice of the dynamical system generated by the tricomplex polynomial ηp + c where p > 2 is an odd integer.

  19. Global Dynamic Exposure and the OpenBuildingMap

    NASA Astrophysics Data System (ADS)

    Schorlemmer, D.; Beutin, T.; Hirata, N.; Hao, K. X.; Wyss, M.; Cotton, F.; Prehn, K.

    2015-12-01

    Detailed understanding of local risk factors regarding natural catastrophes requires in-depth characterization of the local exposure. Current exposure capture techniques have to find the balance between resolution and coverage. We aim at bridging this gap by employing a crowd-sourced approach to exposure capturing focusing on risk related to earthquake hazard. OpenStreetMap (OSM), the rich and constantly growing geographical database, is an ideal foundation for us. More than 2.5 billion geographical nodes, more than 150 million building footprints (growing by ~100'000 per day), and a plethora of information about school, hospital, and other critical facility locations allow us to exploit this dataset for risk-related computations. We will harvest this dataset by collecting exposure and vulnerability indicators from explicitly provided data (e.g. hospital locations), implicitly provided data (e.g. building shapes and positions), and semantically derived data, i.e. interpretation applying expert knowledge. With this approach, we can increase the resolution of existing exposure models from fragility classes distribution via block-by-block specifications to building-by-building vulnerability. To increase coverage, we will provide a framework for collecting building data by any person or community. We will implement a double crowd-sourced approach to bring together the interest and enthusiasm of communities with the knowledge of earthquake and engineering experts. The first crowd-sourced approach aims at collecting building properties in a community by local people and activists. This will be supported by tailored building capture tools for mobile devices for simple and fast building property capturing. The second crowd-sourced approach involves local experts in estimating building vulnerability that will provide building classification rules that translate building properties into vulnerability and exposure indicators as defined in the Building Taxonomy 2.0 developed

  20. Automating the generation of finite element dynamical cores with Firedrake

    NASA Astrophysics Data System (ADS)

    Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas

    2017-04-01

    The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present

  1. Plasma dynamics in microsecond megaampere plasma opening switches

    SciTech Connect

    Loginov, S. V.

    2011-10-15

    The paper considers the transport of a magnetic field in highly ionized plasma of microsecond megaampere plasma opening switches. Self-similar solutions for plasma aggregation by a linearly increasing magnetic field are derived. For these solutions, the magnetic field energy in the current channel is much lower than the energy of the accelerated plasma flow. The effect of Joule heating of the plasma becomes profound only with a uniform current density. It is shown that the evolution of the magnetic field in the accelerated flow is reduced to diffusion with an effective electrical conductivity proportional to the harmonic average of the Spitzer conductivity and conductivity dependent on the magnetic field in the current channel. Thus, during about the first 100 ns of the current pulse the conductivity of the current channel increases due to the plasma heating and, as the plasma is accelerated, its conductivity decreases.

  2. Dynamic Braking System of a Tidal Generator: Preprint

    SciTech Connect

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  3. Static and dynamic high power, space nuclear electric generating systems

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Begg, L. L.; Koester, J. K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.

  4. A Tesla-pulse forming line-plasma opening switch pulsed power generator

    NASA Astrophysics Data System (ADS)

    Novac, B. M.; Kumar, R.; Smith, I. R.

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF6), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  5. Imaging electrical spin generation and spin Hall dynamics in semiconductors

    NASA Astrophysics Data System (ADS)

    Stern, N. P.

    2009-03-01

    The capability to generate and manipulate spin polarization through the spin-orbit interaction drives interest in all-electrical techniques to exploit electron spins for semiconductor spintronics. The spin Hall effect refers to the generation of a pure spin current transverse to a charge current, resulting in a spontaneous spin accumulation near sample boundaries without the need for magnetic fields or materials. Recent experiments toward imaging this electrically generated spin polarization with both spatially and temporally resolved Kerr rotation microscopy in bulk zincblende semiconductors are discussed. Both current-induced in-plane spin polarization and out-of-plane spin accumulation from the spin Hall effect are observed in ZnSe up to room temperatureootnotetextN. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 97, 126603 (2006). In GaAs devices, spatially resolved measurements of steady-state spin Hall accumulation and associated modeling clarify the important role of drift and diffusion in transporting spins generated at sample boundaries to the device interiorootnotetextN. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Appl. Phys. Lett. 91, 062109 (2007). In these typical optical experiments, electrically-generated spin accumulation is measured using steady-state techniques that do not directly observe dynamics at timescales important for device operation. Here we discuss a time- and spatially-resolved measurement of the spin Hall effect using a pulsed current to drive spin accumulationootnotetextN. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Nat. Physics 4, 843 (2008). The dynamical processes of spin accumulation and diffusion reveal spatially-dependent nanosecond timescales comparable to the electric-field dependent spin coherence time. A time-dependent diffusion analysis reconciles the observed spatial and temporal dynamics of spin accumulation from the spin

  6. Open quantum system stochastic dynamics with and without the RWA

    NASA Astrophysics Data System (ADS)

    Band, Y. B.

    2015-02-01

    We study the dynamics of a two-level quantum system interacting with a single frequency electromagnetic field and a stochastic magnetic field, with and without making the rotating wave approximation (RWA). The transformation to the rotating frame does not commute with the stochastic Hamiltonian if the stochastic field has nonvanishing components in the transverse direction, hence, applying the RWA requires transformation of the stochastic terms in the Hamiltonian. For Gaussian white noise, the master equation is derived from the stochastic Schrödinger-Langevin equations, with and without the RWA. With the RWA, the master equation for the density matrix has Lindblad terms with coefficients that are time-dependent (i.e., the master equation is time-local). An approximate analytic expression for the density matrix is obtained with the RWA. For Ornstein-Uhlenbeck noise, as well as other types of colored noise, in contradistinction to the Gaussian white noise case, the non-commutation of the RWA transformation and the noise Hamiltonian can significantly affect the RWA dynamics when ω {{τ }corr} 1, where ω is the electromagnetic field frequency and {{τ }corr} is the stochastic magnetic field correlation time.

  7. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks

    PubMed Central

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-01-01

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions. PMID:26151211

  8. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks.

    PubMed

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-07-03

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions.

  9. Antagonism of Lidocaine Inhibition by Open-Channel Blockers That Generate Resurgent Na Current

    PubMed Central

    Bant, Jason S.; Aman, Teresa K.; Raman, Indira M.

    2013-01-01

    Na channels that generate resurgent current express an intracellular endogenous open-channel blocking protein, whose rapid binding upon depolarization and unbinding upon repolarization minimizes fast and slow inactivation. Na channels also bind exogenous compounds, such as lidocaine, which functionally stabilize inactivation. Like the endogenous blocking protein, these use-dependent inhibitors bind most effectively at depolarized potentials, raising the question of how lidocaine-like compounds affect neurons with resurgent Na current. We therefore recorded lidocaine inhibition of voltage-clamped, tetrodotoxin-sensitive Na currents in mouse Purkinje neurons, which express a native blocking protein, and in mouse hippocampal CA3 pyramidal neurons with and without a peptide from the cytoplasmic tail of NaVβ4 (the β4 peptide), which mimics endogenous open-channel block. To control channel states during drug exposure, lidocaine was applied with rapid-solution exchange techniques during steps to specific voltages. Inhibition of Na currents by lidocaine was diminished by either the β4 peptide or the native blocking protein. In peptide-free CA3 cells, prolonging channel opening with a site-3 toxin, anemone toxin II, reduced lidocaine inhibition; this effect was largely occluded by open-channel blockers, suggesting that lidocaine binding is favored by inactivation but prevented by open-channel block. In constant 100 μM lidocaine, current-clamped Purkinje cells continued to fire spontaneously. Similarly, the β4 peptide reduced lidocaine-dependent suppression of spiking in CA3 neurons in slices. Thus, the open-channel blocking protein responsible for resurgent current acts as a natural antagonist of lidocaine. Neurons with resurgent current may therefore be less susceptible to use-dependent Na channel inhibitors used as local anesthetic, antiarrhythmic, and anticonvulsant drugs. PMID:23486968

  10. Dynamic test input generation for multiple-fault isolation

    NASA Technical Reports Server (NTRS)

    Schaefer, Phil

    1990-01-01

    Recent work is Causal Reasoning has provided practical techniques for multiple fault diagnosis. These techniques provide a hypothesis/measurement diagnosis cycle. Using probabilistic methods, they choose the best measurements to make, then update fault hypotheses in response. For many applications such as computers and spacecraft, few measurement points may be accessible, or values may change quickly as the system under diagnosis operates. In these cases, a hypothesis/measurement cycle is insufficient. A technique is presented for a hypothesis/test-input/measurement diagnosis cycle. In contrast to generating tests a priori for determining device functionality, it dynamically generates tests in response to current knowledge about fault probabilities. It is shown how the mathematics previously used for measurement specification can be applied to the test input generation process. An example from an efficient implementation called Multi-Purpose Causal (MPC) is presented.

  11. Constraining dynamical neutrino mass generation with cosmological data

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.; Hannestad, S.

    2017-09-01

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.

  12. Characterization of open-cycle coal-fired MHD generators. 14th/15th quarterly technical progress report, February 1-July 31, 1980

    SciTech Connect

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  13. Characterization of open-cycle coal-fired MHD generators. 16th quarterly technical progress report, December 16, 1980-March 31, 1981

    SciTech Connect

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Dvore, D.; Freedman, A.; Stanton, A.; Stewart, G.

    1981-05-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is reported. In addition, studies related to understanding arcing and corrosion phenomena in the vicinity of an anode are reported.

  14. Openings

    PubMed Central

    Selwyn, Peter A.

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  15. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN

    PubMed Central

    Nakaoka, Yuki; Kimura, Akatsuki; Tani, Tomomi; Goshima, Gohta

    2015-01-01

    The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants. PMID:25616870

  16. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  17. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    SciTech Connect

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-08-10

    Highlights: {yields} Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. {yields} Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. {yields} We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. {yields} With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  18. Open system degassing, bubble rise and flow dynamics within volcanic conduits- an experimental approach

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Azzopardi, B. J.; Bonadonna, C.; Marchetti, E.; Ripepe, M.

    2009-12-01

    Open conduit basaltic volcanoes are characterized by frequent eruptions, usually consisting in mild Strombolian and Hawaiian explosions, alternating years to months of quiescence periods, with degassing activity from the central conduit. Recent improvements of thermal, video, radar and acoustic monitoring techniques have provided new powerful tools for the study of degassing processes and made available geophysical and geochemical datasets for many central volcanoes, such as Stromboli, Etna (Italy), Kilauea (Hawaii), Villarrica (Chile). These studies revealed that degassing is an unsteady, often pulsatory process, characterized by fluctuations in both intensity and composition of the emitted gases. Unambiguous interpretation of monitoring data of surface activity in terms of conduit dynamics and flow processes is, however, not possible, due to partial knowledge of the physical processes controlling the dynamics of two-phase flows in magmas. We performed a series of experiments to gain further insights on the dynamics of the gas-bubble rise in magmas within a cylindrical conduit, their ability to segregate and coalesce and the effect of these processes on the degassing dynamics. The experiments consisted in generating fluxes at variable intensities of air through stagnant water or glucose syrup in a bubble column apparatus 6.5 m high and with a diameter of 24 cm diameter. Glucose syrup and water are Newtonian liquids with viscosity ranging from 2.4 to 204.0 Pa*s and from 1.7 to 0.2 10 -3 Pa*s respectively, depending on temperature. Air was inserted at the base of the column through a variable number (1 to 25) of 5mm-diameter nozzles reaching surficial gas velocities of up to 0.5 m/s. The activity of the bubble column was monitored through temperature, pressure, void fraction and acoustic measurements and filmed by a high-speed camera with maximum resolution of 800x600 pixels. Pressure fluctuations, vesicularity and acoustic signal were then analyzed and correlated

  19. Canonical versus noncanonical equilibration dynamics of open quantum systems.

    PubMed

    Yang, Chun-Jie; An, Jun-Hong; Luo, Hong-Gang; Li, Yading; Oh, C H

    2014-08-01

    In statistical mechanics, any quantum system in equilibrium with its weakly coupled reservoir is described by a canonical state at the same temperature as the reservoir. Here, by studying the equilibration dynamics of a harmonic oscillator interacting with a reservoir, we evaluate microscopically the condition under which the equilibration to a canonical state is valid. It is revealed that the non-Markovian effect and the availability of a stationary state of the total system play a profound role in the equilibration. In the Markovian limit, the conventional canonical state can be recovered. In the non-Markovian regime, when the stationary state is absent, the system equilibrates to a generalized canonical state at an effective temperature; whenever the stationary state is present, the equilibrium state of the system cannot be described by any canonical state anymore. Our finding of the physical condition on such noncanonical equilibration might have significant impact on statistical physics. A physical scheme based on circuit QED is proposed to test our results.

  20. Unscented Kalman filter with open-loop compensation for high dynamic GNSS carrier tracking

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Chen, Xi; Han, Shuai; Meng, Wei-Xiao; Zhang, Yi

    2009-12-01

    Because of the limit of the loop-band, traditional carrier tracking loop of GNSS receiver can't work in high dynamic conditions with large Doppler frequency, for which an open-loop carrier tracking method based on UKF is proposed. Upon this new tracking loop, the four-dimensionality UKF phase estimator and a compensator is designed to modify the estimative values. By simulating the high dynamic trace of the plat of GNSS receiver, this new method is compared to the closed loop mainly in the aspects of tracking errors, compensation effects and unlocking probability. Simulations show that (1) the proposed open-loop compensation method can give attention to the precision and the dynamics better, with high stability, (2) compared with the closed loop, the open-loop carrier tracking method can improve the tracking precision, with 50% decrease of the tracking errors; and (3) the convergence of this new method is much better, leading to lower unlocking probability.

  1. Generation time and temporal scaling of bird population dynamics.

    PubMed

    Saether, Bernt-Erik; Lande, Russell; Engen, Steinar; Weimerskirch, Henri; Lillegård, Magnar; Altwegg, Res; Becker, Peter H; Bregnballe, Thomas; Brommer, Jon E; McCleery, Robin H; Merilä, Juha; Nyholm, Erik; Rendell, Wallace; Robertson, Raleigh R; Tryjanowski, Piotr; Visser, Marcel E

    2005-07-07

    Theoretical studies have shown that variation in density regulation strongly influences population dynamics, yet our understanding of factors influencing the strength of density dependence in natural populations still is limited. Consequently, few general hypotheses have been advanced to explain the large differences between species in the magnitude of population fluctuations. One reason for this is that the detection of density regulation in population time series is complicated by time lags induced by the life history of species that make it difficult to separate the relative contributions of intrinsic and extrinsic factors to the population dynamics. Here we use population time series for 23 bird species to estimate parameters of a stochastic density-dependent age-structured model. We show that both the strength of total density dependence in the life history and the magnitude of environmental stochasticity, including transient fluctuations in age structure, increase with generation time. These results indicate that the relationships between demographic and life-history traits in birds translate into distinct population dynamical patterns that are apparent only on a scale of generations.

  2. Upon Generating (2+1)-dimensional Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Bai, Yang; Wu, Lixin

    2016-06-01

    Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.

  3. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  4. Permeability assessment of the focused ultrasound-induced blood-brain barrier opening using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Vlachos, F.; Tung, Y.-S.; Konofagou, E. E.

    2010-09-01

    Focused ultrasound (FUS) in conjunction with microbubbles has been shown to successfully open the blood-brain barrier (BBB) in the mouse brain. In this study, we compute the BBB permeability after opening in vivo. The spatial permeability of the BBB-opened region was assessed using dynamic contrast-enhanced MRI (DCE-MRI). The DCE-MR images were post-processed using the general kinetic model (GKM) and the reference region model (RRM). Permeability maps were generated and the Ktrans values were calculated for a predefined volume of interest in the sonicated and the control area for each mouse. The results demonstrated that Ktrans in the BBB-opened region (0.02 ± 0.0123 for GKM and 0.03 ± 0.0167 min-1 for RRM) was at least two orders of magnitude higher when compared to the contra-lateral (control) side (0 and 8.5 × 10-4 ± 12 × 10-4 min-1, respectively). The permeability values obtained with the two models showed statistically significant agreement and excellent correlation (R2 = 0.97). At histological examination, it was concluded that no macroscopic damage was induced. This study thus constitutes the first permeability assessment of FUS-induced BBB opening using DCE-MRI, supporting the fact that the aforementioned technique may constitute a safe, non-invasive and efficacious drug delivery method.

  5. Generation of dynamic Bessel beams and dynamic bottle beams using acousto-optic effect.

    PubMed

    Szulzycki, Krzysztof; Savaryn, Viktoriya; Grulkowski, Ireneusz

    2016-10-17

    We present a novel optical configuration that allows for generation of ultra-high speed dynamic Bessel beams and dynamic bottle beams. The method is based on combination of the axisymmetric acousto-optic device and the spatial filtering enabled by a mask or a digital micromirror device. Selected features of dynamic non-diffracting beams and bottle beams are investigated using time-resolved approach with stroboscopic pulsed illumination, including spatial intensity distribution, spatial modulation factors, MHz-range temporal modulation, and scalability. The numerical simulations based on Fourier optics as well as experimental realizations are demonstrated.

  6. Combined Flux Compression and Plasma Opening Switch on the Saturn Pulsed Power Generator

    SciTech Connect

    Felber, Franklin S.; Waisman, Eduardo M.; Mazarakis, Michael G.

    2010-05-07

    A wire-array flux-compression cartridge installed on Sandia's Saturn pulsed power generator doubled the current into a 3-nH load to 6 MA and halved its rise time to 100 ns. The current into the load, however, was unexpectedly delayed by almost 1 {mu}s. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.

  7. Combined flux compression and plasma opening switch on the Saturn pulsed power generator.

    PubMed

    Felber, Franklin S; Waisman, Eduardo M; Mazarakis, Michael G

    2010-05-07

    A wire-array flux-compression cartridge installed on Sandia's Saturn pulsed power generator doubled the current into a 3-nH load to 6 MA and halved its rise time to 100 ns. The current into the load, however, was unexpectedly delayed by almost 1 micros. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.

  8. Inward open characterization of EmrD transporter with molecular dynamics simulation

    SciTech Connect

    Tan, Xianwei; Wang, Boxiong

    2016-06-10

    EmrD is a member of the multidrug resistance exporter family. Up to now, little is known about the structural dynamics that underline the function of the EmrD protein in inward-facing open state and how the EmrD transits from an occluded state to an inward open state. For the first time the article applied the AT simulation to investigate the membrane transporter protein EmrD, and described the dynamic features of the whole protein, the domain, the helices, and the amino acid residues during an inward-open process from its occluded state. The gradual inward-open process is different from the current model of rigid-body domain motion in alternating-access mechanism. Simulation results show that the EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. In addition, it is observed that the helices exposed to the surrounding membrane show a higher level of flexibility than the other regions, and the protonated E227 plays a key role in the transition from the occluded to the open state. -- Highlights: •This study described the dynamic features of the whole EmrD protein, during an inward-open process from its occluded state. •The EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. •The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. •The protonated E227 plays a key role in the transition from the occluded to the open state.

  9. Outlook for the use of microsecond plasma opening switches to generate high-power nanosecond current pulses

    NASA Astrophysics Data System (ADS)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.

    2006-12-01

    An analysis is made of the current break process in microsecond plasma opening switches and their possible application in high-current generators. Necessary conditions are determined for generating megavolt pulses in the erosion mode of a plasma opening switch with the gap insulated by an external magnetic field. Under these conditions, efficient sharpening of high-power submegampere current pulses can be achieved. The possibility of using plasma opening switches operating at voltages of 5 6 MV to generate X-ray and gamma emission is discussed. The main operating and design parameters of a six-module plasma opening switch with a current pulse amplitude of 3.7 MA and voltage of 4 6 MV for use in the MOL generator, which is the prototype of one of the 24 modules of the projected Baikal multimegajoule generator, are estimated by using the available scalings.

  10. Torque-stiffness-controlled dynamic walking with central pattern generators.

    PubMed

    Huang, Yan; Vanderborght, Bram; Van Ham, Ronald; Wang, Qining

    2014-12-01

    Walking behavior is modulated by controlling joint torques in most existing passivity-based bipeds. Controlled Passive Walking with adaptable stiffness exhibits controllable natural motions and energy efficient gaits. In this paper, we propose torque-stiffness-controlled dynamic bipedal walking, which extends the concept of Controlled Passive Walking by introducing structured control parameters and a bio-inspired control method with central pattern generators. The proposed walking paradigm is beneficial in clarifying the respective effects of the external actuation and the internal natural dynamics. We present a seven-link biped model to validate the presented walking. Effects of joint torque and joint stiffness on gait selection, walking performance and walking pattern transitions are studied in simulations. The work in this paper develops a new solution of motion control of bipedal robots with adaptable stiffness and provides insights of efficient and sophisticated walking gaits of humans.

  11. The significance of micro-topography in generating flow structures in open channel flow

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.

    2011-12-01

    This poster investigates the effect of micro-topographic roughness on the generation, evolution and dissipation of turbulent flow structures in open channel flow. Primarily, a series of flume experiment were undertaken where natural fluvial gravel was placed in a flume and water worked until a stable bed with no sediment transport was obtained. The surface topography was measured to create a digital elevation model (DEM) enabling particle size characteristics to be measured and roughness lengths to be calculated. Flow was measured, at flow Reynolds numbers over two orders of magnitude, using Particle Imaging Velocimetry at data frequencies up to 100 Hz at a spatial resolution of 2×10-3 m. The flume conditions also provided the necessary boundary conditions for Large Eddy Simulation of flow over these heterogeneous surfaces. The data generated by these two separate methodologies was analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE) and; iv) Proper Orthogonal Decomposition (POD) analysis to obtain a full understanding of the turbulent flow structures. Once the LES scheme had been fully validated against the PIV data, scales of topography were removed from the DEM. The LES simulations were then recalculated to assess the influence of topography on the generation of turbulent flow structures. The results demonstrate that the generative mechanism for these bed-generated coherent flow structures are merging hairpin-type vortices that form around bed clasts and generate larger-scale roller-type structures. This mechanism of generation appears consistent over the range of Reynolds numbers but the spatial and temporal length scales appear dependent upon the bed roughness.

  12. Towards numerical simulation of turbulent hydrogen combustion based on flamelet generated manifolds in OpenFOAM

    NASA Astrophysics Data System (ADS)

    Fancello, A.; Bastiaans, R. J. M.; de Goey, L. P. H.

    2013-10-01

    This work proposes an application of the Flamelet-Generated Manifolds (FGM) technique in the OpenFOAM environment. FGM is a chemical reduced method for combustion modeling. This technique treats the combustion process as the solution of a small amount of controlling variables. Regarding laminar simulation, a progress variable and enthalpy evolution can describe satisfactorily the problem. From a turbulent point of view, FGM can be applied to LES and RANS simulations, where the subgrid chemical terms are described with a β - PDF approach. These approaches apply satisfactorily in relatively simple gases, nevertheless for hydrogen are not more valid, due to preferential diffusion effects and instability of the flame structure. The overall aim of this research is to find technical solution for hydrogen gas turbines design in the next generation of Integrated Gasification Combined Cycle (IGCC) plants.

  13. Recent developments on hadron interaction and dynamically generated resonances

    NASA Astrophysics Data System (ADS)

    Oset, E.; Albaladejo, M.; Xie, Ju-Jun; Ramos, A.

    2015-10-01

    In this talk I report on the recent developments in the subject of dynamically generated resonances. In particular I discuss the γ p to K^0 Σ ^ + and γ n to K^0 Σ ^0 reactions, with a peculiar behavior around the K*0Λ threshold, due to a 1/2- resonance around 2035 MeV. Similarly, I discuss a BES experiment, J/ψ to η K^{ * 0} overline K ^{ * 0} decay, which provides evidence for a new h1 resonance around 1830 MeV that was predicted from the vector-vector interaction. A short discussion is then made about recent advances in the charm and beauty sectors.

  14. Numerical simulation for arc-plasma dynamics during contact opening process in electrical circuit-breakers

    NASA Astrophysics Data System (ADS)

    Gupta, D. N.; Patil, G. N.; Srinivas, D.; Kale, S. S.; Potnis, S. B.

    2010-02-01

    The high-energy, high-current thermal plasma that develops between electric contacts in a gas circuit-breaker during circuit interruption is an important phenomenon in the power transmission industry. The high temperature and pressure arc dissipates the tremendous amount of energy generated by the fault current. Simultaneously, this energy has to be transferred away from the contacts to build the dielectric strength level of the circuit-breaker. In order to interrupt the current, the arc must be weakened and finally extinguished. We model these phenomena by using a computer software code based on the solution of the unsteady Euler equations of gas dynamics. We consider the equations of fluid flows. These equations are solved numerically in complex circuit breaker geometries using a finite-volume method. The domain is initially filled with SF6 gas. We begin our simulations from cold mode, where the fault current is not present (hence no arc). An axis-symmetric geometry of a 145 kV gas circuit-breaker is considered to study the pressure, density, and temperature profile during contact opening process.

  15. Food Safety in the Age of Next Generation Sequencing, Bioinformatics, and Open Data Access

    PubMed Central

    Taboada, Eduardo N.; Graham, Morag R.; Carriço, João A.; Van Domselaar, Gary

    2017-01-01

    Public health labs and food regulatory agencies globally are embracing whole genome sequencing (WGS) as a revolutionary new method that is positioned to replace numerous existing diagnostic and microbial typing technologies with a single new target: the microbial draft genome. The ability to cheaply generate large amounts of microbial genome sequence data, combined with emerging policies of food regulatory and public health institutions making their microbial sequences increasingly available and public, has served to open up the field to the general scientific community. This open data access policy shift has resulted in a proliferation of data being deposited into sequence repositories and of novel bioinformatics software designed to analyze these vast datasets. There also has been a more recent drive for improved data sharing to achieve more effective global surveillance, public health and food safety. Such developments have heightened the need for enhanced analytical systems in order to process and interpret this new type of data in a timely fashion. In this review we outline the emergence of genomics, bioinformatics and open data in the context of food safety. We also survey major efforts to translate genomics and bioinformatics technologies out of the research lab and into routine use in modern food safety labs. We conclude by discussing the challenges and opportunities that remain, including those expected to play a major role in the future of food safety science. PMID:28588568

  16. Food Safety in the Age of Next Generation Sequencing, Bioinformatics, and Open Data Access.

    PubMed

    Taboada, Eduardo N; Graham, Morag R; Carriço, João A; Van Domselaar, Gary

    2017-01-01

    Public health labs and food regulatory agencies globally are embracing whole genome sequencing (WGS) as a revolutionary new method that is positioned to replace numerous existing diagnostic and microbial typing technologies with a single new target: the microbial draft genome. The ability to cheaply generate large amounts of microbial genome sequence data, combined with emerging policies of food regulatory and public health institutions making their microbial sequences increasingly available and public, has served to open up the field to the general scientific community. This open data access policy shift has resulted in a proliferation of data being deposited into sequence repositories and of novel bioinformatics software designed to analyze these vast datasets. There also has been a more recent drive for improved data sharing to achieve more effective global surveillance, public health and food safety. Such developments have heightened the need for enhanced analytical systems in order to process and interpret this new type of data in a timely fashion. In this review we outline the emergence of genomics, bioinformatics and open data in the context of food safety. We also survey major efforts to translate genomics and bioinformatics technologies out of the research lab and into routine use in modern food safety labs. We conclude by discussing the challenges and opportunities that remain, including those expected to play a major role in the future of food safety science.

  17. Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation

    PubMed Central

    Ferré, A.; Boguslavskiy, A. E.; Dagan, M.; Blanchet, V.; Bruner, B. D.; Burgy, F.; Camper, A.; Descamps, D.; Fabre, B.; Fedorov, N.; Gaudin, J.; Geoffroy, G.; Mikosch, J.; Patchkovskii, S.; Petit, S.; Ruchon, T.; Soifer, H.; Staedter, D.; Wilkinson, I.; Stolow, A.; Dudovich, N.; Mairesse, Y.

    2015-01-01

    High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20–26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected. PMID:25608712

  18. Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Ferré, A.; Boguslavskiy, A. E.; Dagan, M.; Blanchet, V.; Bruner, B. D.; Burgy, F.; Camper, A.; Descamps, D.; Fabre, B.; Fedorov, N.; Gaudin, J.; Geoffroy, G.; Mikosch, J.; Patchkovskii, S.; Petit, S.; Ruchon, T.; Soifer, H.; Staedter, D.; Wilkinson, I.; Stolow, A.; Dudovich, N.; Mairesse, Y.

    2015-01-01

    High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20-26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected.

  19. RandSpg: An open-source program for generating atomistic crystal structures with specific spacegroups

    NASA Astrophysics Data System (ADS)

    Avery, Patrick; Zurek, Eva

    2017-04-01

    A new algorithm, RANDSPG, that can be used to generate trial crystal structures with specific space groups and compositions is described. The program has been designed for systems where the atoms are independent of one another, and it is therefore primarily suited towards inorganic systems. The structures that are generated adhere to user-defined constraints such as: the lattice shape and size, stoichiometry, set of space groups to be generated, and factors that influence the minimum interatomic separations. In addition, the user can optionally specify if the most general Wyckoff position is to be occupied or constrain select atoms to specific Wyckoff positions. Extensive testing indicates that the algorithm is efficient and reliable. The library is lightweight, portable, dependency-free and is published under a license recognized by the Open Source Initiative. A web interface for the algorithm is publicly accessible at http://xtalopt.openmolecules.net/randSpg/randSpg.html. RANDSPG has also been interfaced with the XTALOPT evolutionary algorithm for crystal structure prediction, and it is illustrated that the use of symmetric lattices in the first generation of randomly created individuals decreases the number of structures that need to be optimized to find the global energy minimum.

  20. ProDaMa: an open source Python library to generate protein structure datasets.

    PubMed

    Armano, Giuliano; Manconi, Andrea

    2009-10-02

    The huge difference between the number of known sequences and known tertiary structures has justified the use of automated methods for protein analysis. Although a general methodology to solve these problems has not been yet devised, researchers are engaged in developing more accurate techniques and algorithms whose training plays a relevant role in determining their performance. From this perspective, particular importance is given to the training data used in experiments, and researchers are often engaged in the generation of specialized datasets that meet their requirements. To facilitate the task of generating specialized datasets we devised and implemented ProDaMa, an open source Python library than provides classes for retrieving, organizing, updating, analyzing, and filtering protein data. ProDaMa has been used to generate specialized datasets useful for secondary structure prediction and to develop a collaborative web application aimed at generating and sharing protein structure datasets. The library, the related database, and the documentation are freely available at the URL http://iasc.diee.unica.it/prodama.

  1. Quantum dynamics of intracavity third-subharmonic generation

    NASA Astrophysics Data System (ADS)

    Gevorkyan, S. T.; Gevorkyan, M. S.

    2017-05-01

    The quantum dynamics of the mean number of photons and quantum entropy of interacting modes, as well as the Wigner function of the stationary state of the fundamental mode and the third subharmonic mode has been investigated for the intracavity third-subharmonic generation. It is shown that the quantum dynamics of the system depends strongly on the nonlinear coupling coefficient between the modes. It is also demonstrated that, in the steady-state limit, depending on the intermodal coupling coefficient, the fundamental mode can be either in a pure coherent state, or in a squeezed state, or in a pure vacuum state. The third subharmonic mode in the subthreshold regime of generation of this mode is in the vacuum state. The Wigner function is squeezed over three sides of an equilateral triangle (squeezed vacuum). The quantum entropy of this state is nonzero. It is also shown that the third subharmonic mode, depending on the nonlinear coupling coefficient in the steady-state limit, can be localized in the three-component state with the same probability of detecting a field in each coherent component of the state and with the presence of quantummechanical interference between the state components. The mean number of photons in this state is smaller than unity. Depending on the nonlinear coupling coefficient, the third subharmonic mode can also be localized in the three-component state, which is a statistical mixture of three squeezed states.

  2. Dynamics of microresonator frequency comb generation: models and stability

    NASA Astrophysics Data System (ADS)

    Hansson, Tobias; Wabnitz, Stefan

    2016-06-01

    Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  3. Analysis of Fluctuations in a Combustion-Driven Open-Cycle MHD Generator.

    NASA Astrophysics Data System (ADS)

    Skorska, Malgorzata Bozena

    Fluctuations present in MHD generators may cause significant degradation in the generated power. The fluctuations may result from three sources. First, the mass flow rates of the components' input to the combustor vary. Second, the combustor initiates its own variations which are functions of the combustor geometry and injection techniques. Third, the generator action, i.e., flow of plasma in a magnetic field, introduces variations in the plasma variables. The purpose of the study is to investigate the fluctuations of MHD output signals, which may either arise from the combustor fluctuations propagating into a conducting channel, or are inherent in the generator dynamics. The analysis of fluctuations is based on the analytical and empirical models. Both models assume that stochastic processes take place within the MHD plasma, and both models yield results in the form of autocorrelation, crosscorrelation, and power spectral density functions of the system variables. The study showed that fluctuations, whose frequencies exceed 200 Hz, in the plasma density, velocity, pressure, current and voltage variables are acoustic in nature, and are caused by longitudinal standing waves present in the generator. The analysis proved that Hall generators develop fluctuations mainly in the range 700 Hz to 2000 Hz, whereas Faraday and DCW generators are favorable for the low frequency fluctuations. Parametric study of the plasma disclosed that stronger magnetic fields and larger Hall parameters increase the frequency range of fluctuations. Changes in plasma specific heat ratio or in inlet steady-state parameters may increase or decrease the intensities of some odd harmonics of the standing waves. The fluctuations that originate in the combustion chamber also affect the plasma variables. A white noise character of these fluctuations guarantees a fairly uniform distribution of energy in the fluctuations of the plasma variables in the frequency range up to 200 Hz. Future research in

  4. Relationship between jaw opening force and hyoid bone dynamics in healthy elderly subjects

    PubMed Central

    Shinozaki, Hiromichi; Tohara, Haruka; Matsubara, Mariko; Inokuchi, Nobuhiro; Yamazaki, Yasuhiro; Nakane, Ayako; Wakasugi, Yoko; Minakuchi, Shunsuke

    2017-01-01

    Purpose This study aimed to examine the relationship between jaw opening force and hyoid bone dynamics and resting position in elderly individuals based on gender. Subjects and methods Subjects were 36 healthy elderly individuals aged ≥65 years without dysphagia (16 men and 20 women; mean age 75.5 years, range 65–88 years). Videofluorographic images during the swallowing of 10 mL of 40% (w/v) barium sulfate were obtained and the degrees of anterior, superior, and hypotenuse displacements of the hyoid bone and maximum/resting hyoid position were evaluated. Jaw opening force was measured three times using a jaw opening force sthenometer; the mean of these three measurements was used for analysis. Results In men, there was a positive correlation between jaw opening force and resting hyoid position and negative correlations among all the degrees of anterior, superior, and hypotenuse displacements of the hyoid bone. In women, there was no statistically significant correlation between jaw opening force and any of the measurement items. There was no statistically significant correlation between jaw opening force and maximum hyoid position in either men or women. Conclusion Our findings suggest that low jaw opening force leads to low resting hyoid position only in elderly men, and a lower hyoid position in healthy elderly men results in a larger total amount of hyoid displacement during swallowing. Moreover, a maximum hyoid position in healthy individuals of either gender does not differ depending on their jaw opening force. PMID:28408812

  5. Collaborative Learning: The Effects of Trust and Open and Closed Dynamics on Consensus and Efficacy

    ERIC Educational Resources Information Center

    Harney, Owen; Hogan, Michael J.; Broome, Benjamin J.

    2012-01-01

    The current study compared the effects of open versus closed group dynamics on perceived consensus, objective consensus, and perceived efficacy of collaborative learning in participants high and low in dispositional trust in the context of an Interactive Management (IM) session. Interactive management is a computer-mediated collaborative tool…

  6. Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei

    1991-01-01

    A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.

  7. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  8. Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations

    PubMed Central

    Sanson, Benoît; Colletier, Jacques-Philippe; Xu, Yechun; Lang, P Therese; Jiang, Hualiang; Silman, Israel; Sussman, Joel L; Weik, Martin

    2011-01-01

    The transient opening of a backdoor in the active-site wall of acetylcholinesterase, one of nature's most rapid enzymes, has been suggested to contribute to the efficient traffic of substrates and products. A crystal structure of Torpedo californica acetylcholinesterase in complex with the peripheral-site inhibitor aflatoxin is now presented, in which a tyrosine at the bottom of the active-site gorge rotates to create a 3.4-Å wide exit channel. Molecular dynamics simulations show that the opening can be further enlarged by movement of Trp84. The crystallographic and molecular dynamics simulation data thus point to the interface between Tyr442 and Trp84 as the key element of a backdoor, whose opening permits rapid clearance of catalysis products from the active site. Furthermore, the crystal structure presented provides a novel template for rational design of inhibitors and reactivators, including anti-Alzheimer drugs and antidotes against organophosphate poisoning. PMID:21594947

  9. First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration.

    PubMed

    Szyrkowiec, Thomas; Autenrieth, Achim; Gunning, Paul; Wright, Paul; Lord, Andrew; Elbers, Jörg-Peter; Lumb, Alan

    2014-02-10

    For the first time, we demonstrate the orchestration of elastic datacenter and inter-datacenter transport network resources using a combination of OpenStack and OpenFlow. Programmatic control allows a datacenter operator to dynamically request optical lightpaths from a transport network operator to accommodate rapid changes of inter-datacenter workflows.

  10. A method for generating enhanced vision displays using OpenGL video texture

    NASA Astrophysics Data System (ADS)

    Bernier, Kenneth L.

    2010-04-01

    Degraded visual conditions can marvel the curious and destroy the unprepared. While navigation instruments are trustworthy companions, true visual reference remains king of the hills. Poor visibility may be overcome via imaging sensors such as low light level charge-coupled-device, infrared, and millimeter wave radar. Enhanced Vision systems combine this imagery into a comprehensive situation awareness display, presented to the pilot as reference imagery on a cockpit display, or as world-conformal imagery on head-up or head-mounted displays. This paper demonstrates that Enhanced Vision imaging can be achieved at video rates using typical CPU / GPU architecture, standard video capture hardware, dynamic non-linear ray tracing algorithms, efficient image transfer methods, and simple OpenGL rendering techniques.

  11. Jar-opening challenges. Part 2: estimating the force-generating capacity of thumb muscles in healthy young adults during jar-opening tasks.

    PubMed

    Kuo, L C; Chang, J H; Lin, C F; Hsu, H Y; Ho, K Y; Su, F C

    2009-07-01

    This study discusses the force-generating capacity of thumb muscles during jar-opening tasks using two grip patterns: the power grip and the precision grip. This study develops a three-dimensional biomechanical model of the thumb to predict muscle forces in jar-opening activities based on external forces measured by a custom-designed jar device. Ten healthy subjects participated in the study. Each participant turned a jar lid of 66 mm diameter counterclockwise with maximal effort and preferred speed using both grip patterns. The average normal and tangential forces applied by the thumb to the jar lid show that the normal force is the primary contributive force for opening a jar. This normal force is approximately three times the tangential force. Muscular force-generating capacity measurements show that the major active muscles during a jar-opening activity for both grips include the flexor pollicis longus, flexor pollicis brevis, abductor pollicis brevis, adductor pollicis, and opponens pollicis. The total muscle force ratios for the precision grip and power grip with respect to externally applied forces are 5.6 and 4.7 respectively. These ratios indicate that the power grip pattern produces less muscle force per unit of external applied load. The technique proposed in this study provides a proper apparatus and model for measuring three-dimensional loads and estimating the force-generating capacity of each muscle and tendon of the thumb during jar-opening tasks.

  12. Excitation and dynamics of liquid tin micrometer droplet generation

    NASA Astrophysics Data System (ADS)

    Rollinger, B.; Abhari, R. S.

    2016-07-01

    The dynamics of capillary breakup-based droplet generation are studied for an excitation system based on a tunable piezoelectrically actuated oscillating piston, which generates acoustic pressure waves at the dispenser nozzle. First, the non-ideal pressure boundary conditions of droplet breakup are measured using a fast response pressure probe. A structural analysis shows that the axial modes of the excitation system are the main reasons for the resonance peaks in the pressure response. Second, a correlation between the nozzle inlet pressure and the droplet timing jitter is established with the help of experiments and a droplet formation model. With decreasing wave number, the growth rate of the main excitation decreases, while noise contributions with wave numbers with higher growth rates lead to a non-deterministic structure of the droplet train. A highly coherent and monodisperse droplet stream is obtained when the excitation system is tuned to generate high acoustic pressures at the desired operation frequency and when the noise level on the jet is limited. The jet velocity, hence droplet spacing for a set frequency is then adjusted by varying the reservoir pressure, according to the trade-off between lowest wave number and acceptable timing jitter.

  13. Langevin approach for stochastic Hodgkin-Huxley dynamics with discretization of channel open fraction

    NASA Astrophysics Data System (ADS)

    Huang, Yandong; Rüdiger, Sten; Shuai, Jianwei

    2013-12-01

    The random opening and closing of ion channels establishes channel noise, which can be approximated and included into stochastic differential equations (Langevin approach). The Langevin approach is often incorporated to model stochastic ion channel dynamics for systems with a large number of channels. Here, we introduce a discretization procedure of a channel-based Langevin approach to simulate the stochastic channel dynamics with small and intermediate numbers of channels. We show that our Langevin approach with discrete channel open fractions can give a good approximation of the original Markov dynamics even for only 10 K channels. We suggest that the better approximation by the discretized Langevin approach originates from the improved representation of events that trigger action potentials.

  14. Gas-phase generation of photoacoustic sound in an open environment.

    PubMed

    Yönak, Serdar H; Dowling, David R

    2003-12-01

    The photoacoustic effect is commonly exploited for molecular spectroscopy, nondestructive evaluation, and trace gas detection. Photoacoustic sound is produced when a photoactive material absorbs electromagnetic radiation and converts it to acoustic waves. This article focuses on the generation of photoacoustic sound from thermal expansion of photoactive gases due to unsteady heating from a laser light source, and extends the work of prior studies on photoacoustic sound generation in an open environment. Starting with the forced free-space wave equation, a simple model is constructed for photoacoustic sounds produced by both acoustically distributed and compact gas clouds. The model accounts for laser absorption through the Lambert-Beer law and includes the effects of photoactive gas cloud characteristics (shape, size, and concentration distribution), but does not include molecular diffusion, thermal conduction, convection, or the effects of acoustic propagation through sound-absorbing inhomogeneous media. This model is compared to experimentally measured photoacoustic sounds generated by scanning a 10.6-micron carbon dioxide (CO2) laser beam through small clouds of a photoactive gas, sulfur hexafluoride (SF6). For the current investigation, the photoactive gas clouds are formed either by low flow-rate calibrated leak sources or by a laminar jet emerging from a 1.6-mm-diam tube. Model-measurement comparisons are presented over a 3- to 160-kHz bandwidth. Signal pulse shapes from simple gas cloud geometries are found to match calculated results when unmeasured gas cloud characteristics within the model are adjusted.

  15. A 6 GW nanosecond solid-state generator based on semiconductor opening switch

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.; Tsyranov, S. N.

    2015-11-01

    In this paper, a nanosecond all solid-state generator providing peak power of up to 6 GW, output voltage of 500-900 kV, pulse length (full width at half maximum) of ˜7 ns across external loads of 40-100 Ω, and pulse repetition frequency up to 1 kHz in burst operation mode is described. The output pulse is generated by a semiconductor opening switch (SOS). A new SOS pumping circuit based on a double forming line (DFL) is proposed and its implementation described. As compared with a lumped capacitors-based pumping circuit, the DFL allows minimization of the inductance and stray capacitance of the reverse pumping circuit, and thus, an increase in the SOS cutoff current amplitude and generator output peak power as a whole. The pumping circuit provides a reverse current increasing through the SOS up to 14 kA within ˜12 ns. The SOS cuts off the current in ˜2 ns; the current cutoff rate reaches 7 kA/ns. The SOS braking power (the product of peak voltage and cutoff current) for an external load above 100 Ω is 13 GW.

  16. All-solid-state repetitive semiconductor opening switch-based short pulse generator.

    PubMed

    Ding, Zhenjie; Hao, Qingsong; Hu, Long; Su, Jiancang; Liu, Guozhi

    2009-09-01

    The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 mus primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Omega. The highest repetition rate is up to 1 kHz.

  17. Coherent Dynamics of Open Quantum System in the Presence of Majorana Fermions

    NASA Astrophysics Data System (ADS)

    Assuncao, Maryzaura O.; Diniz, Ginetom S.; Vernek, Edson; Souza, Fabricio M.

    In recent years the research on quantum coherent dynamics of open systems has attracted great attention due to its relevance for future implementation of quantum computers. In the present study we apply the Kadanoff-Baym formalism to simulate the population dynamics of a double-dot molecular system attached to both a superconductor and fermionic reservoirs. We solve both analytically and numerically a set of coupled differential equations that account for crossed Andreev reflection (CAR), intramolecular hopping and tunneling. We pay particular attention on how Majorana bound states can affect the population dynamics of the molecule. We investigate on how initial state configuration affects the dynamics. For instance, if one dot is occupied and the other one is empty, the dynamics is dictated by the inter dot tunneling. On the other hand, for initially empty dots, the CAR dominates. We also investigate how the source and drain currents evolve in time. This work was supporte by FAPEMIG, CNPq and CAPES.

  18. Solvent-induced lid opening in lipases: a molecular dynamics study.

    PubMed

    Rehm, Sascha; Trodler, Peter; Pleiss, Jürgen

    2010-11-01

    In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.

  19. Influence of open water bodies on the generation of summertime convection over the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Joshi, D.; Bélair, S.; Carrera, M. L.; Leroyer, S.

    2014-12-01

    There are still numerous water features on the Canadian landscape that are not monitored. Specifically, there are landscape features (e.g. the prairies and Canadian shield regions of North America) that are ephemeral in nature and have a significant influence on convective storm generation and local weather patterns through turbulent exchanges of sensible and latent heat between land and the atmosphere. In this study we perform a series of numerical experiments with the GEM (Global Environmental Multiscale model) model at 2.5 km resolution to examine the sensitivity of the atmospheric boundary layer to the presence of open water bodies. At present the land-water fraction in the GEM model is specified by means of static geophysical databases which do not change annually. Uncertainty is introduced into this land-water fraction and the sensitivity of the resulting soil moisture and precipitation is quantified for a series of convective precipitation events over Alberta for the summer 2014 period.

  20. Intense ion beam generation, plasma radiation source and plasma opening switch research

    NASA Astrophysics Data System (ADS)

    Hammer, D. A.; Coleman, M. D.; Qi, N.; Similon, P. L.; Sudan, R. N.

    1989-04-01

    This report describes research on intense ion beam diodes, plasma opening switches and dense z-pinch plasma radiators. Laser induced fluorescence spectroscopy has been used to map the electrostatic potential profile in a plasma-prefilled magnetically insulated ion diode. In a simple planar diode, the measured profile is inconsistent with the electrons being confined in a sheath near the cathode by the magnetic field. Rather, the profile implies the presence of electrons throughout the accelerating gap. A theoretical model of the penetration of current and magnetic field into a plasma, and of the current-driven effective collision frequency has been developed. The snowplow action of the rising magnetic field causes a steep rise in the plasma density at the leading edge. The subsequent multistreaming of the ions caused by ion reflection at the current layer could lead to ion heating through collective effects. The two-dimensional electron flow in the plasma cathode vacuum gap is also treated. Dense z-pinch plasma radiation source experiments have been initiated on the LION accelerator using gas puff and fine wire loads. The x-pinch was found to be a more effective way to generate soft x-rays than a single wire pinch or a gas puff implosion. Plasma opening switch experiments being initiated, and plasma anode ion diode development work being terminated are also briefly described.

  1. NeuroPG: open source software for optical pattern generation and data acquisition

    PubMed Central

    Avants, Benjamin W.; Murphy, Daniel B.; Dapello, Joel A.; Robinson, Jacob T.

    2015-01-01

    Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes. PMID:25784873

  2. NeuroPG: open source software for optical pattern generation and data acquisition.

    PubMed

    Avants, Benjamin W; Murphy, Daniel B; Dapello, Joel A; Robinson, Jacob T

    2015-01-01

    Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience-NeuroPG-that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB's Data Acquisition and Image Acquisition toolboxes.

  3. Few-cycle solitons in supercontinuum generation dynamics

    NASA Astrophysics Data System (ADS)

    Leblond, Hervé; Grelu, Philippe; Mihalache, Dumitru; Triki, Houria

    2016-11-01

    We review several propagation models that do not rely on the slowly-varying-envelope approximation (SVEA), and can thus be considered as fundamental models addressing the formation and propagation of few-cycle pulsed field structures and solitary waves arising in the course of intense ultrashort optical pulse evolution in nonlinear media and beyond octave-bandwidth optical spectrum broadening. These generic models are: the modified-Korteweg-de Vries (mKdV), the sine-Gordon (sG), and the mixed mKdV-sG equations. To include wave polarization dynamics, the vector extensions of both mKdV and sG equations are introduced. Multi-octave-spanning supercontinuum generation and few-cycle soliton structures are highlighted from numerical simulations.

  4. High-Harmonic Generation Enhanced by Dynamical Electron Correlation

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Iliya; Sato, Takeshi; Ishikawa, Kenichi L.

    2017-05-01

    We theoretically study multielectron effects in high-harmonic generation (HHG), using all-electron first-principles simulations for a one-dimensional model atom. In addition to the usual plateau and cutoff (from a cation in the present case, since the neutral is immediately ionized), we find a prominent resonance peak far above the plateau and a second plateau extended beyond the first cutoff. These features originate from the dication response enhanced by orders of magnitude due to the action of the Coulomb force from the rescattering electron, and, hence, are a clear manifestation of electron correlation. Although the present simulations are done in 1D, the physical mechanism underlying the dramatic enhancement is expected to hold also for three-dimensional real systems. This will provide new possibilities to explore dynamical electron correlation in intense laser fields using HHG, which is usually considered to be of single-electron nature in most cases.

  5. Weak decays of heavy hadrons into dynamically generated resonances

    DOE PAGES

    Oset, Eulogio; Liang, Wei -Hong; Bayar, Melahat; ...

    2016-01-28

    In this study, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allowmore » for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances.« less

  6. Knowledge-based zonal grid generation for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.

  7. Weak decays of heavy hadrons into dynamically generated resonances

    SciTech Connect

    Oset, Eulogio; Liang, Wei -Hong; Bayar, Melahat; Xie, Ju -Jun; Dai, Lian Rong; Albaladejo, Miguel; Nielsen, Marina; Sekihara, Takayasu; Navarra, Fernando; Roca, Luis; Mai, Maxim; Nieves, Juan; Dias, Jorgivan Morais; Feijoo, Alberto; Magas, Volodymyr K.; Ramos, Angels; Miyahara, Kenta; Hyodo, Tetsuo; Jido, Daisuke; Doring, Michael; Molina, Raquel; Chen, Hua -Xing; Wang, En; Geng, Lisheng; Ikeno, Natsumi; Fernandez-Soler, Pedro; Sun, Zhi Feng

    2016-01-28

    In this study, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allow for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances.

  8. Recent developments on hadron interaction and dynamically generated resonances

    NASA Astrophysics Data System (ADS)

    Oset, E.; Albaladejo, M.; Xie, Ju-Jun; Ramos, A.

    2014-07-01

    In this talk I report on the recent developments in the subject of dynamically generated resonances. In particular I discuss the γp → K0Σ+ and γn → K0Σ0 reactions, with a peculiar behavior around the K*0Λ threshold, due to a 1/2- resonance around 2035 MeV. Similarly, I discuss a BES experiment, J/ψ -> η K*0 {\\bar K}*0 decay, which provides evidence for a new h1 resonance around 1830 MeV that was predicted from the vector-vector interaction. A short discussion is then made about recent advances in the charm and beauty sectors.

  9. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  10. An automated algorithm for the generation of dynamically reconstructed trajectories

    NASA Astrophysics Data System (ADS)

    Komalapriya, C.; Romano, M. C.; Thiel, M.; Marwan, N.; Kurths, J.; Kiss, I. Z.; Hudson, J. L.

    2010-03-01

    The lack of long enough data sets is a major problem in the study of many real world systems. As it has been recently shown [C. Komalapriya, M. Thiel, M. C. Romano, N. Marwan, U. Schwarz, and J. Kurths, Phys. Rev. E 78, 066217 (2008)], this problem can be overcome in the case of ergodic systems if an ensemble of short trajectories is available, from which dynamically reconstructed trajectories can be generated. However, this method has some disadvantages which hinder its applicability, such as the need for estimation of optimal parameters. Here, we propose a substantially improved algorithm that overcomes the problems encountered by the former one, allowing its automatic application. Furthermore, we show that the new algorithm not only reproduces the short term but also the long term dynamics of the system under study, in contrast to the former algorithm. To exemplify the potential of the new algorithm, we apply it to experimental data from electrochemical oscillators and also to analyze the well-known problem of transient chaotic trajectories.

  11. Exploring the Dynamics of a Quantum-Mechanical Compton Generator

    NASA Astrophysics Data System (ADS)

    Kandes, Martin; Carretero, Ricardo

    2017-01-01

    In 1913, when American physicist Arthur Compton was an undergraduate, he invented a simple way to measure the rotation rate of the Earth with a tabletop-sized experiment. The experiment consisted of a large diameter circular ring of thin glass tubing filled with water and oil droplets. After placing the ring in a plane perpendicular to the surface of the Earth and allowing the fluid mixture of oil and water to come to rest, he then abruptly rotated the ring, flipping it 180 degrees about an axis passing through its own plane. The result of the experiment was that the water acquired a measurable drift velocity due to the Coriolis effect arising from the daily rotation of the Earth about its own axis. Compton measured this induced drift velocity by observing the motion of the oil droplets in the water with a microscope. This device, which is now named after him, is known as a Compton generator. The fundamental research objective of this project is to explore the dynamics of a quantum-mechanical analogue to the classical Compton generator experiment through the use of numerical simulations. We present our preliminary results on this system and the future direction of the project. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  12. Landlab: an Open-Source Python Library for Modeling Earth Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Adams, J. M.; Hobley, D. E. J.; Hutton, E.; Nudurupati, S. S.; Istanbulluoglu, E.; Tucker, G. E.

    2016-12-01

    Landlab is an open-source Python modeling library that enables users to easily build unique models to explore earth surface dynamics. The Landlab library provides a number of tools and functionalities that are common to many earth surface models, thus eliminating the need for a user to recode fundamental model elements each time she explores a new problem. For example, Landlab provides a gridding engine so that a user can build a uniform or nonuniform grid in one line of code. The library has tools for setting boundary conditions, adding data to a grid, and performing basic operations on the data, such as calculating gradients and curvature. The library also includes a number of process components, which are numerical implementations of physical processes. To create a model, a user creates a grid and couples together process components that act on grid variables. The current library has components for modeling a diverse range of processes, from overland flow generation to bedrock river incision, from soil wetting and drying to vegetation growth, succession and death. The code is freely available for download (https://github.com/landlab/landlab) or can be installed as a Python package. Landlab models can also be built and run on Hydroshare (www.hydroshare.org), an online collaborative environment for sharing hydrologic data, models, and code. Tutorials illustrating a wide range of Landlab capabilities such as building a grid, setting boundary conditions, reading in data, plotting, using components and building models are also available (https://github.com/landlab/tutorials). The code is also comprehensively documented both online and natively in Python. In this presentation, we illustrate the diverse capabilities of Landlab. We highlight existing functionality by illustrating outcomes from a range of models built with Landlab - including applications that explore landscape evolution and ecohydrology. Finally, we describe the range of resources available for new

  13. Characterization of landslides dynamics using the generated seismic signal

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Trinh, Phuong-Thu

    2017-04-01

    Landslides, rock avalanche and debris flows represent a major natural hazard in steep environments. However, owing to the lack of visual observations, the dynamics of these gravitational events is still not well understood. A burning challenge is to deduce the landslide dynamics from the characteristics of the generated seismic signal. Laboratory experiments of granular columns collapse are conducted on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular column is constituted with steel beads of same diameter that are initially contained in a cylinder. The column collapses when the cylinder is removed. A layer of steel beads is glued on the surface of the plane to provide basal roughness. We distinguish two successive phases of rise and decay in the seismic signal generated by the granular collapses. The rise phase of the seismic amplitude and its maximum are shown to be independent of the slope angle. The maximum seismic amplitude coincides with the maximum flow speed in the direction normal to the slope but not with the maximum downslope speed. The decay phase of the seismic amplitude lasts significantly longer as slope angle increases over a critical value. The decay becomes exponential for high slope angles > 15°. This change of signal shape on steep slopes seems to be related to the development of a different flow regime: a saltating front whose amplitude and duration also increase with slope angle. In addition, we propose a semi-empirical scaling law to describe how the seismic energy radiated by a granular flow increases when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter. Finally, the conversion of the flows potential energy into radiated seismic energy is evaluated from 0.2% to 1%. It decreases as time

  14. Coupled ice-ocean dynamics in the marginal ice zones Upwelling/downwelling and eddy generation

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1986-01-01

    This study is aimed at modeling mesoscale processes such as upwelling/downwelling and ice edge eddies in the marginal ice zones. A two-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model through interfacial stresses. The parameters of the ocean model were chosen so that the dynamics would be nonlinear. The model was tested by studying the dynamics of upwelling. Wings parallel to the ice edge with the ice on the right produce upwelling because the air-ice momentum flux is much greater than air-ocean momentum flux; thus the Ekman transport is greater than the ice than in the open water. The stability of the upwelling and downwelling jets is discussed. The downwelling jet is found to be far more unstable than the upwelling jet because the upwelling jet is stabilized by the divergence. The constant wind field exerted on a varying ice cover will generate vorticity leading to enhanced upwelling/downwelling regions, i.e., wind-forced vortices. Steepening and strengthening of vortices are provided by the nonlinear terms. When forcing is time-varying, the advection terms will also redistribute the vorticity. The wind reversals will separate the vortices from the ice edge, so that the upwelling enhancements are pushed to the open ocean and the downwelling enhancements are pushed underneath the ice.

  15. STARS 2.0: 2nd-generation open-source archiving and query software

    NASA Astrophysics Data System (ADS)

    Winegar, Tom

    2008-07-01

    The Subaru Telescope is in process of developing an open-source alternative to the 1st-generation software and databases (STARS 1) used for archiving and query. For STARS 2, we have chosen PHP and Python for scripting and MySQL as the database software. We have collected feedback from staff and observers, and used this feedback to significantly improve the design and functionality of our future archiving and query software. Archiving - We identified two weaknesses in 1st-generation STARS archiving software: a complex and inflexible table structure and uncoordinated system administration for our business model: taking pictures from the summit and archiving them in both Hawaii and Japan. We adopted a simplified and normalized table structure with passive keyword collection, and we are designing an archive-to-archive file transfer system that automatically reports real-time status and error conditions and permits error recovery. Query - We identified several weaknesses in 1st-generation STARS query software: inflexible query tools, poor sharing of calibration data, and no automatic file transfer mechanisms to observers. We are developing improved query tools and sharing of calibration data, and multi-protocol unassisted file transfer mechanisms for observers. In the process, we have redefined a 'query': from an invisible search result that can only transfer once in-house right now, with little status and error reporting and no error recovery - to a stored search result that can be monitored, transferred to different locations with multiple protocols, reporting status and error conditions and permitting recovery from errors.

  16. Dynamics of morphology-dependent resonances by openness in dielectric disks for TE polarization

    SciTech Connect

    Cho, Jinhang; Rim, Sunghwan; Kim, Chil-Min

    2011-04-15

    We have studied the parametric evolution of morphology-dependent resonances according to the change of openness in a two-dimensional dielectric microdisk for transverse-electric polarization. We found that the dynamics exhibit avoided resonance crossings between the inner and outer resonances even though the corresponding billiard is integrable. Due to these recondite avoidances, inner and outer resonances can be exchanged and the quality (Q) factor of inner resonances is strongly affected. We analyze the diverse phenomena arising from these dynamics including the avoided crossings.

  17. The dynamic of FUS-induced BBB Opening in Mouse Brain assessed by contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Krause, Marie N.; Kleber, Susanne; Huber, Peter E.; Martin-Villalba, Ana; Bock, Michael

    2010-03-01

    Focused ultrasound (FUS) in combination with the administration of gas-filled microbubbles, can induce a localized and reversible opening of the blood brain barrier (BBB). Contrast enhanced magnetic resonance imaging (MRI) has been demonstrated as a precise tool to monitor such a local BBB disruption. However, the opening/closing mechanisms of the BBB with FUS are still largely unknown. In this ongoing project, we study the BBB opening dynamics in mouse brain comparing an interstitial and an intravascular MR contrast agent (CA). FUS in mouse brain was performed with an MRI compatible treatment setup (1.7 MHz fix-focus US transducer, f' = 68 mm, NA = 0.44; focus: 8.1 mm length; O/ = 1.1 mm) in a 1.5 T whole body MRI system. For BBB opening, forty 10 ms-long FUS-pulses were applied at a repetition rate of 1 Hz at 1 MPa. The i.v. administration of the micro bubbles (50 μl SonoVue®) was started simultaneously with FUS exposure. To analyze the BBB opening process, short-term and long-term MRI signal dynamics of the interstitial MR contrast agent Magnevist® and the intravascular CA Vasovist® (Bayer-Schering) were studied. To assess short-term signal dynamics, T1-weighted inversion recovery turbo FLASH images (1s) were repeatedly acquired. Repeated 3D FLASH acquisitions (90 s) were used to assess long-term MRI signal dynamics. The short-term MRI signal enhancements showed comparable time constants for both types of MR contrast agents: 1.1 s (interstitial) vs. 0.8 s (intravascular). This time constant may serve as a time constant of the BBB opening process with the given FUS exposure parameters. For the long-term signal dynamics the intravascular CA (62±10 min) showed a fife times greater time constant as the interstitial contrast agent (12±10 min). This might be explained by the high molecular weight (˜60 kDa) of the intravascular Vasovist due to its reversible binding to blood serum albumin resulting in a prolonged half-life in the blood stream compared to the

  18. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  19. Monte Carlo method based radiative transfer simulation of stochastic open forest generated by circle packing application

    NASA Astrophysics Data System (ADS)

    Jin, Shengye; Tamura, Masayuki

    2013-10-01

    Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is

  20. Influence of external magnetic field on dynamics of open quantum systems

    SciTech Connect

    Kalandarov, Sh. A.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.

    2007-03-15

    The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.

  1. A Nonlinear Study of Open Loop Dynamic Stability of Submersible Vehicles in the Dive Plane

    DTIC Science & Technology

    1994-03-01

    Submsersible Vehicles in the Dive Plane by Harilaos I. Papadimitriou March, 1994 Thesis Advisor: Fotis A. Papoulias Approved for public release...Engineers Thesis 4. TITLE AND SUBTITLE * A NONLINEAR STUDY OF OPEN LOOP 5. FUNDING NUMBERS DYNAMIC STABILITY OF SUBMERSIBLE VEHICLES IN THE DIVE PLANE...SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of

  2. Influence of external magnetic field on dynamics of open quantum systems.

    PubMed

    Kalandarov, Sh A; Kanokov, Z; Adamian, G G; Antonenko, N V

    2007-03-01

    The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.

  3. Quantifying the behavior of price dynamics at opening time in stock market

    NASA Astrophysics Data System (ADS)

    Ochiai, Tomoshiro; Takada, Hideyuki; Nacher, Jose C.

    2014-11-01

    The availability of huge volume of financial data has offered the possibility for understanding the markets as a complex system characterized by several stylized facts. Here we first show that the time evolution of the Japan’s Nikkei stock average index (Nikkei 225) futures follows the resistance and breaking-acceleration effects when the complete time series data is analyzed. However, in stock markets there are periods where no regular trades occur between the close of the market on one day and the next day’s open. To examine these time gaps we decompose the time series data into opening time and intermediate time. Our analysis indicates that for the intermediate time, both the resistance and the breaking-acceleration effects are still observed. However, for the opening time there are almost no resistance and breaking-acceleration effects, and volatility is always constantly high. These findings highlight unique dynamic differences between stock markets and forex market and suggest that current risk management strategies may need to be revised to address the absence of these dynamic effects at the opening time.

  4. Dynamic headspace generation and quantitation of triacetone triperoxide vapor.

    PubMed

    Giordano, Braden C; Lubrano, Adam L; Field, Christopher R; Collins, Greg E

    2014-02-28

    Two methods for quantitation of triacetone triperoxide (TATP) vapor using a programmable temperature vaporization (PTV) inlet coupled to a gas chromatography/mass spectrometer (GC/MS) have been demonstrated. The dynamic headspace of bulk TATP was mixed with clean humid air to produce a TATP vapor stream. Sampling via a heated transfer line to a PTV inlet with a Tenax-TA™ filled liner allowed for direct injection of the vapor stream to a GC/MS for vapor quantitation. TATP was extracted from the vapor stream and subsequently desorbed from the PTV liner for splitless injection on the GC column. Calibration curves were prepared using solution standards with a standard split/splitless GC inlet for quantitation of the TATP vapor. Alternatively, vapor was sampled onto a Tenax-TA™ sample tube and placed into a thermal desorption system. In this instance, vapor was desorbed from the tube and subsequently trapped on a liquid nitrogen cooled PTV inlet. Calibration curves for this method were prepared from direct liquid injection of standards onto samples tube with the caveat that a vacuum is applied to the tube during deposition to ensure that the volatile TATP penetrates into the tube. Vapor concentration measurements, as determined by either GC/MS analysis or mass gravimetry of the bulk TATP, were statistically indistinguishable. Different approaches to broaden the TATP vapor dynamic range, including diluent air flow, sample chamber temperature, sample vial orifice size, and sample size are discussed. Vapor concentrations between 50 and 5400ngL(-1) are reported, with stable vapor generation observed for as long as 60 consecutive hours.

  5. Dynamic Modeling of Infrasound Generation from Vulcanian Explosions

    NASA Astrophysics Data System (ADS)

    Watson, L. M.; Dunham, E. M.

    2015-12-01

    Volcano infrasound provides a complementary view of volcanic processes to seismic waves, as the atmosphere exhibits contrasting wave propagation characteristics to the crust. Potential benefits include a more uniform velocity structure, shorter wavelengths enabling better spatial resolution, and lower attenuation improving remote monitoring capabilities. Recent work on volcano infrasound has employed kinematic source descriptions, in terms of such quantities as mass flux for a monopole point source. Such descriptions are quite useful for the inverse problem of inferring mass flux from infrasound data. In this study, we introduce a dynamic source model incorporating the physical processes that determine how the cloud of eruptive gas and ash expands outward to generate the infrasound signal. Our dynamic source model could ultimately be coupled to an unsteady conduit flow model, providing a means to infer more details of the eruption process from recorded infrasound signals. Our model describes a vulcanian eruption where mass is ejected into the atmosphere forming a cloud of gas and ash. Infrasonic acoustic waves are generated by the expansion of the cloud. The model goes beyond linear acoustics by accounting for nonlinear terms in the compressible Euler equations for the surrounding atmosphere. The model presently consists of a system of nonlinear ordinary differential equations, expressing the balance of mass, momentum, and energy, that can be solved for the evolution of the radius of the cloud and pressure and temperature within it. Entrainment and heat exchange with the surrounding atmospheric air can be accounted for. Our analysis is inspired by similar models of underwater explosions (Gilmore, 1952) and seismic air-guns (Ziolkowski, 1970). We aim to use the model to investigate how acoustic signals change when volcano properties, such as vent geometry, are varied. Our longer-term goal is to couple the atmospheric infrasound model presented here to an unsteady

  6. Dynamical centrosymmetry breaking - A novel mechanism for second harmonic generation in graphene

    NASA Astrophysics Data System (ADS)

    Carvalho, David N.; Marini, Andrea; Biancalana, Fabio

    2017-03-01

    We discover an unusual phenomenon that occurs when a graphene monolayer is illuminated by a short and intense pulse at normal incidence. Due to the pulse-induced oscillations of the Dirac cones, a dynamical breaking of the layer's centrosymmetry takes place, leading to the generation of second harmonic waves. We prove that this result can only be found by using the full Dirac equation and show that the widely used semiconductor Bloch equations fail to reproduce this and some other important physics of graphene. Our results open new windows in the understanding of nonlinear light-matter interactions in a wide variety of new 2D materials with a gapped or ungapped Dirac-like dispersion.

  7. Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.

    2013-12-01

    Migraine is a common disabling headache disorder characterized by recurrent episodes sometimes preceded or accompanied by focal neurological symptoms called aura. The relation between two subtypes, migraine without aura (MWoA) and migraine with aura (MWA), is explored with the aim to identify targets for neuromodulation techniques. To this end, a dynamically regulated control system is schematically reduced to a network of the trigeminal nerve, which innervates the cranial circulation, an associated descending modulatory network of brainstem nuclei, and parasympathetic vasomotor efferents. This extends the idea of a migraine generator region in the brainstem to a larger network and is still simple and explicit enough to open up possibilities for mathematical modeling in the future. In this study, it is suggested that the migraine generator network (MGN) is driven and may therefore respond differently to different spatio-temporal noxious input in the migraine subtypes MWA and MWoA. The noxious input is caused by a cortical perturbation of homeostasis, known as spreading depression (SD). The MGN might even trigger SD in the first place by a failure in vasomotor control. As a consequence, migraine is considered as an inherently dynamical disease to which a linear course from upstream to downstream events would not do justice. Minimally invasive and noninvasive neuromodulation techniques are briefly reviewed and their rational is discussed in the context of the proposed mechanism.

  8. Tipless Nitinol Stone Baskets: Comparison of Penetration Force, Radial Dilation Force, Opening Dynamics, and Deflection.

    PubMed

    Patel, Nishant; Akhavein, Arash; Hinck, Bryan; Jain, Rajat; Monga, Manoj

    2017-05-01

    To evaluate 5 commercially available tipless nitinol baskets (2.2F) in 4 performance factors: penetration force, radial dilation force, opening dynamics, and deflection limitation. The 2.2F Coloplast Dormia No-Tip, 1.5F Sacred Heart Medical Halo, 2.2F Cook NCircle Nitinol Tipless Stone Extractor, 1.9F Bard SkyLite Tipless Nitinol Basket, and 1.9F Boston Scientific Zero Tip Nitinol Stone Retrieval Basket were tested for penetration force (safety metric), radial dilation force (functional metric for ureteral calculi), and opening or closing dynamics. Limitation of deflection (functional metric) was tested by measuring the difference in maximal upward and downward angle of deflection of a ureteroscope with and without a basket in place. The Sacred Heart Medical Halo 1.5F basket had the highest mean force required to perforate the foil at 0.676N ± 0.117 (P < .0001). The Sacred Heart Medical Halo 1.5F basket also had the highest mean radial dilation force at 3.04 g ± 0.15 (P < .0001). The Cook NCircle Nitinol Tipless Stone Extractor 2.2F had the most linear pattern of opening, whereas the Coloplast Dormia No-Tip 2.2F and the Sacred Heart Medical Halo 1.5F exhibited exponential opening dynamics. The Cook NCircle Nitinol Tipless Stone Extractor 2.2F limited scope deflection the most with a decrease in 4° downward and 10° upward. The Sacred Heart Medical Halo 1.5F had the least influence on deflection with a decrease in 3° downward and 5° upward. The penetration force, radial dilation force, opening dynamics, and resistance to deflection varied between 5 commonly available tipless nitinol stone baskets. A small diameter 1.5F basket is capable of providing optimal performance while sacrificing linear opening. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A next-generation open-source toolkit for FITS file image viewing

    NASA Astrophysics Data System (ADS)

    Jeschke, Eric; Inagaki, Takeshi; Kackley, Russell

    2012-09-01

    The astronomical community has a long tradition of sharing and collaborating on FITS file tools, including viewers. Several excellent viewers such as DS9 and Skycat have been successfully reused again and again. Yet this "first generation" of viewers predate the emergence of a new class of powerful object-oriented scripting languages such as Python, which has quickly become a very popular language for astronomical (and general scientific) use. Integration and extension of these viewers by Python is cumbersome. Furthermore, these viewers are also built on older widget toolkits such as Tcl/Tk, which are becoming increasingly difficult to support and extend as time passes. Suburu Telescope's second-generation observation control system (Gen2) is built on a a foundation of Python-based technologies and leverages several important astronomically useful packages such as numpy and pyfits. We have written a new flexible core widget for viewing FITS files which is available in versions for both the modern Gtk and Qt-based desktops. The widget offers seamless integration with pyfits and numpy arrays of FITS data. A full-featured viewer based on this widget has been developed, and supports a plug-in architecture in which new features can be added by scripting simple Python modules. In this paper we will describe and demonstrate the capabilities of the new widget and viewer and discuss the architecture of the software which allows new features and widgets to easily developed by subclassing a powerful abstract base class. The software will be released as open-source.

  10. Effect of endovascular and open abdominal aortic aneurysm repair on thrombin generation and fibrinolysis.

    PubMed

    Abdelhamid, Mohamed F; Davies, Robert S M; Vohra, Rajiv K; Adam, Donald J; Bradbury, Andrew W

    2013-01-01

    Abdominal aortic aneurysm (AAA) is associated with a prothrombotic diathesis that may increase the risk of cardiovascular events. This diathesis is exacerbated in the short term by open aneurysm repair (OAR) and endovascular aneurysm repair (EVAR). However, the effect of EVAR and OAR on coagulation and fibrinolysis in the medium and long term is poorly understood. The purpose of this study was to investigate the medium-term effects of EVAR and OAR on thrombin generation, neutralization, and fibrinolysis. Prothrombin fragment (PF)1+2, thrombin antithrombin (TAT) complex, plasminogen activator inhibitor (PAI) activity, and tissue-plasminogen activator (t-PA) antigen were measured in eight age-matched controls (AMCs), 29 patients with AAA immediately before (preoperatively) and 12 months after EVAR (post-EVAR), and in 11 patients at a mean of 16 months after OAR (post-OAR). Preoperatively, PF1+2 levels were significantly higher in patients with AAAs than in AMC. PF1+2 levels post-EVAR and post-OAR were significantly lower than preoperative values and similar to AMC. There was no significant difference in TAT, PAI, or t-PA between AMC, AAA preoperatively, and post-EVAR. Post-OAR, PAI activity was significantly higher than in preoperative patients. AAA is associated with increased thrombin generation without upregulation of fibrinolysis. The prothrombotic, hypofibrinolytic diathesis observed in patients with AAA returns toward normal in the medium term after EVAR and OAR, although there is a trend toward decreased fibrinolysis post-OAR. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  11. Dynamical mass generation in QED 3 beyond the instantaneous approximation

    NASA Astrophysics Data System (ADS)

    Xiao, Hai-Xiao; Li, Jian-Feng; Wei, Wei; Yin, Pei-Lin; Zong, Hong-Shi

    2017-07-01

    In this paper, we investigate dynamical mass generation in (2+1)-dimensional quantum electrodynamics at finite temperature. Many studies are carried out within the instantaneous-exchange approximation, which ignores all but the zero-frequency component of the boson propagator and fermion self-energy function. We extend these studies by taking the retardation effects into consideration. In this paper, we get the explicit frequency n and momentum p dependence of the fermion self-energy function and identify the critical temperature for different fermion flavors in the chiral limit. Also, the phase diagram for spontaneous symmetry breaking in the theory is presented in T c-N f space. The results show that the chiral condensate is just one-tenth of the scale of previous results, and the chiral symmetry is restored at a smaller critical temperature. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030), Natural Science Foundation of Jiangsu Province (BK20130387) and Jiangsu Planned Projects for Postdoctoral Research Funds (1501035B)

  12. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  13. Dynamic conversion of solar generated heat to electricity

    NASA Technical Reports Server (NTRS)

    Powell, J. C.; Fourakis, E.; Hammer, J. M.; Smith, G. A.; Grosskreutz, J. C.; Mcbride, E.

    1974-01-01

    The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability.

  14. Enabling full field physics based OPC via dynamic model generation

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-03-01

    As EUV lithography marches closer to reality for high volume production, its peculiar modeling challenges related to both inter- and intra- field effects has necessitated building OPC infrastructure that operates with field position dependency. Previous state of the art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7nm and 5nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of EPE errors. The introduction of Dynamic Model Generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through field. DMG allows unique models for EMF, apodization, aberrations, etc to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  15. Automatic generation of active coordinates for quantum dynamics calculations: Application to the dynamics of benzene photochemistry

    SciTech Connect

    Lasorne, Benjamin; Sicilia, Fabrizio; Bearpark, Michael J.; Robb, Michael A.; Worth, Graham A.; Blancafort, Lluis

    2008-03-28

    A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments.

  16. Investigations of dynamic behavior of composite bridges with open web girders

    NASA Astrophysics Data System (ADS)

    Kartopol'tsev, Andrei; Kartopol'tsev, Vladimir; Kolmakov, Boris

    2017-01-01

    The paper presents investigation of the dynamic behavior of composite bridges with open web girders. The bridge span is made of reinforced concrete layers with a metal pan underneath. The dynamic tests of the bridge structure are carried out using the multichannel vibrodiagnostic test kit for measuring the eigenfrequency. The software application LIRA is used to develop the finite element model (FEM) of the bridge after its mathematical simulation. The FE model is subjected to loads identical to the experimental ones, and the dynamic behavior of the bridge is simulated to measure the multimode eigenfrequences. A careful comparison between the calculations and experimental results shows good agreement for the investigated parameters of the bridge structure.

  17. Open- and Closed-Loop Dynamics of the High-Efficiency Antenna Subreflector

    NASA Astrophysics Data System (ADS)

    Kuczenski, M. B.; Gawronski, W.

    2000-07-01

    The subreflector of the high-efficiency (HEF) antenna moves in three axes, while the subreflector controller supervises these movements. The precision of subreflector response to the controller commands is essential to maintaining the antenna-pointing precision. This article presents the development of the control system model of the HEF antenna subreflector. It includes the dynamics of the open-loop (or rate-loop) system, the development of the controller, and the simulations of the closed-loop performance. The analysis shows that the closed-loop dynamics, such as settling time, overshoot, and bandwidth, are comparable to the antenna closed-loop dynamics; thus, they are able to meet the pointing requirements.

  18. Chain representations of Open Quantum Systems and Lieb-Robinson like bounds for the dynamics

    NASA Astrophysics Data System (ADS)

    Woods, Mischa

    2013-03-01

    This talk is concerned with the mapping of the Hamiltonian of open quantum systems onto chain representations, which forms the basis for a rigorous theory of the interaction of a system with its environment. This mapping progresses as an interaction which gives rise to a sequence of residual spectral densities of the system. The rigorous mathematical properties of this mapping have been unknown so far. Here we develop the theory of secondary measures to derive an analytic, expression for the sequence solely in terms of the initial measure and its associated orthogonal polynomials of the first and second kind. These mappings can be thought of as taking a highly nonlocal Hamiltonian to a local Hamiltonian. In the latter, a Lieb-Robinson like bound for the dynamics of the open quantum system makes sense. We develop analytical bounds on the error to observables of the system as a function of time when the semi-infinite chain in truncated at some finite length. The fact that this is possible shows that there is a finite ``Speed of sound'' in these chain representations. This has many implications of the simulatability of open quantum systems of this type and demonstrates that a truncated chain can faithfully reproduce the dynamics at shorter times. These results make a significant and mathematically rigorous contribution to the understanding of the theory of open quantum systems; and pave the way towards the efficient simulation of these systems, which within the standard methods, is often an intractable problem. EPSRC CDT in Controlled Quantum Dynamics, EU STREP project and Alexander von Humboldt Foundation

  19. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  20. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  1. Volitional eyes opening perturbs brain dynamics and functional connectivity regardless of light input.

    PubMed

    Jao, Tun; Vértes, Petra E; Alexander-Bloch, Aaron F; Tang, I-Ning; Yu, Ya-Chih; Chen, Jyh-Horng; Bullmore, Edward T

    2013-04-01

    The act of opening (or closing) one's eyes has long been demonstrated to impact on brain function. However, the eyes open condition is usually accompanied by visual input, and this effect may have been a significant confounding factor in previous studies. To clarify this situation, we extended the traditional eyes open/closed study to a two-factor balanced, repeated measures resting state fMRI (rs-fMRI) experiment, in which light on/off was also included as a factor. In 16 healthy participants, we estimated the univariate properties of the BOLD signal, as well as a bivariate measure of functional connectivity and multivariate network topology measures. Across all these measures, we demonstrate that human brain adopts a distinctive configuration when eyes are open (compared to when eyes are closed) independently of exogenous light input: (i) the eyes open states were associated with decreased BOLD signal variance (P-value=0.0004), decreased fractional amplitude of low frequency fluctuation (fALFF. P-value=0.0061), and decreased Hurst exponent (H. P-value=0.0321) mainly in the primary and secondary sensory cortical areas, the insula, and the thalamus. (ii) The strength of functional connectivity (FC) between the posterior cingulate cortex (PCC), a major component of the default mode network (DMN), and the bilateral perisylvian and perirolandic regions was also significantly decreased during eyes open states. (iii) On the other hand, the average network connection distance increased during eyes open states (P-value=0.0139). Additionally, the metrics of univariate, bivariate, and multivariate analyses in this study are significantly correlated. In short, we have shown that the marked effects on the dynamics and connectivity of fMRI time series brought by volitional eyes open or closed are simply endogenous and irrespective of exogenous visual stimulus. The state of eyes open (or closed) may thus be an important factor to control in design of rs-fMRI and even other

  2. From Particles and Point Clouds to Voxel Models: High Resolution Modeling of Dynamic Landscapes in Open Source GIS

    NASA Astrophysics Data System (ADS)

    Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.

    2012-12-01

    Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.

  3. Dynamical processes in star forming regions: feedback and turbulence generation

    NASA Astrophysics Data System (ADS)

    Bally, John

    The efficiency of star formation may be determined by feedback of energy and momentum from young stars. In massive star forming regions, feedback is dominated by massive star winds, soft-UV, and ionising radiation, and at late times by supernova explosions. Dynamical interactions between stars in compact groups can also make a significant contribution. As they age, the impacts of massive stars can influence star formation in adjacent regions at distances of tens to hundreds of parsecs, either by striping away the reservoirs from which stars form, or by compressing clouds to the point of gravitational instability. In regions which give birth only to intermediate and low mass stars, locally generated protostellar outflows and soft-UV, combined with the geometrically diluted impacts of relatively distant massive stars play varying roles in feedback and self-regulation. When only low mass stars are created in isolated regions or in environments shielded from the influence of massive stars, protostellar outflows and the chaotic interactions of small-N non-hierarchical groups remain the only viable agents for the self-regulation of star formation. I review the results of complete surveys of molecular clouds in the Perseus and Orion star forming regions intended to measure the impacts of protostellar outflows on cloud structure and motions. The decay of turbulent motions, self-gravity, and forcing by distant sources of energy, momentum, and radiation appear to dominate cloud structure and motions on large scales. However, protostellar outflows and localized radiation sources play increasingly important roles on scales smaller than a few parsecs. The interactions of large-scale and local forcing with dissipation may lead to low star formation efficiency and the birth of transient star clusters containing tens to hundreds of mostly low to intermediate mass stars. Observations show that even in massive OB associations, this may be the most common mode of star formation.

  4. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures.

    PubMed

    Niedzwiedzki, Dariusz; Koscielecki, Jeremy F; Cong, Hong; Sullivan, James O; Gibson, George N; Birge, Robert R; Frank, Harry A

    2007-05-31

    Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular

  5. Numerical study on dynamic characteristics for sharp opening procedure of boundary-layer suction slot

    NASA Astrophysics Data System (ADS)

    He, Yubao; Yin, Hang; Huang, Hongyan; Yu, Daren

    2017-08-01

    Based on the sharp forward of shock train and taking the forthcoming unstart for a background, the dynamic characteristics for sharp opening procedure of boundary-layer suction slot are investigated numerically using the dynamic mesh technique. Results indicate that the climbing path of shock train with the complex background waves exhibits a sharp and slow forward state at different time. The compression waves in the primary shock sweep the trailing edge of the separation bubble, and the recirculation within the shock train is communicated with the separation bubble, which reveals that the flow is in a critical state and is about to be unstart at the subsequent time. Furthermore, the dynamic pattern for sharp opening procedure of boundary-layer suction slot can be classified into four distinct stages, namely, the formation of the jet plume without suction mass loss, the formation of the barrier shock with suction mass loss characterized by gradient increase and subsequent two oscillations, the evolution of the barrier shock and jet plume with suction mass loss that ramps up via a series of discrete step increases, and the formation of the stable structure accompanied by the linear suction mass loss.

  6. Synchronization of fractional-order colored dynamical networks via open-plus-closed-loop control

    NASA Astrophysics Data System (ADS)

    Yang, Lixin; Jiang, Jun; Liu, Xiaojun

    2016-02-01

    In this paper, the synchronization of a fractional-order colored complex dynamical network model is studied for the first time. In this network model, color edges imply that both the outer coupling topology and the inner interactions between any pair of nodes may be different, and color nodes mean that local dynamics may be different. Based on the stability theory of fractional-order systems, the scheme of synchronization for fractional-order colored complex dynamical networks is presented. To achieve the synchronization of a complex fractional-order edge-colored network, the open-plus-closed-loop (OPCL) strategy is adopted and effective controllers for synchronization are designed. The open-plus-closed-loop (OPCL) strategy avoids the need for computation of eigenvalues of a very large matrix. Then, a synchronization method for a class of fractional-order colored complex network, containing both colored edges and colored nodes, is developed and some effective synchronization conditions via close-loop control are presented. Two examples of numerical simulations are presented to show the effectiveness of the proposed control strategies.

  7. Open Loop Active Control of Combustion Dynamics on a Gas Turbine Engine

    SciTech Connect

    Richards, G.A.; Thornton, J.D.; Robey, E.H.; Arellano, Leonel

    2007-01-01

    Combustion dynamics is a prominent problem in the design and operation of low-emission gas turbine engines. Even modest changes in fuel composition or operating conditions can lead to damaging vibrations in a combustor that was otherwise stable. For this reason, active control has been sought to stabilize combustors that must accommodate fuel variability, new operating conditions, etc. Active control of combustion dynamics has been demonstrated in a number of laboratories, single-nozzle test combustors, and even on a fielded engine. In most of these tests, active control was implemented with closed-loop feedback between the observed pressure signal and the phase and gain of imposed fuel perturbations. In contrast, a number of recent papers have shown that open-loop fuel perturbations can disrupt the feedback between acoustics and heat release that drives the oscillation. Compared to the closed-loop case, this approach has some advantages because it may not require high-fidelity fuel actuators, and could be easier to implement. This paper reports experimental tests of open-loop fuel perturbations to control combustion dynamics in a complete gas turbine engine. Results demonstrate the technique was very successful on the test engine and had minimal effect on pollutant emissions.

  8. Effective description of the short-time dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Foti, Caterina; Cuccoli, Alessandro; Trapani, Jacopo; Verrucchi, Paola; Paris, Matteo G. A.

    2017-09-01

    We address the dynamics of a bosonic system coupled to either a bosonic or a magnetic environment and derive a set of sufficient conditions that allow one to describe the dynamics in terms of the effective interaction with a classical fluctuating field. We find that for short interaction times the dynamics of the open system is described by a Gaussian noise map for several different interaction models and independently on the temperature of the environment. In order to go beyond a qualitative understanding of the origin and physical meaning of the above short-time constraint, we take a general viewpoint and, based on an algebraic approach, suggest that any quantum environment can be described by classical fields whenever global symmetries lead to the definition of environmental operators that remain well defined when increasing the size, i.e., the number of dynamical variables, of the environment. In the case of the bosonic environment this statement is exactly demonstrated via a constructive procedure that explicitly shows why a large number of environmental dynamical variables and, necessarily, global symmetries, entail the set of conditions derived in the first part of the work.

  9. The Dynamics of the Aspirations and Demands of Different Generations of Russia's Young People

    ERIC Educational Resources Information Center

    Khotkina, Z. A.

    2013-01-01

    Survey data comparing the life aspirations of three generations of Russians show an increase from the level of the Soviet generation of young people to the perestroika generation, followed by a decline in the generation of young people who were born and grew up in today's "market" Russia. One chief cause of the downward dynamic of their…

  10. The Dynamics of the Aspirations and Demands of Different Generations of Russia's Young People

    ERIC Educational Resources Information Center

    Khotkina, Z. A.

    2013-01-01

    Survey data comparing the life aspirations of three generations of Russians show an increase from the level of the Soviet generation of young people to the perestroika generation, followed by a decline in the generation of young people who were born and grew up in today's "market" Russia. One chief cause of the downward dynamic of their…

  11. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.

    PubMed

    MacLeod, Alisdair R; Rose, Hannah; Gill, Harinderjit S

    2016-12-01

    Synthetic biomechanical test specimens are frequently used for preclinical evaluation of implant performance, often in combination with numerical modeling, such as finite-element (FE) analysis. Commercial and freely available FE packages are widely used with three FE packages in particular gaining popularity: abaqus (Dassault Systèmes, Johnston, RI), ansys (ANSYS, Inc., Canonsburg, PA), and febio (University of Utah, Salt Lake City, UT). To the best of our knowledge, no study has yet made a comparison of these three commonly used solvers. Additionally, despite the femur being the most extensively studied bone in the body, no freely available validated model exists. The primary aim of the study was primarily to conduct a comparison of mesh convergence and strain prediction between the three solvers (abaqus, ansys, and febio) and to provide validated open-source models of a fourth-generation composite femur for use with all the three FE packages. Second, we evaluated the geometric variability around the femoral neck region of the composite femurs. Experimental testing was conducted using fourth-generation Sawbones® composite femurs instrumented with strain gauges at four locations. A generic FE model and four specimen-specific FE models were created from CT scans. The study found that the three solvers produced excellent agreement, with strain predictions being within an average of 3.0% for all the solvers (r2 > 0.99) and 1.4% for the two commercial codes. The average of the root mean squared error against the experimental results was 134.5% (r2 = 0.29) for the generic model and 13.8% (r2 = 0.96) for the specimen-specific models. It was found that composite femurs had variations in cortical thickness around the neck of the femur of up to 48.4%. For the first time, an experimentally validated, finite-element model of the femur is presented for use in three solvers. This model is freely available online along with all the supporting validation data.

  12. Analysis of a laboratory experiment on neutron generation by discharges in the open atmosphere

    NASA Astrophysics Data System (ADS)

    Babich, L. P.

    2015-10-01

    A recently reported laboratory experiment with a high-voltage long discharge in the open atmosphere producing neutrons "…up to energies above 10 MeV…" [Agafonov et al., Phys. Rev. Lett. 111, 115003 (2013), 10.1103/PhysRevLett.111.115003] is critically analyzed. Known elementary processes, namely, nuclear synthesis 2H(2H,n )3He and 2H(14N,n )15O , photonuclear, electrodisintegration Anm(e-,n )mprescripts>m n -1 and opposite to the β-decay e-(p+,n ) νe reactions, as well as unconventional mechanisms and the hypothetical increase in the nuclear synthesis cross sections are not capable of accounting for the neutron generation under conditions of the experiment analyzed. In particular, total energy yields of reactions 2H(2H,n )3He and 2H(14N,n )15O are less than the claimed neutron energy above 10 MeV. Trustworthiness of the neutron measurements on the basis of the available study of the C-39 track detectors behavior carried out by Faccini et al. [Eur. Phys. J. C 74, 2894 (2014), 10.1140/epjc/s10052-014-2894-3] in connection with claimed observations of neutron emission in electrolytic cells is discussed. Real-time measurements of x-ray and neutron pulses by Agafonov et al. are commented on using the thorough study of the x-ray emissions by discharges under similar conditions [Kochkin et al., J. Phys. D: Appl. Phys. 45, 425202 (2012), 10.1088/0022-3727/45/42/425202].

  13. How to Study Thermal Applications of Open-Cell Metal Foam: Experiments and Computational Fluid Dynamics

    PubMed Central

    De Schampheleire, Sven; De Jaeger, Peter; De Kerpel, Kathleen; Ameel, Bernd; Huisseune, Henk; De Paepe, Michel

    2016-01-01

    This paper reviews the available methods to study thermal applications with open-cell metal foam. Both experimental and numerical work are discussed. For experimental research, the focus of this review is on the repeatability of the results. This is a major concern, as most studies only report the dependence of thermal properties on porosity and a number of pores per linear inch (PPI-value). A different approach, which is studied in this paper, is to characterize the foam using micro tomography scans with small voxel sizes. The results of these scans are compared to correlations from the open literature. Large differences are observed. For the numerical work, the focus is on studies using computational fluid dynamics. A novel way of determining the closure terms is proposed in this work. This is done through a numerical foam model based on micro tomography scan data. With this foam model, the closure terms are determined numerically. PMID:28787894

  14. [Tackling hemodynamic analysis of the carotid artery using open-source software and computational fluid dynamics].

    PubMed

    Saho, Tatsunori; Onishi, Hideo; Sugihara, Toshihiko; Nakamura, Yoshitaka; Yuda, Itsuo

    2013-11-01

    The aim of this study was to evaluate the impact of wall share stress (WSS) in the carotid artery using a computed fluid dynamics analysis system and adopting open-source software. The dependence of element number (computation time and analytical accuracy) were considered with simple vessel models. We evaluated WSS and flow velocity using a carotid artery model that was based on the outcome of simple vessel models. When the number of elements was 10(5) or more, the flow velocity error of the outlet decreased to 0.5% or below when using simple vessel models. The carotid bifurcation model showed a whirlpool and a decrease in flow velocity in the carotid bulb part. An analysis system was built using open source software. The results from the carotid bifurcation model suggested that hemodynamics contributes to the development of carotid stenosis.

  15. A Far Cry from School History: Massive Online Open Courses as a Generative Source for Historical Research

    ERIC Educational Resources Information Center

    Gallagher, Silvia; Wallace, Ciaran

    2016-01-01

    Current research into Massive Online Open Courses (MOOCs) has neglected the potential of using learner comments for discipline-specific analysis. This article explores how MOOCs, within the historical discipline, can be used to generate, investigate, and document personal narratives, and argues that they serve as a rich platform for historical…

  16. Electrically exploded opening switches in high-current explosive magnetic generators

    NASA Astrophysics Data System (ADS)

    Buyko, A. M.

    2015-01-01

    This paper presents a review of publications on the use of electrically exploded foil opening switches to form current pulses up to 100 MA (up to 45 MA in experiments) with a rise time of 0.1-10.0 µs. Physical schemes and models are considered, and the efficiency of foil opening switches for existing and advanced facilities is analyzed.

  17. Convergence of high order perturbative expansions in open system quantum dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang

    2017-02-01

    We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.

  18. Linking Crystal Populations to Dynamic States: Crystal Dissolution and Growth During an Open-System Event

    NASA Astrophysics Data System (ADS)

    Bergantz, G. W.; Schleicher, J.; Burgisser, A.

    2016-12-01

    The identification of shared characteristics in zoned crystals has motivated the definition of crystal populations. These populations reflect the simultaneous transport of crystals, heat and composition during open-system events. An obstacle to interpreting the emergence of a population is the absence of a way to correlate specific dynamic conditions with the characteristic attributes of a population. By combining a boundary-layer diffusion controlled model for crystal growth/dissolution with discrete-element magma dynamics simulations of crystal-bearing magmas, the creation of populations can be simulated. We have implemented a method that decomposes the chemical potential into the thermal and compositional contributions to crystal dissolution/growth. This allows for the explicit treatment of thermal inertia and thermal-compositional decoupling as fluid circulation stirs the system during an open-system event. We have identified three distinct dynamic states producing crystal populations. They are based on the volume fraction of crystals. In a mushy system, thermal and compositional states are tightly linked as the volume involved in the mixing is constrained by the so-called mixing bowl (Bergantz et al., 2015). The mixing bowl volume is a function of the visco-plastic response of the mush and the intrusion width, not by the progressive entrainment of the new intrusion as commonly assumed. Crystal dissolution is the dominate response to input of more primitive magma. At the other endmember, under very dilute conditions, thermal and compositional conditions can become decoupled, and the in-coming magma forms a double-diffusive low-Re jet. This can allow for both dissolution and growth as crystals circulate widely into an increasingly stratified system. A middle range of crystal concentration produces a very complex feedback, as sedimenting crystals form fingers and chains that interact with the incoming magma, break-up the entrainment with chaotic stirring and add

  19. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics

    PubMed Central

    Heller, Davide; Hoppe, Andreas; Restrepo, Simon; Gatti, Lorenzo; Tournier, Alexander L.; Tapon, Nicolas; Basler, Konrad; Mao, Yanlan

    2016-01-01

    Summary Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements. PMID:26766446

  20. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  1. Semiclassical dynamic simulation of photon induced ring-opening of cyclohexadiene to hexatriene

    NASA Astrophysics Data System (ADS)

    Li, Anyang; Yuan, Shuai; Dou, Yusheng; Wang, Yubin; Wen, Zhenyi

    2009-08-01

    A dynamical picture and the detailed changes in the structure for the ring opening reaction of cyclohexadiene (CHD) to form hexatriene (HT) are studied by a semiclassical electron radiation-ion dynamics (SERID) simulation. Following the simulated trajectory, the potential energy curves (PECs) of three lowest singlet states (S 0, S 1 and S 2) have been calculated at the CASSCF/MRPT2 level with 6-31G* basis sets. Two non-adiabatic state-to-state transitions are found at 112 fs and 129 fs, which confirms the mechanism suggested in the Ref. [M. Garavelli, C.S. Page, P. Celani, M. Olivucci, W.E. Schmid, S.A. Trushin, W. Fuss, J. Phys. Chem. A 105 (2001) 4458].

  2. Average entanglement dynamics in open two-qubit systems with continuous monitoring

    NASA Astrophysics Data System (ADS)

    Guevara, Ivonne; Viviescas, Carlos

    2014-07-01

    We present a comprehensive implementation of the quantum trajectory theory for the description of the entanglement dynamics in a Markovian open quantum system made of two qubits. We introduce the average concurrence to characterize the entanglement in the system and derive a deterministic evolution equation for it that depends on the ways in which information is read from the environment. This buildt-in flexibility of the method is used to address two actual issues in quantum information: entanglement protection and entanglement estimation. We identify general physical situations in which an entanglement protection protocol based on local monitoring of the environment can be implemented. Additionally, we methodically find unravelings of the system dynamics providing analytical tight bounds for the unmonitored entanglement in the system at all times. We conclude by showing the independence of the method from the choice of entanglement measure.

  3. Ring-opening photochemistry in cyclohexadiene derivatives: Ultrafast dynamics in solution and model membranes

    NASA Astrophysics Data System (ADS)

    Arruda, Brenden C.

    The ultrafast dynamics of molecules in condensed phases is an area of research that has the possibility to inform the design of molecules for functional nano-devices as well as improve on understanding of biological processes. Presented in this thesis are experiments probing the excited and ground state dynamics of molecules based on the 1,3-cyclohexadiene (CHD) chromophore. The reversible photochemistry of these molecules is applicable to the study of photo-switching systems under consideration for molecular memory devices as well as the photobiological synthesis of Vitamin D3. The full reaction mechanism for a number of CHD derivatives is deduced from ultrafast broadband transient absorption spectroscopy and supporting density functional calculations. Steric groups on the cyclohexadiene backbone can affect both the excited state properties as well as the dynamic approach to equilibrium for the hexatriene photoproducts following excitation of CHD. The photoreaction was characterized in multiple solvent environments with a range of viscosity, polarity, hydrogen-bonding capacity, and packing density. The conformational dynamics of the photoproducts depend on the substitution pattern and solvent. The alpha-phellandrene photoproduct relaxes to a fully trans form much like hexatriene, while alpha-terpinene and 7-dehydrocholesterol photoproducts are limited to certain conformations by steric clashes. The solvent affects the relaxation timescales differently for each photoproduct, but all of the dynamics occur within 5 - 10 ps. The ring opening of DHC that occurs in the biological synthesis of Vitamin D3 is also examined in a liposomal model for the cell membrane. In this anisotropic environment, the excited state dynamics are significantly lengthened to ~ 11 -- 50 ps depending on the liposome properties. This suggests significant interaction between DHC and the lipids that affects the ring-opening reaction coordinate. The excited state and photoproduct conformational

  4. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  5. Dynamic Simulation over Long Time Periods with 100% Solar Generation.

    SciTech Connect

    Concepcion, Ricky James; Elliott, Ryan Thomas

    2015-12-01

    This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.

  6. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.

    PubMed

    Lade, Robert K; Hippchen, Erik J; Macosko, Christopher W; Francis, Lorraine F

    2017-03-28

    Microchannels have applications in microfluidic devices, patterns for micromolding, and even flexible electronic devices. Three-dimensional (3D) printing presents a promising alternative manufacturing route for these microchannels due to the technology's relative speed and the design freedom it affords its users. However, the roughness of 3D printed surfaces can significantly influence flow dynamics inside of a microchannel. In this work, open microchannels are fabricated using four different 3D printing techniques: fused deposition modeling (FDM), stereolithography (SLA), selective laser sintering, and multi jet modeling. Microchannels printed with each technology are evaluated with respect to their surface roughness, morphology, and how conducive they are to spontaneous capillary filling. Based on this initial assessment, microchannels printed with FDM and SLA are chosen as models to study spontaneous, capillary-driven flow dynamics in 3D printed microchannels. Flow dynamics are investigated over short (∼10(-3) s), intermediate (∼1 s), and long (∼10(2) s) time scales. Surface roughness causes a start-stop motion down the channel due to contact line pinning, while the cross-sectional shape imparted onto the channels during the printing process is shown to reduce the expected filling velocity. A significant delay in the onset of Lucas-Washburn dynamics (a long-time equilibrium state where meniscus position advances proportionally to the square root of time) is also observed. Flow dynamics are assessed as a function of printing technology, print orientation, channel dimensions, and liquid properties. This study provides the first in-depth investigation of the effect of 3D printing on microchannel flow dynamics as well as a set of rules on how to account for these effects in practice. The extension of these effects to closed microchannels and microchannels fabricated with other 3D printing technologies is also discussed.

  7. Note: Compact, reusable inductive-storage-cum-opening-switch based 1.5 GW single-shot pulsed power generator.

    PubMed

    Shukla, Rohit; Shyam, Anurag

    2014-03-01

    The results of a very-compact (Marx generator-cum-inductor confined into 0.20 m cylindrical diameter and 0.75 m length) and light-weight (<15 kg) pulsed-power generator are being presented in the paper. The load voltage at 10.5 Ω is measured 125 kV (150 ns full width at half maximum FWHM) with 1.5 GW peak-power. The use of single-optimized-exploding-copper-wire along with the use of air for all the switches of the generator (closing switches of Marx generator used as primary energy source and opening switch of exploding wire) make device very attractive. Marx generator shape itself provides the desired inductance for the inductive storage.

  8. Note: Compact, reusable inductive-storage-cum-opening-switch based 1.5 GW single-shot pulsed power generator

    NASA Astrophysics Data System (ADS)

    Shukla, Rohit; Shyam, Anurag

    2014-03-01

    The results of a very-compact (Marx generator-cum-inductor confined into 0.20 m cylindrical diameter and 0.75 m length) and light-weight (<15 kg) pulsed-power generator are being presented in the paper. The load voltage at 10.5 Ω is measured 125 kV (150 ns full width at half maximum FWHM) with 1.5 GW peak-power. The use of single-optimized-exploding-copper-wire along with the use of air for all the switches of the generator (closing switches of Marx generator used as primary energy source and opening switch of exploding wire) make device very attractive. Marx generator shape itself provides the desired inductance for the inductive storage.

  9. HAPCAD: An open-source tool to detect PCR crossovers in next-generation sequencing generated HLA data

    PubMed Central

    McDevitt, Shana L.; Bredeson, Jessen V.; Roy, Scott W.; Lane, Julie A.; Noble, Janelle A.

    2016-01-01

    Next-generation sequencing (NGS) based HLA genotyping can generate PCR artifacts corresponding to IMGT/HLA Database alleles, for which multiple examples have been observed, including sequence corresponding to the HLA-DRB1*03:42 allele. Repeat genotyping of 131 samples, previously genotyped as DRB1*03:01 homozygotes using probe-based methods, resulted in the heterozygous call DRB1*03:01+DRB1*03:42. The apparent rare DRB1*03:42 allele is hypothesized to be a “hybrid amplicon” generated by PCR crossover, a process in which a partial PCR product denatures from its template, anneals to a different allele template, and extends to completion. Unlike most PCR crossover products, “hybrid amplicons” always corresponds to an IMGT/HLA Database allele, necessitating a case-by-case analysis of whether its occurrence reflects the actual allele or is simply the result of PCR crossover. The Hybrid Amplicon/PCR Crossover Artifact Detector (HAPCAD) program mimics jumping PCR in silico and flags allele sequences that may also be generated as hybrid amplicon. PMID:26802209

  10. Open-Loop Pitch Table Optimization for the Maximum Dynamic Pressure Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan A.

    2009-01-01

    NASA has scheduled the retirement of the space shuttle orbiter fleet at the end of 2010. The Constellation program was created to develop the next generation of human spaceflight vehicles and launch vehicles, known as Orion and Ares respectively. The Orion vehicle is a return to the capsule configuration that was used in the Mercury, Gemini, and Apollo programs. This configuration allows for the inclusion of an abort system that safely removes the capsule from the booster in the event of a failure on launch. The Flight Test Office at NASA's Dryden Flight Research Center has been tasked with the flight testing of the abort system to ensure proper functionality and safety. The abort system will be tested in various scenarios to approximate the conditions encountered during an actual Orion launch. Every abort will have a closed-loop controller with an open-loop backup that will direct the vehicle during the abort. In order to provide the best fit for the desired total angle of attack profile with the open-loop pitch table, the table is tuned using simulated abort trajectories. A pitch table optimization program was created to tune the trajectories in an automated fashion. The program development was divided into three phases. Phase 1 used only the simulated nominal run to tune the open-loop pitch table. Phase 2 used the simulated nominal and three simulated off nominal runs to tune the open-loop pitch table. Phase 3 used the simulated nominal and sixteen simulated off nominal runs to tune the open-loop pitch table. The optimization program allowed for a quicker and more accurate fit to the desired profile as well as allowing for expanded resolution of the pitch table.

  11. A comprehensive photometric study of dynamically evolved small van den Bergh-Hagen open clusters

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2016-12-01

    We present results from Johnson UBV, Kron-Cousins RI and Washington CT1T2 photometries for seven van den Bergh-Hagen (vdBH) open clusters, namely, vdBH 1, 10, 31, 72, 87, 92, and 118. The high-quality, multiband photometric data sets were used to trace the cluster stellar density radial profiles and to build colour-magnitude diagrams and colour-colour diagrams from which we estimated their structural parameters and fundamental astrophysical properties. The clusters in our sample cover a wide age range, from ˜60 Myr up to 2.8 Gyr, are of relatively small size (˜1-6 pc) and are placed at distances from the Sun which vary between 1.8 and 6.3 kpc, respectively. We also estimated lower limits for the cluster present-day masses as well as half-mass relaxation times (tr). The resulting values in combination with the structural parameter values suggest that the studied clusters are in advanced stages of their internal dynamical evolution (age/tr ˜ 20-320), possibly in the typical phase of those tidally filled with mass segregation in their core regions. Compared to open clusters in the solar neighbourhood, the seven vdBH clusters are within more massive (˜80-380 M⊙), with higher concentration parameter values (c ˜ 0.75-1.15) and dynamically evolved ones.

  12. Shape and Dynamics of Adhesive Cells: Mechanical Response of Open Systems

    NASA Astrophysics Data System (ADS)

    Yang, Yuehua; Jiang, Hongyuan

    2017-05-01

    Cell adhesion is an essential biological process. However, previous theoretical and experimental studies ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process. Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange of water and ions with the environment affects the shape and dynamics of cells adhered between two adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable (spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states vanish when cellular volume and pressure are constant. We further show that the detachments of convex and concave cells are very different. The mechanical response of adherent cells is mainly determined by the competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we show that as an open system the detachment of adherent cells is also significantly influenced by the loading history. Thus, our findings reveal a major difference between living cells and nonliving materials.

  13. Domain-Opening and Dynamic Coupling in the α-Subunit of Heterotrimeric G Proteins

    PubMed Central

    Yao, Xin-Qiu; Grant, Barry J.

    2013-01-01

    Heterotrimeric G proteins are conformational switches that turn on intracellular signaling cascades in response to the activation of G-protein-coupled receptors. Receptor activation by extracellular stimuli promotes a cycle of GTP binding and hydrolysis on the G protein α-subunit (Gα). Important conformational transitions occurring during this cycle have been characterized from extensive crystallographic studies of Gα. However, the link between the observed conformations and the mechanisms involved in G-protein activation and effector interaction remain unclear. Here we describe a comprehensive principal component analysis of available Gα crystallographic structures supplemented with extensive unbiased conventional and accelerated molecular dynamics simulations that together characterize the response of Gα to GTP binding and hydrolysis. Our studies reveal details of activating conformational changes as well as the intrinsic flexibility of the α-helical domain that includes a large-scale 60° domain opening under nucleotide-free conditions. This result is consistent with the recently reported open crystal structure of Gs, the stimulatory G protein for adenylyl cyclase, in complex with the α2 adrenergic receptor. Sets of unique interactions potentially important for the conformational transition are also identified. Moreover simulations reveal nucleotide-dependent dynamical couplings of distal regions and residues potentially important for the allosteric link between functional sites. PMID:23870276

  14. Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL.

    PubMed

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi; Masuda, Nobuyuki; Ichihashi, Yasuyuki; Takada, Naoki

    2010-05-10

    In this paper, we report fast calculation of a computer-generated-hologram using a new architecture of the HD5000 series GPU (RV870) made by AMD and its new software development environment, OpenCL. Using a RV870 GPU and OpenCL, we can calculate 1,920 x 1,024 resolution of a CGH from a 3D object consisting of 1,024 points in 30 milli-seconds. The calculation speed realizes a speed approximately two times faster than that of a GPU made by NVIDIA. (c) 2010 Optical Society of America.

  15. On the generation of flight dynamics aerodynamic tables by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Da Ronch, A.; Ghoreyshi, M.; Badcock, K. J.

    2011-11-01

    An approach for the generation of aerodynamic tables using computational fluid dynamics is discussed. For aircraft flight dynamics, forces and moments are often tabulated in multi-dimensional look-up tables, requiring a large number of calculations to fill the tables. A method to efficiently reduce the number of high-fidelity analyses is reviewed. The method uses a kriging-based surrogate model. Low-fidelity (computationally cheap) estimates are augmented with higher fidelity data. Data fusion combines the two datasets into one single database. The approach can also handle changes in aircraft geometry. Once constructed, the look-up tables can be used in real-time to fly the aircraft through the database. To demonstrate the capabilities of the framework presented, five test cases are considered. These include a transonic cruiser concept design, an unconventional configuration, two passenger jet aircraft, and a jet trainer aircraft. Investigations into the areas of flight handling qualities, stability and control characteristics and manoeuvring aircraft are made. To assess the accuracy of the simulations, numerical results are also compared with wind tunnel and flight test data.

  16. Non-linear hydrotectonic phenomena: Part I - fluid flow in open fractures under dynamical stress loading

    SciTech Connect

    Archambeau, C.B.

    1994-01-01

    A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself.

  17. Multi-field open inflation model and multi-field dynamics in tunneling

    SciTech Connect

    Sugimura, Kazuyuki; Yamauchi, Daisuke; Sasaki, Misao E-mail: yamauchi@icrr.u-tokyo.ac.jp

    2012-01-01

    We consider a multi-field open inflation model, in which one of the fields dominates quantum tunneling from a false vacuum while the other field governs slow-roll inflation within the bubble nucleated from false vacuum decay. We call the former the tunneling field and the latter the inflaton field. In the limit of a negligible interaction between the two fields, the false vacuum decay is described by a Coleman-De Luccia instanton. Here we take into account the coupling between the two fields and construct explicitly a multi-field instanton for a simple quartic potential model. We also solve the evolution of the scalar fields within the bubble. We find our model realizes open inflation successfully. This is the first concrete, viable model of open inflation realized with a simple potential. We then study the effect of the multi-field dynamics on the false vacuum decay, specifically on the tunneling rate. We find the tunneling rate increases in general provided that the multi-field effect can be treated perturbatively.

  18. REBOUND: an open-source multi-purpose N-body code for collisional dynamics

    NASA Astrophysics Data System (ADS)

    Rein, H.; Liu, S.-F.

    2012-01-01

    REBOUND is a new multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily to work on a wide variety of different problems in astrophysics and beyond. REBOUND comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping (WH). It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles. In this work, we discuss the different algorithms implemented in REBOUND, the philosophy behind the code's structure as well as implementation specific details of the different modules. We present results of accuracy and scaling tests which show that the code can run efficiently on both desktop machines and large computing clusters.

  19. Below-ground ectomycorrhizal community in natural Tuber melanosporum truffle grounds and dynamics after canopy opening.

    PubMed

    Garcia-Barreda, Sergi; Reyna, Santiago

    2012-07-01

    The ectomycorrhizal fungus Tuber melanosporum fruits in association with Quercus in natural forests of Spain. Some of these stands are managed to keep an open canopy and meet the habitat requirements of the fungus. However, there are few quantitative studies analysing in these forests the relationship between soil environment and T. melanosporum. Eight forest stands which produce T. melanosporum have been monitored for 6 years in order to characterise the below-ground ectomycorrhizal community and to assess its temporal dynamics after experimental canopy opening. The brûlé, the ground where T. melanosporum fruits, shows a distinct ectomycorrhizal community, characterised by lower density of active ectomycorrhizal tips, lower morphotype richness per soil volume, higher abundance of T. melanosporum and lower abundance of Cenococcum geophilum than soil closest to the trunk of the host Quercus ilex. Opening the canopy has not stimulated an increase in T. melanosporum, suggesting that a shift in the soil environment alone will not trigger the formation of new truffières in the short term. The dry climate of these truffières may be a factor as T. melanosporum abundance appears to be sensitive to annual weather conditions.

  20. Dynamical Processes in Open Quantum Systems from a TDDFT Perspective: Resonances and Electron Photoemission.

    PubMed

    Larsen, Ask Hjorth; De Giovannini, Umberto; Rubio, Angel

    2016-01-01

    We present a review of different computational methods to describe time-dependent phenomena in open quantum systems and their extension to a density-functional framework. We focus the discussion on electron emission processes in atoms and molecules addressing excited-state lifetimes and dissipative processes. Initially we analyze the concept of an electronic resonance, a central concept in spectroscopy associated with a metastable state from which an electron eventually escapes (electronic lifetime). Resonances play a fundamental role in many time-dependent molecular phenomena but can be rationalized from a time-independent context in terms of scattering states. We introduce the method of complex scaling, which is used to capture resonant states as localized states in the spirit of usual bound-state methods, and work on its extension to static and time-dependent density-functional theory. In a time-dependent setting, complex scaling can be used to describe excitations in the continuum as well as wave packet dynamics leading to electron emission. This process can also be treated by using open boundary conditions which allow time-dependent simulations of emission processes without artificial reflections at the boundaries (i.e., borders of the simulation box). We compare in detail different schemes to implement open boundaries, namely transparent boundaries using Green functions, and absorbing boundaries in the form of complex absorbing potentials and mask functions. The last two are regularly used together with time-dependent density-functional theory to describe the electron emission dynamics of atoms and molecules. Finally, we discuss approaches to the calculation of energy and angle-resolved time-dependent pump-probe photoelectron spectroscopy of molecular systems.

  1. Multiple Model-Informed Open-Loop Control of Uncertain Intracellular Signaling Dynamics

    PubMed Central

    Perley, Jeffrey P.; Mikolajczak, Judith; Harrison, Marietta L.; Buzzard, Gregery T.; Rundell, Ann E.

    2014-01-01

    Computational approaches to tune the activation of intracellular signal transduction pathways both predictably and selectively will enable researchers to explore and interrogate cell biology with unprecedented precision. Techniques to control complex nonlinear systems typically involve the application of control theory to a descriptive mathematical model. For cellular processes, however, measurement assays tend to be too time consuming for real-time feedback control and models offer rough approximations of the biological reality, thus limiting their utility when considered in isolation. We overcome these problems by combining nonlinear model predictive control with a novel adaptive weighting algorithm that blends predictions from multiple models to derive a compromise open-loop control sequence. The proposed strategy uses weight maps to inform the controller of the tendency for models to differ in their ability to accurately reproduce the system dynamics under different experimental perturbations (i.e. control inputs). These maps, which characterize the changing model likelihoods over the admissible control input space, are constructed using preexisting experimental data and used to produce a model-based open-loop control framework. In effect, the proposed method designs a sequence of control inputs that force the signaling dynamics along a predefined temporal response without measurement feedback while mitigating the effects of model uncertainty. We demonstrate this technique on the well-known Erk/MAPK signaling pathway in T cells. In silico assessment demonstrates that this approach successfully reduces target tracking error by 52% or better when compared with single model-based controllers and non-adaptive multiple model-based controllers. In vitro implementation of the proposed approach in Jurkat cells confirms a 63% reduction in tracking error when compared with the best of the single-model controllers. This study provides an experimentally

  2. Multiple model-informed open-loop control of uncertain intracellular signaling dynamics.

    PubMed

    Perley, Jeffrey P; Mikolajczak, Judith; Harrison, Marietta L; Buzzard, Gregery T; Rundell, Ann E

    2014-04-01

    Computational approaches to tune the activation of intracellular signal transduction pathways both predictably and selectively will enable researchers to explore and interrogate cell biology with unprecedented precision. Techniques to control complex nonlinear systems typically involve the application of control theory to a descriptive mathematical model. For cellular processes, however, measurement assays tend to be too time consuming for real-time feedback control and models offer rough approximations of the biological reality, thus limiting their utility when considered in isolation. We overcome these problems by combining nonlinear model predictive control with a novel adaptive weighting algorithm that blends predictions from multiple models to derive a compromise open-loop control sequence. The proposed strategy uses weight maps to inform the controller of the tendency for models to differ in their ability to accurately reproduce the system dynamics under different experimental perturbations (i.e. control inputs). These maps, which characterize the changing model likelihoods over the admissible control input space, are constructed using preexisting experimental data and used to produce a model-based open-loop control framework. In effect, the proposed method designs a sequence of control inputs that force the signaling dynamics along a predefined temporal response without measurement feedback while mitigating the effects of model uncertainty. We demonstrate this technique on the well-known Erk/MAPK signaling pathway in T cells. In silico assessment demonstrates that this approach successfully reduces target tracking error by 52% or better when compared with single model-based controllers and non-adaptive multiple model-based controllers. In vitro implementation of the proposed approach in Jurkat cells confirms a 63% reduction in tracking error when compared with the best of the single-model controllers. This study provides an experimentally

  3. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  4. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  5. Dynamic modes of microwave signal autogeneration in a radio photonic ring generator

    NASA Astrophysics Data System (ADS)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.

    2017-02-01

    Dynamic modes of microwave signal autogeneration in a radio photonic generator have been investigated. The generator is a ring circuit with a low-pass filter and microwave amplifier in its microwave path. The optical path contains an optical fiber delay line. The generator demonstrates the periodical, chaotic, and noise dynamics. It has been shown that the correlation dimensionality of the random signal attractor in the chaotic generation mode saturates with increasing phase space dimensionality. Saturation is not observed in the noise-generation mode.

  6. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    NASA Astrophysics Data System (ADS)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  7. Emergency Department Visit Forecasting and Dynamic Nursing Staff Allocation Using Machine Learning Techniques With Readily Available Open-Source Software.

    PubMed

    Zlotnik, Alexander; Gallardo-Antolín, Ascensión; Cuchí Alfaro, Miguel; Pérez Pérez, María Carmen; Montero Martínez, Juan Manuel

    2015-08-01

    Although emergency department visit forecasting can be of use for nurse staff planning, previous research has focused on models that lacked sufficient resolution and realistic error metrics for these predictions to be applied in practice. Using data from a 1100-bed specialized care hospital with 553,000 patients assigned to its healthcare area, forecasts with different prediction horizons, from 2 to 24 weeks ahead, with an 8-hour granularity, using support vector regression, M5P, and stratified average time-series models were generated with an open-source software package. As overstaffing and understaffing errors have different implications, error metrics and potential personnel monetary savings were calculated with a custom validation scheme, which simulated subsequent generation of predictions during a 4-year period. Results were then compared with a generalized estimating equation regression. Support vector regression and M5P models were found to be superior to the stratified average model with a 95% confidence interval. Our findings suggest that medium and severe understaffing situations could be reduced in more than an order of magnitude and average yearly savings of up to €683,500 could be achieved if dynamic nursing staff allocation was performed with support vector regression instead of the static staffing levels currently in use.

  8. SU-F-BRB-16: A Spreadsheet Based Automatic Trajectory GEnerator (SAGE): An Open Source Tool for Automatic Creation of TrueBeam Developer Mode Robotic Trajectories

    SciTech Connect

    Etmektzoglou, A; Mishra, P; Svatos, M

    2015-06-15

    Purpose: To automate creation and delivery of robotic linac trajectories with TrueBeam Developer Mode, an open source spreadsheet-based trajectory generation tool has been developed, tested and made freely available. The computing power inherent in a spreadsheet environment plus additional functions programmed into the tool insulate users from the underlying schema tedium and allow easy calculation, parameterization, graphical visualization, validation and finally automatic generation of Developer Mode XML scripts which are directly loadable on a TrueBeam linac. Methods: The robotic control system platform that allows total coordination of potentially all linac moving axes with beam (continuous, step-and-shoot, or combination thereof) becomes available in TrueBeam Developer Mode. Many complex trajectories are either geometric or can be described in analytical form, making the computational power, graphing and programmability available in a spreadsheet environment an easy and ideal vehicle for automatic trajectory generation. The spreadsheet environment allows also for parameterization of trajectories thus enabling the creation of entire families of trajectories using only a few variables. Standard spreadsheet functionality has been extended for powerful movie-like dynamic graphic visualization of the gantry, table, MLC, room, lasers, 3D observer placement and beam centerline all as a function of MU or time, for analysis of the motions before requiring actual linac time. Results: We used the tool to generate and deliver extended SAD “virtual isocenter” trajectories of various shapes such as parameterized circles and ellipses. We also demonstrated use of the tool in generating linac couch motions that simulate respiratory motion using analytical parameterized functions. Conclusion: The SAGE tool is a valuable resource to experiment with families of complex geometric trajectories for a TrueBeam Linac. It makes Developer Mode more accessible as a vehicle to quickly

  9. Pseudo generators for under-resolved molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bittracher, A.; Hartmann, C.; Junge, O.; Koltai, P.

    2015-09-01

    Many features of a molecule which are of physical interest (e.g. molecular conformations, reaction rates) are described in terms of its dynamics in configuration space. This article deals with the projection of molecular dynamics in phase space onto configuration space. Specifically, we study the situation that the phase space dynamics is governed by a stochastic Langevin equation and study its relation with the configurational Smoluchowski equation in the three different scaling regimes: Firstly, the Smoluchowski equations in non-Cartesian geometries are derived from the overdamped limit of the Langevin equation. Secondly, transfer operator methods are used to describe the metastable behaviour of the system at hand, and an explicit small-time asymptotics is derived on which the Smoluchowski equation turns out to govern the dynamics of the position coordinate (without any assumptions on the damping). By using an adequate reduction technique, these considerations are then extended to one-dimensional reaction coordinates. Thirdly, we sketch three different approaches to approximate the metastable dynamics based on time-local information only.

  10. An open-source framework for analyzing N-electron dynamics. I. Multideterminantal wave functions.

    PubMed

    Pohl, Vincent; Hermann, Gunter; Tremblay, Jean Christophe

    2017-06-30

    The aim of the present contribution is to provide a framework for analyzing and visualizing the correlated many-electron dynamics of molecular systems, where an explicitly time-dependent electronic wave packet is represented as a linear combination of N-electron wave functions. The central quantity of interest is the electronic flux density, which contains all information about the transient electronic density, the associated phase, and their temporal evolution. It is computed from the associated one-electron operator by reducing the multideterminantal, many-electron wave packet using the Slater-Condon rules. Here, we introduce a general tool for post-processing multideterminant configuration-interaction wave functions obtained at various levels of theory. It is tailored to extract directly the data from the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions. The procedure is implemented in the open-source Python program detCI@ORBKIT, which shares and builds on the modular design of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). The new procedure is applied to ultrafast charge migration processes in different molecular systems, demonstrating its broad applicability. Convergence of the N-electron dynamics with respect to the electronic structure theory level and basis set size is investigated. This provides an assessment of the robustness of qualitative and quantitative statements that can be made concerning dynamical features observed in charge migration simulations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Degree correlations in a dynamically generated model food web

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne

    2010-02-01

    We explore aspects of the community structures generated by a simple predator-prey model of biological coevolution, using large-scale kinetic Monte Carlo simulations. The model accounts for interspecies and intraspecies competition for resources, as well as adaptive foraging behavior. It produces a metastable low-diversity phase and a stable high-diversity phase. The structures and joint indegree-outdegree distributions of the food webs generated in the latter phase are discussed.

  12. Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics

    PubMed Central

    Gołaś, Ewa; Maisuradze, Gia G.; Senet, Patrick; Ołdziej, Stanisław; Czaplewski, Cezary; Scheraga, Harold A.; Liwo, Adam

    2012-01-01

    Heat-shock proteins 70 (Hsp70s) are key molecular chaperones which assist in the folding and refolding/disaggregation of proteins. Hsp70s, which consist of a nucleotide-binding domain (NBD, consisting of NBD-I and NBD-II subdomains) and a substrate-binding domain [SBD, further split into the β-sheet (SBD-β) and α-helical (SBD-α) subdomains], occur in two major conformations having (a) a closed SBD, in which the SBD and NBD domains do not interact, (b) an open SBD, in which SBD-α interacts with NBD-I and SBD-β interacts with the top parts of NBD-I and NBD-II. In the SBD-closed conformation, SBD is bound to a substrate protein, with release occurring after transition to the open conformation. While the transition from the closed to the open conformation is triggered efficiently by binding of adenosine triphosphate (ATP) to the NBD, it also occurs, although less frequently, in the absence of ATP. The reverse transition occurs after ATP hydrolysis. Here, we report canonical and multiplexed replica exchange simulations of the conformational dynamics of Hsp70s using a coarse-grained molecular dynamics approach with the UNRES force field. The simulations were run in the following three modes: (i) with the two halves of the NBD unrestrained relative to each other, (ii) with the two halves of the NBD restrained in an “open” geometry as in the SBD-closed form of DnaK (2KHO), and (iii) the two halves of NBD restrained in a “closed” geometry as in known experimental structures of ATP-bound NBD forms of Hsp70. Open conformations, in which the SBD interacted strongly with the NBD, formed spontaneously during all simulations; the number of transitions was largest in simulations carried out with the “closed” NBD domain, and smallest in those carried out with the “open” NBD domain; this observation is in agreement with the experimentally-observed influence of ATP-binding on the transition of Hsp70’s from the SBD-closed to the SBD-open form. Two kinds of open

  13. Photographic wound documentation of open fractures: an update for the digital generation

    PubMed Central

    Morgan, B W; Read, J R; Solan, M C

    2007-01-01

    Objective To examine the availability of working cameras in UK emergency departments and to discuss the merits of digital imaging over Polaroid. Design This study was conducted by means of a telephone questionnaire to 50 UK emergency departments. Results It was found that 80% were able to produce either a working Polaroid or digital camera, and that 63% of emergency departments had a digital camera available. Conclusions We report a pronounced increase in the ability of emergency departments to photograph open fractures, due in part to the availability of digital cameras. We recommend the appropriate use of these tools in the management of open fractures. PMID:18029517

  14. Electron-beam generation in a wide-aperture open gas discharge: A comparative study for different inert gases

    SciTech Connect

    Bokhan, P. A.; Zakrevsky, Dm. E.

    2010-08-30

    In the present study, electron-beam generation by open discharges was examined. The study was performed at gas pressures up to 20 Torr, and covered all inert gases. At voltages up to 8 kV, electron-beam currents up to 1600 A with current density {approx}130 A/cm{sup 2} and a beam generation efficiency in excess of 93% were obtained. The production of electrons from cold cathode was concluded to be of photoemissive nature, enabling the production of high-intensity electron beams in any noble gas or in a mixture of a noble gas with molecular gases irrespective of cathode material.

  15. Multistage ab initio quantum wavepacket dynamics for electronic structure and dynamics in open systems: momentum representation, coupled electron-nuclear dynamics, and external fields.

    PubMed

    Pacheco, Alexander B; Iyengar, Srinivasan S

    2011-02-21

    We recently proposed a multistage ab initio wavepacket dynamics (MS-AIWD) treatment for the study of delocalized electronic systems as well as electron transport through donor-bridge-acceptor systems such as those found in molecular-wire/electrode networks. In this method, the full donor-bridge-acceptor open system is treated through a rigorous partitioning scheme that utilizes judiciously placed offsetting absorbing and emitting boundary conditions. In this manner, the electronic coupling between the bridge molecule and surrounding electrodes is accounted. Here, we extend MS-AIWD to include the dynamics of open-electronic systems in conjunction with (a) simultaneous treatment of nuclear dynamics and (b) external electromagnetic fields. This generalization is benchmarked through an analysis of wavepackets propagated on a potential modeled on an Al(27) - C(7) - Al(27) nanowire. The wavepacket results are inspected in the momentum representation and the dependence of momentum of the wavepacket as well as its transmission probabilities on the magnitude of external bias are analyzed.

  16. Multistage ab initio quantum wavepacket dynamics for electronic structure and dynamics in open systems: Momentum representation, coupled electron-nuclear dynamics, and external fields

    NASA Astrophysics Data System (ADS)

    Pacheco, Alexander B.; Iyengar, Srinivasan S.

    2011-02-01

    We recently proposed a multistage ab initio wavepacket dynamics (MS-AIWD) treatment for the study of delocalized electronic systems as well as electron transport through donor-bridge-acceptor systems such as those found in molecular-wire/electrode networks. In this method, the full donor-bridge-acceptor open system is treated through a rigorous partitioning scheme that utilizes judiciously placed offsetting absorbing and emitting boundary conditions. In this manner, the electronic coupling between the bridge molecule and surrounding electrodes is accounted. Here, we extend MS-AIWD to include the dynamics of open-electronic systems in conjunction with (a) simultaneous treatment of nuclear dynamics and (b) external electromagnetic fields. This generalization is benchmarked through an analysis of wavepackets propagated on a potential modeled on an Al27 - C7 - Al27 nanowire. The wavepacket results are inspected in the momentum representation and the dependence of momentum of the wavepacket as well as its transmission probabilities on the magnitude of external bias are analyzed.

  17. Abriendo Puertas: Opening Doors to Opportunity--A National Evaluation of Second-Generation Trainers

    ERIC Educational Resources Information Center

    Bridges, Margaret; Cohen, Shana R.; Fuller, Bruce

    2012-01-01

    Abriendo Puertas/Opening Doors (AP/OD) is a comprehensive, 10-session parenting skills and advocacy program developed by and for low-income Latino parents with children ages 0 to 5. Drawing from the real-life experiences of Latino parents and local data about their schools and communities, sessions are filled with interactive activities that aim…

  18. The Generation Gap: Open-Source Information, Intelligence, and the Government

    DTIC Science & Technology

    1994-01-01

    our national open-source needs. 13 Notably absent from the intelligence community’s capabilities is the ability to routinely exploit multilingual ...bring more multimedia and multilingual data on-line. TM CHALLENGES in the context of this essay, I will identify what is considered to be some of

  19. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  20. Experimental study of stable imbibition displacements in a model open fracture. I. Local avalanche dynamics.

    PubMed

    Clotet, Xavier; Ortín, Jordi; Santucci, Stéphane

    2016-01-01

    We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension and forced them to slowly invade a model open fracture at different constant flow rates v. In this first part of the study we have focused on the local dynamics at a scale below the size of the quenched disorder. Changing μ and v independently, we have found that the dynamics is not simply controlled by the capillary number Ca∼μv. Specifically, we have found that the wide statistical distributions of local front velocities, and their large spatial correlations along the front, are indeed controlled by the capillary number Ca. However, local velocities exhibit also very large temporal correlations, and these correlations depend more strongly on the mean imposed velocity v than on the viscosity μ of the invading fluid. Correlations between local velocities lead to a burstlike dynamics. Avalanches, defined as clusters of large local velocities, follow power-law distributions-both in size and duration-with exponential cutoffs that diverge as Ca→0, the pinning-depinning transition of stable imbibition displacements. Large data sets have led to reliable statistics, from which we have derived accurate values of critical exponents of the relevant power-law distributions. We have investigated also the dependence of their cutoffs on μ and v and related them to the autocorrelations of local velocities in space and time.

  1. Experimental study of stable imbibition displacements in a model open fracture. I. Local avalanche dynamics

    NASA Astrophysics Data System (ADS)

    Clotet, Xavier; Ortín, Jordi; Santucci, Stéphane

    2016-01-01

    We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension and forced them to slowly invade a model open fracture at different constant flow rates v . In this first part of the study we have focused on the local dynamics at a scale below the size of the quenched disorder. Changing μ and v independently, we have found that the dynamics is not simply controlled by the capillary number Ca˜μ v . Specifically, we have found that the wide statistical distributions of local front velocities, and their large spatial correlations along the front, are indeed controlled by the capillary number Ca. However, local velocities exhibit also very large temporal correlations, and these correlations depend more strongly on the mean imposed velocity v than on the viscosity μ of the invading fluid. Correlations between local velocities lead to a burstlike dynamics. Avalanches, defined as clusters of large local velocities, follow power-law distributions—both in size and duration—with exponential cutoffs that diverge as Ca→0 , the pinning-depinning transition of stable imbibition displacements. Large data sets have led to reliable statistics, from which we have derived accurate values of critical exponents of the relevant power-law distributions. We have investigated also the dependence of their cutoffs on μ and v and related them to the autocorrelations of local velocities in space and time.

  2. Open-system dynamics of entanglement:a key issues review

    NASA Astrophysics Data System (ADS)

    Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz

    2015-04-01

    One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and

  3. Proton momentum distribution in water: an open path integral molecular dynamics study.

    PubMed

    Morrone, Joseph A; Srinivasan, Varadharajan; Sebastiani, Daniel; Car, Roberto

    2007-06-21

    Recent neutron Compton scattering experiments have detected the proton momentum distribution in water. The theoretical calculation of this property can be carried out via "open" path integral expressions. In this work, present an extension of the staging path integral molecular dynamics method, which is then employed to calculate the proton momentum distributions of water in the solid, liquid, and supercritical phases. We utilize a flexible, single point charge empirical force field to model the system's interactions. The calculated momentum distributions depict both agreement and discrepancies with experiment. The differences may be explained by the deviation of the force field from the true interactions. These distributions provide an abundance of information about the environment and interactions surrounding the proton.

  4. The Zebrafish Neurophenome Database (ZND): a dynamic open-access resource for zebrafish neurophenotypic data.

    PubMed

    Kyzar, Evan; Zapolsky, Ivan; Green, Jeremy; Gaikwad, Siddharth; Pham, Mimi; Collins, Christopher; Roth, Andrew; Stewart, Adam Michael; St-Pierre, Paul; Hirons, Budd; Kalueff, Allan V

    2012-03-01

    Zebrafish (Danio rerio) are widely used in neuroscience research, where their utility as a model organism is rapidly expanding. Low cost, ease of experimental manipulations, and sufficient behavioral complexity make zebrafish a valuable tool for high-throughput studies in biomedicine. To complement the available repositories for zebrafish genetic information, there is a growing need for the collection of zebrafish neurobehavioral and neurological phenotypes. For this, we are establishing the Zebrafish Neurophenome Database (ZND; www.tulane.edu/∼znpindex/search ) as a new dynamic online open-access data repository for behavioral and related physiological data. ZND, currently focusing on adult zebrafish, combines zebrafish neurophenotypic data with a simple, easily searchable user interface, which allow scientists to view and compare results obtained by other laboratories using various treatments in different testing paradigms. As a developing community effort, ZND is expected to foster innovative research using zebrafish by federating the growing body of zebrafish neurophenotypic data.

  5. TDDFT-MD Study on Dynamics in Photoinduced Ring Opening of Benzene

    NASA Astrophysics Data System (ADS)

    Tateyama, Yoshitaka; Miyamoto, Yoshiyuki; Oyama, Norihisa; Ohno, Takahisa

    2004-03-01

    Coupled dynamics of ions and electrons in the excited states of molecular and solid benzene is investigated on the femtosecond scale by the efficient simulation scheme recently developed for the time-dependent density functional theory. Within the π arrow π excitations, any out-of-plane motion of ions is not induced in the molecular system basically. In the solid, however, we found that large swing of the C-H bonds and subsequent twist of the carbon ring takes place, leading to sp^3-like bonding of carbon ions. This swing-to-twist motion presents a plausible mechanism underlying the photoinduced ring opening in solid benzene experimentally observed under pressure. This research is partially supported by ACT-JST, and also by FSIS and Special Coordination Funds of Ministry of Education, Culture, Sports, Science and Technology of Japanese Government.

  6. Contractivity of the Hilbert-Schmidt distance under open-system dynamics

    SciTech Connect

    Wang Xiaoting; Schirmer, S. G.

    2009-05-15

    It is shown that the Hilbert-Schmidt (HS) norm and distance, unlike the trace norm and distance, are generally not contractive for open quantum systems under Lindblad dynamics. Necessary and sufficient conditions for contractivity of the HS norm and distance are given, and explicit criteria in terms of the Lindblad operators are derived. It is also shown that the requirements for contractivity of the HS distance are strictly weaker than those for the HS norm, although simulations suggest that noncontractivity is a typical case, i.e., that systems for which the HS distance between quantum states is monotonically decreasing are exceptional for N>2, in contrast to the N=2 case where it is always monotonically decreasing.

  7. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.

    PubMed

    Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G

    2017-03-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.

  8. Proton momentum distribution in water: an open path integral molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Morrone, Joseph A.; Srinivasan, Varadharajan; Sebastiani, Daniel; Car, Roberto

    2007-06-01

    Recent neutron Compton scattering experiments have detected the proton momentum distribution in water. The theoretical calculation of this property can be carried out via "open" path integral expressions. In this work, present an extension of the staging path integral molecular dynamics method, which is then employed to calculate the proton momentum distributions of water in the solid, liquid, and supercritical phases. We utilize a flexible, single point charge empirical force field to model the system's interactions. The calculated momentum distributions depict both agreement and discrepancies with experiment. The differences may be explained by the deviation of the force field from the true interactions. These distributions provide an abundance of information about the environment and interactions surrounding the proton.

  9. Phytoplankton community dynamics in an intermittently open hypereutrophic coastal lagoon in southern Portugal

    NASA Astrophysics Data System (ADS)

    Coelho, Susana; Pérez-Ruzafa, Angel; Gamito, Sofia

    2015-12-01

    Phytoplankton community' dynamics were studied in Salgados coastal lagoon in order to evaluate the effects of excessive organic loads and also physical stress caused by the irregular opening of the lagoon. Salgados is a hypereutrophic intermittently open coastal lagoon, which received freshwater inputs from small rivers and from a wastewater treatment plant. Cyanophyceae dominated the phytoplankton communities most of the time; Bacillariophyceae became the main taxonomic group in winter when the lagoon was closed; Chlorophyceae was the major class in early summer; pico-nano flagellate algae accounted for a high percentage of total phytoplankton during spring. Potentially harmful taxa were observed during most of the sampling periods, forming blooms and accounting for a considerable percentage of total phytoplankton abundance. A strong differentiation among dry and wet seasons could be noticed. The dry season was dominated by Microsystis aeruginosa, Rhodomonas sp., pico-nano flagellate algae, Cyclotella spp. and Planktothrix sp., while the wet season, although still with the presence of Microsystis aeruginosa, was dominated by Dolichospermum spiroides. The best environmental variables explaining stations patterns and based on phytoplankton taxa were days of isolation, pH, and salinity. Temperature, cumulative rain and total phosphorus were also related with species and stations patterns. The high nutrient load in Salgados lagoon promoted the development and persistence of harmful algae blooms. Proper management of coastal lagoons involves not only the control of direct discharges of nutrients, but also of other factors, including water level and communication with the sea.

  10. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field.

    PubMed

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  11. Dynamics of the near response under natural viewing conditions with an open-view sensor.

    PubMed

    Chirre, Emmanuel; Prieto, Pedro; Artal, Pablo

    2015-10-01

    We have studied the temporal dynamics of the near response (accommodation, convergence and pupil constriction) in healthy subjects when accommodation was performed under natural binocular and monocular viewing conditions. A binocular open-view multi-sensor based on an invisible infrared Hartmann-Shack sensor was used for non-invasive measurements of both eyes simultaneously in real time at 25Hz. Response times for each process under different conditions were measured. The accommodative responses for binocular vision were faster than for monocular conditions. When one eye was blocked, accommodation and convergence were triggered simultaneously and synchronized, despite the fact that no retinal disparity was available. We found that upon the onset of the near target, the unblocked eye rapidly changes its line of sight to fix it on the stimulus while the blocked eye moves in the same direction, producing the equivalent to a saccade, but then converges to the (blocked) target in synchrony with accommodation. This open-view instrument could be further used for additional experiments with other tasks and conditions.

  12. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field

    NASA Astrophysics Data System (ADS)

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  13. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  14. Dynamics of the near response under natural viewing conditions with an open-view sensor

    PubMed Central

    Chirre, Emmanuel; Prieto, Pedro; Artal, Pablo

    2015-01-01

    We have studied the temporal dynamics of the near response (accommodation, convergence and pupil constriction) in healthy subjects when accommodation was performed under natural binocular and monocular viewing conditions. A binocular open-view multi-sensor based on an invisible infrared Hartmann-Shack sensor was used for non-invasive measurements of both eyes simultaneously in real time at 25Hz. Response times for each process under different conditions were measured. The accommodative responses for binocular vision were faster than for monocular conditions. When one eye was blocked, accommodation and convergence were triggered simultaneously and synchronized, despite the fact that no retinal disparity was available. We found that upon the onset of the near target, the unblocked eye rapidly changes its line of sight to fix it on the stimulus while the blocked eye moves in the same direction, producing the equivalent to a saccade, but then converges to the (blocked) target in synchrony with accommodation. This open-view instrument could be further used for additional experiments with other tasks and conditions. PMID:26504666

  15. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors.

    PubMed

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-19

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  16. Schwinger-Dyson Equations and Dynamical gluon mass generation

    SciTech Connect

    Aguilar, A.C.; Natale, A.A.

    2004-12-02

    We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.

  17. Drawing on Dynamic Local Knowledge through Student-Generated Photography

    ERIC Educational Resources Information Center

    Coles-Ritchie, Marilee; Monson, Bayley; Moses, Catherine

    2015-01-01

    In this research, the authors explored how teachers using student-generated photography draw on local knowledge. The study draws on the framework of funds of knowledge to highlight the assets marginalized students bring to the classroom and the need for culturally relevant pedagogy to address the needs of a diverse public school population. The…

  18. Drawing on Dynamic Local Knowledge through Student-Generated Photography

    ERIC Educational Resources Information Center

    Coles-Ritchie, Marilee; Monson, Bayley; Moses, Catherine

    2015-01-01

    In this research, the authors explored how teachers using student-generated photography draw on local knowledge. The study draws on the framework of funds of knowledge to highlight the assets marginalized students bring to the classroom and the need for culturally relevant pedagogy to address the needs of a diverse public school population. The…

  19. Spatio-Temporal Dynamics of Cross Polarized Wave Generation

    NASA Astrophysics Data System (ADS)

    Adams, Daniel; Squier, Jeff; Durfee, Charles

    2009-10-01

    We use time-domain Spatially and Spectrally Resolved Interferometry (SSRI) to investigate cross-polarized wave (XPW) generation in barium fluoride. We find that the XPW pulse is √3 smaller than the input in the spatiotemporal domain regardless of the input chirp. Additionally, we calculate a temporally dependent focal length resulting from the nonlinear interaction, and discuss its implications.

  20. International Conference on Numerical Grid Generation in Computational Fluid Dynamics

    DTIC Science & Technology

    1989-04-30

    Sao Vicente 225 Washington, D.C. 20059 22453 Rio de Janerlo-- RJ BRA A.S. Dvinsky Haiqing Gong Creare Inc. University of Delaware Etna Road P.O. Box...Fulselage- Mounted Nacelle 77S /Pylon Configuration N. D. Halsey Zonal Grid Generation for Fighter Aircraft 785 E. H. Atta Geometric Modelling of

  1. A Parallel Computational Fluid Dynamics Unstructured Grid Generator

    DTIC Science & Technology

    1993-12-01

    Vol 11. 953-961. Philadelphia: SIAM, 1993. Holey, J. Andrew and Oscar H. Ibarra . "Triangulation, Veronoi Diagram, and Convex Hull in k-Space on Mesh...rIdhner, Rainald, Jose Camberos, and Marshall Merriam. "Parallel Unstructured Grid Generation," in Unstructured Scientific Computation on Scalable

  2. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  3. Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation

    PubMed Central

    Straw, Andrew D.

    2008-01-01

    Modern computer hardware makes it possible to produce visual stimuli in ways not previously possible. Arbitrary scenes, from traditional sinusoidal gratings to naturalistic 3D scenes can now be specified on a frame-by-frame basis in realtime. A programming library called the Vision Egg that aims to make it easy to take advantage of these innovations. The Vision Egg is a free, open-source library making use of OpenGL and written in the high-level language Python with extensions in C. Careful attention has been paid to the issues of luminance and temporal calibration, and several interfacing techniques to input devices such as mice, movement tracking systems, and digital triggers are discussed. Together, these make the Vision Egg suitable for many psychophysical, electrophysiological, and behavioral experiments. This software is available for free download at visionegg.org. PMID:19050754

  4. Vision egg: an open-source library for realtime visual stimulus generation.

    PubMed

    Straw, Andrew D

    2008-01-01

    Modern computer hardware makes it possible to produce visual stimuli in ways not previously possible. Arbitrary scenes, from traditional sinusoidal gratings to naturalistic 3D scenes can now be specified on a frame-by-frame basis in realtime. A programming library called the Vision Egg that aims to make it easy to take advantage of these innovations. The Vision Egg is a free, open-source library making use of OpenGL and written in the high-level language Python with extensions in C. Careful attention has been paid to the issues of luminance and temporal calibration, and several interfacing techniques to input devices such as mice, movement tracking systems, and digital triggers are discussed. Together, these make the Vision Egg suitable for many psychophysical, electrophysiological, and behavioral experiments. This software is available for free download at visionegg.org.

  5. Parallel, staged opening switch power conditioning techniques for flux compression generator applications

    SciTech Connect

    Reinovsky, R.E.; Levi, P.S.; Bueck, J.C.; Goforth, J.H.

    1985-01-01

    The Air Force Weapons Laboratory, working jointly with Los Alamos National Laboratory, has conducted a series of experiments directed at exploring composite, or staged, switching techniques for use in opening switches in applications which require the conduction of very high currents (or current densities) with very low losses for relatively long times (several tens of microseconds), and the interruption of these currents in much shorter times (ultimately a few hundred nanoseconds). This paper reports the results of those experiments.

  6. CMOS standard cells characterization for open defects for test pattern generation

    NASA Astrophysics Data System (ADS)

    Wielgus, Andrzej; Pleskacz, Witold

    2016-12-01

    This paper presents an extended method of CMOS standard cells characterization for defect based voltage testing. It allows to estimate the probabilities of physical open defects occurrences in a cell, describes its faulty behavior caused by the defects and finds the test sequences that detect those faults. Finally, the minimal set of test sequences is selected to cover all detectable faults and the optimal complex test sequence is constructed. Experimental results for cells from industrial standard cell library are presented as well.

  7. {open_quotes}The next generations of Tampella Power`s CFB boilers{close_quotes}

    SciTech Connect

    Alliston, M.G.

    1995-12-31

    The next generation of Tampella Power Corporation`s CFB boilers is discussed in outline form. The following topics are outlined: CFB boiler advantages, CFB boiler fuel flexibility and CYMIC boiler construction.

  8. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  9. An open tool for input function estimation and quantification of dynamic PET FDG brain scans.

    PubMed

    Bertrán, Martín; Martínez, Natalia; Carbajal, Guillermo; Fernández, Alicia; Gómez, Álvaro

    2016-08-01

    Positron emission tomography (PET) analysis of clinical studies is mostly restricted to qualitative evaluation. Quantitative analysis of PET studies is highly desirable to be able to compute an objective measurement of the process of interest in order to evaluate treatment response and/or compare patient data. But implementation of quantitative analysis generally requires the determination of the input function: the arterial blood or plasma activity which indicates how much tracer is available for uptake in the brain. The purpose of our work was to share with the community an open software tool that can assist in the estimation of this input function, and the derivation of a quantitative map from the dynamic PET study. Arterial blood sampling during the PET study is the gold standard method to get the input function, but is uncomfortable and risky for the patient so it is rarely used in routine studies. To overcome the lack of a direct input function, different alternatives have been devised and are available in the literature. These alternatives derive the input function from the PET image itself (image-derived input function) or from data gathered from previous similar studies (population-based input function). In this article, we present ongoing work that includes the development of a software tool that integrates several methods with novel strategies for the segmentation of blood pools and parameter estimation. The tool is available as an extension to the 3D Slicer software. Tests on phantoms were conducted in order to validate the implemented methods. We evaluated the segmentation algorithms over a range of acquisition conditions and vasculature size. Input function estimation algorithms were evaluated against ground truth of the phantoms, as well as on their impact over the final quantification map. End-to-end use of the tool yields quantification maps with [Formula: see text] relative error in the estimated influx versus ground truth on phantoms. The main

  10. Generic features of the dynamics of complex open quantum systems: statistical approach based on averages over the unitary group.

    PubMed

    Gessner, Manuel; Breuer, Heinz-Peter

    2013-04-01

    We obtain exact analytic expressions for a class of functions expressed as integrals over the Haar measure of the unitary group in d dimensions. Based on these general mathematical results, we investigate generic dynamical properties of complex open quantum systems, employing arguments from ensemble theory. We further generalize these results to arbitrary eigenvalue distributions, allowing a detailed comparison of typical regular and chaotic systems with the help of concepts from random matrix theory. To illustrate the physical relevance and the general applicability of our results we present a series of examples related to the fields of open quantum systems and nonequilibrium quantum thermodynamics. These include the effect of initial correlations, the average quantum dynamical maps, the generic dynamics of system-environment pure state entanglement and, finally, the equilibration of generic open and closed quantum systems.

  11. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation

    NASA Astrophysics Data System (ADS)

    Spardy, Lucy E.; Markin, Sergey N.; Shevtsova, Natalia A.; Prilutsky, Boris I.; Rybak, Ilya A.; Rubin, Jonathan E.

    2011-10-01

    Locomotion in mammals is controlled by a spinal central pattern generator (CPG) coupled to a biomechanical limb system, with afferent feedback to the spinal circuits and CPG closing the control loop. We have considered a simplified model of this system, in which the CPG establishes a rhythm when a supra-spinal activating drive is present and afferent signals from a single-joint limb feed back to affect CPG operation. Using dynamical system methods, in a series of two papers we analyze the mechanisms by which this model produces oscillations, and the characteristics of these oscillations, in the closed- and open-loop regimes. In this first paper, we analyze the phase transition mechanisms operating within the CPG and use the results to explain how afferent feedback allows oscillations to occur at a wider range of drive values to the CPG than the range over which oscillations occur in the CPG without feedback, and then to comment on why stronger feedback leads to faster oscillations. Linking these transitions to structures in the phase plane associated with the limb segment clarifies how increased weights of afferent feedback to the CPG can restore locomotion after removal of supra-spinal drive to simulate spinal cord injury.

  12. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  13. Badlands: An open-source, flexible and parallel framework to study landscape dynamics

    NASA Astrophysics Data System (ADS)

    Salles, T.; Hardiman, L.

    2016-06-01

    In this paper, we propose a minimal numerical model which governing equations describe the following processes: erosion, sedimentation, diffusion and flexure. The model respects conservation laws for water and sediment. The implementation is based on a finite volume approach and the explicit solution stability is ensured by a CFL-like condition. This common core of accepted physical principles governing landscape evolution is ported into a distributed memory parallel environment. Badlands (acronym for BAsin anD LANdscape DynamicS) is an open-source, flexible, TIN-based landscape evolution model, built to simulate landform development and test source-to-sink concepts at regional to continental scale over thousands to millions of years. To illustrate the model capabilities, we first present an example of delta evolution under sea-level fluctuations. The model predicts the successive progradation and transgression phases, the development of depositional and erosional patterns as well as the associated stratigraphic formation. Then, we investigate the importance of climate, and in particular the spatial pattern of precipitation, on the topographic evolution of mountain belts. The simulation and associated quantitative analyses suggest that the main drainage divide migrates and asymmetric topography develops in response to orographic precipitation. This mechanism, documented in recent analogue and numerical experiments, results in a complex reorganisation of drainage networks that our model is able to reproduce.

  14. A Comparison of Critical Regimes in Collapsible Tube, Pipe, Open Channel and Gas-Dynamic Flows

    NASA Astrophysics Data System (ADS)

    Arun, C. P.

    2003-11-01

    Though of considerable interest to clinical scientists, collapsible tubes are only recently receiving due interest by fluid physicists. The subject of critical phenomena in collapsible tube flow appears not to have been examined critically. For example, it has been proposed in the past that shock waves in physiological tubes are abnormal. We propose a classification of flow through collapsible tubes recognising that compressibility in gas-dynamic and pipe flow (cf.waterhammer) corresponds to distensibility in collapsible tube flow. Thus, opening and closing waves of collapsible tube flow (predistension regime) is subcritical flow and the post-distension regime, supercritical. Physiological tubes are often hyperelastic and contractile and often, when distension is very significant, a hypercritical regime corresponding to hypersonic gas-dynamic flow is admissible. Such a hypercritical regime would allow storage of energy and muscle contraction in the wall of the tube and hence continuance of propulsion in the essentially intermittent flow that is seen in collapsible tubes. Such a mechanism appears to be in operation in the human aorta, bowel and urethra. The present work offers a comparison of critical regimes in various fluid flow situations including collapsible tubes, that is in harmony with known phenomena seen in nature.

  15. A correlated-polaron electronic propagator: Open electronic dynamics beyond the Born-Oppenheimer approximation

    NASA Astrophysics Data System (ADS)

    Parkhill, John A.; Markovich, Thomas; Tempel, David G.; Aspuru-Guzik, Alan

    2012-12-01

    In this work, we develop an approach to treat correlated many-electron dynamics, dressed by the presence of a finite-temperature harmonic bath. Our theory combines a small polaron transformation with the second-order time-convolutionless master equation and includes both electronic and system-bath correlations on equal footing. Our theory is based on the ab initio Hamiltonian, and is thus well-defined apart from any phenomenological choice of basis states or electronic system-bath coupling model. The equation-of-motion for the density matrix we derive includes non-Markovian and non-perturbative bath effects and can be used to simulate environmentally broadened electronic spectra and dissipative dynamics, which are subjects of recent interest. The theory also goes beyond the adiabatic Born-Oppenheimer approximation, but with computational cost scaling such as the Born-Oppenheimer approach. Example propagations with a developmental code are performed, demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system. An untransformed version of the theory is also presented to treat more general baths and larger systems.

  16. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation.

    PubMed

    Parkhill, John A; Markovich, Thomas; Tempel, David G; Aspuru-Guzik, Alan

    2012-12-14

    In this work, we develop an approach to treat correlated many-electron dynamics, dressed by the presence of a finite-temperature harmonic bath. Our theory combines a small polaron transformation with the second-order time-convolutionless master equation and includes both electronic and system-bath correlations on equal footing. Our theory is based on the ab initio Hamiltonian, and is thus well-defined apart from any phenomenological choice of basis states or electronic system-bath coupling model. The equation-of-motion for the density matrix we derive includes non-markovian and non-perturbative bath effects and can be used to simulate environmentally broadened electronic spectra and dissipative dynamics, which are subjects of recent interest. The theory also goes beyond the adiabatic Born-Oppenheimer approximation, but with computational cost scaling such as the Born-Oppenheimer approach. Example propagations with a developmental code are performed, demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system. An untransformed version of the theory is also presented to treat more general baths and larger systems.

  17. Dynamics of Cell Generation and Turnover in the Human Heart.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Felker, Anastasia; Salehpour, Mehran; Alkass, Kanar; Bernard, Samuel; Sjostrom, Staffan L; Szewczykowska, Mirosława; Jackowska, Teresa; Dos Remedios, Cris; Malm, Torsten; Andrä, Michaela; Jashari, Ramadan; Nyengaard, Jens R; Possnert, Göran; Jovinge, Stefan; Druid, Henrik; Frisén, Jonas

    2015-06-18

    The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.

  18. Open-system many-body dynamics through interferometric measurements and feedback

    NASA Astrophysics Data System (ADS)

    Lammers, Jonas; Weimer, Hendrik; Hammerer, Klemens

    2016-11-01

    Light-matter interfaces enable the generation of entangled states of light and matter which can be exploited to steer the quantum state of matter through measurement of light and feedback. Here we consider continuous-time, interferometric homodyne measurements of light on an array of light-matter interfaces followed by local feedback acting on each material system individually. While the systems are physically noninteracting, the feedback master equation we derive describes driven-dissipative, interacting many-body quantum dynamics, and comprises pairwise Hamiltonian interactions and collective jump operators. We characterize the general class of driven-dissipative many-body systems which can be engineered in this way, and derive necessary conditions on models supporting nontrivial quantum dynamics beyond what can be generated by local operations and classical communication. We provide specific examples of models which allow for the creation of stationary many-particle entanglement, and the emulation of dissipative Ising models. Since the interaction between the systems is mediated via feedback only, there is no intrinsic limit on the range or geometry of the interaction, making the scheme quite versatile.

  19. Oscillon dynamics and rogue wave generation in Faraday surface ripples.

    PubMed

    Xia, H; Maimbourg, T; Punzmann, H; Shats, M

    2012-09-14

    We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility.

  20. Next generation dynamic global vegetation models: learning from community ecology

    NASA Astrophysics Data System (ADS)

    Scheiter, Simon; Higgins, Steven; Langan, Liam

    2013-04-01

    Dynamic global vegetation models are a powerful tool to project the past, current and future distribution of vegetation and associated water and carbon fluxes. However, most models are limited by how they define vegetation and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve vegetation models. We further present a new trait- and individual-based dynamic vegetation model (the aDGVM2) that allows each individual plant to adopt a unique combination of trait values. These traits define how each individual plant grows and competes with other plants under given environmental conditions. The performance of individual plants in turn drives the assembly of a plant community. A genetic optimisation algorithm is used to simulate the inheritance of traits and different levels of reproductive isolation between individuals. Together these model properties allow the assembly of plant communities that are well adapted to a site's biotic and abiotic conditions. Simulated communities can be classified into different plant functional types or biome types by using trait data bases. We illustrate that the aDGVM2 can simulate (1) how environmental conditions and changes in these conditions influence the trait spectra of assembled plant communities, (2) that fire selects for traits that enhance fire protection and reduces trait diversity, and (3) the emergence of communities dominated by life history strategies that are suggestive of colonisation-competition trade-offs. The aDGVM2 deals with functional diversity and competition fundamentally differently from current dynamic vegetation models. We argue that this approach will yield novel insights as to how vegetation may respond to climate change and we believe that it could foster fruitful collaborations between research communities that focus on plant functional traits, plant competition, plant physiology, systems ecology and earth system

  1. Generation of high-dynamic range image from digital photo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  2. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  3. A dynamic pressure generator for checking complete pressure sensing systems installed on an airplane

    NASA Technical Reports Server (NTRS)

    Demarco, D. M.

    1974-01-01

    A portable dynamic pressure generator, how it operates, and a test setup on an airplane are described. The generator is capable of providing a sinusoidal pressure having a peak-to-peak amplitude of 3.5 N/sq cm (5 psi) at frequencies ranging from 100 hertz to 200 hertz. A typical power spectral density plot of data from actual dynamic pressure fluctuation tests within the air inlet of the YF-12 airplane is presented.

  4. Photographic mark-recapture analysis of local dynamics within an open population of dolphins.

    PubMed

    Fearnbach, H; Durban, J; Parsons, K; Claridge, D

    2012-07-01

    Identifying demographic changes is important for understanding population dynamics. However, this requires long-term studies of definable populations of distinct individuals, which can be particularly challenging when studying mobile cetaceans in the marine environment. We collected photo-identification data from 19 years (1992-2010) to assess the dynamics of a population of bottlenose dolphins (Tursiops truncatus) restricted to the shallow (<7 m) waters of Little Bahama Bank, northern Bahamas. This population was known to range beyond our study area, so we adopted a Bayesian mixture modeling approach to mark-recapture to identify clusters of individuals that used the area to different extents, and we specifically estimated trends in survival, recruitment, and abundance of a "resident" population with high probabilities of identification. There was a high probability (p= 0.97) of a long-term decrease in the size of this resident population from a maximum of 47 dolphins (95% highest posterior density intervals, HPDI = 29-61) in 1996 to a minimum of just 24 dolphins (95% HPDI = 14-37) in 2009, a decline of 49% (95% HPDI = approximately 5% to approximately 75%). This was driven by low per capita recruitment (average approximately 0.02) that could not compensate for relatively low apparent survival rates (average approximately 0.94). Notably, there was a significant increase in apparent mortality (approximately 5 apparent mortalities vs. approximately 2 on average) in 1999 when two intense hurricanes passed over the study area, with a high probability (p = 0.83) of a drop below the average survival probability (approximately 0.91 in 1999; approximately 0.94, on average). As such, our mark-recapture approach enabled us to make useful inference about local dynamics within an open population of bottlenose dolphins; this should be applicable to other studies challenged by sampling highly mobile individuals with heterogeneous space use.

  5. Geophysical Fluid Dynamics Laboratory Open Days at the Woods Hole Oceanographic Institution

    NASA Astrophysics Data System (ADS)

    Hyatt, Jason; Cenedese, Claudia; Jensen, Anders

    2015-11-01

    This event was hosted for one week for two consecutive years in 2013 and 2014. It targeted postdocs, graduate students, K-12 students and local community participation. The Geophysical Fluid Dynamics Laboratory at the Woods Hole Oceanographic Institution hosted 10 hands-on demonstrations and displays, with something for all ages, to share the excitement of fluid mechanics and oceanography. The demonstrations/experiments spanned as many fluid mechanics problems as possible in all fields of oceanography and gave insight into using fluids laboratory experiments as a research tool. The chosen experiments were `simple' yet exciting for a 6 year old child, a high school student, a graduate student, and a postdoctoral fellow from different disciplines within oceanography. The laboratory is a perfect environment in which to create excitement and stimulate curiosity. Even what we consider `simple' experiments can fascinate and generate interesting questions from both a 6 year old child and a physics professor. How does an avalanche happen? How does a bath tub vortex form? What happens to waves when they break? How does a hurricane move? Hands-on activities in the fluid dynamics laboratory helped students of all ages in answering these and other intriguing questions. The laboratory experiments/demonstrations were accompanied by `live' videos to assist in the interpretation of the demonstrations. Posters illustrated the oceanographic/scientific applicability and the location on Earth where the dynamics in the experiments occur. Support was given by the WHOI Doherty Chair in Education.

  6. Next Generation Controller Specification for an Open Systems Architecture Standard - Overview.

    DTIC Science & Technology

    1994-09-28

    ANSI C *IEC 1131-3 *CGM -CAN *FutureBus+ *GKS (2D13D) -IEEE 1 238.1 *OSI APIs EDIF -SERCOS *Multibiis I/Il *PHIGS/PEX -X/Open -IEEE 1224 ISA Fieldbus ...SERCOSSesr rg / * Fieldbus Actuators Display Config. HUMAN -FIP SevsMIT X Windows *OSF Motif IsPs NG MS Windows PROFIBLIS *PHIGS/PEX, GKS Eureka FPROCESS...Serial Data Link for Real Time Communication Between Controls and Drives (SERCOS) ISA-S50.02-1992 Fieldbus Standard for Use In Industrial Controls Systems

  7. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.

    PubMed

    Lee, Jumin; Cheng, Xi; Swails, Jason M; Yeom, Min Sun; Eastman, Peter K; Lemkul, Justin A; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S; Case, David A; Brooks, Charles L; MacKerell, Alexander D; Klauda, Jeffery B; Im, Wonpil

    2016-01-12

    Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  8. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    DOE PAGES

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; ...

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find themore » optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.« less

  9. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    SciTech Connect

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; Yeom, Min Sun; Eastman, Peter K.; Lemkul, Justin A.; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S.; Case, David A.; Brooks, Charles L.; MacKerell, Alexander D.; Klauda, Jeffery B.; Im, Wonpil

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  10. Next generation barcode tagged sequencing for monitoring microbial community dynamics.

    PubMed

    Breakwell, Katy; Tetu, Sasha G; Elbourne, Liam D H

    2014-01-01

    Microbial identification using 16S rDNA variable regions has become increasingly popular over the past decade. The application of next-generation amplicon sequencing to these regions allows microbial communities to be sequenced in far greater depth than previous techniques, as well as allowing for the identification of unculturable or rare organisms within a sample. Multiplexing can be used to sequence multiple samples in tandem through the use of sample-specific identification sequences which are attached to each amplicon, making this a cost-effective method for large-scale microbial identification experiments.

  11. Exploring dynamical gluon mass generation in three dimensions

    NASA Astrophysics Data System (ADS)

    Cornwall, John M.

    2016-01-01

    We reexamine the d =3 dynamical gluon mass problem in pure-glue non-Abelian S U (N ) gauge theories, paying particular attention to the observed (in Landau gauge) violation of positivity for the spectral function of the gluon propagator. This is expressed as a large bulge in the propagator at small momentum, due to the d =3 avatar of asymptotic freedom. Mass is defined through m-2=Δ (p =0 ) , where Δ (p ) is the scalar function for the gluon propagator in some chosen gauge; it is not a pole mass and is generally gauge dependent, except in the gauge-invariant pinch technique (PT). We truncate the PT equations with a recently proposed method called the vertex paradigm that automatically satisfies the QED-like Ward identity relating the three-gluon PT vertex function with the PT propagator. The mass is determined by a homogeneous Bethe-Salpeter equation involving this vertex and propagator. This gap equation also encapsulates the Bethe-Salpeter equation for the massless scalar excitations, essentially Nambu-Goldstone fields, that necessarily accompany gauge-invariant gluon mass. The problem is to find a good approximate value for m and at the same time explain the bulge, which by itself leads, in the gap equation for the gluon mass, to excessively large values for the mass. Our point is not to give a high-accuracy determination of m but to clarify the way in which the propagator bulge and a fairly accurate estimate of m can coexist, and we use various approximations that illustrate the underlying mechanisms. The most critical point is to satisfy the Ward identity. In the PT we estimate a gauge-invariant dynamical gluon mass of m ≈N g2/(2.48 π ) . We translate these results to the Landau gauge using a background-quantum identity involving a dynamical quantity κ such that m =κ mL , where mL-2≡ΔL(p =0 ) . Given our estimates for m , κ , the relation is fortuitously well satisfied for S U (2 ) lattice data.

  12. Next Generation Space Interconnect Standard (NGSIS): a modular open standards approach for high performance interconnects for space

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick

    2017-04-01

    The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.

  13. Generating Accurate 3d Models of Architectural Heritage Structures Using Low-Cost Camera and Open Source Algorithms

    NASA Astrophysics Data System (ADS)

    Zacharek, M.; Delis, P.; Kedzierski, M.; Fryskowska, A.

    2017-05-01

    These studies have been conductedusing non-metric digital camera and dense image matching algorithms, as non-contact methods of creating monuments documentation.In order toprocess the imagery, few open-source software and algorithms of generating adense point cloud from images have been executed. In the research, the OSM Bundler, VisualSFM software, and web application ARC3D were used. Images obtained for each of the investigated objects were processed using those applications, and then dense point clouds and textured 3D models were created. As a result of post-processing, obtained models were filtered and scaled.The research showedthat even using the open-source software it is possible toobtain accurate 3D models of structures (with an accuracy of a few centimeters), but for the purpose of documentation and conservation of cultural and historical heritage, such accuracy can be insufficient.

  14. PLASMA-WAVE GENERATION IN A DYNAMIC SPACETIME

    SciTech Connect

    Yang, Huan; Zhang, Fan

    2016-02-01

    We propose a new electromagnetic (EM)-emission mechanism in magnetized, force-free plasma, which is driven by the evolution of the underlying dynamic spacetime. In particular, the emission power and angular distribution of the emitted fast-magnetosonic and Alfvén waves are separately determined. Previous numerical simulations of binary black hole mergers occurring within magnetized plasma have recorded copious amounts of EM radiation that, in addition to collimated jets, include an unexplained, isotropic component that becomes dominant close to the merger. This raises the possibility of multimessenger gravitational-wave and EM observations on binary black hole systems. The mechanism proposed here provides a candidate analytical characterization of the numerical results, and when combined with previously understood mechanisms such as the Blandford–Znajek process and kinetic-motion-driven radiation, it allows us to construct a classification of different EM radiation components seen in the inspiral stage of compact-binary coalescences.

  15. Dynamically Disordered Quantum Walk as a Maximal Entanglement Generator

    NASA Astrophysics Data System (ADS)

    Vieira, Rafael; Amorim, Edgard P. M.; Rigolin, Gustavo

    2013-11-01

    We show that the entanglement between the internal (spin) and external (position) degrees of freedom of a qubit in a random (dynamically disordered) one-dimensional discrete time quantum random walk (QRW) achieves its maximal possible value asymptotically in the number of steps, outperforming the entanglement attained by using ordered QRW. The disorder is modeled by introducing an extra random aspect to QRW, a classical coin that randomly dictates which quantum coin drives the system’s time evolution. We also show that maximal entanglement is achieved independently of the initial state of the walker, study the number of steps the system must move to be within a small fixed neighborhood of its asymptotic limit, and propose two experiments where these ideas can be tested.

  16. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things.

    PubMed

    Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco

    2016-03-18

    The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential.

  17. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things

    PubMed Central

    Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco

    2016-01-01

    The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential. PMID:26999160

  18. Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection

    NASA Astrophysics Data System (ADS)

    Durrieu de Madron, X.; Ramondenc, S.; Berline, L.; Houpert, L.; Bosse, A.; Martini, S.; Guidi, L.; Conan, P.; Curtil, C.; Delsaut, N.; Kunesch, S.; Ghiglione, J. F.; Marsaleix, P.; Pujo-Pay, M.; Séverin, T.; Testor, P.; Tamburini, C.

    2017-03-01

    The Gulf of Lions in the northwestern Mediterranean is one of the few sites around the world ocean exhibiting deep open-ocean convection. Based on 6 year long (2009-2015) time series from a mooring in the convection region, shipborne measurements from repeated cruises, from 2012 to 2015, and glider measurements, we report evidence of bottom thick nepheloid layer formation, which is coincident with deep sediment resuspension induced by bottom-reaching convection events. This bottom nepheloid layer, which presents a maximum thickness of more than 2000 m in the center of the convection region, probably results from the action of cyclonic eddies that are formed during the convection period and can persist within their core while they travel through the basin. The residence time of this bottom nepheloid layer appears to be less than a year. In situ measurements of suspended particle size further indicate that the bottom nepheloid layer is primarily composed of aggregates between 100 and 1000 µm in diameter, probably constituted of fine silts. Bottom-reaching open ocean convection, as well as deep dense shelf water cascading that occurred concurrently some years, lead to recurring deep sediments resuspension episodes. They are key mechanisms that control the concentration and characteristics of the suspended particulate matter in the basin, and in turn affect the bathypelagic biological activity.

  19. Dynamic model of in-lake alkalinity generation

    SciTech Connect

    Baker, L.A.; Brezonik, P.L.

    1988-01-01

    In-lake alkalinity generation (IAG) is important in regulation of alkalinity in lakes with long residence times, particularly seepage lakes. An IAG model based on input/output modeling concepts is presented that describes budgets for each ion involved in alkalinity regulation by a single differential equation that includes inputs, outputs, and a first-order sink term. These equations are linked to an alkalinity balance equation that includes inputs, outputs, IAG (by sulfate and nitrate reduction), and internal alkalinity consumption (by ammonium assimilation). Calibration using published lake budgets shows that rate constants are generally similar among soft water lakes (k/sub SO/sub 4// approx. 0.5 m/yr; k/sub NO/sub 3// approx. = 1.3 yr/sup -1/; k/sub NH/sub 4// approx. 1.5 yr/sup -1/). Sensitivity analysis shows that predicted alkalinity is sensitive to water residence time, but less sensitive to modest changes in rate constants. The model reflects the homeostatic nature of internal alkalinity generation, in which internal alkalinity production increases with increasing acid input and decreases with decreasing acid inputs of HNO/sub 3/ or H/sub 2/SO/sub 4/.

  20. Developing an Open-Source Web-Based Exercise Generator for Swedish

    ERIC Educational Resources Information Center

    Volodina, Elena; Borin, Lars

    2012-01-01

    This paper reports on the ongoing international project "System architecture for ICALL" and the progress made by the Swedish partner. The Swedish team is developing a web-based exercise generator reusing available annotated corpora and lexical resources. Apart from the technical issues like implementation of the user interface and the…

  1. Formulas for predicting the dynamic performance of ROCOF relays for embedded generation applications

    SciTech Connect

    Vieira, J.C. M.; Freitas, Walmir; Huang, Zhenyu; Xu, Wilsun; Morelato, A.

    2006-07-13

    A set of formulas directly predict the performance of rate-of-change-of-frequency (ROCOF) relays used to detect islanding of embedded synchronous generators. The formulas are analytically derived from the dynamic model of the generator and relay. Dynamic simulation results obtained using a representative distribution system confirm the validity and accuracy. The formulas presented are a useful tool for protection engineers; they can be used, for example, to assess the effectiveness of anti-islanding schemes based on ROCOF relays, or to assist the selection of relay settings, significantly reducing the number of repeated dynamic simulations necessary to carry out such studies.

  2. Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes

    NASA Astrophysics Data System (ADS)

    Pérez, Alejandro; Tuckerman, Mark E.

    2011-08-01

    Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.

  3. Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes.

    PubMed

    Pérez, Alejandro; Tuckerman, Mark E

    2011-08-14

    Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.

  4. Dynamics of exhaust gas generated by arc extinction

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasushi; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2001-11-01

    We report an analytical study on hot gas exhaust process of a SF6 gas circuit breaker (GCB), after current interruption. The behavior of the hot gas has been studied based on measured gas temperature and simulation results of gas composition. We also propose a mechanism of interaction between the hot gas and pressure waves, which causes a self-blocking of the exhaust gas. During the heavy current interruption, the flow model suggests that the dielectric strength of the hot gas is affected by the pressure waves that are generated by the hot gas exhaustion. We believe that the results reported in this article provide guidance for the optimum structure of the exhaust chamber for small size GCB, operating at very high interrupting current.

  5. Temporal Dynamics of Photon Pairs Generated by an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Polyakov, S. V.; Chou, C. W.; Felinto, D.; Kimble, H. J.

    2004-12-01

    The time dependence of nonclassical correlations is investigated for two fields (1,2) generated by an ensemble of cold cesium atoms via the protocol of Duan et al. [

    Nature (London)NATUAS0028-0836 414, 413 (2001)10.1038/35106500
    ]. The correlation function R(t1,t2) for the ratio of cross to autocorrelations for the (1,2) fields at times (t1,t2) is found to have a maximum value Rmax(=292±57, which significantly violates the Cauchy-Schwarz inequality R≤1 for classical fields. Decoherence of quantum correlations is observed over τd≃175 ns, and is described by our model, as is a new scheme to mitigate this effect.

  6. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  7. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  8. An overview of the use of Open Source in the NASA Langley Atmospheric Science Data Center Archive Next Generation system

    NASA Astrophysics Data System (ADS)

    Dye, R. A.; Perez, J.; Piatko, P. J.; Coogan, S. P.; Parker, L.

    2012-12-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the archive and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. Over the past several years the ASDC has developed and implemented the Archive Next Generation (ANGe) system, a state-of-the-art data ingest, archival, and distribution system to serve the atmospheric sciences data provider and user communities. ANGe employs Open Source technologies including the JBoss Application Server, a PostGIS-enabled PostgreSQL database system to store geospatial metadata, modules from the GeoTools Open Source Java GIS Toolkit including the Java Topology Suite (JTS) and GeoAPI libraries, and other libraries such as the Spring framework. ANGe was developed using a suite of several Open Source tools comprised of Eclipse, Ant, Subversion and Jenkins. ANGe is also deployed into an operational environment that leverages Open Source technologies from the Linux Operating system to tools such as Ganglia for monitoring. This presentation provides an overview of ANGe with a focus on the Open Source technologies employed in the implementation and deployment of the system. The ASDC is part of Langley's Science Directorate. The Data Center was established in 1991 to support NASA's Earth Observing System and the U.S. Global Change Research Program. It is unique among NASA data centers in the size of its archive, cutting edge computing technology, and full range of data services. For more information regarding ASDC data holdings, documentation, tools and services, visit http://eosweb.larc.nasa.gov.

  9. Learning through the Ages? Generational Inequalities and Inter-Generational Dynamics of Lifelong Learning

    ERIC Educational Resources Information Center

    Field, John

    2013-01-01

    This exploratory paper considers the concept of generation in the context of learning across the life course. Although researchers have often found considerable inequalities in participation by age, as well as strongly articulated attitudinal differences, there have so far been only a handful of studies that have explored these patterns through…

  10. Learning through the Ages? Generational Inequalities and Inter-Generational Dynamics of Lifelong Learning

    ERIC Educational Resources Information Center

    Field, John

    2013-01-01

    This exploratory paper considers the concept of generation in the context of learning across the life course. Although researchers have often found considerable inequalities in participation by age, as well as strongly articulated attitudinal differences, there have so far been only a handful of studies that have explored these patterns through…

  11. Frontal dynamic aphasia in progressive supranuclear palsy: Distinguishing between generation and fluent sequencing of novel thoughts.

    PubMed

    Robinson, Gail A; Spooner, Donna; Harrison, William J

    2015-10-01

    Frontal dynamic aphasia is characterised by a profound reduction in spontaneous speech despite well-preserved naming, repetition and comprehension. Since Luria (1966, 1970) designated this term, two main forms of dynamic aphasia have been identified: one, a language-specific selection deficit at the level of word/sentence generation, associated with left inferior frontal lesions; and two, a domain-general impairment in generating multiple responses or connected speech, associated with more extensive bilateral frontal and/or frontostriatal damage. Both forms of dynamic aphasia have been interpreted as arising due to disturbances in early prelinguistic conceptual preparation mechanisms that are critical for language production. We investigate language-specific and domain-general accounts of dynamic aphasia and address two issues: one, whether deficits in multiple conceptual preparation mechanisms can co-occur; and two, the contribution of broader cognitive processes such as energization, the ability to initiate and sustain response generation over time, to language generation failure. Thus, we report patient WAL who presented with frontal dynamic aphasia in the context of progressive supranuclear palsy (PSP). WAL was given a series of experimental tests that showed that his dynamic aphasia was not underpinned by a language-specific deficit in selection or in microplanning. By contrast, WAL presented with a domain-general deficit in fluent sequencing of novel thoughts. The latter replicated the pattern documented in a previous PSP patient (Robinson, et al., 2006); however, unique to WAL, generating novel thoughts was impaired but there was no evidence of a sequencing deficit because perseveration was absent. Thus, WAL is the first unequivocal case to show a distinction between novel thought generation and subsequent fluent sequencing. Moreover, WAL's generation deficit encompassed verbal and non-verbal responses, showing a similar (but more profoundly reduced) pattern

  12. Methods for Dynamic Analysis of Distribution Feeders with High Penetration of PV Generators

    SciTech Connect

    Nagarajan, Adarsh; Ayyanar, Raja

    2016-11-21

    An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distribution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of PV generators during the variation in distribution system states is necessary when studying the effects of controller bandwidths, multiple voltage correction devices, and anti-islanding. This work explores the use of dynamic phasors and differential algebraic equations (DAE) for impact analysis of PV generators on the existing distribution feeders.

  13. Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater

    PubMed Central

    Xing, Xiaobo; Zheng, Jiapeng; Li, Fengjia; Sun, Chao; Cai, Xiang; Zhu, Debin; Lei, Liang; Wu, Ting; Zhou, Bin; Evans, Julian; Chen, Ziyi

    2014-01-01

    Thermal microbubbles generally grow directly from the heater and are spherical to minimize surface tension. We demonstrate a novel type of microbubble indirectly generated from a graphene oxide-microheater. Graphene oxide's photothermal properties allowed for efficient generation of a thermal gradient field on the microscale. A series of approximately ellipsoidal microbubbles were generated on the smooth microwire based on heterogeneous nucleation. Other dynamic behaviors induced by the microheater such as constant growth, directional transport and coalescence were also investigated experimentally and theoretically. The results are not only helpful for understanding the bubble dynamics but also useful for developing novel photothermal bubble-based devices. PMID:25124694

  14. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  15. Force Generation and Dynamics of Individual Cilia under External Loading

    PubMed Central

    Hill, David B.; Swaminathan, Vinay; Estes, Ashley; Cribb, Jeremy; O'Brien, E. Timothy; Davis, C. William; Superfine, R.

    2010-01-01

    Abstract Motile cilia are unique multimotor systems that display coordination and periodicity while imparting forces to biological fluids. They play important roles in normal physiology, and ciliopathies are implicated in a growing number of human diseases. In this work we measure the response of individual human airway cilia to calibrated forces transmitted via spot-labeled magnetic microbeads. Cilia respond to applied forces by 1), a reduction in beat amplitude (up to an 85% reduction by 160–170 pN of force); 2), a decreased tip velocity proportionate to applied force; and 3), no significant change in beat frequency. Tip velocity reduction occurred in each beat direction, independently of the direction of applied force, indicating that the cilium is “driven” in both directions at all times. By applying a quasistatic force model, we deduce that axoneme stiffness is dominated by the rigidity of the microtubules, and that cilia can exert 62 ± 18 pN of force at the tip via the generation of 5.6 ± 1.6 pN/dynein head. PMID:20085719

  16. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  17. Global plasma simulations using dynamically generated chemical models

    SciTech Connect

    Munro, James J.; Tennyson, Jonathan

    2008-07-15

    Extensive molecular data are a key requirement in understanding modern technical plasmas. A method for coupling molecular data with chemical models in a global plasma simulation to enable rapid testing and evaluation of new plasmas is presented. A global plasma model (GLOBALKIN) is extended using an expert system (Quantemol-P) to enable ad hoc simulations using new plasma recipes. A set of atomic and molecular species to be considered in the plasma simulation is specified by the user. The expert system generates a complete set of reaction pathways for both the gas and surface reactions in a plasma. This set is pruned by discarding unphysical reactions and reaction data not appropriate to technical plasmas (such as autodetachment). The species, gas phase reactions, surface reactions, and plasma properties can be adjusted to control the simulation. The reaction list is populated through a database of molecular parameters and cross sections; missing data can be calculated through molecular cross sections using a further expert system (Quantemol-N) which applies the R-matrix method to electron-molecule collisions. For cases where the R-matrix method is not appropriate, other methods are used to maximize the range of cross-section data available. The Quantemol-P expert system allows rapid creation of new plasma recipes and investigation of their effects allowing a greater level of flexibility than previously achievable.

  18. All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range.

    PubMed

    Wang, Qin; Yang, Chuanchuan; Wang, Xinyue; Wang, Ziyu

    2013-12-15

    We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018 deg/h, and the angle random walk from 0.031 to 0.006 deg/h(1/2), moreover, enlarges the dynamic range to ±360 deg/s, exceeding the maximum dynamic range ±63 deg/s of the conventional open-loop FOG.

  19. Intense Ion Beam Generation, Plasma Radiation Source and Plasma Opening Switch Research

    DTIC Science & Technology

    1989-04-01

    ion source on the 150 kV, ls pulse , ifl LONG- SHOT pulsed power generator under NRL support. The completion of this task 2 will demonstrate both higher...following paragraph. This research is continuing under a new NRL-supported grant. 3 The POS system is pulsed by a 1.9MAF Scyllac capacitor charged to 50 kV...electric field measurements made in a surface flashover MID using emission spectroscopy by Maron et al.’ This LIF potential measuring technique could

  20. FOREWORD: International Summer School for Advanced Studies 'Dynamics of open nuclear systems' (PREDEAL12)

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.

    2013-02-01

    This proceedings volume contains the invited lectures and contributions presented at the International Summer School on Nuclear Physics held at Trei Brazi, a summer resort of the Bioterra University, near the city of Predeal, Romania, on 9-20 July 2012. The long tradition of International Summer Schools on Nuclear Physics in Romania dates as far back as 1964, with the event being scheduled every two years. During this period of almost 50 years, many outstanding nuclear scientists have lectured on various topics related to nuclear physics and particle physics. This year we celebrate the 80th birthday of Aureliu Sandulescu, one of the founders of the Romanian school of theoretical nuclear physics. He was Serban Titeica's PhD student, one of Werner Heisenberg's PhD students, and he organized the first edition of this event. Aureliu Sandulescu's major contributions to the field of theoretical nuclear physics are related in particular to the prediction of cluster radioactivity, the physics of open quantum systems and the innovative technique of detecting superheavy nuclei using the double magic projectile 48Ca (Calcium), nowadays a widely used method at the JINR—Dubna and GSI—Darmstadt laboratories. The title of the event, 'Dynamics of Open Nuclear Systems', is in recognition of Aureliu Sandulescu's great personality. The lectures were attended by Romanian and foreign Master and PhD students and young researchers in nuclear physics. About 25 reputable professors and researchers in nuclear physics delivered lectures during this period. According to a well-established tradition, an interval of two hours was allotted for each lecture (including discussions). Therefore we kept a balance between the school and conference format. Two lectures were held during the morning and afternoon sessions. After lecture sessions, three or four oral contributions were given by young scientists. This was a good opportunity for them to present the results of their research in front of

  1. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis

    PubMed Central

    Li, Xia; Arlinghaus, Lori R.; Yankeelov, Thomas E.; Welch, E. Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10–20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N1.9), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise. PMID:25922795

  2. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis.

    PubMed

    Smith, David S; Li, Xia; Arlinghaus, Lori R; Yankeelov, Thomas E; Welch, E Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10-20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N (1.9)), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise.

  3. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    PubMed

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Quantum speed limits in open systems: Non-Markovian dynamics without rotating-wave approximation

    PubMed Central

    Sun, Zhe; Liu, Jing; Ma, Jian; Wang, Xiaoguang

    2015-01-01

    We derive an easily computable quantum speed limit (QSL) time bound for open systems whose initial states can be chosen as either pure or mixed states. Moreover, this QSL time is applicable to either Markovian or non-Markovian dynamics. By using of a hierarchy equation method, we numerically study the QSL time bound in a qubit system interacting with a single broadened cavity mode without rotating-wave, Born and Markovian approximation. By comparing with rotating-wave approximation (RWA) results, we show that the counter-rotating terms are helpful to increase evolution speed. The problem of non-Markovianity is also considered. We find that for non-RWA cases, increasing system-bath coupling can not always enhance the non-Markovianity, which is qualitatively different from the results with RWA. When considering the relation between QSL and non-Markovianity, we find that for small broadening widths of the cavity mode, non-Markovianity can increase the evolution speed in either RWA or non-RWA cases, while, for larger broadening widths, it is not true for non-RWA cases. PMID:25676589

  5. Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.

    PubMed

    Strümpfer, Johan; Schulten, Klaus

    2012-08-14

    Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.

  6. EHD2 restrains dynamics of caveolae by an ATP-dependent, membrane-bound, open conformation.

    PubMed

    Hoernke, Maria; Mohan, Jagan; Larsson, Elin; Blomberg, Jeanette; Kahra, Dana; Westenhoff, Sebastian; Schwieger, Christian; Lundmark, Richard

    2017-02-21

    The EH-domain-containing protein 2 (EHD2) is a dynamin-related ATPase that confines caveolae to the cell surface by restricting the scission and subsequent endocytosis of these membrane pits. For this, EHD2 is thought to first bind to the membrane, then to oligomerize, and finally to detach, in a stringently regulated mechanistic cycle. It is still unclear how ATP is used in this process and whether membrane binding is coupled to conformational changes in the protein. Here, we show that the regulatory N-terminal residues and the EH domain keep the EHD2 dimer in an autoinhibited conformation in solution. By significantly advancing the use of infrared reflection-absorption spectroscopy, we demonstrate that EHD2 adopts an open conformation by tilting the helical domains upon membrane binding. We show that ATP binding enables partial insertion of EHD2 into the membrane, where G-domain-mediated oligomerization occurs. ATP hydrolysis is related to detachment of EHD2 from the membrane. Finally, we demonstrate that the regulation of EHD2 oligomerization in a membrane-bound state is crucial to restrict caveolae dynamics in cells.

  7. Molecular dynamics study of ion transport through an open model of voltage-gated sodium channel.

    PubMed

    Li, Yang; Sun, Ruining; Liu, Huihui; Gong, Haipeng

    2017-05-01

    Voltage-gated sodium (NaV) channels are critical in the signal transduction of excitable cells. In this work, we modeled the open conformation for the pore domain of a prokaryotic NaV channel (NaVRh), and used molecular dynamics simulations to track the translocation of dozens of Na(+) ions through the channel in the presence of a physiological transmembrane ion concentration gradient and a transmembrane electrical field that was closer to the physiological one than previous studies. Channel conductance was then estimated from simulations on the wide-type and DEKA mutant of NaVRh. Interestingly, the conductivity predicted from the DEKA mutant agrees well with experimental measurement on eukaryotic NaV1.4 channel. Moreover, the wide-type and DEKA mutant of NaVRh exhibited markedly distinct ion permeation patterns, which thus implies the mechanistic difference between prokaryotic and eukaryotic NaV channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dynamic online surveys and experiments with the free open-source software dynQuest.

    PubMed

    Rademacher, Jens D M; Lippke, Sonia

    2007-08-01

    With computers and the World Wide Web widely available, collecting data through Web browsers is an attractive method utilized by the social sciences. In this article, conducting PC- and Web-based trials with the software package dynQuest is described. The software manages dynamic questionnaire-based trials over the Internet or on single computers, possibly as randomized control trials (RCT), if two or more groups are involved. The choice of follow-up questions can depend on previous responses, as needed for matched interventions. Data are collected in a simple text-based database that can be imported easily into other programs for postprocessing and statistical analysis. The software consists of platform-independent scripts written in the programming language PERL that use the common gateway interface between Web browser and server for submission of data through HTML forms. Advantages of dynQuest are parsimony, simplicity in use and installation, transparency, and reliability. The program is available as open-source freeware from the authors.

  9. Sediment dynamics of a sediment-starved, open-marine marsh embayment: Waccasassa Bay, Florida

    USGS Publications Warehouse

    Wood, Nathan J.; Hine, Albert C.

    2003-01-01

    Although the Big Bend region of Florida's Gulf of Mexico coast is considered sediment-starved, the open marine marshes that characterize the area are keeping pace with sea level rise. Waccasassa Bay, an embayment within this region, also contains unique subtidal mudbanks that thicken with increasing proximity to embayment head, while the remainder of the bayfloor is characterized by exposed carbonate bedrock or by a thin veneer of sediment. Hydro- dynamic data sets were collected to determine the primary sedimentary processes within Waccasassa Bay capable of creating such geomorphic features. Data suggest that the embayment is a flood-dominated system influenced primarily by semi-diurnal tides with flood-stage intensification towards the river-mouth. Subtidal mudbanks are believed to be the result of tidal time-velocity asymmetries and the convergence of sediment transport pathways. Flood dominance for potential bedload transport suggests a gradual infilling of the bay interior for the short time scale of this study. With no mechanism for seaward transport, Waccasassa Bay can be considered a sediment sink for the remainder of the Big Bend re

  10. Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes.

    PubMed

    Ripepe, Maurizio; Pistolesi, Marco; Coppola, Diego; Delle Donne, Dario; Genco, Riccardo; Lacanna, Giorgio; Laiolo, Marco; Marchetti, Emanuele; Ulivieri, Giacomo; Valade, Sébastien

    2017-06-20

    Effusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we show how the drastic transition from effusive to violent explosions can be related to different decompression rates. We suggest that a gravity-driven model can shed light on similar cases of lateral effusive eruptions in other volcanic systems and can provide evidence of the roles of slow decompression rates in triggering violent paroxysmal explosive eruptions, which occasionally punctuate the effusive phases at basaltic volcanoes.

  11. Coincident steam generator tube rupture and stuck-open safety relief valve carryover tests: MB-2 steam generator transient response test program

    SciTech Connect

    Garbett, K; Mendler, O J; Gardner, G C; Garnsey, R; Young, M Y

    1987-03-01

    In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faults and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.

  12. Collaboration-Centred Cities through Urban Apps Based on Open and User-Generated Data.

    PubMed

    Aguilera, Unai; López-de-Ipiña, Diego; Pérez, Jorge

    2016-07-01

    This paper describes the IES Cities platform conceived to streamline the development of urban apps that combine heterogeneous datasets provided by diverse entities, namely, government, citizens, sensor infrastructure and other information data sources. This work pursues the challenge of achieving effective citizen collaboration by empowering them to prosume urban data across time. Particularly, this paper focuses on the query mapper; a key component of the IES Cities platform devised to democratize the development of open data-based mobile urban apps. This component allows developers not only to use available data, but also to contribute to existing datasets with the execution of SQL sentences. In addition, the component allows developers to create ad hoc storages for their applications, publishable as new datasets accessible by other consumers. As multiple users could be contributing and using a dataset, our solution also provides a data level permission mechanism to control how the platform manages the access to its datasets. We have evaluated the advantages brought forward by IES Cities from the developers' perspective by describing an exemplary urban app created on top of it. In addition, we include an evaluation of the main functionalities of the query mapper.

  13. Open air biocathode enables effective electricity generation with microbial fuel cells.

    PubMed

    Clauwaert, Peter; Van der Ha, David; Boon, Nico; Verbeken, Kim; Verhaege, Marc; Rabaey, Korneel; Verstraete, Willy

    2007-11-01

    The reduction of oxygen at the cathode is one of the major bottlenecks of microbial fuel cells (MFCs). While research so far has mainly focused on chemical catalysis of this oxygen reduction, here we present a continuously wetted cathode with microorganisms that act as biocatalysts for oxygen reduction. We combined the anode of an acetate oxidizing tubular microbial fuel cell with an open air biocathode for electricity production. The maximum power production was 83 +/- 11 W m(-3) MFC (0.183 L MFC) for batch-fed systems (20-40% Coulombic yield) and 65 +/- 5 W m(-3) MFC for a continuous system with an acetate loading rate of 1.5 kg COD m(-3) day(-1) (90 +/- 3% Coulombic yield). Electrochemical precipitation of manganese oxides on the cathodic graphite felt decreased the start-up period with approximately 30% versus a non-treated graphite felt. After the start-up period, the cell performance was similar for the pretreated and non-treated cathodic electrodes. Several reactor designs were tested, and it was found that enlargement of the 0.183 L MFC reactor by a factor 2.9-3.8 reduced the volumetric power output by 60-67%. Biocathodes alleviate the need to use noble or non-noble catalysts for the reduction of oxygen, which increases substantially the viability and sustainability of MFCs.

  14. Collaboration-Centred Cities through Urban Apps Based on Open and User-Generated Data

    PubMed Central

    Aguilera, Unai; López-de-Ipiña, Diego; Pérez, Jorge

    2016-01-01

    This paper describes the IES Cities platform conceived to streamline the development of urban apps that combine heterogeneous datasets provided by diverse entities, namely, government, citizens, sensor infrastructure and other information data sources. This work pursues the challenge of achieving effective citizen collaboration by empowering them to prosume urban data across time. Particularly, this paper focuses on the query mapper; a key component of the IES Cities platform devised to democratize the development of open data-based mobile urban apps. This component allows developers not only to use available data, but also to contribute to existing datasets with the execution of SQL sentences. In addition, the component allows developers to create ad hoc storages for their applications, publishable as new datasets accessible by other consumers. As multiple users could be contributing and using a dataset, our solution also provides a data level permission mechanism to control how the platform manages the access to its datasets. We have evaluated the advantages brought forward by IES Cities from the developers’ perspective by describing an exemplary urban app created on top of it. In addition, we include an evaluation of the main functionalities of the query mapper. PMID:27376300

  15. Improvement of dem Generation from Aster Images Using Satellite Jitter Estimation and Open Source Implementation

    NASA Astrophysics Data System (ADS)

    Girod, L.; Nuth, C.; Kääb, A.

    2015-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.

  16. Sequence-Specific Protein Aggregation Generates Defined Protein Knockdowns in Plants1[OPEN

    PubMed Central

    Vuylsteke, Marnik; Aesaert, Stijn; Rombaut, Debbie; De Smet, Frederik; Xu, Jie; Van Lijsebettens, Mieke; Rousseau, Frederic

    2016-01-01

    Protein aggregation is determined by short (5–15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form β-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme α-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops. PMID:27208282

  17. Reactive molecular dynamics of network polymers: Generation, characterization and mechanical properties

    NASA Astrophysics Data System (ADS)

    Shankar, Chandrashekar

    The goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction alpha: The onset of finite magnitudes for the Young's modulus, alphaY, and the departure of the Poisson ration from 0.5, alphaP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low alpha < alphaY it flows. At alpha Y < alpha < alphaP the response is entropic with no change in internal energy. At alpha > alphaP the response is enthalpic change in internal energy. We developed graph theory

  18. Generation of high-voltage pulses with subnanosecond front rise times in open discharge

    SciTech Connect

    Bokhan, P. A.; Gugin, P. P.; Lavrukhin, M. A.; Zakrevsky, Dm. E.

    2013-03-15

    The investigation results for plasma switching devices of high-voltage pulses with pulse rise times less than 1 ns are presented. The approach is based on using conditions suitable for bringing a gas discharge chamber in a state with high conductivity due to generation of an electron beam owing to photoelectron emission from the device cathode. It is shown that in co-axial geometry pulses, switching time 0.45 ns on an active load R{sub L} = 50 {Omega} at voltage U = 20 kV can be achieved. It is shown with the method of doubled impulses that such a device can regenerate the acceptable electric strength during 10 {mu}s. It is indicated of the principle possibility of working in the pulse-periodical regime to the repetition rate of 100 kHz.

  19. Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2007-01-01

    Foil gas bearings are self-acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost top foil layer traps a gas pressure film that supports a load while a layer or layers underneath provide an elastic foundation. Foil bearings are used in many lightly loaded, high-speed turbo-machines such as compressors used for aircraft pressurization, and small micro-turbines. Foil gas bearings provide a means to eliminate the oil system leading to reduced weight and enhanced temperature capability. The general lack of familiarity of the foil bearing design and manufacturing process has hindered their widespread dissemination. This paper reviews the publicly available literature to demonstrate the design, fabrication and performance testing of both first and second generation bump style foil bearings. It is anticipated that this paper may serve as an effective starting point for new development activities employing foil bearing technology.

  20. The RAGENA dynamic model of radon generation, entry and accumulation indoors.

    PubMed

    Font, Ll; Baixeras, C

    2003-05-20

    The complexity generated by the existence of a great number of parameters and processes affecting the generation of radon in the source, its transport in the source medium, its entry into a dwelling and its accumulation in the different rooms of a dwelling has led to the development of partial models and experimental studies that are focused on a given aspect. However, in order to model radon levels and dynamics in real houses, it is necessary to take into account all the parameters and processes affecting radon levels. This is the objective of the dynamic RAGENA model of radon generation, entry and accumulation indoors. The model has been adapted to a Mediterranean climate house under dynamic conditions, and the indoor radon and soil radon dynamics have been compared to experimental results. It has been found (i) that the model gives a soil radon dynamics similar to that obtained experimentally, (ii) a remarkable model-experiment agreement indoors and (iii) that the indoor radon dynamics is given by a permanent radon entry from building materials and a dynamic removal through ventilation, which is driven by indoor-outdoor temperature differences and wind speed.

  1. On the Internal Gas Dynamics and Efficiency of a Vortex Water-Vapor Plasma Generator

    NASA Astrophysics Data System (ADS)

    Charakhovski, L.; Essiptchouk, A.; Otani, C.; Petraconi, G.; Marquesi, A.; Sauchyn, V.; Khvedchyn, I.; Olenovich, A.; Liavonchyk, A.; Skamarokhau, D.; Halinouski, A.

    2017-05-01

    Results of experimental investigations of a new-type generator of an arc water plasma, having a high thermal efficiency close to 100%, are presented. This generator represents a system comprising a vortex arc plasma generator, in which an electric arc is stabilized by water vapor and a straight-through-flow tubular electric steam generator. Such a high efficiency of the plasma generator system was achieved due to the refinement of the internal gas dynamics of the plasma generator and the heat and mass transfer in its discharge channel as a result of the improvement of the vortex stabilization and thermal insulation of an arc discharge in it by the specially organized ″instantly permeable″ channel wall cooled by only the working water used for generation of the plasma.

  2. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by

  3. Diode Dynamics, Beam Generation and Transport and Plasma Erosion Opening Switch Development.

    DTIC Science & Technology

    1983-05-17

    the electron range and is ..ot electrically connnected to the machine inner conductor. Experimental observations of diode operation for such a...cathode tip resulting in a diode behavior which is Page 2 .7 consistent with the experimental observations . The radial or a barrel-shaped version of the...less rippling of the E-field lines in the ion production region of the diode. Such ripples have been observed in computer simulations to have scale

  4. On trajectory generation for flexible space crane: Inverse dynamics analysis by LATDYN

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Housner, J. M.; Wu, S.-C.; Chang, C.-W.

    1989-01-01

    For future in-space construction facility, one or more space cranes capable of manipulating and positioning large and massive spacecraft components will be needed. Inverse dynamics was extensively studied as a basis for trajectory generation and control of robot manipulators. The focus here is on trajectory generation in the gross-motion phase of space crane operation. Inverse dynamics of the flexible crane body is much more complex and intricate as compared with rigid robot link. To model and solve the space crane's inverse dynamics problem, LATDYN program which employs a three-dimensional finite element formulation for the multibody truss-type structures will be used. The formulation is oriented toward a joint dominated structure which is suitable for the proposed space crane concept. To track a planned trajectory, procedures will be developed to obtain the actuation profile and dynamics envelope which are pertinent to the design and performance requirements of the space crane concept.

  5. A Neural Dynamic Model Generates Descriptions of Object-Oriented Actions.

    PubMed

    Richter, Mathis; Lins, Jonas; Schöner, Gregor

    2017-01-01

    Describing actions entails that relations between objects are discovered. A pervasively neural account of this process requires that fundamental problems are solved: the neural pointer problem, the binding problem, and the problem of generating discrete processing steps from time-continuous neural processes. We present a prototypical solution to these problems in a neural dynamic model that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well as dynamic neural nodes holding discrete, language-like representations. Making the connection between these two types of representations enables the model to describe actions as well as to perceptually ground movement phrases-all based on real visual input. We demonstrate how the dynamic neural processes autonomously generate the processing steps required to describe or ground object-oriented actions. By solving the fundamental problems of neural pointing, binding, and emergent discrete processing, the model may be a first but critical step toward a systematic neural processing account of higher cognition.

  6. Generating Gaits for Biped Robots Using Multiple Dynamic Passivization of Joint Control

    NASA Astrophysics Data System (ADS)

    Ishida, Minoru; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori

    In the research field of bipedal locomotion, a central pattern generator (CPG) and passive dynamic walking (PDW) have attracted much attention. In this paper, we describe a motion control system for biped robots based on dynamic joint passivization. Our motion control system is based on a mixture of the CPG and PDW, that is, the multiple dynamic passivization of joint control (MDPJC). Our intention is to make the joint control of the swing leg temporarily passive in the swing leg phase. The important part is the passive phase time and the switch timings of the joint control. We optimize the switch timing parameters using simulated annealing with advanced adaptive neighborhood (SA/AAN). Experiments using the motion control system based on multiple dynamic passivization of joint control successfully generated energy efficient walking and enabled superior gaits.

  7. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  8. Modeling microseism generation off Southern California with a numerical wave model: Coastal wave reflection and open ocean interactions

    NASA Astrophysics Data System (ADS)

    Graham, N.; Clayton, R. W.; Kedar, S.; Webb, F.; Jones, C. E.

    2010-12-01

    Application of correlation methods to monitoring temporal variations for relatively short time windows can lead to a violation of the underlying assumption of the technique, that the sources are distributed randomly off either end of the station-station path. If this assumption is not met, the technique estimate can be biased by a favored projection of the Green’s function, which would lead to an incorrect travel time estimate and consequently an incorrect velocity estimate. Since monitoring temporal changes in geological structures of crustal scale is dominated by the ocean microseismic band (~3-10 seconds), analysis of the microseisms source distribution is of particular interest. We present the first ever parameterizations of microseism generation by coastal reflection of ocean gravity waves. The parameterizations have been implemented in a numerical wave model covering the waters off Southern California. Using the theory of Longuet-Higgins [1950], we modeled the microseisms generation by computing the wave-wave interaction component of the swell with its coastal-reflected component, modified by a depth-dependent resonance term, along the Southern California Coast. Three simulations were conducted covering September 2007 to July 2009. In one simulation, no coastal reflection of wave energy was included, with simulated microseism generation only via “open ocean” wave-wave interactions. Two other simulations tested simple parameterizations of coastal wave reflection based on a) specular, and b) scattered reflection from coastline segments. We compare the time-dependent microseisms amplitude to seismic observations throughout Southern California. We also compare the modeled source locations to those obtained by a location method based on accumulating the zero-lag correlations between data and synthetic surface waves generated at a mesh of potential source locations. Preliminary results show good agreement between model results and observations, and indicate

  9. Dynamic analysis of a doubly fed generator in power system applications

    SciTech Connect

    Rifai, M.B. ); Ortmeyer, T.H. )

    1993-01-25

    In this paper, the dynamic performance and control of a doubly fed generator is investigated. It is shown experimentally that a reactive current regulator can be used to control the machine excitation level. The study initially assumes an externally controlled field frequency, so that the machine is in the controlled speed mode. Linearized analysis is used to show that larger generators may be subject to dynamic instabilities at high slip operation. It is shown that feedback of shaft speed along with the stator or rotor current vector can be used to provide stable operation.

  10. Dynamic analysis of a doubly fed generator in power system applications

    SciTech Connect

    Rifai, M.B. ); Ortmeyer, T.H. )

    1992-01-01

    In this paper, the dynamic performance and control of a doubly fed generator is investigated. It is shown experimentally that a reactive current regulator can be used to control the machine excitation level. The study initially assumes an externally controlled field frequency, so that the machine is in the controlled speed mode. Linearized analysis is used to show that larger generators may be subject to dynamic instabilities at high slip operation. It is shown that feedback of shaft speed along with the stator or rotor current vector can be used to provide stable operation.

  11. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  12. Ultrafast dynamics in solids probed by femtosecond time-resolved broadband electronic sum frequency generation

    NASA Astrophysics Data System (ADS)

    Foglia, Laura; Wolf, Martin; Stähler, Julia

    2016-11-01

    Time-resolved sum frequency generation is an established tool to investigate the ultrafast vibrational dynamics with surface and interface specificity, which can be extended to the regime of electronic transitions using a white light continuum as demonstrated previously by studies of liquid interfaces. We expand this technique to the investigation of solid single crystal samples. In particular, we demonstrate the potential of electronic sum frequency generation by probing the non-equilibrium dynamics at excitonic resonances in ZnO with a sensitivity as small as 0.6% and with a time resolution of 160 fs.

  13. Exact results for a fully asymmetric exclusion process with sequential dynamics and open boundaries

    NASA Astrophysics Data System (ADS)

    Brankov, Jordan; Pesheva, Nina; Valkov, Nikola

    2000-03-01

    An exact and rigorous calculation of the current and density profile in the steady state of the one-dimensional fully asymmetric simple-exclusion process with open boundaries and forward-ordered sequential dynamics is presented. The method is based on a matrix product representation of the steady-state probability distribution. The main idea is to choose a suitable representation in which the scalar products describing the current and local density profile for a chain of arbitrary finite size depend only on the elements in a finite number of rows and columns. This makes possible the use of a truncated finite-dimensional representation of the matrices and vectors involved. After performing the calculations, we lift the truncation by letting its dimensionality go to infinity. In this limit the results become exact for any size of the chain. By rescaling one of the infinite-dimensional matrix representations found in the work of Derrida et al. [J. Phys. A 26, 1493 (1993)] for their algebra, we obtain a symmetric ``propagator'' matrix. Its truncated version is diagonalized by orthogonal transformation for easy calculation of the relevant scalar products. An interpretation of the phase transitions between the different phases is given in terms of eigenvalue splitting from a bounded quasicontinuous spectrum. A precise description of the local density profiles is given for all values of the parameters. It is shown that the leading-order asymptotic form of the position-dependent terms in the local density changes within the low- and high-density phases, signaling the presence of a higher-order transition.

  14. Molecular dynamics simulations on gate opening in ZIF-8: identification of factors for ethane and propane separation.

    PubMed

    Zheng, Bin; Pan, Yichang; Lai, Zhiping; Huang, Kuo-Wei

    2013-07-16

    Gate opening of zeolitic imidazolate frameworks (ZIFs) is an important microscopic phenomenon in explaining the adsorption, diffusion, and separation processes for large guest molecules. We present a force field, with input from density functional theory (DFT) calculations, for the molecular dynamics simulation on the gate opening in ZIF-8. The computed self-diffusivities for sorbed C1 to C3 hydrocarbons were in good agreement with the experimental values. The observed sharp diffusion separation from C2H6 to C3H8 was elucidated by investigating the conformations of the guest molecules integrated with the flexibility of the host framework.

  15. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-12-01

    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural

  16. Dynamic Model and Control of a Photovoltaic Generation System using Energetic Macroscopic Representation

    NASA Astrophysics Data System (ADS)

    Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan

    2016-10-01

    This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.

  17. A nonlinear dynamic model of a once-through, helical-coil steam generator

    SciTech Connect

    Abdalla, M.A.

    1993-07-01

    A dynamic model of a once-through, helical-coil steam generator is presented. The model simulates the advanced liquid metal reactor superheated cycle steam generator with a four-region, moving-boundary, drift-flux model. The model is described by a set of nonlinear differential equations derived from the fundamental equations of conversation of mass, energy, and momentum. Sample results of steady-state and transient calculations are presented.

  18. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development

  19. Improvement of deoxidization efficiency of nitric monoxide by shortening pulse width of semiconductor opening switch pulse power generator

    NASA Astrophysics Data System (ADS)

    Kakuta, Takatoshi; Yagi, Ippei; Takaki, Koichi

    2015-01-01

    The deoxidization efficiency of nitric monoxide (NO) was improved by shortening the pulse width of the voltage applied to a corona reactor. The deoxidization efficiency of NO was evaluated as the NO removal efficiency in nitrogen (N2) gas containing 200 ppm NO. The corona reactor had a coaxial geometry and consisted of center high-voltage wire and outer grounded cylinder electrodes. A nanosecond high-voltage pulse was generated using an inductive energy storage pulse power circuit with a semiconductor opening switch and was applied to the center wire electrode in the corona reactor. Fast recovery diodes were utilized as a semiconductor opening switch. The pulse width of the applied voltage was reduced from 21 to 14 ns with the arrester connected in parallel to the reactor. The energy efficiency for NO removal was improved from 8.2 to 35.7 g kW-1 h-1 with the arrester connected. The pulse width was also reduced to 8 ns by optimizing the circuit parameters. It was confirmed from observation with an intensified charge-coupled device (ICCD) camera that the streamer corona discharge transited to a glowlike discharge after the streamer propagated from the center wire electrode to the outer cylinder electrode. The duration of the glowlike phase was reduced with the arrester connected. The energy consumed in the glowlike phase was also reduced from 15.7 to 4.6 mJ with the arrester connected.

  20. Automated Flight Dynamics Product Generation for the EOS AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Matusow, Carla

    1999-01-01

    As part of NASA's Earth Science Enterprise, the Earth Observing System (EOS) AM-1 spacecraft is designed to monitor long-term, global, environmental changes. Because of the complexity of the AM-1 spacecraft, the mission operations center requires more than 80 distinct flight dynamics products (reports). To create these products, the AM-1 Flight Dynamics Team (FDT) will use a combination of modified commercial software packages (e.g., Analytical Graphic's Satellite ToolKit) and NASA-developed software applications. While providing the most cost-effective solution to meeting the mission requirements, the integration of these software applications raises several operational concerns: (1) Routine product generation requires knowledge of multiple applications executing on variety of hardware platforms. (2) Generating products is a highly interactive process requiring a user to interact with each application multiple times to generate each product. (3) Routine product generation requires several hours to complete. (4) User interaction with each application introduces the potential for errors, since users are required to manually enter filenames and input parameters as well as run applications in the correct sequence. Generating products requires some level of flight dynamics expertise to determine the appropriate inputs and sequencing. To address these issues, the FDT developed an automation software tool called AutoProducts, which runs on a single hardware platform and provides all necessary coordination and communication among the various flight dynamics software applications. AutoProducts, autonomously retrieves necessary files, sequences and executes applications with correct input parameters, and deliver the final flight dynamics products to the appropriate customers. Although AutoProducts will normally generate pre-programmed sets of routine products, its graphical interface allows for easy configuration of customized and one-of-a-kind products. Additionally, Auto

  1. Automated Flight Dynamics Product Generation for the EOS AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Matusow, Carla

    1999-01-01

    As part of NASA's Earth Science Enterprise, the Earth Observing System (EOS) AM-1 spacecraft is designed to monitor long-term, global, environmental changes. Because of the complexity of the AM-1 spacecraft, the mission operations center requires more than 80 distinct flight dynamics products (reports). To create these products, the AM-1 Flight Dynamics Team (FDT) will use a combination of modified commercial software packages (e.g., Analytical Graphic's Satellite ToolKit) and NASA-developed software applications. While providing the most cost-effective solution to meeting the mission requirements, the integration of these software applications raises several operational concerns: (1) Routine product generation requires knowledge of multiple applications executing on variety of hardware platforms. (2) Generating products is a highly interactive process requiring a user to interact with each application multiple times to generate each product. (3) Routine product generation requires several hours to complete. (4) User interaction with each application introduces the potential for errors, since users are required to manually enter filenames and input parameters as well as run applications in the correct sequence. Generating products requires some level of flight dynamics expertise to determine the appropriate inputs and sequencing. To address these issues, the FDT developed an automation software tool called AutoProducts, which runs on a single hardware platform and provides all necessary coordination and communication among the various flight dynamics software applications. AutoProducts, autonomously retrieves necessary files, sequences and executes applications with correct input parameters, and deliver the final flight dynamics products to the appropriate customers. Although AutoProducts will normally generate pre-programmed sets of routine products, its graphical interface allows for easy configuration of customized and one-of-a-kind products. Additionally, Auto

  2. An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited.

    PubMed

    Zöllner, Frank G; Daab, Markus; Sourbron, Steven P; Schad, Lothar R; Schoenberg, Stefan O; Weisser, Gerald

    2016-01-14

    Perfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology. Five compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft's model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters. We developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.

  3. Experimental studies of vertical mixing patterns in open channel flow generated by two delta wings side-by-side

    NASA Astrophysics Data System (ADS)

    Vaughan, Garrett

    Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for

  4. Hydration Gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics.

    PubMed

    Marjolin, Aude; Gourlaouen, Christophe; Clavaguéra, Carine; Ren, Pengyu Y; Piquemal, Jean-Philip; Dognon, Jean-Pierre

    2014-10-01

    The hydration free energies, structures, and dynamics of open- and closed-shell trivalent lanthanide and actinide metal cations are studied using molecular dynamics simulations (MD) based on a polarizable force field. Parameters for the metal cations are derived from an ab initio bottom-up strategy. MD simulations of six cations solvated in bulk water are subsequently performed with the AMOEBA polarizable force field. The calculated first-and second shell hydration numbers, water residence times, and free energies of hydration are consistent with experimental/theoretical values leading to a predictive modeling of f-elements compounds.

  5. Nonlinear dynamics of a wind turbine permanent magnet generator system in different wind profile conditions

    NASA Astrophysics Data System (ADS)

    Herisanu, Nicolae; Marinca, Vasile; Madescu, Gheorghe

    2017-07-01

    In this paper we analyze the behavior of a permanent magnet generator used in a wind turbine system. Different from other works, the wind profile is considered in another form and the resulting dynamical system is analyzed using an analytical approach, namely the Optimal Homotopy Asymptotic Method. Explicit analytical solutions are obtained.

  6. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  7. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  8. Dynamic shader generation for GPU-based multi-volume ray casting.

    PubMed

    Rössler, Friedemann; Botchen, Ralf P; Ertl, Thomas

    2008-01-01

    Real-time performance for rendering multiple intersecting volumetric objects requires the speed and flexibility of modern GPUs. This requirement has restricted programming of the necessary shaders to GPU experts only. A visualization system that dynamically generates GPU shaders for multi-volume ray casting from a user-definable abstract render graph overcomes this limitation.

  9. An Investigation of Water Loss Mechanisms and the Significance of Open Taliks in the Hydrologic Dynamics of Thermokarst Ponds

    NASA Astrophysics Data System (ADS)

    Fraver, M. R.; Hinzman, L.; Yoshikawa, K.; Kane, D.

    2002-12-01

    Preliminary analyses have revealed that many ponds near Council, Alaska on the Seward Peninsula are shrinking when compared with aerial photographs taken over the last 50 years. It is important to investigate the cause of this change to determine if this could be a broad scale result of a changing climate. To better understand the loss mechanisms controlling water level dynamics in these ponds, a water balance is being conducted at a unique study site outside of Council, AK. The site encompasses two thermokarst ponds and a network of channels and marshy areas connecting the two ponds. From DC electrical sounding and permafrost boring data, the discontinuous permafrost in the area is typically 20 to 60 meters thick. The downward migration of water through open taliks in the permafrost is suspected to play a significant role in thermokarst pond dynamics by creating an additional water loss mechanism and thereby contributing to the total water loss rate. The first field season yielded data indicating a significant downward hydraulic gradient beneath one of the two ponds, revealing the presence of an open talik. The significance of the loss mechanism created by the open talik relative to water losses through the marshy channels, evaporation at the pond surface, and evapotranspiration from the encroaching floating mat is being quantified. While it is understood that precipitation is the dominant factor influencing water level dynamics in northern wetlands, a newly formed open talik would result in the addition of a perennially active loss mechanism and could potentially affect water level dynamics dramatically. This extra loss mechanism, if significant, would increase the total loss rate and result in greater water level fluctuations in the pond between recharge periods. Consistently lower water levels will allow for changes in vegetation and other surface conditions and facilitate succession from pond to marsh, evident by noticeably smaller ponds over time.

  10. Generating a Dynamic Synthetic Population – Using an Age-Structured Two-Sex Model for Household Dynamics

    PubMed Central

    Namazi-Rad, Mohammad-Reza; Mokhtarian, Payam; Perez, Pascal

    2014-01-01

    Generating a reliable computer-simulated synthetic population is necessary for knowledge processing and decision-making analysis in agent-based systems in order to measure, interpret and describe each target area and the human activity patterns within it. In this paper, both synthetic reconstruction (SR) and combinatorial optimisation (CO) techniques are discussed for generating a reliable synthetic population for a certain geographic region (in Australia) using aggregated- and disaggregated-level information available for such an area. A CO algorithm using the quadratic function of population estimators is presented in this paper in order to generate a synthetic population while considering a two-fold nested structure for the individuals and households within the target areas. The baseline population in this study is generated from the confidentialised unit record files (CURFs) and 2006 Australian census tables. The dynamics of the created population is then projected over five years using a dynamic micro-simulation model for individual- and household-level demographic transitions. This projection is then compared with the 2011 Australian census. A prediction interval is provided for the population estimates obtained by the bootstrapping method, by which the variability structure of a predictor can be replicated in a bootstrap distribution. PMID:24733522

  11. Ion-controlled conformational dynamics in the outward-open transition from an occluded state of LeuT.

    PubMed

    Zhao, Chunfeng; Stolzenberg, Sebastian; Gracia, Luis; Weinstein, Harel; Noskov, Sergei; Shi, Lei

    2012-09-05

    Neurotransmitter:sodium symporter (NSS) proteins are secondary Na(+)-driven active transporters that terminate neurotransmission by substrate uptake. Despite the availability of high-resolution crystal structures of a bacterial homolog of NSSs-Leucine Transporter (LeuT)-and extensive computational and experimental structure-function studies, unanswered questions remain regarding the transport mechanisms. We used microsecond atomistic molecular-dynamics (MD) simulations and free-energy computations to reveal ion-controlled conformational dynamics of LeuT in relation to binding affinity and selectivity of the more extracellularly positioned Na(+) binding site (Na1 site). In the course of MD simulations starting from the occluded state with bound Na(+), but in the absence of substrate, we find a spontaneous transition of the extracellular vestibule of LeuT into an outward-open conformation. The outward opening is enhanced by the absence of Na1 and modulated by the protonation state of the Na1-associated Glu-290. Consistently, the Na(+) affinity for the Na1 site is inversely correlated with the extent of outward-open character and is lower than in the occluded state with bound substrate; however, the Na1 site retains its selectivity for Na(+) over K(+) in such conformational transitions. To the best of our knowledge, our findings shed new light on the Na(+)-driven transport cycle and on the symmetry in structural rearrangements for outward- and inward-open transitions.

  12. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    PubMed Central

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295

  13. QCD fixed points: Banks-Zaks scenario or dynamical gluon mass generation?

    NASA Astrophysics Data System (ADS)

    Gomez, J. D.; Natale, A. A.

    2017-01-01

    Fixed points in QCD can appear when the number of quark flavors (Nf) is increased above a certain critical value as proposed by Banks and Zaks (BZ). There is also the possibility that QCD possess an effective charge indicating an infrared frozen coupling constant. In particular, an infrared frozen coupling associated to dynamical gluon mass (DGM) generation does lead to a fixed point even for a small number of quarks. We compare the BZ and DGM mechanisms, their β functions and fixed points, and within the approximations of this work, which rely basically on extrapolations of the dynamical gluon masses at large Nf, we verify that between Nf = 8 and Nf = 12 both cases exhibit fixed points at similar coupling constant values (g∗). We argue that the states of minimum vacuum energy, as a function of the coupling constant up to g∗ and for several Nf values, are related to the dynamical gluon mass generation mechanism.

  14. Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.

    PubMed

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  15. On Diversity of Configurations Generated by Excitable Cellular Automata with Dynamical Excitation Intervals

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2012-11-01

    Excitable cellular automata with dynamical excitation interval exhibit a wide range of space-time dynamics based on an interplay between propagating excitation patterns which modify excitability of the automaton cells. Such interactions leads to formation of standing domains of excitation, stationary waves and localized excitations. We analyzed morphological and generative diversities of the functions studied and characterized the functions with highest values of the diversities. Amongst other intriguing discoveries we found that upper boundary of excitation interval more significantly affects morphological diversity of configurations generated than lower boundary of the interval does and there is no match between functions which produce configurations of excitation with highest morphological diversity and configurations of interval boundaries with highest morphological diversity. Potential directions of future studies of excitable media with dynamically changing excitability may focus on relations of the automaton model with living excitable media, e.g. neural tissue and muscles, novel materials with memristive properties and networks of conductive polymers.

  16. Image communication scheme based on dynamic visual cryptography and computer generated holography

    NASA Astrophysics Data System (ADS)

    Palevicius, Paulius; Ragulskis, Minvydas

    2015-01-01

    Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.

  17. Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases

    NASA Astrophysics Data System (ADS)

    Czajlik, András; Kovács, Bertalan; Permi, Perttu; Gáspári, Zoltán

    2017-03-01

    Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies.

  18. Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases

    PubMed Central

    Czajlik, András; Kovács, Bertalan; Permi, Perttu; Gáspári, Zoltán

    2017-01-01

    Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies. PMID:28300139

  19. Fine sediment dynamics in unsteady open-channel flow studied with acoustic and optical systems

    NASA Astrophysics Data System (ADS)

    Bagherimiyab, Fereshteh; Lemmin, Ulrich

    2012-09-01

    In order to simulate fine sediment dynamics over an armored bed in a tidal river, unsteady accelerating, then steady open-channel flow over a movable (but not moving) coarse gravel bed (D50=5.5 mm) was studied. A layer of fine sediment (D50=120 μm) was placed on the coarse gravel bed. The thickness of the fine sediment layer on the gravel bed was varied between 4 and 6 mm, but it was found that the thickness of the layer had no effect on the results. Quasi-instantaneous profiles of velocity and sediment concentration were taken simultaneously and co-located. An Acoustic Doppler Velocity Profiler (ADVP) was combined with Particle Tracking Velocimetry (PTV) for suspended sediment particle tracking. Measurements resolved turbulence scales. During the final phase of the accelerating flow range, fine sediment suspension from the bed started in packets and rapidly created a ripple pattern that remained nearly stationary. Thereafter, vortex shedding produced most of the sediment suspension into the water column in the form of events or packets, making suspension intermittent. Simultaneously, sediment particles rolled along the bed following the ripple structure, thus slowly advancing the ripple pattern in the direction of the flow without altering ripple geometry. Fine sediment particles and hydrogen bubbles were used individually or combined as flow tracers in the acoustic measurements. When used individually, hydrogen bubbles provided full depth flow and backscattering information, whereas sediment particles traced only the lower layers of the flow, indicating sediment suspension. When both tracers were combined, hydrogen bubbles could only be distinguished from sediment particles when results at two different acoustic carrier frequencies were compared. The intermittency was observed in the backscattering of the acoustic system. The event structure in fine sediment suspension is seen by the PTV method. PTV velocity vectors varied in speed and orientation, were

  20. QuTiP 2: A Python framework for the dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Johansson, J. R.; Nation, P. D.; Nori, Franco

    2013-04-01

    We present version 2 of QuTiP, the Quantum Toolbox in Python. Compared to the preceding version [J.R. Johansson, P.D. Nation, F. Nori, Comput. Phys. Commun. 183 (2012) 1760.], we have introduced numerous new features, enhanced performance, and made changes in the Application Programming Interface (API) for improved functionality and consistency within the package, as well as increased compatibility with existing conventions used in other scientific software packages for Python. The most significant new features include efficient solvers for arbitrary time-dependent Hamiltonians and collapse operators, support for the Floquet formalism, and new solvers for Bloch-Redfield and Floquet-Markov master equations. Here we introduce these new features, demonstrate their use, and give a summary of the important backward-incompatible API changes introduced in this version. Catalog identifier: AEMB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 33625 No. of bytes in distributed program, including test data, etc.: 410064 Distribution format: tar.gz Programming language: Python. Computer: i386, x86-64. Operating system: Linux, Mac OSX. RAM: 2+ Gigabytes Classification: 7. External routines: NumPy, SciPy, Matplotlib, Cython Catalog identifier of previous version: AEMB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1760 Does the new version supercede the previous version?: Yes Nature of problem: Dynamics of open quantum systems Solution method: Numerical solutions to Lindblad, Floquet-Markov, and Bloch-Redfield master equations, as well as the Monte Carlo wave function method. Reasons for new version: Compared to the preceding version we have introduced numerous new features, enhanced performance, and made changes in

  1. The Study of Magnetotail Dynamics and Their Ionospheric Signatures Using Magnetohydrodynamic Simulation Model: OpenGGCM

    NASA Astrophysics Data System (ADS)

    Ferdousi, Banafsheh

    In-situ measurements in the magnetotail are sparse and limited to single points. In the ionosphere, on the other hand, there is a broad range of observations, including magnetometers, aurora imagers, and radars . Since the ionosphere is the mirror of the plasmasheet, it can be used as a monitor of the magnetotail dynamics. Thus, it is of great importance to understand the coupling process between the ionosphere and the magnetosphere in order to interpret the ionosphere and ground observations properly. In this dissertation, the global magnetohydrodynamic simulation model, OpenGGCM model, is used to investigate two of such coupling processes. The first part focuses on travel time and characteristics of waves produced in the magnetotail. These waves represent the onset of the tail reconnection and substorms in the ionosphere. To investigate signal propagation paths and signal travel times, single impulse or sinusoidal pulsations are launched at different locations of the plasmasheet, and the paths taken by the waves and the time that different waves take to reach the ionosphere is determined. We find that such waves take shorter time than previously assumed, and they generally travel faster through the lobes than through the plasma sheet. It takes approximately about 70 seconds for waves to travel from the midtail plasmasheet to the ionosphere, contrary to previous reports (˜ 200 seconds) [Ferdousi and Raeder, 2016]. Other important processes that greatly contribute to convection of the tail are bursty bulk flows (BBFs) which are identifiable as aurora streamers in the ionosphere. The second part of this thesis focuses on mapping such flows from the magnetotail to the ionosphere along the magnetic filed lines for three states of the magnetotail: before the substorm onset, during substorm expansion, and during steady magnetic convection event. We find that the streamers are north-south aligned in midnight area, and they have more east-west orientation in the dawn and

  2. The optimizations of CGH generation algorithms based on multiple GPUs for 3D dynamic holographic display

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Liu, Juan; Zhang, Yingxi; Li, Xin; Wang, Yongtian

    2016-10-01

    Holographic display has been considered as a promising display technology. Currently, low-speed generation of holograms with big holographic data is one of crucial bottlenecks for three dimensional (3D) dynamic holographic display. To solve this problem, the acceleration method computation platform is presented based on look-up table point source method. The computer generated holograms (CGHs) acquisition is sped up by offline file loading and inline calculation optimization, where a pure phase CGH with gigabyte data is encoded to record an object with 10 MB sampling data. Both numerical simulation and optical experiment demonstrate that the CGHs with 1920×1080 resolution by the proposed method can be applied to the 3D objects reconstruction with high quality successfully. It is believed that the CGHs with huge data can be generated by the proposed method with high speed for 3D dynamic holographic display in near future.

  3. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    SciTech Connect

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  4. Evolutionary Dynamics of the Cellulose Synthase Gene Superfamily in Grasses1[OPEN

    PubMed Central

    Schwerdt, Julian G.; Wright, Frank; Oehme, Daniel; Wagner, John M.; Shirley, Neil J.; Burton, Rachel A.; Schreiber, Miriam; Zimmer, Jochen; Marshall, David F.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Phylogenetic analyses of cellulose synthase (CesA) and cellulose synthase-like (Csl) families from the cellulose synthase gene superfamily were used to reconstruct their evolutionary origins and selection histories. Counterintuitively, genes encoding primary cell wall CesAs have undergone extensive expansion and diversification following an ancestral duplication from a secondary cell wall-associated CesA. Selection pressure across entire CesA and Csl clades appears to be low, but this conceals considerable variation within individual clades. Genes in the CslF clade are of particular interest because some mediate the synthesis of (1,3;1,4)-β-glucan, a polysaccharide characteristic of the evolutionarily successful grasses that is not widely distributed elsewhere in the plant kingdom. The phylogeny suggests that duplication of either CslF6 and/or CslF7 produced the ancestor of a highly conserved cluster of CslF genes that remain located in syntenic regions of all the grass genomes examined. A CslF6-specific insert encoding approximately 55 amino acid residues has subsequently been incorporated into the gene, or possibly lost from other CslFs, and the CslF7 clade has undergone a significant long-term shift in selection pressure. Homology modeling and molecular dynamics of the CslF6 protein were used to define the three-dimensional dispositions of individual amino acids that are subject to strong ongoing selection, together with the position of the conserved 55-amino acid insert that is known to influence the amounts and fine structures of (1,3;1,4)-β-glucans synthesized. These wall polysaccharides are attracting renewed interest because of their central roles as sources of dietary fiber in human health and for the generation of renewable liquid biofuels. PMID:25999407

  5. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  6. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  7. Employing Nested OpenMP for the Parallelization of Multi-Zone Computational Fluid Dynamics Applications

    NASA Technical Reports Server (NTRS)

    Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Jost, Gabriele

    2004-01-01

    In this paper we describe the parallelization of the multi-zone code versions of the NAS Parallel Benchmarks employing multi-level OpenMP parallelism. For our study we use the NanosCompiler, which supports nesting of OpenMP directives and provides clauses to control the grouping of threads, load balancing, and synchronization. We report the benchmark results, compare the timings with those of different hybrid parallelization paradigms and discuss OpenMP implementation issues which effect the performance of multi-level parallel applications.

  8. Nutrient and plankton dynamics in an intermittently closed/open lagoon, Smiths Lake, south-eastern Australia: An ecological model

    NASA Astrophysics Data System (ADS)

    Everett, Jason D.; Baird, Mark E.; Suthers, Iain M.

    2007-05-01

    A spatially resolved, eleven-box ecological model is presented for an Intermittently Closed and Open Lake or Lagoon (ICOLL), configured for Smiths Lake, NSW Australia. ICOLLs are characterised by low flow from the catchment and a dynamic sand bar blocking oceanic exchange, which creates two distinct phases - open and closed. The process descriptions in the ecological model are based on a combination of physical and physiological limits to the processes of nutrient uptake, light capture by phytoplankton and predator-prey interactions. An inverse model is used to calculate mixing coefficients from salinity observations. When compared to field data, the ecological model obtains a fit for salinity, nitrogen, phosphorus, chlorophyll a and zooplankton which is within 1.5 standard deviations of the mean of the field data. Simulations show that nutrient limitation (nitrogen and phosphorus) is the dominant factor limiting growth of the autotrophic state variables during both the open and closed phases of the lake. The model is characterised by strong oscillations in phytoplankton and zooplankton abundance, typical of predator-prey cycles. There is an increase in the productivity of phytoplankton and zooplankton during the open phase. This increased productivity is exported out of the lagoon with a net nitrogen export from water column variables of 489 and 2012 mol N d -1 during the two studied openings. The model is found to be most sensitive to the mortality and feeding efficiency of zooplankton.

  9. [Study on the control of dynamic artificial limb ankle based on central pattern generator].

    PubMed

    Guo, Xin; Xu, Caiyu; Li, Mingyue; Su, Longtao

    2014-12-01

    In order to obtain the normal gait for the prosthesis-carrier with the change of external environment and gait, we designed a model of dynamic ankle prosthesis and control system and introduced the strategy of central pattern generator (CPG) about the moving trail of dynamic ankle prosthesis. The dynamic parts, which are incorporated in the model of dynamic ankle prosthesis, provide power in order to have anthropic function and character. The tool of Matlab/simulink was used to simulate the strategy. The simulation results showed that the strategy of CPG learn- ing control in this study was effective and could track the reference trail rapidly and fit the moving trail of a person's normal limb. It can make the prosthetic timely regulation and action, enhance the prosthetic intelligence. It has im- portant practical value for intelligent prosthesis development based on this analysis of technology.

  10. Chaotic dynamics of a swirling flame front instability generated by a change in gravitational orientation

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Kobayashi, Hiroaki; Hayashi, Kenta

    2017-02-01

    We have intensively examined the dynamic behavior of flame front instability in a lean swirling premixed flame generated by a change in gravitational orientation [H. Gotoda, T. Miyano, and I. G. Shepherd, Phys. Rev. E 81, 026211 (2010), 10.1103/PhysRevE.81.026211] from the viewpoints of complex networks, symbolic dynamics, and statistical complexity. Here, we considered the permutation entropy in combination with the surrogate data method, the permutation spectrum test, and the multiscale complexity-entropy causality plane incorporating a scale-dependent approach, none of which have been considered in the study of flame front instabilities. Our results clearly show the possible presence of chaos in flame front dynamics induced by the coupling of swirl-buoyancy interaction in inverted gravity. The flame front dynamics also possesses a scale-free structure, which is reasonably shown by the probability distribution of the degree in ɛ -recurrence networks.

  11. Chaotic dynamics of a swirling flame front instability generated by a change in gravitational orientation.

    PubMed

    Gotoda, Hiroshi; Kobayashi, Hiroaki; Hayashi, Kenta

    2017-02-01

    We have intensively examined the dynamic behavior of flame front instability in a lean swirling premixed flame generated by a change in gravitational orientation [H. Gotoda, T. Miyano, and I. G. Shepherd, Phys. Rev. E 81, 026211 (2010)PLEEE81539-375510.1103/PhysRevE.81.026211] from the viewpoints of complex networks, symbolic dynamics, and statistical complexity. Here, we considered the permutation entropy in combination with the surrogate data method, the permutation spectrum test, and the multiscale complexity-entropy causality plane incorporating a scale-dependent approach, none of which have been considered in the study of flame front instabilities. Our results clearly show the possible presence of chaos in flame front dynamics induced by the coupling of swirl-buoyancy interaction in inverted gravity. The flame front dynamics also possesses a scale-free structure, which is reasonably shown by the probability distribution of the degree in ε-recurrence networks.

  12. Open and closed-loop experiments to identify the separated flow dynamics of a thick turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Shaqarin, T.; Braud, C.; Coudert, S.; Stanislas, M.

    2013-02-01

    Open and closed-loop flow control experiments were performed on the transient attachment and separation mechanisms of a thick turbulent boundary layer (TBL). Without actuation, the TBL is subjected to an adverse pressure gradient and separates downstream of a sharp variation in the wall geometry. Departing from a given geometry and steady operations of vortex generator actuators, the control objective was to attach the flow in the separated region with a minimum of injected fluid using adaptation of the closed-loop control. The large scale of the facility (i.e., δ = 20 cm upstream of separation) induces large time scales and large Reynolds numbers of the flow to be controlled. It is found to consequently induce large time scales of the separation/attachment mechanisms, making the dynamic closed-loop implementation easier. Open-loop tests were first performed to extract the adequate input/output variables for closed-loop implementations. The chosen input variable was the Duty Cycle, DC, which enables sending of a control action at least 10 times faster than the time scales of the attachment/separation process. The chosen output variable was the voltage signal from a hot-film probe located on the flap which characterizes the degree of separation. In open loop, both the large scale (i.e., large time scales) of the present facility (Carlier and Stanislas in J Fluid Mech 535(36):143-188, 2005) and the well-defined excitation (Braud and Dyment in Phys Fluids 24:047102, 2012) help to extract the different time scales involved and to identify the whole system (actuators, baseline flow and sensor). Three Reynolds numbers based on the momentum thickness of the boundary layer near the actuators and upstream of separation were investigated ( Re θ = 7,500, 10,500 and 12,600) through variation of the free-stream velocity ( U ∞ = 5, 8, 10 m/s). These three systems were found to behave like first-order linear systems, with coefficients that need to be adapted depending on the

  13. Kaman 40 kW wind turbine generator - control system dynamics

    NASA Technical Reports Server (NTRS)

    Perley, R.

    1981-01-01

    The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.

  14. A hybrid programming model for compressible gas dynamics using openCL

    SciTech Connect

    Bergen, Benjamin Karl; Daniels, Marcus G; Weber, Paul M

    2010-01-01

    The current trend towards multicore/manycore and accelerated architectures presents challenges, both in portability, and also in the choices that developers must make on how to use the resources that these architectures provide. This paper explores some of the possibilities that are enabled by the Open Computing Language (OpenCL), and proposes a programming model that allows developers and scientists to more fully subscribe hybrid compute nodes, while, at the same time, reducing the impact of system failure.

  15. PET2OGS: Algorithms to link the static model of Petrel with the dynamic model of OpenGeoSys

    NASA Astrophysics Data System (ADS)

    Park, C.-H.; Shinn, Y. J.; Park, Y.-C.; Huh, D.-G.; Lee, S. K.

    2014-01-01

    A set of three algorithms named PET2OGS is developed to integrate the static model (Petrel) with the dynamic model (OpenGeoSys). PET2OGS consists of three sub-algorithms that convert finite difference methods (FDMs) grids to finite element methods (FEMs) grids. The algorithms and the workflow of the integration procedures are described in detail. After the proposed algorithms are tested on a variety of grids both in homogeneous and heterogeneous media, the integrated platform of the static and dynamic models is applied to model CO2 storage in a saline aquifer. A successful demonstration of the proposed algorithms proved a robust integration of the platform. With some minor modifications of the algorithms in the part of input and output, the proposed algorithms can be extended to integrate different combinations of FDM-based static models and FEM-based dynamic models beyond the example combination in the paper.

  16. Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation

    SciTech Connect

    Valiulis, G.; Jukna, V.; Jedrkiewicz, O.; Clerici, M.; Rubino, E.; DiTrapani, P.

    2011-04-15

    This paper concerns the theoretical, numerical, and experimental study of the second-harmonic-generation (SHG) process under conditions of phase and group-velocity mismatch and aims to demonstrate the dimensionality transition of the SHG process caused by the change of the fundamental wave diameter. We show that SHG from a narrow fundamental beam leads to the spontaneous self-phase-matching process with, in addition, the appearance of angular dispersion for the off-axis frequency components generated. The angular dispersion sustains the formation of the short X pulse in the second harmonic (SH) and is recognized as three-dimensional (3D) dynamics. On the contrary, the large-diameter fundamental beam reduces the number of the degrees of freedom, does not allow the generation of the angular dispersion, and maintains the so-called one-dimensional (1D) SHG dynamics, where the self-phase-matching appears just for axial components and is accompanied by the shrinking of the SH temporal bandwidth, and sustains a long SH pulse formation. The transition from long SH pulse generation typical of the 1D dynamics to the short 3D X pulse is illustrated numerically and experimentally by changing the conditions from the self-defocusing to the self-focusing regime by simply tuning the phase mismatch. The numerical and experimental verification of the analytical results are also presented.

  17. Development of a zero-method interferometer by means of dynamic generation of reference wave front

    NASA Astrophysics Data System (ADS)

    Hanayama, Ryohei; Ishii, Katsuhiro

    2013-04-01

    In this report, we propose a zero-method interferometer by means of dynamic generation of reference wave front using liquid crystal type spatial light modulator (LCoS-SLM). This interferometer was developed to aim to measure the shape of complex plane, such as aspherical plane. It is difficult for interferometer to measure such a surface which include large inclination, because of the problem of saturation of interference fringe. To overcome this problem, and to enlarge the dynamic range of interferometer, we attempted to combine interferometer and zero-method. Zero-method is characterized by its wide dynamic range. To apply zero-method to interferometer, SLM is adopted to configure variable reference surface. The basic configuration of the developed interferometer is Twyman-Green interferometer. A SLM is placed instead of reference mirror. In this interferometer, the shape of a target is measured using interference between object wave front and reference wave front that is generated using SLM. At first, the SLM generates flat wave front. And the detected phase map is fed back to the SLM. Then the difference between object wave front and detected phase map in the first turn. The operation is recursively repeated until the phase range of detected phase map becomes under the threshold. Then the generated wave front should become equal to the target shape. In this report, the basic idea of zeromethod interferometer using LCoS-SLM is verified through several numbers of simulative experiments.

  18. SMILEI: A collaborative, open-source, multi-purpose PIC code for the next generation of super-computers

    NASA Astrophysics Data System (ADS)

    Grech, Mickael; Derouillat, J.; Beck, A.; Chiaramello, M.; Grassi, A.; Niel, F.; Perez, F.; Vinci, T.; Fle, M.; Aunai, N.; Dargent, J.; Plotnikov, I.; Bouchard, G.; Savoini, P.; Riconda, C.

    2016-10-01

    Over the last decades, Particle-In-Cell (PIC) codes have been central tools for plasma simulations. Today, new trends in High-Performance Computing (HPC) are emerging, dramatically changing HPC-relevant software design and putting some - if not most - legacy codes far beyond the level of performance expected on the new and future massively-parallel super computers. SMILEI is a new open-source PIC code co-developed by both plasma physicists and HPC specialists, and applied to a wide range of physics-related studies: from laser-plasma interaction to astrophysical plasmas. It benefits from an innovative parallelization strategy that relies on a super-domain-decomposition allowing for enhanced cache-use and efficient dynamic load balancing. Beyond these HPC-related developments, SMILEI also benefits from additional physics modules allowing to deal with binary collisions, field and collisional ionization and radiation back-reaction. This poster presents the SMILEI project, its HPC capabilities and illustrates some of the physics problems tackled with SMILEI.

  19. Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.

    SciTech Connect

    Concepcion, Ricky James; Elliott, Ryan Thomas; Donnelly, Matt; Sanchez-Gasca, Juan

    2016-01-01

    The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.

  20. The relative importance of dayside and nightside reconnection on the ionospheric convection system during sudden enhancements of solar wind dynamic pressure: OpenGGCM-CTIM results

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Zesta, E.; Ober, D. M.; Raeder, J.

    2013-12-01

    Recent studies have shown that sudden enhancement of solar wind dynamic pressure (Psw) is a significant driver of energy transfer to the magnetosphere-ionosphere (MI) system, generating strong responses such as increase in the cross polar cap potential (CPCP), reduction of the polar cap area, expansion of the auroral oval, etc. This study investigates where, when, and how solar wind energy is deposited into the MI system during sudden solar wind dynamic pressure enhancement, like shocks. We analyze three unique events that occurred during strongly southward, near-zero Bz, and northward IMF by simulating the MI responses with the OpenGGCM-CTIM coupled magnetosphere-ionosphere model. We examine the behavior of dayside and nightside reconnection, and quantify their respective contribution to CPCP, a proxy of ionospheric flow convection. The dayside and nightside reconnection rates (Rd and Rn) are defined to be the open flux per unit time crossing the dayside and nightside open-closed field line boundaries. The relative contributions to CPCP are estimated by fitting the reconnection rates and the modeled CPCP to a widely used linear equation, CPCP = CdRd + CnRn + viscosity, where the correlation coefficients of dayside and nightside reconnection rates Cd and Cn define the quantitative contribution of each merging rate. The model results reproduce the CPCP increase at the arrival of the Psw enhancement, showing good agreement with the observations of Defense Meteorological Satellite Program (DMSP) spacecraft and predictions from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) technique. For all three events, the dayside reconnection reacts first, increasing its rate right after the Psw increase. The nightside reconnection intensifies about 10-20 minutes later due to the solar wind propagation to the magnetotail. For southward IMF, dayside reconnection contributes to the CPCP increase twice as much as the nightside one, while for northward IMF, nightside