NASA Astrophysics Data System (ADS)
Pan, Zhao; Whitehead, Jared; Truscott, Tadd
2016-11-01
Little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure calculation. Rather than measure experimental error, we analytically investigate error propagation by examining the properties of the Poisson equation directly. Our results provide two contributions to the PIV community. First, we quantify the error bound in the pressure field by illustrating the mathematical roots of why and how PIV-based pressure calculations propagate. Second, we design the "worst case error" for a pressure Poisson solver. In other words, we provide a systematic example where the relatively small errors in the experimental data can lead to maximum error in the corresponding pressure calculations. The 2D calculation of the worst case error surprisingly leads to the classic Kirchhoff plates problem, and connects the PIV-based pressure calculation, which is a typical fluid problem, to elastic dynamics. The results can be used for optimizing experimental error minimization by avoiding worst case scenarios. More importantly, they can be used to design synthetic velocity error for future PIV-pressure challenges, which can be the hardest test case in the examinations.
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.
Gapsys, Vytautas; Seeliger, Daniel; de Groot, Bert L
2012-07-10
The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.
Molecular Dynamics Calculations
NASA Technical Reports Server (NTRS)
1996-01-01
The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two
Equation of State of Al Based on Quantum Molecular Dynamics Calculations
NASA Astrophysics Data System (ADS)
Minakov, Dmitry V.; Levashov, Pavel R.; Khishchenko, Konstantin V.
2011-06-01
In this work, we present quantum molecular dynamics calculations of the shock Hugoniots of solid and porous samples as well as release isentropes and values of isentropic sound velocity behind the shock front for aluminum. We use the VASP code with an ultrasoft pseudopotential and GGA exchange-correlation functional. Up to 108 particles have been used in calculations. For the Hugoniots of Al we solve the Hugoniot equation numerically. To calculate release isentropes, we use Zel'dovich's approach and integrate an ordinary differential equation for the temperature thus restoring all thermodynamic parameters. Isentropic sound velocity is calculated by differentiation along isentropes. The results of our calculations are in good agreement with experimental data. Thus, quantum molecular dynamics results can be effectively used for verification or calibration of semiempirical equations of state under conditions of lack of experimental information at high energy densities. This work is supported by RFBR, grants 09-08-01129 and 11-08-01225.
NASA Astrophysics Data System (ADS)
Takaba, Hiromitsu; Kimura, Shou; Alam, Md. Khorshed
2017-03-01
Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation results indicate that a partial substitution of MA induces a lattice distortion, resulting in preventing MA or X from the diffusion between A sites in the perovskite. DFT calculations show that electronic structures of the investigated partially substituted perovskites were similar with that of MAPbI3, while their bandgaps slightly decrease compared to that of MAPbI3. Our results mean that partial substitution in halide perovskite is effective technique to suppress diffusion of intrinsic ions and tune the band gap.
NASA Astrophysics Data System (ADS)
Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd
2016-08-01
Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.
Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd
2016-08-01
Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.
NASA Astrophysics Data System (ADS)
Xu, Xue-song; Wang, Sheng-wei
2012-03-01
In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.
NASA Astrophysics Data System (ADS)
Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios
2015-12-01
We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.
Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J
2013-06-07
To understand the reactivity and mechanism of the OH + NH3 → H2O + NH2 gas-phase reaction, which evolves through wells in the entrance and exit channels, a detailed dynamics study was carried out using quasi-classical trajectory calculations. The calculations were performed on an analytical potential energy surface (PES) recently developed by our group, PES-2012 [Monge-Palacios et al. J. Chem. Phys. 138, 084305 (2013)]. Most of the available energy appeared as H2O product vibrational energy (54%), reproducing the only experimental evidence, while only the 21% of this energy appeared as NH2 co-product vibrational energy. Both products appeared with cold and broad rotational distributions. The excitation function (constant collision energy in the range 1.0-14.0 kcal mol(-1)) increases smoothly with energy, contrasting with the only theoretical information (reduced-dimensional quantum scattering calculations based on a simplified PES), which presented a peak at low collision energies, related to quantized states. Analysis of the individual reactive trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) ≥ 6 kcal mol(-1)) all trajectories are direct, at low energies about 20%-30% of trajectories are indirect, i.e., with the mediation of a trapping complex, mainly in the product well. Finally, the effect of the zero-point energy constraint on the dynamics properties was analyzed.
Comparison of calculated with measured dynamic aperture
Zimmermann, F.
1994-06-01
The measured dynamic aperture of the HERA proton ring and the value expected from simulation studies agree within a factor of 2. A better agreement is achieved if a realistic tune modulation is included in the simulation. The approximate threshold of tune-modulation induced diffusion can be calculated analytically. Its value is in remarkable agreement with the dynamic aperture measured. The calculation is based on parameters of resonances through order 11 which are computed using differential-algebra methods and normal-form algorithms. Modulational diffusion in conjunction with drifting machine parameters appears to be the most important transverse diffusion process.
Velocity Based Modulus Calculations
NASA Astrophysics Data System (ADS)
Dickson, W. C.
2007-12-01
A new set of equations are derived for the modulus of elasticity E and the bulk modulus K which are dependent only upon the seismic wave propagation velocities Vp, Vs and the density ρ. The three elastic moduli, E (Young's modulus), the shear modulus μ (Lamé's second parameter) and the bulk modulus K are found to be simple functions of the density and wave propagation velocities within the material. The shear and elastic moduli are found to equal the density of the material multiplied by the square of their respective wave propagation-velocities. The bulk modulus may be calculated from the elastic modulus using Poisson's ratio. These equations and resultant values are consistent with published literature and values in both magnitude and dimension (N/m2) and are applicable to the solid, liquid and gaseous phases. A 3D modulus of elasticity model for the Parkfield segment of the San Andreas Fault is presented using data from the wavespeed model of Thurber et al. [2006]. A sharp modulus gradient is observed across the fault at seismic depths, confirming that "variation in material properties play a key role in fault segmentation and deformation style" [Eberhart-Phillips et al., 1993] [EPM93]. The three elastic moduli E, μ and K may now be calculated directly from seismic pressure and shear wave propagation velocities. These velocities may be determined using conventional seismic reflection, refraction or transmission data and techniques. These velocities may be used in turn to estimate the density. This allows velocity based modulus calculations to be used as a tool for geophysical analysis, modeling, engineering and prospecting.
NASA Technical Reports Server (NTRS)
Camarda, C. J.; Adelman, H. M.
1984-01-01
The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.
NASA Astrophysics Data System (ADS)
Sharipov, Felix; Yang, Yuanchao; Ricker, Jacob E.; Hendricks, Jay H.
2016-10-01
Currently, the piston-cylinder assembly known as PG39 is used as a primary pressure standard at the National Institute of Standards and Technology (NIST) in the range of 20 kPa to 1 MPa with a standard uncertainty of 3× {{10}-6} as evaluated in 2006. An approximate model of gas flow through the crevice between the piston and sleeve contributed significantly to this uncertainty. The aim of this work is to revise the previous effective cross sectional area of PG39 and its uncertainty by carrying out more exact calculations that consider the effects of rarefied gas flow. The effective cross sectional area is completely determined by the pressure distribution in the crevice. Once the pressure distribution is known, the elastic deformations of both piston and sleeve are calculated by finite element analysis. Then, the pressure distribution is recalculated iteratively for the new crevice dimension. As a result, a new value of the effective area is obtained with a relative difference of 3× {{10}-6} from the previous one. Moreover, this approach allows us to reduce significantly the standard uncertainty related to the gas flow model so that the total uncertainty is decreased by a factor of three.
Li, Y Q; Zhang, P Y; Han, K L
2015-03-28
A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.
Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David
2016-12-06
There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift
NASA Astrophysics Data System (ADS)
Akbarzadeh, Hamed; Abroshan, Hadi; Taherkhani, Farid; Parsafar, Gholam Abbas
2011-07-01
We present an approach for constant-pressure molecular dynamics simulations. This approach is especially designed for finite systems, for which no periodic boundary condition applies. A molecular dynamics (MD) simulation for Ni nanoclusters is used to calculate their pressure-volume-temperature ( p-v-T) data for the temperature range 200 K≤ T≤400 K, and pressures up to 600 kbar. Isothermal sets of p-v-T data were generated by the simulation; each set was fitted by three equations of state (EoSs): Linear Isotherm Regularity-II (LIRII), Birch-Murnaghan (BM), and EOS III. It is found that the MD data are satisfactorily reproduced by the EoSs with reasonable precision. Some features of the EoSs criteria, such as the temperature dependences of the coefficients, the isothermal bulk modulus and its pressure derivative at the zero-pressure limit, and isobaric thermal expansion for Ni nanoclusters, are investigated. We have found that same EoSs are valid for both bulk Ni and Ni nanoclusters, but with different values of the parameters, which depend on the cluster size and temperature. An increase in bulk modulus with decrease of cluster size can be observed. Also, an increase in isobaric expansion coefficient with decrease of cluster size has been found.
Bias in Dynamic Monte Carlo Alpha Calculations
Sweezy, Jeremy Ed; Nolen, Steven Douglas; Adams, Terry R.; Trahan, Travis John
2015-02-06
A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.
Cluster dynamical mean-field calculations for TiOCl
NASA Astrophysics Data System (ADS)
Saha-Dasgupta, T.; Lichtenstein, A.; Hoinkis, M.; Glawion, S.; Sing, M.; Claessen, R.; Valentí, R.
2007-10-01
Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge x-ray absorption spectroscopy experiments is found to be good. The improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.
Feliks, Mikolaj; Lafaye, Céline; Shu, Xiaokun; Royant, Antoine; Field, Martin
2016-08-09
Using X-ray crystallography, continuum electrostatic calculations, and molecular dynamics simulations, we have studied the structure, protonation behavior, and dynamics of the biliverdin chromophore and its molecular environment in a series of genetically engineered infrared fluorescent proteins (IFPs) based on the chromophore-binding domain of the Deinococcus radiodurans bacteriophytochrome. Our study suggests that the experimentally observed enhancement of fluorescent properties results from the improved rigidity and planarity of the biliverdin chromophore, in particular of the first two pyrrole rings neighboring the covalent linkage to the protein. We propose that the increases in the levels of both motion and bending of the chromophore out of planarity favor the decrease in fluorescence. The chromophore-binding pocket in some of the studied proteins, in particular the weakly fluorescent parent protein, is shown to be readily accessible to water molecules from the solvent. These waters entering the chromophore region form hydrogen bond networks that affect the otherwise planar conformation of the first three rings of the chromophore. On the basis of our simulations, the enhancement of fluorescence in IFPs can be achieved either by reducing the mobility of water molecules in the vicinity of the chromophore or by limiting the interactions of the nearby protein residues with the chromophore. Finally, simulations performed at both low and neutral pH values highlight differences in the dynamics of the chromophore and shed light on the mechanism of fluorescence loss at low pH.
Sun, Dong-Ru; Zheng, Qing-Chuan; Zhang, Hong-Xing
2017-03-01
Matriptase is a serine protease associated with a wide variety of human tumors and carcinoma progression. Up to now, many promising anti-cancer drugs have been developed. However, the detailed structure-function relationship between inhibitors and matriptase remains elusive. In this work, molecular dynamics simulation and binding free energy studies were performed to investigate the biochemistry behaviors of two class inhibitors binding to matriptase. The binding free energies predicted by MM/GBSA methods are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. The key residues responsible for achieving strong binding have been identified by the MM/GBSA free energy decomposition analysis. Especially, Trp215 and Phe99 had an important impact on active site architecture and ligand binding. The results clearly identify the two class inhibitors exist different binding modes. Through summarizing the two different modes, we have mastered some important and favorable interaction patterns between matriptase and inhibitors. Our findings would be helpful for understanding the interaction mechanism between the inhibitor and matriptase and afford important guidance for the rational design of potent matriptase inhibitors.
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.
2015-12-01
Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.
Li, Y. Q.; Zhang, P. Y.; Han, K. L.
2015-03-28
A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}Σ{sup +})+H({sup 2}S)→C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}Σ{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2017-01-01
We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.
Greif, Michael; Nagy, Tibor; Soloviov, Maksym; Castiglioni, Luca; Hengsberger, Matthias; Meuwly, Markus; Osterwalder, Jürg
2015-01-01
A THz-pump and x-ray-probe experiment is simulated where x-ray photoelectron diffraction (XPD) patterns record the coherent vibrational motion of carbon monoxide molecules adsorbed on a Pt(111) surface. Using molecular dynamics simulations, the excitation of frustrated wagging-type motion of the CO molecules by a few-cycle pulse of 2 THz radiation is calculated. From the atomic coordinates, the time-resolved XPD patterns of the C 1s core level photoelectrons are generated. Due to the direct structural information in these data provided by the forward scattering maximum along the carbon-oxygen direction, the sequence of these patterns represents the equivalent of a molecular movie. PMID:26798798
Dynamical collective calculation of supernova neutrino signals.
Gava, Jérôme; Kneller, James; Volpe, Cristina; McLaughlin, G C
2009-08-14
We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.
NASA Astrophysics Data System (ADS)
Li, Bin; Han, Ke-Li
2008-03-01
A theoretical investigation on the nonadiabatic processes of the full three-dimensional D++H2 and H++D2 reaction systems has been performed by using trajectory surface hopping (TSH) method based on the Zhu-Nakamura (ZN) theory. This ZN-TSH method refers to not only classically allowed hops but also classically forbidden hops. The potential energy surface constructed by Kamisaka et al. is employed in the calculation. A new iterative method is proposed to yield the two-dimensional seam surface from the topography of the adiabatic potential surfaces, in which the inconvenience of directly solving the first-order partial differential equation is avoided. The cross sections of these two systems are calculated for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, for ground rovibrational state of H2 or D2. Also, this study provides reaction probabilities of these three processes for the total angular momentum J =0 and ground initial vibrational state of H2 or D2. The calculated results from ZN-TSH method are in good agreement with the exact quantum calculations and the experimental measurements.
Li, Bin; Han, Ke-Li
2008-03-21
A theoretical investigation on the nonadiabatic processes of the full three-dimensional D(+)+H(2) and H(+)+D(2) reaction systems has been performed by using trajectory surface hopping (TSH) method based on the Zhu-Nakamura (ZN) theory. This ZN-TSH method refers to not only classically allowed hops but also classically forbidden hops. The potential energy surface constructed by Kamisaka et al. is employed in the calculation. A new iterative method is proposed to yield the two-dimensional seam surface from the topography of the adiabatic potential surfaces, in which the inconvenience of directly solving the first-order partial differential equation is avoided. The cross sections of these two systems are calculated for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, for ground rovibrational state of H(2) or D(2). Also, this study provides reaction probabilities of these three processes for the total angular momentum J=0 and ground initial vibrational state of H(2) or D(2). The calculated results from ZN-TSH method are in good agreement with the exact quantum calculations and the experimental measurements.
Cao, Jun
2015-06-28
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
NASA Astrophysics Data System (ADS)
Cao, Jun
2015-06-01
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π* transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π* excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S1(1ππ*) and S2(1nNπ*) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
Robust Biased Brownian Dynamics for Rate Constant Calculation
Zou, Gang; Skeel, Robert D.
2003-01-01
A reaction probability is required to calculate the rate constant of a diffusion-dominated reaction. Due to the complicated geometry and potentially high dimension of the reaction probability problem, it is usually solved by a Brownian dynamics simulation, also known as a random walk or path integral method, instead of solving the equivalent partial differential equation by a discretization method. Building on earlier work, this article completes the development of a robust importance sampling algorithm for Brownian dynamics—i.e., biased Brownian dynamics with weight control—to overcome the high energy and entropy barriers in biomolecular association reactions. The biased Brownian dynamics steers sampling by a bias force, and the weight control algorithm controls sampling by a target weight. This algorithm is optimal if the bias force and the target weight are constructed from the solution of the reaction probability problem. In reality, an approximate reaction probability has to be used to construct the bias force and the target weight. Thus, the performance of the algorithm depends on the quality of the approximation. Given here is a method to calculate a good approximation, which is based on the selection of a reaction coordinate and the variational formulation of the reaction probability problem. The numerically approximated reaction probability is shown by computer experiments to give a factor-of-two speedup over the use of a purely heuristic approximation. Also, the fully developed method is compared to unbiased Brownian dynamics. The tests for human superoxide dismutase, Escherichia coli superoxide dismutase, and antisweetener antibody NC6.8, show speedups of 17, 35, and 39, respectively. The test for reactions between two model proteins with orientations shows speedups of 2578 for one set of configurations and 3341 for another set of configurations. PMID:14507681
Purtov, P.A.; Salikhov, K.M.
1987-09-01
Semiclassical HFI description is applicable to calculating the integral CIDNP effect in weak fields. The HFI has been calculated for radicals with sufficiently numerous magnetically equivalent nuclei (n greater than or equal to 5) in satisfactory agreement with CIDNP calculations based on quantum-mechanical description of radical-pair spin dynamics.
Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations
O'Brien, M; Taylor, J; Procassini, R
2004-12-22
The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations.
Knight, Christopher J.; Hub, Jochen S.
2015-01-01
Small- and wide-angle X-ray scattering (SWAXS) has evolved into a powerful tool to study biological macromolecules in solution. The interpretation of SWAXS curves requires their accurate predictions from structural models. Such predictions are complicated by scattering contributions from the hydration layer and by effects from thermal fluctuations. Here, we describe the new web server WAXSiS (WAXS in solvent) that computes SWAXS curves based on explicit-solvent all-atom molecular dynamics (MD) simulations (http://waxsis.uni-goettingen.de/). The MD simulations provide a realistic model for both the hydration layer and the excluded solvent, thereby avoiding any solvent-related fitting parameters, while naturally accounting for thermal fluctuations. PMID:25855813
Advancements in dynamic kill calculations for blowout wells
Kouba, G.E. . Production Fluids Div.); MacDougall, G.R. ); Schumacher, B.W. . Information Technology Dept.)
1993-09-01
This paper addresses the development, interpretation, and use of dynamic kill equations. To this end, three simple calculation techniques are developed for determining the minimum dynamic kill rate. Two techniques contain only single-phase calculations and are independent of reservoir inflow performance. Despite these limitations, these two methods are useful for bracketing the minimum flow rates necessary to kill a blowing well. For the third technique, a simplified mechanistic multiphase-flow model is used to determine a most-probable minimum kill rate.
Upper Subcritical Calculations Based on Correlated Data
Sobes, Vladimir; Rearden, Bradley T; Mueller, Don; Marshall, William BJ J; Scaglione, John M; Dunn, Michael E
2015-01-01
The American National Standards Institute and American Nuclear Society standard for Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations defines the upper subcritical limit (USL) as “a limit on the calculated k-effective value established to ensure that conditions calculated to be subcritical will actually be subcritical.” Often, USL calculations are based on statistical techniques that infer information about a nuclear system of interest from a set of known/well-characterized similar systems. The work in this paper is part of an active area of research to investigate the way traditional trending analysis is used in the nuclear industry, and in particular, the research is assessing the impact of the underlying assumption that the experimental data being analyzed for USL calculations are statistically independent. In contrast, the multiple experiments typically used for USL calculations can be correlated because they are often performed at the same facilities using the same materials and measurement techniques. This paper addresses this issue by providing a set of statistical inference methods to calculate the bias and bias uncertainty based on the underlying assumption that the experimental data are correlated. Methods to quantify these correlations are the subject of a companion paper and will not be discussed here. The newly proposed USL methodology is based on the assumption that the integral experiments selected for use in the establishment of the USL are sufficiently applicable and that experimental correlations are known. Under the assumption of uncorrelated data, the new methods collapse directly to familiar USL equations currently used. We will demonstrate our proposed methods on real data and compare them to calculations of currently used methods such as USLSTATS and NUREG/CR-6698. Lastly, we will also demonstrate the effect experiment correlations can have on USL calculations.
Dissipative Particle Dynamics interaction parameters from ab initio calculations
NASA Astrophysics Data System (ADS)
Sepehr, Fatemeh; Paddison, Stephen J.
2016-02-01
Dissipative Particle Dynamics (DPD) is a commonly employed coarse-grained method to model complex systems. Presented here is a pragmatic approach to connect atomic-scale information to the meso-scale interactions defined between the DPD particles or beads. Specifically, electronic structure calculations were utilized for the calculation of the DPD pair-wise interaction parameters. An implicit treatment of the electrostatic interactions for charged beads is introduced. The method is successfully applied to derive the parameters for a hydrated perfluorosulfonic acid ionomer with absorbed vanadium cations.
Calculation of Dynamic Coefficients for Multiwound Foil Bearings
NASA Astrophysics Data System (ADS)
Feng, Kai; Kaneko, Shigehiko
Dynamic performance of multiwound foil bearings with the effects of foil local deflection is investigated. The foils, separated and supported by projections on the ir surface are treated as thin plates. Deflections of the foils are solved with a finite element model. The air pressure is calculated with the Reynolds' equation by treating the lubricant as an isothermal idea gas. The effects of foils are simulated with the deflection of top foil added to the film thickness. A finite difference computer program is developed to solve the Reynolds equation and the elastic deflection equation, simultaneously. Perturbation method is used to determine the dynamic coefficients. The effects of foil deflection is discussed by comparing the dynamic coefficients of a foil bearing and a rigid bearing. Experimental data from a test rig supported by two multiwound foil bearings are used to validate this numerical solution.
A Reduced-frequency Approach for Calculating Dynamic Derivatives
NASA Technical Reports Server (NTRS)
Murman, Scott M.
2005-01-01
Computational Fluid Dynamics (CFD) is increasingly being used to both augment and create an aerodynamic performance database for aircraft configurations. This aerodynamic database contains the response of the aircraft to varying flight conditions and control surface deflections. The current work presents a novel method for calculating dynamic stability derivatives which reduces the computational cost over traditional unsteady CFD approaches by an order of magnitude, while still being applicable to arbitrarily complex geometries over a wide range of flow regimes. The primary thesis of this work is that the response to a forced motion can often be represented with a small, predictable number of frequency components without loss of accuracy. By resolving only those frequencies of interest, the computational effort is significantly reduced so that the routine calculation of dynamic derivatives becomes practical. The current implementation uses this same non-linear, frequency-domain approach and extends the application to the 3-D Euler equations. The current work uses a Cartesian, embedded-boundary method to automate the generation of dynamic stability derivatives.
GPU-based fast gamma index calculation
NASA Astrophysics Data System (ADS)
Gu, Xuejun; Jia, Xun; Jiang, Steve B.
2011-03-01
The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γn over all voxels, while that on GPU is affected by γn distributions and is approximately proportional to the γn summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time.
Calculation of exact vibration modes for plane grillages by the dynamic stiffness method
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.; Liu, R. Y. L.
1982-01-01
A dynamic stiffness method is developed for the calculation of the exact modal parameters for plane grillages which consist of straight and uniform beams with coincident elastic and inertial axes. Elementary bending-torsion beam theory is utilized, and bending translation is restricted to one direction. The exact bending-torsion dynamic stiffness matrix is obtained for a straight and uniform beam element with coincident elastic and inertial axes. The element stiffness matrices are assembled using the standard procedure of the static stiffness method to form the dynamic stiffness matrix of the complete grillage. The exact natural frequencies, mode shapes, and generalized masses of the grillage are then calculated by solving a nonlinear eigenvalue problem based on the dynamic stiffness matrix. The exact modal solutions for an example grillage are calculated and compared with the approximate solutions obtained by using the finite element method.
Kussmann, Jörg; Ochsenfeld, Christian
2007-11-28
A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.
Calculation of Cross Sections in Electron-Nuclear Dynamics
NASA Astrophysics Data System (ADS)
Cabrera-Trujillo, R.; Sabin, John R.; Deumens, E.; Öhrn, Y.
In this work, we present an overview of the study of total and differential cross section calculations within the electron-nuclear dynamics (END). END is a method to solve the time-dependent Schrödinger equation in a non-adiabatic approach to direct dynamics. The method takes advantage of a coherent state representation of the molecular wave function. A quantum-mechanical Lagrangian formulation is employed to approximate the Schrödinger equation, via the time-dependent variational principle, to a set of coupled first-order differential equations in time for the END. We obtain the final wave function for the system allowing the determination of collisional properties of interest, as for example, deflection functions, charge exchange probabilities and amplitudes, and differential cross sections. We discuss the use and selection of basis sets for both the electronic description of the colliding systems as well as for their importance in the description of electron capture. As quantum effects are important in many cases and lacking for classical nuclei, we discuss the Schiff methodology and its advantages over other traditional methods for including semiclassical corrections. Time-lapse rendering of the dynamics of the participating electrons and atomic nuclei provides for a detailed view of dynamical and reactive processes. Comparison to experimental and other theoretical results is provided where appropriate data are available.
Calculated Hovering Helicopter Flight Dynamics with a Circulation Controlled Rotor
NASA Technical Reports Server (NTRS)
Johnson, W.; Chopra, I.
1977-01-01
The influence of the rotor blowing coefficient on the calculated roots of the longitudinal and lateral motion was examined for a range of values of the rotor lift and the blade flap frequency. The control characteristics of a helicopter with a circulation controlled rotor are discussed. The principal effect of the blowing is a reduction in the rotor speed stability derivative. Above a critical level of blowing coefficient, which depends on the flap frequency and rotor lift, negative speed stability is produced and the dynamic characteristics of the helicopter are radically altered.
Nonlinear damping calculation in cylindrical gear dynamic modeling
NASA Astrophysics Data System (ADS)
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Dynamical coupled channels calculation of pion and omega meson production
Paris, Mark W.
2009-02-15
The dynamical coupled-channels approach developed at the Excited Baryon Analysis Center is extended to include the {omega}N channel to study {pi}- and {omega}-meson production induced by scattering pions and photons from the proton. Six intermediate channels, including {pi}N, {eta}N, {pi}{delta}, {sigma}N, {rho}N, and {omega}N, are employed to describe unpolarized and polarized data. Bare parameters in an effective hadronic Lagrangian are determined in a fit to the data for {pi}N{yields}{pi}N, {gamma}N{yields}{pi}N, {pi}{sup -}p{yields}{omega}n, and {gamma}p{yields}{omega}p reactions at center-of-mass energies from threshold to W<2.0 GeV. The T matrix determined in these fits is used to calculate the photon beam asymmetry for {omega}-meson production and the {omega}N{yields}{omega}N total cross section and {omega}N-scattering lengths. The calculated beam asymmetry is in good agreement with the observed in the range of energies near threshold to W < or approx. 2.0 GeV.
Shock Hugoniot calculations of polymers using quantum mechanics and molecular dynamics
NASA Astrophysics Data System (ADS)
Chantawansri, Tanya L.; Sirk, Timothy W.; Byrd, Edward F. C.; Andzelm, Jan W.; Rice, Betsy M.
2012-11-01
Using quantum mechanics (QM) and classical force-field based molecular dynamics (FF), we have calculated the principle shock Hugoniot curves for numerous amorphous polymers including poly[methyl methacrylate] (PMMA), poly[styrene], polycarbonate, as well as both the amorphous and crystalline forms of poly[ethylene]. In the FF calculations, we considered a non-reactive force field (i.e., polymer consistent FF). The QM calculations were performed with density functional theory (DFT) using dispersion corrected atom centered pseudopotentials. Overall, results obtained by DFT show much better agreement with available experimental data than classical force fields. In particular, DFT calculated Hugoniot curves for PMMA up to 74 GPa are in very good agreement with experimental data, where a preliminary study of chain fracture and association was also performed. Structure analysis calculations of the radius of gyration and carbon-carbon radial distribution function were also carried out to elucidate contraction of the polymer chains with increasing pressure.
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Nakagawa, T.; Deschamps, F.; Connolly, J.
2011-12-01
Phase diagrams of materials in Earth's transition zone (TZ) are complex and composition-dependent and phase transitions have a first-order influence on mantle dynamics, yet simulations of mantle convection typically include only one or two major phase transitions in the olivine system. In our recent work [1,2], phase assemblages of mantle rocks calculated by free energy minimization for MORB and harzburgite compositions expressed as the ratios of 5 or 6 oxides (CaO-FeO-MgO-Al2O3- SiO2-Na2O) are used to calculate the material properties density, thermal expansivity, specific heat capacity, and seismic velocity as a function of temperature and pressure, which are then incorporated into a numerical thermo-chemical mantle convection model in a 2-D spherical annulus or 3-D spherical shell. The advantage of using such an approach is that thermodynamic parameters affecting dynamics and seismic velocities are included implicitly and self-consistently, obviating the need for ad hoc parameterizations. Here we focus on the resulting thermo-chemical structures in the transition zone and their seismic signature. A robust result is some compositional stratification around 660 km depth caused by the inversion of the MORB-harzburgite density difference between ~660-740 km depth [3], with MORB enrichment in the lower TZ and depletion just below the TZ. The extent of this is quite sensitive to variations in MORB composition of the order 1-2% oxide fraction, particularly FeO and Al2O3, which influence the magnitude and depth of this effect and the density difference. The detailed structure also has a strong lateral variation. We plot radial profiles from different parts of our models, characterizing typical structures and the range of structures, and compare to local seismological profiles as well as profiles from regional inversions [4]. [1] Nakagawa, T., P.J. Tackley, F. Deschamps & J.A.D. Connolly (2009) Geochem. Geophys. Geosyst. 10, doi:10.1029/2008GC002280. [2] Nakagawa, T., P
Spreadsheet Based Scaling Calculations and Membrane Performance
Wolfe, T D; Bourcier, W L; Speth, T F
2000-12-28
Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total Flux and Scaling Program (TFSP), written for Excel 97 and above, provides designers and operators new tools to predict membrane system performance, including scaling and fouling parameters, for a wide variety of membrane system configurations and feedwaters. The TFSP development was funded under EPA contract 9C-R193-NTSX. It is freely downloadable at www.reverseosmosis.com/download/TFSP.zip. TFSP includes detailed calculations of reverse osmosis and nanofiltration system performance. Of special significance, the program provides scaling calculations for mineral species not normally addressed in commercial programs, including aluminum, iron, and phosphate species. In addition, ASTM calculations for common species such as calcium sulfate (CaSO{sub 4}{times}2H{sub 2}O), BaSO{sub 4}, SrSO{sub 4}, SiO{sub 2}, and LSI are also provided. Scaling calculations in commercial membrane design programs are normally limited to the common minerals and typically follow basic ASTM methods, which are for the most part graphical approaches adapted to curves. In TFSP, the scaling calculations for the less common minerals use subsets of the USGS PHREEQE and WATEQ4F databases and use the same general calculational approach as PHREEQE and WATEQ4F. The activities of ion complexes are calculated iteratively. Complexes that are unlikely to form in significant concentration were eliminated to simplify the calculations. The calculation provides the distribution of ions and ion complexes that is used to calculate an effective ion product ''Q.'' The effective ion product is then compared to temperature adjusted solubility products (Ksp's) of solids in order to calculate a Saturation Index (SI) for each solid of
Parellel beam dynamics calculations on high performance computers
Ryne, R.; Habib, S.
1996-12-01
Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000-100,000 particles, this represents an increase of 3-4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10`s of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies.
User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics
NASA Technical Reports Server (NTRS)
Yasue, M.
1974-01-01
A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.
Dynamic social power modulates neural basis of math calculation.
Harada, Tokiko; Bridge, Donna J; Chiao, Joan Y
2012-01-01
Both situational (e.g., perceived power) and sustained social factors (e.g., cultural stereotypes) are known to affect how people academically perform, particularly in the domain of mathematics. The ability to compute even simple mathematics, such as addition, relies on distinct neural circuitry within the inferior parietal and inferior frontal lobes, brain regions where magnitude representation and addition are performed. Despite prior behavioral evidence of social influence on academic performance, little is known about whether or not temporarily heightening a person's sense of power may influence the neural bases of math calculation. Here we primed female participants with either high or low power (LP) and then measured neural response while they performed exact and approximate math problems. We found that priming power affected math performance; specifically, females primed with high power (HP) performed better on approximate math calculation compared to females primed with LP. Furthermore, neural response within the left inferior frontal gyrus (IFG), a region previously associated with cognitive interference, was reduced for females in the HP compared to LP group. Taken together, these results indicate that even temporarily heightening a person's sense of social power can increase their math performance, possibly by reducing cognitive interference during math performance.
Dynamic social power modulates neural basis of math calculation
Harada, Tokiko; Bridge, Donna J.; Chiao, Joan Y.
2013-01-01
Both situational (e.g., perceived power) and sustained social factors (e.g., cultural stereotypes) are known to affect how people academically perform, particularly in the domain of mathematics. The ability to compute even simple mathematics, such as addition, relies on distinct neural circuitry within the inferior parietal and inferior frontal lobes, brain regions where magnitude representation and addition are performed. Despite prior behavioral evidence of social influence on academic performance, little is known about whether or not temporarily heightening a person's sense of power may influence the neural bases of math calculation. Here we primed female participants with either high or low power (LP) and then measured neural response while they performed exact and approximate math problems. We found that priming power affected math performance; specifically, females primed with high power (HP) performed better on approximate math calculation compared to females primed with LP. Furthermore, neural response within the left inferior frontal gyrus (IFG), a region previously associated with cognitive interference, was reduced for females in the HP compared to LP group. Taken together, these results indicate that even temporarily heightening a person's sense of social power can increase their math performance, possibly by reducing cognitive interference during math performance. PMID:23390415
Calculation of heat capacities of light and heavy water by path-integral molecular dynamics
NASA Astrophysics Data System (ADS)
Shiga, Motoyuki; Shinoda, Wataru
2005-10-01
As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given reasonable results based on the simple point-charge/flexible potential model. The calculated heat capacities (divided by the Boltzmann constant) in the quantum simulation are 3.1 in the vapor H2O at 300 K, 6.9 in the liquid H2O at 300 K, and 4.1 in the ice IhH2O at 250 K, respectively, which are comparable to the experimental data of 3.04, 8.9, and 4.1, respectively. The quantum simulation also reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than that of H2O, while it is 13% higher in the experiment. The results demonstrate that the path-integral simulation is a promising approach to quantitatively evaluate the heat capacities for molecular systems, taking account of quantum-mechanical vibrations as well as strongly anharmonic motions.
SPREADSHEET BASED SCALING CALCULATIONS AND MEMBRANE PERFORMANCE
Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total...
NASA Astrophysics Data System (ADS)
Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi
2000-12-01
We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.
[Hyponatremia: effective treatment based on calculated outcomes].
Vervoort, G; Wetzels, J F M
2006-09-30
A 78-year-old man was treated for symptomatic hyponatremia. Despite administration of an isotonic NaCl 0.9% solution, plasma sodium remained unchanged due to high concentrations of sodium and potassium in the urine. After infusion of a hypertonic NaCl solution, a satisfactory increase in plasma sodium was reached and symptoms resolved gradually. The hyponatremia was found to be caused by hypothyroidism, which was treated. A 70-year-old female was admitted to the hospital with loss of consciousness and hyponatremia. She was treated initially with a hypertonic NaCl 2.5% solution, which resulted in a steady increase in plasma sodium and a resolution of symptoms. Treatment was changed to an isotonic NaCl 0.9% infusion to attenuate the rise of serum sodium. Nevertheless plasma sodium increased too rapidly due to increased diuresis and reduced urinary sodium and potassium excretion. A slower increase in plasma sodium was achieved by administering a glucose 5% infusion. Hyponatremia is frequently observed in hospitalised patients. It should be treated effectively, and the rate of correction should be adapted to the clinical situation. Effective treatment is determined by calculating changes in effective osmoles and the resulting changes in the distribution of water over extra- and intracellular spaces. Changes in urine production and urinary excretion of sodium and potassium should be taken into account.
Calculational investigation of impact cratering dynamics - Early time material motions
NASA Technical Reports Server (NTRS)
Thomsen, J. M.; Austin, M. G.; Ruhl, S. F.; Schultz, P. H.; Orphal, D. L.
1979-01-01
Early time two-dimensional finite difference calculations of laboratory-scale hypervelocity (6 km/sec) impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed and the resulting material motions analyzed. Results show that the initial jetting of vaporized target material is qualitatively similar to experimental observation. The velocity flow field developed within the target is shown to have features quite similar to those found in calculations of near-surface explosion cratering. Specific application of Maxwell's analytic Z-Model (developed to interpret the flow fields of near-surface explosion cratering calculations), shows that this model can be used to describe the flow fields resulting from the impact cratering calculations, provided that the flow field center is located beneath the target surface, and that application of the model is made late enough in time that most of the projectile momentum has been dissipated.
Kuo, Nathanael Prince, Jerry L.; Dehghan, Ehsan; Deguet, Anton; Mian, Omar Y.; Le, Yi; Song, Danny Y.; Burdette, E. Clif; Fichtinger, Gabor; Lee, Junghoon
2014-09-15
Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.
Calculation of structural dynamic forces and stresses using mode acceleration
NASA Technical Reports Server (NTRS)
Blelloch, Paul
1989-01-01
While the standard mode acceleration formulation in structural dynamics has often been interpreted to suggest that the reason for improved convergence obtainable is that the dynamic correction factor is divided by the modal frequencies-squared, an alternative formulation is presented which clearly indicates that the only difference between mode acceleration and mode displacement data recovery is the addition of a static correction term. Attention is given to the advantages in numerical implementation associated with this alternative, as well as to an illustrative example.
NASA Astrophysics Data System (ADS)
Shuvaev, Andrey; Pechurkin, Nickolay
Calculations of the dynamics of biological capacity (BC) and the ecological footprint (EF) is necessary to quantify the predictions and options to both natural and artificial ecosystems at different levels of the hierarchy. The magnitude of the BC as characteristic of the potential possibilities of the system is determined according to the integrated monitoring of physiological state, or photosynthetic activity, "green area" of the ecosystem. The quantity of the EF is defined as the amount required in the functioning of the system, including the production of the required products and degradation disposal unit. In our study we consider an example of the algorithm for calculating the dynamics of BC and EF for the quantification of the Krasnoyarsk Territory loaded as the natural ecosystem. The main burden was determined by EF, non-utilized emissions of carbon dioxide in the operation of energy businesses in the region. To verify the relevant calculations for BC processed data to ground and space monitor vegetation core areas of the province. In particular, the net primary production is calculated on the basis of the relative normalized vegetation index - NDVI (Normalized Difference Vegetation Index) based on satellite data A comparative evaluation of the contribution of each of the ways to generate energy (thermal and hydro ) in environmental load was made. A comparison of natural ecosystems and loaded specially created life-support systems in space and on the dynamics of BC/EF gives perspective to quantify the predictions and options for development of systems of different levels of the hierarchy. This work was supported by the Russian Foundation for Basic Research, project number 13-06-00060.
Li Bin; Han Keli
2008-03-21
A theoretical investigation on the nonadiabatic processes of the full three-dimensional D{sup +}+H{sub 2} and H{sup +}+D{sub 2} reaction systems has been performed by using trajectory surface hopping (TSH) method based on the Zhu-Nakamura (ZN) theory. This ZN-TSH method refers to not only classically allowed hops but also classically forbidden hops. The potential energy surface constructed by Kamisaka et al. is employed in the calculation. A new iterative method is proposed to yield the two-dimensional seam surface from the topography of the adiabatic potential surfaces, in which the inconvenience of directly solving the first-order partial differential equation is avoided. The cross sections of these two systems are calculated for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, for ground rovibrational state of H{sub 2} or D{sub 2}. Also, this study provides reaction probabilities of these three processes for the total angular momentum J=0 and ground initial vibrational state of H{sub 2} or D{sub 2}. The calculated results from ZN-TSH method are in good agreement with the exact quantum calculations and the experimental measurements.
Ab initio calculations of correlated electron dynamics in ultrashort pulses
NASA Astrophysics Data System (ADS)
Feist, Johannes
2010-03-01
The availability of ultrashort and intense light pulses on the femtosecond and attosecond timescale promises to allow to directly probe and control electron dynamics on their natural timescale. A crucial ingredient to understanding the dynamics in many-electron systems is the influence of electron correlation, induced by the interelectronic repulsion. In order to study electron correlation in ultrafast processes, we have implemented an ab initio simulation of the two-electron dynamics in helium atoms. We solve the time-dependent Schr"odinger equation in its full dimensionality, with one temporal and five spatial degrees of freedom in linearly polarized laser fields. In our computational approach, the wave function is represented through a combination of time-dependent close coupling with the finite element discrete variable representation, while time propagation is performed using an Arnoldi-Lanczos approximation with adaptive step size. This approach is optimized to allow for efficient parallelization of the program and has been shown to scale linearly using up to 1800 processor cores for typical problem sizes. This has allowed us to perform highly accurate and well- converged computations for the interaction of ultrashort laser pulses with He. I will present some recent results on using attosecond and femtosecond pulses to probe and control the temporal structure of the ionization process. This work was performed in collaboration with Stefan Nagele, Renate Pazourek, Andreas Kaltenb"ack, Emil Persson, Barry I. Schneider, Lee A. Collins, and Joachim Burgd"orfer.
An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory.
Shiraishi, Fumihide; Hatoh, Yuji; Irie, Toshinori
2005-05-07
Biochemical systems theory (BST) characterizes a given biochemical system based on the logarithmic gains, rate-constant sensitivities and kinetic-order sensitivities defined at a steady state. This paper describes an efficient method for calculation of the time courses of logarithmic gains, i.e. dynamic logarithmic gains L(Xi, Xj; t), which expresses the percentage change in the value of a dependent variable Xi at a time t in response to an infinitesimal percentage change in the value of an independent variable Xj at t=0. In this method, one first recasts the ordinary differential equations for the dependent variables into an exact canonical nonlinear representation (GMA system) through appropriate transformations of variables. Owing to the structured mathematical form of this representation, the recast system can be fully described by a set of numeric parameters, and the differential equations for the dynamic logarithmic gains can be set up automatically without resource to computer algebra. A simple general-purpose computer program can thus be written that requires only the relevant numeric parameters as input to calculate the time courses of the variables and of the dynamic logarithmic gains for both concentrations and fluxes. Unlike other methods, the proposed method does not require to derive any expression for the partial differentiation of flux expressions with respect to each independent variable. The proposed method has been applied to two kinds of reaction models to elucidate its usefulness.
NASA Technical Reports Server (NTRS)
Ray, Ronald J.
1994-01-01
New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.
Analysis of protein dynamics using local-DME calculations.
Wu, Di; Smith, Stephen; Mahan, Hannah; Jernigan, Robert L
2011-01-01
Flexibility and dynamics of protein structures are reflected in the B-factors and order parameters obtained experimentally with X-ray crystallography and Nuclear Magnetic Resonance (NMR). Methods such as Normal Mode Analysis (NMA) and Elastic Network Models (ENM) can be used to predict the fluctuations of protein structures for either atomic level or coarse-grained structures. Here, we introduce the Local-Distance Matrix Error (DME), an efficient and simple analytic method to study the fluctuations of protein structures, especially for the ensembles of NMR-determined protein structures. Comparisons with the fluctuations obtained by experiments and other by computations show strong correlations.
Calculations of the dynamic dipole polarizabilities for the Li+ ion
NASA Astrophysics Data System (ADS)
Zhang, Yong-Hui; Tang, Li-Yan; Zhang, Xian-Zhou; Shi, Ting-Yun
2016-10-01
The B-spline configuration-interaction method is applied to the investigations of dynamic dipole polarizabilities for the four lowest triplet states (2 3S, 33S, 23P, and 33P) of the Li+ ion. The accurate energies for the triplet states of n 3S, n 3P, and n 3D, the dipole oscillator strengths for 23S(33S) → n 3P, 23P(33P) → n 3S, and 23P(33P) → n 3D transitions, with the main quantum number n up to 10 are tabulated for references. The dynamic dipole polarizabilities for the four triplet states under a wide range of photon energy are also listed, which provide input data for analyzing the Stark shift of the Li+ ion. Furthermore, the tune-out wavelengths in the range from 100 nm to 1.2 μm for the four triplet states, and the magic wavelengths in the range from 100 nm to 600 nm for the 23S → 33S, 23S → 23P, and 23S → 33P transitions are determined accurately for the experimental design of the Li+ ion. Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11474319, 11274348, and 91536102).
Computational methods. [Calculation of dynamic loading to offshore platforms
Maeda, H. . Inst. of Industrial Science)
1993-02-01
With regard to the computational methods for hydrodynamic forces, first identification of marine hydrodynamics in offshore technology is discussed. Then general computational methods, the state of the arts and uncertainty on flow problems in offshore technology in which developed, developing and undeveloped problems are categorized and future works follow. Marine hydrodynamics consists of water surface and underwater fluid dynamics. Marine hydrodynamics covers, not only hydro, but also aerodynamics such as wind load or current-wave-wind interaction, hydrodynamics such as cavitation, underwater noise, multi-phase flow such as two-phase flow in pipes or air bubble in water or surface and internal waves, and magneto-hydrodynamics such as propulsion due to super conductivity. Among them, two key words are focused on as the identification of marine hydrodynamics in offshore technology; they are free surface and vortex shedding.
Belyaev, Andrey K.; Domcke, Wolfgang; Lasser, Caroline Trigila, Giulio
2015-03-14
The Landau–Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs a recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Three different time scales are detected for the nuclear dynamics: Ultrafast Jahn–Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; and relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs. Beyond 100 fs, the adiabatic electronic populations are nearly constant due to a dynamic equilibrium between the three states. The ultrafast nonradiative decay of the excited-state populations provides a qualitative explanation of the experimental evidence that the ammonia cation is nonfluorescent.
A Brownian Dynamics Approach to ESR Line Shape Calculations
NASA Astrophysics Data System (ADS)
Wright, Matthew P.
The work presented in this thesis uses a Monte Carlo technique to simulate spectra for 14N spin-labels and 15N spin labels. The algorithm presented here also has the capability to produce simulated spectra for any admixture of 14N and 15N. The algorithm makes use of `iterative loops' to model Brownian rotational diffusion and for the repeated evaluation of the spectral correlation function (relaxation function). The method described in this work starts with a derivation of an angular dependent "Spin Hamiltonian" that when diagonalized yields orientation dependent eigenvalues. The resulting eigenvalue equations are later used to calculate the energy trajectories of a nitroxide spin-label undergoing rotational diffusion. The energy trajectories are then used to evaluate the relaxation function. The absorption spectrum is obtained by applying a Fourier transform to the relaxation function. However, the application of the Fourier transform to the relaxation function produces "leakage" effects that manifest as spurious peaks in the first derivative spectrum. To counter "leakage" effects a data windowing function was applied to the relaxation function prior to the Fourier transform. In order to test the accuracy of this algorithm, simulated spectra for 14N, and 15N spin labels diffusing in a glycerol-water mixture as well as a 14N-15N admixture diffusing in the same solvent were produced and compared to experimental spectra. An attempt to quantify the level of agreement was made by calculating the mean square residual of the simulated and experimental spectra. The main spectral features were reproduced with reasonable fidelity by the simulated spectra.
Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm
NASA Technical Reports Server (NTRS)
Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew
2000-01-01
One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous
Ab initio molecular dynamics calculations of ion hydration free energies.
Leung, Kevin; Rempe, Susan B; von Lilienfeld, O Anatole
2009-05-28
We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li(+), Cl(-), and Ag(+) ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (DeltaG(hyd)) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li(+)/Cl(-) and Ag(+)/Cl(-) AIMD DeltaG(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag(+)+Ni(+)-->Ag+Ni(2+) in water. The predictions for this reaction suggest that existing estimates of DeltaG(hyd) for unstable radiolysis intermediates such as Ni(+) may need to be extensively revised.
Ngo, N H; Tran, H; Gamache, R R
2012-04-21
It is well known that the Voigt profile does not well describe the (measured) shapes of isolated lines. This is due to the neglect of the intermolecular collision-induced velocity changes and of the speed dependence of the collisional parameters. In this paper, we present a new line profile model for pure H(2)O which takes both of these effects into account. The speed dependence of the collisional parameters has been calculated by a semi-classical method. The velocity changes have been modeled by using the Keilson-Storer collision kernel with two characteristic parameters. The latter have been deduced from classical molecular dynamics simulations which also indicate that, for pure H(2)O, the correlation between velocity-changing and state-changing collisions is not negligible, a result confirmed by the analysis of measured spectra. A partially correlated speed-dependent Keilson-Storer model has thus been adopted to describe the line-shape. Comparisons between simulated spectra and measurements for four self-broadened lines in the near-infrared at various pressures show excellent agreements.
NASA Astrophysics Data System (ADS)
Ngo, N. H.; Tran, H.; Gamache, R. R.
2012-04-01
It is well known that the Voigt profile does not well describe the (measured) shapes of isolated lines. This is due to the neglect of the intermolecular collision-induced velocity changes and of the speed dependence of the collisional parameters. In this paper, we present a new line profile model for pure H2O which takes both of these effects into account. The speed dependence of the collisional parameters has been calculated by a semi-classical method. The velocity changes have been modeled by using the Keilson-Storer collision kernel with two characteristic parameters. The latter have been deduced from classical molecular dynamics simulations which also indicate that, for pure H2O, the correlation between velocity-changing and state-changing collisions is not negligible, a result confirmed by the analysis of measured spectra. A partially correlated speed-dependent Keilson-Storer model has thus been adopted to describe the line-shape. Comparisons between simulated spectra and measurements for four self-broadened lines in the near-infrared at various pressures show excellent agreements.
Mehrabian, Hatef; Chopra, Rajiv; Martel, Anne L
2013-04-01
Assessing tumor response to therapy is a crucial step in personalized treatments. Pharmacokinetic (PK) modeling provides quantitative information about tumor perfusion and vascular permeability that are associated with prognostic factors. A fundamental step in most PK analyses is calculating the signal that is generated in the tumor vasculature. This signal is usually inseparable from the extravascular extracellular signal. It was shown previously using in vivo and phantom experiments that independent component analysis (ICA) is capable of calculating the intravascular time-intensity curve in dynamic contrast enhanced (DCE)-MRI. A novel adaptive complex independent component analysis (AC-ICA) technique is developed in this study to calculate the intravascular time-intensity curve and separate this signal from the DCE-MR images of tumors. The use of the complex-valued DCE-MRI images rather than the commonly used magnitude images satisfied the fundamental assumption of ICA, i.e., linear mixing of the sources. Using an adaptive cost function in ICA through estimating the probability distribution of the tumor vasculature at each iteration resulted in a more robust and accurate separation algorithm. The AC-ICA algorithm provided a better estimate for the intravascular time-intensity curve than the previous ICA-based method. A simulation study was also developed in this study to realistically simulate DCE-MRI data of a leaky tissue mimicking phantom. The passage of the MR contrast agent through the leaky phantom was modeled with finite element analysis using a diffusion model. Once the distribution of the contrast agent in the imaging field of view was calculated, DCE-MRI data was generated by solving the Bloch equation for each voxel at each time point. The intravascular time-intensity curve calculation results were compared to the previously proposed ICA-based intravascular time-intensity curve calculation method that applied ICA to the magnitude of the DCE-MRI data
Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem
NASA Astrophysics Data System (ADS)
Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.
2016-04-01
This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.
A basic insight to FEM_based temperature distribution calculation
NASA Astrophysics Data System (ADS)
Purwaningsih, A.; Khairina
2012-06-01
A manual for finite element method (FEM)-based temperature distribution calculation has been performed. The code manual is written in visual basic that is operated in windows. The calculation of temperature distribution based on FEM has three steps namely preprocessor, processor and post processor. Therefore, three manuals are produced namely a preprocessor to prepare the data, a processor to solve the problem, and a post processor to display the result. In these manuals, every step of a general procedure is described in detail. It is expected, by these manuals, the understanding of calculating temperature distribution be better and easier.
Calculated dynamical evolution of the nucleus of comet Hartley 2
NASA Astrophysics Data System (ADS)
Ksanfomality, Leonid
2013-04-01
The nucleus of comet Hartley 2 has a relatively regular dumbbell shape with unequal heads. The narrow part of elongated shape contains a relatively smooth region whose covering material is highly different in its shallow structure compared to other parts of this celestial body. The surface of crudely spherical parts of the nucleus is different from the surface of the "neck", which implies a hypothesis that the shape of the nucleus of Hartley 2 is indicative of destruction of this celestial body occurring in our days. The nucleus rotates around its axis passing through the center of mass, and centrifugal forces arise. This process is hindered by gravitation between parts of the nucleus and gradual slowing of rotation due to body lengthening because of the increase in the moment of inertia (proportional to R2) and due to friction losses in the neck material. We posed the task to determine centrifugal and gravitational forces in the neck (and, respectively, the strains of stretching and compression), the moment of inertia of the body and supply of its rotational energy E, the volume of the nucleus and its average density, and the position of the barycenter and center of rotation. It can be assumed that these forces cause slow but progressive lengthening of the neck which should eventually result in fragmentation of the nucleus. Centrifugal forces can be found as a result of summation of forces produced by parts of the body. According to the calculation model, the total stretching forces in the section passing through the narrowest cut of the neck are 1.21E6 N. The corresponding compression forces in the section passing through the narrow section are 1.04E6 N. The comparison of these values indicates a paradoxical result: stretching strains dominate in the neck, while compressions are dominant in the section passing through the common center of mass. The excess of stretching strains in the neck is 11%. The inference is as follows: the right part of the neck and the
Calculated state densities of aperiodic nucleotide base stacks
NASA Astrophysics Data System (ADS)
Ye, Yuan-Jie; Chen, Run-Shen; Martinez, Alberto; Otto, Peter; Ladik, Janos
2000-05-01
Electronic density of states (DOS) histograms and of the nucleotide base stack regions of a segment of human oncogene (both single and double stranded, in B conformation) and of single-stranded random DNA base stack (also in B conformation), were calculated. The computations were performed with the help of the ab initio matrix block negative factor counting (NFC) method for the DOSs. The neglected effects of the sugar-phosphate chain and the water environment (with the counterions) were assessed on the basis of previous ab initio band structure calculations. Further, in the calculation of single nucleotide base stacks also basis set and correlation effects have been investigated. In the case of a single strand the level spacing widths of the allowed regions and the fundamental gap were calculated also with Clementi's double ς basis and corrected for correlation at the MP2 level. The inverse interaction method was applied for the study of Anderson localization.
Self-consistent calculations of transport and magnetization dynamics
NASA Astrophysics Data System (ADS)
Lee, Kyung-Jin
2010-03-01
In layered structures like spin-valves where the current flows perpendicular to the plane, the direction and magnitude of the spin transfer torque (STT) at a point r is decided by the spin accumulation (SA) and associated spin current at the same point r. Initial STT theories commonly assumed that the dependence of SA on magnetization (M) is local and thus essentially fixed by the local M at the same point r. However, its dependence on M is inherently nonlocal because of the 3-dimensional spin diffusion [1]. In other words, when the conduction electron arrives at a point r on the ferromagnet-normal metal interface, the reflected (transmitted) electron takes the spin direction anti-parallel (parallel) to the local M at the point r, diffuses along the interface, and then transfers its spin-angular momentum to another local M at a far away point from the r. That is, SA at a point r is affected by all local M's at other points. The local assumption becomes really invalid when M is inhomogeneous. Note that micromagnetic and time-resolved imaging studies [2] have revealed excitations of incoherent spin-waves and thus inhomogeneous M due to STT. In this situation, the effect of SA on M (=STT) and the nonlocal effect of M on the SA should be treated on an equal footing. The conventional treatments, which ignore the latter part, actually deal with only half of the relevant parts. Therefore, the self-consistent feedback between inhomogenous M and STT through the nonlocal effect should be considered. In this talk, we present self-consistent calculation results that consider the feedback, which allows us to understand peculiar spin-wave modes in a single ferromagnet and a spin-valve. If time is allowed, we extend our talk to other feedback mechanisms which result in the oscillatory STT due to ballistic spin transport [3] and the damping tensor due to the spin-motive force [4] in a very narrow magnetic domain wall. These works have been done in collaboration with Hyun-Woo Lee
Web based brain volume calculation for magnetic resonance images.
Karsch, Kevin; Grinstead, Brian; He, Qing; Duan, Ye
2008-01-01
Brain volume calculations are crucial in modern medical research, especially in the study of neurodevelopmental disorders. In this paper, we present an algorithm for calculating two classifications of brain volume, total brain volume (TBV) and intracranial volume (ICV). Our algorithm takes MRI data as input, performs several preprocessing and intermediate steps, and then returns each of the two calculated volumes. To simplify this process and make our algorithm publicly accessible to anyone, we have created a web-based interface that allows users to upload their own MRI data and calculate the TBV and ICV for the given data. This interface provides a simple and efficient method for calculating these two classifications of brain volume, and it also removes the need for the user to download or install any applications.
Chien; Gau; Chang; Stetsko
1999-07-01
A dynamical calculation scheme that employs Cartesian coordinates with a z axis normal to the crystal surface to define polarization unit vectors and wavefields is applied to interpret the intensity distribution of crystal truncation rods for surfaces and interfaces. A comparison between this calculation scheme and the asymptotic iteration approach using the conventional presentation of the polarization components of the wavefields, with the sigma and pi components perpendicular to the wavevectors, is presented. It is found that the use of Cartesian coordinate systems can provide correct boundary conditions in determining the wavefield amplitudes, thus leading to a rigorous and general calculation scheme for dynamical diffraction from surfaces and interfaces.
NASA Astrophysics Data System (ADS)
Hu, Wei-Ping; Lynch, Gillian C.; Liu, Yi-Ping; Rossi, Ivan; Stewart, James J. P.; Steckler, Rozeanne; Garrett, Bruce C.; Isaacson, Alan D.; Lu, Da-hong; Melissas, Vasilios S.; Truhlar, Donald G.
1995-08-01
MORATE (Molecular Orbital RATE calculations) is a computer program for direct dynamics calculations of unimolecular and bimolecular rate constants of gas-phase chemical reactions involving atoms, diatoms, or polyatomic species. The dynamical methods used are conventional or variational transition state theory and multidimensional semiclassical approximations for tunneling and nonclassical reflection. Variational transition states are found by a one-dimensional search of generalized-transition-state dividing surfaces perpendicular to the minimum-energy path, and tunneling probabilities are evaluated by multidimensional semiclassical algorithms, including the small-curvature and large-curvature tunneling approximations and the microcanonical optimized multidimensional tunneling approximation. The computer program is a conventiently interfaced package consisting of the POLYRATE program, version 6.5, for dynamical rate constant calculations, and the MOPAC program, version 5.05mn, for semiempirical electronic structure computations. In single-level mode, the potential energies, gradients, and higher derivatives of the potential are computed whenever needed by electronic structure calculations employing semiempirical molecular orbital theory without the intermediary of a global or semiglobal fit. All semiempirical methods available in MOPAC, in particular MINDO/3, MNDO, AM1, and PM3, can be called on to calculate the potential, gradient, or Hessian, as required at various steps of the dynamics calculations, and, in addition, the code has flexible options for electronic structure calculations with neglect of diatomic differential overlap and specific reaction parameters (NDDO-SRP). In dual-level mode, MINDO/3, MNDO, AM1, PM3, or NDDO-SRP is used as a lower level to calculate the reaction path, and interpolated corrections to energies and frequencies are added; these corrections are based on higher-level data read from an external file.
Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils
NASA Astrophysics Data System (ADS)
Sedy, Katrin; Freudenschuss, Alexandra; Zethner, Gehard; Spiegel, Heide; Franko, Uwe; Gründling, Ralf; Xaver Hölzl, Franz; Preinstorfer, Claudia; Haslmayr, Hans Peter; Formayer, Herbert
2014-05-01
Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils. The project funded by the Klima- und Energiefonds, Austrian Climate Research Programme, 4th call Authors: Katrin Sedy, Alexandra Freudenschuss, Gerhard Zethner (Environment Agency Austria), Heide Spiegel (Austrian Agency for Health and Food Safety), Uwe Franko, Ralf Gründling (Helmholtz Centre for Environmental Research) Climate change will affect plant productivity due to weather extremes. However, adverse effects could be diminished and satisfying production levels may be maintained with proper soil conditions. To sustain and optimize the potential of agricultural land for plant productivity it will be necessary to focus on preserving and increasing soil organic carbon (SOC). Carbon sequestration in agricultural soils is strongly influenced by management practice. The present management is affected by management practices that tend to speed up carbon loss. Crop rotation, soil cultivation and the management of crop residues are very important measures to influence carbon dynamics and soil fertility. For the future it will be crucial to focus on practical measures to optimize SOC and to improve soil structure. To predict SOC turnover the existing humus balance model the application of the "Carbon Candy Balance" was verified by results from Austrian long term field experiments and field data of selected farms. Thus the main aim of the project is to generate a carbon balancing tool box that can be applied in different agricultural production regions to assess humus dynamics due to agricultural management practices. The toolbox will allow the selection of specific regional input parameters for calculating the C-balance at field level. However farmers or other interested user can also apply their own field data to receive the result of C-dynamics under certain management practises within the next 100 years. At regional level the impact of predefined changes in agricultural management
40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle...
40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle...
Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity
Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin
2015-01-01
We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806
Calculations of the Dynamic Stress of Several Airplane Wings in Various Gusts
NASA Technical Reports Server (NTRS)
Pierce, Harold B.
1948-01-01
A series of calculations of the dynamic response of airplane wings to gusts were made with the purpose of showing the relative response of a reference airplane, the DC-3 airplane, and of newer types of airplanes represented by the DC-4, DC-6, and L-49 airplanes. Additional calculations were made for the DC-6 airplane to show the effects of speed and altitude. On the basis of the method of calculation used and the conditions selected for analysis, it is indicated that: 1) The newer airplanes show appreciably greater dynamic stress in gusts then does the reference airplane; 2) Increasing the forward speed or the operating altitude results in an increase of the dynamic stress ratio for the gust with a gradient distance of 10 chords.
Cryptosystems based on chaotic dynamics
McNees, R.A.; Protopopescu, V.; Santoro, R.T.; Tolliver, J.S.
1993-08-01
An encryption scheme based on chaotic dynamics is presented. This scheme makes use of the efficient and reproducible generation of cryptographically secure pseudo random numbers from chaotic maps. The result is a system which encrypts quickly and possesses a large keyspace, even in small precision implementations. This system offers an excellent solution to several problems including the dissemination of key material, over the air rekeying, and other situations requiring the secure management of information.
Qin, Wu; Li, Xin; Bian, Wen-Wen; Fan, Xiu-Juan; Qi, Jing-Yao
2010-02-01
There is increasing attention in the unique biological and medical properties of graphene, and it is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. Despite the importance of biomolecules-graphene interactions, a detailed understanding of the adsorption mechanism and features of biomolecules onto the surfaces of graphene is lacking. To address this, we have performed density functional theory (DFT) and molecular dynamics (MD) methods exploring the adsorption geometries, adsorption energies, electronic band structures, adsorption isotherms, and adsorption dynamics of l-leucine (model biomolecule)/graphene composite system. DFT calculations confirmed the energetic stability of adsorption model and revealed that electronic structure of graphene can be controlled by the adsorption direction of l-leucine. MD simulations further investigate the potential energy and van der Waals energy for the interaction processes of l-leucine/graphene system at different temperatures and pressures. We find that the van der Waals interaction between the l-leucine and the graphene play a dominant role in the adsorption process under a certain range of temperature and pressure, and the l-leucine molecule could be adsorbed onto graphene spontaneously in aqueous solution.
Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel
2007-06-21
The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.
Software-Based Visual Loan Calculator For Banking Industry
NASA Astrophysics Data System (ADS)
Isizoh, A. N.; Anazia, A. E.; Okide, S. O. 3; Onyeyili, T. I.; Okwaraoka, C. A. P.
2012-03-01
industry is very necessary in modern day banking system using many design techniques for security reasons. This paper thus presents the software-based design and implementation of a Visual Loan calculator for banking industry using Visual Basic .Net (VB.Net). The fundamental approach to this is to develop a Graphical User Interface (GUI) using VB.Net operating tools, and then developing a working program which calculates the interest of any loan obtained. The VB.Net programming was done, implemented and the software proved satisfactory.
Brittleness index calculation and evaluation for CBM reservoirs based on AVO simultaneous inversion
NASA Astrophysics Data System (ADS)
Wu, Haibo; Dong, Shouhua; Huang, Yaping; Wang, Haolong; Chen, Guiwu
2016-11-01
In this paper, a new approach is proposed for coalbed methane (CBM) reservoir brittleness index (BI) calculations. The BI, as a guide for fracture area selection, is calculated by dynamic elastic parameters (dynamic Young's modulus Ed and dynamic Poisson's ratio υd) obtained from an amplitude versus offset (AVO) simultaneous inversion. Among the three different classes of CBM reservoirs distinguished on the basis of brittleness in the theoretical part of this study, class I reservoirs with high BI values are identified as preferential target areas for fracturing. Therefore, we derive the AVO approximation equation expressed by Ed and υd first. This allows the direct inversion of the dynamic elastic parameters through the pre-stack AVO simultaneous inversion, which is based on Bayes' theorem. Thereafter, a test model with Gaussian white noise and a through-well seismic profile inversion is used to demonstrate the high reliability of the inversion parameters. Accordingly, the BI of a CBM reservoir section from the Qinshui Basin is calculated using the proposed method and a class I reservoir section detected through brittleness evaluation. From the outcome of this study, we believe the adoption of this new approach could act as a guide and reference for BI calculations and evaluations of CBM reservoirs.
Gamma Knife radiosurgery with CT image-based dose calculation.
Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful
2015-11-01
The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution
Gamma Knife radiosurgery with CT image-based dose calculation.
Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful
2015-11-08
The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution
A method of solid-solid phase equilibrium calculation by molecular dynamics
NASA Astrophysics Data System (ADS)
Karavaev, A. V.; Dremov, V. V.
2016-12-01
A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.
NASA Technical Reports Server (NTRS)
Campbell, John P; Mckinney, Marion O
1952-01-01
A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.
NASA Astrophysics Data System (ADS)
Imaoka, Haruna; Kinugawa, Kenichi
2017-03-01
Thermal conductivity, shear viscosity, and bulk viscosity of normal liquid 4He at 1.7-4.0 K are calculated using path integral centroid molecular dynamics (CMD) simulations. The calculated thermal conductivity and shear viscosity above lambda transition temperature are on the same order of magnitude as experimental values, while the agreement of shear viscosity is better. Above 2.3 K the CMD well reproduces the temperature dependences of isochoric shear viscosity and of the time integral of the energy current and off-diagonal stress tensor correlation functions. The calculated bulk viscosity, not known in experiments, is several times larger than shear viscosity.
ERIC Educational Resources Information Center
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2012-01-01
The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1st-grade calculations (CAs) and word problems (WPs) development, while controlling for the role of traditional assessments. Among 184 1st graders, predictors (DA, Quantity…
NASA Technical Reports Server (NTRS)
Svizhenko, Alexel; Anantram, M. P.; Maiti, Amitesh
2003-01-01
This paper presents viewgraphs on the modeling of the electromechanical response of carbon nanotubes, utilizing molecular dynamics and transport calculations. The topics include: 1) Simulations of the experiment; 2) Effect of diameter, length and temperature; and 3) Study of sp3 coordination-"The Table experiment".
NASA Astrophysics Data System (ADS)
Truong, Thanh N.; Lu, Da-hong; Lynch, Gillian C.; Liu, Yi-Ping; Melissas, Vasilios S.; Stewart, James J. P.; Steckler, Rozeanne; Garrett, Bruce C.; Isaacson, Alan D.; Gonzalez-Lafont, Angels; Rai, Sachchida N.; Hancock, Gene C.; Joseph, Tomi; Truhlar, Donald G.
1993-04-01
We present a computer program, MORATE (Molecular Orbital RATE calculations), for direct dynamics calculations of unimolecular and bimolecular rate constants of gas-phase chemical reactions involving atoms, diatoms, or polyatomic species. The potential energies, gradients, and higher derivatives of the potential are calculated whenever needed by semiempirical molecular orbital theory without the intermediary of a global or semiglobal fit. The dynamical methods used are conventional or variational transition state theory and multidimensional semiclassical approximations for tunneling and nonclassical reflection. The computer program is conveniently interfaced package consisting of the POLYRATE program, version 4.5.1, for dynamical rate calculations, and the MOPAC program, version 5.03, for semiempirical electronic structure computations. All semiempirical methods available in MOPAC, in particular MINDO/3, MNDO, AM1, and PM3, can be called on to calculate the potential and gradient. Higher derivatives of the potential are obtained by numerical derivatives of the gradient. Variational transition states are found by a one-dimensional search of generalized-transition-state dividing surfaces perpendicular to the minimum-energy path, and tunneling probabilities are evaluated by numerical quadrature.
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
Nonlinear dynamics based digital logic and circuits
Kia, Behnam; Lindner, John. F.; Ditto, William L.
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two. PMID:26029096
Díaz, Natalia; Suárez, Dimas; Sordo, Tomás L
2003-11-30
Herein, we present theoretical results on the conformational properties of benzylpenicillin, which are characterized by means of quantum chemical calculations (MP2/6-31G* and B3LYP/6-31G*) and classical molecular dynamics simulations (5 ns) both in the gas phase and in aqueous solution. In the gas phase, the benzylpenicillin conformer in which the thiazolidine ring has the carboxylate group oriented axially is the most favored one. Both intramolecular CH. O and dispersion interactions contribute to stabilize the axial conformer with respect to the equatorial one. In aqueous solution, a molecular dynamics simulation predicts a relative population of the axial:equatorial conformers of 0.70:0.30 in consonance with NMR experimental data. Overall, the quantum chemical calculations as well as the simulations give insight into substituent effects, the conformational dynamics of benzylpenicillin, the frequency of ring-puckering motions, and the correlation of side chain and ring-puckering motions.
Calculating track-based observables for the LHC.
Chang, Hsi-Ming; Procura, Massimiliano; Thaler, Jesse; Waalewijn, Wouter J
2013-09-06
By using observables that only depend on charged particles (tracks), one can efficiently suppress pileup contamination at the LHC. Such measurements are not infrared safe in perturbation theory, so any calculation of track-based observables must account for hadronization effects. We develop a formalism to perform these calculations in QCD, by matching partonic cross sections onto new nonperturbative objects called track functions which absorb infrared divergences. The track function Ti(x) describes the energy fraction x of a hard parton i which is converted into charged hadrons. We give a field-theoretic definition of the track function and derive its renormalization group evolution, which is in excellent agreement with the pythia parton shower. We then perform a next-to-leading order calculation of the total energy fraction of charged particles in e+ e-→ hadrons. To demonstrate the implications of our framework for the LHC, we match the pythia parton shower onto a set of track functions to describe the track mass distribution in Higgs plus one jet events. We also show how to reduce smearing due to hadronization fluctuations by measuring dimensionless track-based ratios.
NASA Astrophysics Data System (ADS)
Cao, Jun; Xie, Zhi-Zhong; Yu, Xiaodong
2016-08-01
In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S2 state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the Osbnd C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2sbnd 5 bond formation. The azirine and bicyclic intermediates in the S0 state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T1 state have been proposed for these phototranspositions.
NASA Astrophysics Data System (ADS)
Landry, E. S.; McGaughey, A. J. H.
2009-10-01
The accuracies of two theoretical expressions for thermal boundary resistance are assessed by comparing their predictions to independent predictions from molecular dynamics (MD) simulations. In one expression (RE) , the phonon distributions are assumed to follow the equilibrium, Bose-Einstein distribution, while in the other expression (RNE) , the phonons are assumed to have nonequilibrium, but bulk-like distributions. The phonon properties are obtained using lattice dynamics-based methods, which assume that the phonon interface scattering is specular and elastic. We consider (i) a symmetrically strained Si/Ge interface, and (ii) a series of interfaces between Si and “heavy-Si,” which differs from Si only in mass. All of the interfaces are perfect, justifying the assumption of specular scattering. The MD-predicted Si/Ge thermal boundary resistance is temperature independent and equal to 3.1×10-9m2-K/W below a temperature of ˜500K , indicating that the phonon scattering is elastic, as required for the validity of the theoretical calculations. At higher-temperatures, the MD-predicted Si/Ge thermal boundary resistance decreases with increasing temperature, a trend we attribute to inelastic scattering. For the Si/Ge interface and the Si/heavy-Si interfaces with mass ratios greater than two, RE is in good agreement with the corresponding MD-predicted values at temperatures where the interface scattering is elastic. When applied to a system containing no interface, RE is erroneously nonzero due to the assumption of equilibrium phonon distributions on either side of the interface. While RNE is zero for a system containing no interface, it is 40%-60% less than the corresponding MD-predicted values for the Si/Ge interface and the Si/heavy-Si interfaces at temperatures where the interface scattering is elastic. This inaccuracy is attributed to the assumption of bulk-like phonon distributions on either side of the interface.
Seibt, Joachim; Pullerits, Tõnu
2014-09-21
While the theoretical description of population transfer subsequent to electronic excitation in combination with a line shape function description of vibrational dynamics in the context of 2D-spectroscopy is well-developed under the assumption of different timescales of population transfer and fluctuation dynamics, the treatment of the interplay between both kinds of processes lacks a comprehensive description. To bridge this gap, we use the cumulant expansion approach to derive response functions, which account for fluctuation dynamics and population transfer simultaneously. We compare 2D-spectra of a model system under different assumptions about correlations between fluctuations and point out under which conditions a simplified treatment is justified. Our study shows that population transfer and dissipative fluctuation dynamics cannot be described independent of each other in general. Advantages and limitations of the proposed calculation method and its compatibility with the modified Redfield description are discussed.
Nakai, Hiromi; Yoshikawa, Takeshi; Nonaka, Yutaro
2017-01-05
This study presents an efficient algorithm to search for the poles of dynamic polarizability to obtain excited states of large systems with nonlocal excitation nature. The present algorithm adopts a homogeneous search with a constant frequency interval and a bisection search to achieve high accuracy. Furthermore, the subtraction process of the information about the detected poles from the total dynamic polarizability is used to extract the undetected pole contributions. Numerical assessments confirmed the accuracy and efficiency of the present algorithm in obtaining the excitation energies and oscillator strengths of all dipole-allowed excited states. A combination of the present pole-search algorithm and divide-and-conquer-based dynamic polarizability calculations was found to be promising to treat nonlocal excitations of large systems. © 2016 Wiley Periodicals, Inc.
All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution
Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S.; Fujimoto, K.; Nakagawa, A.; Nomoto, A.
2014-10-28
Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.
All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution
NASA Astrophysics Data System (ADS)
Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.
2014-10-01
Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.
NASA Astrophysics Data System (ADS)
Zapol, Peter; Karpeyev, Dmitry; Maheshwari, Ketan; Zhong, Xiaoliang; Narayanan, Badri; Sankaranarayanan, Subramanian; Wilde, Michael; Heinonen, Olle; Rungger, Ivan
2015-03-01
The electronic conduction in Hf-oxide heterostructures for use in, e.g., resistive switching devices, depends sensitively on local oxygen stoichiometry and interactions at interfaces with metal electrodes. In order to model the electronic structure of different disordered configurations near interfaces, we have combined molecular dynamics (MD) simulations with first-principle based non-equilibrium Green's functions (NEGF) methods, including self-interaction corrections. We have developed an approach to generating automated workflows that combine MD and NEGF computations over many parameter values using the Swift parallel scripting language. A sequence of software tools transforms the result of one calculation into the input of the next allowing for a high-throughput concurrent parameter sweep. MD simulations generate systems with quenched disorder, which are then directly fed to NEGF and on to postprocessing. Different computations can be run on different computer platforms matching the computational load to the hardware resources. We will demonstrate results for metal-HfO2-metal heterostructures obtained using this workflow. Argonne National Laboratory's work was supported under U.S. Department of Energy Contract DE-AC02-06CH11357.
Dynamic Digital Channelizer Based on Spectrum Sensing.
Hu, Junpeng; Zuo, Zhen; Huang, Zhiping; Dong, Zhi
2015-01-01
The ability to efficiently channelize a received signal with dynamic sub-channel bandwidths is a key requirement of software defined radio (SDR) systems. The digital channelizer, which is used to split the received signal into a number of sub-channels, plays an important role in SDR systems. In this paper, a design of dynamic digital channelizer is presented. The proposed method is novel in that it employs a cosine modulated filter bank (CMFB) to divide the received signal into multiple frequency sub-bands and a spectrum sensing technique, which is mostly used in cognitive radio, is introduced to detect the presence of signal of each sub-band. The method of spectrum sensing is carried out based on the eigenvalues of covariance matrix of received signal. The ratio of maximum-minimum eigenvalue of each sub-band is vulnerable to noise fluctuation. This paper suggests an optimized method to calculate the ratio of maximum-minimum eigenvalue. The simulation results imply that the design of digital channelizer can effectively separate the received signal with dynamically changeable sub-channel signals.
NASA Astrophysics Data System (ADS)
Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.
2017-01-01
The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.
NASA Astrophysics Data System (ADS)
Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.
2017-03-01
The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.
Techniques for achieving thermal equilibrium in molecular dynamics calculations for solids
NASA Astrophysics Data System (ADS)
Wu, Ernest Yue; Friauf, Robert J.
1990-06-01
We develop techniques for achieving thermal equilibrium in molecular dynamics calculations for solids. Atoms in a Lennard-Jones solid are initially given random velocities and displacements from their equilibrium positions with suitably scaled Maxwellian distributions. A quantitative criterion for thermal equilibrium of the solid is established by using the equipartition of energy theorem. At high temperatures, thermal expansion is studied, and we introduce a method for adjusting the lattice parameter to ensure zero external pressure. The results of molecular dynamics simulations show agreement with experimental data for rare gas and ionic crystals.
A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals
NASA Technical Reports Server (NTRS)
Dietzen, F. J.; Nordmann, R.
1989-01-01
A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.
Dynamical Calculations of bar K and MULTI-bar K Nuclei
NASA Astrophysics Data System (ADS)
Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.
We report on our recent calculations of bar K and multi-bar K nuclei. Calculations were performed fully self-consistently across the periodic table using the relativistic mean-field approach. We aimed at detailed analysis of dynamical processes and various thresholds that determine the K- absorption width. Further, we studied the behavior of the nuclear medium under the influence of increasing strangeness in order to search for bar K condensation precursor phenomena. Last, we explored possibly self-bound strange hadronic configurations consisting of neutrons and bar K0 mesons and studied their properties.
NASA Astrophysics Data System (ADS)
Chao, S.; Jiao, C. W.; Liu, S.
2016-08-01
At this stage of the development of China's highway, the quantity and size of traffic signs are growing with the guiding information increasing. In this paper, a calculation method is provided for special sign board with reducing wind load measures to save construction materials and cost. The empirical model widely used in China is introduced for normal sign structure design. After that, this paper shows a computational fluid dynamics method, which can calculate both normal and special sign structures. These two methods are compared and analyzed with examples to ensure the applicability and feasibility of CFD method.
Wannier-based calculation of the orbital magnetization in crystals
NASA Astrophysics Data System (ADS)
Lopez, M. G.; Vanderbilt, David; Thonhauser, T.; Souza, Ivo
2012-01-01
We present a first-principles scheme that allows the orbital magnetization of a magnetic crystal to be evaluated accurately and efficiently even in the presence of complex Fermi surfaces. Starting from an initial electronic-structure calculation with a coarse ab initio k-point mesh, maximally localized Wannier functions are constructed and used to interpolate the necessary k-space quantities on a fine mesh, in parallel to a previously developed formalism for the anomalous Hall conductivity [X. Wang, J. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.195118 74, 195118 (2006)]. We formulate our new approach in a manifestly gauge-invariant manner, expressing the orbital magnetization in terms of traces over matrices in Wannier space. Since only a few (e.g., of the order of 20) Wannier functions are typically needed to describe the occupied and partially occupied bands, these Wannier matrices are small, which makes the interpolation itself very efficient. The method has been used to calculate the orbital magnetization of bcc Fe, hcp Co, and fcc Ni. Unlike an approximate calculation based on integrating orbital currents inside atomic spheres, our results nicely reproduce the experimentally measured ordering of the orbital magnetization in these three materials.
Sensor Based Engine Life Calculation: A Probabilistic Perspective
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip
2003-01-01
It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.
Supersampling method for efficient grid-based electronic structure calculations.
Ryu, Seongok; Choi, Sunghwan; Hong, Kwangwoo; Kim, Woo Youn
2016-03-07
The egg-box effect, the spurious variation of energy and force due to the discretization of continuous space, is an inherent vexing problem in grid-based electronic structure calculations. Its effective suppression allowing for large grid spacing is thus crucial for accurate and efficient computations. We here report that the supersampling method drastically alleviates it by eliminating the rapidly varying part of a target function along both radial and angular directions. In particular, the use of the sinc filtering function performs best because as an ideal low pass filter it clearly cuts out the high frequency region beyond allowed by a given grid spacing.
PLUMED: A portable plugin for free-energy calculations with molecular dynamics
NASA Astrophysics Data System (ADS)
Bonomi, Massimiliano; Branduardi, Davide; Bussi, Giovanni; Camilloni, Carlo; Provasi, Davide; Raiteri, Paolo; Donadio, Davide; Marinelli, Fabrizio; Pietrucci, Fabio; Broglia, Ricardo A.; Parrinello, Michele
2009-10-01
Here we present a program aimed at free-energy calculations in molecular systems. It consists of a series of routines that can be interfaced with the most popular classical molecular dynamics (MD) codes through a simple patching procedure. This leaves the possibility for the user to exploit many different MD engines depending on the system simulated and on the computational resources available. Free-energy calculations can be performed as a function of many collective variables, with a particular focus on biological problems, and using state-of-the-art methods such as metadynamics, umbrella sampling and Jarzynski-equation based steered MD. The present software, written in ANSI-C language, can be easily interfaced with both Fortran and C/C++ codes. Program summaryProgram title: PLUMED Catalogue identifier: AEEE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Lesser GPL No. of lines in distributed program, including test data, etc.: 107 505 No. of bytes in distributed program, including test data, etc.: 2 052 759 Distribution format: tar.gz Programming language: ANSI-C Computer: Any computer capable of running an executable produced by GCC compiler Operating system: Linux/Unix RAM: Depending on the number of atoms, the method chosen and the collective variables used Classification: 23 External routines: Must be interfaced with a MD code (such as GROMACS, NAMD, DL_POLY or SANDER). Nature of problem: Calculation of free-energy surfaces for biological and condensed matter systems. Solution method: Implementation of various enhanced sampling techniques. Unusual features: PLUMED is not a stand-alone program but it must be interfaced with a MD code (such as GROMACS, NAMD, DL_POLY or SANDER) that needs to be recompiled. Each interface is provided in a patch form. Running time: Depending on the number of atoms, the method chosen and the
Calculation of Dynamic Loads Due to Random Vibration Environments in Rocket Engine Systems
NASA Technical Reports Server (NTRS)
Christensen, Eric R.; Brown, Andrew M.; Frady, Greg P.
2007-01-01
An important part of rocket engine design is the calculation of random dynamic loads resulting from internal engine "self-induced" sources. These loads are random in nature and can greatly influence the weight of many engine components. Several methodologies for calculating random loads are discussed and then compared to test results using a dynamic testbed consisting of a 60K thrust engine. The engine was tested in a free-free condition with known random force inputs from shakers attached to three locations near the main noise sources on the engine. Accelerations and strains were measured at several critical locations on the engines and then compared to the analytical results using two different random response methodologies.
NASA Technical Reports Server (NTRS)
Austin, M. G.; Thomsen, J. M.; Ruhl, S. F.; Orphal, D. L.; Schultz, P. H.
1980-01-01
The considered investigation was conducted in connection with studies which are to provide a better understanding of the detailed dynamics of impact cratering processes. Such an understanding is vital for a comprehension of planetary surfaces. The investigation is the continuation of a study of impact dynamics in a uniform, nongeologic material at impact velocities achievable in laboratory-scale experiments conducted by Thomsen et al. (1979). A calculation of a 6 km/sec impact of a 0.3 g spherical 2024 aluminum projectile into low strength (50 kPa) homogeneous plasticene clay has been continued from 18 microseconds to past 600 microseconds. The cratering flow field, defined as the material flow field in the target beyond the transient cavity but well behind the outgoing shock wave, has been analyzed in detail to see how applicable the Maxwell Z-Model, developed from analysis of near-surface explosion cratering calculations, is to impact cratering
NASA Astrophysics Data System (ADS)
Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.
2017-03-01
The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Towards automated calculation of evidence-based clinical scores
Aakre, Christopher A; Dziadzko, Mikhail A; Herasevich, Vitaly
2017-01-01
AIM To determine clinical scores important for automated calculation in the inpatient setting. METHODS A modified Delphi methodology was used to create consensus of important clinical scores for inpatient practice. A list of 176 externally validated clinical scores were identified from freely available internet-based services frequently used by clinicians. Scores were categorized based on pertinent specialty and a customized survey was created for each clinician specialty group. Clinicians were asked to rank each score based on importance of automated calculation to their clinical practice in three categories - “not important”, “nice to have”, or “very important”. Surveys were solicited via specialty-group listserv over a 3-mo interval. Respondents must have been practicing physicians with more than 20% clinical time spent in the inpatient setting. Within each specialty, consensus was established for any clinical score with greater than 70% of responses in a single category and a minimum of 10 responses. Logistic regression was performed to determine predictors of automation importance. RESULTS Seventy-nine divided by one hundred and forty-four (54.9%) surveys were completed and 72/144 (50%) surveys were completed by eligible respondents. Only the critical care and internal medicine specialties surpassed the 10-respondent threshold (14 respondents each). For internists, 2/110 (1.8%) of scores were “very important” and 73/110 (66.4%) were “nice to have”. For intensivists, no scores were “very important” and 26/76 (34.2%) were “nice to have”. Only the number of medical history (OR = 2.34; 95%CI: 1.26-4.67; P < 0.05) and vital sign (OR = 1.88; 95%CI: 1.03-3.68; P < 0.05) variables for clinical scores used by internists was predictive of desire for automation. CONCLUSION Few clinical scores were deemed “very important” for automated calculation. Future efforts towards score calculator automation should focus on technically feasible
Wehrle, Marius; Sulc, Miroslav; Vanícek, Jirí
2011-01-01
We explore three specific approaches for speeding up the calculation of quantum time correlation functions needed for time-resolved electronic spectra. The first relies on finding a minimum set of sufficiently accurate electronic surfaces. The second increases the time step required for convergence of exact quantum simulations by using different split-step algorithms to solve the time-dependent Schrödinger equation. The third approach lowers the number of trajectories needed for convergence of approximate semiclassical dynamics methods.
Calculations on Hard Ferroelectric PbZr1-xTixO3 Dynamic Hysteresis
NASA Astrophysics Data System (ADS)
Hamad, Mahmoud A.
2017-02-01
A phenomenological model was modified for dynamic hysteresis loops of hard ferroelectric PbZr1-xTixO3 (PZT). The comparison with experimental results showed that the modified model can reproduce polarization versus an electric field. A predicted hysteresis loss of hard ferroelectric PZT was formulated and estimated. The calculations showed an increase in hysteresis loss with a decrease of frequency at a 40-kV/cm electric field amplitude.
Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Chaubey, Amit Kumar; Dubey, Kshatresh Dutta; Ojha, Rajendra Prasad
2012-03-01
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)4. Here we report the relative stabilities of these structures under K+ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.
Born Oppenheimer Molecular Dynamics calculation of the νO-H IR spectra for acetic acid cyclic dimers
NASA Astrophysics Data System (ADS)
El Amine Benmalti, Mohamed; Krallafa, Abdelghani; Gaigeot, Marie-Pierre
2015-01-01
Both ab initio molecular dynamics simulations based on the Born-Oppenheimer approach calculations and a quantum theoretical model are used in order to study the IR spectrum of the acetic acid dimer in the gas phase. The theoretical model is taking into account the strong anharmonic coupling, Davydov coupling, multiple Fermi resonances between the first harmonics of some bending modes and the first excited state of the symmetric combination of the two vO-H modes and the quantum direct and indirect relaxation. The IR spectra obtained from DFT-based molecular dynamics is compared with our theoretical lineshape and with experiment. Note that in a previous work we have shown that our approach reproduces satisfactorily the main futures of the IR experimental lineshapes of the acetic acid dimer [Mohamed el Amine Benmalti, Paul Blaise, H. T. Flakus, Olivier Henri-Rousseau, Chem Phys, 320(2006) 267-274.].
NASA Astrophysics Data System (ADS)
Belkacem, Ali; Slaughter, Daniel
2015-05-01
Understanding electron-driven chemical reactions is important for improving a variety of technological applications such as materials processing and the important role they play in the radiation damage in bulk matter. Furthermore, dissociative electron attachment often exhibits site-selective bond cleavage, which holds promise for prediction and precise control of electron-driven chemical reactions. Recent dynamical studies of these reactions have demonstrated that an understanding of anion dissociation dynamics beyond simple one-dimensional models is crucial in interpreting the measured fragment angular distributions. We combine ion fragment momentum imaging experiments with electron attachment entrance amplitude calculations to interrogate the non-Born-Oppenheimer dynamics of dissociative electron attachment in polyatomic molecules. We will report recent experimental developments in molecules of technological interest including methanol, methane and uracil. Work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.
NASA Technical Reports Server (NTRS)
Campbell, John P; Mckinney, Marion O
1951-01-01
A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Reference is also made to reports presenting experimental data that should be useful in making estimates of the derivatives. Detailed estimating methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic- and supersonic-speed conditions.
Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles
NASA Astrophysics Data System (ADS)
Dirkx, M. L. P.; Heijmen, B. J. M.; van Santvoort, J. P. C.
1998-05-01
An algorithm for the calculation of the required leaf trajectories to generate optimized intensity modulated beam profiles by means of dynamic multileaf collimation is presented. This algorithm iteratively accounts for leaf transmission and collimator scatter and fully avoids tongue-and-groove underdosage effects. Tests on a large number of intensity modulated fields show that only a limited number of iterations, generally less than 10, are necessary to minimize the differences between optimized and realized fluence profiles. To assess the accuracy of the algorithm in combination with the dose calculation algorithm of the Cadplan 3D treatment planning system, predicted absolute dose distributions for optimized fluence profiles were compared with dose distributions measured on the MM50 Racetrack Microtron and resulting from the calculated leaf trajectories. Both theoretical and clinical cases yield an agreement within 2%, or within 2 mm in regions with a high dose gradient, showing that the accuracy is adequate for clinical application.
Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles.
Dirkx, M L; Heijmen, B J; van Santvoort, J P
1998-05-01
An algorithm for the calculation of the required leaf trajectories to generate optimized intensity modulated beam profiles by means of dynamic multileaf collimation is presented. This algorithm iteratively accounts for leaf transmission and collimator scatter and fully avoids tongue-and-groove underdosage effects. Tests on a large number of intensity modulated fields show that only a limited number of iterations, generally less than 10, are necessary to minimize the differences between optimized and realized fluence profiles. To assess the accuracy of the algorithm in combination with the dose calculation algorithm of the Cadplan 3D treatment planning system, predicted absolute dose distributions for optimized fluence profiles were compared with dose distributions measured on the MM50 Racetrack Microtron and resulting from the calculated leaf trajectories. Both theoretical and clinical cases yield an agreement within 2%, or within 2 mm in regions with a high dose gradient, showing that the accuracy is adequate for clinical application.
Dynamic Buffer Capacity in Acid-Base Systems.
Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz
The generalized concept of 'dynamic' buffer capacity βV is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.
Integration based profile likelihood calculation for PDE constrained parameter estimation problems
NASA Astrophysics Data System (ADS)
Boiger, R.; Hasenauer, J.; Hroß, S.; Kaltenbacher, B.
2016-12-01
Partial differential equation (PDE) models are widely used in engineering and natural sciences to describe spatio-temporal processes. The parameters of the considered processes are often unknown and have to be estimated from experimental data. Due to partial observations and measurement noise, these parameter estimates are subject to uncertainty. This uncertainty can be assessed using profile likelihoods, a reliable but computationally intensive approach. In this paper, we present the integration based approach for the profile likelihood calculation developed by (Chen and Jennrich 2002 J. Comput. Graph. Stat. 11 714-32) and adapt it to inverse problems with PDE constraints. While existing methods for profile likelihood calculation in parameter estimation problems with PDE constraints rely on repeated optimization, the proposed approach exploits a dynamical system evolving along the likelihood profile. We derive the dynamical system for the unreduced estimation problem, prove convergence and study the properties of the integration based approach for the PDE case. To evaluate the proposed method, we compare it with state-of-the-art algorithms for a simple reaction-diffusion model for a cellular patterning process. We observe a good accuracy of the method as well as a significant speed up as compared to established methods. Integration based profile calculation facilitates rigorous uncertainty analysis for computationally demanding parameter estimation problems with PDE constraints.
LRCS calculation and imaging of complex target based on GRECO
NASA Astrophysics Data System (ADS)
Wu, Wen; Xu, Fu-chang; Han, Xiang'e.
2013-09-01
The research on Laser Radar Cross Section(LRCS) is of great significance in many research fields, such as defense, aviation, aerospace, meteorology etc. Current study of LRCS focuses mainly on the full-size target. The LRCS of full-size target, characterized by the scattering properties of the target, is influenced by target material, shape, size, and the wavelength of laser, but it is independent on the size of irradiation beam. In fact, when the target is in large size, and the beam emitted from laser radar is very narrow, it may be in a local rather than a full-size irradiation. In this case, the scattering properties of a target are dependent on not only the size of irradiation beam on the target, but also the direction of irradiation beam. Therefore, it is essential to analyze the scattering properties of a complex target in a local irradiation. Based on the basic theory of Graphic-electromagnetic Computing(GRECO), we improved the method used in the processing of electromagnetic scattering, calculated the monostatic and bistatic LRCS of several targets. The results are consistent with that in the early work done by other researchers. In addition, by changing the divergence angle of the incident beam, the situation of narrow beam in a local irradiation was presented. Under different sizes of irradiation beam, analysis and calculation of local cross section was made in detail. The results indicate that the size of irradiation beam can greatly affect the LRCS for targets. Finally, we calculated scattering cross section per unit of each location point; with color tag, scattering intensity distribution of every location point on the target was displayed, which can be revealed by the color of every pixel point. On the basis of scattering intensity distribution of every location point, the imaging of a target was realized, which provides a reference for quick identification of the target.
Calculating gravitationally self-consistent sea level changes driven by dynamic topography
NASA Astrophysics Data System (ADS)
Austermann, J.; Mitrovica, J. X.
2015-12-01
We present a generalized formalism for computing gravitationally self-consistent sea level changes driven by the combined effects of dynamic topography, geoid perturbations due to mantle convection, ice mass fluctuations and sediment redistribution on a deforming Earth. Our mathematical treatment conserves mass of the surface (ice plus ocean) load and the solid Earth. Moreover, it takes precise account of shoreline migration and the associated ocean loading. The new formalism avoids a variety of approximations adopted in previous models of sea level change driven by dynamic topography, including the assumption that a spatially fixed isostatic amplification of `air-loaded' dynamic topography accurately accounts for ocean loading effects. While our approach is valid for Earth models of arbitrary complexity, we present numerical results for a set of simple cases in which a pattern of dynamic topography is imposed, the response to surface mass loading assumes that Earth structure varies only with depth and that isostatic equilibrium is maintained at all times. These calculations, involving fluid Love number theory, indicate that the largest errors in previous predictions of sea level change driven by dynamic topography occur in regions of shoreline migration, and thus in the vicinity of most geological markers of ancient sea level. We conclude that a gravitationally self-consistent treatment of long-term sea level change is necessary in any effort to use such geological markers to estimate ancient ice volumes.
Children Base Their Investment on Calculated Pay-Off
Steelandt, Sophie; Dufour, Valérie; Broihanne, Marie-Hélène; Thierry, Bernard
2012-01-01
To investigate the rise of economic abilities during development we studied children aged between 3 and 10 in an exchange situation requiring them to calculate their investment based on different offers. One experimenter gave back a reward twice the amount given by the children, and a second always gave back the same quantity regardless of the amount received. To maximize pay-offs children had to invest a maximal amount with the first, and a minimal amount with the second. About one third of the 5-year-olds and most 7- and 10-year-olds were able to adjust their investment according to the partner, while all 3-year-olds failed. Such performances should be related to the rise of cognitive and social skills after 4 years. PMID:22413006
Distance-based classification of keystroke dynamics
NASA Astrophysics Data System (ADS)
Tran Nguyen, Ngoc
2016-07-01
This paper uses the keystroke dynamics in user authentication. The relationship between the distance metrics and the data template, for the first time, was analyzed and new distance based algorithm for keystroke dynamics classification was proposed. The results of the experiments on the CMU keystroke dynamics benchmark dataset1 were evaluated with an equal error rate of 0.0614. The classifiers using the proposed distance metric outperform existing top performing keystroke dynamics classifiers which use traditional distance metrics.
Effective binding force calculation in a dimeric protein by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Sergi, Alessandro; Ciccotti, Giovanni; Falconi, Mattia; Desideri, Alessandro; Ferrario, Mauro
2002-04-01
A good example of macromolecular recognition is found in the interaction of the two monomers of the dimeric superoxide dismutase protein found in Photobacterium leiognathi. We have produced, by molecular dynamics simulation techniques, a specific path for the rupture of the dimer and calculated the effective force involved in the process by extending a well established free energy calculation scheme, the molecular dynamics blue moon approach to rare events. Within this picture we have generalized the approach to a vectorial reaction coordinate and performed a number of different simulations in function of the monomer-momomer separation, at fixed relative orientation. We find a deep minimum and we compute the height of the free energy barrier to break the dimer. As for the system characterization we have found that, when the separation distance increases, the protein structure is stable and the monomer-monomer interface is uniformly hydrated. Moreover, identifying the crucial contacts for the stabilization of the dimer, we have found the sequence of the different microscopic events in the monomer-monomer recognition and we have developed a view of the process which requires a merging of standard explanations, in agreement with the recent picture of recognition as a dynamical process mixing the various mechanisms previously considered [Kimura et al., Biophys. J. 80 635 (2001)].
NASA Technical Reports Server (NTRS)
Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)
1994-01-01
Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.
Saltas, V.; Chroneos, A.; Cooper, Michael William D.; Fitzpatrick, M. E.; Vallianatos, F.
2016-01-01
In the present work, the defect properties of oxygen self-diffusion in PuO_{2} are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of any relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.
Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...
2016-01-01
In the present work, the defect properties of oxygen self-diffusion in PuO2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of any relevantmore » experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations.
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-02-14
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young's modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young's modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.
Lazar, Petr; Zhang, Shuai; Safářová, Klára; Li, Qiang; Froning, Jens Peter; Granatier, Jaroslav; Hobza, Pavel; Zbořil, Radek; Besenbacher, Flemming; Dong, Mingdong; Otyepka, Michal
2013-02-26
The two-dimensional material graphene has numerous potential applications in nano(opto)electronics, which inevitably involve metal graphene interfaces.Theoretical approaches have been employed to examine metal graphene interfaces, but experimental evidence is currently lacking. Here, we combine atomic force microscopy (AFM) based dynamic force measurements and density functional theory calculations to quantify the interaction between metal-coated AFM tips and graphene under ambient conditions. The results show that copper has the strongest affinity to graphene among the studied metals (Cu, Ag, Au, Pt, Si), which has important implications for the construction of a new generation of electronic devices. Observed differences in the nature of the metal-graphene bonding are well reproduced by the calculations, which included nonlocal Hartree-Fock exchange and van der Waals effects.
Cao Jun; Fang Weihai; Fang Qiu
2011-01-28
In the present paper, different electronic structure methods have been used to determine stationary and intersection structures on the ground (S{sub 0}) and {sup 1}{pi}{pi}* (S{sub 2}) states of 4-methylpyridine, which is followed by adiabatic and nonadiabatic dynamics simulations to explore the mechanistic photoisomerization of 4-methylpyridine. Photoisomerization starts from the S{sub 2}({sup 1}{pi}{pi}*) state and overcomes a small barrier, leading to formation of the prefulvene isomer in the S{sub 0} state via a S{sub 2}/S{sub 0} conical intersection. The ultrafast S{sub 2}{yields} S{sub 0} nonradiative decay and low quantum yield for the photoisomerization reaction were well reproduced by the combined electronic structure calculation and dynamics simulation. The prefulvene isomer was assigned as a long-lived intermediate and suggested to isomerize to 4-methylpyridine directly in the previous study, which is not supported by the present calculation. The nonadiabatic dynamics simulation and electronic structure calculation reveal that the prefulvene isomer is a short-lived intermediate and isomerizes to benzvalene form very easily. The benzvalene form was predicted as the stable isomer in the present study and is probably the long-lived intermediate observed experimentally. A consecutive light and thermal isomerization cycle via Dewar isomer was determined and this cycle mechanism is different from that reported in the previous study. It should be pointed out that formation of Dewar isomer from the S{sub 2}({sup 1}{pi}{pi}*) state is not in competition with the isomerization to the prefulvene form. The Dewar structure observed experimentally may originate from other excited states.
NASA Astrophysics Data System (ADS)
Cartoixà, Xavier; Dettori, Riccardo; Melis, Claudio; Colombo, Luciano; Rurali, Riccardo
2016-07-01
We study thermal transport in porous Si nanowires (SiNWs) by means of approach-to-equilibrium molecular dynamics simulations. We show that the presence of pores greatly reduces the thermal conductivity, κ, of the SiNWs as long mean free path phonons are suppressed. We address explicitly the dependence of κ on different features of the pore topology—such as the porosity and the pore diameter—and on the nanowire (NW) geometry—diameter and length. We use the results of the molecular dynamics calculations to tune an effective model, which is capable of capturing the dependence of κ on porosity and NW diameter. The model illustrates the failure of Matthiessen's rule to describe the coupling between boundary and pore scattering, which we account for by the inclusion of an additional empirical term.
Time-reversed particle dynamics calculation with field line tracing at Titan - an update
NASA Astrophysics Data System (ADS)
Bebesi, Zsofia; Erdos, Geza; Szego, Karoly; Juhasz, Antal; Lukacs, Katalin
2014-05-01
We use CAPS-IMS Singles data of Cassini measured between 2004 and 2010 to investigate the pickup process and dynamics of ions originating from Titan's atmosphere. A 4th order Runge-Kutta method was applied to calculate the test particle trajectories in a time reversed scenario, in the curved magnetic environment. We evaluated the minimum variance directions along the S/C trajectory for all Cassini flybys during which the CAPS instrument was in operation, and assumed that the field was homogeneous perpendicular to the minimum variance direction. We calculated the magnetic field lines with this method along the flyby orbits and we could determine those observational intervals when Cassini and the upper atmosphere of Titan could be magnetically connected. We used three ion species (1, 2 and 16 amu ions) for time reversed tracking, and also considered the categorization of Rymer et al. (2009) and Nemeth et al. (2011) for further features studies.
The electronic nonadiabatic coupling term: can it be ignored in dynamic calculations?
Halász, G J; Vibók, A; Suhai, S; Baer, M
2007-12-28
Whereas the search for the degeneracy points which are better known as conical intersections (or ci-points) is usually carried out with a lot of devotion, the nonadiabatic coupling terms (NACTs) which together with the adiabatic potential energy surfaces appear in the nuclear Born-Oppenheimer-Schrodinger equation are ignored in most dynamical calculations. In the present article we consider two well known frameworks, namely, the semiclassical surface hopping method and the vibrational coupling model Hamiltonian that avoid the NACTs and examine to what extent, this procedure is justified.
Kimminau, G; Nagler, B; Higginbotham, A; Murphy, W; Park, N; Hawreliak, J; Kadau, K; Germann, T C; Bringa, E M; Kalantar, D; Lorenzana, H; Remington, B; Wark, J
2008-06-19
Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.
Diffusion Rates for Hydrogen on Pd(111) from Molecular Quantum Dynamics Calculations.
Firmino, Thiago; Marquardt, Roberto; Gatti, Fabien; Dong, Wei
2014-12-18
The van Hove formula for the dynamical structure factor (DSF) related to particle scattering at mobile adsorbates is extended to include the relaxation of the adsorbates' vibrational states. The total rate obtained from the DSF is assumed to be the sum of a diffusion and a relaxation rate. A simple kinetic model to support this assumption is presented. To illustrate its potential applicability, the formula is evaluated using wave functions, energies, and lifetimes of vibrational states obtained for H/Pd(111) from first-principle calculations. Results show that quantum effects can be expected to be important even at room temperature.
First-principles molecular dynamics calculations of the equation of state for tantalum.
Ono, Shigeaki
2009-11-20
The equation of state of tantalum (Ta) has been investigated to 100 GPa and 3,000 K using the first-principles molecular dynamics method. A large volume dependence of the thermal pressure of Ta was revealed from the analysis of our data. A significant temperature dependence of the calculated effective Grüneisen parameters was confirmed at high pressures. This indicates that the conventional approach to analyze thermal properties using the Mie-Grüneisen approximation is likely to have a significant uncertainty in determining the equation of state for Ta, and that an intrinsic anharmonicity should be considered to analyze the equation of state.
Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package
Pierce, Levi T.; Walker, Ross C.; McCammont, J. Andrew
2013-01-01
Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license. PMID:24185531
NASA Astrophysics Data System (ADS)
Li, Qiang; Yu, Guichang; Liu, Shulian; Zheng, Shuiying
2012-09-01
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approach is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the journal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
Rapid Parallel Calculation of shell Element Based On GPU
NASA Astrophysics Data System (ADS)
Wanga, Jian Hua; Lia, Guang Yao; Lib, Sheng; Li, Guang Yao
2010-06-01
Long computing time bottlenecked the application of finite element. In this paper, an effective method to speed up the FEM calculation by using the existing modern graphic processing unit and programmable colored rendering tool was put forward, which devised the representation of unit information in accordance with the features of GPU, converted all the unit calculation into film rendering process, solved the simulation work of all the unit calculation of the internal force, and overcame the shortcomings of lowly parallel level appeared ever before when it run in a single computer. Studies shown that this method could improve efficiency and shorten calculating hours greatly. The results of emulation calculation about the elasticity problem of large number cells in the sheet metal proved that using the GPU parallel simulation calculation was faster than using the CPU's. It is useful and efficient to solve the project problems in this way.
Perišić, Ognjen; Lu, Hui
2014-01-01
The potential of mean force (PMF) calculation in single molecule manipulation experiments performed via the steered molecular dynamics (SMD) technique is a computationally very demanding task because the analyzed system has to be perturbed very slowly to be kept close to equilibrium. Faster perturbations, far from equilibrium, increase dissipation and move the average work away from the underlying free energy profile, and thus introduce a bias into the PMF estimate. The Jarzynski equality offers a way to overcome the bias problem by being able to produce an exact estimate of the free energy difference, regardless of the perturbation regime. However, with a limited number of samples and high dissipation the Jarzynski equality also introduces a bias. In our previous work, based on the Brownian motion formalism, we introduced three stochastic perturbation protocols aimed at improving the PMF calculation with the Jarzynski equality in single molecule manipulation experiments and analogous computer simulations. This paper describes the PMF reconstruction results based on full-atom molecular dynamics simulations, obtained with those three protocols. We also want to show that the protocols are applicable with the second-order cumulant expansion formula. Our protocols offer a very noticeable improvement over the simple constant velocity pulling. They are able to produce an acceptable estimate of PMF with a significantly reduced bias, even with very fast perturbation regimes. Therefore, the protocols can be adopted as practical and efficient tools for the analysis of mechanical properties of biological molecules. PMID:25232859
NASA Astrophysics Data System (ADS)
Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng
2016-05-01
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.
Ice flood velocity calculating approach based on single view metrology
NASA Astrophysics Data System (ADS)
Wu, X.; Xu, L.
2017-02-01
Yellow River is the river in which the ice flood occurs most frequently in China, hence, the Ice flood forecasting has great significance for the river flood prevention work. In various ice flood forecast models, the flow velocity is one of the most important parameters. In spite of the great significance of the flow velocity, its acquisition heavily relies on manual observation or deriving from empirical formula. In recent years, with the high development of video surveillance technology and wireless transmission network, the Yellow River Conservancy Commission set up the ice situation monitoring system, in which live videos can be transmitted to the monitoring center through 3G mobile networks. In this paper, an approach to get the ice velocity based on single view metrology and motion tracking technique using monitoring videos as input data is proposed. First of all, River way can be approximated as a plane. On this condition, we analyze the geometry relevance between the object side and the image side. Besides, we present the principle to measure length in object side from image. Secondly, we use LK optical flow which support pyramid data to track the ice in motion. Combining the result of camera calibration and single view metrology, we propose a flow to calculate the real velocity of ice flood. At last we realize a prototype system by programming and use it to test the reliability and rationality of the whole solution.
Efficient Error Calculation for Multiresolution Texture-Based Volume Visualization
LaMar, E; Hamann, B; Joy, K I
2001-10-16
Multiresolution texture-based volume visualization is an excellent technique to enable interactive rendering of massive data sets. Interactive manipulation of a transfer function is necessary for proper exploration of a data set. However, multiresolution techniques require assessing the accuracy of the resulting images, and re-computing the error after each change in a transfer function is very expensive. They extend their existing multiresolution volume visualization method by introducing a method for accelerating error calculations for multiresolution volume approximations. Computing the error for an approximation requires adding individual error terms. One error value must be computed once for each original voxel and its corresponding approximating voxel. For byte data, i.e., data sets where integer function values between 0 and 255 are given, they observe that the set of error pairs can be quite large, yet the set of unique error pairs is small. instead of evaluating the error function for each original voxel, they construct a table of the unique combinations and the number of their occurrences. To evaluate the error, they add the products of the error function for each unique error pair and the frequency of each error pair. This approach dramatically reduces the amount of computation time involved and allows them to re-compute the error associated with a new transfer function quickly.
NASA Astrophysics Data System (ADS)
Feng, Chi; Li, Dong; Gao, Shan; Daniel, Ketui
2016-11-01
This paper presents a CFD (Computation Fluid Dynamic) simulation and experimental results for the reflected radiation error from turbine vanes when measuring turbine blade's temperature using a pyrometer. In the paper, an accurate reflection model based on discrete irregular surfaces is established. Double contour integral method is used to calculate view factor between the irregular surfaces. Calculated reflected radiation error was found to change with relative position between blades and vanes as temperature distribution of vanes and blades was simulated using CFD. Simulation results indicated that when the vanes suction surface temperature ranged from 860 K to 1060 K and the blades pressure surface average temperature is 805 K, pyrometer measurement error can reach up to 6.35%. Experimental results show that the maximum pyrometer absolute error of three different targets on the blade decreases from 6.52%, 4.15% and 1.35% to 0.89%, 0.82% and 0.69% respectively after error correction.
Lee, Kyungmin; Cho, Soohyun
2017-01-26
Mathematics anxiety (MA) refers to the experience of negative affect when engaging in mathematical activity. According to Ashcraft and Kirk (2001), MA selectively affects calculation with high working memory (WM) demand. On the other hand, Maloney, Ansari, and Fugelsang (2011) claim that MA affects all mathematical activities, including even the most basic ones such as magnitude comparison. The two theories make opposing predictions on the negative effect of MA on magnitude processing and simple calculation that make minimal demands on WM. We propose that MA has a selective impact on mathematical problem solving that likely involves processing of magnitude representations. Based on our hypothesis, MA will impinge upon magnitude processing even though it makes minimal demand on WM, but will spare retrieval-based, simple calculation, because it does not require magnitude processing. Our hypothesis can reconcile opposing predictions on the negative effect of MA on magnitude processing and simple calculation. In the present study, we observed a negative relationship between MA and performance on magnitude comparison and calculation with high but not low WM demand. These results demonstrate that MA has an impact on a wide range of mathematical performance, which depends on one's sense of magnitude, but spares over-practiced, retrieval-based calculation.
Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells
NASA Astrophysics Data System (ADS)
Lloyd-Williams, Jonathan H.; Monserrat, Bartomeu
2015-11-01
We study the direct calculation of total energy derivatives for lattice dynamics and electron-phonon coupling calculations using supercell matrices with nonzero off-diagonal elements. We show that it is possible to determine the response of a periodic system to a perturbation characterized by a wave vector with reduced fractional coordinates (m1/n1,m2/n2,m3/n3) using a supercell containing a number of primitive cells equal to the least common multiple of n1,n2, and n3. If only diagonal supercell matrices are used, a supercell containing n1n2n3 primitive cells is required. We demonstrate that the use of nondiagonal supercells significantly reduces the computational cost of obtaining converged zero-point energies and phonon dispersions for diamond and graphite. We also perform electron-phonon coupling calculations using the direct method to sample the vibrational Brillouin zone with grids of unprecedented size, which enables us to investigate the convergence of the zero-point renormalization to the thermal and optical band gaps of diamond.
Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J
2012-07-07
The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.
Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid
NASA Astrophysics Data System (ADS)
Cao, Bing-Yang; Dong, Ruo-Yu
2014-01-01
Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.
Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg
2015-01-01
We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.
[CUDA-based fast dose calculation in radiotherapy].
Wang, Xianliang; Liu, Cao; Hou, Qing
2011-10-01
Dose calculation plays a key role in treatment planning of radiotherapy. Algorithms for dose calculation require high accuracy and computational efficiency. Finite size pencil beam (FSPB) algorithm is a method commonly adopted in the treatment planning system for radiotherapy. However, improvement on its computational efficiency is still desirable for such purpose as real time treatment planning. In this paper, we present an implementation of the FSPB, by which the most time-consuming parts in the algorithm are parallelized and ported on graphic processing unit (GPU). Compared with the FSPB completely running on central processing unit (CPU), the GPU-implemented FSPB can speed up the dose calculation for 25-35 times on a low price GPU (Geforce GT320) and for 55-100 times on a Tesla C1060, indicating that the GPU-implemented FSPB can provide fast enough dose calculations for real-time treatment planning.
Grid-based steered thermodynamic integration accelerates the calculation of binding free energies.
Fowler, Philip W; Jha, Shantenu; Coveney, Peter V
2005-08-15
The calculation of binding free energies is important in many condensed matter problems. Although formally exact computational methods have the potential to complement, add to, and even compete with experimental approaches, they are difficult to use and extremely time consuming. We describe a Grid-based approach for the calculation of relative binding free energies, which we call Steered Thermodynamic Integration calculations using Molecular Dynamics (STIMD), and its application to Src homology 2 (SH2) protein cell signalling domains. We show that the time taken to compute free energy differences using thermodynamic integration can be significantly reduced: potentially from weeks or months to days of wall-clock time. To be able to perform such accelerated calculations requires the ability to both run concurrently and control in realtime several parallel simulations on a computational Grid. We describe how the RealityGrid computational steering system, in conjunction with a scalable classical MD code, can be used to dramatically reduce the time to achieve a result. This is necessary to improve the adoption of this technique and further allows more detailed investigations into the accuracy and precision of thermodynamic integration. Initial results for the Src SH2 system are presented and compared to a reported experimental value. Finally, we discuss the significance of our approach.
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
NASA Technical Reports Server (NTRS)
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Aguilella-Arzo, M; Aguilella, V M
2010-04-01
We have computed the pK(a)'s of the ionizable residues of a protein ion channel, the Staphylococcus aureus toxin alpha-hemolysin, by using two types of input structures, namely the crystal structure of the heptameric alpha-hemolysin and a set of over four hundred snapshots from a 4.38 ns Molecular Dynamics simulation of the protein inserted in a phospholipid planar bilayer. The comparison of the dynamic picture provided by the Molecular Simulation with the static one based on the X-ray crystal structure of the protein embedded in a lipid membrane allows analyzing the influence of the fluctuations in the protein structure on its ionization properties. We find that the use of the dynamic structure provides interesting information about the sensitivity of the computed pK(a) of a given residue to small changes in the local structure. The calculated pK(a) are consistent with previous indirect estimations obtained from single-channel conductance and selectivity measurements.
NASA Astrophysics Data System (ADS)
Zang, Yan; Hatch, Michael R.
We describe a numerical method for the analysis of dynamic characteristics of coupled herringbone-type journal and thrust hydrodynamic bearings. The non-dimensional generalized Reynolds equation is discretized on a non-orthogonal grid which is mapped into a square. The computational domain conforms to the herringbone grooves to improve the accuracy of the solution. The journal and thrust regions are mapped separately and connected through internal flux boundary conditions. The discretized pressure field is solved iteratively using the rapidly convergent ADI method. The stiffness and damping coefficients are obtained by perturbing the equilibrium solution of the Reynolds equation and solving the perturbation equations. The accuracy of the present calculation is confirmed by comparing with previously existing data. Analyses are performed for self-contained coupled hydrodynamic bearing systems which can be used to support the spindle motor of a magnetic hard-disk drive.
E-beam dynamics calculations and comparison with measurements of a high duty accelerator at Boeing
Parazzoli, C.G.; Dowell, D.H.
1995-12-31
The electron dynamics in the photoinjector cavities and through the beamline for a high duty factor electron accelerator are computed. The particle in a cell code ARGUS, is first used in the low energy (< 2 MeV) region of the photoinjector, then the ARGUS-generated phase space at the photoinjector exit is used as input in the standard particle pusher code PARMELA, and the electron beam properties at the end of the beamline computed. Comparisons between the calculated and measured electron bea mradial profiles and emittances are presented for different values of the electron pulse charge. A discussion of the methodology used and on the accuracy of PARMELA in the low energy region of the photoinjector is given.
Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.
Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A
2015-10-26
Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange.
Thermal transmission at Si/Ge interface: ab initio lattice dynamics calculation
NASA Astrophysics Data System (ADS)
Alkurdi, A.; Merabia, S.
2017-01-01
We perform lattice dynamics calculations (LD) on silicon/germanium interfaces using ab initio interatomic force constants to predict the interfacial phonon transmission as a function of both phonon frequency and the transmission angle. We carry out a spectral and angular analysis to quantify the contribution of each phonon mode in a given scattering direction. The effect of the interaction range was studied at this interface by taking account of more or less atom layers across the interface. Moreover, we were able to predict the thermal boundary conductance (TBC) as a function of the transmission angle and temperature as well. Our results show that, the thermal energy transmission is highly anisotropic while thermal energy reflection is almost isotropic. In addition, we found that it seems there is a global critical angle of transmission beyond which almost no thermal energy is transmitted. This can be used to device high pass phonon filter via changing the orientation of the interface.
Strobl, Andreas N.; Vickers, Andrew J.; Van Calster, Ben; Steyerberg, Ewout; Leach, Robin J.; Thompson, Ian M.; Ankerst, Donna P.
2015-01-01
Clinical risk calculators are now widely available but have generally been implemented in a static and one-size-fits-all fashion. The objective of this study was to challenge these notions and show via a case study concerning risk-based screening for prostate cancer how calculators can be dynamically and locally tailored to improve on-site patient accuracy. Yearly data from five international prostate biopsy cohorts (3 in the US, 1 in Austria, 1 in England) were used to compare 6 methods for annual risk prediction: static use of the online US-developed Prostate Cancer Prevention Trial Risk Calculator (PCPTRC); recalibration of the PCPTRC; revision of the PCPTRC; building a new model each year using logistic regression, Bayesian prior-to-posterior updating, or random forests. All methods performed similarly with respect to discrimination, except for random forests, which were worse. All methods except for random forests greatly improved calibration over the static PCPTRC in all cohorts except for Austria, where the PCPTRC had the best calibration followed closely by recalibration. The case study shows that a simple annual recalibration of a general online risk tool for prostate cancer can improve its accuracy with respect to the local patient practice at hand. PMID:25989018
Ruiz, B C; Tucker, W K; Kirby, R R
1975-01-01
With a desk-top, programmable calculator, it is now possible to do complex, previously time-consuming computations in the blood-gas laboratory. The authors have developed a program with the necessary algorithms for temperature correction of blood gases and calculation of acid-base variables and intrapulmonary shunt. It was necessary to develop formulas for the Po2 temperature-correction coefficient, the oxyhemoglobin-dissociation curve for adults (withe necessary adjustments for fetal blood), and changes in water vapor pressure due to variation in body temperature. Using this program in conjuction with a Monroe 1860-21 statistical programmable calculator, it is possible to temperature-correct pH,Pco2, and Po2. The machine will compute alveolar-arterial oxygen tension gradient, oxygen saturation (So2), oxygen content (Co2), actual HCO minus 3 and a modified base excess. If arterial blood and mixed venous blood are obtained, the calculator will print out intrapulmonary shunt data (Qs/Qt) and arteriovenous oxygen differences (a minus vDo2). There also is a formula to compute P50 if pH,Pco2,Po2, and measured So2 from two samples of tonometered blood (one above 50 per cent and one below 50 per cent saturation) are put into the calculator.
Ji, Changge; Mei, Ye; Zhang, John Z H
2008-08-01
Ab initio quantum mechanical calculation of protein in solution is carried out to generate polarized protein-specific charge(s) (PPC) for molecular dynamics (MD) stimulation of protein. The quantum calculation of protein is made possible by developing a fragment-based quantum chemistry approach in combination with the implicit continuum solvent model. The computed electron density of protein is utilized to derive PPCs that represent the polarized electrostatic state of protein near the native structure. These PPCs are atom-centered like those in the standard force fields and are thus computationally attractive for molecular dynamics simulation of protein. Extensive MD simulations have been carried out to investigate the effect of electronic polarization on the structure and dynamics of thioredoxin. Our study shows that the dynamics of thioredoxin is stabilized by electronic polarization through explicit comparison between MD results using PPC and AMBER charges. In particular, MD free-energy calculation using PPCs accurately reproduced the experimental value of pK(a) shift for ionizable residue Asp(26) buried inside thioredoxin, whereas previous calculations using standard force fields overestimated pK(a) shift by twice as much. Accurate prediction of pK(a) shifts by rigorous MD free energy simulation for ionizable residues buried inside protein has been a significant challenge in computational biology for decades. This study presented strong evidence that electronic polarization of protein plays an important role in protein dynamics.
NASA Astrophysics Data System (ADS)
Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji
For detecting life from reflectance spectra on extrasolar planets, several indicators called surface biosignatures have been proposed. One of them is the vegetation red edge (VRE) which derives from surface vegetation. VRE is observed in 700-750 nm on the Earth, but there is no guarantee that exovegetation show the red edge in this wavelength. Therefore it is necessary to check the validity of current standards of VRE as the signatures. In facts, M stars (cooler than Sun) will be the main targets in future missions, it is significantly important to know on the fundamental mechanisms in photosynthetic organism such as purple bacteria which absorb longer wavelength radiation. We investigated light absorptions and excitation energy transfers (EETs) in light harvesting complexes in purple bacteria (LH2s) by using quantum dynamics simulations. In LH2, effective EET is accomplished by corporative electronic excitation of the pigments. In our theoretical model, a dipole-dipole approximation was used for the electronic interactions between pigment excitations. Quantum dynamics simulations were performed according to Liouville equation to examine the EET process. The calculated oscillator strength and the transfer time between LH2 were good agreement with the experimental values. As the system size increases, the absorption bands shifted longer and the transfer velocities became larger. When two pigments in a LHC were exchanged to another pigments with lower excitation energy, faster and intensive light collection were observed.
Photodissociation dynamics of the pyridinyl radical: Time-dependent quantum wave-packet calculations
NASA Astrophysics Data System (ADS)
Ehrmaier, Johannes; Picconi, David; Karsili, Tolga N. V.; Domcke, Wolfgang
2017-03-01
The H-atom photodissociation reaction from the pyridinyl radical (C5H5NH ) via the low-lying π σ* excited electronic state is investigated by nonadiabatic time-dependent quantum wave-packet dynamics calculations. A model comprising three electronic states and three nuclear coordinates has been constructed using ab initio multi-configurational self-consistent-field and multi-reference perturbation theory methods. Two conical intersections among the three lowest electronic states have been characterized in the framework of the linear vibronic-coupling model. Time-dependent wave-packet simulations have been performed using the multi-configuration time-dependent Hartree method. The population dynamics of the diabatic and adiabatic electronic states and the time-dependent dissociation behavior are analyzed for various vibrational initial conditions. The results provide detailed mechanistic insight into the photoinduced H-atom dissociation process from a hypervalent aromatic radical and show that an efficient dissociation reaction through two conical intersections is possible.
NASA Astrophysics Data System (ADS)
Wei, Xing
2016-09-01
To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.
Collier, Bradley B.; McShane, Michael J.
2014-01-01
With advances to chemical sensing, methods for compensation of errors introduced by interfering analytes are needed. In this work, a dual lifetime calculation technique was developed to enable simultaneous monitoring of two luminescence decays. Utilizing a windowed time-domain luminescence approach, the response of two luminophores is separated temporally. The ability of the dual dynamic rapid lifetime determination (DDRLD) approach to determine the response of two luminophores simultaneously was investigated through mathematical modeling and experimental testing. Modeling results indicated that lifetime predictions will be most accurate when the ratio of the lifetimes from each luminophore is at least three and the ratio of intensities is near unity. In vitro experiments were performed using a porphyrin that is sensitive to both oxygen and temperature, combined with a temperature-sensitive inorganic phosphor used for compensation of the porphyrin response. In static experiments, the dual measurements were found to be highly accurate when compared to single-luminophore measurements—statistically equivalent for the long lifetime emission and an average difference of 2% for the short lifetimes. Real-time testing with dynamic windowing was successful in demonstrating dual lifetime measurements and temperature compensation of the oxygen sensitive dye. When comparing the actual oxygen and temperature values with predictions made using a dual calibration approach, an overall difference of less than 1% was obtained. Thus, this method enables rapid, accurate extraction of multiple lifetimes without requiring computationally intense curve fitting, providing a significant advancement toward multi-analyte sensing and imaging techniques. PMID:26566384
Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.
Strümpfer, Johan; Schulten, Klaus
2012-08-14
Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.
Eradication of Ebola Based on Dynamic Programming
Zhu, Jia-Ming; Wang, Lu; Liu, Jia-Bao
2016-01-01
This paper mainly studies the eradication of the Ebola virus, proposing a scientific system, including three modules for the eradication of Ebola virus. Firstly, we build a basic model combined with nonlinear incidence rate and maximum treatment capacity. Secondly, we use the dynamic programming method and the Dijkstra Algorithm to set up M-S (storage) and several delivery locations in West Africa. Finally, we apply the previous results to calculate the total cost, production cost, storage cost, and shortage cost. PMID:27313655
Nam, Kwangho
2013-08-13
The implementation and performance of the atom-centered density matrix propagation (ADMP) [J. Chem. Phys. 2001, 114, 9758] and the curvy-steps (CURV) methods [J. Chem. Phys. 2004, 121, 1152] are described. These methods solve the electronic Schrödinger equation approximately by propagating the electronic degrees of freedom using the extended Lagrangian molecular dynamics (ELMD) simulation approach. The ADMP and CURV methods are implemented and parallelized to accelerate semiempirical quantum mechanical (QM) methods (such as the MNDO, AM1, PM3, MNDO/d, and AM1/d methods). Test calculations show that both the ADMP and the CURV methods are 2∼4 times faster than the Born-Oppenheimer molecular dynamics (BOMD) method and conserve the total energy well. The accuracy of the ADMP and CURV simulations is comparable to the BOMD simulations. The parallel implementation accelerates the MD simulation by up to 28 fold for the ADMP method and 25 fold for the CURV method, respectively, relative to the speed of the single core BOMD. In addition, a multiple time scale (MTS) approach is introduced to further speed up the semiempirical QM and QM/MM ELMD simulations. Since a larger integration time step is used for the propagation of the nuclear coordinates than that for the electronic degrees of freedom, the MTS approach allows the ELMD simulation to be carried out with a time step that is larger than the time step accessible by the original ADMP and CURV methods. It renders MD simulation to be carried out about 20 times faster than the BOMD simulation, and yields results that are comparable to the single time scale simulation results. The use of the methods introduced in the present work provides an efficient way to extend the length of the QM and QM/MM molecular dynamics simulations beyond the length accessible by BOMD simulation.
Amaro, Rommie E; Cheng, Xiaolin; Ivanov, Ivaylo N; Xu, Dong; McCammon, Jonathan
2009-01-01
The comparative dynamics and inhibitor binding free energies of group-1 and group-2 pathogenic influenza A subtype neuraminidase (NA) enzymes are of fundamental biological interest and relevant to structure-based drug design studies for antiviral compounds. In this work, we present seven generalized Born molecular dynamics simulations of avian (N1)- and human (N9)-type NAs in order to probe the comparative flexibility of the two subtypes, both with and without the inhibitor oseltamivir bound. The enhanced sampling obtained through the implicit solvent treatment suggests several provocative insights into the dynamics of the two subtypes, including that the group-2 enzymes may exhibit similar motion in the 430-binding site regions but different 150-loop motion. End-point free energy calculations elucidate the contributions to inhibitor binding free energies and suggest that entropic considerations cannot be neglected when comparing across the subtypes. We anticipate the findings presented here will have broad implications for the development of novel antiviral compounds against both seasonal and pandemic influenza strains.
The cost of different types of lameness in dairy cows calculated by dynamic programming.
Cha, E; Hertl, J A; Bar, D; Gröhn, Y T
2010-10-01
Traditionally, studies which placed a monetary value on the effect of lameness have calculated the costs at the herd level and rarely have they been specific to different types of lameness. These costs which have been calculated from former studies are not particularly useful for farmers in making economically optimal decisions depending on individual cow characteristics. The objective of this study was to calculate the cost of different types of lameness at the individual cow level and thereby identify the optimal management decision for each of three representative lameness diagnoses. This model would provide a more informed decision making process in lameness management for maximal economic profitability. We made modifications to an existing dynamic optimization and simulation model, studying the effects of various factors (incidence of lameness, milk loss, pregnancy rate and treatment cost) on the cost of different types of lameness. The average cost per case (US$) of sole ulcer, digital dermatitis and foot rot were 216.07, 132.96 and 120.70, respectively. It was recommended that 97.3% of foot rot cases, 95.5% of digital dermatitis cases and 92.3% of sole ulcer cases be treated. The main contributor to the total cost per case of sole ulcer was milk loss (38%), treatment cost for digital dermatitis (42%) and the effect of decreased fertility for foot rot (50%). This model affords versatility as it allows for parameters such as production costs, economic values and disease frequencies to be altered. Therefore, cost estimates are the direct outcome of the farm specific parameters entered into the model. Thus, this model can provide farmers economically optimal guidelines specific to their individual cows suffering from different types of lameness.
Straka, Michal; Lantto, Perttu; Vaara, Juha
2008-03-27
We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized
NASA Technical Reports Server (NTRS)
Geyser, L. C.
1978-01-01
A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.
Tang, Xiaoli; Dong, Jianjun
2009-06-01
We report a recent first-principles calculation of harmonic and anharmonic lattice dynamics of MgO. The 2nd order harmonic and 3rd order anharmonic interatomic interaction terms are computed explicitly, and their pressure dependences are discussed. The phonon mode Grueneisen parameters derived based on our calculated 3rd order lattice anharmonicity are in good agreement with those estimated using the finite difference method. The implications for lattice thermal conductivity at high pressure are discussed based on a simple kinetic transport theory.
Diffraction Grating Efficiency Calculations Based on Real Groove Profiles
NASA Technical Reports Server (NTRS)
Content, David; Sroda, Tom; Palmer, Christopher; Kuznetsov, Ivan
2000-01-01
The program we are attempting to bring about combines 3 difficult features, in order to demonstrate accuracy of efficiency predictions: (1) Accurate groove metrology methods on surface relief gratings; (2) Rigorous and usable electromagnetic efficiency calculation codes; (3) Accurate efficiency measurements in polarized light The benefit would be an increase in yield for high-performance gratings. Many such applications suffer long lead time or serious performance loss when new gratings are made which do not meet requirements or expectations.
Shen, Mingyun; Zhou, Shunye; Li, Youyong; Pan, Peichen; Zhang, Liling; Hou, Tingjun
2013-03-01
Rho-associated protein kinases (ROCK1 and ROCK2) are promising targets for a number of diseases, including cardiovascular disorders, nervous system diseases, cancers, etc. Recently, we have successfully identified a ROCK1 inhibitor (1) with the triazine core. In order to gain a deeper insight into the microscopic binding of this inhibitor with ROCK1 and design derivatives with improved potency, the interactions between ROCK1 and a series of triazine/pyrimidine-based inhibitors were studied by using an integrated computational protocol that combines molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis. First, three docking protocols, rigid receptor docking, induced fit docking, QM-polarized ligand docking, were used to determine the binding modes of the studied inhibitors in the active site of ROCK1. The results illustrate that rigid receptor docking achieves the best performance to rank the binding affinities of the studied inhibitors. Then, based on the predicted structures from molecular docking, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The binding free energies predicted by MM/GBSA are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. In addition, the residue-inhibitor interaction spectra were obtained by the MM/GBSA free energy decomposition analysis, and the important residues for achieving strong binding were highlighted, which affords important guidance for the rational design of novel ROCK inhibitors. Finally, a variety of derivatives of inhibitor 1 were designed and four of them showed promising potency according to the predictions. We expect that our study can provide significant insight into the
Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations.
Lange, Adrian W; Voth, Gregory A
2013-09-10
We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.
NASA Astrophysics Data System (ADS)
Micha, David A.
This contribution deals with two approaches for localized phenomena in excited many-atom systems. The first approach develops a quantum quasi-classical treatment for the density operator, including all atoms. It is based on a partial Wigner representation and is illustrated with applications to photodissociation of NaI, and to light emission of excited Li interacting with a He cluster. This second application describes the direct dynamics with a time-dependent electronic density matrix, expanded in a basis set of atomic functions. It shows that such an approach can deal with electronically excited many-atom systems involving tens of quantum states and hundreds of classical variables. The second approach makes use of the reduced density operator description for a system in a medium. This allows for dissipative dynamics, which can be instantaneous or delayed. An application is presented for femtosecond photodesorption using a Markovian dissipation and construction of the density operator from density amplitudes, for CO/Cu(001). A second application of a reduced density operator has been made to vibrational relaxation of adsorbates, solving integrodifferential equations to compare delayed, instantaneous, and Markovian dissipation. It is concluded that delayed dissipation is needed at short times and that a Markovian treatment is suitable for the interpretation of cross-sectional measurements that involve long-term dynamics.
Waegeneers, Nadia; Ruttens, Ann; De Temmerman, Ludwig
2011-06-15
A chain model was developed to calculate the flow of cadmium from soil, drinking water and feed towards bovine tissues. The data used for model development were tissue Cd concentrations of 57 bovines and Cd concentrations in soil, feed and drinking water, sampled at the farms were the bovines were reared. Validation of the model occurred with a second set of measured tissue Cd concentrations of 93 bovines of which age and farm location were known. The exposure part of the chain model consists of two parts: (1) a soil-plant transfer model, deriving cadmium concentrations in feed from basic soil characteristics (pH and organic matter content) and soil Cd concentrations, and (2) bovine intake calculations, based on typical feed and water consumption patterns for cattle and Cd concentrations in feed and drinking water. The output of the exposure model is an animal-specific average daily Cd intake, which is then taken forward to a kinetic uptake model in which time-dependent Cd concentrations in bovine tissues are calculated. The chain model was able to account for 65%, 42% and 32% of the variation in observed kidney, liver and meat Cd concentrations in the validation study.
Contact resistance calculations based on a variational method
NASA Astrophysics Data System (ADS)
Leong, M. S.; Choo, S. C.; Tan, L. S.; Goh, T. L.
1988-07-01
Noble's variational method is used to solve the contact resistance problem that arises when a circular disc source electrode is in contact with a semiconductor slab through an infinitesimally thin layer of resistive material. The method assumes that the source current density distribution J( r) has the form K 1(1 - r 2) -μ + K 2(1 - r 2) {1}/{2} + K 3(1 - r 2) {3}/{2}, where the parameters K1, K2, K3 and μ are determined by variational principles. Calculations of the source current density and the total slab resistance, performed for a wide range of contact resistivities, show that the results are practically indistinguishable from those derived from an exact mixed boundary value method proposed earlier by us. Whilst this method of using an optimised μ is very accurate, it is computationally slow. By fixing μ at a constant value of {1}/{4}, we find that we can drastically reduce the computation time for each calculation of the total slab resistance to 1.5 s on an Apple II microcomputer, and still achieve an overall accuracy of 1%. Tables of the abscissas and weights required for implementation of the numerical scheme are provided in the paper.
Furnish, M.D.; Boslough, M.B.; Gray, G.T. III; Remo, J.L.
1994-07-01
We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.
Caro, Miguel A; Laurila, Tomi; Lopez-Acevedo, Olga
2016-12-28
We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.
NASA Astrophysics Data System (ADS)
Borkar, Aditi N.; De Simone, Alfonso; Montalvao, Rinaldo W.; Vendruscolo, Michele
2013-06-01
We describe a method of determining the conformational fluctuations of RNA based on the incorporation of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) as replica-averaged structural restraints in molecular dynamics simulations. In this approach, the alignment tensor required to calculate the RDCs corresponding to a given conformation is estimated from its shape, and multiple replicas of the RNA molecule are simulated simultaneously to reproduce in silico the ensemble-averaging procedure performed in the NMR measurements. We provide initial evidence that with this approach it is possible to determine accurately structural ensembles representing the conformational fluctuations of RNA by applying the reference ensemble test to the trans-activation response element of the human immunodeficiency virus type 1.
A comparison of methods for melting point calculation using molecular dynamics simulations.
Zhang, Yong; Maginn, Edward J
2012-04-14
Accurate and efficient prediction of melting points for complex molecules is still a challenging task for molecular simulation, although many methods have been developed. Four melting point computational methods, including one free energy-based method (the pseudo-supercritical path (PSCP) method) and three direct methods (two interface-based methods and the voids method) were applied to argon and a widely studied ionic liquid 1-n-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The performance of each method was compared systematically. All the methods under study reproduce the argon experimental melting point with reasonable accuracy. For [BMIM][Cl], the melting point was computed to be 320 K using a revised PSCP procedure, which agrees with the experimental value 337-339 K very well. However, large errors were observed in the computed results using the direct methods, suggesting that these methods are inappropriate for large molecules with sluggish dynamics. The strengths and weaknesses of each method are discussed.
NASA Technical Reports Server (NTRS)
Vinokur, M.
1983-01-01
The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055
NASA Technical Reports Server (NTRS)
Vinokur, M.
1979-01-01
The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.
Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ruf, Joe
2007-01-01
As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.
NASA Astrophysics Data System (ADS)
Pennacchi, Paolo
2008-04-01
The modelling of the unbalanced magnetic pull (UMP) in generators and the experimental validation of the proposed method are presented in this paper. The UMP is one of the most remarkable effects of electromechanical interactions in rotating machinery. As a consequence of the rotor eccentricity, the imbalance of the electromagnetic forces acting between rotor and stator generates a net radial force. This phenomenon can be avoided by means of a careful assembly and manufacture in small and stiff machines, like electrical motors. On the contrary, the eccentricity of the active part of the rotor with respect to the stator is unavoidable in big generators of power plants, because they operate above their first critical speed and are supported by oil-film bearings. In the first part of the paper, a method aimed to calculate the UMP force is described. This model is more general than those available in literature, which are limited to circular orbits. The model is based on the actual position of the rotor inside the stator, therefore on the actual air-gap distribution, regardless of the orbit type. The closed form of the nonlinear UMP force components is presented. In the second part, the experimental validation of the proposed model is presented. The dynamical behaviour in the time domain of a steam turbo-generator of a power plant is considered and it is shown that the model is able to reproduce the dynamical effects due to the excitation of the magnetic field in the generator.
Wu, D; He, X T; Yu, W; Fritzsche, S
2017-02-01
A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.
Konecny, Lukas; Kadek, Marius; Komorovsky, Stanislav; Malkina, Olga L; Ruud, Kenneth; Repisky, Michal
2016-12-13
The Liouville-von Neumann equation based on the four-component matrix Dirac-Kohn-Sham Hamiltonian is transformed to a quasirelativistic exact two-component (X2C) form and then used to solve the time evolution of the electronic states only. By this means, a significant acceleration by a factor of 7 or more has been achieved. The transformation of the original four-component equation of motion is formulated entirely in matrix algebra, following closely the X2C decoupling procedure of Ilias and Saue [ J. Chem. Phys. 2007 , 126 , 064102 ] proposed earlier for a static (time-independent) case. In a dynamic (time-dependent) regime, however, an adiabatic approximation must in addition be introduced in order to preserve the block-diagonal form of the time-dependent Dirac-Fock operator during the time evolution. The resulting X2C Liouville-von Neumann electron dynamics (X2C-LvNED) is easy to implement as it does not require an explicit form of the picture-change transformed operators responsible for the (higher-order) relativistic corrections and/or interactions with external fields. To illustrate the accuracy and performance of the method, numerical results and computational timings for nonlinear optical properties are presented. All of the time domain X2C-LvNED results show excellent agreement with the reference four-component calculations as well as with the results obtained from frequency domain response theory.
NASA Astrophysics Data System (ADS)
Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.
2017-02-01
A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-01-01
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions. PMID:28195190
NASA Astrophysics Data System (ADS)
He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu
2017-01-01
Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations
NASA Astrophysics Data System (ADS)
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-02-01
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.
Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K
2015-04-01
Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties.
NASA Astrophysics Data System (ADS)
Urbina-Villalba, German; García-Sucre, Máximo; Toro-Mendoza, Jhoan
2003-12-01
In order to account for the hydrodynamic interaction (HI) between suspended particles in an average way, Honig et al. [J. Colloid Interface Sci. 36, 97 (1971)] and more recently Heyes [Mol. Phys. 87, 287 (1996)] proposed different analytical forms for the diffusion constant. While the formalism of Honig et al. strictly applies to a binary collision, the one from Heyes accounts for the dependence of the diffusion constant on the local concentration of particles. However, the analytical expression of the latter approach is more complex and depends on the particular characteristics of each system. Here we report a combined methodology, which incorporates the formula of Honig et al. at very short distances and a simple local volume-fraction correction at longer separations. As will be shown, the flocculation behavior calculated from Brownian dynamics simulations employing the present technique, is found to be similar to that of Batchelor’s tensor [J. Fluid. Mech. 74, 1 (1976); 119, 379 (1982)]. However, it corrects the anomalous coalescence found in concentrated systems as a result of the overestimation of many-body HI.
Force calculation on walls and embedded particles in multiparticle-collision-dynamics simulations.
Imperio, A; Padding, J T; Briels, W
2011-04-01
Colloidal solutions posses a wide range of time and length scales so that it is unfeasible to keep track of all of them within a single simulation. As a consequence, some form of coarse graining must be applied. In this work we use the multiparticle collision dynamics scheme. We describe a particular implementation of no-slip boundary conditions upon a solid surface, capable of providing correct forces on the solid bypassing the calculation of the velocity profile or the stress tensor in the fluid near the surface. As an application we measure the friction on a spherical particle when it is placed in a bulk fluid and when it is confined in a slit. We show that the implementation of the no-slip boundary conditions leads to an enhanced Enskog friction, which can be understood analytically. Because of the long-range nature of hydrodynamic interactions, the Stokes friction obtained from the simulations is sensitive of the simulation box size. We address this topic for the slit geometry, showing that the dependence on the system size differs very much from what is expected in a three-dimensional system where periodic boundary conditions are used in all directions.
NASA Astrophysics Data System (ADS)
Yu, Hua-Gen
2009-08-01
An exact variational algorithm is presented for calculating vibrational energy levels of pentaatomic molecules without any dynamical approximation. The quantum mechanical Hamiltonian of the system is expressed in a set of orthogonal coordinates defined by four scattering vectors in the body-fixed frame. The eigenvalue problem is solved using a two-layer Lanczos iterative diagonalization method in a mixed grid/basis set. A direct product potential-optimized discrete variable representation (PO-DVR) basis is used for the radial coordinates while a non-direct product finite basis representation (FBR) is employed for the angular variables. The two-layer Lanczos method requires only the actions of the Hamiltonian operator on the Lanczos vectors, where the potential-vector products are accomplished via a pseudo-spectral transform technique. By using Jacobi, Radau and orthogonal satellite vectors, we have proposed 21 types of orthogonal coordinate systems so that the algorithm is capable of describing most five-atom systems with small and/or large amplitude vibrational motions. Finally, an universal program ( PetroVib) has been developed. Its applications to the molecules CH and HO2-, and the van der Waals cluster HeCl are also discussed.
NASA Astrophysics Data System (ADS)
Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc
2016-12-01
Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.
NASA Astrophysics Data System (ADS)
Mirsakiyeva, Amina; Hugosson, Håkan W.; Crispin, Xavier; Delin, Anna
2016-12-01
We present simulation results, computed with the Car-Parrinello molecular dynamics method, at zero and ambient temperature (300 K) for poly(3,4-ethylenedioxythiophene) [PEDOT] and its selenium and tellurium derivatives PEDOS and PEDOTe, represented as 12-oligomer chains. In particular, we focus on structural parameters such as the dihedral rotation angle distribution, as well as how the charge distribution is affected by temperature. We find that for PEDOT, the dihedral angle distribution shows two distinct local maxima whereas for PEDOS and PEDOTe, the distributions only have one clear maximum. The twisting stiffness at ambient temperature appears to be larger the lighter the heteroatom (S, Se, Te) is, in contrast to the case at 0 K. As regards point charge distributions, they suggest that aromaticity increases with temperature, and also that aromaticity becomes more pronounced the lighter the heteroatom is, both at 0 K and ambient temperature. Our results agree well with previous results, where available. The bond lengths are consistent with substantial aromatic character both at 0 K and at ambient temperature. Our calculations also reproduce the expected trend of diminishing gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital with increasing atomic number of the heteroatom.
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2012-01-01
The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1st-grade calculations (CA) and word problems (WP) development, while controlling for the role of traditional assessments. Among 184 1st graders, predictors (DA, Quantity Discrimination, Test of Mathematics Ability, language, and reasoning) were assessed near the start of 1st grade. CA and WP were assessed near the end of 1st grade. Planned regression and commonality analyses indicated that for forecasting CA development, Quantity Discrimination, which accounted for 8.84% of explained variance, was the single most powerful predictor, followed by Test of Mathematics Ability and DA; language and reasoning were not uniquely predictive. By contrast, for predicting WP development, DA was the single most powerful predictor, which accounted for 12.01% of explained variance, with Test of Mathematics Ability, Quantity Discrimination, and language also uniquely predictive. Results suggest that different constellations of cognitive resources are required for CA versus WP development and that DA may be useful in predicting 1st-grade mathematics development, especially WP. PMID:22347725
NASA Technical Reports Server (NTRS)
Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir
2012-01-01
It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.
NASA Astrophysics Data System (ADS)
Epa, V. C.; Thorson, W. R.
1990-09-01
This paper concludes a theoretical study of vibrational dynamics in the bifluoride ion FHF-, which exhibits strongly anharmonic and coupled motions. Two previous papers have described an extended model potential surface for the system, developed a scheme for analysis based on a zero-order adiabatic separation of the proton bending and stretching motions (ν2,ν3) from the slower F-F symmetric-stretch motion (ν1), and presented results of accurate calculations of the adiabatic protonic eigenstates. Here the ν1 motion has been treated, in adiabatic approximation and also including nonadiabatic couplings in close-coupled calculations with up to three protonic states (channels). States of the system involving more than one quantum of protonic excitation (e.g., 2ν2, 2ν3 σg states; 3ν2, ν2+2ν3 πu states; ν3+2ν2, 3ν3 σu states) exhibit strong mixing at avoided crossings of protonic levels, and these effects are discussed in detail. Dipole matrix elements and relative intensities for vibrational transitions have been computed with an electronic dipole moment function based on ab initio calculations for an extended range of geometries. Frequencies, relative IR intensities and other properties of interest are compared with high resolution spectroscopic data for the gas-phase free ion and with the IR absorption spectra of KHF2(s) and NaHF2(s). Errors in the ab initio potential surface yield fundamental frequencies ν2 and ν3 100-250 cm-1 higher than those observed in either the free ion or the crystalline solids, but these differences are consistent and an unambiguous assignment of essentially all transitions in the IR spectrum of KHF2 is made. Calculated relative intensities for stretching mode (ν3, σu symmetry) transitions agree well with those observed in both KHF2 [e.g., bands (ν3+nν1), (ν3+2ν2), (3ν3), etc.] and the free ion (ν3,ν3+ν1). Calculated intensities for bending mode (ν2, πu symmetry) transitions agree well with experiment for the ν2
Application of ab initio calculations and molecular dynamics to collagen and brome mosaic virus
NASA Astrophysics Data System (ADS)
Eifler, Jay Quinson
In bio-related research, large proteins are of important interest. We study two such proteins. Collagen is one such protein which forms part of the structural matrix for animals, such as in their bones and teeth. 1JS9 is another protein that is a component of the protein shell of the brome mosaic virus (BMV). And BMV is important for drug delivery and imaging. To better understand the properties of these proteins, quantum mechanically (QM) based results are needed, however computationally feasible methods are also necessary. The Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) method is well-suited for application to such large proteins. However, a new approach to reduce the computational cost is required and this extension to the method we call the Amino-Acid Based Method (AAPM) of OLCAO. The AAPM roughly calculates electronic, self-consistent field (scf) potentials for individual amino-acids with their neighboring amino-acids included as a boundary condition. This allows the costly scf part of the calculation to be skipped out. Additionally, the number of potentials used to describe the how protein i s also minimized. Results for effective charge and bond order are obtained and analyzed for Collagen and preliminary effective charge results are obtained for 1JS9. The effective charge results reproduce those already obtained with other QM based methods but without reduced cost and preserved accuracy that are characteristically different than the formal charges mostly still in use to describe the charge properties of proteins. The bond order results for Collagen nicely reproduce the observed experimentally-derived hydrogen bonding between the individual chains of the collagen triple-helix as well as the observed hydrogen bonding network.
NASA Astrophysics Data System (ADS)
Gündüç, Semra; Dilaver, Mehmet; Aydın, Meral; Gündüç, Yiğit
2005-02-01
In this work we have studied the dynamic scaling behavior of two scaling functions and we have shown that scaling functions obey the dynamic finite size scaling rules. Dynamic finite size scaling of scaling functions opens possibilities for a wide range of applications. As an application we have calculated the dynamic critical exponent (z) of Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models. Configurations with vanishing initial magnetization are chosen in order to avoid complications due to initial magnetization. The observed dynamic finite size scaling behavior during early stages of the Monte Carlo simulation yields z for Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models with vanishing values which are consistent with the values obtained from the autocorrelations. Especially, the vanishing dynamic critical exponent we obtained for d=3 implies that the Wolff algorithm is more efficient in eliminating critical slowing down in Monte Carlo simulations than previously reported.
Coupled-cluster based basis sets for valence correlation calculations
NASA Astrophysics Data System (ADS)
Claudino, Daniel; Gargano, Ricardo; Bartlett, Rodney J.
2016-03-01
Novel basis sets are generated that target the description of valence correlation in atoms H through Ar. The new contraction coefficients are obtained according to the Atomic Natural Orbital (ANO) procedure from CCSD(T) (coupled-cluster singles and doubles with perturbative triples correction) density matrices starting from the primitive functions of Dunning et al. [J. Chem. Phys. 90, 1007 (1989); ibid. 98, 1358 (1993); ibid. 100, 2975 (1993)] (correlation consistent polarized valence X-tuple zeta, cc-pVXZ). The exponents of the primitive Gaussian functions are subject to uniform scaling in order to ensure satisfaction of the virial theorem for the corresponding atoms. These new sets, named ANO-VT-XZ (Atomic Natural Orbital Virial Theorem X-tuple Zeta), have the same number of contracted functions as their cc-pVXZ counterparts in each subshell. The performance of these basis sets is assessed by the evaluation of the contraction errors in four distinct computations: correlation energies in atoms, probing the density in different regions of space via
QED Based Calculation of the Fine Structure Constant
Lestone, John Paul
2016-10-13
Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ^{2}. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.
Ray-Based Calculations of Backscatter in Laser Fusion Targets
Strozzi, D J; Williams, E A; Hinkel, D E; Froula, D H; London, R A; Callahan, D A
2008-02-26
A steady-state model for Brillouin and Raman backscatter along a laser ray path is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code deplete, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as 'plane-wave' simulations with the paraxial propagation code pf3d. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser speckles greatly enhance the reflectivity over the deplete results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the deplete coupling coefficient. Analysis with deplete of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Doubling the coupling to bound the speckle enhancement suggests a less optimistic picture. Re-absorption of Raman light is seen to be significant in this design.
Grid-based electronic structure calculations: The tensor decomposition approach
Rakhuba, M.V.; Oseledets, I.V.
2016-05-01
We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.
Optimization-based Dynamic Human Lifting Prediction
2008-06-01
Anith Mathai, Steve Beck,Timothy Marler , Jingzhou Yang, Jasbir S. Arora, Karim Abdel-Malek Virtual Soldier Research Program, Center for Computer Aided...Rahmatalla, S., Kim, J., Marler , T., Beck, S., Yang, J., busek, J., Arora, J.S., and Abdel-Malek, K. Optimization-based dynamic human walking prediction
UAV-based NDVI calculation over grassland: An alternative approach
NASA Astrophysics Data System (ADS)
Mejia-Aguilar, Abraham; Tomelleri, Enrico; Asam, Sarah; Zebisch, Marc
2016-04-01
The Normalised Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring and assessing vegetation in remote sensing. The index relies on the reflectance difference between the near infrared (NIR) and red light and is thus able to track variations of structural, phenological, and biophysical parameters for seasonal and long-term monitoring. Conventionally, NDVI is inferred from space-borne spectroradiometers, such as MODIS, with moderate resolution up to 250 m ground resolution. In recent years, a new generation of miniaturized radiometers and integrated hyperspectral sensors with high resolution became available. Such small and light instruments are particularly adequate to be mounted on airborne unmanned aerial vehicles (UAV) used for monitoring services reaching ground sampling resolution in the order of centimetres. Nevertheless, such miniaturized radiometers and hyperspectral sensors are still very expensive and require high upfront capital costs. Therefore, we propose an alternative, mainly cheaper method to calculate NDVI using a camera constellation consisting of two conventional consumer-grade cameras: (i) a Ricoh GR modified camera that acquires the NIR spectrum by removing the internal infrared filter. A mounted optical filter additionally obstructs all wavelengths below 700 nm. (ii) A Ricoh GR in RGB configuration using two optical filters for blocking wavelengths below 600 nm as well as NIR and ultraviolet (UV) light. To assess the merit of the proposed method, we carry out two comparisons: First, reflectance maps generated by the consumer-grade camera constellation are compared to reflectance maps produced with a hyperspectral camera (Rikola). All imaging data and reflectance maps are processed using the PIX4D software. In the second test, the NDVI at specific points of interest (POI) generated by the consumer-grade camera constellation is compared to NDVI values obtained by ground spectral measurements using a
Insights into scFv:drug binding using the molecular dynamics simulation and free energy calculation.
Hu, Guodong; Zhang, Qinggang; Chen, L Y
2011-08-01
Molecular dynamics simulations and free energy calculation have been performed to study how the single-chain variable fragment (scFv) binds methamphetamine (METH) and amphetamine (AMP). The structures of the scFv:METH and the scFv:AMP complexes are analyzed by examining the time-dependence of their RMSDs, by analyzing the distance between some key atoms of the selected residues, and by comparing the averaged structures with their corresponding crystallographic structures. It is observed that binding an AMP to the scFv does not cause significant changes to the binding pocket of the scFv:ligand complex. The binding free energy of scFv:AMP without introducing an extra water into the binding pocket is much stronger than scFv:METH. This is against the first of the two scenarios postulated in the experimental work of Celikel et al. (Protein Science 18, 2336 (2009)). However, adding a water to the AMP (at the position of the methyl group of METH), the binding free energy of the scFv:AMP-H2O complex, is found to be significantly weaker than scFv:METH. This is consistent with the second of the two scenarios given by Celikel et al. Decomposition of the binding energy into ligand-residue pair interactions shows that two residues (Tyr175 and Tyr177) have nearly-zero interactions with AMP in the scFv:AMP-H2O complex, whereas their interactions with METH in the scFv:METH complex are as large as -0.8 and -0.74 kcal mol(-1). The insights gained from this study may be helpful in designing more potent antibodies in treating METH abuse.
Environment-based pin-power reconstruction method for homogeneous core calculations
Leroyer, H.; Brosselard, C.; Girardi, E.
2012-07-01
Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)
Pan, Yongping; Priyakumar, U Deva; MacKerell, Alexander D
2005-02-08
Structure and energetic properties of base pair mismatches in duplex RNA have been the focus of numerous investigations due to their role in many important biological functions. Such efforts have contributed to the development of models for secondary structure prediction of RNA, including the nearest-neighbor model. In RNA duplexes containing GU mismatches, 5'-GU-3' tandem mismatches have a different thermodynamic stability than 5'-UG-3' mismatches. In addition, 5'-GU-3' mismatches in some sequence contexts do not follow the nearest-neighbor model for stability. To characterize the underlying atomic forces that determine the structural and thermodynamic properties of GU tandem mismatches, molecular dynamics (MD) simulations were performed on a series of 5'-GU-3' and 5'-UG-3' duplexes in different sequence contexts. Overall, the MD-derived structural models agree well with experimental data, including local deviations in base step helicoidal parameters in the region of the GU mismatches and the model where duplex stability is associated with the pattern of GU hydrogen bonding. Further analysis of the simulations, validated by data from quantum mechanical calculations, suggests that the experimentally observed differences in thermodynamic stability are dominated by GG interstrand followed by GU intrastrand base stacking interactions that dictate the one versus two hydrogen bonding scenarios for the GU pairs. In addition, the inability of 5'-GU-3' mismatches in different sequence contexts to all fit into the nearest-neighbor model is indicated to be associated with interactions of the central four base pairs with the surrounding base pairs. The results emphasize the role of GG and GU stacking interactions on the structure and thermodynamics of GU mismatches in RNA.
Model-based calculations of fiber output fields for fiber-based spectroscopy
NASA Astrophysics Data System (ADS)
Hernandez, Eloy; Bodenmüller, Daniel; Roth, Martin M.; Kelz, Andreas
2016-08-01
The accurate characterization of the field at the output of the optical fibres is of relevance for precision spectroscopy in astronomy. The modal effects of the fibre translate to the illumination of the pupil in the spectrograph and impact on the resulting point spread function (PSF). A Model is presented that is based on the Eigenmode Expansion Method (EEM) that calculates the output field from a given fibre for different manipulations of the input field. The fibre design and modes calculation are done via the commercially available Rsoft-FemSIM software. We developed a Python script to apply the EEM. Results are shown for different configuration parameters, such as spatial and angular displacements of the input field, spot size and propagation length variations, different transverse fibre geometries and different wavelengths. This work is part of the phase A study of the fibre system for MOSAIC, a proposed multi-object spectrograph for the European Extremely Large Telescope (ELT-MOS).
A comparison of methods for melting point calculation using molecular dynamics simulations
Zhang, Y; Maginn, EJ
2012-04-14
Accurate and efficient prediction of melting points for complex molecules is still a challenging task for molecular simulation, although many methods have been developed. Four melting point computational methods, including one free energy-based method (the pseudo-supercritical path (PSCP) method) and three direct methods (two interface-based methods and the voids method) were applied to argon and a widely studied ionic liquid 1-n-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The performance of each method was compared systematically. All the methods under study reproduce the argon experimental melting point with reasonable accuracy. For [BMIM][Cl], the melting point was computed to be 320 K using a revised PSCP procedure, which agrees with the experimental value 337-339 K very well. However, large errors were observed in the computed results using the direct methods, suggesting that these methods are inappropriate for large molecules with sluggish dynamics. The strengths and weaknesses of each method are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702587
Edirisinghe, Y; Troupis, J M; Patel, M; Smith, J; Crossett, M
2014-05-01
We used a dynamic three-dimensional (3D) mapping method to model the wrist in dynamic unrestricted dart throwers motion in three men and four women. With the aid of precision landmark identification, a 3D coordinate system was applied to the distal radius and the movement of the carpus was described. Subsequently, with dynamic 3D reconstructions and freedom to position the camera viewpoint anywhere in space, we observed the motion pathways of all carpal bones in dart throwers motion and calculated its axis of rotation. This was calculated to lie in 27° of anteversion from the coronal plane and 44° of varus angulation relative to the transverse plane. This technique is a safe and a feasible carpal imaging method to gain key information for decision making in future hand surgical and rehabilitative practices.
Aeroelastic Calculations Based on Three-Dimensional Euler Analysis
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.
1998-01-01
This paper presents representative results from an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic code (TURBO). Unsteady pressure, lift, and moment distributions are presented for a helical fan test configuration which is used to verify the code by comparison to two-dimensional linear potential (flat plate) theory. The results are for pitching and plunging motions over a range of phase angles, Good agreement with linear theory is seen for all phase angles except those near acoustic resonances. The agreement is better for pitching motions than for plunging motions. The reason for this difference is not understood at present. Numerical checks have been performed to ensure that solutions are independent of time step, converged to periodicity, and linearly dependent on amplitude of blade motion. The paper concludes with an evaluation of the current state of development of the TURBO-AE code and presents some plans for further development and validation of the TURBO-AE code.
Evidence-Based Current Surgical Practice: Calculous Gallbladder Disease
Duncan, Casey B.; Riall, Taylor S.
2012-01-01
Gallbladder disease is common and, if managed incorrectly, can lead to high rates of morbidity, mortality, and extraneous costs. The most common complications of gallstones include biliary colic, acute cholecystitis, common bile duct stones, and gallstone pancreatitis. Ultrasound is the initial imaging modality of choice. Additional diagnostic and therapeutic studies including computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance cholangiopancreatography (MRCP), endoscopic ultrasound (EUS), and endoscopic retrograde cholangiopancreatography (ERCP) are not routinely required but may play a role in specific situations. Biliary colic and acute cholecystitis are best treated with early laparoscopic cholecystectomy. Patients with common bile duct stones should be managed with cholecystectomy, either after or concurrent with endoscopic or surgical relief of obstruction and clearance of stones from the bile duct. Mild gallstone pancreatitis should be treated with cholecystectomy during the initial hospitalization to prevent recurrence. Emerging techniques for cholecystectomy include single-incision laparoscopic surgery (SILS) and natural orifice transluminal endoscopic surgery (NOTES). Early results in highly selected patients demonstrate the safety of these techniques. The management of complications of the gallbladder should be timely and evidence-based, and choice of procedures, particularly for common bile duct stones, is largely influenced by facility and surgeon factors. PMID:22986769
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
NASA Astrophysics Data System (ADS)
Çiftci, Yasemin Ö.; Çoban, Cansu
2016-02-01
The structural, mechanical, electronic, dynamic, and optical properties of the ZrPdSn compound crystallising into the MgAgAs structure are investigated by the ab initio calculations based on the density functional theory. The lattice constant, bulk modulus, and first derivative of bulk modulus were obtained by fitting the calculated total energy-atomic volume results to the Murnaghan equation of state. These results were compared to the previous data. The band structure and corresponding density of states (DOS) were also calculated and discussed. The elastic properties were calculated by using the stress-strain method, which shows that the MgAgAs phase of this compound is mechanically stable. The presented phonon dispersion curves and one-phonon DOS confirms that this compound is dynamically stable. In addition, the heat capacity, entropy, and free energy of ZrPdSn were calculated by using the phonon frequencies. Finally, the optical properties, such as dielectric function, reflectivity function, extinction coefficient, refractive index, and energy loss spectrum, were obtained under different pressures.
Trotter-based simulation of quantum-classical dynamics.
Kernan, Dónal Mac; Ciccotti, Giovanni; Kapral, Raymond
2008-01-17
Quantum rate processes in condensed phase systems are often computed by combining quantum and classical descriptions of the dynamics. An algorithm for simulating the quantum-classical Liouville equation, which describes the dynamics of a quantum subsystem coupled to a classical bath, is presented in this paper. The algorithm is based on a Trotter decomposition of the quantum-classical propagator, in conjunction with Monte Carlo sampling of quantum transitions, to yield a surface-hopping representation of the dynamics. An expression for the nonadiabatic propagator that is responsible for quantum transitions and associated bath momentum changes is derived in a form that is convenient for Monte Carlo sampling and exactly conserves the total energy of the system in individual trajectories. The expectation values of operators or quantum correlation functions can be evaluated by initial sampling of quantum states and use of quantum-classical Liouville dynamics for the time evolution. The algorithm is tested by calculations on the spin-boson model, for which exact quantum results are available, and is shown to reproduce the exact results for stronger nonadiabatic coupling and much longer times using fewer trajectories than other schemes for simulating quantum-classical Liouville dynamics.
Dynamics and Thermodynamics of Artificial Muscles Based on Nematic Gels
NASA Astrophysics Data System (ADS)
Hébert, M.; Kant, R.; de Gennes, P.-G.
1997-07-01
A scheme based on nemato-mechanical conversion has been proposed for potential artificial muscle applications (de Gennes P.-G., Hébert M. and Kant R., to appear in Macromol. Symp. (1996)). As the temperature in a nematic gel is reduced through the transition temperature, strong uniaxial deformation is encountered. We briefly expose the dynamics of contraction/elongation in this system. Work and dissipative losses are calculated for an operating cycle to get an approximative expression of the ratio work/losses, which can then be compared with real muscular efficiencies.
NASA Astrophysics Data System (ADS)
Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard
2016-04-01
The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; ...
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less
First principle calculation of structure and lattice dynamics of Lu2Si2O7
NASA Astrophysics Data System (ADS)
Nazipov, D. V.; Nikiforov, A. E.
2016-12-01
Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT) with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.
Keystroke Dynamics-Based Credential Hardening Systems
NASA Astrophysics Data System (ADS)
Bartlow, Nick; Cukic, Bojan
abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.
Vision Based SLAM in Dynamic Scenes
2012-12-20
cameras , while conventional studies are limited with a single camera (or a multi- camera rig where the relative positions between cameras are fixed...Our flexible configuration of cameras makes this algorithm applicable to robot teams, which also makes this study the world’s first vision based SLAM...algorithm for robot teams. Furthermore, the collaboration among multiple cameras allows us to deal with challenging dynamic scenes which make most
A Dynamic Attitude Measurement System Based on LINS
Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun
2014-01-01
A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802
SU-E-T-465: Dose Calculation Method for Dynamic Tumor Tracking Using a Gimbal-Mounted Linac
Sugimoto, S; Inoue, T; Kurokawa, C; Usui, K; Sasai, K; Utsunomiya, S; Ebe, K
2014-06-01
Purpose: Dynamic tumor tracking using the gimbal-mounted linac (Vero4DRT, Mitsubishi Heavy Industries, Ltd., Japan) has been available when respiratory motion is significant. The irradiation accuracy of the dynamic tumor tracking has been reported to be excellent. In addition to the irradiation accuracy, a fast and accurate dose calculation algorithm is needed to validate the dose distribution in the presence of respiratory motion because the multiple phases of it have to be considered. A modification of dose calculation algorithm is necessary for the gimbal-mounted linac due to the degrees of freedom of gimbal swing. The dose calculation algorithm for the gimbal motion was implemented using the linear transformation between coordinate systems. Methods: The linear transformation matrices between the coordinate systems with and without gimbal swings were constructed using the combination of translation and rotation matrices. The coordinate system where the radiation source is at the origin and the beam axis along the z axis was adopted. The transformation can be divided into the translation from the radiation source to the gimbal rotation center, the two rotations around the center relating to the gimbal swings, and the translation from the gimbal center to the radiation source. After operating the transformation matrix to the phantom or patient image, the dose calculation can be performed as the no gimbal swing. The algorithm was implemented in the treatment planning system, PlanUNC (University of North Carolina, NC). The convolution/superposition algorithm was used. The dose calculations with and without gimbal swings were performed for the 3 × 3 cm{sup 2} field with the grid size of 5 mm. Results: The calculation time was about 3 minutes per beam. No significant additional time due to the gimbal swing was observed. Conclusions: The dose calculation algorithm for the finite gimbal swing was implemented. The calculation time was moderate.
HP-9825A calculator programs for plotting orbiter RCS jet dynamic pressure contours
NASA Technical Reports Server (NTRS)
Wilson, S. W.
1977-01-01
Computer programs which generate displays of the dynamic pressure fields generated by orbiter RCS thruster firings are described. The programs can be used to generate dynamic contours for an isolated RCS jet and to superimpose the plume contours for specific jets or jet clusters on front and side views of the orbiter profile.
Calculation of the Dynamic Characteristics of an Electric Arc Subjected to Forced Extinction
NASA Astrophysics Data System (ADS)
Nekrasov, S. A.
2016-11-01
Models and methods of calculating the currents in a free-burning arc and in an arc in an arc chute with magnetic blow and the voltages across them in the process of their extinction are considered. A comparison of calculation and experimental data has been performed.
ERIC Educational Resources Information Center
Schumann, Heinz; Green, David
2000-01-01
Discusses software for geometric construction, measurement, and calculation, and software for numerical calculation and symbolic analysis that allows for new approaches to the solution of geometric problems. Illustrates these computer-aided graphical, numerical, and algebraic methods of solution and discusses examples using the appropriate choice…
Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.
1997-12-31
The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.
Fast calculation with point-based method to make CGHs of the polygon model
NASA Astrophysics Data System (ADS)
Ogihara, Yuki; Ichikawa, Tsubasa; Sakamoto, Yuji
2014-02-01
Holography is one of the three-dimensional technology. Light waves from an object are recorded and reconstructed by using a hologram. Computer generated holograms (CGHs), which are made by simulating light propagation using a computer, are able to represent virtual object. However, an enormous amount of computation time is required to make CGHs. There are two primary methods of calculating CGHs: the polygon-based method and the point-based method. In the polygon-based method with Fourier transforms, CGHs are calculated using a fast Fourier transform (FFT). The calculation of complex objects composed of multiple polygons requires as many FFTs, so unfortunately the calculation time become enormous. In contrast, in the point-based method, it is easy to express complex objects, an enormous calculation time is still required. Graphics processing units (GPUs) have been used to speed up the calculations of point-based method. Because a GPU is specialized for parallel computation and CGH calculation can be calculated independently for each pixel. However, expressing a planar object by the point-based method requires a signi cant increase in the density of points and consequently in the number of point light sources. In this paper, we propose a fast calculation algorithm to express planar objects by the point-based method with a GPU. The proposed method accelerate calculation by obtaining the distance between a pixel and the point light source from the adjacent point light source by a difference method. Under certain speci ed conditions, the difference between adjacent object points becomes constant, so the distance is obtained by only an additions. Experimental results showed that the proposed method is more effective than the polygon-based method with FFT when the number of polygons composing an objects are high.
Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.
2005-01-01
In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.
Oh, Suk Yung; Bae, Young Chan
2010-07-15
The method presented in this paper was developed to predict liquid-liquid equilibria in ternary liquid mixtures by using a combination of a thermodynamic model and molecular dynamics simulations. In general, common classical thermodynamic models have many parameters which are determined by fitting a model with experimental data. This proposed method, however, provides a simple procedure for calculating liquid-liquid equilibria utilizing binary interaction parameters and molecular size parameters determined from molecular dynamics simulations. This method was applied to mixtures containing water, hydrocarbons, alcohols, chlorides, ketones, acids, and other organic liquids over various temperature ranges. The predicted results agree well with the experimental data without the use of adjustable parameters.
Structure and dynamics of the Lu2Si2O7 lattice: Ab initio calculation
NASA Astrophysics Data System (ADS)
Nazipov, D. V.; Nikiforov, A. E.
2017-01-01
The ab initio calculations have been carried out for the crystal structure and Raman spectrum of a single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations and their frequencies and intensities in the Raman spectrum for two polarizations of the crystal have been determined. The calculations have been performed within the framework of the density functional theory (DFT) using the hybrid functionals. The ions involved in the vibrations have been identified using the method of isotopic substitution. The results of the calculations are in good agreement with the experiment.
NASA Astrophysics Data System (ADS)
Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen
2017-02-01
Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.
Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J Valentine, Stephen
2017-02-16
Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed. Graphical Abstract ᅟ.
Koski, J.A.; Wix, S.D.; Cole, J.K.
1997-09-01
Shipboard fires both in the same ship hold and in an adjacent hold aboard a break-bulk cargo ship are simulated with a commercial finite-volume computational fluid mechanics code. The fire models and modeling techniques are described and discussed. Temperatures and heat fluxes to a simulated materials package are calculated and compared to experimental values. The overall accuracy of the calculations is assessed.
NASA Astrophysics Data System (ADS)
Paranin, Y.; Burmistrov, A.; Salikeev, S.; Fomina, M.
2015-08-01
Basic propositions of calculation procedures for oil free scroll compressors characteristics are presented. It is shown that mathematical modelling of working process in a scroll compressor makes it possible to take into account such factors influencing the working process as heat and mass exchange, mechanical interaction in working chambers, leakage through slots, etc. The basic mathematical model may be supplemented by taking into account external heat exchange, elastic deformation of scrolls, inlet and outlet losses, etc. To evaluate the influence of procedure on scroll compressor characteristics calculations accuracy different calculations were carried out. Internal adiabatic efficiency was chosen as a comparative parameter which evaluates the perfection of internal thermodynamic and gas-dynamic compressor processes. Calculated characteristics are compared with experimental values obtained for the compressor pilot sample.
2015-05-12
using a vibratory system . Our approach can be easily extended to non-stationary Gaussian input processes. Introduction The response of a vibratory...Page 1 of 9 15IDM-0105 An Efficient Method to Calculate the Failure Rate of Dynamic Systems with Random Parameters using the Total Probability...failure rate of a linear vibratory system with random parameters excited by stationary Gaussian processes. The response of such a system is non
Creative Uses for Calculator-based Laboratory (CBL) Technology in Chemistry.
ERIC Educational Resources Information Center
Sales, Cynthia L.; Ragan, Nicole M.; Murphy, Maureen Kendrick
1999-01-01
Reviews three projects that use a graphing calculator linked to a calculator-based laboratory device as a portable data-collection system for students in chemistry classes. Projects include Isolation, Purification and Quantification of Buckminsterfullerene from Woodstove Ashes; Determination of the Activation Energy Associated with the…
19 CFR 351.405 - Calculation of normal value based on constructed value.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 3 2013-04-01 2013-04-01 false Calculation of normal value based on constructed value. 351.405 Section 351.405 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Calculation of Export Price, Constructed Export Price, Fair Value,...
19 CFR 351.405 - Calculation of normal value based on constructed value.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 3 2011-04-01 2011-04-01 false Calculation of normal value based on constructed value. 351.405 Section 351.405 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Calculation of Export Price, Constructed Export Price, Fair Value,...
19 CFR 351.405 - Calculation of normal value based on constructed value.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 3 2010-04-01 2010-04-01 false Calculation of normal value based on constructed value. 351.405 Section 351.405 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Calculation of Export Price, Constructed Export Price, Fair Value,...
19 CFR 351.405 - Calculation of normal value based on constructed value.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 3 2012-04-01 2012-04-01 false Calculation of normal value based on constructed value. 351.405 Section 351.405 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Calculation of Export Price, Constructed Export Price, Fair Value,...
19 CFR 351.405 - Calculation of normal value based on constructed value.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 3 2014-04-01 2014-04-01 false Calculation of normal value based on constructed value. 351.405 Section 351.405 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Calculation of Export Price, Constructed Export Price, Fair Value,...
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Chang, Chia-Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-01
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wave function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.
GPAW - massively parallel electronic structure calculations with Python-based software.
Enkovaara, J.; Romero, N.; Shende, S.; Mortensen, J.
2011-01-01
Electronic structure calculations are a widely used tool in materials science and large consumer of supercomputing resources. Traditionally, the software packages for these kind of simulations have been implemented in compiled languages, where Fortran in its different versions has been the most popular choice. While dynamic, interpreted languages, such as Python, can increase the effciency of programmer, they cannot compete directly with the raw performance of compiled languages. However, by using an interpreted language together with a compiled language, it is possible to have most of the productivity enhancing features together with a good numerical performance. We have used this approach in implementing an electronic structure simulation software GPAW using the combination of Python and C programming languages. While the chosen approach works well in standard workstations and Unix environments, massively parallel supercomputing systems can present some challenges in porting, debugging and profiling the software. In this paper we describe some details of the implementation and discuss the advantages and challenges of the combined Python/C approach. We show that despite the challenges it is possible to obtain good numerical performance and good parallel scalability with Python based software.
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-19
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-19
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wave function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.
NASA Astrophysics Data System (ADS)
Çiftci, Yasemin Ö.; Evecen, Meryem; Aldırmaz, Emine
2017-01-01
First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs2 with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs2 are positive, indicating the dynamical stability of the studied compound.
[Design of high performance DSP-based gradient calculation module for MRI].
Pan, Wenyu; Zhang, Fu; Luo, Hai; Zhou, Heqin
2011-05-01
A gradient calculation module based on high performance DSP was designed to meet the needs of digital MRI spectrometer. According to the requirements of users, this apparatus can achieve rotation transformation, pre-emphasis, shimming and other gradient calculation functions in a single chip of DSP. It then outputs gradient waveform data of channel X, Y, Z and shimming data of channel B0. Experiments show that the design has good versatility and can satisfy the functional, speed and accuracy requirements of MRI gradient calculation. It provides a practical gradient calculation solution for the development of digital spectrometer.
Li, Yongle; Suleimanov, Yury V; Guo, Hua
2014-02-20
The thermal rate constants of two prototypical insertion-type reactions, namely, N/O + H2 → NH/OH + H, are investigated with ring polymer molecular dynamics (RPMD) on full-dimensional potential energy surfaces using recently developed RPMDrate code. It is shown that the unique ability of the RPMD approach among the existing theoretical methods to capture the quantum effects, e.g., tunneling and zero-point energy, as well as recrossing dynamics quantum mechanically with ring-polymer trajectories leads to excellent agreement with rigorous quantum dynamics calculations. The present result is encouraging for future applications of the RPMD method and the RPMDrate code to complex-forming chemical reactions involving polyatomic reactants.
Lakel, S.; Okbi, F.; Ibrir, M.; Almi, K.
2015-03-30
We have performed first-principles calculations to investigate the behavior under hydrostatic pressure of the structural, elastic and lattice dynamics properties of aluminum phosphide crystal (AlP), in both zinc-blende (B3) and nickel arsenide (B8) phases. Our calculated structural and electronic properties are in good agreement with previous theoretical and experimental results. The elastic constants, bulk modulus (B), shear modulus (G), and Young's modulus (E), Born effective charge and static dielectric constant ε{sub 0}, were calculated with the generalized gradient approximations and the density functional perturbation theory (DFPT). Our results in the pressure behavior of the elastic and dielectric properties of both phases are compared and contrasted with the common III–V materials. The Born effective charge ZB decreases linearly with pressure increasing, while the static dielectric constant decreases quadratically with the increase of pressure.
NASA Astrophysics Data System (ADS)
Mebrouki, M.; Ouahrani, T.; Çiftci, Y. Öztekin
2016-07-01
Using a toolkit of theoretical techniques comprising ab initio density functional theory calculations and quasiharmonic approximation, we investigate temperature dependence of dynamical properties of BaVO_3 perovskite. This interest is triggered by the fact that, recently, it was possible to synthesize a BaVO_3 perovskite, in a cubic phase, at high pressure and temperature. First-principle calculations are achieved thanks to recent development in numerical facilities, especially phonon dispersion curves which are then fully obtained. Elastic constants of the compound are dependent on temperature due to the inevitable anharmonic effects in solids. We show that at low temperature, the full account of the thermal effects incorporating the phonon densities and Sommerfeld model is more appropriate to calculate the thermal properties of a metal.
NASA Astrophysics Data System (ADS)
Khare, Ankur; Himmetoglu, Burak; Johnson, Melissa; Norris, David J.; Cococcioni, Matteo; Aydil, Eray S.
2012-04-01
The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.
Czakó, Gábor; Kaledin, Alexey L; Bowman, Joel M
2010-04-28
We report the implementation of a previously suggested method to constrain a molecular system to have mode-specific vibrational energy greater than or equal to the zero-point energy in quasiclassical trajectory calculations [J. M. Bowman et al., J. Chem. Phys. 91, 2859 (1989); W. H. Miller et al., J. Chem. Phys. 91, 2863 (1989)]. The implementation is made practical by using a technique described recently [G. Czako and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009)], where a normal-mode analysis is performed during the course of a trajectory and which gives only real-valued frequencies. The method is applied to the water dimer, where its effectiveness is shown by computing mode energies as a function of integration time. Radial distribution functions are also calculated using constrained quasiclassical and standard classical molecular dynamics at low temperature and at 300 K and compared to rigorous quantum path integral calculations.
Dynamics-based centrality for directed networks
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Kori, Hiroshi
2010-11-01
Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.
Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes
NASA Astrophysics Data System (ADS)
Kondratyuk, Nikolay D.; Norman, Genri E.; Stegailov, Vladimir V.
2016-11-01
Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.
Er, Li; Xiangying, Zeng
2014-01-01
To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models.
NASA Astrophysics Data System (ADS)
Kehlenbeck, Matthias; Breitner, Michael H.
Business users define calculated facts based on the dimensions and facts contained in a data warehouse. These business calculation definitions contain necessary knowledge regarding quantitative relations for deep analyses and for the production of meaningful reports. The business calculation definitions are implementation and widely organization independent. But no automated procedures facilitating their exchange across organization and implementation boundaries exist. Separately each organization currently has to map its own business calculations to analysis and reporting tools. This paper presents an innovative approach based on standard Semantic Web technologies. This approach facilitates the exchange of business calculation definitions and allows for their automatic linking to specific data warehouses through semantic reasoning. A novel standard proxy server which enables the immediate application of exchanged definitions is introduced. Benefits of the approach are shown in a comprehensive case study.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Dynamic Load Balancing for Finite Element Calculations on Parallel Computers. Chapter 1
NASA Technical Reports Server (NTRS)
Pramono, Eddy; Simon, Horst D.; Sohn, Andrew; Lasinski, T. A. (Technical Monitor)
1994-01-01
Computational requirements of full scale computational fluid dynamics change as computation progresses on a parallel machine. The change in computational intensity causes workload imbalance of processors, which in turn requires a large amount of data movement at runtime. If parallel CFD is to be successful on a parallel or massively parallel machine, balancing of the runtime load is indispensable. Here a frame work is presented for dynamic load balancing for CFD applications, called Jove. One processor is designated as a decision maker Jove while others are assigned to computational fluid dynamics. Processors running CFD send flags to Jove in a predetermined number of iterations to initiate load balancing. Jove starts working on load balancing while other processors continue working with the current data and load distribution. Jove goes through several steps to decide if the new data should be taken, including preliminary evaluate, partition, processor reassignment, cost evaluation, and decision. Jove running on a single SP2 node has been completely implemented. Preliminary experimental results show that the Jove approach to dynamic load balancing can be effective for full scale grid partitioning on the target machine SP2.
A Simple Molecular Dynamics Lab to Calculate Viscosity as a Function of Temperature
ERIC Educational Resources Information Center
Eckler, Logan H.; Nee, Matthew J.
2016-01-01
A simple molecular dynamics experiment is described to demonstrate transport properties for the undergraduate physical chemistry laboratory. The AMBER package is used to monitor self-diffusion in "n"-hexane. Scripts (available in the Supporting Information) make the process considerably easier for students, allowing them to focus on the…
ERIC Educational Resources Information Center
Cutchins, M. A.
1982-01-01
Presents programmable calculator solutions to selected problems, including area moments of inertia and principal values, the 2-D principal stress problem, C.G. and pitch inertia computations, 3-D eigenvalue problems, 3 DOF vibrations, and a complex flutter determinant. (SK)
Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine.
Suzuki, Masayo; Kino, Katsuhito; Morikawa, Masayuki; Kobayashi, Takanobu; Komori, Rie; Miyazawa, Hiroshi
2012-06-01
DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H)-oxazolone (Oz), guanidinohydantoin (Gh)/iminoallantoin (Ia) and spiro-imino-dihydantoin (Sp) are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.
Dynamic plasmapause model based on THEMIS measurements
NASA Astrophysics Data System (ADS)
Liu, W.; Liu, X.
2015-12-01
We will present a dynamic plasmapause location model established based on five years of THEMIS measurements from 2009 to 2013. In total, 5878 plasmapause crossing events are identified, sufficiently covering all 24 Magnetic Local Time (MLT) sectors. Based on this plasmapause crossing database, we investigate the correlations between plasmapause locations with solar wind parameters and geomagnetic indices. Input parameters for the best fits are obtained for different MLT sectors and finally we choose five input parameters to build a plasmapause location model, including five-minute-averaged SYM-H, AL and AU indices as well as hourly-averaged AE and Kp indices. An out-of-sample comparison on the evolution of the plasmapause is shown during April 2001 magnetic storm, demonstrating good agreement between model results and observations. Two major advantages are achieved by this model. First, this model provides plasmapause locations at 24 MLT sectors, still providing good consistency with observations. Second, this model is able to reproduce dynamic variations of plasmapause in the time scale as short as five minutes.
Motion detection based on recurrent network dynamics
Joukes, Jeroen; Hartmann, Till S.; Krekelberg, Bart
2014-01-01
The detection of visual motion requires temporal delays to compare current with earlier visual input. Models of motion detection assume that these delays reside in separate classes of slow and fast thalamic cells, or slow and fast synaptic transmission. We used a data-driven modeling approach to generate a model that instead uses recurrent network dynamics with a single, fixed temporal integration window to implement the velocity computation. This model successfully reproduced the temporal response dynamics of a population of motion sensitive neurons in macaque middle temporal area (MT) and its constituent parts matched many of the properties found in the motion processing pathway (e.g., Gabor-like receptive fields (RFs), simple and complex cells, spatially asymmetric excitation and inhibition). Reverse correlation analysis revealed that a simplified network based on first and second order space-time correlations of the recurrent model behaved much like a feedforward motion energy (ME) model. The feedforward model, however, failed to capture the full speed tuning and direction selectivity properties based on higher than second order space-time correlations typically found in MT. These findings support the idea that recurrent network connectivity can create temporal delays to compute velocity. Moreover, the model explains why the motion detection system often behaves like a feedforward ME network, even though the anatomical evidence strongly suggests that this network should be dominated by recurrent feedback. PMID:25565992
Dynamic graph cut based segmentation of mammogram.
Angayarkanni, S Pitchumani; Kamal, Nadira Banu; Thangaiya, Ranjit Jeba
2015-01-01
This work presents the dynamic graph cut based Otsu's method to segment the masses in mammogram images. Major concern that threatens human life is cancer. Breast cancer is the most common type of disease among women in India and abroad. Breast cancer increases the mortality rate in India especially in women since it is considered to be the second largest form of disease which leads to death. Mammography is the best method for diagnosing early stage of cancer. The computer aided diagnosis lacks accuracy and it is time consuming. The main approach which makes the detection of cancerous masses accurate is segmentation process. This paper is a presentation of the dynamic graph cut based approach for effective segmentation of region of interest (ROI). The sensitivity, the specificity, the positive prediction value and the negative prediction value of the proposed algorithm are determined and compared with the existing algorithms. Both qualitative and quantitative methods are used to detect the accuracy of the proposed system. The sensitivity, the specificity, the positive prediction value and the negative prediction value of the proposed algorithm accounts to 98.88, 98.89, 93 and 97.5% which rates very high when compared to the existing algorithms.
Robert, T; Chèze, L; Dumas, R; Verriest, J-P
2007-01-01
The joint forces and moments driving the motion of a human subject are classically computed by an inverse dynamic calculation. However, even if this process is theoretically simple, many sources of errors may lead to huge inaccuracies in the results. Moreover, a direct comparison with in vivo measured loads or with "gold standard" values from literature is only possible for very specific studies. Therefore, assessing the inaccuracy of inverse dynamic results is not a trivial problem and a simple method is still required. This paper presents a simple method to evaluate both: (1) the consistency of the results obtained by inverse dynamics; (2) the influence of possible modifications in the inverse dynamic hypotheses. This technique concerns recursive calculation performed on full kinematic chains, and consists in evaluating the loads obtained by two different recursive strategies. It has been applied to complex 3D whole body movements of balance recovery. A recursive Newton-Euler procedure was used to compute the net joint loads. Two models were used to represent the subject bodies, considering or not the upper body as a unique rigid segment. The inertial parameters of the body segments were estimated from two different sets of scaling equations [De Leva, P., 1996. Adjustments to Zatsiorsky-Suleyanov's segment inertia parameters. Journal of Biomechanics 29, 1223-1230; Dumas, R., Chèze, L., Verriest, J.-P., 2006b. Adjustments to McConville et al. and Young et al. Body Segment Inertial Parameters. Journal of Biomechanics, in press]. Using this comparison technique, it has been shown that, for the balance recovery motions investigated: (1) the use of the scaling equations proposed by Dumas et al., instead of those proposed by De Leva, improves the consistency of the results (average relative influence up to 30% for the transversal moment); (2) the arm motions dynamically influence the recovery motion in a non negligible way (average relative influence up to 15% and 30
A new version of a computer program for dynamical calculations of RHEED intensity oscillations
NASA Astrophysics Data System (ADS)
Daniluk, Andrzej; Skrobas, Kazimierz
2006-01-01
We present a new version of the RHEED program which contains a graphical user interface enabling the use of the program in the graphical environment. The presented program also contains a graphical component which enables displaying program data at run-time through an easy-to-use graphical interface. New version program summaryTitle of program: RHEEDGr Catalogue identifier: ADWV Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version: ADUY Authors of the original program: A. Daniluk Does the new version supersede the original program: no Computer for which the new version is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the new version has been tested: Windows 9x, XP, NT Programming language used: Borland C++ Builder Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Number of lines in distributed program, including test data, etc.: 5797 Number of bytes in distributed program, including test data, etc.: 588 121 Distribution format: tar.gz Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. Method of solution: RHEED intensities are calculated within the framework of the general matrix formulation of Peng and Whelan [1] under the one-beam condition. Reasons for the new version: Responding to the user feedback we designed a graphical package that enables displaying program data at run-time through an easy-to-use graphical interface. Summary of revisions:In the present form
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.
2013-12-01
This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled either by the Feynman-Vernon model or the Caldeira-Leggett model. The user gives the program a Hamiltonian matrix that describes the open quantum system as if it were in isolation, a matrix of the same size that describes how that system couples to its environment, and a spectral distribution function and temperature describing the environment’s influence on it, in addition to the open quantum system’s initial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all moments specified by that grid of times (or just the last moment specified by the grid of times if the user makes this choice). This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate-limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup of the Feynman integral can actually become the rate-limiting step. The overhead of transferring information from the CPU to the GPU and back seems to have a negligible effect on the overall runtime of the program. When the required information cannot fit on the GPU, the user can choose to run the entire program on a CPU. Catalogue identifier: AEPX_v1_0. Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPX_v1_0.html. Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 703. No. of bytes in distributed program, including test data, etc.: 11026. Distribution format: tar.gz. Programming
Zhang, Zhao; Liu, Juan; Jia, Jia; Li, Xin; Han, Jian; Hu, Bin; Wang, Yongtian
2013-08-01
Heavy computational load of computer-generated hologram (CGH) and imprecise intensity modulation of 3D images are crucial problems in dynamic holographic display. The nonuniform sampling method is proposed to speed up CGH generation and precisely modulate the reconstructed intensities of phase-only CGH. The proposed method can eliminate the redundant information properly, where 70% reduction in the storage amount can be reached when it is combined with the novel lookup table method. Multigrayscale modulation of reconstructed 3D images can be achieved successfully. Numerical simulations and optical experiments are performed, and both are in good agreement. It is believed that the proposed method can be used in 3D dynamic holographic display.
NASA Astrophysics Data System (ADS)
Borg, Michael; Melchior Hansen, Anders; Bredmose, Henrik
2016-09-01
Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads.
Molecular-dynamics calculations of the velocity autocorrelation function: Hard-sphere results
NASA Astrophysics Data System (ADS)
Erpenbeck, Jerome J.; Wood, Wiilliam W.
1985-07-01
The velocity autocorrelation function for the hard-sphere fluid is computed for ten values of the volume ranging from 25 to 1.6 times the close-packed volume V0 for systems of from 108 to 4000 hard spheres, using a Monte Carlo, molecular-dynamics technique. The results are compared with the theoretical predictions of the mode-coupling theory, modified to take into account the finite size of the system and the periodic boundary conditions. The data are found to be in good agreement with the theory, evaluated using Enskog values for the transport coefficients, for values of the time greater than roughly 15 to 30 mean free times (depending on density), for volumes as small as 2V0. The higher-density results do not agree with the theory, unless the actual transport coefficients (evaluated using molecular dynamics) are used in the theory. The latter version of the theory, however, fails to fit the data at lower densities, except at very long times. To answer the recent critique by Fox, the data are further compared with the theory over time intervals for which the molecular-dynamics trajectories retain some measure of accuracy. The agreement between the data and the theory is largely unaffected, except at a volume 1.8V0 for which there is a marginally significant difference at very long times only.
Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?
Hele, Timothy J. H.; Suleimanov, Yury V.
2015-08-21
We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H{sub 2}, D + MuH, and F + H{sub 2}, and the prototypical polyatomic reaction H + CH{sub 4}. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.
Lattice dynamics and thermodynamics of molybdenum from first-principles calculations.
Zeng, Zhao-Yi; Hu, Cui-E; Cai, Ling-Cang; Chen, Xiang-Rong; Jing, Fu-Qian
2010-01-14
We calculated the phase transition, elastic constants, full phonon dispersion curves, and thermal properties of molybdenum (Mo) for a wide range of pressures using density functional theory. Mo is stable in the body-centered-cubic (bcc) structure up to 703 +/- 19 GPa and then transforms to the face-centered close-packed (fcc) structure at zero temperature. Under high temperature and pressure, the fcc phase of Mo is more stable than the bcc phase. The calculated phonon dispersion curves accord excellently with experiments. Under pressure, we captured a large softening along H-P in the TA branches. When the volume is compressed to 7.69 A(3), the frequencies along H-P in the TA branches soften to imaginary frequencies, indicating a structural instability. When the pressure increases, the phonon calculations on the fcc Mo predict the stability by promoting the frequencies along Gamma to X and Gamma to L symmetry lines from imaginary to real. The thermal equation of state was also investigated. From the thermal expansion coefficient and the heat capacity, we found that the quasiharmonic approximation was valid only up to about melting point at zero pressure. However, under pressure, the validity can be extended to a much higher temperature.
Particle-dynamics calculations of gravity flow of inelastic, frictional spheres
Walton, O.R.; Braun, R.L.; Mallon, R.G.; Cervelli, D.M.
1987-11-17
Three-dimensional discrete-particle computer models that calculate the motion of each individual grain in assemblies of hundreds of particles in steady shearing flows with either periodic or real boundaries have been modified to simulate gravity flow of particles through arrays of cylindrical horizontal rods and down inclined chutes. The particle interaction models reproduce experimentally measured recoil trajectories for colliding frictional particles, including rotation effects. Laboratory measurements of the flow of glass beads cascading down through an array of horizontal cylindrical rods correlate well with gravity flow calculations of inelastic, frictional spheres falling through a similar rod array. Less elastic particles are found to cascade through the array faster than nearly elastic particles. Likewise, smaller particles are found to flow faster than large ones. Model simulations of nearly two-dimensional inclined chute flow tests of 6mm diameter cellulose-acetate spheres flowing over a rough surface between parallel vertical glass plates, result in particle velocities that are considerably higher than values measured in similar laboratory tests at UCLA; however, inclusion of approximate air drag effects in the calculational model eliminates most of the discrepancy producing both density and velocity profiles that are close to the measured values. 15 refs., 5 figs.
Giovannelli, Edoardo; Cardini, Gianni; Chelli, Riccardo
2016-03-08
An important issue concerning computer simulations addressed to free energy estimates via nonequilibrium work theorems, such as the Jarzynski equality [Phys. Rev. Lett. 1997, 78, 2690], is the computational effort required to achieve results with acceptable accuracy. In this respect, the dynamical freezing approach [Phys. Rev. E 2009, 80, 041124] has been shown to improve the efficiency of this kind of simulations, by blocking the dynamics of particles located outside an established mobility region. In this report, we show that dynamical freezing produces a systematic spurious decrease of the particle density inside the mobility region. As a consequence, the requirements to apply nonequilibrium work theorems are only approximately met. Starting from these considerations, we have developed a simulation scheme, called "elastic barrier dynamical freezing", according to which a stiff potential-energy barrier is enforced at the boundaries of the mobility region, preventing the particles from leaving this region of space during the nonequilibrium trajectories. The method, tested on the calculation of the distance-dependent free energy of a dimer immersed into a Lennard-Jones fluid, provides an accuracy comparable to the conventional steered molecular dynamics, with a computational speedup exceeding a few orders of magnitude.
Karabag Aydin, Arzu; Dinç, Leyla
2016-12-29
Drug dosage calculation skill is critical for all nursing students to ensure patient safety, particularly during clinical practice. The study purpose was to evaluate the effectiveness of Web-based instruction on improving nursing students' arithmetical and drug dosage calculation skills using a pretest-posttest design. A total of 63 nursing students participated. Data were collected through the Demographic Information Form, and the Arithmetic Skill Test and Drug Dosage Calculation Skill Test were used as pre and posttests. The pretest was conducted in the classroom. A Web site was then constructed, which included audio presentations of lectures, quizzes, and online posttests. Students had Web-based training for 8 weeks and then they completed the posttest. Pretest and posttest scores were compared using the Wilcoxon test and correlation coefficients were used to identify the relationship between arithmetic and calculation skills scores. The results demonstrated that Web-based teaching improves students' arithmetic and drug dosage calculation skills. There was a positive correlation between the arithmetic skill and drug dosage calculation skill scores of students. Web-based teaching programs can be used to improve knowledge and skills at a cognitive level in nursing students.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Lin, Hai
2009-05-01
Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6β-hydrogen abstraction and the 6β-d1-testosterone 6β-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state.
Spatiotemporal-atlas-based dynamic speech imaging
NASA Astrophysics Data System (ADS)
Fu, Maojing; Woo, Jonghye; Liang, Zhi-Pei; Sutton, Bradley P.
2016-03-01
Dynamic magnetic resonance imaging (DS-MRI) has been recognized as a promising method for visualizing articulatory motion of speech in scientific research and clinical applications. However, characterization of the gestural and acoustical properties of the vocal tract remains a challenging task for DS-MRI because it requires: 1) reconstructing high-quality spatiotemporal images by incorporating stronger prior knowledge; and 2) quantitatively interpreting the reconstructed images that contain great motion variability. This work presents a novel imaging method that simultaneously meets both requirements by integrating a spatiotemporal atlas into a Partial Separability (PS) model-based imaging framework. Through the use of an atlas-driven sparsity constraint, this method is capable of capturing high-quality articulatory dynamics at an imaging speed of 102 frames per second and a spatial resolution of 2.2 × 2.2 mm2. Moreover, the proposed method enables quantitative characterization of variability of speech motion, compared to the generic motion pattern across all subjects, through the spatial residual components.
NASA Astrophysics Data System (ADS)
Nikiforov, Ilia; Tang, Dai-Ming; Wei, Xianlong; Dumitricǎ, Traian; Golberg, Dmitri
2012-07-01
By combining experiments performed on nanoribbons in situ within a high-resolution TEM with objective molecular dynamics simulations, we reveal common mechanisms in the bending response of few-layer-thick hexagonal boron nitride and graphene nanoribbons. Both materials are observed forming localized kinks in the fully reversible bending experiments. Microscopic simulations and theoretical analysis indicate platelike bending behavior prior to kinking, in spite of the possibility of interlayer sliding, and give the critical curvature for the kinking onset. This behavior is distinct from the rippling and kinking of multi- and single-wall nanotubes under bending. Our findings have implications for future study of nanoscale layered materials, including nanomechanical device design.
NASA Technical Reports Server (NTRS)
Levin, D.
1981-01-01
A nonsteady vortex-lattice method is introduced for predicting the dynamic stability derivatives of a delta wing undergoing an oscillatory motion. The analysis is applied to several types of small oscillations in pitch. The angle of attack varied between + or - 1 deg, with the mean held at 0 deg when the flow was assumed to be attached and between + or - 1 deg and the mean held at 15 deg when both leading-edge separation and wake roll-up were included. The computed results for damping in pitch are compared with several other methods and with experiments, and are found to be consistent and in good agreement.
Reif, Maria M; Oostenbrink, Chris
2014-01-01
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker–Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry
Atomic-Based Calculations of Two-Detector Doppler-Broadening Spectra
Asoka-Kumar, P; Howell, R
2001-10-11
We present a simplified approach for calculating Doppler broadening spectra based purely on atomic calculations. This approach avoids the need for detailed atomic positions, and can provide the characteristic Doppler broadening momentum spectra for any element. We demonstrate the power of this method by comparing theory and experiment for a number of elemental metals and alkali halides. In the alkali halides, the annihilation appears to be entirely with halide electrons.
Fang, Liang; Wang, Xiaojian; Xi, Meiyang; Liu, Tianqi; Yin, Dali
2016-04-01
The dynamic balance of sphingolipids plays a crucial role in diverse biological processes such as mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SKs) including SK1 and SK2 phosphorylate sphingosine to sphingosine 1-phosphate (S1P), and control the critical balance. SK1 overexpression was reported to increase cell survival and proliferation. Although several SK1 selective inhibitors have been reported, detailed analysis toward their selectivity to understand the molecular mechanism has not been performed to our knowledge. Herein, the crystal structure of SK1 and a homology model of SK2 were used to dock five inhibitors (1, 2, 3, 4 and 5). Protein-ligand complexes were then subjected to a molecular dynamics study and MM-PBSA binding free energy calculations. By analyzing the binding model of these inhibitors, we found that residues ILE170, PHE188 and THR192 in SK1 significantly contribute a favorable binding energy to the selectivity.
Jakobsson, E; Chiu, S W
1988-01-01
This paper shows how Brownian motion theory can be used to analyze features of individual ion trajectories in channels as calculated by molecular dynamics, and that its use permits more precise determinations of diffusion coefficients than would otherwise be possible. We also show how a consideration of trajectories of single particles can distinguish between effects due to the magnitude of the diffusion coefficient and effects due to barriers and wells in the potential profile, effects which can not be distinguished by consideration of average fluxes. PMID:2465032
NASA Astrophysics Data System (ADS)
Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki
2007-11-01
Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.
Wang, Ya-Ting; Gao, Yuan-Jun; Wang, Qian; Cui, Ganglong
2017-02-02
Intramolecularly bridged diarylethenes exhibit improved photocyclization quantum yields because the anti-syn isomerization that originally suppresses photocyclization in classical diarylethenes is blocked. Experimentally, three possible channels have been proposed to interpret experimental observation, but many details of photochromic mechanism remain ambiguous. In this work we have employed a series of electronic structure methods (OM2/MRCI, DFT, TDDFT, RI-CC2, DFT/MRCI, and CASPT2) to comprehensively study excited state properties, photocyclization, and photoreversion dynamics of 1,2-dicyano[2,2]metacyclophan-1-ene. On the basis of optimized stationary points and minimum-energy conical intersections, we have refined experimentally proposed photochromic mechanism. Only an S1/S0 minimum-energy conical intersection is located; thus, we can exclude the third channel experimentally proposed. In addition, we find that both photocyclization and photoreversion processes use the same S1/S0 conical intersection to decay the S1 system to the S0 state, so we can unify the remaining two channels into one. These new insights are verified by our OM2/MRCI nonadiabatic dynamics simulations. The S1 excited-state lifetimes of photocyclization and photoreversion are estimated to be 349 and 453 fs, respectively, which are close to experimentally measured values: 240 ± 60 and 250 fs in acetonitrile solution. The present study not only interprets experimental observations and refines previously proposed mechanism but also provides new physical insights that are valuable for future experiments.
NASA Astrophysics Data System (ADS)
Tsuchiya, Yooko; Yoshii, Noriyuki; Iwatsubo, Tetsushiro
2004-08-01
Since heat storage technology contributes greatly to the effective use of energy, we are attempting to develop latent heat storage materials. If computer simulations enable the estimation of material properties prior to experiments, they will provide us with very effective tools for the development of new materials. We use molecular dynamics calculations to predict the melting points and latent heats of fusion, which are crucial thermal properties for evaluating the suitability of heat-storage materials. As the object of calculation, poly(vinyl alcohol) (PVA) was chosen, because polymer materials are effective in that they can be made to cover all temperature ranges by changing the molecular weight. The melting points were determined from the volume change, and the latent heats of fusion were determined from the internal energy. As for these calculations, it was ascertained that these thermal properties were suitable values in comparison with the results of actual calorimetry. From the comparative calculation of the polymer consistent force field (PCFF) and optimized potentials for liquid simulations (OPLS) force field, it was shown that the intermolecular potential could be simplified. Moreover, the stability of the structural isomer of PVA and the state of the hydrogen bond were evaluated, because a strong intermolecular bond leads to structural stability and a high melting temperature.
Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells
NASA Astrophysics Data System (ADS)
Lloyd-Williams, Jonathan; Monserrat, Bartomeu
Quantities derived from electron-phonon coupling matrix elements require a fine sampling of the vibrational Brillouin zone. Converged results are typically not obtainable using the direct method, in which a perturbation is frozen into the system and the total energy derivatives are calculated using a finite difference approach, because the size of simulation cell needed is prohibitively large. We show that it is possible to determine the response of a periodic system to a perturbation characterized by a wave vector with reduced fractional coordinates (m1 /n1 ,m2 /n2 ,m3 /n3) using a supercell containing a number of primitive cells equal to the least common multiple of n1, n2, and n3. This is accomplished by utilizing supercell matrices containing nonzero off-diagonal elements. We present the results of electron-phonon coupling calculations using the direct method to sample the vibrational Brillouin zone with grids of unprecedented size for a range of systems, including the canonical example of diamond. We also demonstrate that the use of nondiagonal supercells reduces by over an order of magnitude the computational cost of obtaining converged vibrational densities of states and phonon dispersion curves. J.L.-W. is supported by the Engineering and Physical Sciences Research Council (EPSRC). B.M. is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. This work was supported by EPSRC Grants EP/J017639/1 and EP/K013564/1.
Calculating the dynamics of High Explosive Violent Response (HEVR) after ignition
Reaugh, J E
2008-10-15
. Such measures include damage to the confinement, the velocity and fragment size distributions from what was the confinement, and air blast. In the first phase (advisory) model described in [1], the surface to volume ratio and the ignition parameter are calibrated by comparison with experiments using the UK explosive. In order to achieve the second phase (interactive) model, and so calculate the pressure developed and the velocity imparted to the confinement, we need to calculate the spread of the ignition front, the subsequent burn behavior behind that front, and the response of unburned and partially burned explosive to pressurization. A preliminary model to do such calculations is described here.
Medical applications of model-based dynamic thermography
NASA Astrophysics Data System (ADS)
Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech
2001-03-01
The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.
Density functional theory calculations of III-N based semiconductors with mBJLDA
NASA Astrophysics Data System (ADS)
Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi
2017-02-01
In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.
Payne, J.L.; Hassan, B.
1998-09-01
Massively parallel computers have enabled the analyst to solve complicated flow fields (turbulent, chemically reacting) that were previously intractable. Calculations are presented using a massively parallel CFD code called SACCARA (Sandia Advanced Code for Compressible Aerothermodynamics Research and Analysis) currently under development at Sandia National Laboratories as part of the Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI). Computations were made on a generic reentry vehicle in a hypersonic flowfield utilizing three different distributed parallel computers to assess the parallel efficiency of the code with increasing numbers of processors. The parallel efficiencies for the SACCARA code will be presented for cases using 1, 150, 100 and 500 processors. Computations were also made on a subsonic/transonic vehicle using both 236 and 521 processors on a grid containing approximately 14.7 million grid points. Ongoing and future plans to implement a parallel overset grid capability and couple SACCARA with other mechanics codes in a massively parallel environment are discussed.
Poongavanam, Vasanthanathan; Steinmann, Casper; Kongsted, Jacob
2014-01-01
Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function. Furthermore, full protein fragment molecular orbital (FMO) calculations were conducted and subsequently analysed for individual residue stabilization/destabilization energy contributions to the overall binding affinity in order to better understand the true and false predictions. After a successful assessment of the methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation calculations to significantly reduce the large number of false positives. Thus, the computational models tested in this study could be useful as high throughput filters for searching HIV-1 RNase H active-site molecules in the virtual screening process. PMID:24897431
Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra
2015-09-24
Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.
[Terahertz Absorption Spectra Simulation of Glutamine Based on Quantum-Chemical Calculation].
Zhang, Tian-yao; Zhang, Zhao-hui; Zhao, Xiao-yan; Zhang, Han; Yan, Fang; Qian, Ping
2015-08-01
With simulation of absorption spectra in THz region based on quantum-chemical calculation, the THz absorption features of target materials can be assigned with theoretical normal vibration modes. This is necessary for deeply understanding the origin of THz absorption spectra. The reliabilities of simulation results mainly depend on the initial structures and theoretical methods used throughout the calculation. In our study, we utilized THz-TDS to obtain the THz absorption spectrum of solid-state L-glutamine. Then three quantum-chemical calculation schemes with different initial structures commonly used in previous studies were proposed to study the inter-molecular interactions' contribution to the THz absorption of glutamine, containing monomer structure, dimer structure and crystal unit cell structure. After structure optimization and vibration modes' calculation based on density functional theory, the calculation results were converted to absorption spectra by Lorentzian line shape function for visual comparison with experimental spectra. The result of dimmer structure is better than monomer structure in number of absorption features while worse than crystal unit cell structure in position of absorption peaks. With the most reliable simulation result from crystal unit cell calculation, we successfully assigned all three experimental absorption peaks of glutamine ranged from 0.3 to 2.6 THz with overall vibration modes. Our study reveals that the crystal unit cell should be used as initial structure during theoretical simulation of solid-state samples' THz absorption spectrum which comprehensively considers not only the intra-molecular interactions but also inter-molecular interactions.
Li, Ming-Juan; Liu, Ming-Xia; Zhao, Yan-Ying; Pei, Ke-Mei; Wang, Hui-Gang; Zheng, Xuming; Fang, Wei Hai
2013-10-03
The resonance Raman spectroscopic study of the excited state structural dynamics of 1,3-dimethyluracil (DMU), 5-bromo-1,3-dimethyluracil (5BrDMU), uracil, and thymine in water and acetonitrile were reported. Density functional theory calculations were carried out to help elucidate the ultraviolet electronic transitions associated with the A-, and B-band absorptions and the vibrational assignments of the resonance Raman spectra. The effect of the methylation at N1, N3 and C5 sites of pyrimidine ring on the structural dynamics of uracils in different solvents were explored on the basis of the resonance Raman intensity patterns. The relative resonance Raman intensities of DMU and 5BrDMU are computed at the B3LYP-TD level. Huge discrepancies between the experimental resonance Raman intensities and the B3LYP-TD predicted ones were observed. The underlying mechanism was briefly discussed. The decay channel through the S1((1)nπ*)/S2((1)ππ*) conical intersection and the S1((1)nπ*)/T1((3)ππ*) intersystem crossing were revealed by using the CASSCF(8,7)/6-31G(d) level of theory calculations.
Wang, Feng; Stuart, Steven J.; Latour, Robert A.
2009-01-01
The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface is of fundamental importance for a broad range of applications in biotechnology. The adsorption free energy for these types of interactions can be determined from a molecular dynamics simulation using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both states is obtained. However, if interactions between the solute and the surface are strong, the solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption free energy from being calculated by this method. This situation occurs even when using an advanced sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors demonstrate the fundamental basis of this problem using a model system consisting of one sodium ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group (COO−) in explicit water. With this simple system, the authors show that sufficient sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then present a method to overcome this problem through the use of an adaptive windowed-umbrella sampling technique to develop a biased-energy function that is combined with REMD. This approach provides an effective method for the calculation of adsorption free energy for solute-surface interactions. PMID:19768127
Huang, Yuanshen; Li, Ting; Xu, Banglian; Hong, Ruijin; Tao, Chunxian; Ling, Jinzhong; Li, Baicheng; Zhang, Dawei; Ni, Zhengji; Zhuang, Songlin
2013-02-10
Fraunhofer diffraction formula cannot be applied to calculate the diffraction wave energy distribution of concave gratings like plane gratings because their grooves are distributed on a concave spherical surface. In this paper, a method based on the Kirchhoff diffraction theory is proposed to calculate the diffraction efficiency on concave gratings by considering the curvature of the whole concave spherical surface. According to this approach, each groove surface is divided into several limited small planes, on which the Kirchhoff diffraction field distribution is calculated, and then the diffraction field of whole concave grating can be obtained by superimposition. Formulas to calculate the diffraction efficiency of Rowland-type and flat-field concave gratings are deduced from practical applications. Experimental results showed strong agreement with theoretical computations. With the proposed method, light energy can be optimized to the expected diffraction wave range while implementing aberration-corrected design of concave gratings, particularly for the concave blazed gratings.
NASA Astrophysics Data System (ADS)
Lai, B. W.; Wu, Z. X.; Dong, X. P.; Lu, D.; Tao, S. C.
2016-07-01
We proposed a novel method to calculate the similarity between samples with only small differences at unknown and specific positions in their Raman spectra, using a moving interval window scanning across the whole Raman spectra. Two ABS plastic samples, one with and the other without flame retardant, were tested in the experiment. Unlike the traditional method in which the similarity is calculated based on the whole spectrum, we do the calculation by using a window to cut out a certain segment from Raman spectra, each at a time as the window moves across the entire spectrum range. By our method, a curve of similarity versus wave number is obtained. And the curve shows a large change where the partial spectra of the two samples is different. Thus, the new similarity calculation method identifies samples with tiny difference in their Raman spectra better.
Polson, James M; Montgomery, Logan G
2014-10-28
Monte Carlo simulations are used to study the behavior of two polymers under confinement in a cylindrical tube. Each polymer is modeled as a chain of hard spheres. We measure the free energy of the system, F, as a function of the distance between the centers of mass of the polymers, λ, and examine the effects on the free energy functions of varying the channel diameter D and length L, as well as the polymer length N and bending rigidity κ. For infinitely long cylinders, F is a maximum at λ = 0, and decreases with λ until the polymers are no longer in contact. For flexible chains (κ = 0), the polymers overlap along the cylinder for low λ, while above some critical value of λ they are longitudinally compressed and non-overlapping while still in contact. We find that the free energy barrier height, ΔF ≡ F(0) - F(∞), scales as ΔF/k(B)T ∼ ND(-1.93 ± 0.01), for N ⩽ 200 and D ⩽ 9σ, where σ is the monomer diameter. In addition, the overlap free energy appears to scale as F/k(B)T = Nf(λ/N; D) for sufficiently large N, where f is a function parameterized by the cylinder diameter D. For channels of finite length, the free energy barrier height increases with increasing confinement aspect ratio L/D at fixed volume fraction ϕ, and it decreases with increasing ϕ at fixed L/D. Increasing the polymer bending rigidity κ monotonically reduces the overlap free energy. For strongly confined systems, where the chain persistence length P satisfies D ≪ P, F varies linearly with λ with a slope that scales as F'(λ) ∼ -k(B)TD(-β)P(-α), where β ≈ 2 and α ≈ 0.37 for N = 200 chains. These exponent values deviate slightly from those predicted using a simple model, possibly due to insufficiently satisfying the conditions defining the Odijk regime. Finally, we use Monte Carlo dynamics simulations to examine polymer segregation dynamics for fully flexible chains and observe segregation rates that decrease with decreasing entropic force magnitude, f ≡ |d
Kachmar, Ali; Floquet, Sébastien; Lemonnier, Jean-François; Cadot, Emmanuel; Rohmer, Marie-Madeleine; Bénard, Marc
2009-07-20
Variable temperature (1)H NMR studies of the host-guest complex [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(4)(PDA)(2)](4-) (1 ; PDA(2-) = phenylenediacetate) previously carried out in D(2)O have revealed a complex behavior in solution, involving a gliding motion of both parallel phenyl rings of the PDA(2-) ligands. In the present work, we present new NMR spectra carried out in the aprotic solvent CD(3)CN, which allow the observation of the proton signals associated with the bridging hydroxo groups of the inorganic host. The new spectra provide detailed information about the concerted reorganization of the guest components, that is, PDA(2-) and water molecules. The existence of an equilibrium between two distinct isomers differing in the linking mode between the inorganic host and the two equivalent PDA(2-) ligands is evidenced. This equilibrium appears strongly dependent upon the temperature, leading to a complete inversion of the distribution between 300 and 226 K. The thermodynamic data related to the isomerization reaction have been determined (Delta(r)H = -50.5 kJ mol(-1) and Delta(r)S = -215 J mol(-1) K(-1)). Furthermore, at low temperature, one of the isomers exists in two conformations, only differing in the H-bond network involving the inner water molecules. Density functional theory calculations were carried out to push ahead the interpretations obtained from experiment, identify the isomers of 1, and specify the role and the positions of the guest water molecules. Among the various structures that have been calculated for 1, three fall in a narrow energy range and should correspond to the species characterized by variable-temperature (1)H NMR experiments in CD(3)CN. Finally, this study shows how the internal disposition of the ligands affects the ellipticity of the Mo(16) ring which varies from one isomer to the other in the 0.73-1 range and highlights solvation of the ring as one of the key parameters for the conformational design of these flexible host
NASA Astrophysics Data System (ADS)
Minary, Peter; Martyna, Glenn J.; Tuckerman, Mark E.
2003-02-01
In this paper (Paper I) and a companion paper (Paper II), novel new algorithms and applications of the isokinetic ensemble as generated by Gauss' principle of least constraint, pioneered for use with molecular dynamics 20 years ago, are presented for biophysical, path integral, and Car-Parrinello based ab initio molecular dynamics. In Paper I, a new "extended system" version of the isokinetic equations of motion that overcomes the ergodicity problems inherent in the standard approach, is developed using a new theory of non-Hamiltonian phase space analysis [M. E. Tuckerman et al., Europhys. Lett. 45, 149 (1999); J. Chem. Phys. 115, 1678 (2001)]. Reversible multiple time step integrations schemes for the isokinetic methods, first presented by Zhang [J. Chem. Phys. 106, 6102 (1997)] are reviewed. Next, holonomic constraints are incorporated into the isokinetic methodology for use in fast efficient biomolecular simulation studies. Model and realistic examples are presented in order to evaluate, critically, the performance of the new isokinetic molecular dynamic schemes. Comparisons are made to the, now standard, canonical dynamics method, Nosé-Hoover chain dynamics [G. J. Martyna et al., J. Chem. Phys. 97, 2635 (1992)]. The new isokinetic techniques are found to yield more efficient sampling than the Nosé-Hoover chain method in both path integral molecular dynamics and biophysical molecular dynamics calculations. In Paper II, the use of isokinetic methods in Car-Parrinello based ab initio molecular dynamics calculations is presented.
The effects of calculator-based laboratories on standardized test scores
NASA Astrophysics Data System (ADS)
Stevens, Charlotte Bethany Rains
Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee
Denning, Elizabeth J.; Woolf, Thomas B.
2009-01-01
The growing dataset of K+ channel x-ray structures provides an excellent opportunity to begin a detailed molecular understanding of voltage-dependent gating. These structures, while differing in sequence, represent either a stable open or closed state. However, an understanding of the molecular details of gating will require models for the transitions and experimentally testable predictions for the gating transition. To explore these ideas, we apply Dynamic Importance Sampling (DIMS) to a set of homology models for the molecular conformations of K+ channels for four different sets of sequences and eight different states. In our results, we highlight the importance of particular residues upstream from the PVP region to the gating transition. This supports growing evidence that the PVP region is important for influencing the flexibility of the S6 helix and thus the opening of the gating domain. The results further suggest how gating on the molecular level depends on intra-subunit motions to influence the cooperative behavior of all four subunits of the K+ channel. We hypothesize that the gating process occurs in steps: first sidechain movement, then inter- S5-S6 subunit motions, and lastly the large-scale domain rearrangements. PMID:19950367
Free energy calculation of mechanically unstable but dynamically stabilized bcc titanium
NASA Astrophysics Data System (ADS)
Kadkhodaei, Sara; Hong, Qi-Jun; van de Walle, Axel
2017-02-01
The phase diagram of numerous materials of technological importance features high-symmetry high-temperature phases that exhibit phonon instabilities. Leading examples include shape-memory alloys, as well as ferroelectric, refractory, and structural materials. The thermodynamics of these phases have proven challenging to handle by atomistic computational thermodynamic techniques due to the occurrence of constant anharmonicity-driven hopping between local low-symmetry distortions, while maintaining a high-symmetry time-averaged structure. To compute the free energy in such phases, we propose to explore the system's potential-energy surface by discrete sampling of local minima by means of a lattice gas Monte Carlo approach and by continuous sampling by means of a lattice dynamics approach in the vicinity of each local minimum. Given the proximity of the local minima, it is necessary to carefully partition phase space by using a Voronoi tessellation to constrain the domain of integration of the partition function in order to avoid double counting artifacts and enable an accurate harmonic treatment near each local minima. We consider the bcc phase of titanium as a prototypical example to illustrate our approach.
Simulating the Dynamics of Earth's Core: Using NCCS Supercomputers Speeds Calculations
NASA Technical Reports Server (NTRS)
2002-01-01
If one wanted to study Earth's core directly, one would have to drill through about 1,800 miles of solid rock to reach liquid core-keeping the tunnel from collapsing under pressures that are more than 1 million atmospheres and then sink an instrument package to the bottom that could operate at 8,000 F with 10,000 tons of force crushing every square inch of its surface. Even then, several of these tunnels would probably be needed to obtain enough data. Faced with difficult or impossible tasks such as these, scientists use other available sources of information - such as seismology, mineralogy, geomagnetism, geodesy, and, above all, physical principles - to derive a model of the core and, study it by running computer simulations. One NASA researcher is doing just that on NCCS computers. Physicist and applied mathematician Weijia Kuang, of the Space Geodesy Branch, and his collaborators at Goddard have what he calls the,"second - ever" working, usable, self-consistent, fully dynamic, three-dimensional geodynamic model (see "The Geodynamic Theory"). Kuang runs his model simulations on the supercomputers at the NCCS. He and Jeremy Bloxham, of Harvard University, developed the original version, written in Fortran 77, in 1996.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2013-09-05
Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.
Blanchard, E M; Mulieri, L A; Alpert, N R
1990-04-03
The heat generated by right ventricular papillary muscles of rabbits was measured after adenosine triphosphate (ATP) splitting by the contractile proteins was chemically inhibited. This tension-independent heat (TIH) (1 mJ/g wet weight) was used to calculate the total calcium (Ca) cycled in a muscle twitch by assuming that 87% of TIH was due to Ca2+ transport by the sarcoplasmic reticulum with a coupling ratio of 2 Ca2+/ATP split; the enthalpy of creatine phosphate hydrolysis buffering ATP was taken as -34 KJ/mol. The estimated Ca turnover per muscle twitch at 21 degrees C, 0.2 Hz pacing rate, and 2.5 mM Ca in the Krebs solution was approximately equal to 50 nmol/g wet weight. There was a tight positive correlation between TIH and mechanical activation during steady-state measurements but no correlation during the sharp increase in mechanical activation (treppe) when stimulation was resumed after a rest period. It is suggested that while total Ca cycling remains unchanged during the initial period of tension treppe, the free Ca2+ transient and mechanical activation increase sharply due to resaturation of high affinity Ca2+ buffers, other than troponin C, depleted of Ca2+ during the rest period.
Beyond Problem-Based Learning: Using Dynamic PBL in Chemistry
ERIC Educational Resources Information Center
Overton, Tina L.; Randles, Christopher A.
2015-01-01
This paper describes the development and implementation of a novel pedagogy, dynamic problem-based learning. The pedagogy utilises real-world problems that evolve throughout the problem-based learning activity and provide students with choice and different data sets. This new dynamic problem-based learning approach was utilised to teach…
Prabha, Sooraj K; Sathian, Sarith P
2012-04-01
We report a molecular-dynamics study of flow of Lennard-Jones fluid through a nanochannel where size effects predominate. The momentum and energy accommodation coefficients, which determine the amount of slip and temperature jumps, are calculated for a three-dimensional Poiseuille flow through a nano-sized channel. Accommodation coefficients are calculated by considering a " gravity"- (acceleration field) driven Poiseuille flow between two infinite parallel walls that are maintained at a fixed temperature. The Knudsen number (Kn) dependency of the accommodation coefficients, slip length, and velocity profiles is investigated. The system is also studied by varying the strength of gravity. The accommodation coefficients are found to approach a limiting value with an increase in gravity and Kn. For low values of Kn (<0.15), the slip length obtained from the velocity profiles is found to match closely the results obtained from the linear slip model. Using the calculated values of accommodation coefficients, the first- and second-order slip models are validated in the early transition regime. The study demonstrates the applicability of the Navier-Stokes equation with the second-order slip model in the early transition regime.
NASA Astrophysics Data System (ADS)
Ge, Jiuyuan
1999-11-01
In this thesis, quantum dynamics studies are conducted on gas-surface reactions and complex absorbing potentials. Through a three-dimensional model, dissociation probabilities for O2 on both (110) and (100) surfaces of copper are calculated for ground state as well as rovibrationally excited oxygen molecules. Specifically, the reason for the difference in calculated dissociation probabilities of oxygen on two surfaces is explained. Then the thermal effect of the surface on the dissociation probability is studied by a one dimensional fluctuating barrier. It is observed that the quantum mechanical tunneling probability exhibits a maximum as a function of the oscillating frequency between the low and the high frequency limits. The physical origin and process underlying this resonantlike phenomenon are proposed. In the second part of this thesis, the complex absorbing potential (CAP) is introduced and studied. Exact numerical calculation shows that use of optimized CAP significantly improves the efficiency of wavefunction absorption over that of negative imaginary potential (NIP) in scattering applications. The CAP is optimized by an efficient time-dependent propagation approach. Application to the prototype inelastic scattering of He + H2 demonstrates the accuracy and efficiency of the channel-dependent CAP for extracting state-to-state scattering information.
The research of the maximum wind speed in Tomsk and calculations of dynamic load on antenna systems
NASA Astrophysics Data System (ADS)
Belan, B.; Belan, S.; Romanovskiy, O.; Girshtein, A.; Yanovich, A.; Baidali, S.; Terehov, S.
2017-01-01
The work is concerned with calculations and analysis of the maximum wind speed in Tomsk city. The data for analysis were taken from the TOR-station located in the north-eastern part of the city. The TOR-station sensors to measure a speed and a direction of wind are installed on the 10-meter meteorological mast. Wind is measured by M-63, which uses the standard approach and the program with one-minute averaging for wind gusts recording as well. According to the measured results in the research performed, the estimation of the dynamic and wind load on different types of antenna systems was performed. The work shows the calculations of wind load on ten types of antenna systems, distinguished by their different constructions and antenna areas. For implementation of calculations, we used methods developed in the Central Research and Development Institute of Building Constructions named after V.A. Kucherenko. The research results could be used for design engineering of the static antenna systems and mobile tracking systems for the distant objects.
Calculation of thermal expansion coefficient of glasses based on topological constraint theory
NASA Astrophysics Data System (ADS)
Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi
2016-10-01
In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.
Molecular-dynamics calculations of the velocity-autocorrelation function. Methods, hard-disk results
NASA Astrophysics Data System (ADS)
Erpenbeck, Jerome J.; Wood, William W.
1982-09-01
The velocity-autocorrelation function ρD(t) for hard disks is computed for ten values of the reduced volume, ranging from 30 to 1.4 times the close-packed volume (V0) for systems of as few as 168 and as many as 5822 particles, by a Monte Carlo molecular-dynamics technique. For values of the time greater than roughly 20 mean-free times (t0), the results are compared with the predictions of a version of the mode-coupling theory for ρD(t), modified to take into account the finite size of the system. Except at the highest densities, the data agree with the modified theory when one uses Knskog values for the transport coefficients in evaluating the theoretical ρD(t), provided the comparison is limited to times beyond a value sit0, with si dependent on the density. The value of si appears to increase from roughly 20 at the lowest densities to 40 at a volume of 2V0. At volumes of 1.6, 1.5, and 1.4V0, the theoretical ρD(t)'s are too large out to times as large as 320t0, unless we use values of the transport coefficients rather larger than the Enskog values in evaluating the theoretical ρD(t). The velocity-autocorrelation-function results for t<20t0 are presented as the difference relative to the Lorentz-Boltzmann-Enskog prediction, which has the exact slope at t=0.
Wooten, E Wrenn
2003-12-01
A general formalism for calculating parameters describing physiological acid-base balance in single compartments is extended to multicompartment systems and demonstrated for the multicompartment example of human whole blood. Expressions for total titratable base, strong ion difference, change in total titratable base, change in strong ion difference, and change in Van Slyke standard bicarbonate are derived, giving calculated values in agreement with experimental data. The equations for multicompartment systems are found to have the same mathematical interrelationships as those for single compartments, and the relationship of the present formalism to the traditional form of the Van Slyke equation is also demonstrated. The multicompartment model brings the strong ion difference theory to the same quantitative level as the base excess method.
Ab initio Calculations of Electronic Fingerprints of DNA bases on Graphene
NASA Astrophysics Data System (ADS)
Ahmed, Towfiq; Rehr, John J.; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T.; Balatsky, Alexander V.
2012-02-01
We have carried out first principles DFT calculations of the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T) adsorbed on graphene using LDA with ultra-soft pseudo-potentials. We have also calculated the longitudinal transmission currents T(E) through graphene nano-pores as an individual DNA base passes through it, using a non-equilibrium Green's function (NEGF) formalism. We observe several dominant base-dependent features in the LDOS and T(E) in an energy range within a few eV of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases from dI/dV measurements in scanning tunneling spectroscopy (STS) and nano-pore experiments. Thus these electronic signatures can provide an alternative approach to DNA sequencing.
NASA Astrophysics Data System (ADS)
Kawamura, Kohei; Ueno, Yosuke; Nakamura, Yoshiaki
In the present study we have developed a numerical method to simulate the flight dynamics of a small flying body with unsteady motion, where both aerodynamics and flight dynamics are fully considered. A key point of this numerical code is to use computational fluid dynamics and computational flight dynamics at the same time, which is referred to as CFD2, or double CFDs, where several new ideas are adopted in the governing equations, the method to make each quantity nondimensional, and the coupling method between aerodynamics and flight dynamics. This numerical code can be applied to simulate the unsteady motion of small vehicles such as micro air vehicles (MAV). As a sample calculation, we take up Taketombo, or a bamboo dragonfly, and its free flight in the air is demonstrated. The eventual aim of this research is to virtually fly an aircraft with arbitrary motion to obtain aerodynamic and flight dynamic data, which cannot be taken in the conventional wind tunnel.
Phase diagrams and dynamics of a computationally efficient map-based neuron model
Gonsalves, Jheniffer J.; Tragtenberg, Marcelo H. R.
2017-01-01
We introduce a new map-based neuron model derived from the dynamical perceptron family that has the best compromise between computational efficiency, analytical tractability, reduced parameter space and many dynamical behaviors. We calculate bifurcation and phase diagrams analytically and computationally that underpins a rich repertoire of autonomous and excitable dynamical behaviors. We report the existence of a new regime of cardiac spikes corresponding to nonchaotic aperiodic behavior. We compare the features of our model to standard neuron models currently available in the literature. PMID:28358843
Medication calculation: the potential role of digital game-based learning in nurse education.
Foss, Brynjar; Mordt Ba, Petter; Oftedal, Bjørg F; Løkken, Atle
2013-12-01
Medication dose calculation is one of several medication-related activities that are conducted by nurses daily. However, medication calculation skills appear to be an area of global concern, possibly because of low numeracy skills, test anxiety, low self-confidence, and low self-efficacy among student nurses. Various didactic strategies have been developed for student nurses who still lack basic mathematical competence. However, we suggest that the critical nature of these skills demands the investigation of alternative and/or supplementary didactic approaches to improve medication calculation skills and to reduce failure rates. Digital game-based learning is a possible solution because of the following reasons. First, mathematical drills may improve medication calculation skills. Second, games are known to be useful during nursing education. Finally, mathematical drill games appear to improve the attitudes of students toward mathematics. The aim of this article was to discuss common challenges of medication calculation skills in nurse education, and we highlight the potential role of digital game-based learning in this area.
A fast and flexible library-based thick-mask near-field calculation method
NASA Astrophysics Data System (ADS)
Ma, Xu; Gao, Jie; Chen, Xuanbo; Dong, Lisong; Li, Yanqiu
2015-03-01
Aerial image calculation is the basis of the current lithography simulation. As the critical dimension (CD) of the integrated circuits continuously shrinks, the thick mask near-field calculation has increasing influence on the accuracy and efficiency of the entire aerial image calculation process. This paper develops a flexible librarybased approach to significantly improve the efficiency of the thick mask near-field calculation compared to the rigorous modeling method, while leading to much higher accuracy than the Kirchhoff approximation method. Specifically, a set of typical features on the fullchip are selected to serve as the training data, whose near-fields are pre-calculated and saved in the library. Given an arbitrary test mask, we first decompose it into convex corners, concave corners and edges, afterwards match each patch to the training layouts based on nonparametric kernel regression. Subsequently, we use the matched near-fields in the library to replace the mask patches, and rapidly synthesize the near-field for the entire test mask. Finally, a data-fitting method is proposed to improve the accuracy of the synthesized near-field based on least square estimate (LSE). We use a pair of two-dimensional mask patterns to test our method. Simulations show that the proposed method can significantly speed up the current FDTD method, and effectively improve the accuracy of the Kirchhoff approximation method.
NASA Astrophysics Data System (ADS)
Odbadrakh, Khorgolkhuu; Nicholson, Don; Eisenbach, Markus; Brown, Gregory; Rusanu, Aurelian; Materials Theory Group Team
2014-03-01
Magnetic entropy change in Magneto-caloric Effect materials is one of the key parameters in choosing materials appropriate for magnetic cooling and offers insight into the coupling between the materials' thermodynamic and magnetic degrees of freedoms. We present computational workflow to calculate the change of magnetic entropy due to a magnetic field using the DFT based statistical sampling of the energy landscape of Ni2MnGa. The statistical density of magnetic states is calculated with Wang-Landau sampling, and energies are calculated with the Locally Self-consistent Multiple Scattering technique. The high computational cost of calculating energies of each state from first principles is tempered by exploiting a model Hamiltonian fitted to the DFT based sampling. The workflow is described and justified. The magnetic adiabatic temperature change calculated from the statistical density of states agrees with the experimentally obtained value in the absence of structural transformation. The study also reveals that the magnetic subsystem alone cannot explain the large MCE observed in Ni2MnGa alloys. This work was performed at the ORNL, which is managed by UT-Batelle for the U.S. DOE. It was sponsored by the Division of Material Sciences and Engineering, OBES. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. DOE under Contract DE-AC05-00OR22725.
Logotheti, Georgia-Evangelia; Ramos, Javier; Economou, Ioannis G
2009-05-21
The microscopic structure, thermodynamic properties, local segmental dynamics, and self-diffusion coefficients of three ionic liquids (ILs) with a common anion, namely, the bis(trifluoromethylsulfonyl) imide ([Tf2N-]), and imidazolium-based cations that differ in the alkyl tail length, namely, the 1-butyl-3-methylimidazolium ([C4mim+]), the 1-hexyl-3-methylimidazolium ([C6mim+]), and the 1-octyl-3-methylimidazolium ([C8mim+]), are calculated over the temperature range of 298.15-333.15 K and pressure range of 0.1-60 MPa. Quantum calculations based on density functional theory are performed on isolated ion pairs, and minimum energy conformers are identified. Electronic density results are used to estimate the electrostatic potential of a molecular force field that is used subsequently for long molecular dynamics (MD) simulations of bulk ILs. Thermodynamic properties calculated from MD are shown to be in excellent agreement for the bulk density and good agreement for derivative properties when compared to experimental data. The new force field is an improvement over earlier ones for the same ILs. The microscopic structure as expressed through the radial distribution function is thoroughly calculated, and it is shown that the bulk structure characteristics are very similar to those obtained from the quantum calculations on isolated ion pairs. The segmental dynamics expressed in terms of bond and torsion angle decorrelation is shown to assume a broad range of characteristic times. Molecular segments in the alkyl tail of the cations are significantly faster than segments in the vicinity of the imidazolium ring. Finally, the new force field predicts accurately the self-diffusion coefficients of the cations and the anions over the entire temperature range examined, thus confirming its validity for a broad range of physical properties.
40 CFR 1066.605 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... meter inlet, measured directly or calculated as the sum of atmospheric pressure plus a differential pressure referenced to atmospheric pressure. T std = standard temperature. p std = standard pressure. T in... temperature and pressure. m PMfil = mass of particulate matter emissions on the filter over the test...
Doppelmayr, M; Klimesch, W; Pachinger, T; Ripper, B
1998-07-01
Measures of event-related band power such as event-related desynchronization (ERD) are conventionally analyzed within fixed frequency bands, although it is known that EEG frequency varies as a function of a variety of factors. The question of how to determine these frequency bands for ERD analyses is discussed and a new method is proposed. The rationale of this new method is to adjust the frequency bands to the individual alpha frequency (IAF) for each subject and to determine the bandwidth for the alpha and theta bands as a percentage of IAF. As an example, if IAF equals 12 Hz, the widths of the alpha and theta bands are larger as compared to a subject with an IAF of, e.g., only 8 Hz. The results of an oddball paradigm show that the proposed method is superior to methods that are based on fixed frequencies and fixed bandwidths.
Mcnp-Based Methodology to Calculate Helium Production in Bwr Shrouds
NASA Astrophysics Data System (ADS)
Sitaraman, S.; Chiang, R.-T.; Oliver, B. M.
2003-06-01
A three-dimensional computational method based on Monte Carlo radiation transport techniques was developed to calculate thermal and fast neutron fields in the downcomer region of a Boiling Water Reactor (BWR). This methodology was validated using measured data obtained from an operating BWR. The helium production was measured in stainless steel at locations near the shroud and compared with values from the Monte Carlo calculations. The methodology produced results that were in agreement with measurements, thereby providing a useful tool for the determination of helium levels in shroud components.
A new approach to calculate Plant Area Density (PAD) using 3D ground-based lidar
NASA Astrophysics Data System (ADS)
Taheriazad, Leila; Moghadas, Hamid; Sanchez-Azofeifa, Arturo
2016-10-01
This paper presents a novel algorithm for calculation of plant area density based on surface and volume convex hull which is applied to each horizontal cut of a point cloud data. This method can be used as an alternative to conventional voxelization approaches to improve accuracy and computation efficiency. The terrestrial data was collected from a boreal forest at Peace River, Alberta, Canada during summer and fall in 2014. This technique can be applied to an arbitrary point cloud data to calculate all other metrics of forests including plant area index, leaf area density, and also leaf area index.
Duality-based calculations for transition probabilities in stochastic chemical reactions
NASA Astrophysics Data System (ADS)
Ohkubo, Jun
2017-02-01
An idea for evaluating transition probabilities in chemical reaction systems is proposed, which is efficient for repeated calculations with various rate constants. The idea is based on duality relations; instead of direct time evolutions of the original reaction system, the dual process is dealt with. Usually, if one changes rate constants of the original reaction system, the direct time evolutions should be performed again, using the new rate constants. On the other hands, only one solution of an extended dual process can be reused to calculate the transition probabilities for various rate constant cases. The idea is demonstrated in a parameter estimation problem for the Lotka-Volterra system.
Modification method of numerical calculation of heat flux over dome based on turbulence models
NASA Astrophysics Data System (ADS)
Zhang, Daijun; Luo, Haibo; Zhang, Junchao; Zhang, Xiangyue
2016-10-01
For the optical guidance system flying at low altitude and high speed, the calculation of turbulent convection heat transfer over its dome is the key to designing this kind of aircraft. RANS equations-based turbulence models are of high computation efficiency and their calculation accuracy can satisfy the engineering requirement. But for the calculation of the flow in the shock layer of strong entropy and pressure disturbances existence, especially of aerodynamic heat, some parameters in the RANS energy equation are necessary to be modified. In this paper, we applied turbulence models on the calculation of the heat flux over the dome of sphere-cone body at zero attack. Based on Billig's results, the shape and position of detached shock were extracted in flow field using multi-block structured grid. The thermal conductivity of the inflow was set to kinetic theory model with respect to temperature. When compared with Klein's engineering formula at the stagnation point, we found that the results of turbulent models were larger. By analysis, we found that the main reason of larger values was the interference from entropy layer to boundary layer. Then thermal conductivity of inflow was assigned a fixed value as equivalent thermal conductivity in order to compensate the overestimate of the turbulent kinetic energy. Based on the SST model, numerical experiments showed that the value of equivalent thermal conductivity was only related with the Mach number. The proposed modification approach of equivalent thermal conductivity for inflow in this paper could also be applied to other turbulence models.
A design of a DICOM-RT-based tool box for nonrigid 4D dose calculation.
Wong, Victy Y W; Baker, Colin R; Leung, T W; Tung, Stewart Y
2016-03-08
The study was aimed to introduce a design of a DICOM-RT-based tool box to facilitate 4D dose calculation based on deformable voxel-dose registration. The computational structure and the calculation algorithm of the tool box were explicitly discussed in the study. The tool box was written in MATLAB in conjunction with CERR. It consists of five main functions which allow a) importation of DICOM-RT-based 3D dose plan, b) deformable image registration, c) tracking voxel doses along breathing cycle, d) presentation of temporal dose distribution at different time phase, and e) derivation of 4D dose. The efficacy of using the tool box for clinical application had been verified with nine clinical cases on retrospective-study basis. The logistic and the robustness of the tool box were tested with 27 applications and the results were shown successful with no computational errors encountered. In the study, the accumulated dose coverage as a function of planning CT taken at end-inhale, end-exhale, and mean tumor position were assessed. The results indicated that the majority of the cases (67%) achieved maximum target coverage, while the planning CT was taken at the temporal mean tumor position and 56% at the end-exhale position. The comparable results to the literature imply that the studied tool box can be reliable for 4D dose calculation. The authors suggest that, with proper application, 4D dose calculation using deformable registration can provide better dose evaluation for treatment with moving target.
Domain overlap matrices from plane-wave-based methods of electronic structure calculation
NASA Astrophysics Data System (ADS)
Golub, Pavlo; Baranov, Alexey I.
2016-10-01
Plane waves are one of the most popular and efficient basis sets for electronic structure calculations of solids; however, their delocalized nature makes it difficult to employ for them classical orbital-based methods of chemical bonding analysis. The quantum chemical topology approach, introducing chemical concepts via partitioning of real space into chemically meaningful domains, has no difficulties with plane-wave-based basis sets. Many popular tools employed within this approach, for instance delocalization indices, need overlap integrals over these domains—the elements of the so called domain overlap matrices. This article reports an efficient algorithm for evaluation of domain overlap matrix elements for plane-wave-based calculations as well as evaluation of its implementation for one of the most popular projector augmented wave (PAW) methods on the small set of simple and complex solids. The stability of the obtained results with respect to PAW calculation parameters has been investigated, and the comparison of the results with the results from other calculation methods has also been made.
Lim, Hyung-Kyu; Lee, Hankyul; Kim, Hyungjun
2016-10-11
Among various models that incorporate solvation effects into first-principles-based electronic structure theory such as density functional theory (DFT), the average solvent electrostatic potential/molecular dynamics (ASEP/MD) method is particularly advantageous. This method explicitly includes the nature of complicated solvent structures that is absent in implicit solvation methods. Because the ASEP/MD method treats only solvent molecule dynamics, it requires less computational cost than the conventional quantum mechanics/molecular mechanics (QM/MM) approaches. Herein, we present a real-space rectangular grid-based method to implement the mean-field QM/MM idea of ASEP/MD to plane-wave DFT, which is termed "DFT in classical explicit solvents", or DFT-CES. By employing a three-dimensional real-space grid as a communication medium, we can treat the electrostatic interactions between the DFT solute and the ASEP sampled from MD simulations in a seamless and straightforward manner. Moreover, we couple a fast and efficient free energy calculation method based on the two-phase thermodynamic (2PT) model with our DFT-CES method, which enables direct and simultaneous computation of the solvation free energies as well as the geometric and electronic responses of a solute of interest under the solvation effect. With the aid of DFT-CES/2PT, we investigate the solvation free energies and detailed solvation thermodynamics for 17 types of organic molecules, which show good agreement with the experimental data. We further compare our simulation results with previous theoretical models and assumptions made for the development of implicit solvation models. We anticipate that our proposed method, DFT-CES/2PT, will enable vast utilization of the ASEP/MD method for investigating solvation properties of materials by using periodic DFT calculations in the future.
Meirovitch, Hagai
2010-01-01
The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently
NASA Astrophysics Data System (ADS)
Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao
2015-11-01
Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.
Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao
2015-11-13
Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54,779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV, which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.
Djouder, M. Kermoun, F.; Mitiche, M. D.; Lamrous, O.
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
The Triangle Technique: a new evidence-based educational tool for pediatric medication calculations.
Sredl, Darlene
2006-01-01
Many nursing student verbalize an aversion to mathematical concepts and experience math anxiety whenever a mathematical problem is confronted. Since nurses confront mathematical problems on a daily basis, they must learn to feel comfortable with their ability to perform these calculations correctly. The Triangle Technique, a new educational tool available to nurse educators, incorporates evidence-based concepts within a graphic model using visual, auditory, and kinesthetic learning styles to demonstrate pediatric medication calculations of normal therapeutic ranges. The theoretical framework for the technique is presented, as is a pilot study examining the efficacy of the educational tool. Statistically significant results obtained by Pearson's product-moment correlation indicate that students are better able to calculate accurate pediatric therapeutic dosage ranges after participation in the educational intervention of learning the Triangle Technique.
GPU-based acceleration of free energy calculations in solid state physics
NASA Astrophysics Data System (ADS)
Januszewski, Michał; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartłomiej
2015-07-01
Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.
An automated Monte-Carlo based method for the calculation of cascade summing factors
NASA Astrophysics Data System (ADS)
Jackson, M. J.; Britton, R.; Davies, A. V.; McLarty, J. L.; Goodwin, M.
2016-10-01
A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ-γ, γ-X, γ-511 and γ-e- coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted.
Efficient algorithms for semiclassical instanton calculations based on discretized path integrals
Kawatsu, Tsutomu E-mail: smiura@mail.kanazawa-u.ac.jp; Miura, Shinichi E-mail: smiura@mail.kanazawa-u.ac.jp
2014-07-14
Path integral instanton method is a promising way to calculate the tunneling splitting of energies for degenerated two state systems. In order to calculate the tunneling splitting, we need to take the zero temperature limit, or the limit of infinite imaginary time duration. In the method developed by Richardson and Althorpe [J. Chem. Phys. 134, 054109 (2011)], the limit is simply replaced by the sufficiently long imaginary time. In the present study, we have developed a new formula of the tunneling splitting based on the discretized path integrals to take the limit analytically. We have applied our new formula to model systems, and found that this approach can significantly reduce the computational cost and gain the numerical accuracy. We then developed the method combined with the electronic structure calculations to obtain the accurate interatomic potential on the fly. We present an application of our ab initio instanton method to the ammonia umbrella flip motion.
Comparison of lysimeter based and calculated ASCE reference evapotranspiration in a subhumid climate
NASA Astrophysics Data System (ADS)
Nolz, Reinhard; Cepuder, Peter; Eitzinger, Josef
2016-04-01
The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration (ET ref) and subsequently plant water requirements. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on environmental and weather conditions. Therefore, it seems generally advisable to evaluate the model under local environmental conditions. In this study, reference evapotranspiration was determined at a subhumid site in northeastern Austria from 2005 to 2010 using a large weighing lysimeter (ET lys). The measured data were compared with ET ref calculations. Daily values differed slightly during a year, at which ET ref was generally overestimated at small values, whereas it was rather underestimated when ET was large, which is supported also by other studies. In our case, advection of sensible heat proved to have an impact, but it could not explain the differences exclusively. Obviously, there were also other influences, such as seasonal varying surface resistance or albedo. Generally, the ASCE-EWRI equation for daily time steps performed best at average weather conditions. The outcomes should help to correctly interpret ET ref data in the region and in similar environments and improve knowledge on the dynamics of influencing factors causing deviations.
NASA Astrophysics Data System (ADS)
Eckley, C. S.; Gustin, M.; Lin, C.-J.; Li, X.; Miller, M. B.
2010-01-01
Dynamic Flux Chambers (DFCs) are commonly applied for the measurement of non-point source mercury (Hg) emissions from a wide range of surfaces. A standard operating protocol and design for DFCs does not exist, and as a result there is a large diversity in methods described in the literature. Because natural and anthropogenic non-point sources are thought to contribute significantly to the atmosphere Hg pool, development of accurate fluxes during field campaigns is essential. The objective of this research was to determine how differences in chamber material, sample port placement, vertical cross sectional area/volume, and flushing flow rate influence the Hg flux from geologic materials. Hg fluxes measured with a Teflon chamber were higher than those obtained using a polycarbonate chamber, with differences related to light transmission and substrate type. Differences in sample port placement (side versus top) did not have an influence on Hg fluxes. When the same flushing flow rate was applied to two chambers of different volumes, higher fluxes were calculated for the chamber with the smaller volume. Conversely, when two chambers with different volumes were maintained at similar turnover times, the larger volume chamber yielded higher Hg fluxes. Overall, the flushing flow rate and associated chamber turnover time had the largest influence on Hg flux relative to the other parameters tested. Results from computational fluid dynamic (CFD) modeling inside a DFC confirm that the smaller diffusion resistance at higher flushing flows contributes to the higher measured flux. These results clearly illustrate that differences in chamber design and operation can significantly influence the resulting calculated Hg flux, and thus impact the comparability of results obtained using DFC designs and/or operating parameters. A protocol for determining a flushing flow rate that results in fluxes less affected by chamber operating conditions and design is proposed. Application of this
Barall, M.
2009-01-01
We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/ USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm. ?? Journal compilation ?? 2009 RAS.
NASA Astrophysics Data System (ADS)
Witte, Bastian B. L.; Sperling, Philipp; Glenzer, Siegfried H.; Redmer, Ronald
2016-10-01
X-ray Thomson scattering (XRTS) is an effective tool to determine plasma parameters, e.g., temperature and density, in the warm dense (WD) matter regime. Furthermore, transport coefficients are relevant for modeling, e.g., fusion experiments or the magnetic field generation in planets. Recently, the electrical conductivity was extracted for the first time from XRTS experiments on aluminum, isochorically heated by the Linac Coherent Light Source (LCLS). The measured spectrally resolved scattering signal shows a strong dependence on the electron interactions, which have to be treated beyond perturbation theory. We present results for the dynamic transport properties in WD aluminum using density-functional-theory molecular dynamics (DFT-MD) simulations. The choice of the exchange-correlation (XC) functional, describing the interactions in the electronic subsystem, has significant impact on the ionization potential and the thermal and electrical conductivity. The calculation of the XRTS signal from the DFT-MD simulations shows very good agreement with the LCLS data if hybrid functionals are applied, i.e., XC functionals within the generalized gradient approximation are not suitable for the description of WD aluminum.
NASA Astrophysics Data System (ADS)
Benedict, Lorin X.; Surh, Michael P.; Khairallah, Saad A.; Castor, John I.; Whitley, Heather D.; Richards, David F.; Glosli, James N.; Murillo, Michael S.; Graziani, Frank R.
2011-10-01
We present classical molecular dynamics (MD) calculations of temperature relaxation in hydrogen, Ar-doped hydrogen, and SF6 plasmas in which the two-particle interactions are represented by statistical potentials of the Dunn-Broyles and modified Kelbg forms. Using a multi-species generalized Lenard-Balescu theory in which the full frequency and wave-vector dependent dielectric response is included, we show that deviations of our hydrogen MD results from the weak-coupling theories such as Landau-Spitzer are due in large part to the use of the statistical potentials which approximate, in a classical way, the effects of quantum diffraction. Classical MD with Kelbg potentials is shown to be better at reproducing intermediate-to-weak-coupling results of true quantum-Coulomb plasmas, but it is also shown that MD with both types of statistical potential yield the correct quantum result in the limit of infinitesimal plasma coupling. Effects of dynamical screening in multi-component plasmas are also discussed.
NASA Astrophysics Data System (ADS)
Huo, W. M.
1984-10-01
The solution of the time-dependent Schroedinger equation of the molecule + radiation field system is analyzed. A quantized radiation field is used. The relationship between the oscillatory wave function and the dressed state wave function is established, the oscillatory wave function being the solution if the radiation field is turned on at t = 0 and the dressed state being the stationary solution satisfying the boundary condition only if the field is present at t = negative infinity. In general, the oscillatory wave function can be expressed using a complete set of dressed states. However, in the presence of a nonresonant radiation field, the system is well represented by a single dressed state. Molecular properties such as dynamic polarizabilities and two-photon transition moments can be deduced from the dressed state wave function instead of the oscillatory wave function as in previous methods. Because of its stationary character, the dressed state is more amenable to approximate calculations. A CI method is developed for this purpose. The CI matrix is simple in form and can be readily constructed using existing computer codes. The present method can also be adapted to calculate other optical properties.
Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning
2010-09-30
Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.
NASA Astrophysics Data System (ADS)
Benedict, Lorin X.; Surh, Michael P.; Castor, John I.; Khairallah, Saad A.; Whitley, Heather D.; Richards, David F.; Glosli, James N.; Murillo, Michael S.; Scullard, Christian R.; Grabowski, Paul E.; Michta, David; Graziani, Frank R.
2012-10-01
We study the problem of electron-ion temperature equilibration in plasmas. We consider pure H at various densities and temperatures and Ar-doped H at temperatures high enough so that the Ar is fully ionized. Two theoretical approaches are used: classical molecular dynamics (MD) with statistical two-body potentials and a generalized Lenard-Balescu (GLB) theory capable of treating multicomponent weakly coupled plasmas. The GLB is used in two modes: (1) with the quantum dielectric response in the random-phase approximation (RPA) together with the pure Coulomb interaction and (2) with the classical (ℏ→0) dielectric response (both with and without local-field corrections) together with the statistical potentials. We find that the MD results are described very well by classical GLB including the statistical potentials and without local-field corrections (RPA only); worse agreement is found when static local-field effects are included, in contradiction to the classical pure-Coulomb case with like charges. The results of the various approaches are all in excellent agreement with pure-Coulomb quantum GLB when the temperature is high enough. In addition, we show that classical calculations with statistical potentials derived from the exact quantum two-body density matrix produce results in far better agreement with pure-Coulomb quantum GLB than classical calculations performed with older existing statistical potentials.
Gupta, G; Sasisekharan, V
1978-01-01
Base-base interactions were computed for single- and double stranded poly,ucleotides, for all possible base sequences. In each case, both right and left stacking arrangements are energetically possible. The preference of one over the other depends upon the base-sequence and the orientation of the bases with respect to helix-axis. Inverted stacking arrangement is also energetically possible for both single- and double-stranded polynucleotides. Finally, interacting energies of a regular duplex and the alternative structures were compared. It was found that the type II model is energetically more favourable than the rest. PMID:662698
Xu, H; Guerrero, M; Chen, S; Langen, K; Prado, K; Yang, X; Schinkel, C
2015-06-15
Purpose: The TG-71 report was published in 2014 to present standardized methodologies for MU calculations and determination of dosimetric quantities. This work explores the clinical implementation of a TG71-based electron MU calculation algorithm and compares it with a recently released commercial secondary calculation program–Mobius3D (Mobius Medical System, LP). Methods: TG-71 electron dosimetry data were acquired, and MU calculations were performed based on the recently published TG-71 report. The formalism in the report for extended SSD using air-gap corrections was used. The dosimetric quantities, such PDD, output factor, and f-air factors were incorporated into an organized databook that facilitates data access and subsequent computation. The Mobius3D program utilizes a pencil beam redefinition algorithm. To verify the accuracy of calculations, five customized rectangular cutouts of different sizes–6×12, 4×12, 6×8, 4×8, 3×6 cm{sup 2}–were made. Calculations were compared to each other and to point dose measurements for electron beams of energy 6, 9, 12, 16, 20 MeV. Each calculation / measurement point was at the depth of maximum dose for each cutout in a 10×10 cm{sup 2} or 15×15cm{sup 2} applicator with SSDs 100cm and 110cm. Validation measurements were made with a CC04 ion chamber in a solid water phantom for electron beams of energy 9 and 16 MeV. Results: Differences between the TG-71 and the commercial system relative to measurements were within 3% for most combinations of electron energy, cutout size, and SSD. A 5.6% difference between the two calculation methods was found only for the 6MeV electron beam with 3×6 cm{sup 2}cutout in the 10×10{sup 2}cm applicator at 110cm SSD. Both the TG-71 and the commercial calculations show good consistency with chamber measurements: for 5 cutouts, <1% difference for 100cm SSD, and 0.5–2.7% for 110cm SSD. Conclusions: Based on comparisons with measurements, a TG71-based computation method and a Mobius3D
Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations
NASA Astrophysics Data System (ADS)
Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.
2016-06-01
The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.
Chen, Jianzhong; Wang, Jinan; Zhang, Qinggang; Chen, Kaixian; Zhu, Weiliang
2015-01-01
Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions. PMID:26616018
Maintain rigid structures in Verlet based cartesian molecular dynamics simulations.
Tao, Peng; Wu, Xiongwu; Brooks, Bernard R
2012-10-07
An algorithm is presented to maintain rigid structures in Verlet based cartesian molecular dynamics (MD) simulations. After each unconstrained MD step, the coordinates of selected particles are corrected to maintain rigid structures through an iterative procedure of rotation matrix computation. This algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations of Lagrange multipliers, so that the complexity of computation does not increase with the number of particles in a rigid structure. The implementation of this algorithm does not require significant modification of propagation integrator, and can be plugged into any cartesian based MD integration scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any object that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE, the SHAPE method can be applied to large linear (with three or more centers) and planar (with four or more centers) rigid bodies. Numerical tests with four model systems including two proteins demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE method, but with much more applicability and efficiency.
Sensitivity based method for structural dynamic model improvement
NASA Astrophysics Data System (ADS)
Lin, R. M.; Du, H.; Ong, J. H.
1993-05-01
Sensitivity analysis, the study of how a structure's dynamic characteristics change with design variables, has been used to predict structural modification effects in design for many decades. In this paper, methods for calculating the eigensensitivity, frequency response function sensitivity and its modified new formulation are presented. The implementation of these sensitivity analyses to the practice of finite element model improvement using vibration test data, which is one of the major applications of experimental modal testing, is discussed. Since it is very difficult in practice to measure all the coordinates which are specified in the finite element model, sensitivity based methods become essential and are, in fact, the only appropriate methods of tackling the problem of finite element model improvement. Comparisons of these methods are made in terms of the amount of measured data required, the speed of convergence and the magnitudes of modelling errors. Also, it is identified that the inverse iteration technique can be effectively used to minimize the computational costs involved. The finite element model of a plane truss structure is used in numerical case studies to demonstrate the effectiveness of the applications of these sensitivity based methods to practical engineering structures.
Iterative diagonalization in augmented plane wave based methods in electronic structure calculations
Blaha, P.; Laskowski, R.; Schwarz, K.
2010-01-20
Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative solution of the eigenvalue problem can be more efficient provided it does not disturb the convergence of the self-consistent-field problem. The blocked Davidson method is one of the widely used and efficient schemes for that purpose, but its performance depends critically on the preconditioning, i.e. the procedure to improve the search space for an accurate solution. For more diagonally dominated problems, which appear typically for plane wave based pseudopotential calculations, the inverse of the diagonal of (H - ES) is used. However, for the more efficient 'augmented plane wave + local-orbitals' basis set this preconditioning is not sufficient due to large off-diagonal terms caused by the local orbitals. We propose a new preconditioner based on the inverse of (H - {lambda}S) and demonstrate its efficiency for real applications using both, a sequential and a parallel implementation of this algorithm into our WIEN2k code.
An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet
NASA Astrophysics Data System (ADS)
Coello, Jonathan; Williams, Ian; Hudson, Dominic A.; Kemp, Simon
2015-08-01
The fishing industry is heavily reliant on the use of fossil fuel and emits large quantities of greenhouse gases and other atmospheric pollutants. Methods used to calculate fishing vessel emissions inventories have traditionally utilised estimates of fuel efficiency per unit of catch. These methods have weaknesses because they do not easily allow temporal and geographical allocation of emissions. A large proportion of fishing and other small commercial vessels are also omitted from global shipping emissions inventories such as the International Maritime Organisation's Greenhouse Gas Studies. This paper demonstrates an activity-based methodology for the production of temporally- and spatially-resolved emissions inventories using data produced by Automatic Identification Systems (AIS). The methodology addresses the issue of how to use AIS data for fleets where not all vessels use AIS technology and how to assign engine load when vessels are towing trawling or dredging gear. The results of this are compared to a fuel-based methodology using publicly available European Commission fisheries data on fuel efficiency and annual catch. The results show relatively good agreement between the two methodologies, with an estimate of 295.7 kilotons of fuel used and 914.4 kilotons of carbon dioxide emitted between May 2012 and May 2013 using the activity-based methodology. Different methods of calculating speed using AIS data are also compared. The results indicate that using the speed data contained directly in the AIS data is preferable to calculating speed from the distance and time interval between consecutive AIS data points.
NASA Astrophysics Data System (ADS)
Lindner, Benjamin; Smith, Jeremy C.
2012-07-01
Massively parallel computers now permit the molecular dynamics (MD) simulation of multi-million atom systems on time scales up to the microsecond. However, the subsequent analysis of the resulting simulation trajectories has now become a high performance computing problem in itself. Here, we present software for calculating X-ray and neutron scattering intensities from MD simulation data that scales well on massively parallel supercomputers. The calculation and data staging schemes used maximize the degree of parallelism and minimize the IO bandwidth requirements. The strong scaling tested on the Jaguar Petaflop Cray XT5 at Oak Ridge National Laboratory exhibits virtually linear scaling up to 7000 cores for most benchmark systems. Since both MPI and thread parallelism is supported, the software is flexible enough to cover scaling demands for different types of scattering calculations. The result is a high performance tool capable of unifying large-scale supercomputing and a wide variety of neutron/synchrotron technology. Catalogue identifier: AELW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 003 742 No. of bytes in distributed program, including test data, etc.: 798 Distribution format: tar.gz Programming language: C++, OpenMPI Computer: Distributed Memory, Cluster of Computers with high performance network, Supercomputer Operating system: UNIX, LINUX, OSX Has the code been vectorized or parallelized?: Yes, the code has been parallelized using MPI directives. Tested with up to 7000 processors RAM: Up to 1 Gbytes/core Classification: 6.5, 8 External routines: Boost Library, FFTW3, CMAKE, GNU C++ Compiler, OpenMPI, LibXML, LAPACK Nature of problem: Recent developments in supercomputing allow molecular dynamics simulations to
Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT
NASA Astrophysics Data System (ADS)
Maspero, Matteo; Seevinck, Peter R.; Schubert, Gerald; Hoesl, Michaela A. U.; van Asselen, Bram; Viergever, Max A.; Lagendijk, Jan J. W.; Meijer, Gert J.; van den Berg, Cornelis A. T.
2017-02-01
Magnetic resonance (MR)-only radiotherapy treatment planning requires pseudo-CT (pCT) images to enable MR-based dose calculations. To verify the accuracy of MR-based dose calculations, institutions interested in introducing MR-only planning will have to compare pCT-based and computer tomography (CT)-based dose calculations. However, interpreting such comparison studies may be challenging, since potential differences arise from a range of confounding factors which are not necessarily specific to MR-only planning. Therefore, the aim of this study is to identify and quantify the contribution of factors confounding dosimetric accuracy estimation in comparison studies between CT and pCT. The following factors were distinguished: set-up and positioning differences between imaging sessions, MR-related geometric inaccuracy, pCT generation, use of specific calibration curves to convert pCT into electron density information, and registration errors. The study comprised fourteen prostate cancer patients who underwent CT/MRI-based treatment planning. To enable pCT generation, a commercial solution (MRCAT, Philips Healthcare, Vantaa, Finland) was adopted. IMRT plans were calculated on CT (gold standard) and pCTs. Dose difference maps in a high dose region (CTV) and in the body volume were evaluated, and the contribution to dose errors of possible confounding factors was individually quantified. We found that the largest confounding factor leading to dose difference was the use of different calibration curves to convert pCT and CT into electron density (0.7%). The second largest factor was the pCT generation which resulted in pCT stratified into a fixed number of tissue classes (0.16%). Inter-scan differences due to patient repositioning, MR-related geometric inaccuracy, and registration errors did not significantly contribute to dose differences (0.01%). The proposed approach successfully identified and quantified the factors confounding accurate MRI-based dose calculation in
Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT.
Maspero, Matteo; Seevinck, Peter R; Schubert, Gerald; Hoesl, Michaela A U; van Asselen, Bram; Viergever, Max A; Lagendijk, Jan J W; Meijer, Gert J; van den Berg, Cornelis A T
2017-02-07
Magnetic resonance (MR)-only radiotherapy treatment planning requires pseudo-CT (pCT) images to enable MR-based dose calculations. To verify the accuracy of MR-based dose calculations, institutions interested in introducing MR-only planning will have to compare pCT-based and computer tomography (CT)-based dose calculations. However, interpreting such comparison studies may be challenging, since potential differences arise from a range of confounding factors which are not necessarily specific to MR-only planning. Therefore, the aim of this study is to identify and quantify the contribution of factors confounding dosimetric accuracy estimation in comparison studies between CT and pCT. The following factors were distinguished: set-up and positioning differences between imaging sessions, MR-related geometric inaccuracy, pCT generation, use of specific calibration curves to convert pCT into electron density information, and registration errors. The study comprised fourteen prostate cancer patients who underwent CT/MRI-based treatment planning. To enable pCT generation, a commercial solution (MRCAT, Philips Healthcare, Vantaa, Finland) was adopted. IMRT plans were calculated on CT (gold standard) and pCTs. Dose difference maps in a high dose region (CTV) and in the body volume were evaluated, and the contribution to dose errors of possible confounding factors was individually quantified. We found that the largest confounding factor leading to dose difference was the use of different calibration curves to convert pCT and CT into electron density (0.7%). The second largest factor was the pCT generation which resulted in pCT stratified into a fixed number of tissue classes (0.16%). Inter-scan differences due to patient repositioning, MR-related geometric inaccuracy, and registration errors did not significantly contribute to dose differences (0.01%). The proposed approach successfully identified and quantified the factors confounding accurate MRI-based dose calculation in
Dynamic Programming Based Segmentation in Biomedical Imaging.
Ungru, Kathrin; Jiang, Xiaoyi
2017-01-01
Many applications in biomedical imaging have a demand on automatic detection of lines, contours, or boundaries of bones, organs, vessels, and cells. Aim is to support expert decisions in interactive applications or to include it as part of a processing pipeline for automatic image analysis. Biomedical images often suffer from noisy data and fuzzy edges. Therefore, there is a need for robust methods for contour and line detection. Dynamic programming is a popular technique that satisfies these requirements in many ways. This work gives a brief overview over approaches and applications that utilize dynamic programming to solve problems in the challenging field of biomedical imaging.
Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J
2014-08-07
Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the
Kroes, Geert-Jan Pavanello, Michele; Blanco-Rey, María; Alducin, Maite
2014-08-07
Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss
Fattal, D R; Ben-Shaul, A
1994-01-01
A molecular, mean-field theory of chain packing statistics in aggregates of amphiphilic molecules is applied to calculate the conformational properties of the lipid chains comprising the hydrophobic cores of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine (DOPC), and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers in their fluid state. The central quantity in this theory, the probability distribution of chain conformations, is evaluated by minimizing the free energy of the bilayer assuming only that the segment density within the hydrophobic region is uniform (liquidlike). Using this distribution we calculate chain conformational properties such as bond orientational order parameters and spatial distributions of the various chain segments. The lipid chains, both the saturated palmitoyl (-(CH2)14-CH3) and the unsaturated oleoyl (-(CH2)7-CH = CH-(CH2)7-CH3) chains are modeled using rotational isomeric state schemes. All possible chain conformations are enumerated and their statistical weights are determined by the self-consistency equations expressing the condition of uniform density. The hydrophobic core of the DPPC bilayer is treated as composed of single (palmitoyl) chain amphiphiles, i.e., the interactions between chains originating from the same lipid headgroup are assumed to be the same as those between chains belonging to different molecules. Similarly, the DOPC system is treated as a bilayer of oleoyl chains. The POPC bilayer is modeled as an equimolar mixture of palmitoyl and oleoyl chains. Bond orientational order parameter profiles, and segment spatial distributions are calculated for the three systems above, for several values of the bilayer thickness (or, equivalently, average area/headgroup) chosen, where possible, so as to allow for comparisons with available experimental data and/or molecular dynamics simulations. In most cases the agreement between the mean-field calculations, which are relatively easy to perform, and the
Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method
NASA Astrophysics Data System (ADS)
Osadchy, A. V.; Volotovskiy, S. G.; Obraztsova, E. D.; Savin, V. V.; Golovashkin, D. L.
2016-08-01
In this paper we present the results of band structure computer simulation of GaSe- based nanostructures using the empirical pseudopotential method. Calculations were performed using a specially developed software that allows performing simulations using cluster computing. Application of this method significantly reduces the demands on computing resources compared to traditional approaches based on ab-initio techniques and provides receiving the adequate comparable results. The use of cluster computing allows to obtain information for structures that require an explicit account of a significant number of atoms, such as quantum dots and quantum pillars.
Automated Calculation of Water-equivalent Diameter (DW) Based on AAPM Task Group 220.
Anam, Choirul; Haryanto, Freddy; Widita, Rena; Arif, Idam; Dougherty, Geoff
2016-07-08
The purpose of this study is to accurately and effectively automate the calculation of the water-equivalent diameter (DW) from 3D CT images for estimating the size-specific dose. DW is the metric that characterizes the patient size and attenuation. In this study, DW was calculated for standard CTDI phantoms and patient images. Two types of phantom were used, one representing the head with a diameter of 16 cm and the other representing the body with a diameter of 32 cm. Images of 63 patients were also taken, 32 who had undergone a CT head examination and 31 who had undergone a CT thorax examination. There are three main parts to our algorithm for automated DW calculation. The first part is to read 3D images and convert the CT data into Hounsfield units (HU). The second part is to find the contour of the phantoms or patients automatically. And the third part is to automate the calculation of DW based on the automated contouring for every slice (DW,all). The results of this study show that the automated calculation of DW and the manual calculation are in good agreement for phantoms and patients. The differences between the automated calculation of DW and the manual calculation are less than 0.5%. The results of this study also show that the estimating of DW,all using DW,n=1 (central slice along longitudinal axis) produces percentage differences of -0.92% ± 3.37% and 6.75%± 1.92%, and estimating DW,all using DW,n=9 produces percentage differences of 0.23% ± 0.16% and 0.87% ± 0.36%, for thorax and head examinations, respectively. From this study, the percentage differences between normalized size-specific dose estimate for every slice (nSSDEall) and nSSDEn=1 are 0.74% ± 2.82% and -4.35% ± 1.18% for thorax and head examinations, respectively; between nSSDEall and nSSDEn=9 are 0.00% ± 0.46% and -0.60% ± 0.24% for thorax and head examinations, respectively.
Automated Calculation of Water-equivalent Diameter (DW ) Based on AAPM Task Group 220.
Anam, Choirul; Haryanto, Freddy; Widita, Rena; Arif, Idam; Dougherty, Geoff
2016-07-01
The purpose of this study is to accurately and effectively automate the calculation of the water-equivalent diameter (DW) from 3D CT images for estimating the size-specific dose. DW is the metric that characterizes the patient size and attenuation. In this study, DW was calculated for standard CTDI phantoms and patient images. Two types of phantom were used, one representing the head with a diameter of 16 cm and the other representing the body with a diameter of 32 cm. Images of 63 patients were also taken, 32 who had undergone a CT head examination and 31 who had undergone a CT thorax examination. There are three main parts to our algorithm for automated DW calculation. The first part is to read 3D images and convert the CT data into Hounsfield units (HU). The second part is to find the contour of the phantoms or patients automatically. And the third part is to automate the calculation of DW based on the automated contouring for every slice (DW,all). The results of this study show that the automated calculation of DW and the manual calculation are in good agreement for phantoms and patients. The differences between the automated calculation of DW and the manual calculation are less than 0.5%. The results of this study also show that the estimating of DW,all using DW,n=1 (central slice along longitudinal axis) produces percentage differences of -0.92%±3.37% and 6.75%±1.92%, and estimating DW,all using DW,n=9 produces percentage differences of 0.23%±0.16% and 0.87%±0.36%, for thorax and head examinations, respectively. From this study, the percentage differences between normalized size-specific dose estimate for every slice (nSSDEall) and nSSDEn=1 are 0.74%±2.82% and -4.35%±1.18% for thorax and head examinations, respectively; between nSSDEall and nSSDEn=9 are 0.00%±0.46% and -0.60%±0.24% for thorax and head examinations, respectively. PACS number(s): 87.57.Q-, 87.57.uq.
Neural network based dynamic controllers for industrial robots.
Oh, S Y; Shin, W C; Kim, H G
1995-09-01
The industrial robot's dynamic performance is frequently measured by positioning accuracy at high speeds and a good dynamic controller is essential that can accurately compute robot dynamics at a servo rate high enough to ensure system stability. A real-time dynamic controller for an industrial robot is developed here using neural networks. First, an efficient time-selectable hidden layer architecture has been developed based on system dynamics localized in time, which lends itself to real-time learning and control along with enhanced mapping accuracy. Second, the neural network architecture has also been specially tuned to accommodate servo dynamics. This not only facilitates the system design through reduced sensing requirements for the controller but also enhances the control performance over the control architecture neglecting servo dynamics. Experimental results demonstrate the controller's excellent learning and control performances compared with a conventional controller and thus has good potential for practical use in industrial robots.
A brief look at model-based dose calculation principles, practicalities, and promise
Morrison, Hali; Cawston-Grant, Brie; Menon, Geetha V.
2017-01-01
Model-based dose calculation algorithms (MBDCAs) have recently emerged as potential successors to the highly practical, but sometimes inaccurate TG-43 formalism for brachytherapy treatment planning. So named for their capacity to more accurately calculate dose deposition in a patient using information from medical images, these approaches to solve the linear Boltzmann radiation transport equation include point kernel superposition, the discrete ordinates method, and Monte Carlo simulation. In this overview, we describe three MBDCAs that are commercially available at the present time, and identify guidance from professional societies and the broader peer-reviewed literature intended to facilitate their safe and appropriate use. We also highlight several important considerations to keep in mind when introducing an MBDCA into clinical practice, and look briefly at early applications reported in the literature and selected from our own ongoing work. The enhanced dose calculation accuracy offered by a MBDCA comes at the additional cost of modelling the geometry and material composition of the patient in treatment position (as determined from imaging), and the treatment applicator (as characterized by the vendor). The adequacy of these inputs and of the radiation source model, which needs to be assessed for each treatment site, treatment technique, and radiation source type, determines the accuracy of the resultant dose calculations. Although new challenges associated with their familiarization, commissioning, clinical implementation, and quality assurance exist, MBDCAs clearly afford an opportunity to improve brachytherapy practice, particularly for low-energy sources. PMID:28344608
NASA Astrophysics Data System (ADS)
Gouda, M. M.; Hamzawy, A.; Badawi, M. S.; El-Khatib, A. M.; Thabet, A. A.; Abbas, M. I.
2016-02-01
The full-energy peak efficiency of high-purity germanium well-type detector is extremely important to calculate the absolute activities of natural and artificial radionuclides for samples with low radioactivity. In this work, the efficiency transfer method in an integral form is proposed to calculate the full-energy peak efficiency and to correct the coincidence summing effect for a high-purity germanium well-type detector. This technique is based on the calculation of the ratio of the effective solid angles subtended by the well-type detector with cylindrical sources measured inside detector cavity and an axial point source measured out the detector cavity including the attenuation of the photon by the absorber system. This technique can be easily applied in establishing the efficiency calibration curves of well-type detectors. The calculated values of the efficiency are in good agreement with the experimental calibration data obtained with a mixed γ-ray standard source containing 60Co and 88Y.
A design of a DICOM-RT-based tool box for nonrigid 4D dose calculation.
Wong, Victy Y W; Baker, Colin R; Leung, T W; Tung, Stewart Y
2016-03-01
The study was aimed to introduce a design of a DICOM-RT-based tool box to facilitate 4D dose calculation based on deformable voxel-dose registration. The computational structure and the calculation algorithm of the tool box were explicitly discussed in the study. The tool box was written in MATLAB in conjunction with CERR. It consists of five main functions which allow a) importation of DICOM-RT-based 3D dose plan, b) deformable image registration, c) tracking voxel doses along breathing cycle, d) presentation of temporal dose distribution at different time phase, and e) derivation of 4D dose. The efficacy of using the tool box for clinical application had been verified with nine clinical cases on retrospective-study basis. The logistic and the robustness of the tool box were tested with 27 applications and the results were shown successful with no computational errors encountered. In the study, the accumulated dose coverage as a function of planning CT taken at end-inhale, end-exhale, and mean tumor position were assessed. The results indicated that the majority of the cases (67%) achieved maximum target coverage, while the planning CT was taken at the temporal mean tumor position and 56% at the end-exhale position. The comparable results to the literature imply that the studied tool box can be reliable for 4D dose calculation. The authors suggest that, with proper application, 4D dose calculation using deformable registration can provide better dose evaluation for treatment with moving target. PACS number(s): 87.55.kh.
Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees
2015-03-15
Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.
Luo, Ye Sorella, Sandro; Zen, Andrea
2014-11-21
We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.
Efficient Quantum Private Communication Based on Dynamic Control Code Sequence
NASA Astrophysics Data System (ADS)
Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin
2017-04-01
Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.
Efficient Quantum Private Communication Based on Dynamic Control Code Sequence
NASA Astrophysics Data System (ADS)
Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin
2016-12-01
Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.
Adjoint-based uncertainty quantification and sensitivity analysis for reactor depletion calculations
NASA Astrophysics Data System (ADS)
Stripling, Hayes Franklin
Depletion calculations for nuclear reactors model the dynamic coupling between the material composition and neutron flux and help predict reactor performance and safety characteristics. In order to be trusted as reliable predictive tools and inputs to licensing and operational decisions, the simulations must include an accurate and holistic quantification of errors and uncertainties in its outputs. Uncertainty quantification is a formidable challenge in large, realistic reactor models because of the large number of unknowns and myriad sources of uncertainty and error. We present a framework for performing efficient uncertainty quantification in depletion problems using an adjoint approach, with emphasis on high-fidelity calculations using advanced massively parallel computing architectures. This approach calls for a solution to two systems of equations: (a) the forward, engineering system that models the reactor, and (b) the adjoint system, which is mathematically related to but different from the forward system. We use the solutions of these systems to produce sensitivity and error estimates at a cost that does not grow rapidly with the number of uncertain inputs. We present the framework in a general fashion and apply it to both the source-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new approach for reducing the memory and I/O demands on the host machine, which can be overwhelming for typical adjoint algorithms. Our conclusion is that adjoint depletion calculations using full transport solutions are not only computationally tractable, they are the most attractive option for performing uncertainty quantification on high-fidelity reactor analysis problems.
Miliordos, Evangelos; Xantheas, Sotiris S.
2013-08-15
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C_{1} symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm^{–1} from those obtained from Cartesian coordinates.
Miliordos, Evangelos; Xantheas, Sotiris S
2013-08-15
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson's GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N - 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. In all cases the frequencies based on internal coordinates differ on average by <1 cm(-1) from those obtained from Cartesian coordinates.
Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio
2016-10-01
We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two (13) C atoms ((13) C2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of (13) C2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% (13) C2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd.
System identification based approach to dynamic weighing revisited
NASA Astrophysics Data System (ADS)
Niedźwiecki, Maciej; Meller, Michał; Pietrzak, Przemysław
2016-12-01
Dynamic weighing, i.e., weighing of objects in motion, without stopping them on the weighing platform, allows one to increase the rate of operation of automatic weighing systems, used in industrial production processes, without compromising their accuracy. Since the classical identification-based approach to dynamic weighing, based on the second-order mass-spring-damper model of the weighing system, does not yield satisfactory results when applied to conveyor belt type checkweighers, several extensions of this technique are examined. Experiments confirm that when appropriately modified the identification-based approach becomes a reliable tool for dynamic mass measurement in checkweighers.
GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources
NASA Astrophysics Data System (ADS)
Townson, Reid W.; Jia, Xun; Tian, Zhen; Jiang Graves, Yan; Zavgorodni, Sergei; Jiang, Steve B.
2013-06-01
A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm
GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.
Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B
2013-06-21
A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm
Monge-Palacios, M; Yang, M; Espinosa-García, J
2012-04-14
A detailed dynamics study, using both quasi-classical trajectory (QCT) and reduced-dimensional quantum mechanical (QM) calculations, was carried out to understand the reactivity and mechanism of the Cl((2)P) + NH(3)→ HCl + NH(2) gas-phase reaction, which evolves through deep wells in the entry and exit channels. The calculations were performed on an analytical potential energy surface recently developed by our group, PES-2010 [M. Monge-Palacios, C. Rangel, J. C. Corchado and J. Espinosa-Garcia, Int. J. Quantum. Chem., 2011], together with a simplified model surface, mod-PES, in which the reactant well is removed to analyze its influence. The main finding was that the QCT and QM methods show a change of the reaction probability with collision energy, suggesting a change of the atomic-level mechanism of reaction with energy. This change disappeared when the mod-PES was used, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Analysis of the trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) > 5 kcal mol(-1)) practically all trajectories are direct, at low energies (E(coll) < 3 kcal mol(-1)) the trajectories are indirect, i.e., with the mediation of a trapping complex in the entry and/or the exit wells. The reactant complex allows repeated encounters between the reactants, increasing the reaction probability at low energies. The differential cross section results reinforce this change of mechanism, showing also the influence of the reactant well on this reaction. Thus, the PES-2010 surface yields a forward-backward symmetry in the scattering, while when the reactant well is removed with the mod-PES the shape is more isotropic.
Fully converged plane-wave-based self-consistent G W calculations of periodic solids
NASA Astrophysics Data System (ADS)
Cao, Huawei; Yu, Zhongyuan; Lu, Pengfei; Wang, Lin-Wang
2017-01-01
The G W approximation is a well-known method to obtain the quasiparticle and spectral properties of systems ranging from molecules to solids. In practice, G W calculations are often employed with many different approximations and truncations. In this work, we describe the implementation of a fully self-consistent G W approach based on the solution of the Dyson equation using a plane wave basis set. Algorithmic, numerical, and technical details of the self-consistent G W approach are presented. The fully self-consistent G W calculations are performed for GaAs, ZnO, and CdS including semicores in the pseudopotentials. No further approximations and truncations apart from the truncation on the plane wave basis set are made in our implementation of the G W calculation. After adopting a special potential technique, a ˜100 Ry energy cutoff can be used without the loss of accuracy. We found that the self-consistent G W (sc-G W ) significantly overestimates the bulk band gaps, and this overestimation is likely due to the underestimation of the macroscopic dielectric constants. On the other hand, the sc-G W accurately predicts the d -state positions, most likely because the d -state screening does not sensitively depend on the macroscopic dielectric constant. Our work indicates the need to include the high-order vertex term in order for the many-body perturbation theory to accurately predict the semiconductor band gaps. It also sheds some light on why, in some cases, the G0W0 bulk calculation is more accurate than the fully self-consistent G W calculation, because the initial density-functional theory has a better dielectric constant compared to experiments.
A calculator based program to optimize the simulation of breast irradiation.
Lederer, E W; Schwendener, H
1997-01-01
The simulation of breast fields using an isocentric set-up technique can be a lengthy process involving the placement of the isocentre, the determination of the gantry angles, and the selection of the lung shields, which in our center is one of six standard blocks. We show that with a body contour taken through central axis, five measurements and a calculator program, it is possible to significantly decrease the amount of time required to simulate a breast patient. We have developed a program for an HP48GX handheld calculator to determine the gantry angles, the isocentre, the field width, the standard angled block, and the couch and collimator rotation. The calculations are based on measurements of the field length, the horizontal distance between midline and mid axillary line, and the vertical distances from the mid axillary line to the inferior and superior beam border and central axis at midline. We use spherical geometry to perform the calculations to reflect the true environment and do not make any assumptions about the average patient's shape. For the simulation process a jig was developed that is inserted into the tray holder of the simulator to show the optical and radiological shadow of the calculated shielding along the patient's midline for clinical assessment during simulation and on the simulation film. The jig also has a holder for an aluminum wedge to improve the image quality of the simulation film. We admit that the lung shield increases the dose to the contralateral breast because of increased scatter and transmission through the shield; however, the block decreases the volume of irradiated lung while keeping the beam edge along the midline of the patient. The technique has been in use for two years and has resulted in time savings of up to 30% per patient. It has proven to be an easy and accurate way of setting up isocentric treatments to the breast.
Wang, L; Jette, D
1999-08-01
The transport of the secondary electrons resulting from high-energy photon interactions is essential to energy redistribution and deposition. In order to develop an accurate dose-calculation algorithm for high-energy photons, which can predict the dose distribution in inhomogeneous media and at the beam edges, we have investigated the feasibility of applying electron transport theory [Jette, Med. Phys. 15, 123 (1988)] to photon dose calculation. In particular, the transport of and energy deposition by Compton electron and electrons and positrons resulting from pair production were studied. The primary photons are treated as the source of the secondary electrons and positrons, which are transported through the irradiated medium using Gaussian multiple-scattering theory [Jette, Med. Phys. 15, 123 (1988)]. The initial angular and kinetic energy distribution(s) of the secondary electrons (and positrons) emanating from the photon interactions are incorporated into the transport. Due to different mechanisms of creation and cross-section functions, the transport of and the energy deposition by the electrons released in these two processes are studied and modeled separately based on first principles. In this article, we focus on determining the dose distribution for an individual interaction site. We define the Compton dose deposition kernel (CDK) or the pair-production dose deposition kernel (PDK) as the dose distribution relative to the point of interaction, per unit interaction density, for a monoenergetic photon beam in an infinite homogeneous medium of unit density. The validity of this analytic modeling of dose deposition was evaluated through EGS4 Monte Carlo simulation. Quantitative agreement between these two calculations of the dose distribution and the average energy deposited per interaction was achieved. Our results demonstrate the applicability of the electron dose-calculation method to photon dose calculation.
SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT
Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K
2014-06-01
Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy.
Liu, Jicheng; Huang, Kama; Guo, Lanting; Zhang, Hong; Hu, Yayi
2005-04-01
It is the intent of this paper to locate the activation point in Transcranial Magnetic Stimulation (TMS) efficiently. The schemes of coil array in torus shape is presented to get the electromagnetic field distribution with ideal focusing capability. Then an improved adaptive genetic algorithm (AGA) is applied to the optimization of both value and phase of the current infused in each coil. Based on the calculated results of the optimized current configurations, ideal focusing capability is drawn as contour lines and 3-D mesh charts of magnitude of both magnetic and electric field within the calculation area. It is shown that the coil array has good capability to establish focused shape of electromagnetic distribution. In addition, it is also demonstrated that the coil array has the capability to focus on two or more targets simultaneously.
Phase-only stereoscopic hologram calculation based on Gerchberg-Saxton iterative algorithm
NASA Astrophysics Data System (ADS)
Xia, Xinyi; Xia, Jun
2016-09-01
A phase-only computer-generated holography (CGH) calculation method for stereoscopic holography is proposed in this paper. The two-dimensional (2D) perspective projection views of the three-dimensional (3D) object are generated by the computer graphics rendering techniques. Based on these views, a phase-only hologram is calculated by using the Gerchberg-Saxton (GS) iterative algorithm. Comparing with the non-iterative algorithm in the conventional stereoscopic holography, the proposed method improves the holographic image quality, especially for the phase-only hologram encoded from the complex distribution. Both simulation and optical experiment results demonstrate that our proposed method can give higher quality reconstruction comparing with the traditional method. Project supported by the National Basic Research Program of China (Grant No. 2013CB328803) and the National High Technology Research and Development Program of China (Grant Nos. 2013AA013904 and 2015AA016301).
Calculating the Marine Gravity Anomaly of the South China Sea based on the Inverse Stokes Formula
NASA Astrophysics Data System (ADS)
Liu, Liang; Jiang, Xiaoguang; Liu, Shanwei; Zheng, Lei; Zang, Jinxia; Zhang, Xuehua; Liu, Longfei
2016-11-01
Marine gravity field information has a great significance for the resource, environment and military affairs. As a new way to get marine gravity data, the satellite altimetry technique makes up for what ship measuring means lack. The paper carries out the researches on how altimeter data applied for calculating marine gravity anomaly based on inverse Stokes formula. In the article, the editing of 14-track Jason-1 data over South China Sea for 7 years is for collinear processing and cross-point adjustment. The inverse Stokes formula and fast Flourier transform technique are applied to calculate marine gravity anomaly of the region (0°∼23°N, 103°∼120°E), and to draw gravity anomaly map. Compared with the gravity anomaly by ship observation, RMS is 12.6mGal, and single altimetry satellite has a good precision.
A Brief User's Guide to the Excel^{®} -Based DF Calculator
Jubin, Robert T.
2016-06-01
To understand the importance of capturing penetrating forms of iodine as well as the other volatile radionuclides, a calculation tool was developed in the form of an Excel^{®} spreadsheet to estimate the overall plant decontamination factor (DF). The tool requires the user to estimate splits of the volatile radionuclides within the major portions of the reprocessing plant, speciation of iodine and individual DFs for each off-gas stream within the Used Nuclear Fuel reprocessing plant. The Impact to the overall plant DF for each volatile radionuclide is then calculated by the tool based on the specific user choices. The Excel^{®} spreadsheet tracks both elemental and penetrating forms of iodine separately and allows changes in the speciation of iodine at each processing step. It also tracks ^{3}H, ^{14}C and ^{85}Kr. This document provides a basic user's guide to the manipulation of this tool.
Modifications of the chromophore of Spinach aptamer based on QM:MM calculations.
Skúpa, Katarína; Urban, Ján
2017-02-01
Spinach aptamer was developed as an RNA analog of the green fluorescent protein. The aptamer interacts with its ligand and modifies its electronic spectrum so that it fluoresces brightly at the wavelength of 501 nm. Song et al. investigated modifications of the ligand in their experimental study and found a molecule emitting at 523 nm upon creating a complex with the Spinach aptamer. The crystal structure of the aptamer in complex with its original ligand has been published, which enabled us to study the system computationally. In this article, we suggest several new modifications of the ligand that shift the emission maximum of the complex to even longer wavelengths. Our results are based on combined quantum mechanical/molecular mechanical calculations with DFT method used for geometry optimization and TD-DFT for calculations of absorption and emission energies.
A theoretical study of blue phosphorene nanoribbons based on first-principles calculations
Xie, Jiafeng; Si, M. S. Yang, D. Z.; Zhang, Z. Y.; Xue, D. S.
2014-08-21
Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.
NASA Astrophysics Data System (ADS)
Nguyen van Ye, Romain; Del-Castillo-Negrete, Diego; Spong, D.; Hirshman, S.; Farge, M.
2008-11-01
A limitation of particle-based transport calculations is the noise due to limited statistical sampling. Thus, a key element for the success of these calculations is the development of efficient denoising methods. Here we discuss denoising techniques based on Proper Orthogonal Decomposition (POD) and Wavelet Decomposition (WD). The goal is the reconstruction of smooth (denoised) particle distribution functions from discrete particle data obtained from Monte Carlo simulations. In 2-D, the POD method is based on low rank truncations of the singular value decomposition of the data. For 3-D we propose the use of a generalized low rank approximation of matrices technique. The WD denoising is based on the thresholding of empirical wavelet coefficients [Donoho et al., 1996]. The methods are illustrated and tested with Monte-Carlo particle simulation data of plasma collisional relaxation including pitch angle and energy scattering. As an application we consider guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. The proposed noise reduction methods allow to achieve high levels of smoothness in the particle distribution function using significantly less particles in the computations.
Dynamic Group Formation Based on a Natural Phenomenon
ERIC Educational Resources Information Center
Zedadra, Amina; Lafifi, Yacine; Zedadra, Ouarda
2016-01-01
This paper presents a new approach of learners grouping in collaborative learning systems. This grouping process is based on traces left by learners. The goal is the circular dynamic grouping to achieve collaborative projects. The proposed approach consists of two main algorithms: (1) the circular grouping algorithm and (2) the dynamic grouping…
A Dynamic Usage Based Perspective on L2 Writing
ERIC Educational Resources Information Center
Verspoor, Marjolijn; Schmid, Monika S.; Xu, Xiaoyan
2012-01-01
The goal of this study was to explore the contribution that a dynamic usage based (DUB) perspective can bring to the establishment of objective measures to assess L2 learners' written texts and at the same time to gain insight into the dynamic process of language development. Four hundred and thirty seven texts written by Dutch learners of English…
NASA Astrophysics Data System (ADS)
Sandhu, Paramvir; Zong, Jing; Yang, Delian; Wang, Qiang
2013-05-01
To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998), 10.1063/1.476300] and Chen et al. [J. Chem. Phys. 122, 104907 (2005), 10.1063/1.1860351] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996), 10.1021/ma951138i] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987), 10.1063/1.453566] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD
SU-E-T-355: Efficient Scatter Correction for Direct Ray-Tracing Based Dose Calculation
Chen, M; Jiang, S; Lu, W
2015-06-15
Purpose: To propose a scatter correction method with linear computational complexity for direct-ray-tracing (DRT) based dose calculation. Due to its speed and simplicity, DRT is widely used as a dose engine in the treatment planning system (TPS) and monitor unit (MU) verification software, where heterogeneity correction is applied by radiological distance scaling. However, such correction only accounts for attenuation but not scatter difference, causing the DRT algorithm less accurate than the model-based algorithms for small field size in heterogeneous media. Methods: Inspired by the convolution formula derived from an exponential kernel as is typically done in the collapsed-cone-convolution-superposition (CCCS) method, we redesigned the ray tracing component as the sum of TERMA scaled by a local deposition factor, which is linear with respect to density, and dose of the previous voxel scaled by a remote deposition factor, D(i)=aρ(i)T(i)+(b+c(ρ(i)-1))D(i-1),where T(i)=e(-αr(i)+β(r(i))2) and r(i)=Σ-(j=1,..,i)ρ(j).The two factors together with TERMA can be expressed in terms of 5 parameters, which are subsequently optimized by curve fitting using digital phantoms for each field size and each beam energy. Results: The proposed algorithm was implemented for the Fluence-Convolution-Broad-Beam (FCBB) dose engine and evaluated using digital slab phantoms and clinical CT data. Compared with the gold standard calculation, dose deviations were improved from 20% to 2% in the low density regions of the slab phantoms for the 1-cm field size, and within 2% for over 95% of the volume with the largest discrepancy at the interface for the clinical lung case. Conclusion: We developed a simple recursive formula for scatter correction for the DRT-based dose calculation with much improved accuracy, especially for small field size, while still keeping calculation to linear complexity. The proposed calculator is fast, yet accurate, which is crucial for dose updating in IMRT
NASA Astrophysics Data System (ADS)
Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro
The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.
Allen, Toby W; Andersen, Olaf S; Roux, Benoit
2006-12-01
Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.
Cannon, Jonathan
2017-01-01
Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.
Murase, Kenya
2004-04-01
It has become increasingly important to quantitatively estimate tissue physiological parameters such as perfusion, capillary permeability, and the volume of extravascular-extracellular space (EES) using T(1)-weighted dynamic contrast-enhanced MRI (DCE-MRI). A linear equation was derived by integrating the differential equation describing the kinetic behavior of contrast agent (CA) in tissue, from which K(1) (rate constant for the transfer of CA from plasma to EES), k(2) (rate constant for the transfer from EES to plasma), and V(p) (plasma volume) can be easily obtained by the linear least-squares (LLSQ) method. The usefulness of this method was investigated by means of computer simulations, in comparison with the nonlinear least-squares (NLSQ) method. The new method calculated the above parameters faster than the NLSQ method by a factor of approximately 6, and estimated them more accurately than the NLSQ method at a signal-to-noise ratio (SNR) of < approximately 10. This method will be useful for generating functional images of K(1), k(2), and V(p) from DCE-MRI data.
NASA Astrophysics Data System (ADS)
Kong, Xiang-Ping; Wang, Juan
2016-12-01
The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with "upright" hydrogen and bidentate complex on site of two oxygens (one with "upright" hydrogen and one with "lying" hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with "lying" hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.
Ridge-based bias potentials to accelerate molecular dynamics
NASA Astrophysics Data System (ADS)
Xiao, Penghao; Duncan, Juliana; Zhang, Liang; Henkelman, Graeme
2015-12-01
An effective way to accelerate rare events in molecular dynamics simulations is to apply a bias potential which destabilizes minima without biasing the transitions between stable states. This approach, called hyperdynamics, is limited by our ability to construct general bias potentials without having to understand the reaction mechanisms available to the system, a priori. Current bias potentials are typically constructed in terms of a metric which quantifies the distance that a trajectory deviates from the reactant state minimum. Such metrics include detection of negative curvatures of the potential, an energy increase, or deviations in bond lengths from the minimum. When one of these properties exceeds a critical value, the bias potentials are constructed to approach zero. A problem common to each of these schemes is that their effectiveness decreases rapidly with system size. We attribute this problem to a diminishing volume defined by the metrics around a reactant minimum as compared to the total volume of the reactant state basin. In this work, we mitigate the dimensionality scaling problem by constructing bias potentials that are based upon the distance to the boundary of the reactant basin. This distance is quantified in two ways: (i) by following the minimum mode direction to the reactant boundary and (ii) by training a machine learning algorithm to give an analytic expression for the boundary to which the distance can be calculated. Both of these ridge-based bias potentials are demonstrated to scale qualitatively better with dimensionality than the existing methods. We attribute this improvement to a greater filling fraction of the reactant state using the ridge-based bias potentials as compared to the standard potentials.
Voxel-based dose calculation in radiocolloid therapy of cystic craniopharyngiomas
NASA Astrophysics Data System (ADS)
Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Hellerbach, A.; Lachtermann, B.; Visser-Vandewalle, V.; Ruge, M.; Wirths, J.
2015-02-01
Very high doses are administered in radiocolloid therapy of cystic craniopharyngiomas. However individual dose planning is not common yet mainly due to insufficient image resolution. Our aim was to investigate whether currently available high-resolution image data can be used for voxel-based dose calculation for short-ranged β-emitters (32P,90Y,186Re) and to assess the achievable accuracy. We developed a convolution algorithm based on voxelized dose activity distributions and dose-spread kernels. Results for targets with 5-40 mm diameter were compared with high-resolution Monte Carlo calculations in spherical phantoms. Voxel size was 0.35 mm. Homogeneous volume and surface activity distributions were used. Dose-volume histograms of targets and shell structures were compared and γ index (dose tolerance 5%, distance to agreement 0.35 mm) was calculated for dose profiles along the principal axes. For volumetric activity distributions 89.3% ± 11.9% of all points passed the γ test (mean γ 0.53 ± 0.16). For surface distributions 33.6% ± 14.8% of all points passed the γ test (mean γ 2.01 ± 0.60). The shift of curves in dose-volume histograms was -1.7 Gy ± 7.6 Gy (-4.4 Gy ± 24.1 Gy for 186Re) in volumetric distributions and 46.3% ± 32.8% in surface distributions. The results show that individual dose planning for radiocolloid therapy of cystic craniopharyngiomas based on high-resolution voxelized image data is feasible and yields highly accurate results for volumetric activity distributions and reasonable dose estimates for surface distributions.
Calculation of grey level co-occurrence matrix-based seismic attributes in three dimensions
NASA Astrophysics Data System (ADS)
Eichkitz, Christoph Georg; Amtmann, Johannes; Schreilechner, Marcellus Gregor
2013-10-01
Seismic interpretation can be supported by seismic attribute analysis. Common seismic attributes use mathematical relationships based on the geometry and the physical properties of the subsurface to reveal features of interest. But they are mostly not capable of describing the spatial arrangement of depositional facies or reservoir properties. Textural attributes such as the grey level co-occurrence matrix (GLCM) and its derived attributes are able to describe the spatial dependencies of seismic facies. The GLCM - primary used for 2D data - is a measure of how often different combinations of pixel brightness values occur in an image. We present in this paper a workflow for full three-dimensional calculation of GLCM-based seismic attributes that also consider the structural dip of the seismic data. In our GLCM workflow we consider all 13 possible space directions to determine GLCM-based attributes. The developed workflow is applied onto various seismic datasets and the results of GLCM calculation are compared to common seismic attributes such as coherence.
Basis set convergence of electric properties in HF and DFT calculations of nucleic acid bases
NASA Astrophysics Data System (ADS)
Campos, C. T.; Jorge, F. E.
Recently, a hierarchical sequence of augmented basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (AXZP, X = D, T, and Q) for the atoms from H to Ar were presented by Jorge et al. We report a systematic study of basis sets required to obtain accurate values of several electric properties for benzene, pyridine, the five common nucleic acid bases (uracil, cytosine, thymine, guanine, and adenine), and three related bases (fluorouracil, 5-methylcytosine, and hypoxanthine) at their full optimized geometries. Two methods were examined: Hartree-Fock (HF) and density functional theory (DFT). Including electron correlation decreases the magnitude of the dipole moment and increases the mean polarizability and also the polarizability anisotropy for every molecule. Calculated B3LYP/ADZP dipole moments and dipole polarizabilities show good agreement with both experimental and ab initio results based on second-order Møller-Plesset perturbation theory calculations. We have also showed that a basis set of double zeta quality is enough to obtain reliable and accurate electric property results for this kind of compounds.
Improving iterative surface energy balance convergence for remote sensing based flux calculation
NASA Astrophysics Data System (ADS)
Dhungel, Ramesh; Allen, Richard G.; Trezza, Ricardo
2016-04-01
A modification of the iterative procedure of the surface energy balance was purposed to expedite the convergence of Monin-Obukhov stability correction utilized by the remote sensing based flux calculation. This was demonstrated using ground-based weather stations as well as the gridded weather data (North American Regional Reanalysis) and remote sensing based (Landsat 5, 7) images. The study was conducted for different land-use classes in southern Idaho and northern California for multiple satellite overpasses. The convergence behavior of a selected Landsat pixel as well as all of the Landsat pixels within the area of interest was analyzed. Modified version needed multiple times less iteration compared to the current iterative technique. At the time of low wind speed (˜1.3 m/s), the current iterative technique was not able to find a solution of surface energy balance for all of the Landsat pixels, while the modified version was able to achieve it in a few iterations. The study will facilitate many operational evapotranspiration models to avoid the nonconvergence in low wind speeds, which helps to increase the accuracy of flux calculations.
Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal
2013-08-15
The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems.
a Novel Sub-Pixel Matching Algorithm Based on Phase Correlation Using Peak Calculation
NASA Astrophysics Data System (ADS)
Xie, Junfeng; Mo, Fan; Yang, Chao; Li, Pin; Tian, Shiqiang
2016-06-01
The matching accuracy of homonymy points of stereo images is a key point in the development of photogrammetry, which influences the geometrical accuracy of the image products. This paper presents a novel sub-pixel matching method phase correlation using peak calculation to improve the matching accuracy. The peak theoretic centre that means to sub-pixel deviation can be acquired by Peak Calculation (PC) according to inherent geometrical relationship, which is generated by inverse normalized cross-power spectrum, and the mismatching points are rejected by two strategies: window constraint, which is designed by matching window and geometric constraint, and correlation coefficient, which is effective for satellite images used for mismatching points removing. After above, a lot of high-precise homonymy points can be left. Lastly, three experiments are taken to verify the accuracy and efficiency of the presented method. Excellent results show that the presented method is better than traditional phase correlation matching methods based on surface fitting in these aspects of accuracy and efficiency, and the accuracy of the proposed phase correlation matching algorithm can reach 0.1 pixel with a higher calculation efficiency.
Lin, Lin; Chen, Mohan; Yang, Chao; He, Lixin
2012-02-10
We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEpSI is modest. This makes it even possible to perform Kohn-Sham DFT calculations for 10,000-atom nanotubes on a single processor. We also show that the use of PEpSI does not lead to loss of accuracy required in a practical DFT calculation.
SKE/BKE task-based methodology for calculating Hotelling observer SNR in mammography
NASA Astrophysics Data System (ADS)
Liu, Haimo; Kyprianou, Iacovos S.; Badano, Aldo; Myers, Kyle J.; Jennings, Robert J.; Park, Subok; Kaczmarek, Richard V.; Chakrabarti, Kish
2009-02-01
A common method for evaluating projection mammography is Contrast-Detail (CD) curves derived from the CD phantom for Mammography (CDMAM). The CD curves are derived either by human observers, or by automated readings. Both methods have drawbacks which limit their reliability. The human based reading is significantly affected by reader variability, reduced precision and bias. On the other hand, the automated methods suffer from limited statistics. The purpose of this paper is to develop a simple and reliable methodology for the evaluation of mammographic imaging systems using the Signal Known Exactly/Background Known Exactly (SKE/BKE) detection task for signals relevant to mammography. In this paper, we used the spatial definition of the ideal, linear (Hotelling) observer to calculate the task-specific SNR for mammography and discussed the results. The noise covariance matrix as well as the detector response H matrix of the imaging system were estimated and used to calculate the SNRSKEBKE for the simulated discs of the CDMAM. The SNR as a function of exposure, disc diameter and thickness were calculated.
NASA Astrophysics Data System (ADS)
Arroudj, S.; Bouchouit, M.; Bouchouit, K.; Bouraiou, A.; Messaadia, L.; Kulyk, B.; Figa, V.; Bouacida, S.; Sofiani, Z.; Taboukhat, S.
2016-06-01
This paper explores the synthesis, structure characterization and optical properties of two new schiff bases. These compounds were obtained by condensation of o-tolidine with salicylaldehyde and cinnamaldehyde. The obtained ligands were characterized by UV, 1H and NMR. Their third-order NLO properties were measured using the third harmonic generation technique on thin films at 1064 nm. The electric dipole moment (μ), the polarizability (α) and the first hyperpolarizability (β) were calculated using the density functional B3LYP method with the lanl2dz basis set. For the results, the title compound shows nonzero β value revealing second order NLO behaviour.
Model based control of dynamic atomic force microscope
NASA Astrophysics Data System (ADS)
Lee, Chibum; Salapaka, Srinivasa M.
2015-04-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H∞ control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Model based control of dynamic atomic force microscope.
Lee, Chibum; Salapaka, Srinivasa M
2015-04-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Model based control of dynamic atomic force microscope
Lee, Chibum; Salapaka, Srinivasa M.
2015-04-15
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Dynamic Inversion based Control of a Docking Mechanism
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V.; Ippolito, Corey; Krishnakumar, Kalmanje
2006-01-01
The problem of position and attitude control of the Stewart platform based docking mechanism is considered motivated by its future application in space missions requiring the autonomous docking capability. The control design is initiated based on the framework of the intelligent flight control architecture being developed at NASA Ames Research Center. In this paper, the baseline position and attitude control system is designed using dynamic inversion with proportional-integral augmentation. The inverse dynamics uses a Newton-Euler formulation that includes the platform dynamics, the dynamics of the individual legs along with viscous friction in the joints. Simulation results are presented using forward dynamics simulated by a commercial physics engine that builds the system as individual elements with appropriate joints and uses constrained numerical integration,
PIE: A Dynamic Failure-Based Technique
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.
1990-01-01
This paper presents a dynamic technique for statistically estimating three program characteristics that affect a program's computational behavior: (1) the probability that a particular section of a program is executed, (2) the probability that the particular section affects the data state, and (3) the probability that a data state produced by that section has an effect on program output. These three characteristics can be used to predict whether faults are likely to be uncovered by software testing. Index Terms: Software testing, data state, fault, failure, testability. 1 Introduction
SU-E-T-226: Correction of a Standard Model-Based Dose Calculator Using Measurement Data
Chen, M; Jiang, S; Lu, W
2015-06-15
Purpose: To propose a hybrid method that combines advantages of the model-based and measurement-based method for independent dose calculation. Modeled-based dose calculation, such as collapsed-cone-convolution/superposition (CCCS) or the Monte-Carlo method, models dose deposition in the patient body accurately; however, due to lack of detail knowledge about the linear accelerator (LINAC) head, commissioning for an arbitrary machine is tedious and challenging in case of hardware changes. On the contrary, the measurement-based method characterizes the beam property accurately but lacks the capability of dose disposition modeling in heterogeneous media. Methods: We used a standard CCCS calculator, which is commissioned by published data, as the standard model calculator. For a given machine, water phantom measurements were acquired. A set of dose distributions were also calculated using the CCCS for the same setup. The difference between the measurements and the CCCS results were tabulated and used as the commissioning data for a measurement based calculator. Here we used a direct-ray-tracing calculator (ΔDRT). The proposed independent dose calculation consists of the following steps: 1. calculate D-model using CCCS. 2. calculate D-ΔDRT using ΔDRT. 3. combine Results: D=D-model+D-ΔDRT. Results: The hybrid dose calculation was tested on digital phantoms and patient CT data for standard fields and IMRT plan. The results were compared to dose calculated by the treatment planning system (TPS). The agreement of the hybrid and the TPS was within 3%, 3 mm for over 98% of the volume for phantom studies and lung patients. Conclusion: The proposed hybrid method uses the same commissioning data as those for the measurement-based method and can be easily extended to any non-standard LINAC. The results met the accuracy, independence, and simple commissioning criteria for an independent dose calculator.
CL-20/DNB co-crystal based PBX with PEG: molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Zhang, Jiang; Gao, Pei; Xiao, Ji Jun; Zhao, Feng; Xiao, He Ming
2016-12-01
Molecular dynamics simulation was carried out for CL-20/DNB co-crystal based PBX (polymer-bonded explosive) blended with polymer PEG (polyethylene glycol). In this paper, the miscibility of the PBX models is investigated through the calculated binding energy. Pair correlation function (PCF) analysis is applied to study the interaction of the interface structures in the PBX models. The mechanical properties of PBXs are also discussed to understand the change of the mechanical properties after adding the polymer. Moreover, the calculated diffusion coefficients of the interfacial explosive molecules are used to discuss the dispersal ability of CL-20 and DNB molecules in the interface layer.
Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method
NASA Astrophysics Data System (ADS)
Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori
2009-10-01
We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.
Kim, Y. H.; Kim, K.; Zhang, S. B.
2012-04-07
Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H{sup +}, OH{sup -}, NH{sub 3}, NH{sub 4}{sup +}, HCOOH, and HCOO{sup -} in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH{sub 3} and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.
Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S B
2012-04-07
Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H(+), OH(-), NH(3), NH(4)(+), HCOOH, and HCOO(-) in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH(3) and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.
NASA Astrophysics Data System (ADS)
Marathe, Madhura; Grünebohm, Anna; Nishimatsu, Takeshi; Entel, Peter; Ederer, Claude
2016-02-01
We use molecular dynamics simulations for a first-principles-based effective Hamiltonian to calculate two important quantities characterizing the electrocaloric effect in BaTiO3, the adiabatic temperature change Δ T and the isothermal entropy change Δ S , for different electric field strengths. We compare direct and indirect methods to obtain Δ T and Δ S , and we confirm that both methods indeed lead to an identical result provided that the system does not actually undergo a first order phase transition. We also show that a large electrocaloric response is obtained for electric fields beyond the critical field strength for the first order phase transition. Furthermore, our work fills several gaps regarding the application of the first-principles-based effective Hamiltonian approach, which represents a very attractive and powerful method for the quantitative prediction of electrocaloric properties. In particular, we consider the full temperature and field dependence of the calculated specific heat for the indirect calculation of Δ T , and we discuss the importance of maintaining thermal equilibrium during the field ramping when calculating Δ T using the direct method within a molecular dynamics approach.
Wang, Lin-Wang
2006-12-01
Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N{sup 3}) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the
GPU-based fast Monte Carlo dose calculation for proton therapy.
Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B
2012-12-07
Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6-22 s to simulate 10 million source protons to achieve ∼1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy.
GPU-based fast Monte Carlo dose calculation for proton therapy
NASA Astrophysics Data System (ADS)
Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B.
2012-12-01
Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6-22 s to simulate 10 million source protons to achieve ˜1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy.
Baillargeon, Emma
2013-01-01
The instant center of rotation (ICR) has been proposed as an alternative to range of motion (ROM) for evaluating the quality, rather than the quantity, of cervical spine movement. The purpose of the present study was to assess the sensitivity, reliability and accuracy of cervical spine ICR path calculations obtained during dynamic in vivo movement. The reliability and sensitivity of in vivo cervical spine ICR calculations were assessed by evaluating the effects of movement direction (flexion versus extension), rotation step size, filter frequency, and motion tracking error. The accuracy of the ICR path calculations was assessed through a simulation experiment that replicated in vivo movement of cervical vertebrae. The in vivo assessment included 20 asymptomatic subjects who performed continuous head flexion-extension movements while biplane radiographs were collected at 30 frames/s. In vivo motion of C2 through C7 cervical vertebrae was tracked with sub-millimeter accuracy using a volumetric model-based tracking technique. The finite helical axis method was used to determine ICRs between each pair of adjacent vertebra. The in vivo results indicate ICR path is not different during the flexion movement and the extension movement. In vivo, the path of the ICR can reliably be characterized within 0.5 mm in the SI and 1.0 mm in the AP direction. The inter-subject variability in ICR location averaged ±1.2 mm in the SI direction and ±2.2 mm in the AP direction. The computational experiment estimated the in vivo accuracy in ICR location was between 1.1 mm and 3.1 mm. PMID:23317757
Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation
NASA Astrophysics Data System (ADS)
Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei
2007-02-01
On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No
Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation.
Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei
2007-02-07
On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No
SDT: a virus classification tool based on pairwise sequence alignment and identity calculation.
Muhire, Brejnev Muhizi; Varsani, Arvind; Martin, Darren Patrick
2014-01-01
The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV). There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT), a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms).
NASA Astrophysics Data System (ADS)
Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi; Fujii, Kentaro; Watanabe, Ritsuko
2015-10-01
The thermalization length and spatial distribution of electrons in liquid water were simulated for initial electron energies ranging from 0.1 eV to 100 keV using a dynamic Monte Carlo code. The results showed that electrons were decelerated for thermalization over a longer time period than was previously predicted. This long thermalization time significantly contributed to the series of processes from initial ionization to hydration. We further studied the particular deceleration process of electrons at an incident energy of 1 eV, focusing on the temporal evolution of total track length, mean traveling distance, and energy distributions of decelerating electrons. The initial prehydration time and thermalization periods were estimated to be approximately 50 and 220 fs, respectively, indicating that the initial prehydration began before or contemporaneously with the thermal equilibrium. Based on these results, the prehydrated electrons were suggested to play an important role during multiple DNA damage induction.
An Extension Dynamic Model Based on BDI Agent
NASA Astrophysics Data System (ADS)
Yu, Wang; Feng, Zhu; Hua, Geng; WangJing, Zhu
this paper's researching is based on the model of BDI Agent. Firstly, This paper analyze the deficiencies of the traditional BDI Agent model, Then propose an extension dynamic model of BDI Agent based on the traditional ones. It can quickly achieve the internal interaction of the tradition model of BDI Agent, deal with complex issues under dynamic and open environment and achieve quick reaction of the model. The new model is a natural and reasonable model by verifying the origin of civilization using the model of monkeys to eat sweet potato based on the design of the extension dynamic model. It is verified to be feasible by comparing the extended dynamic BDI Agent model with the traditional BDI Agent Model uses the SWARM, it has important theoretical significance.
Calculations of helium separation via uniform pores of stanene-based membranes
Gao, Guoping; Jiao, Yan; Jiao, Yalong; Ma, Fengxian; Kou, Liangzhi
2015-01-01
Summary The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn) and decorated 2D Sn (SnH and SnF) honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K), two practical strategies (i.e., the application of strain and functionalization) are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation. PMID:26885459
EXAFS simulations in Zn-doped LiNbO3 based on defect calculations
NASA Astrophysics Data System (ADS)
Valerio, Mário E. G.; Jackson, Robert A.; Bridges, Frank G.
2017-02-01
Lithium niobate, LiNbO3, is an important technological material with good electro-optic, acousto-optic, elasto-optic, piezoelectric and nonlinear properties. EXAFS on Zn-doped LiNbO3 found strong evidences that Zn substitutes primarily at the Li site on highly doped samples. In this work the EXAFS results were revisited using a different approach where the models for simulating the EXAFS results were obtained from the output of defect calculations. The strategy uses the relaxed positions of the ions surrounding the dopants to generate a cluster from where the EXAFS oscillations can be calculated. The defect involves not only the Zn possible substitution at either Li or Nb sites but also the charge compensating defects, when needed. From previous defect modelling, a subset of defects was selected based on the energetics of the defect production in the LiNbO3 lattice. From them, all possible clusters were generated and the simulated EXAFS were computed. The simulated EXAFS were them compared to available EXAFS results in the literature. Based on this comparison different models could be proposed to explain the behaviour of Zn in the LiNbO3 matrix.
BaTiO3-based nanolayers and nanotubes: first-principles calculations.
Evarestov, Robert A; Bandura, Andrei V; Kuruch, Dmitrii D
2013-01-30
The first-principles calculations using hybrid exchange-correlation functional and localized atomic basis set are performed for BaTiO(3) (BTO) nanolayers and nanotubes (NTs) with the structure optimization. Both the cubic and the ferroelectric BTO phases are used for the nanolayers and NTs modeling. It follows from the calculations that nanolayers of the different ferroelectric BTO phases have the practically identical surface energies and are more stable than nanolayers of the cubic phase. Thin nanosheets composed of three or more dense layers of (0 1 0) and (0 1 1[overline]) faces preserve the ferroelectric displacements inherent to the initial bulk phase. The structure and stability of BTO single-wall NTs depends on the original bulk crystal phase and a wall thickness. The majority of the considered NTs with the low formation and strain energies has the mirror plane perpendicular to the tube axis and therefore cannot exhibit ferroelectricity. The NTs folded from (0 1 1[overline]) layers may show antiferroelectric arrangement of Ti-O bonds. Comparison of stability of the BTO-based and SrTiO(3)-based NTs shows that the former are more stable than the latter.
Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki
2013-01-01
This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128
Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations
NASA Technical Reports Server (NTRS)
Stefanski, Philip L.
2014-01-01
A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.
Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro
2014-12-10
Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2'-aminoethane), (1-methyl-2'-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature μeff values for the complexes are 1.71-1.80B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1M (NaClO4), at 25˚C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.
Proper orthogonal decomposition methods for noise reduction in particle-based transport calculations
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, D.; Spong, D. A.; Hirshman, S. P.
2008-09-01
Proper orthogonal decomposition techniques to reduce noise in the reconstruction of the distribution function in particle-based transport calculations are explored. For two-dimensional steady-state problems, the method is based on low rank truncations of the singular value decomposition of a coarse-grained representation of the particle distribution function. For time-dependent two-dimensional problems or three-dimensional time-independent problems, the use of a generalized low-rank approximation of matrices technique is proposed. The methods are illustrated and tested with Monte Carlo particle simulation data of plasma collisional relaxation and guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. It is observed that the proposed noise reduction methods achieve high levels of smoothness in the particle distribution function by using significantly fewer particles in the computations.
Implementation of a Web-Based Spatial Carbon Calculator for Latin America and the Caribbean
NASA Astrophysics Data System (ADS)
Degagne, R. S.; Bachelet, D. M.; Grossman, D.; Lundin, M.; Ward, B. C.
2013-12-01
A multi-disciplinary team from the Conservation Biology Institute is creating a web-based tool for the InterAmerican Development Bank (IDB) to assess the impact of potential development projects on carbon stocks in Latin America and the Caribbean. Funded by the German Society for International Cooperation (GIZ), this interactive carbon calculator is an integrated component of the IDB Decision Support toolkit which is currently utilized by the IDB's Environmental Safeguards Group. It is deployed on the Data Basin (www.databasin.org) platform and provides a risk screening function to indicate the potential carbon impact of various types of projects, based on a user-delineated development footprint. The tool framework employs the best available geospatial carbon data to quantify above-ground carbon stocks and highlights potential below-ground and soil carbon hotspots in the proposed project area. Results are displayed in the web mapping interface, as well as summarized in PDF documents generated by the tool.
NASA Astrophysics Data System (ADS)
Chaudhari, Mrunalkumar
Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (gamma') Ni3Al phase within the random solid solution of the gamma (gamma) matrix, with the gamma' phase being the strengthening phase of the superalloys. How the alloying elements partition into the gamma and gamma' phases and especially in the site occupancy behaviors in the strengthening gamma' phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co was found to have a compositionally dependent site preference. In addition, the interaction energies between Cr-Cr, Co-Co, Ti-Ti and Cr-Co atoms have also been determined. Along with the charge transfer, chemical bonding and alloy chemistry associated with the substitutions has been investigated by examining the charge density distributions and electronic density of states to explain the chemical nature of the site substitution. Results show that Cr and Co atoms prefer to be close by on either Al sublattice or on a Ni-Al mixed lattice, suggesting a potential tendency of Cr and Co segregation in the gamma' phase.
An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-10-21
Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum
Model-based dose calculations for {sup 125}I lung brachytherapy
Sutherland, J. G. H.; Furutani, K. M.; Garces, Y. I.; Thomson, R. M.
2012-07-15
Purpose: Model-baseddose calculations (MBDCs) are performed using patient computed tomography (CT) data for patients treated with intraoperative {sup 125}I lung brachytherapy at the Mayo Clinic Rochester. Various metallic artifact correction and tissue assignment schemes are considered and their effects on dose distributions are studied. Dose distributions are compared to those calculated under TG-43 assumptions. Methods: Dose distributions for six patients are calculated using phantoms derived from patient CT data and the EGSnrc user-code BrachyDose. {sup 125}I (GE Healthcare/Oncura model 6711) seeds are fully modeled. Four metallic artifact correction schemes are applied to the CT data phantoms: (1) no correction, (2) a filtered back-projection on a modified virtual sinogram, (3) the reassignment of CT numbers above a threshold in the vicinity of the seeds, and (4) a combination of (2) and (3). Tissue assignment is based on voxel CT number and mass density is assigned using a CT number to mass density calibration. Three tissue assignment schemes with varying levels of detail (20, 11, and 5 tissues) are applied to metallic artifact corrected phantoms. Simulations are also performed under TG-43 assumptions, i.e., seeds in homogeneous water with no interseed attenuation. Results: Significant dose differences (up to 40% for D{sub 90}) are observed between uncorrected and metallic artifact corrected phantoms. For phantoms created with metallic artifact correction schemes (3) and (4), dose volume metrics are generally in good agreement (less than 2% differences for all patients) although there are significant local dose differences. The application of the three tissue assignment schemes results in differences of up to 8% for D{sub 90}; these differences vary between patients. Significant dose differences are seen between fully modeled and TG-43 calculations with TG-43 underestimating the dose (up to 36% in D{sub 90}) for larger volumes containing higher proportions of
McMahan, A K
2005-03-30
This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.
Fu, Weitao; Chen, Lingfeng; Wang, Zhe; Kang, Yanting; Wu, Chao; Xia, Qinqin; Liu, Zhiguo; Zhou, Jianmin; Liang, Guang; Cai, Yuepiao
2017-02-01
The activation and overexpression of fibroblast growth factor receptors (FGFRs) are highly correlated with a variety of cancers. Most small molecule inhibitors of FGFRs selectively target FGFR1-3, but not FGFR4. Hence, designing highly selective inhibitors towards FGFR4 remains a great challenge because FGFR4 and FGFR1 have a high sequence identity. Recently, two small molecule inhibitors of FGFRs, ponatinib and AZD4547, have attracted huge attention. Ponatinib, a type II inhibitor, has high affinity towards FGFR1/4 isoforms, but AZD4547, a type I inhibitor of FGFR1, displays much reduced inhibition toward FGFR4. In this study, conventional molecular dynamics (MD) simulations, molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculations and umbrella sampling (US) simulations were carried out to reveal the principle of the binding preference of ponatinib and AZD4547 towards FGFR4/FGFR1. The results provided by MM/GBSA illustrate that ponatinib has similar binding affinities to FGFR4 and FGFR1, while AZD4547 has much stronger binding affinity to FGFR1 than to FGFR4. A comparison of the individual energy terms suggests that the selectivity of AZD4547 towards FGFR1 versus FGFR4 is primarily controlled by the variation of the van der Waals interactions. The US simulations reveal that the PMF profile of FGFR1/AZD4547 has more peaks and valleys compared with that of FGFR4/AZD4547, suggesting that the dissociation process of AZD4547 from FGFR1 are easily trapped into local minima. Moreover, it is observed that FGFR1/AZD4547 has much higher PMF depth than FGFR4/AZD4547, implying that it is more difficult for AZD4547 to escape from FGFR1 than from FGFR4. The physical principles provided by this study extend our understanding of the binding mechanisms and provide valuable guidance for the rational design of FGFR isoform selective inhibitors.
Shi, Mingren; Renton, Michael
2011-10-01
Computational simulation models can provide a way of understanding and predicting insect population dynamics and evolution of resistance, but the usefulness of such models depends on generating or estimating the values of key parameters. In this paper, we describe four numerical algorithms generating or estimating key parameters for simulating four different processes within such models. First, we describe a novel method to generate an offspring genotype table for one- or two-locus genetic models for simulating evolution of resistance, and how this method can be extended to create offspring genotype tables for models with more than two loci. Second, we describe how we use a generalized inverse matrix to find a least-squares solution to an over-determined linear system for estimation of parameters in probit models of kill rates. This algorithm can also be used for the estimation of parameters of Freundlich adsorption isotherms. Third, we describe a simple algorithm to randomly select initial frequencies of genotypes either without any special constraints or with some pre-selected frequencies. Also we give a simple method to calculate the "stable" Hardy-Weinberg equilibrium proportions that would result from these initial frequencies. Fourth we describe how the problem of estimating the intrinsic rate of natural increase of a population can be converted to a root-finding problem and how the bisection algorithm can then be used to find the rate. We implemented all these algorithms using MATLAB and Python code; the key statements in both codes consist of only a few commands and are given in the appendices. The results of numerical experiments are also provided to demonstrate that our algorithms are valid and efficient.
Li, Jue; Wei, Dong-Qing; Wang, Jing-Fang; Li, Yi-Xue
2011-12-27
Human cytochrome P450 2E1 (CYP2E1) participates in the metabolism of over 2% of all the oral drugs. A hallmark peculiar feature of this enzyme is that it exhibits a pronounced negative cooperativity in substrate binding. However the mechanism by which the negative cooperativity occurs is unclear. Here, we performed molecular dynamics simulations and free energy calculations on human CYP2E1 to examine the structural differences between the substrate-free and the enzymes with one and two aniline molecules bound. Our results indicate that although the effector substrate does not bind in the active site cavity, it still can directly interact with the active site residues of human CYP2E1. The interaction of the effector substrate with the active site leads to a reorientation of active site residues, which thereby weakens the interactions of the active substrate with this site. We also identify a conserved residue T303 that plays a crucial role in the negative cooperative binding on the short-range effects. This residue is a key factor in the positioning of substrates and in proton delivery to the active site. Additionally, a long-range effect of the effector substrate is identified in which F478 is proposed to play a key role. As located in the interface between the active and effector sites, this residue structurally links the active and effector sites and is found to play a significant role in affecting substrate access and ligand positioning within the active site. In the negative cooperative binding, this residue can decrease the interactions of the active substrate with the active site by π-π stacking which then lowers the hydroxylation activity for the active substrate. These findings are in agreement with previous experimental observations and thus provide detailed atomistic insight into the poorly understood mechanism of the negative cooperativity in human CYP2E1.
Ultrafast ring-closing reaction dynamics of a photochromic furan-based difurylethene
NASA Astrophysics Data System (ADS)
Khodko, A.; Khomenko, V.; Shynkarenko, Y.; Mamuta, O.; Kapitanchuk, O.; Sysoiev, D.; Kachalova, N.; Huhn, T.; Snegir, S.
2017-02-01
The ultrafast photoinduced ring-closing dynamics of a furan-based difurylethene (YnPhT) has been investigated by femtosecond transient absorption spectroscopy. We performed time-dependent density functional theory (TD-DFT) calculations to explain the experimental results in detail. The sub-picosecond time scale of the ring-closing reaction is comparable with thiophene-based analogues, but oxygen atoms at the photochromic core can avoid adverse interaction between switches and metal contacts in further applications. This observation proves that furan-based diarylethenes are potential optoelectronic elements with an ultrafast optical response.
Parameterizing Coefficients of a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter
Dynamic Evolution Model Based on Social Network Services
NASA Astrophysics Data System (ADS)
Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen
2013-11-01
Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.
Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy
Martinez-Rovira, I.; Sempau, J.; Prezado, Y.
2012-05-15
Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at
Liu, Miao; Rong, Ziqin; Malik, Rahul; ...
2014-12-16
In this study, batteries that shuttle multivalent ions such as Mg2+ and Ca2+ ions are promising candidates for achieving higher energy density than available with current Li-ion technology. Finding electrode materials that reversibly store and release these multivalent cations is considered a major challenge for enabling such multivalent battery technology. In this paper, we use recent advances in high-throughput first-principles calculations to systematically evaluate the performance of compounds with the spinel structure as multivalent intercalation cathode materials, spanning a matrix of five different intercalating ions and seven transition metal redox active cations. We estimate the insertion voltage, capacity, thermodynamic stabilitymore » of charged and discharged states, as well as the intercalating ion mobility and use these properties to evaluate promising directions. Our calculations indicate that the Mn2O4 spinel phase based on Mg and Ca are feasible cathode materials. In general, we find that multivalent cathodes exhibit lower voltages compared to Li cathodes; the voltages of Ca spinels are ~0.2 V higher than those of Mg compounds (versus their corresponding metals), and the voltages of Mg compounds are ~1.4 V higher than Zn compounds; consequently, Ca and Mg spinels exhibit the highest energy densities amongst all the multivalent cation species. The activation barrier for the Al³⁺ ion migration in the Mn₂O₄ spinel is very high (~1400 meV for Al3+ in the dilute limit); thus, the use of an Al based Mn spinel intercalation cathode is unlikely. Amongst the choice of transition metals, Mn-based spinel structures rank highest when balancing all the considered properties.« less
Scheduling based on a dynamic resource connection
NASA Astrophysics Data System (ADS)
Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.
2017-02-01
The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.
Star sub-pixel centroid calculation based on multi-step minimum energy difference method
NASA Astrophysics Data System (ADS)
Wang, Duo; Han, YanLi; Sun, Tengfei
2013-09-01
The star's centroid plays a vital role in celestial navigation, star images which be gotten during daytime, due to the strong sky background, have a low SNR, and the star objectives are nearly submerged in the background, takes a great trouble to the centroid localization. Traditional methods, such as a moment method, weighted centroid calculation method is simple but has a big error, especially in the condition of a low SNR. Gaussian method has a high positioning accuracy, but the computational complexity. Analysis of the energy distribution in star image, a location method for star target centroids based on multi-step minimum energy difference is proposed. This method uses the linear superposition to narrow the centroid area, in the certain narrow area uses a certain number of interpolation to pixels for the pixels' segmentation, and then using the symmetry of the stellar energy distribution, tentatively to get the centroid position: assume that the current pixel is the star centroid position, and then calculates and gets the difference of the sum of the energy which in the symmetric direction(in this paper we take the two directions of transverse and longitudinal) and the equal step length(which can be decided through different conditions, the paper takes 9 as the step length) of the current pixel, and obtain the centroid position in this direction when the minimum difference appears, and so do the other directions, then the validation comparison of simulated star images, and compare with several traditional methods, experiments shows that the positioning accuracy of the method up to 0.001 pixel, has good effect to calculate the centroid of low SNR conditions; at the same time, uses this method on a star map which got at the fixed observation site during daytime in near-infrared band, compare the results of the paper's method with the position messages which were known of the star, it shows that :the multi-step minimum energy difference method achieves a better
NASA Astrophysics Data System (ADS)
Fan, Zheyong; Pereira, Luiz Felipe C.; Wang, Hui-Qiong; Zheng, Jin-Cheng; Donadio, Davide; Harju, Ari
2015-09-01
We derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows Newton's third law can be found without referring to any partition of the potential. Based on this force formula, a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from the stress-based formula derived from two-body potential. We validate our formulation numerically on various systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the simulation are examined.
Tian, Zhen; Li, Yongbao; Hassan-Rezaeian, Nima; Jiang, Steve B; Jia, Xun
2017-03-01
We have previously developed a GPU-based Monte Carlo (MC) dose engine on the OpenCL platform, named goMC, with a built-in analytical linear accelerator (linac) beam model. In this paper, we report our recent improvement on goMC to move it toward clinical use. First, we have adapted a previously developed automatic beam commissioning approach to our beam model. The commissioning was conducted through an optimization process, minimizing the discrepancies between calculated dose and measurement. We successfully commissioned six beam models built for Varian TrueBeam linac photon beams, including four beams of different energies (6 MV, 10 MV, 15 MV, and 18 MV) and two flattening-filter-free (FFF) beams of 6 MV and 10 MV. Second, to facilitate the use of goMC for treatment plan dose calculations, we have developed an efficient source particle sampling strategy. It uses the pre-generated fluence maps (FMs) to bias the sampling of the control point for source particles already sampled from our beam model. It could effectively reduce the number of source particles required to reach a statistical uncertainty level in the calculated dose, as compared to the conventional FM weighting method. For a head-and-neck patient treated with volumetric modulated arc therapy (VMAT), a reduction factor of ~2.8 was achieved, accelerating dose calculation from 150.9 s to 51.5 s. The overall accuracy of goMC was investigated on a VMAT prostate patient case treated with 10 MV FFF beam. 3D gamma index test was conducted to evaluate the discrepancy between our calculated dose and the dose calculated in Varian Eclipse treatment planning system. The passing rate was 99.82% for 2%/2 mm criterion and 95.71% for 1%/1 mm criterion. Our studies have demonstrated the effectiveness and feasibility of our auto-commissioning approach and new source sampling strategy for fast and accurate MC dose calculations for treatment plans.
Lee, J H; Lim, S K; Huh, S H; Lee, D; Lee, W
1998-10-01
Melanocortins, which are involved in melanocyte pigmentation control and glucocorticoid stimulation, have functional roles in various physiological mechanisms and have been shown to participate in higher cortical functions. Recently, it has also been reported that melanocyte-stimulating hormone (MSH) and melanocortin 4 receptor (MC4R) are the key components of the hypothalamic response to obesity. The solution structures of both melanocyte-stimulating hormone alpha-MSH (Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and its analog alpha-MSH-ND (Ac-Ahx-Asp-His-DPhe-Arg-Trp-Lys-NH2) (Ahx, 2-aminohexanoic acid) have been determined by two-dimensional NMR spectroscopy and simulated-annealing calculations. The NMR data revealed that alpha-MSH forms a hairpin loop conformation which includes conserved message sequences, whereas alpha-MSH-ND prefers a type I beta-turn comprising residues of Asp2-His3-DPhe4-Arg5. Final simulated-annealing structures of both alpha-MSH-ND and alpha-MSH peptides converged with rmsd of 0.07 nm for alpha-MSH-ND and 0.1 nm for alpha-MSH between backbone atoms, respectively. This result will provide the structural bases of melanocortin functions as well as valuable information for structure-based drug design involving the regulation of obesity and feeding.
Scale-invariant entropy-based theory for dynamic ordering
Mahulikar, Shripad P. E-mail: spm@aero.iitb.ac.in; Kumari, Priti
2014-09-01
Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations.
Improving structure-based function prediction using molecular dynamics
Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.
2009-01-01
Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472
Jacob, D; Palacios, J J
2011-01-28
We study the performance of two different electrode models in quantum transport calculations based on density functional theory: parametrized Bethe lattices and quasi-one-dimensional wires or nanowires. A detailed account of implementation details in both the cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that the parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi-one-dimensional electrodes for large enough cross-sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is the case for carbon nanotubes, graphene nanoribbons, or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox ALACANT and are publicly available.
Topological phase transition of single-crystal Bi based on empirical tight-binding calculations
NASA Astrophysics Data System (ADS)
Ohtsubo, Yoshiyuki; Kimura, Shin-ichi
2016-12-01
The topological order of single-crystal Bi and its surface states on the (111) surface are studied in detail based on empirical tight-binding (TB) calculations. New TB parameters are presented that are used to calculate the surface states of semi-infinite single-crystal Bi(111), which agree with the experimental angle-resolved photoelectron spectroscopy results. The influence of the crystal lattice distortion is surveyed and it is revealed that a topological phase transition is driven by in-plane expansion with topologically non-trivial bulk bands. In contrast with the semi-infinite system, the surface-state dispersions on finite-thickness slabs are non-trivial irrespective of the bulk topological order. The role of the interaction between the top and bottom surfaces in the slab is systematically studied, and it is revealed that a very thick slab is required to properly obtain the bulk topological order of Bi from the (111) surface state: above 150 biatomic layers in this case.
Absorbed Dose Calculations Using Mesh-based Human Phantoms And Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Kramer, Richard
2011-08-01
Health risks attributable to the exposure to ionizing radiation are considered to be a function of the absorbed or equivalent dose to radiosensitive organs and tissues. However, as human tissue cannot express itself in terms of equivalent dose, exposure models have to be used to determine the distribution of equivalent dose throughout the human body. An exposure model, be it physical or computational, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the equivalent dose to organ and tissues of interest. The FASH2 (Female Adult meSH) and the MASH2 (Male Adult meSH) computational phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools and anatomical atlases. Representing standing adults, FASH2 and MASH2 have organ and tissue masses, body height and body mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which can transport photons, electrons and positrons through arbitrary media. This paper reviews the development of the FASH2 and the MASH2 phantoms and presents dosimetric applications for X-ray diagnosis and for prostate brachytherapy.
Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation
Pribadi, Sugeng; Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan
2014-03-24
This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake.
Low complexity VLSI implementation of CORDIC-based exponent calculation for neural networks
NASA Astrophysics Data System (ADS)
Aggarwal, Supriya; Khare, Kavita
2012-11-01
This article presents a low hardware complexity for exponent calculations based on CORDIC. The proposed CORDIC algorithm is designed to overcome major drawbacks (scale-factor compensation, low range of convergence and optimal selection of micro-rotations) of the conventional CORDIC in hyperbolic mode of operation. The micro-rotations are identified using leading-one bit detection with uni-direction rotations to eliminate redundant iterations and improve throughput. The efficiency and performance of the processor are independent of the probability of rotation angles being known prior to implementation. The eight-staged pipelined architecture implementation requires an 8 × N ROM in the pre-processing unit for storing the initial coordinate values; it no longer requires the ROM for storing the elementary angles. It provides an area-time efficient design for VLSI implementation for calculating exponents in activation functions and Gaussain Potential Functions (GPF) in neural networks. The proposed CORDIC processor requires 32.68% less adders and 72.23% less registers compared to that of the conventional design. The proposed design when implemented on Virtex 2P (2vp50ff1148-6) device, dissipates 55.58% less power and has 45.09% less total gate count and 16.91% less delay as compared to Xilinx CORDIC Core. The detailed algorithm design along with FPGA implementation and area and time complexities is presented.
Proper Orthogonal Decomposition methods for particle-based transport calculations in plasmas
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, Diego; Spong, D.; Hirshman, S.
2009-05-01
The Proper Orthogonal Decomposition (POD) is a powerful technique to analyze large data sets by projecting the data into an optimal set of low-order modes that capture the main features of the data. POD methods have been widely used in image and signal processing and also in the study of coherent structures in neutral fluids. However, the use of these techniques in plasma physics is a relatively new area of research. Here we discuss recent novel applications of POD methods to particle-based transport calculations in plasmas. We show that POD techniques provide an efficient method to filter noise in the reconstruction of the particle distribution function. As a specific application we consider Monte Carlo simulations of plasma collisional relaxation and guiding-center transport in magnetically confined plasma in toroidal geometry [1]. We also discuss recent results on the application of POD methods to PIC-codes in the context of the Vlasov-Poisson system, and the use of POD methods in projective integration. In particular, we show how POD modes can be used as effective macroscopic variables to accelerate Monte-Carlo calculations. [1] D. del-Castillo-Negrete, et al. Phys. of Plasmas 15, 092308 (2008).
GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
Jahnke, Lennart; Fleckenstein, Jens; Wenz, Frederik; Hesser, Jürgen
2012-03-07
We present a GPU implementation called GMC (GPU Monte Carlo) of the low energy (<100 GeV) electromagnetic part of the Geant4 Monte Carlo code using the NVIDIA® CUDA programming interface. The classes for electron and photon interactions as well as a new parallel particle transport engine were implemented. The way a particle is processed is not in a history by history manner but rather by an interaction by interaction method. Every history is divided into steps that are then calculated in parallel by different kernels. The geometry package is currently limited to voxelized geometries. A modified parallel Mersenne twister was used to generate random numbers and a random number repetition method on the GPU was introduced. All phantom results showed a very good agreement between GPU and CPU simulation with gamma indices of >97.5% for a 2%/2 mm gamma criteria. The mean acceleration on one GTX 580 for all cases compared to Geant4 on one CPU core was 4860. The mean number of histories per millisecond on the GPU for all cases was 658 leading to a total simulation time for one intensity-modulated radiation therapy dose distribution of 349 s. In conclusion, Geant4-based Monte Carlo dose calculations were significantly accelerated on the GPU.
Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics
NASA Astrophysics Data System (ADS)
Hošek, Petr; Spiwok, Vojtěch
2016-01-01
Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.
Dynamic Strategic Planning in a Professional Knowledge-Based Organization
ERIC Educational Resources Information Center
Olivarius, Niels de Fine; Kousgaard, Marius Brostrom; Reventlow, Susanne; Quelle, Dan Grevelund; Tulinius, Charlotte
2010-01-01
Professional, knowledge-based institutions have a particular form of organization and culture that makes special demands on the strategic planning supervised by research administrators and managers. A model for dynamic strategic planning based on a pragmatic utilization of the multitude of strategy models was used in a small university-affiliated…
Organizational Readiness for Stage-Based Dynamics of Innovation Implementation
ERIC Educational Resources Information Center
Simpson, D. Dwayne
2009-01-01
Implementing innovations in social and health-related service programs is a dynamic stage-based process. This article discusses training, adoption, implementation, and practice as sequential elements of a conceptual framework for effective preparation and implementation of evidence-based innovations. However, systems need to be prepared for change…
Credibility theory based dynamic control bound optimization for reservoir flood limited water level
NASA Astrophysics Data System (ADS)
Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong
2015-10-01
The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.
Host Amplification in a Dithioacetal-Based Dynamic Covalent Library.
Orrillo, A Gastón; Escalante, Andrea M; Furlan, Ricardo L E
2017-03-06
Molecular amplification in a dithioacetal-based dynamic library is described for the first time. The homatropine induced selection, amplification, and isolation of one cyclophane host demonstrates the utility of dithioacetal exchange for preparing responsive dynamic libraries. Nuclear magnetic resonance and isothermal titration calorimetry analysis suggest that the amplified macrocycle forms a 1:1 complex with the template. This is the first report about a host/guest system involving a dithioacetal cyclophane.
NASA Astrophysics Data System (ADS)
Fujimoto, K.; Yoshii, N.; Okazaki, S.
2012-01-01
The free energy profiles, ΔG(r), for penetration of methane and water molecules into sodium dodecyl sulfate (SDS) micelles have been calculated as a function of distance r from the SDS micelle to the methane and water molecules, using the thermodynamic integration method combined with molecular dynamics calculations. The calculations showed that methane is about 6-12 kJ mol-1 more stable in the SDS micelle than in the water phase, and no ΔG(r) barrier is observed in the vicinity of the sulfate ions of the SDS micelle, implying that methane is easily drawn into the SDS micelle. Based on analysis of the contributions from hydrophobic groups, sulfate ions, sodium ions, and solvent water to ΔG(r), it is clear that methane in the SDS micelle is about 25 kJ mol-1 more stable than it is in the water phase because of the contribution from the solvent water itself. This can be understood by the hydrophobic effect. In contrast, methane is destabilized by 5-15 kJ mol-1 by the contribution from the hydrophobic groups of the SDS micelle because of the repulsive interactions between the methane and the crowded hydrophobic groups of the SDS. The large stabilizing effect of the solvent water is higher than the repulsion by the hydrophobic groups, driving methane to become solubilized into the SDS micelle. A good correlation was found between the distribution of cavities and the distribution of methane molecules in the micelle. The methane may move about in the SDS micelle by diffusing between cavities. In contrast, with respect to the water, ΔG(r) has a large positive value of 24-35 kJ mol-1, so water is not stabilized in the micelle. Analysis showed that the contributions change in complex ways as a function of r and cancel each other out. Reference calculations of the mean forces on a penetrating water molecule into a dodecane droplet clearly showed the same free energy behavior. The common feature is that water is less stable in the hydrophobic core than in the water phase
Wignall, Jessica A.; Shapiro, Andrew J.; Wright, Fred A.; Woodruff, Tracey J.; Chiu, Weihsueh A.; Guyton, Kathryn Z.
2014-01-01
Background: Benchmark dose (BMD) modeling computes the dose associated with a prespecified response level. While offering advantages over traditional points of departure (PODs), such as no-observed-adverse-effect-levels (NOAELs), BMD methods have lacked consistency and transparency in application, interpretation, and reporting in human health assessments of chemicals. Objectives: We aimed to apply a standardized process for conducting BMD modeling to reduce inconsistencies in model fitting and selection. Methods: We evaluated 880 dose–response data sets for 352 environmental chemicals with existing human health assessments. We calculated benchmark doses and their lower limits [10% extra risk, or change in the mean equal to 1 SD (BMD/L10/1SD)] for each chemical in a standardized way with prespecified criteria for model fit acceptance. We identified study design features associated with acceptable model fits. Results: We derived values for 255 (72%) of the chemicals. Batch-calculated BMD/L10/1SD values were significantly and highly correlated (R2 of 0.95 and 0.83, respectively, n = 42) with PODs previously used in human health assessments, with values similar to reported NOAELs. Specifically, the median ratio of BMDs10/1SD:NOAELs was 1.96, and the median ratio of BMDLs10/1SD:NOAELs was 0.89. We also observed a significant trend of increasing model viability with increasing number of dose groups. Conclusions: BMD/L10/1SD values can be calculated in a standardized way for use in health assessments on a large number of chemicals and critical effects. This facilitates the exploration of health effects across multiple studies of a given chemical or, when chemicals need to be compared, providing greater transparency and efficiency than current approaches. Citation: Wignall JA, Shapiro AJ, Wright FA, Woodruff TJ, Chiu WA, Guyton KZ, Rusyn I. 2014. Standardizing benchmark dose calculations to improve science-based decisions in human heal