Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)
NASA Technical Reports Server (NTRS)
Stengle, Thomas; Hoge, Susan
2008-01-01
The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the mission model of the future for the FDF based on NASA's current mission list and planning for the Constellation Program. As part of this discussion the following are addressed: the relevance and benefits of a multi-mission facility for NASA's navigation operations in the future; anticipated technologies affecting ground orbit determination; continued incorporation of Commercial Off-the-shelf (COTS) software into the FDF; challenges of a business model that relies entirely on user fees to fund facility upgrades; anticipated changes in flight dynamics services required; and considerations for defining architecture upgrades given a set of cost drivers.
NASA Technical Reports Server (NTRS)
Hashmall, J.; Garrick, J.
1993-01-01
Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere Research Satellite (UARS) sensors included alignment calibration of the fixed-head star trackers (FHST's) and the fine Sun sensor (FSS), determination of misalignments and scale factors for the inertial reference units (IRU's), determination of biases for the three-axis magnetometers (TAM's) and Earth sensor assemblies (ESA's), determination of gimbal misalignments of the Solar/Stellar Pointing Platform (SSPP), and field-of-view calibration for the FSS's mounted both on the Modular Attitude Control System (MACS) and on the SSPP. The calibrations, which used a combination of new and established algorithms, gave excellent results. Alignment calibration results markedly improved the accuracy of both ground and onboard Computer (OBC) attitude determination. SSPP calibration results allowed UARS to identify stars in the period immediately after yaw maneuvers, removing the delay required for the OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved the pointing accuracy of the attached science instrument package. This paper presents a summary of the methods used and the results of all FDF UARS sensor calibration.
NASA Technical Reports Server (NTRS)
Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike
2007-01-01
This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.
NASA Technical Reports Server (NTRS)
Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika
2007-01-01
This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.
NASA Technical Reports Server (NTRS)
Booker, Mattie
1992-01-01
The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.
NASA Technical Reports Server (NTRS)
Kostoff, J. L.; Ward, D. T.; Cuevas, O. O.; Beckman, R. M.
1995-01-01
Tracking and Data Relay Satellite (TDRS) orbit determination and prediction are supported by the Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). TDRS System (TDRSS)-user satellites require predicted TDRS ephemerides that are up to 10 weeks in length. Previously, long-term ephemerides generated by the FDF included predictions from the White Sands Complex (WSC), which plans and executes TDRS maneuvers. TDRSs typically have monthly stationkeeping maneuvers, and predicted postmaneuver state vectors are received from WSC up to a month in advance. This paper presents the results of an analysis performed in the FDF to investigate more accurate and economical long-term ephemerides for the TDRSs. As a result of this analysis, two new methods for generating long-term TDRS ephemeris predictions have been implemented by the FDF. The Center-of-Box (COB) method models a TDRS as fixed at the center of its stationkeeping box. Using this method, long-term ephemeris updates are made semiannually instead of weekly. The impulse method is used to model more maneuvers. The impulse method yields better short-term accuracy than the COB method, especially for larger stationkeeping boxes. The accuracy of the impulse method depends primarily on the accuracy of maneuver date forecasting.
Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience
NASA Technical Reports Server (NTRS)
Noonan, C. H.; Mcintosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.
1995-01-01
The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.
NASA Technical Reports Server (NTRS)
Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.
1994-01-01
The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.
Operational Challenges In TDRS Post-Maneuver Orbit Determination
NASA Technical Reports Server (NTRS)
Laing, Jason; Myers, Jessica; Ward, Douglas; Lamb, Rivers
2015-01-01
The GSFC Flight Dynamics Facility (FDF) is responsible for daily and post maneuver orbit determination for the Tracking and Data Relay Satellite System (TDRSS). The most stringent requirement for this orbit determination is 75 meters total position accuracy (3-sigma) predicted over one day for Terra's onboard navigation system. To maintain an accurate solution onboard Terra, a solution is generated and provided by the FDF Four hours after a TDRS maneuver. A number of factors present challenges to this support, such as maneuver prediction uncertainty and potentially unreliable tracking from User satellities. Reliable support is provided by comparing an extended Kalman Filter (estimated using ODTK) against a Batch Least Squares system (estimated using GTDS).
NASA Technical Reports Server (NTRS)
Petersen, Jeremy; Brown, Jonathan
2015-01-01
Flight Dynamics Facility (FDF) located at NASA Goddard Space Flight Center (GSFC) provides the flight dynamics expertise for three Sun-Earth Moon L1 missions. Advanced Composition Explorer (ACE) launched August 1997 Solar and Heliospheric Observatory (SOHO) launched December 1995 Global Geospace Science WIND satellite launched November 1994 entered Lagrange point orbit in 2004.
NASA Technical Reports Server (NTRS)
Hashmall, J.; Davis, W.; Harman, R.
1993-01-01
The science mission of the Extreme Ultraviolet Explorer (EUVE) requires attitude solutions with uncertainties of 27, 16.7, 16.7 arcseconds (3 sigma) around the roll, pitch, and yaw axes, respectively. The primary input to the attitude determination process is provided by two NASA standard fixed-head star trackers (FHSTs) and a Teledyne dry rotor inertial reference unit (DRIRU) 2. The attitude determination requirements approach the limits attainable with the FHSTs and DRIRU. The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) designed and executed calibration procedures that far exceeded the extent and the data volume of any other FDF-supported mission. The techniques and results of this attempt to obtain attitude accuracies at the limit of sensor capability and the results of analysis of the factors that limit the attitude accuracy are the primary subjects of this paper. The success of the calibration effort is judged by the resulting measurement residuals and comparisons between ground- and onboard-determined attitudes. The FHST star position residuals have been reduced to less tha 4 arcsec per axis -- a value that appears to be limited by the sensor capabilities. The FDF ground system uses a batch least-squares estimator to determine attitude. The EUVE onboard computer (OBC) uses an extended Kalman filter. Currently, there are systematic differences between the two attitude solutions that occasionally exceed the mission requirements for 3 sigma attitude uncertainty. Attempts to understand and reduce these differences are continuing.
Flicker-defined form perimetry in glaucoma patients.
Horn, Folkert K; Kremers, Jan; Mardin, Christian Y; Jünemann, Anselm G; Adler, Werner; Tornow, Ralf P
2015-03-01
To assess the potential of flicker-defined form (FDF) perimetry to detect functional loss in patient groups with beginning glaucoma, and to evaluate the dynamic range of the FDF stimulus in individual patients and at individual test positions. FDF perimetry and standard automated perimetry (SAP) were performed at identical test locations (adapted G1 protocol) in 60 healthy subjects and 111 glaucoma patients. All patients showed glaucomatous optic disc appearance. Grouping within the glaucoma cohort was based on SAP-performance: 33 "preperimetric" open-angle glaucoma (OAG) patients, 28 "borderline" OAG (focal defects and SAP-mean defect (MD) <2 dB), 33 "early" OAG (SAP-MD < 5 dB), 17 "advanced" OAG. All participants were experienced in psychophysical and perimetric tests. Defect values and the areas under receiver operating characteristic curves (ROC) in patient groups were statistically compared. The values of FDF-MD in the preperimetric, borderline, and early OAG group were 2.7 ± 3.4 dB, 5.5 ± 2.6 dB, and 8.5 ± 3.4 dB respectively (all significantly above normal). The percentage of patients exceeding normal FDF-MD was 27.3 %, 60.7 %, and 87.9 % respectively. The age-adjusted FDF-mean defect (MD) of the G1X-protocol was not significantly correlated with refractive error, lens opacity, pupil size, or gender. Occurrence of ceiling effects (inability to detect targets at highest contrast) showed a high correlation with visual field losses (R = 0.72, p < 0.001). Local analysis indicates that SAP losses exceeding 5 dB could not be distinguished with the FDF technique. The FDF stimulus was able to detect beginning glaucoma damage. Patients with SAP-MD values exceeding 5 dB should be monitored with conventional perimetry because of its larger dynamic range.
LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Colucci, P. J.; Jaberi, F. A.; Givi, P.
1996-01-01
A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.
Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)
NASA Technical Reports Server (NTRS)
Mesarch, Michael A.; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James
2007-01-01
This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF's orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.
Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)
NASA Technical Reports Server (NTRS)
Mesarch, Michael; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James
2007-01-01
This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF s orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.
NASA Technical Reports Server (NTRS)
Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.
2008-01-01
This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.
Operational support for Upper Atmosphere Research Satellite (UARS) attitude sensors
NASA Technical Reports Server (NTRS)
Lee, M.; Garber, A.; Lambertson, M.; Raina, P.; Underwood, S.; Woodruff, C.
1994-01-01
The Upper Atmosphere Research Satellite (UARS) has several sensors that can provide observations for attitude determination: star trackers, Sun sensors (gimbaled as well as fixed), magnetometers, Earth sensors, and gyroscopes. The accuracy of these observations is important for mission success. Analysts on the Flight Dynamics Facility (FDF) UARS Attitude task monitor these data to evaluate the performance of the sensors taking corrective action when appropriate. Monitoring activities range from examining the data during real-time passes to constructing long-term trend plots. Increasing residuals (differences) between the observed and expected quantities is a prime indicator of sensor problems. Residual increases may be due to alignment shifts and/or degradation in sensor output. Residuals from star tracker data revealed and anomalous behavior that contributes to attitude errors. Compensating for this behavior has significantly reduced the attitude errors. This paper discusses the methods used by the FDF UARS attitude task for maintenance of the attitude sensors, including short- and long-term monitoring, trend analysis, and calibration methods, and presents the results obtained through corrective action.
Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)
NASA Technical Reports Server (NTRS)
Qureshi, Rizwan Hamid; Hughes, Steven P.
2014-01-01
The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.
COBE attitude as seen from the FDF
NASA Technical Reports Server (NTRS)
Sedlak, J.; Chu, D.; Scheidker, E.
1990-01-01
The goal of the Flight Dynamics Facility (FDF) attitude support is twofold: to determine spacecraft attitude and to explain deviations from nominal attitude behavior. Attitude determination often requires resolving contradictions in the sensor observations. This may be accomplished by applying calibration corrections or by revising the observation models. After accounting for all known sources of error, solution accuracy should be limited only by observation and propagation noise. The second half of the goal is to explain why the attitude may not be as originally intended. Reasons for such deviations include sensor or actuator misalignments and control system performance. In these cases, the ability to explain the behavior should, in principle, be limited only by knowledge of the sensor and actuator data and external torques. Documented here are some results obtained to date in support of the Cosmic Background Explorer (COBE). Advantages and shortcomings of the integrated attitude determination/sensor calibration software are discussed. Some preliminary attitude solutions using data from the Diffuse Infrared Background Experiment (DIRBE) instrument are presented and compared to solutions using Sun and Earth sensors. A dynamical model is constructed to illustrate the relative importance of the various sensor imprefections. This model also shows the connection between the high- and low-frequency attitude oscillations.
Recent Goddard Space Flight Center (GSFC) experience with on-orbit calibration of attitude sensors
NASA Technical Reports Server (NTRS)
Davis, W.; Hashmall, J.; Harman, R.
1992-01-01
The results of on-orbit calibration for several satellites by the flight Dynamics Facility (FDF) at GSFC are reviewed. The examples discussed include attitude calibrations for sensors, including fixed-head star trackers, fine sun sensors, three-axis magnetometers, and inertial reference units taken from recent experience with the Compton Gamma Ray observatory, the Upper Atmosphere Research Satellite, and the Extreme Ultraviolet Explorer calibration. The methods used and the results of calibration are discussed, as are the improvements attained from in-flight calibration.
Tracking Data Certification for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Morinelli, Patrick J.; Socoby, Joseph; Hendry, Steve; Campion, Richard
2010-01-01
This paper details the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) tracking data certification effort of the Lunar Reconnaissance Orbiter (LRO) Space Communications Network (SCN) complement of tracking stations consisting of the NASA White Sands 1 antenna (WS1), and the commercial provider Universal Space Network (USN) antennas at South Point, Hawaii; Dongara Australia; Weilheim, Germany; and Kiruna, Sweden. Certification assessment required the cooperation and coordination of parties not under the control of either the LRO project or ground stations as uplinks on cooperating spacecraft were necessary. The LRO range-tracking requirement of 10m 1 sigma could be satisfactorily demonstrated using any typical spacecraft capable of range tracking. Though typical Low Earth Orbiting (LEO) or Geosynchronous Earth Orbiting (GEO) spacecraft may be adequate for range certification, their measurement dynamics and noise would be unacceptable for proper Doppler certification of 1-3mm/sec 1 sigma. As LRO will orbit the Moon, it was imperative that a suitable target spacecraft be utilized which can closely mimic the expected lunar orbital Doppler dynamics of +/-1.6km/sec and +/-1.5m/sq sec to +/-0.15m/sq sec, is in view of the ground stations, supports coherent S-Band Doppler tracking measurements, and can be modeled by the FDF. In order to meet the LRO metric tracking data specifications, the SCN ground stations employed previously uncertified numerically controlled tracking receivers. Initial certification testing revealed certain characteristics of the units that required resolution before being granted certification.
Spacecraft attitude determination accuracy from mission experience
NASA Technical Reports Server (NTRS)
Brasoveanu, D.; Hashmall, J.; Baker, D.
1994-01-01
This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.
Horn, Folkert K; Tornow, Ralf P; Jünemann, Anselm G; Laemmer, Robert; Kremers, Jan
2014-04-11
We compared the results of flicker-defined form (FDF) perimetry with standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) thickness measurements using spectral domain optical coherence tomography (OCT). A total of 64 healthy subjects, 45 ocular hypertensive patients, and 97 "early" open-angle glaucoma (OAG) patients participated in this study. Definition of glaucoma was based exclusively on glaucomatous optic disc appearance. All subjects underwent FDF perimetry, SAP, and peripapillary measurements of the RNFL thickness. The FDF perimetry and SAP were performed at identical test locations (G1 protocol). Exclusion criteria were subjects younger than 34 years, SAP mean defect (SAP MD) > 5 dB, eye diseases other than glaucoma, or nonreliable FDF measurements. The correlations between the perimetric data on one hand and RNFL thicknesses on the other hand were analyzed statistically. The age-corrected sensitivity values and the local results from the controls were used to determine FDF mean defect (FDF MD). The FDF perimetry and SAP showed high concordance in this cohort of experienced patients (MD values, R = -0.69, P < 0.001). Of a total of 42 OAG patients with abnormal SAP MD, 38 also displayed abnormal FDF MD. However, FDF MD was abnormal in 28 of 55 OAG patients with normal SAP MD. The FDF MD was significantly (R = -0.61, P < 0.001) correlated with RNFL thickness with a (nonsignificantly) larger correlation coefficient than conventional SAP MD (R = -0.48, P < 0.001). The FDF perimetry is able to uncover functional changes concurrent with the changes in RNFL thickness. The FDF perimetry may be an efficient functional test to detect early glaucomatous nerve atrophy. (ClinicalTrials.gov number, NCT00494923.).
Horkovics-Kovats, Stefan
2014-02-01
Dissolution profile of a finished dosage form (FDF) contains hidden information regarding the disintegration of the form and the particle properties of the active pharmaceutical ingredient. Here, an extraction of this information from the dissolution profile without limitation to sink conditions is provided. In the article, mathematical relationships between the continuously measured dissolution profile of an FDF containing uniform or heterogeneous particles and its disintegration rate are developed. Further, the determinability of the disintegration kinetics and particle properties released from an FDF using the derived recurrent procedure was analyzed. On the basis of the theoretical data sets, it was demonstrated that the introduced analysis of dissolution profiles correctly identifies the disintegration rate of FDF containing multiple particle types. Furthermore, for known disintegration rates, the intrinsic lifetime of particles (time needed for total particle dissolution in infinite volume) released from the FDF and their relative amount can be determined. The extractable information from FDF dissolution time profiles can be utilized in designing of the formulation process, resulting in improved understanding of FDF properties, contributing thus to the implementation of quality by design in the FDF development. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Density Weighted FDF Equations for Simulations of Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2011-01-01
In this report, we briefly revisit the formulation of density weighted filtered density function (DW-FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. (Jaberi, F.A., Colucci, P.J., James, S., Givi, P. and Pope, S.B., Filtered mass density function for Large-eddy simulation of turbulent reacting flows, J. Fluid Mech., vol. 401, pp. 85-121, 1999). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine grained probability density function (FG-PDF), then we explore another way of constructing the DW-FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed DW-FDF equations. This significant difference and its practical impact on the computational simulations may deserve further studies.
Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh
2013-11-01
Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.
Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows
NASA Astrophysics Data System (ADS)
Safari, Mehdi
Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent
2012-01-01
Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.
Faraday dispersion functions of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro
2014-09-01
The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, findmore » that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.« less
Santarossa, Sara; Ciccone, Jillian; Woodruff, Sarah J
2015-09-01
Recently, public health messaging has included having more family meals and involving young adolescents (YAs) with meal preparation to improve healthful diets and family dinner frequency (FDF). Kinect-Ed, a motivational nutrition education presentation was created to encourage YAs (grades 6-8) to help with meal preparation and ultimately improve FDF. The purpose of this study was to evaluate the Kinect-Ed presentation, with the goals of the presentation being to improve self-efficacy for cooking (SE), food preparation techniques (TECH), food preparation frequency (PREP), family meal attitudes and behaviours, and ultimately increase FDF. A sample of YAs (n = 219) from Southern Ontario, Canada, completed pre- and postpresentation surveys, measuring FDF, PREP, SE, and TECH. Kinect-Ed successfully improved participants' FDF (p < 0.01), PREP (p < 0.01), SE (p < 0.01), and TECH (<0.01). Overall, goals of the presentation were met. Encouraging YAs to help prepare meals and get involved in the kitchen may reduce the time needed from parents to prepare meals, and, in turn, allow more time for frequent family dinners.
Orbit determination support of the Ocean Topography Experiment (TOPEX)/Poseidon operational orbit
NASA Technical Reports Server (NTRS)
Schanzle, A. F.; Rovnak, J. E.; Bolvin, D. T.; Doll, C. E.
1993-01-01
The Ocean Topography Experiment (TOPEX/Poseidon) mission is designed to determine the topography of the Earth's sea surface over a 3-year period, beginning shortly after launch in July 1992. TOPEX/Poseidon is a joint venture between the United States National Aeronautics and Space Administration (NASA) and the French Centre Nationale d'Etudes Spatiales. The Jet Propulsion Laboratory is NASA's TOPEX/Poseidon project center. The Tracking and Data Relay Satellite System (TDRSS) will nominally be used to support the day-to-day orbit determination aspects of the mission. Due to its extensive experience with TDRSS tracking data, the NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) will receive and process TDRSS observational data. To fulfill the scientific goals of the mission, it is necessary to achieve and maintain a very precise orbit. The most stringent accuracy requirements are associated with planning and evaluating orbit maneuvers, which will place the spacecraft in its mission orbit and maintain the required ground track. To determine if the FDF can meet the TOPEX/Poseidon maneuver accuracy requirements, covariance analysis was undertaken with the Orbit Determination Error Analysis System (ODEAS). The covariance analysis addressed many aspects of TOPEX/Poseidon orbit determination, including arc length, force models, and other processing options. The most recent analysis has focused on determining the size of the geopotential field necessary to meet the maneuver support requirements. Analysis was undertaken with the full 50 x 50 Goddard Earth Model (GEM) T3 field as well as smaller representations of this model.
STS-26 Commander Hauck in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing comunications kit assembly headset and seated in the commanders seat on forward flight deck, looks over his shoulder toward the aft flight deck. A flight data file (FDF) notebook rests on his lap. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Wang, Deqing; Wu, Wenjun; Hu, Hongping
2012-11-01
In today's business environment, enterprises are increasingly under pressure to process the vast amount of data produced everyday within enterprises. One method is to focus on the business intelligence (BI) applications and increasing the commercial added-value through such business analytics activities. Term weighting scheme, which has been used to convert the documents as vectors in the term space, is a vital task in enterprise Information Retrieval (IR), text categorisation, text analytics, etc. When determining term weight in a document, the traditional TF-IDF scheme sets weight value for the term considering only its occurrence frequency within the document and in the entire set of documents, which leads to some meaningful terms that cannot get the appropriate weight. In this article, we propose a new term weighting scheme called Term Frequency - Function of Document Frequency (TF-FDF) to address this issue. Instead of using monotonically decreasing function such as Inverse Document Frequency, FDF presents a convex function that dynamically adjusts weights according to the significance of the words in a document set. This function can be manually tuned based on the distribution of the most meaningful words which semantically represent the document set. Our experiments show that the TF-FDF can achieve higher value of Normalised Discounted Cumulative Gain in IR than that of TF-IDF and its variants, and improving the accuracy of relevance ranking of the IR results.
Rijnen, M M J A; Verstegen, M W A; Heetkamp, M J W; Schrama, J W
2003-05-01
The effects of two sources of dietary fiber (DF) on behavior and heat production (HP) in group-housed growing pigs were studied. Twenty clusters of 14 barrows (50 kg) were fed one of 10 diets. Diets differed mainly in type and content of fermentable DF (fDF) and in content of digestible starch. Five diets contained solvent-extracted coconut meal (SECM) and five diets contained soybean hulls (SBH) as the main fDF source. On an as-fed basis, pigs received 3.5, 13.2, 23.0, 32.7, or 42.4 g x kg(-0.75) x d(-1) of SECM or SBH. A total of 280 crossbred growing pigs were used, divided into clusters of 14 pigs each. Pigs were group-housed and fed at 2.5 times the assumed maintenance energy requirements. All clusters were fed similar amounts of NE, ileal-digestible protein and amino acids, vitamins, and minerals. Consequently, DMI differed among diets because NE content decreased with increasing DF content. After a 32-d preliminary period, HP was measured per cluster during a 7-d experimental period in environmentally controlled respiration chambers. Behavior of the pigs was recorded using time-lapse video recordings during two different days within the experimental period. Intake of digestible starch and fDF was different (P < 0.001) among diets, whereas intake of digestible CP was similar among diets. On average, pigs spent 153 min standing, 42 min sitting, 202 min lying on their chest, and 1,043 min lying on their flanks each day. Pigs fed SECM diets spent, on average, less time (P < 0.05) lying on their chest than pigs fed SBH diets. Total time spent on physical activity (i.e., standing plus sitting, 195 min/d) was not affected by diet. Total HP and resting HP were affected by diet and were on average lower (P < 0.01) for pigs fed SECM diets than for pigs fed SBH diets. Activity-related heat production (AHP) averaged 65 kJ x kg(-0.75) x d(-1) and was not affected by diet. There was a linear relationship (P < 0.001) between fDF intake and HP, but there was no relationship between fDF intake and AHP. During different parts of the day, fDF intake also affected HP. The saving effect of physical activity on the NE values of fDF from SECM and SBH were 0.56 and 0.84 kJ/g of fDF intake, respectively. Neither of these saving effects was significantly different from zero. We conclude that fDF from SECM and SBH did not affect energy expended on physical activity by growing pigs, and that the NE value of fDF from SECM and SBH was not affected by changes in physical activity.
STS-26 Commander Hauck in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing comunications kit assembly headset, checks control panel data while seated in the commanders seat on forward flight deck. A flight data file (FDF) notebook rests on his lap. A portable computer (laptop) is positioned on the center console. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
NASA Technical Reports Server (NTRS)
Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark
1996-01-01
Many spacecraft are launched today with only an omni-directional (omni) antenna and do not have an onboard Tracking and Data Relay Satellite (TDRS) transponder that is capable of coherently returning a carrier signal through TDRS. Therefore, other means of tracking need to be explored and used to adequately acquire the spacecraft. Differenced One-Way Doppler (DOWD) tracking data are very useful in eliminating the problems associated with the instability of the onboard oscillators when using strictly one-way Doppler data. This paper investigates the TDRS DOWD tracking data received by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) during the launch and early orbit phases for the the Interplanetary Physics Laboratory (WIND) and the National Oceanographic and Atmospheric Administration (NOAA)-J missions. In particular FDF personnel performed an investigation of the data residuals and made an assessment of the acquisition capabilities of DOWD-based solutions. Comparisons of DOWD solutions with existing data types were performed and analyzed in this study. The evaluation also includes atmospheric editing of the DOWD data and a study of the feasibility of solving for Doppler biases in an attempt to minimize error. Furthermore, by comparing the results from WIND and NOAA-J, an attempt is made to show the limitations involved in using DOWD data for the two different mission profiles. The techniques discussed in this paper benefit the launches of spacecraft that do not have TDRS transponders on board, particularly those launched into a low Earth orbit. The use of DOWD data is a valuable asset to missions which do not have a stable local oscillator to enable high-quality solutions from the one-way/return-link Doppler tracking data.
GPU Accelerated DG-FDF Large Eddy Simulator
NASA Astrophysics Data System (ADS)
Inkarbekov, Medet; Aitzhan, Aidyn; Sammak, Shervin; Givi, Peyman; Kaltayev, Aidarkhan
2017-11-01
A GPU accelerated simulator is developed and implemented for large eddy simulation (LES) of turbulent flows. The filtered density function (FDF) is utilized for modeling of the subgrid scale quantities. The filtered transport equations are solved via a discontinuous Galerkin (DG) and the FDF is simulated via particle based Lagrangian Monte-Carlo (MC) method. It is demonstrated that the GPUs simulations are of the order of 100 times faster than the CPU-based calculations. This brings LES of turbulent flows to a new level, facilitating efficient simulation of more complex problems. The work at Al-Faraby Kazakh National University is sponsored by MoES of RK under Grant 3298/GF-4.
Woodruff, Sarah J; Kirby, Ashley R
2013-01-01
The purpose of this study was to describe family dinner frequency (FDF) by food preparation frequency (prep), self-efficacy for cooking (SE), and food preparation techniques (techniques) among a small sample in southwestern Ontario, Canada. A cross-sectional survey was administered under the supervision of the research team. After-school programs, sports programs, and 1 elementary school. The sample included 145 participants (41% boys, 59% girls) in grades 4-8. Demographics, prep, SE, techniques, FDF, and family meal attitudes and behaviors. Exploratory 1-way ANOVA and chi-square analyses were used. An ordinal regression analysis was used to determine the associations between FDF with descriptor variables (sex, grade, and ethnicity) and prep, SE, techniques, FDF, and family meal attitudes and behaviors (P < .05). Approximately 59% reported family dinners on 6 or 7 days per week. Half of participants were involved with prep 1-6 times per week. Mean SE was 25.3 (scale 1-32), and girls performed more techniques than boys (P = .02). Participants with greater SE (odds ratio = 1.15) and higher family meal attitudes and behaviors (odds ratio = 1.15) were more likely to have a higher FDF. Future health promotion strategies for family meals should aim at increasing children's and adolescents' SE. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.
Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng
2016-12-08
This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.
Wu, Xiaohong; Wang, Wei; Xie, Xiaoli; Yin, Chunmei; Hou, Haijun; Yan, Wende; Wang, Guangjun
2018-01-15
This study provides a complete account of global warming potential (GWP) and greenhouse gas intensity (GHGI) in relation to a long-term water management experiment in Chinese double-rice cropping systems. The three strategies of water management comprised continuous (year-round) flooding (CF), flooding during the rice season but with drainage during the midseason and harvest time (F-D-F), and irrigation only for flooding during transplanting and the tillering stage (F-RF). The CH 4 and N 2 O fluxes were measured with the static chamber method. Soil organic carbon (SOC) sequestration rates were estimated based on the changes in the carbon stocks during 1998-2014. Longer periods of soil flooding led to increased CH 4 emissions, reduced N 2 O emissions, and enhanced SOC sequestration. The net GWPs were 22,497, 8,895, and 1,646 kg CO 2 -equivalent ha -1 yr -1 for the CF, F-D-F, and F-RF, respectively. The annual rice grain yields were comparable between the F-D-F and CF, but were reduced significantly (by 13%) in the F-RF. The GHGIs were 2.07, 0.87, and 0.18 kg CO 2 -equivalent kg -1 grain yr -1 for the CF, F-D-F, and F-RF, respectively. These results suggest that F-D-F could be used to maintain the grain yields and simultaneously mitigate the climatic impact of double rice-cropping systems.
Commander Young removes CAP from FDF stowage locker on middeck
NASA Technical Reports Server (NTRS)
1981-01-01
Commander Young removes Crew Activity Plans (CAP) from Flight Data File (FD/FDF) modular stowage locker single tray assembly located in forward middeck locker MF28E. Window shade and filter kit on port side bulkhead and potable water tank on middeck floor appear in view. Photo was taken by Pilot Crippen with a 35mm camera.
Pilot Fullerton reviews FDF and TAGS printout on forward flight deck
NASA Technical Reports Server (NTRS)
1982-01-01
Pilot Fullerton, wearing communications kit assembly (ASSY) mini headset (HDST), reviews flight data file (FDF) checklist and text and graphics system (TAGS) printout (ticker tape) while in pilots ejection seat (S2). Pilot Station control panels F4, F7, F8, O3, window shade, and portable oxygen system (POS) assy appear in view.
LES of Swirling Reacting Flows via the Unstructured scalar-FDF Solver
NASA Astrophysics Data System (ADS)
Ansari, Naseem; Pisciuneri, Patrick; Strakey, Peter; Givi, Peyman
2011-11-01
Swirling flames pose a significant challenge for computational modeling due to the presence of recirculation regions and vortex shedding. In this work, results are presented of LES of two swirl stabilized non-premixed flames (SM1 and SM2) via the FDF methodology. These flames are part of the database for validation of turbulent-combustion models. The scalar-FDF is simulated on a domain discretized by unstructured meshes, and is coupled with a finite volume flow solver. In the SM1 flame (with a low swirl number) chemistry is described by the flamelet model based on the full GRI 2.11 mechanism. The SM2 flame (with a high swirl number) is simulated via a 46-step 17-species mechanism. The simulated results are assessed via comparison with experimental data.
Wu, Xiao Hong; Wang, Wei; Yin, Chun Mei; Hou, Hai Jun; Xie, Ke Jun; Xie, Xiao Li
2017-01-01
Rice cultivation has been challenged by increasing food demand and water scarcity. We examined the responses of water use, grain yield, and water productivity to various modes of field water managements in Chinese double rice systems. Four treatments were studied in a long-term field experiment (1998-2015): continuous flooding (CF), flooding-midseason drying-flooding (F-D-F), flooding-midseason drying-intermittent irrigation without obvious standing water (F-D-S), and flooding-rain-fed (F-RF). The average precipitation was 483 mm in early-rice season and 397 mm in late-rice season. The irrigated water for CF, F-D-F, F-D-S, and F-RF, respectively, was 263, 340, 279, and 170 mm in early-rice season, and 484, 528, 422, and 206 mm in late-rice season. Grain yield for CF, F-D-F, F-D-S, and F-RF, respectively, was 4,722, 4,597, 4,479, and 4,232 kgha-1 in early-rice season, and 5,420, 5,402, 5,366, and 4,498 kgha-1 in late-rice season. Compared with CF, F-D-F consumed more irrigated water, which still decreased grain yield, leading to a decrease in water productivity by 25% in early-rice season and by 8% in late-rice season. Compared with F-D-F, F-D-S saved much irrigated water with a small yield reduction, leading to an increase in water productivity by 22% in early-rice season and by 26% in late-rice season. The results indicate that CF is best for early-rice and FDS is best for late-rice in terms of grain yield and water productivity.
Zhu, Shi-Dan; Li, Rong-Hua; Song, Juan; He, Peng-Cheng; Liu, Hui; Berninger, Frank; Ye, Qing
2016-03-01
Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost-benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests. We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost-benefit analysis for the two fern groups. The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC. Our results demonstrate that leaf cost-benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhu, Shi-Dan; Li, Rong-Hua; Song, Juan; He, Peng-Cheng; Liu, Hui; Berninger, Frank; Ye, Qing
2016-01-01
Background and Aims Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost–benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests. Methods We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost–benefit analysis for the two fern groups. Key Results The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC. Conclusions Our results demonstrate that leaf cost–benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests. PMID:26684751
NASA Technical Reports Server (NTRS)
Lee, Michael
1995-01-01
Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.
Pilot Fullerton reviews FDF and TAGS printout on forward flight deck
1982-03-30
STS003-23-180 (22-30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST), reviews flight data file (FDF) checklist and text and graphics system (TAGS) printout (ticker tape) while in pilots ejection seat (S2). Pilot station control panels F4, F7, F8, O3, window shade, and portable oxygen system (POS) assy appear in view. Photo credit: NASA
Evaluation of fiberoptic dermofluorometry as a means of clinically assessing tissue perfusion.
Leopold, P W; Chang, B B; Shah, D M; Corson, J D; Shandall, A A; Young, H L; Leather, R P; Karmody, A M
1987-01-01
Fiberoptic dermofluorometry (FDF) transcutaneously measures fluorescence, following an intravenous injection of sodium fluorescein (NaFl), which is transmitted along a fiberoptic bundle to a photomultiplier tube and converted into dermofluorescence units (DFU). In five normal subjects studied, the plasma concentration of NaFl peaked at 5-15 minutes before decaying with first order kinetics and corresponding dermofluorescence (DF) rose to a peak between 10-20 minutes before decaying. Peak DF in the head and neck was significantly higher (P less than .001) compared to other skin sites which were similar. Application to patients (n = 16) undergoing successful lower limb revascularization showed a significant (P less than 0.01) improvement in perfusion at the foot level only. The reproducibility of FDF was poor when studied on the control limbs. We conclude that FDF does not, at present, constitute a valid measure of skin perfusion.
2011-06-24
JSC2011-E-059611 (24 June 2011) --- NASA astronaut Sandy Magnus, STS-135 mission specialist, leans out around pilot Doug Hurley, left, to confer with commander Chris Ferguson (out of frame) as the crew of the final space shuttle mission participates in the STS-135 Flight Data File (FDF) review at NASA?s Johnson Space Center June 24, 2011. The review involves examining and annotating more than 200 procedure books and cue cards that comprise all of the detailed technical steps that will be performed during the mission. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Beri, A. C.; Doll, C. E.
1990-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.
1989-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
NASA Technical Reports Server (NTRS)
Ward, Douglas T.
2001-01-01
The Flight Dynamics Facility (FDF) reports its performance in meeting Tracking and Data Relay Satellite (TDRS) predicted ephemeris accuracy requirements with TDRS-3. The Terra (Earth Observing System AM-1) satellite has 3-sigma TDRS requirements of 75 m for total position accuracy predicted over one day onboard. The study sample includes selected cases over 21 months after Guam Remote Ground Terminal (GRGT) support started in June 1998. For daily solutions with a 1.5-day prediction span, predicted results of the study were below the Terra requirement by at least 12 m. Refined range bias estimation and modeled momentum unloads are needed to meet Terra's requirements for TDRS-3. Maintained at 275 W longitude over the zone of exclusion, TDRS-3 is analyzed separately from other TDRSs because of its unique tracking data. Only the Bilateration Ranging Transponder (BRT) at Alice Springs (ALS), Australia, and the Telemetry, Tracking and Command (TT&C) system at Guam are used for routine operational tracking data for TDRS-3. Simultaneous batch orbit solutions with three TDRSs and either the Compton Gamma Ray Observatory (GRO) or Terra were done with the Goddard Trajectory Determination System (GTDS) to periodically refine the TT&C and BRT System (BRTS) range biases. As new biases were determined, significant changes were made in estimating the absolute position. FDF achieved similar results using a sequential filter with all operational TDRSs and four user satellites. Definitive accuracy (3-sigma) is expected to be below 50 m. The White Sands Complex (WSC) performs momentum unloads to maintain three-axis stabilized attitude of TDRSs. The relationship between velocity changes (delta-V) and reaction wheel speed changes was empirically determined for roll/yaw unloads. A theoretical relationship was verified and used for pitch unloads. Modeling both pitch and roll/yaw momentum unloads is necessary to meet the 75-m requirement. Moving the orbit solution epoch an hour before a momentum unload can improve delta-V optimization and prediction accuracy over 1.5 days.
Tritschler, Felix; Eulalio, Ana; Helms, Sigrun; Schmidt, Steffen; Coles, Murray; Weichenrieder, Oliver; Izaurralde, Elisa; Truffault, Vincent
2008-01-01
Trailer Hitch (Tral or LSm15) and enhancer of decapping-3 (EDC3 or LSm16) are conserved eukaryotic members of the (L)Sm (Sm and Like-Sm) protein family. They have a similar domain organization, characterized by an N-terminal LSm domain and a central FDF motif; however, in Tral, the FDF motif is flanked by regions rich in charged residues, whereas in EDC3 the FDF motif is followed by a YjeF_N domain. We show that in Drosophila cells, Tral and EDC3 specifically interact with the decapping activator DCP1 and the DEAD-box helicase Me31B. Nevertheless, only Tral associates with the translational repressor CUP, whereas EDC3 associates with the decapping enzyme DCP2. Like EDC3, Tral interacts with DCP1 and localizes to mRNA processing bodies (P bodies) via the LSm domain. This domain remains monomeric in solution and adopts a divergent Sm fold that lacks the characteristic N-terminal α-helix, as determined by nuclear magnetic resonance analyses. Mutational analysis revealed that the structural integrity of the LSm domain is required for Tral both to interact with DCP1 and CUP and to localize to P-bodies. Furthermore, both Tral and EDC3 interact with the C-terminal RecA-like domain of Me31B through their FDF motifs. Together with previous studies, our results show that Tral and EDC3 are structurally related and use a similar mode to associate with common partners in distinct protein complexes. PMID:18765641
Tritschler, Felix; Eulalio, Ana; Helms, Sigrun; Schmidt, Steffen; Coles, Murray; Weichenrieder, Oliver; Izaurralde, Elisa; Truffault, Vincent
2008-11-01
Trailer Hitch (Tral or LSm15) and enhancer of decapping-3 (EDC3 or LSm16) are conserved eukaryotic members of the (L)Sm (Sm and Like-Sm) protein family. They have a similar domain organization, characterized by an N-terminal LSm domain and a central FDF motif; however, in Tral, the FDF motif is flanked by regions rich in charged residues, whereas in EDC3 the FDF motif is followed by a YjeF_N domain. We show that in Drosophila cells, Tral and EDC3 specifically interact with the decapping activator DCP1 and the DEAD-box helicase Me31B. Nevertheless, only Tral associates with the translational repressor CUP, whereas EDC3 associates with the decapping enzyme DCP2. Like EDC3, Tral interacts with DCP1 and localizes to mRNA processing bodies (P bodies) via the LSm domain. This domain remains monomeric in solution and adopts a divergent Sm fold that lacks the characteristic N-terminal alpha-helix, as determined by nuclear magnetic resonance analyses. Mutational analysis revealed that the structural integrity of the LSm domain is required for Tral both to interact with DCP1 and CUP and to localize to P-bodies. Furthermore, both Tral and EDC3 interact with the C-terminal RecA-like domain of Me31B through their FDF motifs. Together with previous studies, our results show that Tral and EDC3 are structurally related and use a similar mode to associate with common partners in distinct protein complexes.
Contingency Support Simulation for the Tracking and Data Relay Satellite System (TDRSS)
NASA Technical Reports Server (NTRS)
Dykes, Andy; Dunham, Joan; Ward, Douglas T.; Robertson, Mika; Nesbit, Gary
2007-01-01
In March 2006, the Tracking and Data Relay Satellite (TDRS)-3 experienced an unexpected thrusting event, which caused significant changes to its orbit. Recovery from this anomaly was protracted, raising concerns during the Independent Review Team (IRT) investigation of the anomaly regarding the contingency response readiness. The simulations and readiness exercises discussed in this paper were part of the response to the IRT concerns. This paper explains the various levels of simulation needed to enhance the proficiency of the Flight Dynamics Facility (FDF) and supporting elements in recovery from a TDRS contingency situation. The main emergency to address is when a TDRS has experienced uncommanded, unreported, or misreported thrusting, causing a ground station to lose the ability to acquire the spacecraft, as happened in 2006. The following levels of simulation are proposed: 1) Tests that would be performed by the individual support sites to verify that internal procedures and tools are in place and up to date; 2) Tabletop simulations that would involve all of the key support sites talking through their respective operating procedures to ensure that proper notifications are made and communications links are established; and 3) Comprehensive simulations that would be infrequent, but realistic, involving data exchanges between ground sites and voice and electronic communications among the supporting elements.
Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations
NASA Technical Reports Server (NTRS)
Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David
2007-01-01
The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A mission up to routine. The activities performed to validate all the Flight Dynamics functions, characterize the behaviour of the satellite and monitor the performances of the Flight Dynamics facility will be highlighted. The MetOp Flight Dynamics Operations team is led by Anders Meier Soerensen and composed by Pier Luigi Righetti, Francisco Sancho, Antimo Damiano and David Lazaro. The team is supported by Hilda Meixner, responsible for all Flight Dynamics validation activities.
Reznicek, Lukas; Muth, Daniel; Vogel, Michaela; Hirneiß, Christoph
2017-03-01
To evaluate the relationship between functional parameters of repeated flicker-defined form perimetry (FDF) and structural parameters of spectral-domain optical coherence tomography (SD-OCT) in glaucoma suspects with normal findings in achromatic standard automated perimetry (SAP). Patients with optic nerve heads (ONH) clinically suspicious for glaucoma and normal SAP findings were enrolled in this prospective study. Each participant underwent visual field (VF) testing with FDF perimetry, using the Heidelberg Edge Perimeter (HEP, Heidelberg Engineering, Heidelberg, Germany) at two consecutive visits. Peripapillary RNFL thickness was obtained by SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany). Correlations and regression analyses of global and sectoral peripapillary RNFL thickness with corresponding global and regional VF sensitivities were investigated. A consecutive series of 65 study eyes of 36 patients were prospectively included. The second FDF test (HEP II) was used for analysis. Cluster-point based suspicious VF defects were found in 34 eyes (52%). Significant correlations were observed between mean global MD (PSD) of HEP II and SD-OCT-based global peripapillary RNFL thickness (r = 0.380, p = 0.003 for MD and r = -0.516, p < 0.001 for PSD) and RNFL classification scores (R 2 = 0.157, p = 0.002 for MD and R 2 = 0.172, p = 0.001 for PSD). Correlations between mean global MD and PSD of HEP II and sectoral peripapillary RNFL thickness and classification scores showed highest correlations between function and structure for the temporal superior and temporal inferior sectors whereas sectoral MD and PSD correlated weaker with sectoral RNFL thickness. Correlations between linear RNFL values and untransformed logarithmic MD values for each segment were less significant than correlations between logarithmic MD values and RNFL thickness. In glaucoma suspects with normal SAP, global and sectoral peripapillary RNFL thickness is correlated with sensitivity and VF defects in FDF perimetry.
Spacecraft crew procedures from paper to computers
NASA Technical Reports Server (NTRS)
Oneal, Michael; Manahan, Meera
1993-01-01
Large volumes of paper are launched with each Space Shuttle Mission that contain step-by-step instructions for various activities that are to be performed by the crew during the mission. These instructions include normal operational procedures and malfunction or contingency procedures and are collectively known as the Flight Data File (FDF). An example of nominal procedures would be those used in the deployment of a satellite from the Space Shuttle; a malfunction procedure would describe actions to be taken if a specific problem developed during the deployment. A new FDF and associated system is being created for Space Station Freedom. The system will be called the Space Station Flight Data File (SFDF). NASA has determined that the SFDF will be computer-based rather than paper-based. Various aspects of the SFDF are discussed.
Makundi, Rhodes H; Massawe, Apia W; Mulungu, Loth S
2007-12-01
The multimammate rat, Mastomys natalensis Smith 1834, is a dominant species in agro-ecosystems in Sub-Saharan Africa, but adapts quickly to changes in non-agricultural landscape, particularly woodlands and forests. In this study we report on reproduction and population dynamics of M. natalensis in deforested high elevation localities in the Usambara Mountains, north-east Tanzania. We conducted Capture-Mark-Recapture studies in 2002-2004, and established that reproduction of M. natalensis takes place in the extended wet season between February and June, and the population density peaks in June-August. Reproduction cease in July to January and population density drops from July onwards. Reproduction and population density fluctuations are linked to the duration and amount of rainfall. In years when rainfall was below average and the wet season was short, the population density was significantly lower (below 10 animals/ha and 60 animals/ha in 2003 and 2004 respectively, compared to >100 animals/ha in 2002 when rainfall was above the seasonal average) (F(df 2,13)= 9.092, p < 0.01 for in between years variations and F(df 12,15)= 5.389, p < 0.01 for effect of cumulative annual rainfall on population density). These densities were much lower than in the lowland savannah habitats in central and southwest Tanzania. A comparison between the farmland/fallow mosaic fields and agro-forestry areas showed higher population densities in the former, which have similarities to the preferred habitats in the lowland savannahs. The increasing abundance of M. natalensis in the Usambara could have some consequences: M. natalensis is major pest and is involved in the plague cycle in the western Usambara Mountains. Mastomys natalensis is also a strong competitor and the impact on endemic rodent species, e.g. Lophuromys flavopunctatus and Praomys delectorum is unknown.
Detection and Interpretation of Fluorescence Signals Generated by Excitable Cells and Tissues
NASA Astrophysics Data System (ADS)
Costantino, Anthony J.
Part 1: High-Sensitivity Amplifiers for Detecting Fluorescence . Monitoring electrical activity and Cai 2+ transients in biological tissues and individual cells increasingly utilizes optical sensors based on voltage-dependent and Cai 2+-dependent fluorescent dyes. However, achieving satisfactory signal-to-noise ratios (SNR) often requires increased illumination intensities and/or dye concentrations, which results in photo-toxicity, photo-bleaching and other adverse effects limiting the utility of optical recordings. The most challenging are the recordings from individual cardiac myocytes and neurons. Here we demonstrate that by optimizing a conventional transimpedance topology one can achieve a 10-20 fold increase of sensitivity with photodiode-based recording systems (dependent on application). We provide a detailed comparative analysis of the dynamic and noise characteristics of different transimpedance amplifier topologies as well as the example(s) of their practical implementation. Part 2: Light-Scattering Models for Interpretation of Fluorescence Data. Current interest in understanding light transport in cardiac tissue has been motivated in part by increased use of voltage-sensitive and Ca i2+-sensitive fluorescent probes to map electrical impulse propagation and Cai2+-transients in the heart. The fluorescent signals are recorded using such probes represent contributions from different layers of myocardial tissue and are greatly affected by light scattering. The interpretation of these signals thus requires deconvolution which would not be possible without detailed models of light transport in the respective tissue. Which involves the experimental measurements of the absorption, scattering, and anisotropy coefficients, mua, mu s, and g respectively. The aim of the second part of our thesis was to derive a new method for deriving these parameters from high spatial resolution measurements of forward-directed flux (FDF). To this end, we carried out high spatial resolution measurements of forward-directed flux (FDF) in intact and homogenized cardiac tissue, as well as in intralipid-based tissue phantoms. We demonstrated that in the vicinity of the illuminated surface, the FDF consistently manifested a fast decaying exponent with a space constant comparable to the decay rate of ballistic photons. Using a Monte Carlo model we obtained a simple empirical formula linking the rate of the fast exponent to the scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe. The estimates of scattering coefficient based on this formula were validated in tissue phantoms. The advantages of the new method are its simplicity and low-cost.
A synopsis of the EVA training conducted on EASE/ACCESS for STS-61-B
NASA Technical Reports Server (NTRS)
Havens, Kathryn A.
1987-01-01
Experimental Assembly of Structure in EVA (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) training problems; photography/television coverage; training schedules; flight data file (FDF), and flight rules production are summarized.
77 FR 31388 - Importer of Controlled Substances; Notice of Registration; Capricorn Pharma, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... importer of Fentanyl (9801), a basic class of controlled substance listed in schedule II. The company plans... manufactured FDF to foreign markets. In reference to the import of Fentanyl (9801), the authorization for the...
NASA Technical Reports Server (NTRS)
Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.
1990-01-01
The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.
Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Ward, Douglas T.; Dang, Ket D.; Slojkowski, Steve; Blizzard, Mike; Jenkins, Greg
2007-01-01
Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented.
Lysine hydroxylation of collagen in a fibroblast cell culture system
NASA Technical Reports Server (NTRS)
Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo
2003-01-01
The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.
Quadrature Moments Method for the Simulation of Turbulent Reactive Flows
NASA Technical Reports Server (NTRS)
Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.
2003-01-01
A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.
Filter Tuning Using the Chi-Squared Statistic
NASA Technical Reports Server (NTRS)
Lilly-Salkowski, Tyler
2017-01-01
The Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) performs orbit determination (OD) for the Aqua and Aura satellites. Both satellites are located in low Earth orbit (LEO), and are part of what is considered the A-Train satellite constellation. Both spacecraft are currently in the science phase of their respective missions. The FDF has recently been tasked with delivering definitive covariance for each satellite.The main source of orbit determination used for these missions is the Orbit Determination Toolkit developed by Analytical Graphics Inc. (AGI). This software uses an Extended Kalman Filter (EKF) to estimate the states of both spacecraft. The filter incorporates force modelling, ground station and space network measurements to determine spacecraft states. It also generates a covariance at each measurement. This covariance can be useful for evaluating the overall performance of the tracking data measurements and the filter itself. An accurate covariance is also useful for covariance propagation which is utilized in collision avoidance operations. It is also valuable when attempting to determine if the current orbital solution will meet mission requirements in the future.This paper examines the use of the Chi-square statistic as a means of evaluating filter performance. The Chi-square statistic is calculated to determine the realism of a covariance based on the prediction accuracy and the covariance values at a given point in time. Once calculated, it is the distribution of this statistic that provides insight on the accuracy of the covariance.For the EKF to correctly calculate the covariance, error models associated with tracking data measurements must be accurately tuned. Over estimating or under estimating these error values can have detrimental effects on the overall filter performance. The filter incorporates ground station measurements, which can be tuned based on the accuracy of the individual ground stations. It also includes measurements from the NASA space network (SN), which can be affected by the assumed accuracy of the TDRS satellite state at the time of the measurement.The force modelling in the EKF is also an important factor that affects the propagation accuracy and covariance sizing. The dominant force in the LEO orbit regime is the drag force caused by atmospheric drag. Accurate accounting of the drag force is especially important for the accuracy of the propagated state. The implementation of a box and wing model to improve drag estimation accuracy, and its overall effect on the covariance state is explored.The process of tuning the EKF for Aqua and Aura support is described, including examination of the measurement errors of available observation types (Doppler and range), and methods of dealing with potentially volatile atmospheric drag modeling. Predictive accuracy and the distribution of the Chi-square statistic, calculated based of the ODTK EKF solutions, are assessed versus accepted norms for the orbit regime.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas
2011-01-01
A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.
Permanent Neutrality and the Panama Canal after 1999
1989-03-31
Circuito RPC Television, 2!25 GMT 18 JAN 89, as r-eported by FE_ Latin America, 19 January 1989, p. 21. 12. "FDF Captains Reiterate Support for Norieoa...1973. 10. Circuito RPC Television. 2325 GMT, 18 January 1989. Reported by FBIS, Latin America, 19 January 1989. 11. "FDP Captains Reiterate Support
Svensson, Mårten; Berg, Elna; Mitchell, Jolyon; Sandell, Dennis
2018-02-01
Determination of fine droplet dose with preparations for nebulization, currently deemed to be the metric most indicative of lung deposition and thus in vivo responses, involves combining two procedures following practice as described in the United States Pharmacopeia and the European Pharmacopeia. Delivered dose (DD) is established by simulating tidal breathing at the nebulizer, collecting the medication on a filter downstream of the nebulizer mouthpiece/facemask. Fine droplet fraction (FDF
Shift-Invariant Image Reconstruction of Speckle-Degraded Images Using Bispectrum Estimation
1990-05-01
process with the requisite negative exponential pelf. I call this model the Negative Exponential Model ( NENI ). The NENI flowchart is seen in Figure 6...Figure ]3d-g. Statistical Histograms and Phase for the RPj NG EXP FDF MULT METHOD FILuteC 14a. Truth Object Speckled Via the NENI HISTOGRAM OF SPECKLE
Towards a Pedagogy of Work-Based Learning: Perceptions of Work-Based Learning in Foundation Degrees
ERIC Educational Resources Information Center
Burke, Linda; Marks-Maran, Diane J.; Ooms, Ann; Webb, Marion; Cooper, Denise
2009-01-01
One of the features of foundation degrees (FDs) is the incorporation of work-based learning (WBL) into the curriculum. WBL is seen as an important part of vocational programmes and is described by Foundation Degrees Forward (FDF) as a potentially radical approach to connecting work with learning. The Quality Assurance Agency (QAA), in its…
NASA Astrophysics Data System (ADS)
Warsta, L.; Karvonen, T.
2017-12-01
There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the governing equations in computational grids and included computationally intensive and in some cases unstable iterative solutions. The YMPYRÄ framework is being developed by WaterHope, Gain Oy, and SITO Oy consulting companies and funded by FDF.
NASA Astrophysics Data System (ADS)
Taylor-Brown, Peter
A recent topic in the energy industry involves developing strategies to reduce the necessary peak production capacity of our future electricity infrastructure. One of these strategies is promoting behavioral change among individual energy consumers. An inherent problem with electricity consumption is that electricity is invisible, intangible, and abstract. Interfaces that provide people with useful feedback on their usage can help with understanding and reduction of consumption. These interfaces intend to empower individuals with ability to adopt less wasteful energy consumption behaviors. Skillful HCI design will include attention to informational preferences, and framing effects due to presentation choices. An online questionnaire was utilized to explore this domain, and the results identified design requirements for a home feedback interface. The final dataset contained responses from 36 male and 49 female United States residents. Cost () was perceived as the most useful metric and kW as the least useful. Respondent preference was expressed for lower levels of automation, which was not attributable to distrust of automation. Further, a test of framings effects showed a higher likelihood to change behavior to save 100 dollars per year than 2 per week (U=1248.5, p=0.001). A feedback interface design based on the questionnaire results was used in the second phase of the research. A 2x2x2 factorial design compared the effects of goal-type (specific vs. open-ended), metric-use ( vs. kWh), and visualization (graphical vs. text-only) on user experience, learning and behavior during a consumption reduction task. Results showed that goal-type affects the amount of diagnostic behavior conducted by participants (U=351.0, p=0.001). Goal-type and metric-use independently affect participant belief that they could reduce their consumption in their real home with the same feedback shown in the task, F(df=1,39)=24.77, p=0.001; F(df=1,39)=5.55, p=0.05. In addition, visualization affects perceived comfort sacrifice from changing behaviors to reduce consumption, F(df=1,39)=8.97, p=0.01.
A methodology to derive Synthetic Design Hydrographs for river flood management
NASA Astrophysics Data System (ADS)
Tomirotti, Massimo; Mignosa, Paolo
2017-12-01
The design of flood protection measures requires in many cases not only the estimation of the peak discharges, but also of the volume of the floods and its time distribution. A typical solution to this kind of problems is the formulation of Synthetic Design Hydrographs (SDHs). In this paper a methodology to derive SDHs is proposed on the basis of the estimation of the Flow Duration Frequency (FDF) reduction curve and of a Peak-Duration (PD) relationship furnishing respectively the quantiles of the maximum average discharge and the average peak position in each duration. The methodology is intended to synthesize the main features of the historical floods in a unique SDH for each return period. The shape of the SDH is not selected a priori but is a result of the behaviour of FDF and PD curves, allowing to account in a very convenient way for the variability of the shapes of the observed hydrographs at local time scale. The validation of the methodology is performed with reference to flood routing problems in reservoirs, lakes and rivers. The results obtained demonstrate the capability of the SDHs to describe the effects of different hydraulic systems on the statistical regime of floods, even in presence of strong modifications induced on the probability distribution of peak flows.
Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I
NASA Technical Reports Server (NTRS)
Wey, Thomas Changju; Liu, Nan-suey
2011-01-01
This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.
Navy Oceanographer Shuttle Observations, STS 41-G Mission Report
1986-03-26
Maracaibo-great internal waves in sunglint/none in high color, no photo- too many on flight deck. Rev#55. Internal waves off Costa Rica . Not a strong...PHYSICAL PAX RIVER PSYCHOLOGICAL EAFB CLAUSTROPHOBIA GEOLOGY FIELD TRIP DENTAL OTHER TRAINING DSO’S FDF REVIEWS DSO PROC T/L REVIEWS SASSE (ETC) BENCH...and Edwards Air Force Base, CA, and a geology field trip in New Mexico. Pax River consisted of aviation physiology, a high altitude chamber run and
Information requirements and methodology for development of an EVA crewmember's heads up display
NASA Astrophysics Data System (ADS)
Petrek, J. S.
This paper presents a systematic approach for developing a Heads Up Display (HUD) to be used within the helmet of the Extra Vehicular Activity (EVA) crewmember. The information displayed on the EVA HUD will be analogous to EVA Flight Data File (FDF) information, which is an integral part of NASA's current Space Transportation System. Another objective is to determine information requirements and media techniques ultimately leading to the helmet-mounted HUD presentation technique.
Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe
2016-01-01
Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407
A Near-Surface Burst EMP Driver Package for Neutron-Induced Sources.
1980-09-01
FAa’S FD-F C SAwSB s3.sc 6O TO 10 C BEGIN NODIFIED QUADRATIC INTERPOLATION FOR NINlINUff 100 CONT INUE ICBIC.1 IFlIC.GTeICOUNT) 10 TO 110 YENP aISC-Sl) lSD ...M.I.T. LINCOLN LABORATORY Ro&.D ASSOCIATED P.O. DOE 369 P.O. BOX 73 P.O. 101x 9695 KttN F. A. SHAW AM LEONA WUoNLIN ATMN S- CLAY ROGERS CLEAIEILD. Ur
Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas
2007-01-31
progress on the reserach grant "Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas" during the period 1 May 2005 - 31 December...the DOA of target i with respect to the array boresight is given by: O 1sin-1 -/- fD)--F2(. )(1) where d is the spacing between the elements and A, is...wall. A large database was collected for different parameter spaces including number of humans, types of movements, wall types and radar polarization
Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.
2002-01-01
The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.
1979-11-14
except when n is an integer we write Eq. (13) in the form jj-g) (14) whose inverse transform is readily calculated as 2 d2 ’ F u(k)= H- J (F) dF (15...as "i(s) 1 s2 (45) r(+1 -2 s 7 The inverse transform of Eq. (45) is then _I_ d fF I H’ (F)dF (46) -J ’-(1+*) d Fr 1 r(l-A) which may be written as F
Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.
Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N
2015-10-01
Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism. Copyright © 2015 Elsevier B.V. All rights reserved.
γ5 in the four-dimensional helicity scheme
NASA Astrophysics Data System (ADS)
Gnendiger, C.; Signer, A.
2018-05-01
We investigate the regularization-scheme dependent treatment of γ5 in the framework of dimensional regularization, mainly focusing on the four-dimensional helicity scheme (fdh). Evaluating distinctive examples, we find that for one-loop calculations, the recently proposed four-dimensional formulation (fdf) of the fdh scheme constitutes a viable and efficient alternative compared to more traditional approaches. In addition, we extend the considerations to the two-loop level and compute the pseudoscalar form factors of quarks and gluons in fdh. We provide the necessary operator renormalization and discuss at a practical level how the complexity of intermediate calculational steps can be reduced in an efficient way.
Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry
NASA Astrophysics Data System (ADS)
Auzillon, Pierre; Riber, Eléonore; Gicquel, Laurent Y. M.; Gicquel, Olivier; Darabiha, Nasser; Veynante, Denis; Fiorina, Benoît
2013-01-01
This article presents Large Eddy Simulations (LES) of a realistic aeronautical combustor device: the chamber CTA1 designed by TURBOMECA. Under nominal operating conditions, experiments show hot spots observed on the combustor walls, in the vicinity of the injectors. These high temperature regions disappear when modifying the fuel stream equivalence ratio. In order to account for detailed chemistry effects within LES, the numerical simulation uses the recently developed turbulent combustion model F-TACLES (Filtered TAbulated Chemistry for LES). The principle of this model is first to generate a lookup table where thermochemical variables are computed from a set of filtered laminar unstrained premixed flamelets. To model the interactions between the flame and the turbulence at the subgrid scale, a flame wrinkling analytical model is introduced and the Filtered Density Function (FDF) of the mixture fraction is modeled by a β function. Filtered thermochemical quantities are stored as a function of three coordinates: the filtered progress variable, the filtered mixture fraction and the mixture fraction subgrid scale variance. The chemical lookup table is then coupled with the LES using a mathematical formalism that ensures an accurate prediction of the flame dynamics. The numerical simulation of the CTA1 chamber with the F-TACLES turbulent combustion model reproduces fairly the temperature fields observed in experiments. In particular the influence of the fuel stream equivalence ratio on the flame position is well captured.
Structural dynamics verification facility study
NASA Technical Reports Server (NTRS)
Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.
1981-01-01
The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.
1979-01-01
The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.
Conceptual design for the Space Station Freedom fluid physics/dynamics facility
NASA Technical Reports Server (NTRS)
Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.
1993-01-01
A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.
NASA Astrophysics Data System (ADS)
Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun
2017-09-01
The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.
Aircraft Landing Dynamics Facility - A unique facility with new capabilities
NASA Technical Reports Server (NTRS)
Davis, P. A.; Stubbs, S. M.; Tanner, J. A.
1985-01-01
The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.
Test facilities of the structural dynamics branch of NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Montague, Gerald T.; Kielb, Robert E.
1988-01-01
The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.
Shock wave facilities at Pulter Laboratory of SRI international
NASA Astrophysics Data System (ADS)
Murri, W. J.
1982-04-01
Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.
2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility
NASA Technical Reports Server (NTRS)
1995-01-01
Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.
Reduction of Tunnel Dynamics at the National Transonic Facility (Invited)
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Balakrishna, S.; Butler, D. H.
2001-01-01
This paper describes the results of recent efforts to reduce the tunnel dynamics at the National Transonic Facility. The results presented describe the findings of an extensive data analysis, the proposed solutions to reduce dynamics and the results of implementing these solutions. These results show a 90% reduction in the dynamics around the model support structure and a small impact on reducing model dynamics. Also presented are several continuing efforts to further reduce dynamics.
Verification Challenges of Dynamic Testing of Space Flight Hardware
NASA Technical Reports Server (NTRS)
Winnitoy, Susan
2010-01-01
The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary within the respective volumes. In addition, because this is a dynamic facility with a moving test bed, direct line-of-sight may not be available at all times between the measurement sensors and the tracking targets. Finally, the feedback data from the active test bed along with the two external measurement systems must be synchronized to allow for data correlation. To ensure the desired accuracy and resolution of these systems, calibration of the systems must be performed regularly. New innovations in sensor technology itself are periodically incorporated into the facility s overall measurement scheme. In addressing the challenges of the measurement systems, the facility is able to provide essential position and orientation data to verify the dynamic performance of space flight hardware.
NASA Langley's Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Davis, Pamela A.
1993-01-01
The Aircraft Landing Dynamics Facility (ALDF) is a unique facility with the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A brief historical overview of the original Landing Loads Track (LLT) is given, followed by a detailed description of the new ALDF systems and operational capabilities.
DOT National Transportation Integrated Search
1973-06-30
The development of experimental facilities for rail vehicle testing at the DOT High Speed Ground Test Center is being complemented by analytical studies. The purpose of this effort has been to gain insight into the dynamics of rail vehicles to guide ...
3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY ...
3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY (SATURN V IN BACKGROUND). - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL
An Experimental Investigation of Compressible Dynamic Stall on a Pitching Airfoil
NASA Astrophysics Data System (ADS)
Thorne, Katie; Bowles, Patrick
2009-11-01
A new facility has been designed and constructed at the University of Notre Dame to investigate dynamic stall on a 2-D pitching airfoil at high subsonic Mach numbers. This work is motivated by the need to investigate dynamic stall at conditions relevant to military helicopters. One focus of the experiments is to characterize the role of shock/boundary layer interactions during the pitching cycle. The new dynamic stall facility is integrated into a closed-loop, low turbulence wind tunnel capable of achieving test section Mach numbers in excess of M = 0.6. The design of the dynamic stall test section was focused on achieving reduced pitching frequencies of up to k = 0.2 and chord Reynolds numbers up to 5 x10^6. The facility has the unique ability to execute non-harmonic pitching motions through the use of an actuated pitch link mechanism. Optical access is provided to allow the use of high-speed and Schlieren imaging. Thirty-one flush mounted Kulite dynamic pressure transducers provide the instantaneous unsteady surface pressure distribution over the airfoil. Initial dynamic stall measurements obtained in the new facility will be described.
NASA Technical Reports Server (NTRS)
Badgley, R. H.; Fleming, D. P.; Smalley, A. J.
1975-01-01
A program for the development and verification of drive-train dynamic technology is described along with its basis and the results expected from it. A central feature of this program is a drive-train test facility designed for the testing and development of advanced drive-train components, including shaft systems, dampers, and couplings. Previous efforts in designing flexible dynamic drive-train systems are reviewed, and the present state of the art is briefly summarized. The design of the test facility is discussed with major attention given to the formulation of the test-rig concept, dynamic scaling of model shafts, and the specification of design parameters. Specific efforts envisioned for the test facility are briefly noted, including evaluations of supercritical test shafts, stability thresholds for various sources and types of instabilities that can exist in shaft systems, effects of structural flexibility on the dynamic performance of dampers, and methods for vibration control in two-level and three-level flexible shaft systems.
Coupled Facility-Payload Vibration Modeling Improvements
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.; Kaiser, Michael A.
2015-01-01
A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at National Aeronautics and Space Administration/Goddard Space Flight Center an analysis is performed to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combined dynamics of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA/Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.
A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.
2003-01-01
The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.
Filter and Grid Resolution in DG-LES
NASA Astrophysics Data System (ADS)
Miao, Ling; Sammak, Shervin; Madnia, Cyrus K.; Givi, Peyman
2017-11-01
The discontinuous Galerkin (DG) methodology has proven very effective for large eddy simulation (LES) of turbulent flows. Two important parameters in DG-LES are the grid resolution (h) and the filter size (Δ). In most previous work, the filter size is usually set to be proportional to the grid spacing. In this work, the DG method is combined with a subgrid scale (SGS) closure which is equivalent to that of the filtered density function (FDF). The resulting hybrid scheme is particularly attractive because a larger portion of the resolved energy is captured as the order of spectral approximation increases. Different cases for LES of a three-dimensional temporally developing mixing layer are appraised and a systematic parametric study is conducted to investigate the effects of grid resolution, the filter width size, and the order of spectral discretization. Comparative assessments are also made via the use of high resolution direct numerical simulation (DNS) data.
Quasi-Delay-Insensitive Circuits are Turing-Complete
1995-11-17
OEIS£_C\\GOGOSa_"?C\\UFSVGO:?P=LCBAÔC<X:_=QGO_a]D=L?,=Lf,=LAIHISaUSaAIHDSVA\\?,C<X8?OEDSzHDS"KQ:j×=QA¡CBU SaGd :<?PC\\GOf:BAIH¡Í=LGOSafaN�e...dGO:BGPju:BW5CB]IA\\?ZCX ?O=LW5S?OCufOÍ=@?d_$EwlBtI]I?�?OEF:<?ZÍ=QGPSVfZEI:rBS)ADS"iBK@=Li=QtDKLS)HDS"KQ:jDf _C\\W�UI:GOSaHÖ?OCCBU SaGd :<?OCBGdf"NÔ...LfOCD_$EIGPC\\AD=Q_bGOS"iB=@C\\AIfØ ÝsÙ¦N0¿]F:fO=¤�HDS"KQ:j\\©=QAIfOSaAIfO=L?P=LrS8_=QGO_a]D=@?[HDSafO=@i\\A:fdfO]FW SVf0?OEF:<?[tC?dE�CBU SaGd
NASA Technical Reports Server (NTRS)
Ware, Randolph (Principal Investigator)
1996-01-01
This report consists of the following sections: a list of the NASA DOSE (Dynamics of the Solid Earth) Program Global Positioning System (GPS)-based campaigns supported by the UNAVCO (University Navstar Consortium) Boulder Facility; a list of NASA DOSE GPS permanent site installations supported by the UNAVCO Boulder Facility; and example science snapshots indicating the research projects supported with equipment and technical support available to DOSE Principal Investigators via the UNAVCO Boulder Facility.
Space Station Freedom: A foothold on the future
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of the Space Station Freedom is given. Its modules are discussed and illustrated along with its microgravity research facilities. These facilities include the advanced protein crystal growth facility, the containerless processing facility, a furnace facility, a combustion facility, and a fluid physics/dynamics facility. The topic of living in space is also addressed.
Buffet test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk for the facility. Presented here are the test results from a structural dynamics and aeroelastic response point of view. The activities required for the safety analysis and risk assessment are described. The test was conducted in the same manner as a flutter test and employed on-board dynamic instrumentation, real time dynamic data monitoring, and automatic and manual tunnel interlock systems for protecting the model.
State machine analysis of sensor data from dynamic processes
Cook, William R.; Brabson, John M.; Deland, Sharon M.
2003-12-23
A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.
NASA Technical Reports Server (NTRS)
Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.
1991-01-01
A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.
10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... explosions. (4) Environmental and dynamic effects. The design must provide for adequate protection from environmental conditions and dynamic effects associated with normal operations, maintenance, testing, and... design must provide for inclusion of instrumentation and control systems to monitor and control the...
Buffet test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.
Report of the panel on theoretical aerodynamics. [for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Bobbitt, P. J.; Carter, J. E.
1977-01-01
Requirements for flow quality in the National Transonic Facility are explored. Viscous flow effects of concern to theoreticians are discussed. Experiments outlined for theory validation in the facility include validating high aspect ratio wing-body combination; low aspect ratio moderately swept wing; low aspect ratio highly swept wing; high lift systems on high aspect ration wings; Reynolds number scaling; dynamic shock- boundary layer interaction; and the effect of R and M on dynamic stall.
NASA Technical Reports Server (NTRS)
1983-01-01
A 20 ft vertical spin tunnel, a 30 by 60 ft tunnel, a 7 by 10 ft high speed tunnel, a 4 by 7 meter tunnel, an 8 ft transonic pressure tunnel, a transonic dynamics tunnel, a 16 ft transonic tunnel, a national transonic facility, a 0.3 meter transonic cryogenic tunnel, a unitary plan wind tunnel, a hypersonic facilities complex, an 8 ft high temperature tunnel, an aircraft noise reduction lab, an avionics integration research lab, a DC9 full workload simulator, a transport simulator, a general aviation simulator, an advanced concepts simulator, a mission oriented terminal area simulation (MOTAS), a differential maneuvering simulator, a visual/motion simulator, a vehicle antenna test facility, an impact dynamics research facility, and a flight research facility are all reviewed.
Enterprise-wide worklist management.
Locko, Roberta C; Blume, Hartwig; Goble, John C
2002-01-01
Radiologists in multi-facility health care delivery networks must serve not only their own departments but also departments of associated clinical facilities. We describe our experience with a picture archiving and communication system (PACS) implementation that provides a dynamic view of relevant radiological workload across multiple facilities. We implemented a distributed query system that permits management of enterprise worklists based on modality, body part, exam status, and other criteria that span multiple compatible PACSs. Dynamic worklists, with lesser flexibility, can be constructed if the incompatible PACSs support specific DICOM functionality. Enterprise-wide worklists were implemented across Generations Plus/Northern Manhattan Health Network, linking radiology departments of three hospitals (Harlem, Lincoln, and Metropolitan) with 1465 beds and 4260 ambulatory patients per day. Enterprise-wide, dynamic worklist management improves utilization of radiologists and enhances the quality of care across large multi-facility health care delivery organizations. Integration of other workflow-related components remain a significant challenge.
NASA Astrophysics Data System (ADS)
Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik
2010-06-01
The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Krauz, V. I.; Grabovski, E. V.; Myalton, V. V.; Vinogradov, V. P.; Paduch, M.; Scholz, M.; Karpiński, L.
2015-05-01
The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5-3 Torr in discharges with energies of 0.3-0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.
Self-contained filtered density function
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...
2017-09-18
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Slojkowski, Steven; Lowe, Jonathan; Woodburn, James
2015-01-01
Since launch, the FDF has performed daily OD for LRO using the Goddard Trajectory Determination System (GTDS). GTDS is a batch least-squares (BLS) estimator. The tracking data arc for OD is 36 hours. Current operational OD uses 200 x 200 lunar gravity, solid lunar tides, solar radiation pressure (SRP) using a spherical spacecraft area model, and point mass gravity for the Earth, Sun, and Jupiter. LRO tracking data consists of range and range-rate measurements from: Universal Space Network (USN) stations in Sweden, Germany, Australia, and Hawaii. A NASA antenna at White Sands, New Mexico (WS1S). NASA Deep Space Network (DSN) stations. DSN data was sparse and not included in this study. Tracking is predominantly (50) from WS1S. The OD accuracy requirements are: Definitive ephemeris accuracy of 500 meters total position root-mean-squared (RMS) and18 meters radial RMS. Predicted orbit accuracy less than 800 meters root sum squared (RSS) over an 84-hour prediction span.
Self-contained filtered density function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
Self-contained filtered density function
NASA Astrophysics Data System (ADS)
Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.
2017-09-01
The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
NASA Astrophysics Data System (ADS)
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Coupled Facility/Payload Vibration Modeling Improvements
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.; Kaiser, Michael
2015-01-01
A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.
VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND ...
VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND SATURN I (BLDG. 4557) STRUCTURAL TEST FACILITIES, SATURN V TEST FACILITY IS IN THE FOREGROUND RIGHT. THE SATURN I TEST FACILITY IS IN THE BACKGROUND CENTER. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, K. N., E-mail: mitrkn@inbox.ru; Krauz, V. I., E-mail: krauz-vi@nrcki.ru, E-mail: vkrauz@yandex.ru; Grabovski, E. V.
The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with amore » dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.« less
SD46 Facilities and Capabilities
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The displays for the Materials Conference presents some of the facilities and capabilities in SD46 that can be useful to a prospective researcher from University, Academia or other government labs. Several of these already have associated personnel as principal and co-investigators on NASA peer reviewed science investigations. 1. SCN purification facility 2. ESL facility 3. Static and Dynamic magnetic field facility 4. Microanalysis facility 5. MSG Investigation - PFMI 6. Thermo physical Properties Measurement Capabilities.
Impact Landing Dynamics Facility Crash Test
1975-08-03
Photographed on: 08/03/75. -- By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. "The Impact Dynamics Research Facility is used to conduct crash testing of full-scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement." "In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and acceptable cost. Since then, NASA has "crashed" dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program." This photograph shows Crash Test No. 7. Crash Test: Test #7
Shock Tube and Ballistic Range Facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.
2010-01-01
The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2013-01-01
NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.
NASA Technical Reports Server (NTRS)
1983-01-01
An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.
NASA Technical Reports Server (NTRS)
Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke
1991-01-01
The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.
A unique facility for V/STOL aircraft hover testing
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.
1979-01-01
The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen
1995-01-01
A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.
Mul, Monique F; van Riel, Johan W; Roy, Lise; Zoons, Johan; André, Geert; George, David R; Meerburg, Bastiaan G; Dicke, Marcel; van Mourik, Simon; Groot Koerkamp, Peter W G
2017-10-15
The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1980-01-01
The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.
Space station dynamics, attitude control and momentum management
NASA Technical Reports Server (NTRS)
Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi
1989-01-01
The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.
NASA Technical Reports Server (NTRS)
Gray, C. E., Jr.; Snyder, R. E.; Taylor, J. T.; Cires, A.; Fitzgerald, A. L.; Armistead, M. F.
1980-01-01
Preliminary design studies are presented which consider the important parameters in providing 250 knot test velocities at the Aircraft Landing Dynamics Facility. Four major components of this facility are: the hydraulic jet catapult, the test carriage structure, the reaction turning bucket, and the wheels. Using the hydraulic-jet catapult characteristics, a target design point was selected and a carriage structure was sized to meet the required strength requirements. The preliminary design results indicate that to attain 250 knot test velocities for a given hydraulic jet catapult system, a carriage mass of 25,424 kg (56,000 lbm.) cannot be exceeded.
The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Rivera, Jose A., Jr.
1997-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions
NASA Technical Reports Server (NTRS)
Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.
2012-01-01
Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.
Recent Developments at the NASA Langley Research Center National Transonic Facility
NASA Technical Reports Server (NTRS)
Paryz, Roman W.
2011-01-01
Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.
Langley Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.
1987-01-01
The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.
ARN Integrated Retail Module (IRM) & 3D Whole Body Scanner System at Fort Carson, Colorado
2006-12-01
the Central Issue Facility (CIF), Ft. Carson, CO; and, 4) Develop and validate dynamic local tariffs. Additional information on Apparel...Scanner; 3) Integrate 3D Whole Body scanning technology with the ARN Integrated Retail Module (IRM) for clothing issue at the Central Issue Facility ...CIF), Ft. Carson, CO; and, 4) Develop and validate dynamic local tariffs. The main goals of the ARN 3D scanning research initiative at the Ft
Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1995-01-01
A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.
Dynamic Modeling and Evaluation of Recurring Infrastructure Maintenance Budget Determination Methods
2005-03-01
represent the annual M&R costs for the entire facility (Melvin, 1992). This method requires immense amounts of detailed data for each facility to be...and where facility and infrastructure maintenance must occur. Uzarski et al (1995) discuss that the data gathered produces a candidate list that can... facilities or an infrastructure plant. Government agencies like the DoD, major universities, and large corporations are the major players. Data
Simiyu, Sheillah; Swilling, Mark; Rheingans, Richard; Cairncross, Sandy
2017-01-06
Lack of sanitation facilities is a common occurrence in informal settlements that are common in most developing countries. One challenge with sanitation provision in these settlements is the cost and financing of sanitation. This study aimed at estimating the cost of sanitation, and investigating the social and economic dynamics within Kisumu's informal settlements that hinder provision and uptake of sanitation facilities. Primary data was collected from residents of the settlements, and using logistic and hedonic regression analysis, we identify characteristics of residents with sanitation facilities, and estimate the cost of sanitation as revealed in rental prices. Our study finds that sanitation constitutes approximately 54% of the rent paid in the settlements; and dynamics such as landlords and tenants preferences, and sharing of sanitation facilities influence provision and payment for sanitation. This study contributes to general development by estimating the cost of sanitation, and further identifies barriers and opportunities for improvement including the interplay between landlords and tenants. Provision of sanitation in informal settlements is intertwined in social and economic dynamics, and development approaches should target both landlords and tenants, while also engaging various stakeholders to work together to identify affordable and appropriate sanitation technologies.
Simiyu, Sheillah; Swilling, Mark; Rheingans, Richard; Cairncross, Sandy
2017-01-01
Lack of sanitation facilities is a common occurrence in informal settlements that are common in most developing countries. One challenge with sanitation provision in these settlements is the cost and financing of sanitation. This study aimed at estimating the cost of sanitation, and investigating the social and economic dynamics within Kisumu’s informal settlements that hinder provision and uptake of sanitation facilities. Primary data was collected from residents of the settlements, and using logistic and hedonic regression analysis, we identify characteristics of residents with sanitation facilities, and estimate the cost of sanitation as revealed in rental prices. Our study finds that sanitation constitutes approximately 54% of the rent paid in the settlements; and dynamics such as landlords and tenants preferences, and sharing of sanitation facilities influence provision and payment for sanitation. This study contributes to general development by estimating the cost of sanitation, and further identifies barriers and opportunities for improvement including the interplay between landlords and tenants. Provision of sanitation in informal settlements is intertwined in social and economic dynamics, and development approaches should target both landlords and tenants, while also engaging various stakeholders to work together to identify affordable and appropriate sanitation technologies. PMID:28067812
NASA Technical Reports Server (NTRS)
Bales, K. S.
1983-01-01
The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.
2003-01-01
The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.
A Facile Synthesis of Dynamic, Shape Changing Polymer Particles
Klinger, Daniel; Wang, Cynthia; Connal, Luke A.; Audus, Debra J.; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J.
2014-01-01
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles exhibiting a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric PS-b-P2VP in dispersed droplets. In a second step, the dynamic shape change is realized by crosslinking the P2VP domains, hereby connecting glassy PS discs with pH-sensitive hydrogel actuators. PMID:24700705
Dynamics of System of Systems and Applications to Net Zero Energy Facilities
2017-10-05
collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10
Otero, Carles; Aldaba, Mikel; López, Silvia; Díaz-Doutón, Fernando; Vera-Díaz, Fuensanta A; Pujol, Jaume
2018-06-01
To study the accommodative dynamics for predictable and unpredictable stimuli using manual and automated accommodative facility tests Materials and Methods: Seventeen young healthy subjects were tested monocularly in two consecutive sessions, using five different conditions. Two conditions replicated the conventional monocular accommodative facility tests for far and near distances, performed with manually held flippers. The other three conditions were automated and conducted using an electro-optical system and open-field autorefractor. Two of the three automated conditions replicated the predictable manual accommodative facility tests. The last automated condition was a hybrid approach using a novel method whereby far and near-accommodative-facility tests were randomly integrated into a single test of four unpredictable accommodative demands. The within-subject standard deviations for far- and near-distance-accommodative reversals were (±1,±1) cycles per minute (cpm) for the manual flipper accommodative facility conditions and (±3, ±4) cpm for the automated conditions. The 95% limits of agreement between the manual and the automated conditions for far and near distances were poor: (-18, 12) and (-15, 3). During the hybrid unpredictable condition, the response time and accommodative response parameters were significantly (p < 0.05) larger for accommodation than disaccommodation responses for high accommodative demands only. The response times during the transitions 0.17/2.17 D and 0.50/4.50 D appeared to be indistinguishable between the hybrid unpredictable and the conventional predictable automated tests. The automated accommodative facility test does not agree with the manual flipper test results. Operator delays in flipping the lens may account for these differences. This novel test, using unpredictable stimuli, provides a more comprehensive examination of accommodative dynamics than conventional manual accommodative facility tests. Unexpectedly, the unpredictability of the stimulus did not to affect accommodation dynamics. Further studies are needed to evaluate the sensitivity of this novel hybrid technique on individuals with accommodative anomalies.
Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit
NASA Technical Reports Server (NTRS)
Arnett, Lori
2016-01-01
The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).
Microgravity science and applications: Apparatus and facilities
NASA Technical Reports Server (NTRS)
1989-01-01
NASA support apparatus and facilities for microgravity research are summarized in fact sheets. The facilities are ground-based simulation environments for short-term experiments, and the shuttle orbiter environment for long duration experiments. The 17 items of the microgravitational experimental apparatus are described. Electronic materials, alloys, biotechnology, fluid dynamics and transport phenomena, glasses and ceramics, and combustion science are among the topics covered.
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
Specialized computer architectures for computational aerodynamics
NASA Technical Reports Server (NTRS)
Stevenson, D. K.
1978-01-01
In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.
NASA Astrophysics Data System (ADS)
Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.
2006-08-01
This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.
Commissioning of the PRIOR proton microscope
Varentsov, D.; Antonov, O.; Bakhmutova, A.; ...
2016-02-18
Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5–4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This study describes the PRIOR setup as well asmore » the results of the first static and dynamic protonradiography experiments performed at GSI.« less
Commissioning of the PRIOR proton microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varentsov, D.; Antonov, O.; Bakhmutova, A.
Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5–4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This study describes the PRIOR setup as well asmore » the results of the first static and dynamic protonradiography experiments performed at GSI.« less
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
ORATOS: ESA's future flight dynamics operations system
NASA Astrophysics Data System (ADS)
Dreger, Frank; Fertig, Juergen; Muench, Rolf
The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.
NASA Technical Reports Server (NTRS)
Rogers, J. P.; Cureton, K. L.; Olsen, J. R.
1994-01-01
Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.
Human Research Initiative (HRI)
NASA Technical Reports Server (NTRS)
Motil, Brian
2003-01-01
A code U initiative starting in the FY04 budget includes specific funding for 'Phase Change' and 'Multiphase Flow Research' on the ISS. NASA GRC developed a concept for two facilities based on funding/schedule constraints: 1) Two Phase Flow Facility (TphiFFy) which assumes integrating into FIR; 2) Contact Line Dynamics Experiment Facility (CLiDE) which assumes integration into MSG. Each facility will accommodate multiple experiments conducted by NRA selected PIs with an overall goal of enabling specific NASA strategic objectives. There may also be a significant ground-based component.
A radiant heating test facility for space shuttle orbiter thermal protection system certification
NASA Technical Reports Server (NTRS)
Sherborne, W. D.; Milhoan, J. D.
1980-01-01
A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.
H_Hyd_Shktub_Mshock_III, JJJ, KKK (S01,S02,S03) on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Tiffany; Schmidt, Derek William; Di Stefano, Carlos
2017-12-15
These experiments are the first experiments in the Mshock campaign at the National Ignition Facility. The experiment is scheduled to be conducted on Dec. 14, 2017. The goal of the Mshock campaign is to study feedthrough dynamics of the Richtmyer- Meshkov instability in a thin layer. These dynamics will be studied in both a reshock configuration (initially) and then in a multi-shock configuration where it is planned to reshock the RM instability up to 3 times (four shocks total).
Definition of ground test for verification of large space structure control
NASA Technical Reports Server (NTRS)
Glaese, John R.
1994-01-01
Under this contract, the Large Space Structure Ground Test Verification (LSSGTV) Facility at the George C. Marshall Space Flight Center (MSFC) was developed. Planning in coordination with NASA was finalized and implemented. The contract was modified and extended with several increments of funding to procure additional hardware and to continue support for the LSSGTV facility. Additional tasks were defined for the performance of studies in the dynamics, control and simulation of tethered satellites. When the LSSGTV facility development task was completed, support and enhancement activities were funded through a new competitive contract won by LCD. All work related to LSSGTV performed under NAS8-35835 has been completed and documented. No further discussion of these activities will appear in this report. This report summarizes the tether dynamics and control studies performed.
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Igoe, William B.
1996-01-01
Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.
Comparative analysis of dynamic pricing strategies for managed lanes.
DOT National Transportation Integrated Search
2015-06-01
The objective of this research is to investigate and compare the performances of different : dynamic pricing strategies for managed lanes facilities. These pricing strategies include real-time : traffic responsive methods, as well as refund options a...
Dynamic response characteristics of two transport models tested in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.
1993-01-01
This paper documents recent experiences with measuring the dynamic response characteristics of a commercial transport and a military transport model during full scale Reynolds number tests in the National Transonic Facility. Both models were limited in angle of attack while testing at full scale Reynolds number and cruise Mach number due to pitch or stall buffet response. Roll buffet (wing buzz) was observed for both models at certain Mach numbers while testing at high Reynolds number. Roll buffet was more severe and more repeatable for the military transport model at cruise Mach number. Miniature strain-gage type accelerometers were used for the first time for obtaining dynamic data as a part of the continuing development of miniature dynamic measurements instrumentation for cryogenic applications. This paper presents the results of vibration measurements obtained for both the commercial and military transport models and documents the experience gained in the use of miniature strain gage type accelerometers.
Changes in dynamics of accommodation after accommodative facility training in myopes and emmetropes.
Allen, Peter M; Charman, W Neil; Radhakrishnan, Hema
2010-05-12
This study evaluates the effect of accommodative facility training in myopes and emmetropes. Monocular accommodative facility was measured in nine myopes and nine emmetropes for distance and near. Subjective facility was recorded with automated flippers and objective measurements were simultaneously taken with a PowerRefractor. Accommodative facility training (a sequence of 5 min monocular right eye, 5 min monocular left eye, 5 min binocular) was given on three consecutive days and facility was re-assessed on the fifth day. The results showed that training improved the facility rate in both groups. The improvement in facility rates were linked to the time constants and peak velocity of accommodation. Some changes in amplitude seen in emmetropes indicate an improvement in facility rate at the expense of an accurate accommodation response. Copyright 2010 Elsevier Ltd. All rights reserved.
Station report on the Goddard Space Flight Center (GSFC) 1.2 meter telescope facility
NASA Technical Reports Server (NTRS)
Mcgarry, Jan F.; Zagwodzki, Thomas W.; Abbott, Arnold; Degnan, John J.; Cheek, Jack W.; Chabot, Richard S.; Grolemund, David A.; Fitzgerald, Jim D.
1993-01-01
The 1.2 meter telescope system was built for the Goddard Space Flight Center (GSFC) in 1973-74 by the Kollmorgen Corporation as a highly accurate tracking telescope. The telescope is an azimuth-elevation mounted six mirror Coude system. The facility has been used for a wide range of experimentation including helioseismology, two color refractometry, lunar laser ranging, satellite laser ranging, visual tracking of rocket launches, and most recently satellite and aircraft streak camera work. The telescope is a multi-user facility housed in a two story dome with the telescope located on the second floor above the experimenter's area. Up to six experiments can be accommodated at a given time, with actual use of the telescope being determined by the location of the final Coude mirror. The telescope facility is currently one of the primary test sites for the Crustal Dynamics Network's new UNIX based telescope controller software, and is also the site of the joint Crustal Dynamics Project / Photonics Branch two color research into atmospheric refraction.
Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim
2015-01-01
Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.
NASA Astrophysics Data System (ADS)
Pandurangareddy, Meenige
2002-07-01
The evolution of Pilot-Vehicle-Interface (PVI) of a fighter aircraft is a complex task. The PVI design involves both static and dynamic issues. Static issues involve the study of reach of controls and switches, ejection path clearance, readability of indicators and display symbols, etc. Dynamic issues involve the study of the effect of aircraft motion on display symbols, pilot emergency handling, situation awareness, weapon aiming, etc. This paper describes a method of addressing the above issues by building a facility with cockpit, which is ergonomically similar to the fighter cockpit. The cockpit is also fitted with actual displays, controls and switches. The cockpit is interfaced with various simulation models of aircraft and outside-window-image generators. The architecture of the facility is designed to represent the latencies of the aircraft and facilitates replacement of simulation models with actual units. A parameter injection facility could be used to induce faults in a comprehensive manner. Pilots could use the facility right from familiarising themselves with procedures to start the engine, take-off, navigate, aim the weapons, handling of emergencies and landing. This approach is being followed and further being enhanced on Cockpit-Environment-Facility (CEF) at Aeronautical Development Agency (ADA), Bangalore, India.
Flight dynamics facility operational orbit determination support for the ocean topography experiment
NASA Technical Reports Server (NTRS)
Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.
1991-01-01
The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.
Mechanical Systems Technology Branch Research Summary, 1985-1992
1993-09-01
the author or co-author of over 20 technical papers describing experimental and analytical research in the fields of gear and transmission dynamics ...Conference, Scottsdale, AZ, Sept. 13-16, 1992. Kahraman A., Ozguven, H.N., Houser D.R., and Zakrajsek, JJ.: Dynamic Analysis of Geared Rotors by Finite...18 Gear Noise Rig-Facility Design and Installation .................................. 20 Gear Dynamics
Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud
NASA Astrophysics Data System (ADS)
Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde
2014-06-01
The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.
Fast disintegrating films containing anastrozole as a dosage form for dysphagia patients.
Satyanarayana, Dixit Anil; Keshavarao, Kulkarni Parthasarathi
2012-12-01
The objective of the present research was to ensure safety during oral administration of medications to dysphagia patients, by preparing fast disintegrating films (FDF) containing anastrozole (ANS) which disintegrate rapidly when placed on the tongue. Films were prepared by solvent-casting method using various polymers such as hydroxyl propyl methyl cellulose (HPMC E5 LV), hydroxy propyl cellulose (HPC), poly vinyl alcohol (PVA) and sodium alginate (Na Alginate). Among the formulations examined, film prepared using HPMC E5 LV (F1) exhibited shorter disintegration time (15 sec) with satisfactory mechanical properties. Fourier transformer infrared (FTIR) & differential scanning calorimetry (DSC) analysis revealed no chemical incompatibility between drug and excipients used in the formulation. Surface morphology revealed even distribution of ANS in the film. Dissolution of drug from F1 formulation was rapid with more than 90% drug release in 240 sec. Pharmacokinetic parameters showed no statistical difference between F1 (test) and drug solution (control) indicating comparable plasma level-time profiles. The film showed an excellent stability for 24 weeks when stored at refrigerated temperature (2-8°C). These findings suggest that the fast disintegrating film as a promising candidate for delivery of ANS in dysphagic patients.
The dynamics of a space station tethered refueling facility
NASA Technical Reports Server (NTRS)
Abbott, P.; Rudolph, L. K.; Fester, D. A.
1986-01-01
The fluid stored in a tethered orbital refueling facility is settled at the bottom of the storage tanks by gravity-gradient forces. The fluid motions (slosh) induced by outside disturbances must be limited to ensure the tank outlet is not uncovered during a fluid transfer. The dynamics of a LO2/LH2 TORF attached to the space station have been analyzed to identify design parameters necessary to limit fluid motion. Using the worst case disturbance of a shuttle docking at the space station, the fluid motion was found to be a function of tether length and allowable facility swing angle. Acceptable fluid behavior occurs for tether lengths of at least 1000 ft. To ensure motions induced by separate disturbances do not add to unacceptable values, a slosh damping coefficient of 5 percent is recommended.
Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Corliss, James M.; Cole, Stanley, R.
1998-01-01
The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.
A facile synthesis of dynamic, shape-changing polymer particles.
Klinger, Daniel; Wang, Cynthia X; Connal, Luke A; Audus, Debra J; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L; Fredrickson, Glenn H; Kramer, Edward J; Hawker, Craig J
2014-07-01
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross-linking the P2VP domains, thereby connecting glassy PS discs with pH-sensitive hydrogel actuators. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experiments in a Combustion-Driven Shock Tube with an Area Change
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Bobbitt, B.; Parziale, N. J.; Shepherd, J. E.
Shock tubes are versatile and useful tools for studying high temperature gas dynamics and the production of hypervelocity flows. High shock speeds are desirable for creating higher enthalpy, pressure, and temperature in the test gas which makes the study of thermo-chemical effects on fluid dynamics possible. Independent of construction and operational cost, free-piston drivers, such as the one used in the T5 facility at Caltech, give the best performance [3]. The high operational cost and long turnaround time of such a facility make a more economical option desirable for smaller-scale testing.
NASA Technical Reports Server (NTRS)
Hsia, Wei-Shen
1986-01-01
In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.
Development and application of dynamic simulations of a subsonic wind tunnel
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Cole, G. L.; Seidel, R. C.; Arpasi, D. J.
1986-01-01
Efforts are currently underway at NASA Lewis to improve and expand ground test facilities and to develop supporting technologies to meet anticipated aeropropulsion research needs. Many of these efforts have been focused on a proposed rehabilitation of the Altitude Wind Tunnel (AWT). In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide input to the AWT final design process. This paper describes the approach taken to develop analytical, dynamic computer simulations of the AWT, and the use of these simulations as test-beds for: (1) predicting the dynamic response characteristics of the AWT, and (2) evaluating proposed AWT control concepts. Plans for developing a portable, real-time simulator for the AWT facility are also described.
Flow Dynamics and Nutrient Reduction in Rain Gardens
The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...
Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumeyer, Charles; Goldston, Robert
Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less
Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario
Neumeyer, Charles; Goldston, Robert
2016-04-28
Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less
"Going solid": a model of system dynamics and consequences for patient safety
Cook, R; Rasmussen, J
2005-01-01
Rather than being a static property of hospitals and other healthcare facilities, safety is dynamic and often on short time scales. In the past most healthcare delivery systems were loosely coupled—that is, activities and conditions in one part of the system had only limited effect on those elsewhere. Loose coupling allowed the system to buffer many conditions such as short term surges in demand. Modern management techniques and information systems have allowed facilities to reduce inefficiencies in operation. One side effect is the loss of buffers that previously accommodated demand surges. As a result, situations occur in which activities in one area of the hospital become critically dependent on seemingly insignificant events in seemingly distant areas. This tight coupling condition is called "going solid". Rasmussen's dynamic model of risk and safety can be used to formulate a model of patient safety dynamics that includes "going solid" and its consequences. Because the model addresses the dynamic aspects of safety, it is particularly suited to understanding current conditions in modern healthcare delivery and the way these conditions may lead to accidents. PMID:15805459
Early Results from Solar Dynamic Space Power System Testing
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1996-01-01
A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.
Combustion Integration Rack (CIR) Testing
2015-02-18
Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.
Description of waste pretreatment and interfacing systems dynamic simulation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbrick, D.J.; Zimmerman, B.D.
1995-05-01
The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less
GENERAL VIEW OF THE NORTH SECTION OF THE EAST TEST ...
GENERAL VIEW OF THE NORTH SECTION OF THE EAST TEST AREA. THE SATURN V TEST FACILITY (BLDG. 4550) IS TO THE LEFT IN THE PHOTO. THE SATURN I TEST FACILITY (BLDG. 4557) IS IN THE CENTER, THE COLD CALIBRATION TEST STAND (BLDG. 4588) IS THE SHORT STEEL FRAMED STRUCTURE TO THE RIGHT IN THE PHOTO AND THE TURBO PUMP / HIGH VOLUME FLOW FACILITY (BLDG. 4548) IS THE TALL STEEL FRAMED STRUCTURE IN THE RIGHT SIDE OF THE PHOTOGRAPHIC IMAGE. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Light airplane crash tests at impact velocities of 13 and 27 m/sec
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Vaughan, V. L., Jr.
1977-01-01
Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.
Future Computer Requirements for Computational Aerodynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.
NASA Astrophysics Data System (ADS)
Onea, A.; Hering, W.; Reiser, J.; Weisenburger, A.; Diez de los Rios Ramos, N.; Lux, M.; Ziegler, R.; Baumgärtner, S.; Stieglitz, R.
2017-07-01
Three classes of experimental liquid metal facilities have been completed during the LIMTECH project aiming the qualification of materials, investigation of thermoelectrical modules, investigation of sodium transitional regimes and fundamental thermo-dynamical flows in concentrating solar power (CSP) relevant geometries. ATEFA facility is dedicated to basic science investigation focussed on the alkali metal thermal-to-electric converter (AMTEC) technology. Three SOLTEC facilities are aimed to be used in different laboratories for long term material investigation sodium environment up to a 1000 K temperature and for long term tests of AMTEC modules. The medium scale integral facility KASOLA is planned as the backbone for CSP development and demonstration.
Image-Based Reconstruction and Analysis of Dynamic Scenes in a Landslide Simulation Facility
NASA Astrophysics Data System (ADS)
Scaioni, M.; Crippa, J.; Longoni, L.; Papini, M.; Zanzi, L.
2017-12-01
The application of image processing and photogrammetric techniques to dynamic reconstruction of landslide simulations in a scaled-down facility is described. Simulations are also used here for active-learning purpose: students are helped understand how physical processes happen and which kinds of observations may be obtained from a sensor network. In particular, the use of digital images to obtain multi-temporal information is presented. On one side, using a multi-view sensor set up based on four synchronized GoPro 4 Black® cameras, a 4D (3D spatial position and time) reconstruction of the dynamic scene is obtained through the composition of several 3D models obtained from dense image matching. The final textured 4D model allows one to revisit in dynamic and interactive mode a completed experiment at any time. On the other side, a digital image correlation (DIC) technique has been used to track surface point displacements from the image sequence obtained from the camera in front of the simulation facility. While the 4D model may provide a qualitative description and documentation of the experiment running, DIC analysis output quantitative information such as local point displacements and velocities, to be related to physical processes and to other observations. All the hardware and software equipment adopted for the photogrammetric reconstruction has been based on low-cost and open-source solutions.
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Garcia, Jerry L.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
Implosion dynamics of condensed Z-pinch at the Angara-5-1 facility
NASA Astrophysics Data System (ADS)
Aleksandrov, V. V.; Grabovski, E. V.; Gritsuk, A. N.; Volobuev, I. V.; Kazakov, E. D.; Kalinin, Yu. G.; Korolev, V. D.; Laukhin, Ya. I.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Frolov, I. N.
2017-08-01
The implosion dynamics of a condensed Z-pinch at load currents of up to 3.5 MA and a current rise time of 100 ns was studied experimentally at the Angara-5-1 facility. To increase the energy density, 1- to 3-mm-diameter cylinders made of a deuterated polyethylene-agar-agar mixture or microporous deuterated polyethylene with a mass density of 0.03-0.5 g/cm3 were installed in the central region of the loads. The plasma spatiotemporal characteristics were studied using the diagnostic complex of the Angara-5-1 facility, including electron-optical streak and frame imaging, time-integrated X-ray imaging, soft X-ray (SXR) measurements, and vacuum UV spectroscopy. Most information on the plasma dynamics was obtained using a ten-frame X-ray camera ( E > 100 eV) with an exposure of 4 ns. SXR pulses were recorded using photoemissive vacuum X-ray detectors. The energy characteristics of neutron emission were measured using the time-offlight method with the help of scintillation detectors arranged along and across the pinch axis. The neutron yield was measured by activation detectors. The experimental results indicate that the plasma dynamics depends weakly on the load density. As a rule, two stages of plasma implosion were observed. The formation of hot plasma spots in the initial stage of plasma expansion from the pinch axis was accompanied by short pulses of SXR and neutron emission. The neutron yield reached (0.4-3) × 1010 neutrons/shot and was almost independent of the load density due to specific features of Z-pinch dynamics.
NASA Technical Reports Server (NTRS)
Redhed, D. D.
1978-01-01
Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.
Topics in landing gear dynamics research at NASA Langley
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.; Tanner, J. A.
1986-01-01
Four topics in landing gear dynamics are discussed. Three of these topics are subjects of recent research: tilt steering phenomenon, water spray ingestion on flooded runways, and actively controlled landing gear. The fourth topic is a description of a major facility recently enhanced in capability.
Optimal control of hydroelectric facilities
NASA Astrophysics Data System (ADS)
Zhao, Guangzhi
This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the challenging problem of optimizing a sequence of two hydro dams sharing the same river system. The complexity of this problem is magnified and we just scratch its surface here. The thesis concludes with suggestions for future work in this fertile area. Keywords: dynamic programming, hydroelectric facility, optimization, optimal control, switching cost, turbine efficiency.
NASA Technical Reports Server (NTRS)
Moskovits, Martin; Allamandola, Lou; Becker, Christopher; Freund, Friedemann; Freund, M.; Haff, P.; Tarter, Jill; Walton, Otis; Weitz, David; Werner, Brad
1987-01-01
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) rheology of assemblies of inelastic, frictional particles; (2) grain dynamics in zero gravity; (3) properties of tenuous fractal aggregates; (4) orientation of weakly ferroelectric dust grains; (5) supersonic nozzle beam; and (6) some astrophysical cluster experiments. The required capabilities and desired hardware for the facility are detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeni, Lorenzo; Hesselbæk, Bo; Bech, John
This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.
NASA Technical Reports Server (NTRS)
1989-01-01
One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.
Dynamically generated N* and {Lambda}* resonances in the hidden charm sector around 4.3 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, E-46071 Valencia; Molina, R.
2011-07-15
The interactions of D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. A series of meson-baryon dynamically generated relatively narrow N* and {Lambda}* resonances are predicted around 4.3 GeV in the hidden charm sector. We make estimates of production cross sections of these predicted resonances in p-barp collisions for the experiment of antiproton annihilation at Darmstadt (PANDA) at the forthcoming GSI Facility for Antiproton and Ion Research (FAIR) facility.
Engineering monitoring expert system's developer
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1991-01-01
This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.
Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Borg, Stephen; Jones, Stephen; Overmeyer, Austin; Walker, Eric; Goad, William; Clem, Michelle; Schairer, Edward T.; Mizukaki, Toshiharu
2015-01-01
This paper provides an overview of recent wind tunnel tests performed at the NASA Langley Research Center where the Background-Oriented Schlieren (BOS) technique was used to provide information pertaining to flow-field density disturbances. The facilities in which the BOS technique was applied included the National Transonic Facility (NTF), Transonic Dynamics Tunnel (TDT), 31-Inch Mach 10 Air Tunnel, 15-Inch Mach 6 High-Temperature Air Tunnel, Rotor Test Cell at the 14 by 22 Subsonic Tunnel, and a 13-Inch Low-Speed Tunnel.
MaRIE: an experimental facility concept revolutionizing materials in extremes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Cris W
The Matter-Radiation Interactions in Extremes (MaRIE) project intends to create an experimental facility that will revolutionize the control of materials in extremes. That control extends to extreme regimes where solid material has failed and begins to flow - the regimes of fluid dynamics and turbulent mixing. This presentation introduces the MaRIE facility concept, demonstrates examples of the science case that determine its functional requirements, and kicks-off the discussion of the decadal scientific challenges of mixing in extremes, including those MaRIE might address.
Marshall Space Flight Center Test Capabilities
NASA Technical Reports Server (NTRS)
Hamilton, Jeffrey T.
2005-01-01
The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.
Demonstration Program for Low-Cost, High-Energy-Saving Dynamic Windows
2014-09-01
Design The scope of this project was to demonstrate the impact of dynamic windows via energy savings and HVAC peak-load reduction; to validate the...temperature and glare. While the installed dynamic window system does not directly control the HVAC or lighting of the facility, those systems are designed ...optimize energy efficiency and HVAC load management. The conversion to inoperable windows caused an unforeseen reluctance to accept the design and
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Keller, Donald F.; Piatak, David J.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided wind-tunnel experimental validation and research data for numerous launch vehicles and spacecraft throughout its forty year history. Most of these tests have dealt with some aspect of aeroelastic or unsteady-response testing, which is the primary purpose of the TDT facility. However, some space-related test programs that have not involved aeroelasticity have used the TDT to take advantage of specific characteristics of the wind-tunnel facility. In general. the heavy gas test medium, variable pressure, relatively high Reynolds number and large size of the TDT test section have made it the preferred facility for these tests. The space-related tests conducted in the TDT have been divided into five categories. These categories are ground wind loads, launch vehicle dynamics, atmospheric flight of space vehicles, atmospheric reentry. and planetary-probe testing. All known TDT tests of launch vehicles and spacecraft are discussed in this report. An attempt has been made to succinctly summarize each wind-tunnel test, or in the case of multiple. related tests, each wind-tunnel program. Most summaries include model program discussion, description of the physical wind-tunnel model, and some typical or significant test results. When available, references are presented to assist the reader in further pursuing information on the tests.
Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming
NASA Astrophysics Data System (ADS)
Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji
In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.
NASA Astrophysics Data System (ADS)
Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.
2018-03-01
The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static andmore » dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.« less
Aerothermodynamic testing requirements for future space transportation systems
NASA Technical Reports Server (NTRS)
Paulson, John W., Jr.; Miller, Charles G., III
1995-01-01
Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less
Comparison of different methods for gender estimation from face image of various poses
NASA Astrophysics Data System (ADS)
Ishii, Yohei; Hongo, Hitoshi; Niwa, Yoshinori; Yamamoto, Kazuhiko
2003-04-01
Recently, gender estimation from face images has been studied for frontal facial images. However, it is difficult to obtain such facial images constantly in the case of application systems for security, surveillance and marketing research. In order to build such systems, a method is required to estimate gender from the image of various facial poses. In this paper, three different classifiers are compared in appearance-based gender estimation, which use four directional features (FDF). The classifiers are linear discriminant analysis (LDA), Support Vector Machines (SVMs) and Sparse Network of Winnows (SNoW). Face images used for experiments were obtained from 35 viewpoints. The direction of viewpoints varied +/-45 degrees horizontally, +/-30 degrees vertically at 15 degree intervals respectively. Although LDA showed the best performance for frontal facial images, SVM with Gaussian kernel was found the best performance (86.0%) for the facial images of 35 viewpoints. It is considered that SVM with Gaussian kernel is robust to changes in viewpoint when estimating gender from these results. Furthermore, the estimation rate was quite close to the average estimation rate at 35 viewpoints respectively. It is supposed that the methods are reasonable to estimate gender within the range of experimented viewpoints by learning face images from multiple directions by one class.
Impact of coastal processes on resource development with an example from Icy Bay, Alaska
Molnia, Bruce F.
1978-01-01
The coastline of Alaska is dynamic and continually readjusting to changes in the many processes that operate in the coastal zone. Because of this dynamic nature, special consideration must be made in planning for development, and. caution must be exercised in site selection for facilities to be emplaced in the coastal zone. All types of coastal processes from continuously active normal processes to the low frequency-high intensity rare event must be considered. Site-specific evaluation-s considering the broad range of possible processes must precede initiation of development. An example of the relation between coastal processes and a proposed resource treatment facility is presented for Icy Bay, Alaska. Icy Bay is the only sheltered bay near many of the offshore tracts leased for petroleum exploration in the 1976 northern Gulf of Alaska OCS (Outer Continental Shelf) lease sale. Consequently, it has been selected as a primary onshore staging site for the support of offshore exploration and development. The environment of Icy Bay has many potentially hazardous features, including a submarine moraine at the bay mouth and actively calving glaciers at the bay's head which produce many icebergs. But most significant from the point of view of locating onshore facilities and pipeline corridors are the high rates of shoreline erosion and sediment deposition. If pipelines or any onshore staging facilities are to be placed in the coastal areas of Icy Bay, then the dynamic changes in shoreline position must be considered so that man-made structures will not be eroded away or be silted in before the completion of development.
Improving the explanation capabilities of advisory systems
NASA Technical Reports Server (NTRS)
Porter, Bruce; Souther, Art
1993-01-01
A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology; and (2) developing general methods and tools for building similar explanation facilities in other domains.
Improving the explanation capabilities of advisory systems
NASA Technical Reports Server (NTRS)
Porter, Bruce; Souther, Art
1994-01-01
A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology, and (2) developing general methods and tools for building similar explanation facilities in other domains.
Six-Degree-of-Freedom Dynamic Test System (SDTS) User Test Planning Guide
NASA Technical Reports Server (NTRS)
Stokes, LeBarian
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the SDTS. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Diagnostics for Hypersonic Engine Control
2013-02-01
weredirected across the flow at the entrance to the isolator just downstream of the facility nozzle . The near-infrared beams were frequency tuned across...the facility nozzle were used to study the dynamics of the shock train structure during these transient combustor events. They revealed the...entropy fluctuations in supersonic boundary layers can be quite short in time – on the order of tens of microseconds. We therefore sought data
Potential pressurized payloads: Fluid and thermal experiments
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.
Dynamic response of ultrathin highly dense ZIF-8 nanofilms.
Cookney, Joanna; Ogieglo, Wojciech; Hrabanek, Pavel; Vankelecom, Ivo; Fila, Vlastimil; Benes, Nieck E
2014-10-11
Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for non-equilibrium organic polymers.
Astronaut Sam Gemar works with Middeck O-Gravity Dynamics Experiment (MODE)
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Charles D. (Sam) Gemar, mission specialist, works with the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware - contained fluids and (as depicted here) large space structures - planned for future spacecraft.
Astronaut Pierre J. Thuot works with Middeck O-Gravity Dynamics Experiment (MODE)
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Pierre J. Thuot, mission specialist, works with the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware - contained fluids and (as depicted here) large space structures - planned for future spacecraft.
An isentropic compression-heated Ludweig tube transient wind tunnel
NASA Technical Reports Server (NTRS)
Magari, Patrick J.; Lagraff, John E.
1991-01-01
Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.
Shock Layer Radiation Measurements and Analysis for Mars Entry
NASA Technical Reports Server (NTRS)
Bose, Deepak; Grinstead, Jay Henderson; Bogdanoff, David W.; Wright, Michael J.
2009-01-01
NASA's In-Space Propulsion program is supporting the development of shock radiation transport models for aerocapture missions to Mars. A comprehensive test series in the NASA Antes Electric Arc Shock Tube facility at a representative flight condition was recently completed. The facility optical instrumentation enabled spectral measurements of shocked gas radiation from the vacuum ultraviolet to the near infrared. The instrumentation captured the nonequilibrium post-shock excitation and relaxation dynamics of dispersed spectral features. A description of the shock tube facility, optical instrumentation, and examples of the test data are presented. Comparisons of measured spectra with model predictions are also made.
Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure
2010-02-01
FY2009 - 2011 • Benefits: Reduced corrosion due to elimination of metallic rebar , reduced weight equates to reduced dead load and increased dynamic...Decks as Replacement for Steel Reinforced Concrete Decks F09AR04: Corrosion Resistant Roofs with Integrated Sustainable PV Power Systems • Where...Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure Dr. Craig E. College Deputy Assistant Chief of Staff for
Activities in Aeroelasticity at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Perry, Boyd, III; Noll, Thomas E.
1997-01-01
This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.
Yap, Tracey L; Kennerly, Susan M; Bergstrom, Nancy; Hudak, Sandra L; Horn, Susan D
2016-01-01
Pressure ulcers have consistently resisted prevention efforts in long-term care facilities nationwide. Recent research has described cueing innovations that-when selected according to the assumptions and resources of particular facilities-support best practices of pressure ulcer prevention. This article synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a pressure ulcer prevention program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.H.; Sienel, T.H.
1996-10-01
The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less
Emergence of a World Class Atmospheric Science Facility in the Central Himalayan Regions of India
NASA Astrophysics Data System (ADS)
Taori, A.; Sunilkumar, S. V.; Pant, P.; Sagar, R.
A new institute Aryabhatta Research Institute of Observation Sciences ARIES has re-borne in year 2004 when the Department of Science and Technology Govt of India took over the 50 year old State Observatory Nainital situated at 2km above the mean sea level in the Shivalik range of central Himalayas Understanding the importance of Nainital 29 4 N 79 5 E it was decided that prime focus should be to set up a world-class research facility for atmospheric sciences apart from the existing astronomy and astrophysics Reason for the above being the strategic location of Nainital to study the free tropospheric aerosols stratosphere-troposphere exchange monsoon dynamics and atmospheric waves These waves can be seeded by the Himalayan topography and may propagate up to the mesosphere-lower thermosphere altitudes and manifest themselves as an important coupling agent between lower middle and upper atmosphere Advance facilities to study the middle atmospheric dynamics are getting established For this an 84-cm Rayleigh lidar is under development to study the thermal structure of the middle atmosphere which will be commissioned by year 2009 A new project has already been approved to set up a stratosphere-troposphere ST radar facility which will further help understanding the thermal structure and wind field measurements in troposphere-stratosphere altitudes To supplement these several airglow experiments will also be stationed for simultaneous measurements Such facilities are of great importance for coordination with the space borne measurements After
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Holt installing projectile & powder charge
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF Chuck Cornelison operating 'Firing' control pannel
Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen
NASA Astrophysics Data System (ADS)
Hardi, Justin S.; Traudt, Tobias; Bombardieri, Cristiano; Börner, Michael; Beinke, Scott K.; Armbruster, Wolfgang; Nicolas Blanco, P.; Tonti, Federica; Suslov, Dmitry; Dally, Bassam; Oschwald, Michael
2018-06-01
The Combustion Dynamics group in the Rocket Propulsion Department at the German Aerospace Center (DLR), Lampoldshausen, strives to advance the understanding of dynamic processes in cryogenic rocket engines. Leveraging the test facilities and experimental expertise at DLR Lampoldshausen, the group has taken a primarily experimental approach to investigating transient flows, ignition, and combustion instabilities for over one and a half decades. This article provides a summary of recent achievements, and an overview of current and planned research activities.
Dynamic Simulation of AN Helium Refrigerator
NASA Astrophysics Data System (ADS)
Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.
2008-03-01
A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.
Aeroelastic, CFD, and Dynamics Computation and Optimization for Buffet and Flutter Applications
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1997-01-01
Accomplishments achieved during the reporting period are listed. These accomplishments included 6 papers published in various journals or presented at various conferences; 1 abstract submitted to a technical conference; production of 2 animated movies; and a proposal for use of the National Aerodynamic Simulation Facility at NASA Ames Research Center for further research. The published and presented papers and animated movies addressed the following topics: aeroelasticity, computational fluid dynamics, structural dynamics, wing and tail buffet, vortical flow interactions, and delta wings.
Analysis of NASA Common Research Model Dynamic Data
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Acheson, Michael J.
2011-01-01
Recent NASA Common Research Model (CRM) tests at the Langley National Transonic Facility (NTF) and Ames 11-foot Transonic Wind Tunnel (11-foot TWT) have generated an experimental database for CFD code validation. The database consists of force and moment, surface pressures and wideband wing-root dynamic strain/wing Kulite data from continuous sweep pitch polars. The dynamic data sets, acquired at 12,800 Hz sampling rate, are analyzed in this study to evaluate CRM wing buffet onset and potential CRM wing flow separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, M.S.
A baseline study of phytoplankton production and nutrient dynamics was conducted on Lake Norman, NC, a 13000-ha, warm-monomictic reservoir, prior to the initiation of thermal inputs from an 1180-MW nuclear electric generation facility. The objective of the study was to identify the major physical, chemical and biological processes controlling nutrient dynamics in Lake Norman, with specific reference to the impact of phytoplankton production on the cycling of carbon, nitrogen and phosphorus.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
Dynamics of cavitating cascades. [transfer functions
NASA Technical Reports Server (NTRS)
Brennen, C. E.; Acosta, A. J.
1980-01-01
The unsteady dynamics of cavitating cascades and inducer pumps were studied with a view to understanding (and possibly predicting) the dynamic characteristics of these devices. The chronology of the research is summarized as well as the final conculsions for each task. The construction of a dynamic pump test facility and its use in making experimental measurements of the transfer function is described as well as tests conducted using a scale model of the low pressure liquid oxygen turbopump inducer in the shuttle main engine. Auto-oscillation and unsteady inlet flow characteristics are discussed in addition to blade cavity influence and bubbly cavitation.
Evolution of a beam dynamics model for the transport line in a proton therapy facility
NASA Astrophysics Data System (ADS)
Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.
2017-12-01
During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.
Astronaut Thuot and Gemar work with Middeck O-Gravity Dynamics Experiment (MODE)
NASA Technical Reports Server (NTRS)
1994-01-01
Astronauts Pierre J. Thuot (top) and Charles D. (Sam) Gemar show off the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the non-linear gravity-dependent behavior of two types of space hardware - large space structures (as depicted here) and contained fluids - planned for future spacecraft.
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Bon Bowling machining sabot to find dimensions
Nuclear electric propulsion development and qualification facilities
NASA Technical Reports Server (NTRS)
Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario
1991-01-01
This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less
Dynamometer Facilities | Water Power | NREL
, mechanical or electro-dynamic brakes, power electronics, control systems, and software. Manufacturers and power electronics with the electric grid, to perform accelerated lifetime certification, and to develop
Interfacility boundary adjustment.
DOT National Transportation Integrated Search
2000-07-01
The objective of the study was to examine the impact of inter-facility dynamic resectorization on Air Traffic Control Specialists : (ATCSs) performance, workload, communication, situational awareness, and control strategies. As a preliminary in...
2006-10-04
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Chuck Cornelison viewing 8x10 shadowgraph images
Evaluating the Veterans Health Administration's Staffing Methodology Model: A Reliable Approach.
Taylor, Beth; Yankey, Nicholas; Robinson, Claire; Annis, Ann; Haddock, Kathleen S; Alt-White, Anna; Krein, Sarah L; Sales, Anne
2015-01-01
All Veterans Health Administration facilities have been mandated to use a standardized method of determining appropriate direct-care staffing by nursing personnel. A multi-step process was designed to lead to projection of full-time equivalent employees required for safe and effective care across all inpatient units. These projections were intended to develop appropriate budgets for each facility. While staffing levels can be increased, even in facilities subject to budget and personnel caps, doing so requires considerable commitment at all levels of the facility. This commitment must come from front-line nursing personnel to senior leadership, not only in nursing and patient care services, but throughout the hospital. Learning to interpret and rely on data requires a considerable shift in thinking for many facilities, which have relied on historical levels to budget for staffing, but which does not take into account the dynamic character of nursing units and patient need.
Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...
2017-08-16
We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak
We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less
Dynamic Model of the BIO-Plex Air Revitalization System
NASA Technical Reports Server (NTRS)
Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)
2000-01-01
The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.
Distributed intelligent monitoring and reporting facilities
NASA Astrophysics Data System (ADS)
Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.
1996-06-01
Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.
An application of high authority/low authority control and positivity
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Irwin, D.; Tollison, D.; Waites, H. B.
1988-01-01
Control Dynamics Company (CDy), in conjunction with NASA Marshall Space Flight Center (MSFC), has supported the U.S. Air Force Wright Aeronautical Laboratory (AFWAL) in conducting an investigation of the implementation of several DOD controls techniques. These techniques are to provide vibration suppression and precise attitude control for flexible space structures. AFWAL issued a contract to Control Dynamics to perform this work under the Active Control Technique Evaluation for Spacecraft (ACES) Program. The High Authority Control/Low Authority Control (HAC/LAC) and Positivity controls techniques, which were cultivated under the DARPA Active Control of Space Structures (ACOSS) Program, were applied to a structural model of the NASA/MSFC Ground Test Facility ACES configuration. The control systems design were accomplished and linear post-analyses of the closed-loop systems are provided. The control system designs take into account effects of sampling and delay in the control computer. Nonlinear simulation runs were used to verify the control system designs and implementations in the facility control computers. Finally, test results are given to verify operations of the control systems in the test facility.
Distributed observing facility for remote access to multiple telescopes
NASA Astrophysics Data System (ADS)
Callegari, Massimo; Panciatici, Antonio; Pasian, Fabio; Pucillo, Mauro; Santin, Paolo; Aro, Simo; Linde, Peter; Duran, Maria A.; Rodriguez, Jose A.; Genova, Francoise; Ochsenbein, Francois; Ponz, J. D.; Talavera, Antonio
2000-06-01
The REMOT (Remote Experiment Monitoring and conTrol) project was financed by 1996 by the European Community in order to investigate the possibility of generalizing the remote access to scientific instruments. After the feasibility of this idea was demonstrated, the DYNACORE (DYNAmically, COnfigurable Remote Experiment monitoring and control) project was initiated as a REMOT follow-up. Its purpose is to develop software technology to support scientists in two different domains, astronomy and plasma physics. The resulting system allows (1) simultaneous multiple user access to different experimental facilities, (2) dynamic adaptability to different kinds of real instruments, (3) exploitation of the communication infrastructures features, (4) ease of use through intuitive graphical interfaces, and (5) additional inter-user communication using off-the-shelf projects such as video-conference tools, chat programs and shared blackboards.
NASA Astrophysics Data System (ADS)
Moslemipour, Ghorbanali
2018-07-01
This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algorithm is proposed by combining the simulated annealing and clonal selection algorithms. The proposed model and the hybrid algorithm are verified and validated using design of experiment and benchmark methods. The results show that the hybrid algorithm has an outstanding performance from both solution quality and computational time points of view. Besides, the proposed model can be used in both of the stochastic and deterministic situations.
Overview of X-38 Hypersonic Wind Tunnel Data and Comparison with Numerical Results
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Caram, Jose; Berry, Scott; DiFulvio, Michael; Horvath, Tom
1997-01-01
A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic characteristics of this X-23/X-2&4 derived crew return vehicle (designated X-38) are being evaluated in various wind tunnels in support of this effort. Aerodynamic data has been acquired in three NASA hypersonic facilities at Mach 20, and Mach 6. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with portions of this data. Experimental data from the Mach 6 Air and CF4 facilities illustrate a net positive pitching moment increment due to density ratio, as well as increased elevon effectiveness. Chemical nonequilibrium computational fluid dynamics solutions at flight conditions reinforce this conclusion.
Air Vehicles Division Computational Structural Analysis Facilities Policy and Guidelines for Users
2005-05-01
34 Thermal " as appropriate and the tolerance set to "default". b) Create the model geometry. c) Create the finite elements. d) Create the...linear, non-linear, dynamic, thermal , acoustic analysis. The modelling of composite materials, creep, fatigue and plasticity are also covered...perform professional, high quality finite element analysis (FEA). FE analysts from many tasks within AVD are using the facilities to conduct FEA with
Recent Enhancements to the National Transonic Facility
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.
2003-01-01
The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting
Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Platzer, M. F.
1992-01-01
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range.
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-10-12
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
NASA Astrophysics Data System (ADS)
Remington, Bruce A.
2014-10-01
Over the past 3 decades there has been an exponential increase in the newly emerging field of matter at extreme states of deformation and compression. This has been due to the confluence of new experimental facilities, new experimental techniques, new theory, and new multiscale simulation techniques. Regimes of science and research hitherto thought out of reach in terrestrial settings are now being accessed routinely. High energy lasers and pulsed power facilities are accessing high pressure macroscopic states of matter, and next generation light sources combined with smaller drive lasers are probing the quantum response of matter at the atomistic level. Combined, this gives multiscale experimental access of the properties and dynamics of matter from femtoseconds to microseconds and from kilobars to gigabars of pressure. There are a multitude of new regimes of science and research that these new developments make possible. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity interplanetary dust impacts, reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, and capsule dynamics in inertial confinement fusion (ICF). I will review highlights and advances in this rapidly developing field of science and research, touching on experiments at a wide range of facilities (NIF, Z, Omega, Jupiter, Trident, Vulcan, Orion, LULI, LIL, Gekko, Shenguang, LCLS, DCS). I will also review a wide variety of sophisticated new experimental techniques being developed and new developments in theory and multiscale modeling. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Refining the W1 and SE1 Facilities
NASA Technical Reports Server (NTRS)
Chambers, Rodney D.
2004-01-01
The Engine Research Building (ERB) houses more than 60 test rigs that study all aspects of engine development. By working with Mary Gibson in the SE1 and W1A Turbine Facilities, I became aware of her responsibilities and better acquainted with the inner workings of the ERB. The SE1 Supersonic/Subsonic Wind Tunnel Facility contains 2 small wind tunnels. The first tunnel uses an atmospheric inlet, while the second uses treated 40-psig air. Both of the tunnels are capable of subsonic and supersonic operation. An auxiliary air supply and exhaust piping providing both test sections with suction, blowing, and crossfire capabilities. The current configuration of SE1 consists of a curved diffuser that studies the blockage along the endwalls. The W1A Low Speed Compressor Facility provides insight for the complex flow phenomena within its 4-stage axial compressor, sand the data obtained from W 1A is used to develop advanced models for fluid dynamic assessment. W1A is based off of a low speed research compressor developed by GE in the 1950's. This compressor has a removable casing treatment under rotor 1, which allows for various tip treatment studies. The increased size and low speed allows instrumentation to be located in the compressor s complex flow paths. Air enters the facility through a filtered roof vent, conditioned for temperature and turbulence, and then passed through the compressor W1A is described as a dynamic facility with many projects taking place simultaneously. This current environment makes it challenging to follow the various affairs that are taking place within the area. During my first 4 weeks at the NASA Glenn Research Center, I have assisted Mary Gibson in multiple tasks such as facility documents, record keeping, maintenance and upgrades. The facility has lube systems for its gearbox and compressor. These systems are critical in the successful operation of the facility. I was assigned the task of creating a facility estimate list, which included the filters and strainers required for the compressor. For my remaining time spent here, we expect to complete a facility parts listing and a virtual project summary so that W1A and SE1 will become ergonomic facilities that will make it easier for people to observe the capabilities and history of the area and the employees that operate. Bolstering our efforts in achieving these goal are the online technical tutorials, software such as Microsoft Excel. Macromedia Flash MX Macromedia Dreamweaver MX, Photoshop 6.0 and the assistance of several NASA employees.
NASA Technical Reports Server (NTRS)
Morse, S. F.; Roper, A. T.
1975-01-01
The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.
The Orbital Maneuvering Vehicle Training Facility visual system concept
NASA Technical Reports Server (NTRS)
Williams, Keith
1989-01-01
The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinke, R.G.; Mueller, C.; Knight, T.D.
1998-03-01
The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions.
NASA low-speed centrifugal compressor for fundamental research
NASA Technical Reports Server (NTRS)
Wood, J. R.; Adam, P. W.; Buggele, A. E.
1983-01-01
A new centrifugal compressor facility being built by the NASA Lewis Research Center is described; its purpose is to obtain 'benchmark' experimental data for internal flow code verification and modeling. The facility will be heavily instrumented with standard pressure and temperature probes and have provisions for flow visualization and laser Doppler velocimetry. The facility will accommodate rotational speeds to 2400 rpm and will be rated at pressures to 1.25 atm. The initial compressor stage for testing is geometrically and dynamically representative of modern high-performance stages with the exception of Mach number levels. Design exit tip speed for the initial stage is 500 ft/sec with a pressure ratio of 1.17. The rotor exit backsweep is 55 deg from radial. The facility is expected to be operational in the first half of 1985.
NASA Technical Reports Server (NTRS)
Ziebarth, John P.; Meyer, Doug
1992-01-01
The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.
Astronaut Pierre Thuot works with Middeck O-Gravity Dynamics Experiment
1994-03-04
STS062-52-025 (4-18 March 1994) --- Astronaut Pierre J. Thuot, mission specialist, works with the Middeck 0-Gravity Dynamics Experiment (MODE) aboard the earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware -- contained fluids and (as depicted here) large space structures -- planned for future spacecraft.
Astronaut Sam Gemar works with Middeck O-Gravity Dynamics Experiment (MODE)
1994-03-04
STS062-23-017 (4-18 March 1994) --- Astronaut Charles D. (Sam) Gemar, mission specialist, works with Middeck 0-Gravity Dynamics Experiment (MODE) aboard the earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware -- contained fluids and (as depicted here) large space structures -- planned for future spacecraft.
The Shock and Vibration Digest, Volume 12, Number 9,
1980-09-01
include diesel engine noise, process plant noise, and environ- dynamic mechanical properties of viscoelastic mate- mental noise and planning. rials...new numerical methods are presented in- plant noise control, design of facilities for noise in the twelve articles of the mathematics section. control...International Symposium for Innovative the seminar: 31 16 = ,,-,==. ’d-m w .’ " Dynamic Testing of Nuclear Power Plant Struc- ENVIRONMENTAL STRESS
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.
Smart Home and Building Systems | Energy Systems Integration Facility |
Exploring how intelligent building systems and the dynamic grid of the future can work together evaluate them as a neighborhood Exploring functionality, applications, interoperability, and cybersecurity
Mathematical Model Development and Simulation Support
NASA Technical Reports Server (NTRS)
Francis, Ronald C.; Tobbe, Patrick A.
2000-01-01
This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.
2006-10-04
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Holt (L) & Don Bowling (r) in control room examining poloroids
2006-09-20
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot
2006-09-20
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot
NASA Technical Reports Server (NTRS)
Blotzer, Michael J.; Woods, Jody L.
2009-01-01
This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.
Optical measurement of propeller blade deflections in a spin facility
NASA Technical Reports Server (NTRS)
Ramsey, John K.; Meyn, Erwin H.; Mehmed, Oral; Kurkov, Anatole P.
1990-01-01
A nonintrusive optical system for measuring propeller blade deflections has been used in the NASA Lewis dynamic spin facility. Deflection of points at the leading and trailing edges of a blade section can be obtained with a narrow light beam from a low power helium-neon laser. A system used to measure these deflections at three spanwise locations is described. Modifications required to operate the lasers in a near-vacuum environment are also discussed.
Yap, Tracey L.; Kennerly, Susan M.; Bergstrom, Nancy; Hudak, Sandra L.; Horn, Susan D.
2015-01-01
Pressure ulcers (PrUs) have consistently resisted prevention efforts in long term care (LTC) facilities nationwide. Recent research has described cueing innovations that – when selected according to the assumptions and resources of particular facilities – support best practices of PrU prevention. This paper synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a PrU prevention program. PMID:26066791
The flight robotics laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.
1988-01-01
The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.
Local storage federation through XRootD architecture for interactive distributed analysis
NASA Astrophysics Data System (ADS)
Colamaria, F.; Colella, D.; Donvito, G.; Elia, D.; Franco, A.; Luparello, G.; Maggi, G.; Miniello, G.; Vallero, S.; Vino, G.
2015-12-01
A cloud-based Virtual Analysis Facility (VAF) for the ALICE experiment at the LHC has been deployed in Bari. Similar facilities are currently running in other Italian sites with the aim to create a federation of interoperating farms able to provide their computing resources for interactive distributed analysis. The use of cloud technology, along with elastic provisioning of computing resources as an alternative to the grid for running data intensive analyses, is the main challenge of these facilities. One of the crucial aspects of the user-driven analysis execution is the data access. A local storage facility has the disadvantage that the stored data can be accessed only locally, i.e. from within the single VAF. To overcome such a limitation a federated infrastructure, which provides full access to all the data belonging to the federation independently from the site where they are stored, has been set up. The federation architecture exploits both cloud computing and XRootD technologies, in order to provide a dynamic, easy-to-use and well performing solution for data handling. It should allow the users to store the files and efficiently retrieve the data, since it implements a dynamic distributed cache among many datacenters in Italy connected to one another through the high-bandwidth national network. Details on the preliminary architecture implementation and performance studies are discussed.
Advancing Test Capabilities at NASA Wind Tunnels
NASA Technical Reports Server (NTRS)
Bell, James
2015-01-01
NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant enhancements to NASA capabilities in ground-based testing. They ensure that these wind tunnels will provide accurate and relevant experimental data for years to come, supporting both NASAs mission and the missions of our government and industry customers.
NASA Technical Reports Server (NTRS)
Wey, Thomas
2017-01-01
With advances in computational power and availability of distributed computers, the use of even the most complex of turbulent chemical interaction models in combustors and coupled analysis of combustors and turbines is now possible and more and more affordable for realistic geometries. Recent more stringent emission standards have enticed the development of more fuel-efficient and low-emission combustion system for aircraft gas turbine applications. It is known that the NOx emissions tend to increase dramatically with increasing flame temperature. It is well known that the major difficulty, when modeling the turbulence-chemistry interaction, lies in the high non-linearity of the reaction rate expressed in terms of the temperature and species mass fractions. The transport filtered density function (FDF) model and the linear eddy model (LEM), which both use local instantaneous values of the temperature and mass fractions, have been shown to often provide more accurate results of turbulent combustion. In the present, the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models, LEM-like and EUPDF-like, capable of emulating the major processes occurring in the turbulence-chemistry interaction will be used to perform reacting flow simulations of a selected test case. The selected test case from the Volvo Validation Rig was documented by Sjunnesson.
Overview of Dynamic Test Techniques for Flight Dynamics Research at NASA LaRC (Invited)
NASA Technical Reports Server (NTRS)
Owens, D. Bruce; Brandon, Jay M.; Croom, Mark A.; Fremaux, C. Michael; Heim, Eugene H.; Vicroy, Dan D.
2006-01-01
An overview of dynamic test techniques used at NASA Langley Research Center on scale models to obtain a comprehensive flight dynamics characterization of aerospace vehicles is presented. Dynamic test techniques have been used at Langley Research Center since the 1920s. This paper will provide a partial overview of the current techniques available at Langley Research Center. The paper will discuss the dynamic scaling necessary to address the often hard-to-achieve similitude requirements for these techniques. Dynamic test techniques are categorized as captive, wind tunnel single degree-of-freedom and free-flying, and outside free-flying. The test facilities, technique specifications, data reduction, issues and future work are presented for each technique. The battery of tests conducted using the Blended Wing Body aircraft serves to illustrate how the techniques, when used together, are capable of characterizing the flight dynamics of a vehicle over a large range of critical flight conditions.
Simple dynamic electromagnetic radiation detector
NASA Technical Reports Server (NTRS)
Been, J. F.
1972-01-01
Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.
View of 175 ton hoisthouse from northeast. Hoist operator's cab ...
View of 175 ton hoist-house from northeast. Hoist operator's cab is in foreground center. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
View of first level from north showing interstitial structural columns ...
View of first level from north showing interstitial structural columns for the Shuttle assemble configuration. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.
1993-01-01
The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.
Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Schuster, David M.
2001-01-01
Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.
STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs
NASA Astrophysics Data System (ADS)
Poggi, L. A.; Malizia, A.; Ciparisse, J. F.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.
2016-07-01
Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the "STARDUST" facility, i.e. "STARDUST-Upgrade". STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.
Multiparticle dynamics in the E-phi tracking code ESME
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. MacLachlan
2002-06-21
ESME has developed over a twenty year period from its origins as a program for modeling rf gymnastics to a rather general facility for that fraction of beam dynamics of synchrotrons and storage rings which can be properly treated in the two dimensional longitudinal phase space. The features of this program which serve particularly for multiparticle calculations are described, some underling principles are noted, and illustrative results are given.
Multiparticle Dynamics in the E-φ Tracking Code ESME
NASA Astrophysics Data System (ADS)
MacLachlan, James A.
2002-12-01
ESME has developed over a twenty year period from its origins as a program for modeling rf gymnastics to a rather general facility for that fraction of beam dynamics of synchrotrons and storage rings which can be properly treated in the two dimensional longitudinal phase space. The features of this program which serve particularly for multiparticle calculations are described, some uderlying principles are noted, and illustrative results are given.
NASA Astrophysics Data System (ADS)
Remington, Bruce A.; Rudd, Robert E.; Wark, Justin S.
2015-09-01
Over the past 3 decades, there has been an exponential increase in work done in the newly emerging field of matter at extreme states of deformation and compression. This accelerating progress is due to the confluence of new experimental facilities, experimental techniques, theory, and simulations. Regimes of science hitherto thought out of reach in terrestrial settings are now being accessed routinely. High-pressure macroscopic states of matter are being experimentally studied on high-power lasers and pulsed power facilities, and next-generation light sources are probing the quantum response of matter at the atomic level. Combined, this gives experimental access to the properties and dynamics of matter from femtoseconds to microseconds in time scale and from kilobars to gigabars in pressure. There are a multitude of new regimes of science that are now accessible in laboratory settings. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity dust and debris impacts, nuclear reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, capsule dynamics in inertial confinement fusion research, and the basic high energy density properties of matter. We review highlights and advances in this rapidly developing area of science and research.
On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Alunni, Antonella I.
2012-01-01
This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.
Hypervelocity Capability of the HYPULSE Shock-Expansion Tunnel for Scramjet Testing
NASA Technical Reports Server (NTRS)
Foelsche, Robert O.; Rogers, R. Clayton; Tsai, Ching-Yi; Bakos, Robert J.; Shih, Ann T.
2001-01-01
New hypervelocity capabilities for scramjet testing have recently been demonstrated in the HYPULSE Shock-Expansion Tunnel (SET). With NASA's continuing interests in scramjet testing at hypervelocity conditions (Mach 12 and above), a SET nozzle was designed and added to the HYPULSE facility. Results of tests conducted to establish SET operational conditions and facility nozzle calibration are presented and discussed for a Mach 15 (M15) flight enthalpy. The measurements and detailed computational fluid dynamics calculations (CFD) show the nozzle delivers a test gas with sufficiently wide core size to be suitable for free-jet testing of scramjet engine models of similar scale as, those tested in conventional low Mach number blow-down test facilities.
Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2015-08-01
Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.
NASA Astrophysics Data System (ADS)
Grach, S. M.; Klimenko, V. V.; Shindin, A. V.; Nasyrov, I. A.; Sergeev, E. N.; A. Yashnov, V.; A. Pogorelko, N.
2012-06-01
We present the results of studying the structure and dynamics of the HF-heated volume above the Sura facility obtained in 2010 by measurements of ionospheric airglow in the red (λ = 630 nm) and green (λ = 557.7 nm) lines of atomic oxygen. Vertical sounding of the ionosphere (followed by modeling of the pump-wave propagation) and measurements of stimulated electromagnetic emission were used for additional diagnostics of ionospheric parameters and the processes occurring in the heated volume.
Fission Activities of the Nuclear Reactions Group in Uppsala
NASA Astrophysics Data System (ADS)
Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.
This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.
Melt layer erosion of metallic armour targets during off-normal events in tokamaks
NASA Astrophysics Data System (ADS)
Bazylev, B.; Wuerz, H.
2002-12-01
Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.
Asymptomatic Bacteriuria in Pregnant Women in Outpatient Facilities
Nogayeva, Maral G.; Tuleutayeva, Svetlana A.
2015-01-01
Urinary tract morbidity has increased by 7% in Kazakhstan between 2007 to 2011. Pregnant women with extragenital pathologies or kidney diseases had the greatest prevalence of morbidity. Asymptomatic bacteriuria (AB) is one of the most important risk factors of pyelonephritis development in pregnant women, and it can affect the course and outcome of pregnancy, delivery, and postnatal period. AB prevention requires prevention of pregnancy complications including early diagnostic of urinary tract infections, timely optimization of therapy at outpatient facilities, and dynamic follow-up. PMID:29138709
The SCUBA-2 Data Reduction Cookbook
NASA Astrophysics Data System (ADS)
Thomas, Holly S.; Currie, Malcolm J.
This cookbook provides a short introduction to Starlink facilities, especially SMURF, the Sub-Millimetre User Reduction Facility, for reducing, displaying, and calibrating SCUBA-2 data. It describes some of the data artefacts present in SCUBA-2 time-series and methods to mitigate them. In particular, this cookbook illustrates the various steps required to reduce the data; and gives an overview of the Dynamic Iterative Map-Maker, which carries out all of these steps using a single command controlled by a configuration file. Specialised configuration files are presented.
The SCUBA-2 SRO data reduction cookbook
NASA Astrophysics Data System (ADS)
Chapin, Edward; Dempsey, Jessica; Jenness, Tim; Scott, Douglas; Thomas, Holly; Tilanus, Remo P. J.
This cookbook provides a short introduction to starlink\\ facilities, especially smurf, the Sub-Millimetre User Reduction Facility, for reducing and displaying SCUBA-2 SRO data. We describe some of the data artefacts present in SCUBA-2 time series and methods we employ to mitigate them. In particular, we illustrate the various steps required to reduce the data, and the Dynamic Iterative Map-Maker, which carries out all of these steps using a single command. For information on SCUBA-2 data reduction since SRO, please SC/21.
Asymptomatic Bacteriuria in Pregnant Women in Outpatient Facilities.
Nogayeva, Maral G; Tuleutayeva, Svetlana A
2015-01-01
Urinary tract morbidity has increased by 7% in Kazakhstan between 2007 to 2011. Pregnant women with extragenital pathologies or kidney diseases had the greatest prevalence of morbidity. Asymptomatic bacteriuria (AB) is one of the most important risk factors of pyelonephritis development in pregnant women, and it can affect the course and outcome of pregnancy, delivery, and postnatal period. AB prevention requires prevention of pregnancy complications including early diagnostic of urinary tract infections, timely optimization of therapy at outpatient facilities, and dynamic follow-up.
Personal Chemical Exposure informatics
Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...
View of hydrodynamic support cylinders, removed from structure and relocated ...
View of hydrodynamic support cylinders, removed from structure and relocated for reconditioning to return them to service. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Bowling (l) attaching firing cable to breeth cap as Don Holt (r) looks on
Interior view of 175 ton hoist house looking at the ...
Interior view of 175 ton hoist house looking at the exterior casing for the wire rope spools. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
NASA Astrophysics Data System (ADS)
Sheppard, Adrian; Latham, Shane; Middleton, Jill; Kingston, Andrew; Myers, Glenn; Varslot, Trond; Fogden, Andrew; Sawkins, Tim; Cruikshank, Ron; Saadatfar, Mohammad; Francois, Nicolas; Arns, Christoph; Senden, Tim
2014-04-01
This paper reports on recent advances at the micro-computed tomography facility at the Australian National University. Since 2000 this facility has been a significant centre for developments in imaging hardware and associated software for image reconstruction, image analysis and image-based modelling. In 2010 a new instrument was constructed that utilises theoretically-exact image reconstruction based on helical scanning trajectories, allowing higher cone angles and thus better utilisation of the available X-ray flux. We discuss the technical hurdles that needed to be overcome to allow imaging with cone angles in excess of 60°. We also present dynamic tomography algorithms that enable the changes between one moment and the next to be reconstructed from a sparse set of projections, allowing higher speed imaging of time-varying samples. Researchers at the facility have also created a sizeable distributed-memory image analysis toolkit with capabilities ranging from tomographic image reconstruction to 3D shape characterisation. We show results from image registration and present some of the new imaging and experimental techniques that it enables. Finally, we discuss the crucial question of image segmentation and evaluate some recently proposed techniques for automated segmentation.
NASA Technical Reports Server (NTRS)
Lowman, P. D.; Allenby, R. J.; Frey, H. V.
1979-01-01
Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Tiffany; Schmidt, Derek William; Di Stefano, Carlos
These experiments are the first experiments in the Mshock campaign at the National Ignition Facility. The experiment is scheduled to be conducted on Dec. 14, 2017. The goal of the Mshock campaign is to study feedthrough dynamics of the Richtmyer- Meshkov instability in a thin layer. These dynamics will be studied in both a reshock configuration (initially) and then in a multi-shock configuration where it is planned to reshock the RM instability up to 3 times (four shocks total).
Techniques for animation of CFD results. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Horowitz, Jay; Hanson, Jeffery C.
1992-01-01
Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.
1994-03-04
Onboard Space Shuttle Columbia (STS-62) Mission specialist Charles D. (Sam) Gemar works with the Middeck 0-Gravity Dynamics Experiment (MODE). The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of liquids and skewed space structures in the microgravity environment.
FNAS computational fluid dynamics
NASA Technical Reports Server (NTRS)
Ziebarth, John P.
1990-01-01
This work involves the coordination of necessary resources, facilities, and special personnel to provide a workshop to promote the exchange of CFD technology between industry, universities, and government. Critical flow problems have been isolated and simulation of these is being done.
Maine Facility Research Summary : Dynamic Sign Systems for Narrow Bridges
DOT National Transportation Integrated Search
1997-09-01
This report describes the development of operational surveillance data processing algorithms and software for application to urban freeway systems, conforming to a framework in which data processing is performed in stages: sensor malfunction detectio...
View of 200ton derrick interior support beneath it's bull wheel ...
View of 200-ton derrick interior support beneath it's bull wheel and mast centerline from from southeast. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
View from second floor platform looking up at subsequent platforms. ...
View from second floor platform looking up at subsequent platforms. Note the Shuttle assembly outlined by the platform edges. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Detail view of fourth level platform winch used to lift ...
Detail view of fourth level platform winch used to lift platform segments away from the Shuttle assembly during testing. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Mason, Angela J.
1999-01-01
An experimental investigation was performed on damaged arresting gear tapes at the Langley Aircraft Landing Dynamics Facility. The arrestment system uses five pairs of tapes to bring the test carriage to a halt. The procedure used to determine when to replace the tapes consists of a close evaluation of each of the 10 tapes after each run. During this evaluation, each tape is examined thoroughly and any damage observed on the tape is recorded. If the damaged tape does not pass the inspection, the tape is replaced with a new one. For the past 13 years, the most commonly seen damage types are edge fray damage and transverse damage. Tests were conducted to determine the maximum tensile strength of a damaged arresting gear tape specimen. The data indicate that tapes exhibiting transverse damage can withstand higher loads than tapes with edge fray damage.
Mini-mast CSI testbed user's guide
NASA Technical Reports Server (NTRS)
Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.
1992-01-01
The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.
A dynamic vulnerability evaluation model to smart grid for the emergency response
NASA Astrophysics Data System (ADS)
Yu, Zhen; Wu, Xiaowei; Fang, Diange
2018-01-01
Smart grid shows more significant vulnerability to natural disasters and external destroy. According to the influence characteristics of important facilities suffered from typical kinds of natural disaster and external destroy, this paper built a vulnerability evaluation index system of important facilities in smart grid based on eight typical natural disasters, including three levels of static and dynamic indicators, totally forty indicators. Then a smart grid vulnerability evaluation method was proposed based on the index system, including determining the value range of each index, classifying the evaluation grade standard and giving the evaluation process and integrated index calculation rules. Using the proposed evaluation model, it can identify the most vulnerable parts of smart grid, and then help adopting targeted emergency response measures, developing emergency plans and increasing its capacity of disaster prevention and mitigation, which guarantee its safe and stable operation.
Vibration testing of the JE-M-604-4-IUE rocket motor (Thiokol P/N E 28639-03)
NASA Technical Reports Server (NTRS)
Alt, R. E.; Tosh, J. T.
1976-01-01
The NASA International Ultraviolet Explorer (IUE) rocket motor (TE-M-604-4), a solid fuel, spherical rocket motor, was vibration tested in the Impact, Vibration, and Acceleration (IVA) Test Unit of the von Karman Gas Dynamics Facility (VKF). The objective of the test program was to subject the motor to qualification levels of sinusoidal and random vibration prior to the altitude firing of the motor in the Propulsion Development Test Cell (T-3), Engine Test Facility (ETF), AEDC. The vibration testing consisted of a low level sine survey from 5 to 2,000 Hz, followed by a qualification level sine sweep and qualification level random vibration. A second low level sine survey followed the qualification level testing. This sequence of testing was accomplished in each of three orthogonal axes. No motor problems were observed due to the imposition of these dynamic environments.
Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.
2011-12-01
Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.
Radar multipath study for rain-on-radome experiments at the Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Staton, Leo D.
1990-01-01
An analytical study to determine the feasibility of a rain-on-radome experiment at the Aircraft Landing Dynamics Facility (ALDF) at the Langley Research Center is described. The experiment would measure the effects of heavy rain on the transmission of X-band weather radar signals, looking in particular for sources of anomalous attenuation. Feasibility is determined with regard to multipath signals arising from the major structural components of the ALDF. A computer program simulates the transmit and receive antennas, direct-path and multipath signals, and expected attenuation by rain. In the simulation, antenna height, signal polarization, and rainfall rate are variable parameters. The study shows that the rain-on-radome experiment is feasible with regard to multipath signals. The total received signal, taking into account multipath effects, could be measured by commercially available equipment. The study also shows that horizontally polarized signals would produce better experimental results than vertically polarized signals.
Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS
NASA Technical Reports Server (NTRS)
Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.
2001-01-01
At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.
Quality management standards for facility services in the Italian health care sector.
Cesarotti, Vittorio; Di Silvio, Bruna
2006-01-01
Health care, one of the most dynamic sectors in Italy, is studied with a particular focus on outsourcing non-core activities such as facility management (FM) services. The project's goals are to define national standards to balance and control facility service evolution, and to drive FM services towards organisational excellence. The authors, in cooperation with a pool of facility service providers and hospitals managers, studied cleaning services--one of the most critical areas. This article describes the research steps and findings following definition and publication of the Italian standard and its application to an international benchmarking process. The method chosen for developing the Italian standard was to merge technical, strategic and organisational aspects with the goal of standardising the contracting system, giving service providers the chance to improve efficiency and quality, while helping healthcare organisations gain from a better, more reliable and less expensive service. The Italian standard not only improved services but also provided adequate control systems for outsourcing organisations. In this win-win context, it is hoped to continually drive FM services towards organisational excellence. This study is specific to the Italian national healthcare system. However, the strategic dynamics described are common to many other contexts. A systematic method for improving hospital FM services is presented. The authors believe that lessons learned from their Italian case study can be used to better understand and drive similar services in other countries or in other FM service outsourcing sectors.
NASA Technical Reports Server (NTRS)
Jordan, Thomas L.; Bailey, Roger M.
2008-01-01
As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The facility provides all the necessary infrastructure to conduct the research flights in a safe and efficient manner. This paper gives a comprehensive overview of the development of the AirSTAR testbed.
Perrin, Paul B; Stevens, Lillian F; Sutter, Megan; Hubbard, Rebecca; Díaz Sosa, Dulce María; Espinosa Jove, Irma Guadalupe; Arango-Lasprilla, Juan Carlos
2013-10-01
To examine the patterns of family dynamics that are most associated with the mental health of traumatic brain injury (TBI) caregivers from Mexico. It was hypothesized that healthier family dynamics would be associated with better caregiver mental health. A cross-sectional study of self-reported data collected from TBI caregivers through the Mexican National Institute of Rehabilitation in Mexico City, Mexico, the premier public medical facility in Mexico that provides rehabilitation services to patients with various disabilities. One public outpatient medical and rehabilitation facility. Sixty-eight caregivers of individuals with moderate-to-severe TBI from Mexico City, Mexico, were related to an individual with TBI who was ≥3 months after injury, a primary caregiver for ≥3 months, familiar with the patient's history, and without neurologic or psychiatric conditions. The average (standard deviation) age of caregivers was 50.94 ± 12.85 years), and 82% were women. The caregivers completed Spanish versions of instruments that assessed their own mental health and family dynamics. Outcomes assessed included family dynamics (Family Adaptability and Cohesion Evaluation Scale-Fourth Edition; Family Communication Scale; Family Satisfaction Scale; Family Assessment Device-General Functioning; and Relationship-Focused Coping Scale), and caregiver mental health (Patient Health Questionnaire-9, Zarit Burden Interview, and Satisfaction with Life Scale). Results of canonical correlation analyses suggested that caregiver mental health and family dynamics were positively related, with a large effect size. Caregivers with high family satisfaction and cohesion tended to have a low burden and high satisfaction with life. In addition, caregiver depression and burden were positively related to each other and were both inversely related to caregiver satisfaction with life. TBI caregiver interventions in Latino populations would likely benefit from including programming or techniques to improve family dynamics, especially family cohesion, given the strong potentially reciprocal influence of these dynamics on caregiver mental health. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
The Chatanika and Sondrestrom Radars - a brief history
NASA Astrophysics Data System (ADS)
McCready, M. A.; Heinselman, C. J.
2013-02-01
The Sondrestrom upper atmospheric research facility, located just north of the Arctic Circle near the west coast of Greenland, will soon celebrate 30 yr of operations. The centerpiece of the facility, an incoherent scatter radar, has collected 46 000 h of data on the ionospheric state parameters. This instrument was designed and built to measure the effects of nuclear bombs on radio wave propagation in the South Pacific, but instead was deployed to Alaska to study the effects of auroral structuring on the ionosphere, and was later moved to Greenland to explore the auroral cusp and the dynamics of the polar cap boundary. This is the story of the birth and genesis of the instrument, its travels, and the evolution of its facility.
NASA Low-Speed Centrifugal Compressor for Fundamental Research
NASA Technical Reports Server (NTRS)
Wood, J. R.; Adam, P. W.; Buggele, A. E.
1983-01-01
A centrifugal compressor facility being built by the NASA Lewis Research Center is described; its purpose is to obtain benchmark experimental data for internal flow code verification and modeling. The facility will be heavily instrumented with standard pressure and temperature probes and have provisions for flow visualization and laser Doppler velocimetry. The facility will accommodate rotational speeds to 2400 rpm and will be rated at pressures to 1.25 atm. The initial compressor stage for testing is geometrically and dynamically representative of modern high-performance stages with the exception of Mach number levels. Design exit tip speed for the initial stage is 500 ft/sec with a pressure ratio of 1.17. The rotor exit backsweep is 55 deg from radial.
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Dwoyer, Douglas L.
1992-01-01
The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.
Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY
NASA Astrophysics Data System (ADS)
Nergiz, Z.; Aksoy, A.
2015-06-01
The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)
Rain Gardens: Stormwater Infiltrating Systems
The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...
24. CLOSEUP OF MOUNT FOR F1 ENGINE ON STATIC TEST ...
24. CLOSE-UP OF MOUNT FOR F-1 ENGINE ON STATIC TEST TOWER WITH STRUCTURAL DYNAMICS TEST STAND IN DISTANCE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Next-generation foundations for special trackwork : phase I.
DOT National Transportation Integrated Search
2013-02-01
This report reviews the dynamic load environment and failure modes of special trackwork frog foundations. Key measurements taken under a 39,000-pound wheel load traffic at the Facility for Accelerated Service Testing were used to develop and calibrat...
View of parking (resting) frame that supported the Shuttle assembly ...
View of parking (resting) frame that supported the Shuttle assembly when the hydrodynamic supports were not engaged (removed from structure). - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Group dynamics challenges: Insights from Biosphere 2 experiments
NASA Astrophysics Data System (ADS)
Nelson, Mark; Gray, Kathelin; Allen, John P.
2015-07-01
Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews.
Group dynamics challenges: Insights from Biosphere 2 experiments.
Nelson, Mark; Gray, Kathelin; Allen, John P
2015-07-01
Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality
NASA Technical Reports Server (NTRS)
Buehrle, Ralph David
1997-01-01
The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal approach, a method using measured vibration amplitudes and measured or calculated modal characteristics of the model system is developed to correct for dynamic bias errors in the model attitude measurements. The correction method is verified through dynamic response tests on two model systems and actual wind tunnel test data.
NASA Technical Reports Server (NTRS)
Edwards, H. D.
1976-01-01
Data collected by the Georgia Tech Radio Meteor Wind Facility during the fall and winter of 1975 are analyzed indicating a relationship between lower thermospheric circulation at mid latitudes and polar stratospheric dynamics. Techniques of measurement of mixing processes in the upper atmosphere and the interpretation of those measurements are described along with a diffusion simulation program based on the Global Reference Atmosphere program.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Investigation of the heavy-ion mode in the FAIR High Energy Storage Ring
NASA Astrophysics Data System (ADS)
Kovalenko, O.; Dolinskii, O.; Litvinov, Yu A.; Maier, R.; Prasuhn, D.; Stöhlker, T.
2015-11-01
High energy storage ring (HESR) as a part of the future accelerator facility FAIR (Facility for Antiproton and Ion Research) will serve for a variety of internal target experiments with high-energy stored heavy ions (SPARC collaboration). Bare uranium is planned to be used as a primary beam. Since a storage time in some cases may be significant—up to half an hour—it is important to examine the high-order effects in the long-term beam dynamics. A new ion optics specifically for the heavy ion mode of the HESR is developed and is discussed in this paper. The subjects of an optics design, tune working point and a dynamic aperture are addressed. For that purpose nonlinear beam dynamics simulations are carried out. Also a flexibility of the HESR ion optical lattice is verified with regard to various experimental setups. Specifically, due to charge exchange reactions in the internal target, secondary beams, such as hydrogen-like and helium-like uranium ions, will be produced. Thus the possibility of separation of these secondary ions and the primary {{{U}}}92+ beam is presented with different internal target locations.
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1994-01-01
The research conducted supported two facilities at NASA Ames Research Center: the Hypervelocity Free-Flight Aerodynamic Facility and the 16-Inch Shock Tunnel. During the grant period, a computerized film-reading system was developed, and five- and six-degree-of-freedom parameter-identification routines were written and successfully implemented. Studies of flow separation were conducted, and methods to extract phase shift information from finite-fringe interferograms were developed. Methods for constructing optical images from Computational Fluid Dynamics solutions were also developed, and these methods were used for one-to-one comparisons of experiment and computations.
In-space research, technology and engineering experiments and Space Station
NASA Technical Reports Server (NTRS)
Tyson, Richard; Gartrell, Charles F.
1988-01-01
The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.
Agreements/subagreements Applicable to Wallops, 12 Nov. 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The status of space science agreements are noted. A general overview of the Wallops Flight Facility (WFF) is given. The geography, history, and mission of the facility are briefly surveyed. Brief accounts are given of NASA earth science activities at the WFF, including atmospheric dynamics, atmospheric optics, ocean physics, microwave altimetry, ocean color research, wind-wave-current interaction, flight support activities, the Sounding Rocket Program, and the NASA Balloon Program. Also discussed are the WFF launch range, the research airport, aircraft airborne science, telemetry, data systems, communications, and command and control.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert
2009-01-01
A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
NASA Technical Reports Server (NTRS)
Lightsey, W. D.
1990-01-01
A digital computer simulation is used to determine if the extreme ultraviolet explorer (EUVE) reaction wheels can provide sufficient torque and momentum storage capability to meet the space infrared telescope facility (SIRTF) maneuver requirements. A brief description of the pointing control system (PCS) and the sensor and actuator dynamic models used in the simulation is presented. A model to represent a disturbance such as fluid sloshing is developed. Results developed with the simulation, and a discussion of these results are presented.
Evaluation of electronic speed limit signs on US 30.
DOT National Transportation Integrated Search
2011-09-01
This study documents the speed : reduction impacts of two dynamic, : electronic school zone speed limit signs : at United Community Schools between : Ames and Boone, Iowa. The school : facility is situated along US Highway 30, : a rural four-lane div...
View of first level, north access, from west. Hoist motors ...
View of first level, north access, from west. Hoist motors for 200-ton derrick with "American" label in mid-ground right of center. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds
Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn; ...
2016-02-18
In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less
Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn
In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
NASA Astrophysics Data System (ADS)
Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling
2017-07-01
The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.
The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation
NASA Technical Reports Server (NTRS)
Narici, L.; Belli, F.; Bidoli, V.; Casolino, M.; De Pascale, M. P.; Di Fino, L.; Furano, G.; Modena, I.; Morselli, A.; Picozza, P.;
2004-01-01
The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation.
Narici, L; Belli, F; Bidoli, V; Casolino, M; De Pascale, M P; Di Fino, L; Furano, G; Modena, I; Morselli, A; Picozza, P; Reali, E; Rinaldi, A; Ruggieri, D; Sparvoli, R; Zaconte, V; Sannita, W G; Carozzo, S; Licoccia, S; Romagnoli, P; Traversa, E; Cotronei, V; Vazquez, M; Miller, J; Salnitskii, V P; Shevchenko, O I; Petrov, V P; Trukhanov, K A; Galper, A; Khodarovich, A; Korotkov, M G; Popov, A; Vavilov, N; Avdeev, S; Boezio, M; Bonvicini, W; Vacchi, A; Zampa, N; Mazzenga, G; Ricci, M; Spillantini, P; Castellini, G; Vittori, R; Carlson, P; Fuglesang, C; Schardt, D
2004-01-01
The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
1992-06-01
The first United States Microgravity Laboratory (USML-1) provided scientific research in materials science, fluid dynamics, biotechnology, and combustion science in a weightless environment inside the Spacelab module. This photograph is a close-up view of the Glovebox in operation during the mission. The Spacelab Glovebox, provided by the European Space Agency, offers experimenters new capabilities to test and develop science procedures and technologies in microgravity. It enables crewmembers to handle, transfer, and otherwise manipulate materials in ways that are impractical in the open Spacelab. The facility is equipped with three doors: a central port through which experiments are placed in the Glovebox and two glovedoors on both sides with an attachment for gloves or adjustable cuffs and adapters for cameras. The Glovebox has an enclosed compartment that offers a clean working space and minimizes the contamination risks to both Spacelab and experiment samples. Although fluid containment and ease of cleanup are major benefits provided by the facility, it can also contain powders and bioparticles; toxic, irritating, or potentially infectious materials; and other debris produced during experiment operations. The facility is equipped with photographic/video capabilities and permits mounting a microscope. For the USML-1 mission, the Glovebox experiments fell into four basic categories: fluid dynamics, combustion science, crystal growth, and technology demonstration. The USML-1 flew aboard the STS-50 mission in June 1992.
Neutron Radiography and Computed Tomography at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raine, Dudley A. III; Hubbard, Camden R.; Whaley, Paul M.
1997-12-31
The capability to perform neutron radiography and computed tomography is being developed at Oak Ridge National Laboratory. The facility will be located at the High Flux Isotope Reactor (HFIR), which has the highest steady state neutron flux of any reactor in the world. The Monte Carlo N-Particle transport code (MCNP), versions 4A and 4B, has been used extensively in the design phase of the facility to predict and optimize the operating characteristics, and to ensure the safety of personnel working in and around the blockhouse. Neutrons are quite penetrating in most engineering materials and can be useful to detect internalmore » flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant or a metal hydride, are relatively opaque to neutron transmission. Thus, neutron based tomography or radiography is ideal to image their presence. The source flux also provides unparalleled flexibility for future upgrades, including real time radiography where dynamic processes can be observed. A novel tomography detector has been designed using optical fibers and digital technology to provide a large dynamic range for reconstructions. Film radiography is also available for high resolution imaging applications. This paper summarizes the results of the design phase of this facility and the potential benefits to science and industry.« less
Complex Plasmas under free fall conditions aboard the International Space Station
NASA Astrophysics Data System (ADS)
Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus
2017-10-01
Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Y.; Smith, D. L.; Nuclear Engineering Division
2010-04-28
The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried outmore » there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.« less
Shock induced spall fracture in polycrystalline copper
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Rav, Amit; Sur, Amit; Joshi, K. D.; Gupta, Satish C.
2014-04-01
The plate impact experiments have been conducted on commercially available 99.99% pure polycrystalline samples of copper using single stage gas gun facility. The free surface velocity history of the sample plate measured using VISAR instrument is utilized to determine the dynamic yield strength and spall strength of copper. The dynamic yield strength and spall strength of polycrystalline copper sample has been determined to be 0.14 GPa and 1.32 GPa, respectively with corresponding strain rates of the order of 104/s.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.
1980-01-01
A comparison was made between ground facility measurements, the aerodynamic design data book values, and the dynamic damping derivatives extracted from the space shuttle orbiter approach and landing flight tests. The comparison covers an angle of attack range from 2 deg to 10 deg at subsonic Mach numbers. The parameters of pitch, yaw, and roll damping, as well as the yawing moment due to rolling velocity and rolling moment due to yawing velocity are compared.
Dynamic Kinetic Asymmetric Transformations of β-Stereogenic-α-Keto Esters via Direct Aldolization
Corbett, Michael T.; Johnson, Jeffrey S.
2014-01-01
Dynamic kinetic asymmetric transformations (DyKAT) of racemic β-bromo-α-keto esters via direct aldolization of nitromethane and acetone provide access to fully substituted α-glycolic acid derivatives bearing a β-stereocenter. The aldol adducts are obtained in excellent yield with high relative and absolute stereocontrol under mild reaction conditions. Mechanistic studies determined that the reactions proceed through a facile catalyst-mediated racemization of the β-bromo-α-keto esters under a DyKAT Type I manifold. PMID:24222195
Inertial Confinement Fusion as an Extreme Example of Dynamic Compression
NASA Astrophysics Data System (ADS)
Moses, E.
2013-06-01
Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
Overview of the solar dynamic ground test demonstration program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1993-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).
Development and Integration of Control System Models
NASA Technical Reports Server (NTRS)
Kim, Young K.
1998-01-01
The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.
NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6
NASA Technical Reports Server (NTRS)
1989-01-01
Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.
A Bibliography of Transonic Dynamics Tunnel (TDT) Publications
NASA Technical Reports Server (NTRS)
Doggett, Robert V.
2016-01-01
The Transonic Dynamics Tunnel (TDT) at the National Aeronautics and Space Administration's (NASA) Langley Research Center began research operations in early 1960. Since that time, over 600 tests have been conducted, primarily in the discipline of aeroelasticity. This paper presents a bibliography of the publications that contain data from these tests along with other reports that describe the facility, its capabilities, testing techniques, and associated research equipment. The bibliography is divided by subject matter into a number of categories. An index by author's last name is provided.
Quick-look guide to the crustal dynamics project's data information system
NASA Technical Reports Server (NTRS)
Noll, Carey E.; Behnke, Jeanne M.; Linder, Henry G.
1987-01-01
Described are the contents of the Crustal Dynamics Project Data Information System (DIS) and instructions on the use of this facility. The main purpose of the DIS is to store all geodetic data products acquired by the Project in a central data bank and to maintain information about the archive of all Project-related data. Access and use of the DIS menu-driven system is described as well as procedures for contacting DIS staff and submitting data requests.
A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring
NASA Technical Reports Server (NTRS)
Johnson, Steven A.
1990-01-01
A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.
Ensemble Averaged Probability Density Function (APDF) for Compressible Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2012-01-01
In this paper, we present a concept of the averaged probability density function (APDF) for studying compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for APDF can be derived in two ways. One is the traditional way that starts from the transport equation of FG-PDF, in which the compressible Navier- Stokes equations are embedded. The resulting transport equation of APDF is then in a traditional form that contains conditional means of all terms from the right hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means are new unknown quantities that need to be modeled. Another way of deriving the transport equation of APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport equation of APDF derived from this approach appears in a closed form without any need for additional modeling. The methodology of ensemble averaging presented in this paper can be extended to other averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of compressible turbulent reacting flows.
Transient Pressure Test Article Test Program
NASA Technical Reports Server (NTRS)
Vibbart, Charles M.
1989-01-01
The Transient Pressure Test Article (TPTA) test program is being conducted at a new test facility located in the East Test Area at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This facility, along with the special test equipment (STE) required for facility support, was constructed specifically to test and verify the sealing capability of the Redesigned Solid Rocket Motor (RSRM) field, igniter, and nozzle joints. The test article consists of full scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The TPTA is pressurized by igniting a propellant cartridge capable of inducing a pressure rise rate which stimulates the ignition transient that occurs during launch. Dynamic loads are applied during the pressure cycle to simulate external tank attach (ETA) strut loads present on the ETA ring. Sealing ability of the redesigned joints is evaluated under joint movement conditions produced by these combined loads since joint sealing ability depends on seal resilience velocity being greater than gap opening velocity. Also, maximum flight dynamic loads are applied to the test article which is either pressurized to 600 psia using gaseous nitrogen (GN2) or applied to the test article as the pressure decays inside the test article on the down cycle after the ignition transient cycle. This new test facility is examined with respect to its capabilities. In addition, both the topic of test effectiveness versus space vehicle flight performance and new aerospace test techniques, as well as a comparison between the old SRM design and the RSRM are presented.
National Transonic Facility model and model support vibration problems
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.
1990-01-01
Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
NASA Technical Reports Server (NTRS)
Workman, G. L.
1986-01-01
Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.
An applicational process for dynamic balancing of turbomachinery shafting
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1990-01-01
The NASA Lewis Research Center has developed and implemented a time-efficient methodology for dynamically balancing turbomachinery shafting. This methodology minimizes costly facility downtime by using a balancing arbor (mandrel) that simulates the turbomachinery (rig) shafting. The need for precision dynamic balancing of turbomachinery shafting and for a dynamic balancing methodology is discussed in detail. Additionally, the inherent problems (and their causes and effects) associated with unbalanced turbomachinery shafting as a function of increasing shaft rotational speeds are discussed. Included are the design criteria concerning rotor weight differentials for rotors made of different materials that have similar parameters and shafting. The balancing methodology for applications where rotor replaceability is a requirement is also covered. This report is intended for use as a reference when designing, fabricating, and troubleshooting turbomachinery shafting.
Shock-driven fluid-structure interaction for civil design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Stephen L; Deiterding, Ralf
The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering.more » Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.« less
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.
Review of Canadian Light Source facilities for biological applications
NASA Astrophysics Data System (ADS)
Grochulski, Pawel; Fodje, Michel; Labiuk, Shaun; Wysokinski, Tomasz W.; Belev, George; Korbas, Malgorzata; Rosendahl, Scott M.
2017-11-01
The newly-created Biological and Life Sciences Department at the Canadian Light Source (CLS) encompasses four sets of beamlines devoted to biological studies ranging in scope from the atomic scale to cells, tissues and whole organisms. The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines devoted primarily to crystallographic studies of proteins and other macromolecules. The Mid-Infrared Spectromicroscopy (Mid-IR) beamline focusses on using infrared energy to obtain biochemical, structural and dynamical information about biological systems. The Bio-Medical Imaging and Therapy (BMIT) facility consists of two beamlines devoted to advanced imaging and X-ray therapy techniques. The Biological X-ray Absorption Spectroscopy (BioXAS) facility is being commissioned and houses three beamlines devoted to X-ray absorption spectroscopy and multi-mode X-ray fluorescence imaging. Together, these beamlines provide CLS Users with a powerful array of techniques to study today's most pressing biological questions. We describe these beamlines along with their current powerful features and envisioned future capabilities.
Kuipers during replacement of the Marangoni Surface Fluid Dynamics Experiment
2012-03-15
ISS030-E-142827 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Federal Lands Highway Project Development and Design Manual - June 1996 Metric Revision
DOT National Transportation Integrated Search
1978-05-01
The experiment is planned for low-volume rural intersections on or near the Maine Facility. A number of remedial aids, both active and dynamic, are tested. The devices are designed either to focus the motorist's attention on existing conditions or to...
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2002-01-01
This paper presents viewgraphs of NASA's strategic and fundamental research program at the Office of Biological and Physical Research (OBPR). The topics include: 1) Colloid-Polymer Samples; 2) Pool Boiling Experiment; 3) The Dynamics of Miscible Interfaces: A Space Flight Experiment (MIDAS); and 4) ISS and Ground-based Facilities.
Dynamic Characteristics of a Jet Engine Test Facility Air Supply
1983-12-01
Using heaters, compressors, and turboexpanders , ASTF creates four separate flow legs with different pressures and temperatures in each leg. The...of open and closed Svalves, and including ducting up to the compressors and turboexpanders . 90 ’I - ..- - ~, ~ ......- S. -. ~ I, 6. More experimental
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
Beam-Dynamics Analysis of Long-Range Wakefield Effects on the SCRF Cavities at the Fast Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young-Min; Bishofberger, Kip; Carlsten, Bruce
Long-range wakefields in superconducting RF (SCRF) cavities create complicated effects on beam dynamics in SCRF-based FEL beamlines. The driving bunch excites effectively an infinite number of structure modes (including HOMs) which oscillate within the SCRF cavity. Couplers with loads are used to damp the HOMs. However, these HOMs can persist for long periods of time in superconducting structures, which leads to long-range wakefields. Clear understanding of the long-range wakefield effects is a critical element for risk mitigation of future SCRF accelerators such as XFEL at DESY, LCLS-II XFEL, and MaRIE XFEL. We are currently developing numerical tools for simulating long-rangemore » wakefields in SCRF accelerators and plan to experimentally verify the tools by measuring these wakefields at the Fermilab Accelerator Science and Technology (FAST) facility. This paper previews the experimental conditions at the FAST 50 MeV beamline based on the simulation results.« less
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.
2015-01-01
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...
2015-03-02
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sio, H.; Séguin, F. H.; Frenje, J. A.
Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D 3He-, D 2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10 2 for obtaining the spectral shape, and by 10 3 for mean energy (ρR) measurement, corresponding to proton fluences of 10 8 and 10 9 cm -2, respectively. Finally, using this new technique, ρR asymmetries can be measuredmore » during both shock and compression burn (proton yield ~10 8 and ~10 12, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm 2.« less
Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)
NASA Technical Reports Server (NTRS)
Kakad, Yogendra P.
1992-01-01
This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.
Opportunities for Materials Science and Biological Research at the OPAL Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, S. J.
Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less
Expansion tunnel characterization and development of non-intrusive microwave plasma diagnostics
NASA Astrophysics Data System (ADS)
Dufrene, Aaron T.
The focus of this research is the development of non-intrusive microwave diagnostics for characterization of expansion tunnels. The main objectives of this research are to accurately characterize the LENS XX expansion tunnel facility, develop non-intrusive RF diagnostics that will work in short-duration expansion tunnel testing, and to determine plasma properties and other information that might otherwise be unknown, less accurate, intrusive, or more difficult to determine through conventional methods. Testing was completed in LENS XX, a new large-scale expansion tunnel facility at CUBRC, Inc. This facility is the largest known expansion tunnel in the world with an inner diameter of 24 inches, a 96 inch test section, and an end-to-end length of more than 240 ft. Expansion tunnels are currently the only facilities capable of generating high-enthalpy test conditions with minimal or no freestream dissociation or ionization. However, short test times and freestream noise at some conditions have limited development of these facilities. To characterize the LENS XX facility, the first step is to evaluate the facility pressure, vacuum, temperature, and other mechanical restrictions to derive a theoretical testing parameter space. Test condition maps are presented for a variety of parameters and gases based on 1D perfect gas dynamics. Test conditions well beyond 10 km/s or 50 MJ/kg are identified with minimum test times of 200 us. Additionally, a four-chamber expansion tube configuration is considered for extending the stagnation enthalpy range of the facility even further. A microwave shock speed diagnostic measures primary and secondary shock speeds accurately every 30 in. down the entire length of the facility resulting in a more accurate determination of freestream conditions required for computational comparisons. The high resolution of this measurement is used to assess shock speed attenuation as well as secondary diaphragm performance. Negligible shock attenuation is reported over a large range of test conditions and gases, and this is attributed to the large diameter of the LENS XX driven and expansion tubes. Shock tube boundary layer growth solutions based on Mirels's theory confirm LENS XX test conditions should not be adversely affected by viscous effects. Mirels's theory is applied to both large- and small-scale expansion tube facilities to determine displacement thicknesses, and quasi one-dimensional solutions show how viscous effects become significant in long, smaller diameter facilities. In collaboration with ElectroDynamic Applications, Inc., (EDA) plasma frequency measurements are made in two different configurations using a swept microwave frequency power reflection measurement. Electric field characteristics of EDA's probe are presented and show current probe design is ideal for measuring properties of shock layers that are 1-2 cm thick. Electron density and radio frequency communication characteristics through a shock layer on the lee side of a capsule up to 8.9 km/s and in a stagnation configuration up to 5.4 km/s in air are reported.
Prospects for resolving hazardous-waste-siting disputes through negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, G.; Miller, D.S.
The impasse created by public opposition to siting hazardous waste facilities has prompted several efforts to reform the siting process, but most of the approaches have failed because they do not deal fully with causes and dynamics of public opposition. Negotiation, with offers of appropriate compensation for actual and potential losses, appears to offer a more direct and equitable response to this opposition than do traditional approaches. Negotiation allows the parties to address the problem of unequal cost and benefit distribution associated with siting hazardous waste facilities. There are several examples of negotiated siting agreements. 79 references.
Phase change thermal storage for a solar total energy system
NASA Technical Reports Server (NTRS)
Rice, R. E.; Cohen, B. M.
1978-01-01
An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opalka, K.O.
1989-08-01
The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
NASA Technical Reports Server (NTRS)
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, R.; Wang, X.J.
BY WRITING BOTH A CUSTOM WINDOWS(NTTM) DYNAMIC LINK LIBRARY AND GENERIC COMPANION SERVER SOFTWARE, THE INTRINSIC FUNCTIONS OF MATHSOFT MATHCAD(TM) HAVE BEEN EXTENDED WITH NEW CAPABILITIES WHICH PERMIT DIRECT ACCESS TO THE CONTROL SYSTEM DATABASES OF BROOKHAVEN NATIONAL LABORATORY ACCELERATOR TEST FACILITY. UNDER THIS SCHEME, A MATHCAD WORKSHEET EXECUTING ON A PERSONAL COMPUTER BECOMES A CLIENT WHICH CAN BOTH IMPORT AND EXPORT DATA TO A CONTROL SYSTEM SERVER VIA A NETWORK STREAM SOCKET CONNECTION. THE RESULT IS AN ALTERNATIVE, MATHEMATICALLY ORIENTED VIEW OF CONTROLLING THE ACCELERATOR INTERACTIVELY.
Regional differences in the potential exposure of US minority populations to hazardous facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieves, L.A.; Nieves, A.L.
1992-01-01
In the literature that examines the distribution of environmental disamenities of various types, there is considerable documentation that minority groups and lower income groups are more likely to be exposed. Such differential exposure has been attributed to environmental racism'' by some authors, but there has been no systematic investigation of the factors and dynamics underlying this exposure pattern. This study examines regional differences in the proximity of African-American, Hispanics, Asians, and non-Hispanic Whites to a broad range facility types and explores the degree to which this may be related to urban and income factors.
A planar reacting shear layer system for the study of fluid dynamics-combustion interaction
NASA Technical Reports Server (NTRS)
Marek, C. J.; Chang, C. T.; Ghorashi, B.; Wey, C. C.; Wey, C.; Mularz, E. J.
1989-01-01
A versatile planar reacting shear layer facility is constructed at NASA-Lewis. The research objectives, as well as design, instrumentations and the operational procedures developed for the system are described. The fundamental governing equations and the type of quantitative information that are needed from experiments are described. Additionally, a review of earlier work is presented. Whenever appropriate, comparisons are made with similar systems in other facilities and the main differences are described. Finally, the nonintrusive measurement techniques (PLIF, PMS, LDV, and Schlieren photography) and the type of experiments that are planned are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, K. G.; Wetteland, C. J.; Cao, G.
2013-04-19
The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less
Póvoa, P; Oehmen, A; Inocêncio, P; Matos, J S; Frazão, A
2017-05-01
The main objective of this paper is to demonstrate the importance of applying dynamic modelling and real energy prices on a full scale water resource recovery facility (WRRF) for the evaluation of control strategies in terms of energy costs with aeration. The Activated Sludge Model No. 1 (ASM1) was coupled with real energy pricing and a power consumption model and applied as a dynamic simulation case study. The model calibration is based on the STOWA protocol. The case study investigates the importance of providing real energy pricing comparing (i) real energy pricing, (ii) weighted arithmetic mean energy pricing and (iii) arithmetic mean energy pricing. The operational strategies evaluated were (i) old versus new air diffusers, (ii) different DO set-points and (iii) implementation of a carbon removal controller based on nitrate sensor readings. The application in a full scale WRRF of the ASM1 model coupled with real energy costs was successful. Dynamic modelling with real energy pricing instead of constant energy pricing enables the wastewater utility to optimize energy consumption according to the real energy price structure. Specific energy cost allows the identification of time periods with potential for linking WRRF with the electric grid to optimize the treatment costs, satisfying operational goals.
Chen, Shuo; Bi, Xiaoping; Sun, Lijie; Gao, Jin; Huang, Peng; Fan, Xianqun; You, Zhengwei; Wang, Yadong
2016-08-17
Biodegradable and biocompatible elastomers (bioelastomers) could resemble the mechanical properties of extracellular matrix and soft tissues and, thus, are very useful for many biomedical applications. Despite significant advances, tunable bioelastomers with easy processing, facile biofunctionalization, and the ability to withstand a mechanically dynamic environment have remained elusive. Here, we reported new dynamic hydrogen-bond cross-linked PSeD-U bioelastomers possessing the aforementioned features by grafting 2-ureido-4[1H]-pyrimidinones (UPy) units with strong self-complementary quadruple hydrogen bonds to poly(sebacoyl diglyceride) (PSeD), a refined version of a widely used bioelastomer poly(glycerol sebacate) (PGS). PSeD-U polymers exhibited stronger mechanical strength than their counterparts of chemically cross-linked PSeD and tunable elasticity by simply varying the content of UPy units. In addition to the good biocompatibility and biodegradability as seen in PSeD, PSeD-U showed fast self-healing (within 30 min) at mild conditions (60 °C) and could be readily processed at moderate temperature (90-100 °C) or with use of solvent casting at room temperature. Furthermore, the free hydroxyl groups of PSeD-U enabled facile functionalization, which was demonstrated by the modification of PSeD-U film with FITC as a model functional molecule.
Modal Analysis with the Mobile Modal Testing Unit
NASA Technical Reports Server (NTRS)
Wilder, Andrew J.
2013-01-01
Recently, National Aeronautics and Space Administration's (NASA's) White Sands Test Facility (WSTF) has tested rocket engines with high pulse frequencies. This has resulted in the use of some of WSTF's existing thrust stands, which were designed for static loading, in tests with large dynamic forces. In order to ensure that the thrust stands can withstand the dynamic loading of high pulse frequency engines while still accurately reporting the test data, their vibrational modes must be characterized. If it is found that they have vibrational modes with frequencies near the pulsing frequency of the test, then they must be modified to withstand the dynamic forces from the pulsing rocket engines. To make this determination the Mobile Modal Testing Unit (MMTU), a system capable of determining the resonant frequencies and mode shapes of a structure, was used on the test stands at WSTF. Once the resonant frequency has been determined for a test stand, it can be compared to the pulse frequency of a test engine to determine whether or not that stand can avoid resonance and reliably test that engine. After analysis of test stand 406 at White Sands Test Facility, it was determined that natural frequencies for the structure are located around 75, 125, and 240 Hz, and thus should be avoided during testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, P.; Olson, R.; Wilkowski, O.G.
1997-06-01
This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less
NASA Technical Reports Server (NTRS)
Adams, M. L.; Yang, T.; Pace, S. E.
1989-01-01
A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Cris William; Barber, John L.; Kober, Edward Martin
The Matter-Radiation Interactions in Extremes project will build the experimental facility for the time-dependent control of dynamic material performance. An x-ray free electron laser at up to 42-keV fundamental energy and with photon pulses down to sub-nanosecond spacing, MaRIE 1.0 is designed to meet the challenges of time-dependent mesoscale materials science. Those challenges will be outlined, the techniques of coherent diffractive imaging and dynamic polycrystalline diffraction described, and the resulting requirements defined for a coherent x-ray source. The talk concludes with the role of the MaRIE project and science in the future.
Dynamic pathways for viral capsid assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, Michael F.; Chandler, David
2006-02-09
We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss themore » relationship between these mechanisms and experimental evaluations of capsid assembly processes.« less
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
Oral dosing of chemical indicators for in vivo monitoring of Ca2+ dynamics in insect muscle.
Ferdinandus; Arai, Satoshi; Ishiwata, Shin'ichi; Suzuki, Madoka; Sato, Hirotaka
2015-01-01
This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects.
Oral Dosing of Chemical Indicators for In Vivo Monitoring of Ca2+ Dynamics in Insect Muscle
Ferdinandus; Arai, Satoshi; Ishiwata, Shin’ichi; Suzuki, Madoka; Sato, Hirotaka
2015-01-01
This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects. PMID:25590329
2006-10-18
Ames Hypersonic Free Flight Aerodynamic Facility is used for research on gas dynamic problems of atmospheric entry. High relative speeds are achieved by launching models (in sabots if necessary) from high-speed guns into a countercurrent hypersonic air stream (14,000 ft/sec) driven by combustion-powered shock tube.
3. VIEW LOOKING NORTH FROM LEFT TO RIGHT BAYS 5 ...
3. VIEW LOOKING NORTH FROM LEFT TO RIGHT BAYS 5 & 6 OF O-RING FACILITY, POWER PLANT. TEST STAND SUPPORT BUILDING, (REMAINING WALLS) DYNAMIC TEST TOWERS IN BACKGROUND (BOTH VERSIONS). - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
DOT National Transportation Integrated Search
2013-08-01
Many transportation facility structures in Wisconsin are founded on driven round, closed-end, steel, pipe piles. The piles are driven to capacity and then filled with concrete. The Wisconsin Department of Transportation (WisDOT) has designed and driv...
View of first level from east looking at the central ...
View of first level from east looking at the central bay. Interstitial structure is in the foreground center, main structure is in background left and right of view. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Galileo Station Keeping Strategy
NASA Technical Reports Server (NTRS)
Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel
2007-01-01
This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.
Overview of hypersonic CFD code calibration studies
NASA Technical Reports Server (NTRS)
Miller, Charles G.
1987-01-01
The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.
National Facilities Study. Volume 1: Facilities Inventory
NASA Technical Reports Server (NTRS)
1994-01-01
The inventory activity was initiated to solve the critical need for a single source of site specific descriptive and parametric data on major public and privately held aeronautics and aerospace related facilities. This a challenging undertaking due to the scope of the effort and the short lead time in which to assemble the inventory and have it available to support the task group study needs. The inventory remains dynamic as sites are being added and the data is accessed and refined as the study progresses. The inventory activity also included the design and implementation of a computer database and analytical tools to simplify access to the data. This volume describes the steps which were taken to define the data requirements, select sites, and solicit and acquire data from them. A discussion of the inventory structure and analytical tools is also provided.
A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability
NASA Technical Reports Server (NTRS)
Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.
2011-01-01
A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.
Free-jet testing at Mach 3.44 in GASL's aero/thermo test facility
NASA Technical Reports Server (NTRS)
Cresci, D.; Koontz, S.; Tsai, C. Y.
1993-01-01
A supersonic blow-down tunnel has been used to conduct tests of a hydrogen burning ramjet engine at simulated Mach 3.44 conditions. A pebble-bed type storage heater, a free standing test cabin, and a 48 foot diameter vacuum sphere are used to simulate the flight conditions at nearly matched enthalpy and dynamic pressure. A two dimensional nozzle with a nominal 13.26 inch square exit provides a free-jet test environment. The facility used for these tests is described as are the results of a flow calibration performed on the M = 3.44 nozzle. Some facility/model interactions are discussed as are the eventual hardware modifications and operational procedures required to alleviate the interactions. Some engine test results are discussed briefly to document the success of the test program.
NASA Astrophysics Data System (ADS)
James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.
2018-03-01
Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.
Social factors influence ovarian acyclicity in captive African elephants (Loxodonta africana).
Freeman, Elizabeth W; Guagnano, Greg; Olson, Deborah; Keele, Mike; Brown, Janine L
2009-01-01
Nearly one-third of reproductive age African elephants in North America that are hormonally monitored fail to exhibit estrous cycle activity, which exacerbates the nonsustainability of the captive population. Three surveys were distributed to facilities housing female African elephants to determine how social and environmental variables contribute to cyclicity problems. Forty-six facilities returned all three surveys providing information on 90% of the SSP population and 106 elephants (64 cycling, 27 noncycling and 15 undetermined). Logistic analyses found that some physiological and social history variables were related to ovarian acyclicity. Females more likely to be acyclic had a larger body mass index and had resided longer at a facility with the same herdmates. Results suggest that controlling the weight of an elephant might be a first step to helping mitigate estrous cycle problems. Data further show that transferring females among facilities has no major impact on ovarian activity. Last, social status appears to impact cyclicity status; at 19 of 21 facilities that housed both cycling and noncycling elephants, the dominant female was acyclic. Further studies on how social and environmental dynamics affect hormone levels in free-living, cycling elephants are needed to determine whether acyclicity is strictly a captivity-related phenomenon.
NASA Astrophysics Data System (ADS)
Seyedhosseini, Seyed Mohammad; Makui, Ahmad; Shahanaghi, Kamran; Torkestani, Sara Sadat
2016-09-01
Determining the best location to be profitable for the facility's lifetime is the important decision of public and private firms, so this is why discussion about dynamic location problems (DLPs) is a critical significance. This paper presented a comprehensive review from 1968 up to most recent on published researches about DLPs and classified them into two parts. First, mathematical models developed based on different characteristics: type of parameters (deterministic, probabilistic or stochastic), number and type of objective function, numbers of commodity and modes, relocation time, number of relocation and relocating facilities, time horizon, budget and capacity constraints and their applicability. In second part, It have been also presented solution algorithms, main specification, applications and some real-world case studies of DLPs. At the ends, we concluded that in the current literature of DLPs, distribution systems and production-distribution systems with simple assumption of the tackle to the complexity of these models studied more than any other fields, as well as the concept of variety of services (hierarchical network), reliability, sustainability, relief management, waiting time for services (queuing theory) and risk of facility disruption need for further investigation. All of the available categories based on different criteria, solution methods and applicability of them, gaps and analysis which have been done in this paper suggest the ways for future research.
Integrating multiple scientific computing needs via a Private Cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.
2014-06-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
Centaur Standard Shroud Test in the Space Power Facility
1973-08-21
The Centaur Standard Shroud prepared for a jettison test in the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. In the late 1960s NASA engineers were planning the ambitious new Viking mission to send two rover vehicles to the surface of Mars. The Viking rovers were the heaviest payloads ever attempted by the Centaur second-stage rocket. Each Viking was over three times the weight of the Atlas-Centaur’s previous heaviest payload. Consequently, NASA engineers sought to mate the Centaur with the more powerful Titan III booster for the launches. General Dynamics created a new version of the Centaur, D-1T, specifically for Titan. The D-1T’s most significant modification was a completely new shroud designed by Lockheed, called the Centaur Standard Shroud. The conical two-piece covering encapsulated the payload to protect it against adverse conditions and improve the aerodynamics as the launch vehicle passed through the atmosphere. The shroud would be jettisoned when the vehicle reached the edge of space. A string of tests were conducted in Plum Brook’s Nuclear Rocket Dynamics and Control Facility (B-3) during 1973 and 1974. The new shroud performed flawlessly during the actual Viking launches in 1975. Viking 1 and 2 operated on the Martian surface until November 1982 and April 1980, respectively.
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
NASA Technical Reports Server (NTRS)
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
Modeling of dynamic effects of a low power laser beam
NASA Technical Reports Server (NTRS)
Lawrence, George N.; Scholl, Marija S.; Khatib, AL
1988-01-01
Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
Thermal energy storage for organic Rankine cycle solar dynamic space power systems
NASA Astrophysics Data System (ADS)
Heidenreich, G. R.; Parekh, M. B.
An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.
Chemical Remote Sensing ’Proof of Concept’,
1981-03-31
A122 579 CHEMICAL REMOTE SENSING ;PROOF OF CONCEPT’(U) UTAH 1/I \\ STATE UNIV LOGAN ELECTRO-DYNAMICS LAB BARTSCHI ET AL. 31 MAR 81 SCIENTIFC-8...STANDARDS -I963-A AFGL-TR-81-021 2 CHEMICAL REMOTE SENSING "Proof of Concept" B.Y. Bartschi F. P. DelGreco M. Ahmadjian Electro-Dynamics Laboratories...Applications of remote sensing 2 2.2 Program Development 4 -O 3.1 Optical Layout 6 3.2 Block Diagram of Sensor System 7 3.3 Sensor Facility 10 3.4
Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1994-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.
HARP model rotor test at the DNW. [Hughes Advanced Rotor Program
NASA Technical Reports Server (NTRS)
Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou
1989-01-01
Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.
Aqueous Humor Dynamics of the Brown-Norway Rat
Ficarrotta, Kayla R.; Bello, Simon A.; Mohamed, Youssef H.; Passaglia, Christopher L.
2018-01-01
Purpose The study aimed to provide a quantitative description of aqueous humor dynamics in healthy rat eyes. Methods One eye of 26 anesthetized adult Brown-Norway rats was cannulated with a needle connected to a perfusion pump and pressure transducer. Pressure-flow data were measured in live and dead eyes by varying pump rate (constant-flow technique) or by modulating pump duty cycle to hold intraocular pressure (IOP) at set levels (modified constant-pressure technique). Data were fit by the Goldmann equation to estimate conventional outflow facility (\\begin{document}\
NASA Aeronautics: Research and Technology Program Highlights
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
A fuel cell balance of plant test facility
NASA Astrophysics Data System (ADS)
Dicks, A. L.; Martin, P. A.
Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin
2010-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively.
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1993-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Naumenko, A. P.
2017-08-01
The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.
Phase II : operational and safety-based analyses of varied toll lane configurations.
DOT National Transportation Integrated Search
2016-08-01
The Puerto Rico Dynamic Toll Lane (DTL) is a 6.44 mi (10.4 km) reversible facility within a stretch of freeway PR-22 that operates a congestion pricing system; the first of its kind in the Commonwealth of Puerto Rico. This managed lane system is shar...
NASA Technical Reports Server (NTRS)
Cheng, R. Y. K.
1977-01-01
The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.
Working Towards Educational Transformation through Action Research with Botswana's Music Teachers
ERIC Educational Resources Information Center
Chadwick, Sheelagh
2015-01-01
Contrary to government policy, schooling in Botswana remains largely teacher-centred, with music teaching being no exception. However, other possibilities for classroom dynamics arise under the pressure of practical examinations and when some students have better instrumental facility than their teachers. This article describes initial…
Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover
ERIC Educational Resources Information Center
Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R., Jr.
2004-01-01
Purpose: Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods: Perceptions of administrative climate and communication…
Mullahs, Guards, and Bonyads: An Exploration of Iranian Leadership Dynamics
2009-01-01
Rafsanjani, the foundation became a huge con- glomerate of multiple businesses and industries, including tourism , real estate, agriculture, petrochemicals...facility at Natanz in particular, were made public, there was a clear risk that the IAEA Board of Gover - nors would refer the matter to the UN Security
Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Ameri, Ali
2005-01-01
This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.
1981-04-01
UNCLASSIFIED ORC-81-7 ta. MICROCOP ES LUON’TE MICROCOPY RE.SOLUTION’ TEST CHART -U -ORC 81-7 APRIL 1981 DYNAFIC PRODUCTIn METhORKSARI by RONALD W. SHEPHARD...final outputs may be required for the facilities (activities) of a large production network. Also a compounding of the complexity of an optimization
Track/train dynamics test procedure transfer function test
NASA Technical Reports Server (NTRS)
Vigil, R. A.
1975-01-01
A transfer function vibration test was made on an 80 ton open hopper freight car in an effort to obtain validation data on the car's nonlinear elastic model. Test configuration, handling, test facilities, test operations, and data acquisition/reduction activities necessary to meet the conditions of test requirements are given.
View of the 200ton derrick from east showing the boom ...
View of the 200-ton derrick from east showing the boom on it's rest and both the 200 -ton hoist and the 40-ton hoist ant their respective block and tackle. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance
NASA Astrophysics Data System (ADS)
Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.
2017-12-01
The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview of the vision for the RAPID facility, the equipment that will be available for use, the facility's operations, and opportunities for user training and facility use.
Simiyu, Sheillah; Swilling, Mark; Cairncross, Sandy; Rheingans, Richard
2017-01-11
Shared facilities are not recognised as improved sanitation due to challenges of maintenance as they easily can be avenues for the spread of diseases. Thus there is need to evaluate the quality of shared facilities, especially in informal settlements, where they are commonly used. A shared facility can be equated to a common good whose management depends on the users. If users do not work collectively towards keeping the facility clean, it is likely that the quality may depreciate due to lack of maintenance. This study examined the quality of shared sanitation facilities and used the common pool resource (CPR) management principles to examine the determinants of shared sanitation quality in the informal settlements of Kisumu, Kenya. Using a multiple case study design, the study employed both quantitative and qualitative methods. In both phases, users of shared sanitation facilities were interviewed, while shared sanitation facilities were inspected. Shared sanitation quality was a score which was the dependent variable in a regression analysis. Interviews during the qualitative stage were aimed at understanding management practices of shared sanitation users. Qualitative data was analysed thematically by following the CPR principles. Shared facilities, most of which were dirty, were shared by an average of eight households, and their quality decreased with an increase in the number of households sharing. The effect of numbers on quality is explained by behaviour reflected in the CPR principles, as it was easier to define boundaries of shared facilities when there were fewer users who cooperated towards improving their shared sanitation facility. Other factors, such as defined management systems, cooperation, collective decision making, and social norms, also played a role in influencing the behaviour of users towards keeping shared facilities clean and functional. Apart from hardware factors, quality of shared sanitation is largely due to group behaviour of users. The CPR principles form a crucial lens through which the dynamics of shared sanitation facilities in informal settlements can be understood. Development and policy efforts should incorporate group behaviour as they determine the quality of shared sanitation facilities.
Potential cost-effectiveness of supervised injection facilities in Toronto and Ottawa, Canada.
Enns, Eva A; Zaric, Gregory S; Strike, Carol J; Jairam, Jennifer A; Kolla, Gillian; Bayoumi, Ahmed M
2016-03-01
Supervised injection facilities (legally sanctioned spaces for supervised consumption of illicitly obtained drugs) are controversial public health interventions. We determined the optimal number of facilities in two Canadian cities using health economic methods. Dynamic compartmental model of HIV and hepatitis C transmission through sexual contact and sharing of drug use equipment. Toronto and Ottawa, Canada. Simulated population of each city. Zero to five supervised injection facilities. Direct health-care costs and quality-adjusted life-years (QALYs) over 20 years, discounted at 5% per year; incremental cost-effectiveness ratios. In Toronto, one facility cost $4.1 million and resulted in a gain of 385 QALYs over 20 years, for an incremental cost-effectiveness ratio (ICER) of $10,763 per QALY [95% credible interval (95CrI): cost-saving to $278,311]. Establishing one facility in Ottawa had an ICER of $6127 per QALY (95CrI: cost-saving to $179,272). At a $50,000 per QALY threshold, three facilities would be cost-effective in Toronto and two in Ottawa. The probability that establishing three, four, or five facilities in Toronto was cost-effective was 17, 21, and 41%, respectively. Establishing one, two, or three facilities in Ottawa was cost-effective with 13, 35, and 41% probability, respectively. Establishing no facility was unlikely to be the most cost-effective option (14% in Toronto and 10% in Ottawa). In both cities, results were robust if the reduction in needle-sharing among clients of the facilities was at least 50% and fixed operating costs were less than $2.0 million. Using a $50,000 per quality-adjusted life-years threshold for cost-effectiveness, it is likely to be cost-effective to establish at least three legally sanctioned spaces for supervised injection of illicitly obtained drugs in Toronto, Canada and two in Ottawa, Canada. © 2015 Society for the Study of Addiction.
Particle dynamics and pair production in tightly focused standing wave
NASA Astrophysics Data System (ADS)
Jirka, M.; Klimo, O.; Vranić, M.; Weber, S.; Korn, G.
2017-05-01
With the advent of 10 PW laser facilities, new regimes of laser-matter interaction are opening since effects of quantum electrodynamics, such as electron-positron pair production and cascade development, start to be important. The dynamics of light charged particles, such as electrons and positrons, is affected by the radiation reaction force. This effect can strongly influence the interaction of intense laser pulses with matter since it lowers the energy of emitting particles and transforms their energy to the gamma radiation. Consequently, electron-positron pairs can be generated via Breit-Wheeler process. To study this new regime of interaction, numerical simulations are required. With their help it is possible to predict and study quantum effects which may occur in future experiments at modern laser facilities. In this work we present results of electron interaction with an intense standing wave formed by two colliding laser pulses. Due to the necessity to achieve ultra intense laser field, the laser beam has to be focused to a μm-diameter spot. Since the paraxial approximation is not valid for tight focusing, the appropriate model describing the tightly focused laser beam has to be employed. In tightly focused laser beam the longitudinal component of the electromagnetic field becomes significant and together with the ponderomotive force they affect the dynamics of interacting electrons and also newly generated Breit-Wheeler electron-positron pairs. Using the Particle-In-Cell code we study electron dynamics, gamma radiation and pair production in such a configuration for linear polarization and different types of targets.
Physics through the 1990s: Condensed-matter physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations.
OFF-Stagnation point testing in plasma facility
NASA Astrophysics Data System (ADS)
Viladegut, A.; Chazot, O.
2015-06-01
Reentry space vehicles face extreme conditions of heat flux when interacting with the atmosphere at hypersonic velocities. Stagnation point heat flux is normally used as a reference for Thermal Protection Material (TPS) design; however, many critical phenomena also occur at off-stagnation point. This paper adresses the implementation of an offstagnation point methodology able to duplicate in ground facility the hypersonic boundary layer over a flat plate model. The first analysis using two-dimensional (2D) computational fluid dynamics (CFD) simulations is carried out to understand the limitations of this methodology when applying it in plasma wind tunnel. The results from the testing campaign at VKI Plasmatron are also presented.
Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application
NASA Technical Reports Server (NTRS)
Chapin, W. G.
1986-01-01
A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.
Application of space technology to crustal dynamics and earthquake research
NASA Technical Reports Server (NTRS)
1979-01-01
In cooperation with other Federal government agencies, and the governments of other countries, NASA is undertaking a program of research in geodynamics. The present program activities and plans for extension of these activities in the time period 1979-1985 are described. The program includes operation of observatories for laser ranging to the Moon and to artificial satellites, and radio observatories for very long baseline microwave interferometry (VLBI). These observatories are used to measure polar motion, earth rotation, and tectonic plate movement, and serve as base stations for mobile facilities. The mobile laser ranging and VLBI facilities are used to measure crustal deformation in tectonically active areas.
Space station operations enhancement using tethers
NASA Astrophysics Data System (ADS)
Bekey, I.
1984-10-01
Space tethers represent a tool of unusual versatility for applications to operations involving space stations. The present investigation is concerned with a number of applications which exploit the dynamic, static, and electrodynamic properties of tethers. One of the simplest applications of a tethered system on the Space Station might be that of a remote docking port, allowing the Shuttle to dock with no contamination or disturbance effects. Attention is also given to tethered platforms, a tethered microgravity facility, a tethered space station propellant facility, electrodynamic tether principles, a tether power generator, a tether thrust generator (motor), and an electrodynamic tether for drag makeup and energy storage.
Experimental study on synchronization of three coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan
2013-03-01
In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.
Insights into H2 formation in space from ab initio molecular dynamics
Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco
2013-01-01
Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley–Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley–Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account. PMID:23572584
NASA Astrophysics Data System (ADS)
Miguel, António F.
2016-09-01
Walking is the most basic form of transportation. A good understanding of pedestrian's dynamics is essential in meeting the mobility and accessibility needs of people by providing a safe and quick walking flow [1]. Advances in the dynamics of pedestrians in crowds are of great theoretical and practical interest, as they lead to new insights regarding the planning of pedestrian facilities, crowd management, or evacuation analysis. Nicola Bellomo's et al. article [2] is a very timely review of the related research on modelling approaches, computational simulations, decision-making and crisis response. It also includes an attempt to accurately define commonly used terms, as well as a critical analysis of crowd dynamics and safety problems. As noted by the authors, ;models and simulations offer a virtual representation of real dynamics; that are essential to understand and predict the ;behavioural dynamics of crowds; [2]. As a physicist, I would like to put forward some additional theoretical and practical contributions that could be interesting to explore, regarding the perspective of physics on about human crowd dynamics (panic as a specific form of behaviour excluded).
Mach 5 to 7 RBCC Propulsion System Testing at NASA-LeRC HTF
NASA Technical Reports Server (NTRS)
Perkins, H. Douglas; Thomas, Scott R.; Pack, William D.
1996-01-01
A series of Mach 5 to 7 freejet tests of a Rocket Based Combined Cycle (RBCC) engine were cnducted at the NASA Lewis Research Center (LERC) Hypersonic Tunnel Facility (HTF). This paper describes the configuration and operation of the HTF and the RBCC engine during these tests. A number of facility support systems are described which were added or modified to enhance the HTF test capability for conducting this experiment. The unfueled aerodynamic perfor- mance of the RBCC engine flowpath is also presented and compared to sub-scale test results previously obtained in the NASA LERC I x I Supersonic Wind Tunnel (SWT) and to Computational Fluid Dynamic (CFD) analysis results. This test program demonstrated a successful configuration of the HTF for facility starting and operation with a generic RBCC type engine and an increased range of facility operating conditions. The ability of sub-scale testing and CFD analysis to predict flowpath performance was also shown. The HTF is a freejet, blowdown propulsion test facility that can simulate up to Mach 7 flight conditions with true air composition. Mach 5, 6, and 7 facility nozzles are available, each with an exit diameter of 42 in. This combination of clean air, large scale, and Mach 7 capabilities is unique to the HTF. This RBCC engine study is the first engine test program conducted at the HTF since 1974.
Cosmic Dust Collection Facility: Scientific objectives and programmatic relations
NASA Technical Reports Server (NTRS)
Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.
1990-01-01
The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwettman, H.A.
1993-01-01
Various papers on FEL spectroscopy in biology, medicine, and materials science are presented. Individual topics addressed include: Vanderbilt University FEL Center, FIR FEL facility at the University of California/Santa Barbara, FEL research facilities and opportunities at Duke, facilities at the Stanford Picosecond FEL Center, FIR nonlinear response of electrons in semiconductor nanostructures, FIR harmonic generation from semiconductor heterostructures, intrinsic response times of double-barrier resonant tunneling diodes at tetrahertz frequencies, semiconductor spectroscopy and ablation processes with the Vanderbilt FEL. Also discussed are: picosecond nonlinear optics in semiconductor quantum wells with the SCA FEL, excitation spectroscopy of thin-film disordered semiconductors, biophysical applicationmore » of FELs, FEL investigation of energy transfer in condensed phase systems, probing protein photochemistry and dynamics with ultrafast infrared spectroscopy, plasma ablation of hard tissues by FEL, FEL irradiation of the cornea.« less
Avraamova, O G; Kulazhenko, T V; Gabitova, K F
2016-01-01
The paper presents the assessment of tooth decay prevalence in clinically homogenous groups of children receiving long-term preventive program (PP) in school dental facilities. Five-years PP were introduced in clinical practice in 2 Moscow schools. Preventive treatment was performed by dental hygienist. The results show that systematic preventive treatment in school dental offices starting from elementary school allows reducing dental caries incidence 46-53% and stabilize the incidence of caries complications. It should be mentioned though that analysis of individualized outcomes proves heterogeneity of study results despite of equal conditions of PP. Potentially significant hence is early diagnostics and treatment of initial caries forms as demineralization foci, especially in children with intensive tooth decay. Optimization of pediatric dentist and dental hygienist activity in school dental facilities is the main factor of caries prevention efficiency.
NASA Technical Reports Server (NTRS)
1985-01-01
Developments related to laser Doppler velocimetry are discussed, taking into account a three-component dual beam laser-Doppler-anemometer to be operated in large wind tunnels, a new optical system for three-dimensional laser-Doppler-anemometry using an argon-ion and a dye laser, and a two-component laser Doppler velocimeter by switching fringe orientation. Other topics studied are concerned with facilities, instrumentation, control, hot wire/thin film measurements, optical diagnostic techniques, signal and data processing, facilities and adaptive wall test sections, data acquisition and processing, ballistic instrument systems, dynamic testing and material deformation measurements, optical flow measurements, test techniques, force measurement systems, and holography. Attention is given to nonlinear calibration of integral wind tunnel balances, a microcomputer system for real time digitized image compression, and two phase flow diagnostics in propulsion systems.
Dynamic Response Testing in an Electrically Heated Reactor Test Facility
NASA Astrophysics Data System (ADS)
Bragg-Sitton, Shannon M.; Morton, T. J.
2006-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.
NASA Astrophysics Data System (ADS)
Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.
2016-10-01
We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
NASA Technical Reports Server (NTRS)
Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.
2008-01-01
A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.
Test of a coaxial blade tuner at HTS FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pischalnikov, Y.; Barbanotti, S.; Harms, E.
2011-03-01
A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. Themore » stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.« less
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
The exposure of a customer's aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facility's available acoustic power capability becomes maximized with the test-article installed during the actual test then the customer's environment requirement may become compromised. In order to understand the risk of not achieving the customer's in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Station's Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
The exposure of a customers aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facilitys available acoustic power capability becomes maximized with the test-article installed during the actual test then the customers environment requirement may become compromised. In order to understand the risk of not achieving the customers in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Stations Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.
Flow analysis of airborne particles in a hospital operating room
NASA Astrophysics Data System (ADS)
Faeghi, Shiva; Lennerts, Kunibert
2016-06-01
Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Kevin A; Li, Roger G; Thakur, Gautam
Advances in technology have continually progressed our understanding of where people are, how they use the environment around them, and why they are at their current location. Having a better knowledge of when various locations become popular through space and time could have large impacts on research fields like urban dynamics and energy consumption. In this paper, we discuss the ability to identify and locate various facility types (e.g. restaurant, airport, stadiums) using social media, and assess methods in determining when these facilities become popular over time. We use natural language processing tools and machine learning classifiers to interpret geotaggedmore » Twitter text and determine if a user is seemingly at a location of interest when the tweet was sent. On average our classifiers are approximately 85% accurate varying across multiple facility types, with a peak precision of 98%. By using these methods to classify unstructured text, geotagged social media data can be an extremely useful tool to better understanding the composition of places and how and when people use them.« less
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.
2017-01-01
Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.
Low turbulence/high efficiency cyclone separators: Facility qualification results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razgaitis, R.; Paul, D.D.; Bioarski, A.A.
1985-01-01
The objective of this work is to experimentally investigate the near-wall turbulent flow-fields characteristic of cyclone separators in order to determine the influence of wall-originating turbulence on the separation of fine particles. In particular, seven turbulence suppression concepts will be evaluated with reference to a well-established baseline condition. Concepts which appear attractive will be studied and characterized in more detail. The work accomplished to date is principally the design, construction, and qualification of two of the facilities that will be used to study the various concepts of turbulence suppression. The qualification of the primary facility, the Cyclonic Wind Tunnel (CWT),more » has required the development and adaptation of laser Doppler velocimetry (LDV) to perform simultaneous two-dimensional turbulence measurements in a highly swirling flow. A companion facility to the CWT is the Curvilinear Boundary Layer (CBL) apparatus. The purpose of the CBL is to provide a thick, visually-observable near-wall flow region under dynamically similar conditions to the CWT to that a physical understanding of the turbulence suppression process can be obtained. 9 refs., 15 figs.« less
Dynamic Stability Testing of the Genesis Sample Return Capsule
NASA Technical Reports Server (NTRS)
Cheatwood, F. McNeil; Winchenbach, Gerald L.; Hathaway, Wayne; Chapman, Gary
2000-01-01
This paper documents a series of free flight tests of a scale model of the Genesis Sample Return Capsule. These tests were conducted in the Aeroballistic Research Facility (ARF), located at Eglin AFB, FL, during April 1999 and were sponsored by NASA Langley Research Center. Because these blunt atmospheric entry shapes tend to experience small angle of attack dynamic instabilities (frequently leading to limit cycle motions), the primary purpose of the present tests was to determine the dynamic stability characteristics of the Genesis configuration. The tests were conducted over a Mach number range of 1.0 to 4.5. The results for this configuration indicate that the models were dynamically unstable at low angles of attack for all Mach numbers tested. At Mach numbers below 2.5, the models were also unstable at the higher angles of attack (above 15 deg), and motion amplitudes of up to 40 deg were experienced. Above Mach 2.5, the models were dynamically stable at the higher angles of attack.
Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation
NASA Technical Reports Server (NTRS)
Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.
2010-01-01
Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Brown, E. N.; Yoon, W. C.
1983-01-01
The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed.
Dynamics of Attentional Selection under Conflict: Toward a Rational Bayesian Account
ERIC Educational Resources Information Center
Yu, Angela J.; Dayan, Peter; Cohen, Jonathan D.
2009-01-01
The brain exhibits remarkable facility in exerting attentional control in most circumstances, but it also suffers apparent limitations in others. The authors' goal is to construct a rational account for why attentional control appears suboptimal under conditions of conflict and what this implies about the underlying computational principles. The…
Assessing Static and Dynamic Influences on Inmate Violence Levels
ERIC Educational Resources Information Center
Steiner, Benjamin
2009-01-01
Inmate misconduct creates problems for other inmates as well as correctional staff. Most empirical assessments of the correlates of inmate misconduct have been conducted at the individual level; however, a facility's level of misconduct may be of equal importance to prison management and state officials because these numbers can reflect order, or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This brochure describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This presentation describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
Energy Systems Integration News | Energy Systems Integration Facility |
-the-loop" (HIL) to connect physical devices to software models, EdgePower is drawing on NREL's are putting their controller into a synthetic environment that is called 'controller in-the-loop controller-in-the-loop platform allows us to observe the dynamics of these buildings as they implement the
MPD thruster application study
NASA Technical Reports Server (NTRS)
1981-01-01
Developmental considerations for the magneto-plasma-dynamic (MPD) thruster are defined. General characteristics of an MPD engine are compared to those of chemical propulsion and ion bombardment engines and performance criteria which are mission specific are examined. Requirements for thruster ground testing facilities are discussed and the utilization of the space shuttle for an orbital flight test is addressed.