Science.gov

Sample records for dynamics features caused

  1. Dynamic features of combustion

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1985-01-01

    The dynamic features of combustion are discussed for four important cases: ignition, inflammation, explosion, and detonation. Ignition, the initiation of a self-sustained exothermic process, is considered in the simplest case of a closed thermodynamic system and its stochastic distribution. Inflammation, the initiation and propagation of self-sustained flames, is presented for turbulent flow. Explosion, the dynamic effects caused by the deposition of exothermic energy in a compressible medium, is illustrated by self-similar blast waves with energy deposition at the front and the adiabatic non-self-similar wave. Detonation, the most comprehensive illustration of all the dynamic effects of combustion, is discussed with a phenomenological account of the development and structure of the wave.

  2. Special Features of Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos

    This is an introductory article to some basic notions and currently open problems of galactic dynamics. The focus is on topics mostly relevant to the so-called `new methods' of celestial mechanics or Hamiltonian dynamics, as applied to the ellipsoidal components of galaxies, i.e., to the elliptical galaxies and to the dark halos and bulges of disk galaxies. Traditional topics such as Jeans theorem, the role of a `third integral' of motion, Nekhoroshev theory, violent relaxation, and the statistical mechanics of collisionless stellar systems are first discussed. The emphasis is on modern extrapolations of these old topics. Recent results from orbital and global dynamical studies of galaxies are then shortly reviewed. The role of various families of orbits in supporting self-consistency, as well as the role of chaos in galaxies, are stressed. A description is then given of the main numerical techniques of integration of the N-body problem in the framework of stellar dynamics and of the results obtained via N-Body experiments. A final topic is the secular evolution and self-organization of galactic systems.

  3. Sedimentation dynamics about salt features

    SciTech Connect

    Lowrie, A.; Blake, D.W.

    1985-02-01

    Detailed side-scan sonar and gridded bathymetric surveys on continental margins reveal the existence of numerous submarine canyons. Recently published compilations of current velocities in submarine canyons indicate that alternating and undirectionaly flows often exceed 20-30 cm/sec with peak velocities ranging from 70 to 100 cm/sec. Current meters attached to the ocean floor have been lost at current velocities of 190 cm/sec. Such velocities are ample to transport sand-size sediments. The results of DSDP Leg 96 show the existence of massive sands and gravels on the Louisiana slope, deposited during the last glacial advance. Thus, present physical oceanographic data may be an analog to conditions during glacially induced lowered sea levels. Salt ridges and domes underlie much of the Louisiana slope, determining morphology. Submarine canyons lace the slope. Given a prograding shelf, the net sediment transport routes will be down the submarine canyons. Sediment deposition patterns around the salt ridges and domes include parallel-bedded foredrifts on the upslope side, lee drifts on the downslope side, and moats along the lateral flanks of the salt features. Major differences exist between the sedimentation patterns around a ridge and a dome. The size and shape of the flow pattern will determine whether there can be a flow over the salt feature with a resulting turbulent wave that may influence sedimentation. Sedimentation patterns about salt features on the present slope should be applicable to similar paleoenvironments.

  4. Feature extraction for structural dynamics model validation

    SciTech Connect

    Hemez, Francois; Farrar, Charles; Park, Gyuhae; Nishio, Mayuko; Worden, Keith; Takeda, Nobuo

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  5. Geochemical dynamics in selected Yellowstone hydrothermal features

    NASA Astrophysics Data System (ADS)

    Druschel, G.; Kamyshny, A.; Findlay, A.; Nuzzio, D.

    2010-12-01

    Yellowstone National Park has a wide diversity of thermal features, and includes springs with a range of pH conditions that significantly impact sulfur speciation. We have utilized a combination of voltammetric and spectroscopic techniques to characterize the intermediate sulfur chemistry of Cinder Pool, Evening Primrose, Ojo Caliente, Frying Pan, Azure, and Dragon thermal springs. These measurements additionally have demonstrated the geochemical dynamics inherent in these systems; significant variability in chemical speciation occur in many of these thermal features due to changes in gas supply rates, fluid discharge rates, and thermal differences that occur on second time scales. The dynamics of the geochemical settings shown may significantly impact how microorganisms interact with the sulfur forms in these systems.

  6. Persistent topological features of dynamical systems.

    PubMed

    Maletić, Slobodan; Zhao, Yi; Rajković, Milan

    2016-05-01

    Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.

  7. Persistent topological features of dynamical systems

    NASA Astrophysics Data System (ADS)

    Maletić, Slobodan; Zhao, Yi; Rajković, Milan

    2016-05-01

    Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.

  8. Multifractal intensity in features of dynamical behaviors

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Jung, Jae-Won; Kim, Baek-Jo

    2014-03-01

    We simulate and analyze the dynamical behavior of multifractals in typhoons. A significant and fascinating feature of this behavior is that it provides a proper interpretation for the pattern of typhoon in terms of the numerical values of the generalized dimension and the scaling exponent. For our case, these statistical quantities can be estimated numerically from four meteorological factors (the moving speed, the central pressure, the strong wind radius, and the maximum wind speed) after and before landing typhoon. We perform a computer-simulation from a typhoon data of five years from 2008 to 2012 provided to the Korea Meteorological Administration The result from the multifractal structure allows us to calculate a definite and reliable fractal dimension. In particularly, we find the strengths of multifractal structures from four meteorological factors. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  9. Interleukin-11 alters placentation and causes preeclampsia features in mice

    PubMed Central

    Winship, Amy L.; Koga, Kaori; Menkhorst, Ellen; Van Sinderen, Michelle; Rainczuk, Katarzyna; Nagai, Miwako; Cuman, Carly; Yap, Joanne; Zhang, Jian-Guo; Simmons, David; Young, Morag J.; Dimitriadis, Evdokia

    2015-01-01

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal–fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE. PMID:26655736

  10. Interleukin-11 alters placentation and causes preeclampsia features in mice.

    PubMed

    Winship, Amy L; Koga, Kaori; Menkhorst, Ellen; Van Sinderen, Michelle; Rainczuk, Katarzyna; Nagai, Miwako; Cuman, Carly; Yap, Joanne; Zhang, Jian-Guo; Simmons, David; Young, Morag J; Dimitriadis, Evdokia

    2015-12-29

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal-fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE. PMID:26655736

  11. Fecal incontinence in men: Causes and clinical and manometric features

    PubMed Central

    Muñoz-Yagüe, Teresa; Solís-Muñoz, Pablo; Ciriza de los Ríos, Constanza; Muñoz-Garrido, Francisco; Vara, Jesús; Solís-Herruzo, José Antonio

    2014-01-01

    AIM: To determine the causes and characteristics of fecal incontinence in men and to compare these features with those presented by a group of women with the same problem. METHODS: We analyzed the medical history, clinical and manometric data from 119 men with fecal incontinence studied in our unit and compared these data with those obtained from 645 women studied for the same problem. Response to treatment was evaluated after 6 mo of follow-up. RESULTS: Fifteen percent of patients studied in our unit for fecal incontinence were male. Men took longer than women before asking for medical help. Ano-rectal surgery was the most common risk factor for men related to fecal incontinence. Chronic diarrhea was present in more than 40% of patients in both groups. Decreased resting and external anal sphincter pressures were more frequent in women. No significant differences existed between the sexes regarding rectal sensitivity and recto-anal inhibitory reflex. In 17.8% of men, all presenting soiling, manometric findings did not justify fecal incontinence. Response to treatment was good in both groups, as 80.4% of patients improved and fecal incontinence disappeared in 13.2% of them. CONCLUSION: In our series, it was common that men waited longer in seeking medical help for fecal incontinence. Ano-rectal surgery was the major cause of this problem. Chronic diarrhea was a predisposing factor in both sexes. Manometric differences between groups were limited to an increased frequency of hypotony of the external anal sphincter in women. Fecal incontinence was controllable in most patients. PMID:24976729

  12. Geomagnetic Disturbances Caused by Internal Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Sonneman, G.

    1984-01-01

    It is commonly believed that geomagnetic disturbances are caused by external influences connected with the solar wind. The 27-day recurrence of perturbations seems to be a strong hint for this interaction. But frequently geomagnetic disturbances occur without any relation to sunspot numbers or radiowave fluxes. This was one of the reasons for introducing hypothetical M-regions on the Sun and their relation to solar wind activities. Only one half of the variance of the geomagnetic AL-index could be related to the solar wind. Therefore it is concluded that internal processes of the magnetosphere were responsible for additional geomagnetic activity. Arguments, which might lead to the suggestion of geomagnetic disturbances as being caused by internal atmospheric dynamics are discussed and a rather preliminary scenario of those processes is proposed.

  13. The relationship between 2D static features and 2D dynamic features used in gait recognition

    NASA Astrophysics Data System (ADS)

    Alawar, Hamad M.; Ugail, Hassan; Kamala, Mumtaz; Connah, David

    2013-05-01

    In most gait recognition techniques, both static and dynamic features are used to define a subject's gait signature. In this study, the existence of a relationship between static and dynamic features was investigated. The correlation coefficient was used to analyse the relationship between the features extracted from the "University of Bradford Multi-Modal Gait Database". This study includes two dimensional dynamic and static features from 19 subjects. The dynamic features were compromised of Phase-Weighted Magnitudes driven by a Fourier Transform of the temporal rotational data of a subject's joints (knee, thigh, shoulder, and elbow). The results concluded that there are eleven pairs of features that are considered significantly correlated with (p<0.05). This result indicates the existence of a statistical relationship between static and dynamics features, which challenges the results of several similar studies. These results bare great potential for further research into the area, and would potentially contribute to the creation of a gait signature using latent data.

  14. Modeling Statistical and Dynamic Features of Earthquakes

    NASA Astrophysics Data System (ADS)

    Rydelek, P. A.; Suyehiro, K.; Sacks, S. I.; Smith, D. E.; Takanami, T.; Hatano, T.

    2015-12-01

    The cellular automaton earthquake model by Sacks and Rydelek (1995) is extended to explain spatio-temporal change in seismicity with the regional tectonic stress buildup. Our approach is to apply a simple Coulomb failure law to our model space of discrete cells, which successfully reproduces empirical laws (e.g. Gutenberg-Richter law) and dynamic failure characteristics (e.g. stress drop vs. magnitude and asperities) of earthquakes. Once the stress condition supersedes the Coulomb threshold on a discrete cell, its accumulated stress is transferred to only neighboring cells, which cascades to more neighboring cells to create various size ruptures. A fundamental point here is the cellular view of the continuous earth. We suggest the cell size varies regionally with the maturity of the faults of the region. Seismic gaps (e.g. Mogi, 1979) and changes in seismicity such as indicated by b-values have been known but poorly understood. There have been reports of magnitude dependent seismic quiescence before large event at plate boundaries and intraplate (Smith et al., 2013). Recently, decreases in b-value for large earthquakes have been reported (Nanjo et al., 2012) as anticipated from lab experiments (Mogi, 1963). Our model reproduces the b-value decrease towards eventual large earthquake (increasing tectonic stress and its heterogeneous distribution). We succeeded in reproducing the cut-off of larger events above some threshold magnitude (M3-4) by slightly increasing the Coulomb failure level for only 2 % or more of the highly stressed cells. This is equivalent to reducing the pore pressure in these distributed cells. We are working on the model to introduce the recovery of pore pressure incorporating the observed orders of magnitude higher permeability fault zones than the surrounding rock (Lockner, 2009) allowing for a large earthquake to be generated. Our interpretation requires interactions of pores and fluids. We suggest heterogeneously distributed patches hardened

  15. A Harmonic Linear Dynamical System for Prominent ECG Feature Extraction

    PubMed Central

    Nguyen Thi, Ngoc Anh; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc

    2014-01-01

    Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series. PMID:24719648

  16. A harmonic linear dynamical system for prominent ECG feature extraction.

    PubMed

    Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc

    2014-01-01

    Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.

  17. Mutations in PYCR1 cause cutis laxa with progeroid features.

    PubMed

    Reversade, Bruno; Escande-Beillard, Nathalie; Dimopoulou, Aikaterini; Fischer, Björn; Chng, Serene C; Li, Yun; Shboul, Mohammad; Tham, Puay-Yoke; Kayserili, Hülya; Al-Gazali, Lihadh; Shahwan, Monzer; Brancati, Francesco; Lee, Hane; O'Connor, Brian D; Schmidt-von Kegler, Mareen; Merriman, Barry; Nelson, Stanley F; Masri, Amira; Alkazaleh, Fawaz; Guerra, Deanna; Ferrari, Paola; Nanda, Arti; Rajab, Anna; Markie, David; Gray, Mary; Nelson, John; Grix, Arthur; Sommer, Annemarie; Savarirayan, Ravi; Janecke, Andreas R; Steichen, Elisabeth; Sillence, David; Hausser, Ingrid; Budde, Birgit; Nürnberg, Gudrun; Nürnberg, Peter; Seemann, Petra; Kunkel, Désirée; Zambruno, Giovanna; Dallapiccola, Bruno; Schuelke, Markus; Robertson, Stephen; Hamamy, Hanan; Wollnik, Bernd; Van Maldergem, Lionel; Mundlos, Stefan; Kornak, Uwe

    2009-09-01

    Autosomal recessive cutis laxa (ARCL) describes a group of syndromal disorders that are often associated with a progeroid appearance, lax and wrinkled skin, osteopenia and mental retardation. Homozygosity mapping in several kindreds with ARCL identified a candidate region on chromosome 17q25. By high-throughput sequencing of the entire candidate region, we detected disease-causing mutations in the gene PYCR1. We found that the gene product, an enzyme involved in proline metabolism, localizes to mitochondria. Altered mitochondrial morphology, membrane potential and increased apoptosis rate upon oxidative stress were evident in fibroblasts from affected individuals. Knockdown of the orthologous genes in Xenopus and zebrafish led to epidermal hypoplasia and blistering that was accompanied by a massive increase of apoptosis. Our findings link mutations in PYCR1 to altered mitochondrial function and progeroid changes in connective tissues.

  18. Massive posttraumatic bleeding: epidemiology, causes, clinical features, and therapeutic management.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J; Cervellin, Gianfranco

    2013-02-01

    Bleeding typically results as a consequence of derangements of primary hemostasis, secondary hemostasis, or both, and can be dramatically amplified by the presence of other predisposing conditions, especially inherited bleeding disorders. Life-threatening hemorrhages are, however, almost exclusively caused by penetrating wounds, blunt traumas of chest and abdomen, suicide attempts, amputations, bone fractures with concomitant injury to internal organs and blood vessels, and shearing forces from sudden rotation, violent flexion, extension, or deceleration injuries. The pathogenesis of posttraumatic bleeding is complex and multifaceted. The most dramatic phenomenon that always accompanies major hemorrhages is the abrupt and considerable loss of intravascular volume, that further leads to hypovolemic shock, also known as hemorrhagic shock, culminating with peripheral ischemia, especially in those tissues where oxygen delivery is more critical (i.e., central nervous system and myocardium). The mortality rate of severe posttraumatic bleeding can be as high as 50%, especially when an appropriate treatment is not established in a timely manner. The damage control sequence basically entails a four-step approach including damage control surgery, damage control resuscitation with fluid restoration, and hemocomponents administration, as well as correction of the coagulopathy with platelets, antifibrinolytic (e.g., tranexamic acid), and/or procoagulant agents such as fresh frozen plasma, prothrombin complex concentrate, or recombinant-activated Factor VII.

  19. Dynamical Systems Analysis of Fully 3D Ocean Features

    NASA Astrophysics Data System (ADS)

    Pratt, L. J.

    2011-12-01

    Dynamical systems analysis of transport and stirring processes has been developed most thoroughly for 2D flow fields. The calculation of manifolds, turnstile lobes, transport barriers, etc. based on observations of the ocean is most often conducted near the sea surface, whereas analyses at depth, usually carried out with model output, is normally confined to constant-z surfaces. At the meoscale and larger, ocean flows are quasi 2D, but smaller scale (submesoscale) motions, including mixed layer phenomena with significant vertical velocity, may be predominantly 3D. The zoology of hyperbolic trajectories becomes richer in such cases and their attendant manifolds are much more difficult to calculate. I will describe some of the basic geometrical features and corresponding Lagrangian Coherent Features expected to arise in upper ocean fronts, eddies, and Langmuir circulations. Traditional GFD models such as the rotating can flow may capture the important generic features. The dynamical systems approach is most helpful when these features are coherent and persistent and the implications and difficulties for this requirement in fully 3D flows will also be discussed.

  20. Modeling of features of slow earthquakes in a dynamical framework

    NASA Astrophysics Data System (ADS)

    Yamashita, T.

    2010-12-01

    Slow earthquakes exhibit a striking contrast with ordinary earthquakes. Rupture speeds of slow slip events are four orders of magnitude smaller than those of ordinary earthquakes. Ide et al.(2007) found that seismic moment of slow earthquakes is linearly proportional to the characteristic duration, which is different from the relation for ordinary earthquakes. It is also known that slow slip events are frequently coupled with tremor. We now simulate such features of slow earthquakes on the basis of fault model developed by Suzuki and Yamashita (2009, 2010). Key ingredients of the model are the fluid flow, shear heating and inelastic pore creation. We assume a fault in a thermoporoelastic medium saturated with fluid. The inelastic porosity is assumed to increase with evolving slip. The shear heating builds up the fluid pressure on the fault, whereas the pore creation lowers it. Since the slip is promoted by high fluid pressure according to the Coulomb law of friction, the relative dominance of these two effects determines the nature of slip. Our 1D analysis showed that slip-weakening and -strengthening emerge in the ranges Su < -P0 and Su > -P0 (Suzuki and Yamashita, 2010); shear heating and pore creation are dominant in the former and latter ranges. Here, Su is a parameter proportional to the creation rate of pore; Su’ and P0 are proportional to the permeability and to the initial fluid pressure, respectively. We found in the 2D modeling that slow fault growth can be simulated if we assume Su >> -P0 (Suzuki and Yamashita, 2009). Suzuki and Yamashita (2009) showed that the fluid inflow triggered by the pore creation tends to weaken the degree of slip-strengthening in the range Su >> -P0, which causes slow fault growth whose speed is dependent on the fluid inflow rate. However, if the value of Su is large enough, a nucleated event stops its growth soon after the nucleation because of intense slip-strengthening. Suzuki and Yamashita (2009) assumed that slip is

  1. Molecular Dynamics Simulations Of Nanometer-Scale Feature Etch

    SciTech Connect

    Vegh, J. J.; Graves, D. B.

    2008-09-23

    Molecular dynamics (MD) simulations have been carried out to examine fundamental etch limitations. Beams of Ar{sup +}, Ar{sup +}/F and CF{sub x}{sup +} (x = 2,3) with 2 nm diameter cylindrical confinement were utilized to mimic 'perfect' masks for small feature etching in silicon. The holes formed during etch exhibit sidewall damage and passivation as a result of ion-induced mixing. The MD results predict a minimum hole diameter of {approx}5 nm after post-etch cleaning of the sidewall.

  2. The Dynamics, Causes and Possible Prevention of Hepatitis E Outbreaks

    PubMed Central

    Nannyonga, Betty; Sumpter, David J. T.; Mugisha, Joseph Y. T.; Luboobi, Livingstone S.

    2012-01-01

    Rapidly spreading infectious diseases are a serious risk to public health. The dynamics and the factors causing outbreaks of these diseases can be better understood using mathematical models, which are fit to data. Here we investigate the dynamics of a Hepatitis E outbreak in the Kitgum region of northern Uganda during 2007 to 2009. First, we use the data to determine that is approximately 2.25 for the outbreak. Secondly, we use a model to estimate that the critical level of latrine and bore hole coverages needed to eradicate the epidemic is at least and respectively. Lastly, we further investigate the relationship between the co-infection factor for malaria and Hepatitis E on the value of for Hepatitis E. Taken together, these results provide us with a better understanding of the dynamics and possible causes of Hepatitis E outbreaks. PMID:22911752

  3. Dynamical features of hazardous near-Earth objects

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V. V.; Naroenkov, S. A.

    2015-07-01

    We discuss the dynamical features of near-Earth objects moving in dangerous proximity to Earth. We report the computation results for the motions of all observed near-Earth objects over a 600-year-long time period: 300 years in the past and 300 years in the future. We analyze the dynamical features of Earth-approaching objects. In particular, we established that the observed distribution of geocentric velocities of dangerous objects depends on their size. No bodies with geocentric velocities smaller that 5 kms-1 have been found among hazardous objects with absolute magnitudes H <18, whereas 9% of observed objects with H <27 pass near Earth moving at such velocities. On the other hand, we found a tendency for geocentric velocities to increase at H >29. We estimated the distribution of absolute magnitudes of hazardous objects based on our analysis of the data for the asteroids that have passed close to Earth. We inferred the Earth-impact frequencies for objects of different sizes. Impacts of objects with H <18 with Earth occur on average once every 0.53 Myr, and impacts of objects with H <27—once every 130-240 years. We show that currently about 0.1% of all near-Earth objects with diameters greater than 10 m have been discovered. We point out the discrepancies between the estimates of impact rates of Chelyabinsk-type objects, determined from fireball observations and from the data of telescopic asteroid tracking surveys. These estimates can be reconciled assuming that Chelyabinsk-sized asteroids have very low albedos (about 0.02 on average).

  4. Tuberculosis caused by RDRio Mycobacterium tuberculosis is not associated with differential clinical features

    PubMed Central

    Barbosa, C. de B.; Lazzarini, L. C. O.; Elias, A. R.; Leung, J. A. M.; Ribeiro, S. B.; da Silva, M. G.; Duarte, R. S.; Suffys, P.; Gomes, H. M.; Kritski, A. L.; Lapa e Silva, J. R.; Ho, J. L.; Boéchat, N.

    2013-01-01

    BACKGROUND We recently described the Mycobacterium tuberculosis RDRio genotype, a clonally derived sublineage within the Latin American–Mediterranean (LAM) family. Genetic diversity of M. tuberculosis likely affects the clinical aspects of tuberculosis (TB). Prospective studies that address this issue are scarce and remain controversial. OBJECTIVE To determine the association of differential clinical features of pulmonary TB with the RDRio M. tuberculosis etiology. METHODS Culture-proven pulmonary TB patients (n = 272) were clinically evaluated, including history, physical examination, chest X-ray and anti-human immunodeficiency virus serology. Isolates were classified as RDRio or non-RDRio M. tuberculosis by multiplex polymerase chain reaction and further spoligotyped. Clinical and M. tuberculosis genotype data were analyzed. RESULTS RDRio M. tuberculosis caused disease in 26.5% (72/270) of all TB cases. The LAM genotype, of which RDRio strains are members, was responsible for 46.0% of the TB cases. Demographic data, major signs and symptoms, radiographic presentation, microbiological features and clinical outcomes were not significantly different among patients with TB caused by RDRio and non-RDRio strains. CONCLUSIONS Disease caused by M. tuberculosis RDRio strains was not clinically distinctive or more severe than disease caused by non-RDRio strains in this series of TB patients. Larger prospective studies specifically designed to disclose differential clinical characteristics of TB caused by specific M. tuberculosis lineages are needed. PMID:22863208

  5. Gas dynamic and aeronomic phenomena in the ionosphere caused by artificial cloud releases

    NASA Astrophysics Data System (ADS)

    Romanovsky, Yu. A.; Tcema, A.

    In a series of active experiments, carried out on the rockets MR-12 and MR-20 the features of the upper atmosphere and the ionosphere disturbances caused by gas dynamic and aeronomic processes after releases of pyrotechnic and explosive heterophase (gas-plasma-particle) mixtures (HM) from the rockets at heights of 120-200 km, were investigated. The data on changes of the neutral and ion composition and densities due to gas dynamic and aeronomic processes after the HM releases are presented and discussed.

  6. Dynamically-Tunable Smart Composites Featuring Electro-Rheological Fluids

    NASA Astrophysics Data System (ADS)

    Gandhi, Mukesh V.; Thompson, Brian S.

    1990-02-01

    A new generation of revolutionary multi-functional, dynamically-tunable, intelligent, ultra-advanced composite materials featuring electro-rheological fluids is proposed herein for the active continuum vibrational-control of structural systems. This paper reports on pioneering proof-of-concept experimental investigations focused on evaluating the elastodynamic transient and also the forced response characteristics of beams fabricated in this new class of materials. The results of these investigations clearly demonstrate the ability to dramatically change the vibrational characteristics of beam-like specimens fabricated in ultra-advanced composite materials by changing the electrical field imposed on the fluid domains. In addition, experimental results are presented which characterize the elastodynamic response of a connecting rod of a slider-crank mechanism fabricated in these ultra-advanced composite materials. Again, the combined forced and parametric responses are controlled by the voltage imposed on the electro-rheological fluid domain in the structure. The capability of these materials to interface with modern solid-state electronics can be exploited by extending the fundamental phenomenological work presented herein through the successful incorporation of intelligent sensor technologies and modern control strategies in order to significantly accelerate the evolution of these novel composite materials for the military and aerospace industries.

  7. Dynamical features of the wake behind a pitching foil.

    PubMed

    Deng, Jian; Sun, Liping; Shao, Xueming

    2015-12-01

    As an extension of the previous study on the three-dimensional transition of the wake behind a pitching foil [Deng and Caulfield, Phys. Rev. E 91, 043017 (2015)], this investigation draws a comprehensive map on the pitching frequency-amplitude phase space. First, by fixing the Reynolds number at Re=1700 and varying the pitching frequency and amplitude, we identify three key dynamical features of the wake: first, the transition from Bénard-von Kármán (BvK) vortex streets to reverse BvK vortex streets, and second, the symmetry breaking of this reverse BvK wake leading to a deflected wake, and a further transition from two-dimensional (2D) wakes to three-dimensional (3D) wakes. The transition boundary between the 2D and 3D wakes lies top right of the wake deflection boundary, implying a correlation between the wake deflection and the 2D to 3D wake transition, confirming that this transition occurs after the wake deflection. This paper supports the previous extensive numerical studies under two-dimensional assumption at low Reynolds number, since it is indeed two dimensional except for the cases at very high pitching frequencies or large amplitudes. Furthermore, by three-dimensional direct numerical simulations (DNSs), we confirm the previous statement about the physical realizability of the short wavelength mode at β=30 (or λ(z)=0.21) for Re=1500. By comparing the three-dimensional vortical structures by DNSs with that from the reconstruction of Floquet modes, we find a good consistency between them, both exhibiting clear streamwise structures in the wake. PMID:26764810

  8. Vascular Dynamics Aid a Coupled Neurovascular Network Learn Sparse Independent Features: A Computational Model.

    PubMed

    Philips, Ryan T; Chhabria, Karishma; Chakravarthy, V Srinivasa

    2016-01-01

    Cerebral vascular dynamics are generally thought to be controlled by neural activity in a unidirectional fashion. However, both computational modeling and experimental evidence point to the feedback effects of vascular dynamics on neural activity. Vascular feedback in the form of glucose and oxygen controls neuronal ATP, either directly or via the agency of astrocytes, which in turn modulates neural firing. Recently, a detailed model of the neuron-astrocyte-vessel system has shown how vasomotion can modulate neural firing. Similarly, arguing from known cerebrovascular physiology, an approach known as "hemoneural hypothesis" postulates functional modulation of neural activity by vascular feedback. To instantiate this perspective, we present a computational model in which a network of "vascular units" supplies energy to a neural network. The complex dynamics of the vascular network, modeled by a network of oscillators, turns neurons ON and OFF randomly. The informational consequence of such dynamics is explored in the context of an auto-encoder network. In the proposed model, each vascular unit supplies energy to a subset of hidden neurons of an autoencoder network, which constitutes its "projective field." Neurons that receive adequate energy in a given trial have reduced threshold, and thus are prone to fire. Dynamics of the vascular network are governed by changes in the reconstruction error of the auto-encoder network, interpreted as the neuronal demand. Vascular feedback causes random inactivation of a subset of hidden neurons in every trial. We observe that, under conditions of desynchronized vascular dynamics, the output reconstruction error is low and the feature vectors learnt are sparse and independent. Our earlier modeling study highlighted the link between desynchronized vascular dynamics and efficient energy delivery in skeletal muscle. We now show that desynchronized vascular dynamics leads to efficient training in an auto-encoder neural network. PMID

  9. Vascular Dynamics Aid a Coupled Neurovascular Network Learn Sparse Independent Features: A Computational Model

    PubMed Central

    Philips, Ryan T.; Chhabria, Karishma; Chakravarthy, V. Srinivasa

    2016-01-01

    Cerebral vascular dynamics are generally thought to be controlled by neural activity in a unidirectional fashion. However, both computational modeling and experimental evidence point to the feedback effects of vascular dynamics on neural activity. Vascular feedback in the form of glucose and oxygen controls neuronal ATP, either directly or via the agency of astrocytes, which in turn modulates neural firing. Recently, a detailed model of the neuron-astrocyte-vessel system has shown how vasomotion can modulate neural firing. Similarly, arguing from known cerebrovascular physiology, an approach known as “hemoneural hypothesis” postulates functional modulation of neural activity by vascular feedback. To instantiate this perspective, we present a computational model in which a network of “vascular units” supplies energy to a neural network. The complex dynamics of the vascular network, modeled by a network of oscillators, turns neurons ON and OFF randomly. The informational consequence of such dynamics is explored in the context of an auto-encoder network. In the proposed model, each vascular unit supplies energy to a subset of hidden neurons of an autoencoder network, which constitutes its “projective field.” Neurons that receive adequate energy in a given trial have reduced threshold, and thus are prone to fire. Dynamics of the vascular network are governed by changes in the reconstruction error of the auto-encoder network, interpreted as the neuronal demand. Vascular feedback causes random inactivation of a subset of hidden neurons in every trial. We observe that, under conditions of desynchronized vascular dynamics, the output reconstruction error is low and the feature vectors learnt are sparse and independent. Our earlier modeling study highlighted the link between desynchronized vascular dynamics and efficient energy delivery in skeletal muscle. We now show that desynchronized vascular dynamics leads to efficient training in an auto-encoder neural

  10. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features

    PubMed Central

    Morino, Hiroyuki; Matsuda, Yukiko; Walsh, Tom; Ohsawa, Ryosuke; Newby, Marta; Hiraki-Kamon, Keiko; Kuramochi, Masahito; Lee, Ming K.; Klevit, Rachel E.; Martin, Alan; Maruyama, Hirofumi; King, Mary-Claire

    2014-01-01

    Objective: To identify the genetic cause in 2 families of progressive ataxia, axonal neuropathy, hyporeflexia, and abnormal eye movements, accompanied by progressive hearing loss and ovarian dysgenesis, with a clinical diagnosis of Perrault syndrome. Methods: Whole-exome sequencing was performed to identify causative mutations in the 2 affected sisters in each family. Family 1 is of Japanese ancestry, and family 2 is of European ancestry. Results: In family 1, affected individuals were compound heterozygous for chromosome 10 open reading frame 2 (C10orf2) p.Arg391His and p.Asn585Ser. In family 2, affected individuals were compound heterozygous for C10orf2 p.Trp441Gly and p.Val507Ile. C10orf2 encodes Twinkle, a primase-helicase essential for replication of mitochondrial DNA. Conservation and structural modeling support the causality of the mutations. Twinkle is known also to harbor multiple mutations, nearly all missenses, leading to dominant progressive external ophthalmoplegia type 3 and to recessive mitochondrial DNA depletion syndrome 7, also known as infantile-onset spinocerebellar ataxia. Conclusions: Our study identifies Twinkle mutations as a cause of Perrault syndrome accompanied by neurologic features and expands the phenotypic spectrum of recessive disease caused by mutations in Twinkle. The phenotypic heterogeneity of conditions caused by Twinkle mutations and the genetic heterogeneity of Perrault syndrome call for genomic definition of these disorders. PMID:25355836

  11. Detection of dynamic background due to swaying movements from motion features.

    PubMed

    Pham, Duc-Son; Arandjelović, Ognjen; Venkatesh, Svetha

    2015-01-01

    Dynamically changing background (dynamic background) still presents a great challenge to many motion-based video surveillance systems. In the context of event detection, it is a major source of false alarms. There is a strong need from the security industry either to detect and suppress these false alarms, or dampen the effects of background changes, so as to increase the sensitivity to meaningful events of interest. In this paper, we restrict our focus to one of the most common causes of dynamic background changes: 1) that of swaying tree branches and 2) their shadows under windy conditions. Considering the ultimate goal in a video analytics pipeline, we formulate a new dynamic background detection problem as a signal processing alternative to the previously described but unreliable computer vision-based approaches. Within this new framework, we directly reduce the number of false alarms by testing if the detected events are due to characteristic background motions. In addition, we introduce a new data set suitable for the evaluation of dynamic background detection. It consists of real-world events detected by a commercial surveillance system from two static surveillance cameras. The research question we address is whether dynamic background can be detected reliably and efficiently using simple motion features and in the presence of similar but meaningful events, such as loitering. Inspired by the tree aerodynamics theory, we propose a novel method named local variation persistence (LVP), that captures the key characteristics of swaying motions. The method is posed as a convex optimization problem, whose variable is the local variation. We derive a computationally efficient algorithm for solving the optimization problem, the solution of which is then used to form a powerful detection statistic. On our newly collected data set, we demonstrate that the proposed LVP achieves excellent detection results and outperforms the best alternative adapted from existing art in

  12. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  13. Qualitative Features of High Lift Hovering Dynamics and Inertial Manifolds

    NASA Astrophysics Data System (ADS)

    Gustafson, K.; Leben, R.; McArthur, J.; Mundt, M.

    1996-03-01

    Hovering aerodynamics, such as that practiced by dragonflys, hummingbirds, and certain other small insects, utilizes special patterns of vorticity to generate high lift flows. Such lift as we measure it computationally on the airfoil surface is in good agreement with downstream thrust measured in the physical laboratory. In this paper we examine the qualitative signatures of this dynamical system. A connection to the theory of inertial manifolds, more specifically the instance of time-dependent slow manifolds, is initiated. Additional interest attaches to the fact that in our compact computational domain, the forcing is on the boundary. Because of its highly oscillatory nature, in this dynamics one proceeds rapidly up the bifurcation ladder at relatively low Reynolds numbers. Thus, aside from its intrinsic interest, the hover model provides an attractive vehicle for a better understanding of dynamical system attractor dynamics and inertial manifold theory.

  14. Low-temperature features of nano-particle dynamics

    NASA Astrophysics Data System (ADS)

    Sappey, R.; Vincent, E.; Ocio, M.; Hammann, J.

    1998-01-01

    In order to characterize possible quantum effects in the dynamics of nanometric particles, we measure the effect on the relaxation of a slight heating cycle. The effect of the field amplitude is studied; its magnitude is chosen in order to induce the relaxation of large particles (˜ 7 nm), even at very low temperatures (100 mK). Below 1 K, the results significantly depart from a simple thermal dynamics scenario.

  15. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features

    PubMed Central

    Tucci, Valter; Kleefstra, Tjitske; Hardy, Andrea; Heise, Ines; Maggi, Silvia; Willemsen, Marjolein H.; Hilton, Helen; Esapa, Chris; Simon, Michelle; Buenavista, Maria-Teresa; McGuffin, Liam J.; Vizor, Lucie; Dodero, Luca; Tsaftaris, Sotirios; Romero, Rosario; Nillesen, Willy N.; Vissers, Lisenka E.L.M.; Kempers, Marlies J.; Vulto-van Silfhout, Anneke T.; Iqbal, Zafar; Orlando, Marta; Maccione, Alessandro; Lassi, Glenda; Farisello, Pasqualina; Contestabile, Andrea; Tinarelli, Federico; Nieus, Thierry; Raimondi, Andrea; Greco, Barbara; Cantatore, Daniela; Gasparini, Laura; Berdondini, Luca; Bifone, Angelo; Gozzi, Alessandro; Wells, Sara; Nolan, Patrick M.

    2014-01-01

    The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults. PMID:24614104

  16. Causal information quantification of prominent dynamical features of biological neurons.

    PubMed

    Montani, Fernando; Baravalle, Roman; Montangie, Lisandro; Rosso, Osvaldo A

    2015-12-13

    Neurons tend to fire a spike when they are near a bifurcation from the resting state to spiking activity. It is a delicate balance between noise, dynamic currents and initial condition that determines the phase diagram of neural activity. Many possible ionic mechanisms can be accounted for as the source of spike generation. Moreover, the biophysics and the dynamics behind it can usually be described through a phase diagram that involves membrane voltage versus the activation variable of the ionic channel. In this paper, we present a novel methodology to characterize the dynamics of this system, which takes into account the fine temporal 'structures' of the complex neuronal signals. This allows us to accurately distinguish the most fundamental properties of neurophysiological neurons that were previously described by Izhikevich considering the phase-space trajectory, using a time causal space: statistical complexity versus Fisher information versus Shannon entropy.

  17. Cause of long thoracic nerve palsy: a possible dynamic fascial sling cause.

    PubMed

    Hester, P; Caborn, D N; Nyland, J

    2000-01-01

    Long thoracic nerve palsy can result from sudden or repetitive external biomechanical forces. This investigation describes a possible dynamic cause from internal forces. Six fresh cadaveric shoulders (3 female, 3 male, 4 left, 2 right) with full range of motion were systematically dissected to evaluate the anatomic course of the long thoracic nerve. In all specimens a tight fascial band of tissue arose from the inferior aspect of the brachial plexus, extended just superior to the middle scalene muscle insertion on the first rib, and presented a digitation that extended to the proximal aspect of the serratus anterior muscle. With progressive manual abduction and external rotation, the long thoracic nerve was found to "bow-string" across the fascial band. Medial and upward migration of the superior most aspect of the scapula was found to further compress the long thoracic nerve. Previous investigations have reported that nerves tolerate a 10% increase in their resting length before a stretch-induced neuropraxia develops. Previous studies postulated that long thoracic nerve palsy resulted from the tethering effect of the scalenus medius muscle as it actively or passively compressed the nerve; however, similar neuromuscular relationships occur in many other anatomic sites without ill effect. We propose that the cause of long thoracic nerve palsy may be this "bow-stringing" phenomenon of the nerve across this tight fascial band. This condition may be further exacerbated with medial and upward migration of the superior aspect of the scapula as is commonly seen with scapulothoracic dyskinesia and fatigue of the scapular stabilizers. Rehabilitation for long thoracic nerve palsy may therefore benefit from special attention to scapulothoracic muscle stabilization. PMID:10717860

  18. Slow dynamics in features of synchronized neural network responses

    PubMed Central

    Haroush, Netta; Marom, Shimon

    2015-01-01

    In this report trial-to-trial variations in the synchronized responses of neural networks are explored over time scales of minutes, in ex-vivo large scale cortical networks. We show that sub-second measures of the individual synchronous response, namely—its latency and decay duration, are related to minutes-scale network response dynamics. Network responsiveness is reflected as residency in, or shifting amongst, areas of the latency-decay plane. The different sensitivities of latency and decay durations to synaptic blockers imply that these two measures reflect aspects of inhibitory and excitatory activities. Taken together, the data suggest that trial-to-trial variations in the synchronized responses of neural networks might be related to effective excitation-inhibition ratio being a dynamic variable over time scales of minutes. PMID:25926787

  19. Dynamically Causes and Consequences of an Ultralow Viscosity Zone

    NASA Astrophysics Data System (ADS)

    Hansen, U.

    2003-12-01

    The Core-Mantle-Boundary may be viewed in a first order approach as the thermal boundary layer of the convecting lower mantle. Many studies have, however, indicated structures which deviate from those, as expected from a 'simple' thermal boundary layer. Chemically induced density differences have been assumed to explain the various phenomena, ranging from observed topography of the Core-Mantle-Boundary to the existence of a zone characterized by an ultra-low viscosity. Chemically induced contributions to both, density and viscosity can basically arise by either a recharge of the material at the CMB through subducting slabs or through interactions of the mantle and the core leading to a material exchange between both systems. I a series of two- and three-dimensional numerical experiments, possible dynamical causes of an ultra-low viscosity zone were investigated. Especially the case of a chemically dense layer, resulting from interactions with the core, together with viscosity depending on temperature and composition is explored. This configurations leads to the existence of a layer of low viscosity on top of the Core-Mantle-Boundary. Further the influence of radioactive elements, depth dependence of the thermal expansion coefficient and also of pressure dependence of the viscosity, on the stability and on the temporal evolution of this ultra-low viscosity layer has been studied. ~ ~ ~

  20. Behavioral-Independent Features of Complex Heartbeat Dynamics

    NASA Astrophysics Data System (ADS)

    Nunes Amaral, Luís A.; Ivanov, Plamen Ch.; Aoyagi, Naoko; Hidaka, Ichiro; Tomono, Shinji; Goldberger, Ary L.; Stanley, H. Eugene; Yamamoto, Yoshiharu

    2001-06-01

    We test whether the complexity of the cardiac interbeat interval time series is simply a consequence of the wide range of scales characterizing human behavior, especially physical activity, by analyzing data taken from healthy adult subjects under three conditions with controls: (i) a ``constant routine'' protocol where physical activity and postural changes are kept to a minimum, (ii) sympathetic blockade, and (iii) parasympathetic blockade. We find that when fluctuations in physical activity and other behavioral modifiers are minimized, a remarkable level of complexity of heartbeat dynamics remains, while for neuroautonomic blockade the multifractal complexity decreases.

  1. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury

    PubMed Central

    Bienholz, Anja; Wilde, Benjamin; Kribben, Andreas

    2015-01-01

    Acute kidney injury (AKI) is a clinical syndrome with multiple entities. Although AKI implies renal damage, functional impairment or both, diagnosis is solely based on the functional parameters of serum creatinine and urine output. The latest definition was provided by the Kidney Disease Improving Global Outcomes (KDIGO) working group in 2012. Independent of the underlying disease, and even in the case of full recovery, AKI is associated with an increased morbidity and mortality. Awareness of the patient's individual risk profile and the diversity of causes and clinical features of AKI is pivotal for optimization of prophylaxes, diagnosis and therapy of each form of AKI. A differentiated and individualized approach is required to improve patient mortality, morbidity, long-term kidney function and eventually the quality of life. In this review, we provide an overview of the different clinical settings in which specific forms of AKI may occur and point out possible diagnostic as well as therapeutic approaches. Secifically AKI is discussed in the context of non-kidney organ failure, organ transplantation, sepsis, malignancy and autoimmune disease. PMID:26251707

  2. Dominant Mutations in KAT6A Cause Intellectual Disability with Recognizable Syndromic Features

    PubMed Central

    Tham, Emma; Lindstrand, Anna; Santani, Avni; Malmgren, Helena; Nesbitt, Addie; Dubbs, Holly A.; Zackai, Elaine H.; Parker, Michael J.; Millan, Francisca; Rosenbaum, Kenneth; Wilson, Golder N.; Nordgren, Ann

    2015-01-01

    Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects. PMID:25728777

  3. Gonadal mosaicism in ARID1B gene causes intellectual disability and dysmorphic features in three siblings.

    PubMed

    Ben-Salem, Salma; Sobreira, Nara; Akawi, Nadia A; Al-Shamsi, Aisha M; John, Anne; Pramathan, Thachillath; Valle, David; Ali, Bassam R; Al-Gazali, Lihadh

    2016-01-01

    The gene encoding the AT-rich interaction domain-containing protein 1B (ARID1B) has recently been shown to be one of the most frequently mutated genes in patients with intellectual disability (ID). The phenotypic spectrums associated with variants in this gene vary widely ranging for mild to severe non-specific ID to Coffin-Siris syndrome. In this study, we evaluated three children from a consanguineous Emirati family affected with ID and dysmorphic features. Genomic DNA from all affected siblings was analyzed using CGH array and whole-exome sequencing (WES). Based on a recessive mode of inheritance, homozygous or compound heterozygous variants shared among all three affected children could not be identified. However, further analysis revealed a heterozygous variant (c.4318C>T; p.Q1440*) in the three affected children in an autosomal dominant ID causing gene, ARID1B. This variant was absent in peripheral blood samples obtained from both parents and unaffected siblings. Therefore, we propose that the most likely explanation for this situation is that one of the parents is a gonadal mosaic for the variant. To the best of our knowledge, this is the first report of a gonadal mosaicism inheritance of an ARID1B variant leading to familial ID recurrence. PMID:26395437

  4. Gonadal mosaicism in ARID1B gene causes intellectual disability and dysmorphic features in three siblings.

    PubMed

    Ben-Salem, Salma; Sobreira, Nara; Akawi, Nadia A; Al-Shamsi, Aisha M; John, Anne; Pramathan, Thachillath; Valle, David; Ali, Bassam R; Al-Gazali, Lihadh

    2016-01-01

    The gene encoding the AT-rich interaction domain-containing protein 1B (ARID1B) has recently been shown to be one of the most frequently mutated genes in patients with intellectual disability (ID). The phenotypic spectrums associated with variants in this gene vary widely ranging for mild to severe non-specific ID to Coffin-Siris syndrome. In this study, we evaluated three children from a consanguineous Emirati family affected with ID and dysmorphic features. Genomic DNA from all affected siblings was analyzed using CGH array and whole-exome sequencing (WES). Based on a recessive mode of inheritance, homozygous or compound heterozygous variants shared among all three affected children could not be identified. However, further analysis revealed a heterozygous variant (c.4318C>T; p.Q1440*) in the three affected children in an autosomal dominant ID causing gene, ARID1B. This variant was absent in peripheral blood samples obtained from both parents and unaffected siblings. Therefore, we propose that the most likely explanation for this situation is that one of the parents is a gonadal mosaic for the variant. To the best of our knowledge, this is the first report of a gonadal mosaicism inheritance of an ARID1B variant leading to familial ID recurrence.

  5. Qualitative and quantitative features of Rayleigh-Taylor mixing dynamics

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, Praveen; Karkhanis, Varad; Lawrie, Andrew; Bhowmick, Aklant; Abarzhi, Snezhana; RTI Collaboration

    2015-11-01

    We consider dynamics of Rayleigh-Taylor (RT) flow in a large aspect ratio three-dimensional domain with square symmetry in the plane for fluids with contrasting densities. In order to quantify the interface evolution from a small amplitude single-mode initial perturbation to advanced stage of RT mixing, we apply numerical simulations using the MOBILE code, theoretical analyses, including group theory and momentum model, as well as parameters describing the interplay between acceleration and turbulence. We find: In RT flow, the fluid motion is intense near the interface and is negligible far from the interface. At late times the growth rates of RT bubbles and spikes may increase without a corresponding increase of length-scales in the direction normal to acceleration. The parameters describing the interplay between acceleration and turbulence in RT mixing are shown to scale well with the flow Reynolds number and Froude number.

  6. Chaotic features of nuclear structure and dynamics: selected topics

    NASA Astrophysics Data System (ADS)

    Zelevinsky, Vladimir; Volya, Alexander

    2016-03-01

    Quantum chaos has become an important element of our knowledge about physics of complex systems. In typical mesoscopic systems of interacting particles the dynamics invariably become chaotic when the level density, growing by combinatorial reasons, leads to the increasing probability of mixing simple mean-field (particle-hole) configurations. The resulting stationary states have exceedingly complicated structures that are comparable to those in random matrix theory. We discuss the main properties of mesoscopic quantum chaos and show that it can serve as a justification for application of statistical mechanics to mesoscopic systems. We show that quantum chaos becomes a powerful instrument for experimental, theoretical and computational work. The generalization to open systems and effects in the continuum are discussed with the help of the effective non-Hermitian Hamiltonian; it is shown how to formulate this approach for numerous problems of quantum signal transmission. The artificially introduced randomness can also be helpful for a deeper understanding of physics. We indicate the problems that require more investigation so as to be understood further.

  7. Substorm features in MHD (magnetohydrodynamics) simulations of magnetotail dynamics

    SciTech Connect

    Birn, J.; Hesse, M.

    1990-01-01

    We present a review and extended analysis of characteristic results from our nonideal three-dimensional MHD simulations of unstable magnetotail evolution, which develops without the necessity of external driving or prescribed localization on nonideal effects. These modes involve magnetic reconnection at a near-Earth site in the tail, consistent with the near-Earth neutral line model of substorms. The evolution tailward of the reconnection site is characterized by plasmoid formation and ejection into the far tail, plasma sheet thinning between the near-Earth neutral line (X line) and the departing plasmoid, and fast tailward flow, which occupies large sections of the plasma sheet at larger distance from the X line, while it occurs only in very limited space and time sections close to the X line. The region earthward of the X line is characterized by dipolarization, propagating from midnight toward the flank regions and, perhaps, tailward. It is associated with the signatures of the substorm current wedge: reduction and diversion of cross-tail current from a region surrounding the reconnection site and increase of Region 1 type field-aligned currents. A mapping of these currents to the Earth on the basis of an empirical magnetic field model shows good agreement of the mapped current system with the observed Region 1 field-aligned current system and its substorm associated changes, including also a nightward and equatorward shift of the peaks of the field-aligned current density. The evolution of the mappings of the boundaries of the closed field line region bears strong resemblance to the formation and expansion of he auroral bulge. The consistency of all of these details with observed substorm features strongly supports the idea that substorm evolution in the tail is that of a large scale nonideal instability.

  8. [Experience in simulating the structural and dynamic features of small proteins using table supercomputers].

    PubMed

    Kondrat'ev, M S; Kabanov, A V; Komarov, V M; Khechinashvili, N N; Samchenko, A A

    2011-01-01

    The results of theoretical studies of the structural and dynamic features of peptides and small proteins have been presented that were carried out by quantum chemical and molecular dynamics methods in high-performance graphic stations, "table supercomputers", using distributed calculations by the CUDA technology. PMID:22279747

  9. [Experience in simulating the structural and dynamic features of small proteins using table supercomputers].

    PubMed

    Kondrat'ev, M S; Kabanov, A V; Komarov, V M; Khechinashvili, N N; Samchenko, A A

    2011-01-01

    The results of theoretical studies of the structural and dynamic features of peptides and small proteins have been presented that were carried out by quantum chemical and molecular dynamics methods in high-performance graphic stations, "table supercomputers", using distributed calculations by the CUDA technology.

  10. A Seasonal Feature in Mercury's Exosphere Caused by Meteoroids from Comet Encke

    NASA Astrophysics Data System (ADS)

    Burger, M. H.; Christou, A.; Killen, R. M.

    2015-12-01

    The planet Mercury is enveloped in a tenuous atmosphere, the result of a delicate balance between poorly understood sources and sinks (Killen et al, 2007). Meteoroid impacts are a contributing source process (eg Wurz et al, 2010), but their importance compared to other production mechanisms is uncertain. Killen and Hahn (2015) found that seasonal variations in Mercury's calcium exosphere as observed by the MASCS spectrometer onboard the MESSENGER spacecraft (Burger et al, 2014) may be due to impact vaporization of surface material by the infall of interplanetary dust. However, an additional dust source was required to explain a Ca excess at a True Anomaly Angle (TAA) of 25±5 deg. Killen and Hahn suggested that dust from comet 2P/Encke, crossing Mercury's orbital plane at TAA=45 deg, may be the culprit. We have simulated numerically the stream of meteoroids ejected from Encke to test the Killen and Hahn conjecture. We find that Encke particles evolving solely under the gravity of the major planets and the Sun encounter Mercury at TAA=50-60 deg, well after the peak of the Ca excess emission. However, the addition of Poynting-Robertson (P-R) drag in our model couples the age and size of the meteoroids to the TAA at encounter, causing smaller, older particles to encounter Mercury progressively earlier in the Hermean year. In particular, mm-sized grains ejected between 10 and 20 kyr ago impact on the nightside hemisphere of Mercury at TAA = 350-30 deg, near the observed peak time of the exospheric feature. During this presentation, we will describe our model results and discuss their implications for the physical mechanism that injects impact-liberated Ca into sunlight as well as the origin and evolution of the Encke stream of meteoroids. Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL). RMK was supported by NASA Grant NNX07AR78G-S01 as a Participating Scientist on the NASA MESSENGER

  11. A seasonal feature in Mercury’s exosphere caused by meteoroids from comet Encke

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos; Killen, Rosemary M.; Burger, Matthew H.

    2015-11-01

    The planet Mercury is enveloped in a tenuous atmosphere, the result of a delicate balance between poorly understood sources and sinks (Killen et al, 2007). Meteoroid impacts are a contributing source process (eg Wurz et al, 2010), but their importance compared to other production mechanisms is uncertain.Killen and Hahn (2015) found that seasonal variations in Mercury's calcium exosphere as observed by Mercury Atmospheric, and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft (Burger et al, 2014) may be attributed to impact vaporization of surface material by the infall of interplanetary dust. However, an additional dust source was required to explain a Ca excess at a True Anomaly Angle (TAA) of 25±5 deg. Killen and Hahn suggested that dust from comet 2P/Encke, crossing Mercury's orbital plane at TAA=45 deg, may be the culprit.We have simulated numerically the stream of meteoroids ejected from Encke in order to identify those particles that impact Mercury at the present epoch and test the Killen and Hahn conjecture. We find that Encke particles evolving solely under the gravity of the major planets and the Sun encounter Mercury at TAA=50-60 deg, well after the peak of the Ca excess emission. This result is independent of the time of ejection. However, the addition of Poynting-Robertson (P-R) drag in our model couples the age and size of the meteoroids to the TAA at encounter, causing smaller, older particles to encounter Mercury progressively earlier in the Hermean year. In particular, mm-sized grains ejected between 10 and 20 kyr ago impact on the nightside hemisphere of Mercury at TAA = 350-30 deg, near the observed peak time of the exospheric feature.During this presentation, we will describe our model results and discuss their implications for the physical mechanism that injects impact-liberated Ca into sunlight as well as the origin and evolution of the Encke stream of

  12. Dynamic-Feature Extraction, Attribution and Reconstruction (DEAR) Method for Power System Model Reduction

    SciTech Connect

    Wang, Shaobu; Lu, Shuai; Zhou, Ning; Lin, Guang; Elizondo, Marcelo A.; Pai, M. A.

    2014-09-04

    In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.

  13. Identification of the feature that causes the I-band secondary maximum of a Type Ia supernova

    NASA Astrophysics Data System (ADS)

    Jack, D.; Baron, E.; Hauschildt, P. H.

    2015-06-01

    We obtained a time series of spectra covering the secondary maximum in the I band of the bright Type Ia supernova 2014J in M82 with the TIGRE telescope. Comparing the observations with theoretical models calculated with the time dependent extension of the PHOENIX code, we identify the feature that causes the secondary maximum in the I-band light curve. Fe II 3d6(3D)4s-3d6(5D)4p and similar high-excitation transitions produce a blended feature at ˜7500 Å, which causes the rise of the light curve towards the secondary maximum. The series of observed spectra of SN 2014J and archival data of SN 2011fe confirm this conclusion. We further studied the plateau phase of the R-band light curve of SN 2014J and searched for features which contribute to the flux. The theoretical models do not clearly indicate a new feature that may cause the R-band plateau phase. However, Co II features in the range of 6500-7000 Å and the Fe II feature of the I band are clearly seen in the theoretical spectra, but do not appear to provide all of the flux necessary for the R-band plateau.

  14. Thinking Can Cause Forgetting: Memory Dynamics in Creative Problem Solving

    ERIC Educational Resources Information Center

    Storm, Benjamin C.; Angello, Genna; Bjork, Elizabeth Ligon

    2011-01-01

    Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we found…

  15. Ambient response of a unique performance-based design building with dynamic response modification features

    USGS Publications Warehouse

    Celebi, Mehmet; Huang, Moh; Shakal, Antony; Hooper, John; Klemencic, Ron

    2012-01-01

    A 64-story, performance-based design building with reinforced concrete core shear-walls and unique dynamic response modification features (tuned liquid sloshing dampers and buckling-restrained braces) has been instrumented with a monitoring array of 72 channels of accelerometers. Ambient vibration data recorded are analyzed to identify modes and associated frequencies and damping. The low-amplitude dynamic characteristics are considerably different than those computed from design analyses, but serve as a baseline against which to compare with future strong shaking responses. Such studies help to improve our understanding of the effectiveness of the added features to the building and help improve designs in the future.

  16. Short-Time Glassy-like Dynamics Observed in Viscous Protein Solutions with Competing Potential Features

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Godfrin, Doug; Liu, Yun

    Structures in concentrated protein solutions caused by the combination of short-range attraction (SA) and long-range repulsion (LR) have been extensively studied due to their importance in understanding therapeutic protein formulations and the phase behavior in general. Despite extensive studies of kinetically arrested states in colloidal systems with short-range attraction, less is understood for the effect of an additional longer-range repulsion on model colloidal systems with a SA interaction. Highly purified lysozyme is used a model experimental system due to its stable globular structure and SALR interactions at low ionic strength that can be quantitatively modeled. The fluid microstructure and protein short time self diffusion are measured across a broad range of conditions by small angle neutron scattering (SANS) and neutron spin echo (NSE), respectively. Newtonian liquid behavior is observed at all concentrations, even with an increase of zero shear viscosity by almost four orders of magnitude with increasing concentration. However, dynamic measurements demonstrate a sub-diffusive regime at relatively short time scales for concentrated samples at low temperature. The formation of a heterogeneous density distribution is shown to produce localized regions of high density that reduce protein motion, giving it a glassy-like behavior at the short time scale. This heterogeneity occurs at the length scale associated with the intermediate range order driven by the competing potential features, distinguishable from heterogeneous colloidal gels.

  17. Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus.

    PubMed

    Titov, Dmitry V; Taylor, Fredric W; Svedhem, Håkan; Ignatiev, Nikolay I; Markiewicz, Wojciech J; Piccioni, Giuseppe; Drossart, Pierre

    2008-12-01

    When seen in ultraviolet light, Venus has contrast features that arise from the non-uniform distribution of unknown absorbers within the sulphuric acid clouds and seem to trace dynamical activity in the middle atmosphere. It has long been unclear whether the global pattern arises from differences in cloud top altitude (which was earlier estimated to be 66-72 km), compositional variations or temperature contrasts. Here we report multi-wavelength imaging that reveals that the dark low latitudes are dominated by convective mixing which brings the ultraviolet absorbers up from depth. The bright and uniform mid-latitude clouds reside in the 'cold collar', an annulus of cold air characterized by approximately 30 K lower temperatures with a positive lapse rate, which suppresses vertical mixing and cuts off the supply of ultraviolet absorbers from below. In low and middle latitudes, the visible cloud top is located at a remarkably constant altitude of 72 +/- 1 km in both the ultraviolet dark and bright regions, indicating that the brightness variations result from compositional differences caused by the colder environment rather than by elevation changes. The cloud top descends to approximately 64 km in the eye of the hemispheric vortex, which appears as a depression in the upper cloud deck. The ultraviolet dark circular streaks enclose the vortex eye and are dynamically connected to it.

  18. De Novo Mutation in ABCC9 Causes Hypertrichosis Acromegaloid Facial Features Disorder.

    PubMed

    Afifi, Hanan H; Abdel-Hamid, Mohamed S; Eid, Maha M; Mostafa, Inas S; Abdel-Salam, Ghada M H

    2016-01-01

    A 13-year-old Egyptian girl with generalized hypertrichosis, gingival hyperplasia, coarse facial appearance, no cardiovascular or skeletal anomalies, keloid formation, and multiple labial frenula was referred to our clinic for counseling. Molecular analysis of the ABCC9 gene showed a de novo missense mutation located in exon 27, which has been described previously with Cantu syndrome. An overlap between Cantu syndrome, acromegaloid facial syndrome, and hypertrichosis acromegaloid facial features disorder is apparent at the phenotypic and molecular levels. The patient reported here gives further evidence that these syndromes are an expression of the ABCC9-related disorders, ranging from hypertrichosis and acromegaloid facies to the severe end of Cantu syndrome.

  19. Remote suspect identification and the impact of demographic features on keystroke dynamics

    NASA Astrophysics Data System (ADS)

    Dora, Robert A.; Schalk, Patrick D.; McCarthy, John E.; Young, Scott A.

    2013-05-01

    This paper describes the research, development, and analysis performed during the Remote Suspect Identification (RSID) effort. The effort produced a keystroke dynamics sensor capable of authenticating, continuously verifying, and identifying masquerading users with equal error rates (EER) of approximately 0.054, 0.050, and 0.069, respectively. This sensor employs 11 distinct algorithms, each using between one and five keystroke features, that are fused (across features and algorithms) using a weighted majority ballot algorithm to produce rapid and accurate measurements. The RSID sensor operates discretely, quickly (using few keystrokes), and requires no additional hardware. The researchers also analyzed the difference in sensor performance across 10 demographic features using a keystroke dynamics dataset consisting of data from over 2,200 subjects. This analysis indicated that there are significant and discernible differences across age groups, ethnicities, language, handedness, height, occupation, sex, typing frequency, and typing style.

  20. De Novo Mutation in ABCC9 Causes Hypertrichosis Acromegaloid Facial Features Disorder.

    PubMed

    Afifi, Hanan H; Abdel-Hamid, Mohamed S; Eid, Maha M; Mostafa, Inas S; Abdel-Salam, Ghada M H

    2016-01-01

    A 13-year-old Egyptian girl with generalized hypertrichosis, gingival hyperplasia, coarse facial appearance, no cardiovascular or skeletal anomalies, keloid formation, and multiple labial frenula was referred to our clinic for counseling. Molecular analysis of the ABCC9 gene showed a de novo missense mutation located in exon 27, which has been described previously with Cantu syndrome. An overlap between Cantu syndrome, acromegaloid facial syndrome, and hypertrichosis acromegaloid facial features disorder is apparent at the phenotypic and molecular levels. The patient reported here gives further evidence that these syndromes are an expression of the ABCC9-related disorders, ranging from hypertrichosis and acromegaloid facies to the severe end of Cantu syndrome. PMID:26871653

  1. Imaging features of macrodystrophia lipomatosa: an unusual cause of a brawny arm.

    PubMed

    Dhanasekaran, Jagadeesan; Reddy, Ajit Kumar; Sarawagi, Radha; Lakshmanan, Prakash Manikka

    2014-01-01

    Macrodystrophia lipomatosa (MDL), a rare non-hereditary congenital disorder of localised gigantism, is characterised by progressive proliferation of all mesenchymal elements, with a disproportionate increase in fibroadipose tissue. We report a case of a 19-year-old man who presented with a history of painless enlargement of the left upper limb since childhood, which was gradually increasing in size and predominantly involving the radial aspect of the upper limb with relative sparing of the ulnar aspect. The patient was imaged with X-ray and MRI. Imaging and clinical features were classical of MDL. The patient underwent stage 1 reduction plasty of the left forearm; preoperative and histopathological findings confirmed the preoperative diagnosis. PMID:25406225

  2. Imaging features of macrodystrophia lipomatosa: an unusual cause of a brawny arm.

    PubMed

    Dhanasekaran, Jagadeesan; Reddy, Ajit Kumar; Sarawagi, Radha; Lakshmanan, Prakash Manikka

    2014-01-01

    Macrodystrophia lipomatosa (MDL), a rare non-hereditary congenital disorder of localised gigantism, is characterised by progressive proliferation of all mesenchymal elements, with a disproportionate increase in fibroadipose tissue. We report a case of a 19-year-old man who presented with a history of painless enlargement of the left upper limb since childhood, which was gradually increasing in size and predominantly involving the radial aspect of the upper limb with relative sparing of the ulnar aspect. The patient was imaged with X-ray and MRI. Imaging and clinical features were classical of MDL. The patient underwent stage 1 reduction plasty of the left forearm; preoperative and histopathological findings confirmed the preoperative diagnosis.

  3. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients.

    PubMed

    Griffith, D E; Girard, W M; Wallace, R J

    1993-05-01

    The role of rapidly growing mycobacteria (RGM) as pulmonary pathogens has been unclear. We identified 154 cases of lung disease caused by RGM using the microbiologic and radiographic criteria of the American Thoracic Society (ATS) and availability of the causative organism for study. More than one third of patients had positive lung biopsy cultures. Patients were predominantly white (83%), female (65%) nonsmokers (66%), and they had prolonged periods from onset of symptoms to diagnosis of their disease. Cough was an almost universal presenting symptom, whereas constitutional symptoms became more important with progression of disease. Upper lobe infiltrates were most common (88%), with 77% of patients developing bilateral disease. Cavitation was present in only 16% of the patients. Specific underlying diseases were infrequent, but they included previously treated mycobacterial disease (18%), coexistent Mycobacterium avium complex (8%), cystic fibrosis (6%), and gastroesophageal disorders with chronic vomiting (6%). The majority of isolates (82%) were M. abscessus (formerly M. chelonae subsp. abscessus). Effective treatment for M. fortuitum long disease was accomplished with drug therapy, whereas surgical resection of localized disease was the only effective long-term therapy for M. abscessus. Although the disease was generally slowly progressive, 21 of 154 (14%) patients died as a consequence of progressive RGM lung disease and respiratory failure. RGM should be recognized as a cause of chronic mycobacterial lung disease, and respiratory isolates should be assessed carefully. PMID:8484642

  4. Clinical features of human salmonellosis caused by bovine-associated subtypes in New York.

    PubMed

    Cummings, Kevin J; Warnick, Lorin D; Gröhn, Yrjö T; Hoelzer, Karin; Root, Timothy P; Siler, Julie D; McGuire, Suzanne M; Wright, Emily M; Zansky, Shelley M; Wiedmann, Martin

    2012-09-01

    The objective of this study was to identify patient symptoms and case outcomes that were more likely to occur as a result of Salmonella infections caused by bovine-associated subtypes (isolates that matched contemporary bovine isolates from New York by serovar and pulsed-field gel electrophoresis pattern), as compared to salmonellosis caused by non-bovine-associated subtypes. Data were collected in 34 counties of New York that comprise the Foodborne Diseases Active Surveillance Network (FoodNet) catchment area of the Centers for Disease Control and Prevention Emerging Infections Program. Patients with specimen collection dates between March 1, 2008 and March 1, 2010 were included. Symptoms and outcomes of 40 cases infected with bovine-associated Salmonella subtypes were compared to those of 379 control-cases infected with Salmonella isolates that were not bovine-associated. Cases were significantly more likely to have invasive salmonellosis (odds ratio, 3.8; p-value=0.02), after adjusting for age group, gender, and race. In addition, there was a marginal association between case status and the presence of blood in the stool (p-value=0.1) while ill. These findings might have implications for patient management, as a history of consuming undercooked foods of bovine origin or having direct contact with cattle in the few days prior to illness could be useful for suggesting a more proactive diagnostic approach as well as close monitoring for the need to implement more aggressive therapy.

  5. Towards inclusion of dynamic slip features in stochastic models for probabilistic (tsunami) hazard analysis.

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Nielsen, S. B.; Festa, G.; Trasatti, E.; Tonini, R.; Molinari, I.; Romano, F.

    2015-12-01

    Stochastic slip modelling based on general scaling features with uniform slip probability over the fault plane is commonly employed in tsunami and seismic hazard. However, dynamic rupture effects driven by specific fault geometry and frictional conditions can potentially control the slip probability. Unfortunately dynamic simulations can be computationally intensive, preventing their extensive use for hazard analysis. The aim of this study is to produce a stochastic model that incorporates slip features observed in dynamic simulations. Taking a Tohoku-like fault as a case study, numerous 2d spectral element dynamic simulations are performed using a variety of pre-stress distributions. Comparing the slip distributions generated from these simulations to traditional stochastic slip models we find that the stochastic models generally under represent slip near the free surface. This is an important feature in tsunami hazard with very large slip at shallow depth observed for the 2011 Tohoku earthquake. To incorporate dynamic features in the stochastic modeling we generate a depth dependent "transfer function" based on comparisons between the dynamic and stochastic models. Assuming that the differences between stochastic and dynamic slip distributions are predominantly depth dependent and not along strike, the transfer function is then applied to stochastic source models over a 3d geometry of the Tohoku fault. Comparing maximum tsunami wave height along the Japanese coast using a traditional stochastic model and one modified by the transfer function we find that the inclusion of the transfer function leads to the occurrence of more extreme events. Applying this function to the traditional stochastic slip distribution as a depth-dependent PDF for the slip may allow for an approximated but efficient incorporation of regionally specific dynamic features in a modified source model, to be used specifically when a significant number of slip scenarios need to be produced, e

  6. Duplication of the TGFBR1 gene causes features of Loeys-Dietz syndrome.

    PubMed

    Breckpot, Jeroen; Budts, Werner; De Zegher, Francis; Vermeesch, Joris R; Devriendt, Koenraad

    2010-01-01

    Loeys-Dietz syndrome (LDS; OMIM:609192) is an autosomal dominant disorder characterized by hypertelorism, bifid uvula or cleft palate, and arterial tortuosity with widespread vascular aneurysms and a high risk of aortic dissection at an early age. LDS results from mutations in the transforming growth factor beta-receptor I and II (TGFBR1 and TGFBR2) genes, altering the transmission of the subcellular TGF-β signal, mediated by increased activation of Smad2. We report on a 17-year-old boy with pubertas tarda, a bifid uvula, camptodactyly and facial dysmorphic features, suggestive of LDS. Mutation analysis of TGFBR1 and TGFBR2 was normal. By means of molecular karyotyping two previously unreported chromosomal imbalances were detected: a 120 kb deletion on chromosome 22q13.31q13.32, inherited from an unaffected parent, and a de novo 14.6 Mb duplication on chromosome 9q22.32q31.3, comprising TGFBR1. We hypothesize that copy number gain of TGFBR1 contributes to the phenotype. PMID:20813212

  7. Very small (border zone) cerebellar infarcts. Distribution, causes, mechanisms and clinical features.

    PubMed

    Amarenco, P; Kase, C S; Rosengart, A; Pessin, M S; Bousser, M G; Caplan, L R

    1993-02-01

    Computerized tomography (CT) and magnetic resonance imaging (MRI) allow accurate anatomical localization of large thromboembolic cerebellar infarcts in the territories of the cerebellar arteries and their branches. In addition, MRI and CT show very small cerebellar infarcts as discrete foci of signal change that are not easily localizable within well-defined arterial territories. They could be border zone infarcts. Their anatomy, mechanism and clinical features have not been studied. By reviewing our CT and MRI files over a 2-year period, we found 47 patients with very small cerebellar infarcts; 23 patients had angiography. Infarcts were cortical (32 patients), deep (10 patients) and both (five patients). Most lesions corresponded to border zone cerebellar infarcts. The mechanisms of infarction were (i) global hypoperfusion due to cardiac arrest (two patients); (ii) small or end (pial) artery disease due to intracranial atheroma or hypercoagulable states (nine patients); (iii) focal cerebellar hypoperfusion due to large artery (vertebral or basilar) occlusive disease (16 patients) or brain embolism (11 patients) resulting in infarcts in the watershed areas (27 patients total); (iv) unknown mechanism (nine patients, 19%). Large artery occlusive disease was more frequently observed in deep than in cortical infarcts (9 out of 15 versus 11 out of 37; P < 0.0001). The most frequent symptoms were dizziness, lightheadedness, unsteadiness with axial lateropulsion, dysarthria and limb clumsiness. These symptoms were either transient or recurrent, at times related to positional changes of the head or trunk. Position-related symptoms often persisted for weeks or months after the ischaemic event, and occurred mainly in patients with combined carotid and vertebrobasilar occlusive disease. Physical findings were either absent or included wide-based gait, lateropulsion, mild ipsilateral dysmetria, dysarthria or dysdiadochokinesia. We conclude that very small cerebellar infarcts

  8. Adaptation to second order stimulus features by electrosensory neurons causes ambiguity

    PubMed Central

    Zhang, Zhubo D.; Chacron, Maurice J.

    2016-01-01

    Understanding the coding strategies used to process sensory input remains a central problem in neuroscience. Growing evidence suggests that sensory systems process natural stimuli efficiently by ensuring a close match between neural tuning and stimulus statistics through adaptation. However, adaptation causes ambiguity as the same response can be elicited by different stimuli. The mechanisms by which the brain resolves ambiguity remain poorly understood. Here we investigated adaptation in electrosensory pyramidal neurons within different parallel maps in the weakly electric fish Apteronotus leptorhynchus. In response to step increases in stimulus variance, we found that pyramidal neurons within the lateral segment (LS) displayed strong scale invariant adaptation whereas those within the centromedial segment (CMS) instead displayed weaker degrees of scale invariant adaptation. Signal detection analysis revealed that strong adaptation in LS neurons significantly reduced stimulus discriminability. In contrast, weaker adaptation displayed by CMS neurons led to significantly lesser impairment of discriminability. Thus, while LS neurons display adaptation that is matched to natural scene statistics, thereby optimizing information transmission, CMS neurons instead display weaker adaptation and would instead provide information about the context in which these statistics occur. We propose that such a scheme is necessary for decoding by higher brain structures. PMID:27349635

  9. Multifractal features of magnetospheric dynamics and their dependence on solar activity

    NASA Astrophysics Data System (ADS)

    Gopinath, Sumesh

    2016-09-01

    In the present study, novel wavelet leaders (WL) based multifractal analysis has been used to get a better knowledge of the self-organization phenomena inherent in complex magnetospheric dynamics during disturbance and quiescent periods, focusing mainly on the intermittent features of auroral electrojet (AE) index. The results derived from the analysis certainly exhibit the phase transition property of magnetosphere system with respect to variabilities in the driving conditions. By using the novel WL method, solar activity dependence/independence of intermittency of magnetospheric proxies such as AE, SYM-H and Dst indices have been compared. The results indicate that the multifractality of AE index does not follow the solar activity cycle while intermittent features of SYM-H and Dst indices show high degree of solar activity dependence. This shows that along with the external solar wind perturbations, certain complex phenomena of internal origin also significantly modulate the dynamics of geomagnetic fluctuations in the auroral region.

  10. Features and causes of recent surface solar radiation dimming and brightening patterns

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.; Papadimas, C. D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I.

    2012-04-01

    Incoming solar radiation at the Earth's surface has undergone substantial decreases/increases on decadal timescales in the second half of 20th century. More specifically, surface measurements have indicated a widespread decrease of surface solar radiation (SSR) from the 1950s to the 1980s, described as global dimming, followed by a period with either no more decrease or even an increase at various locations worldwide till the end of 1990s, namely a global brightening. These measured patterns of SSR are, in general, in line with SSR fluxes computed with radiative transfer models (RTMs) using satellite input data, while efforts are currently being made to reproduce them with regional or global climate models. The advantage of reproducing SSR dimming/brightening with RTMs is that an almost complete coverage of the globe is possible, whereas dimming/brightening patterns are obtained under both clear- and all-sky conditions. Moreover, an even more important and incomparable advantage of the use of RTMs for reproducing SSR dimming/brightening, is that it makes possible the identification of their causes in terms of specific radiative forcing agents, and the assessment and quantification of their relative contribution to GDB, which is of major importance for understanding current and future climate changes. In the present study, first an update of SSR dimming/brightening at global scale beyond 2000 is attempted using a spectral RTM along with a variety of satellite and reanalyses input data. The results are obtained at scales varying from the regional to continental/hemispherical/global, and are validated through comparisons against quality surface measurements from reference global networks such as GEBA (Global Energy Balance Archive) and BSRN (Baseline Surface Radiation Network). An inter-hemispherical difference is revealed up to 2007, consisting in a clear dimming in the South Hemisphere (SH), against a no clear dimming/brightening signal in North Hemisphere (NH

  11. Features of lava lake filling and draining and their implications for eruption dynamics

    USGS Publications Warehouse

    Stovall, W.K.; Houghton, B.F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes experience filling, circulation, and often drainage depending upon the style of activity and location of the vent. Features formed by these processes have proved difficult to document due to dangerous conditions during the eruption, inaccessibility, and destruction of features during lake drainage. Kilauea Iki lava lake, Kilauea, Hawai'i, preserves many such features, because lava ponded in a pre-existing crater adjacent to the vent and eventually filled to the level of, and interacted with, the vent and lava fountains. During repeated episodes, a cyclic pattern of lake filling to above vent level, followed by draining back to vent level, preserved features associated with both filling and draining. Field investigations permit us to describe the characteristic features associated with lava lakes on length scales ranging from centimeters to hundreds of meters in a fashion analogous to descriptions of lava flows. Multiple vertical rinds of lava coating the lake walls formed during filling as the lake deepened and lava solidified against vertical faces. Drainage of the lake resulted in uneven formation of roughly horizontal lava shelves on the lakeward edge of the vertical rinds; the shelves correlate with stable, staggered lake stands. Shelves either formed as broken relict slabs of lake crust that solidified in contact with the wall or by accumulation, accretion, and widening at the lake surface in a dynamic lateral flow regime. Thin, upper lava shelves reflect an initially dynamic environment, in which rapid lake lowering was replaced by slower and more staggered drainage with the formation of thicker, more laterally continuous shelves. At all lava lakes experiencing stages of filling and draining these processes may occur and result in the formation of similar sets of features. ?? Springer-Verlag 2009.

  12. Functional MRI mapping of dynamic visual features during natural viewing in the macaque

    PubMed Central

    Russ, Brian E.; Leopold, David A.

    2015-01-01

    The ventral visual pathway of the primate brain is specialized to respond to stimuli in certain categories, such as the well-studied face selective patches in the macaque inferotemporal cortex. To what extent does response selectivity determined using brief presentations of isolated stimuli predict activity during the free viewing of a natural, dynamic scene, where features are superimposed in space and time? To approach this question, we obtained fMRI activity from the brains of three macaques viewing extended video clips containing a range of social and nonsocial content and compared the fMRI time courses to a family of feature models derived from the movie content. Starting with more than two dozen feature models extracted from each movie, we created functional maps based on features whose time courses were nearly orthogonal, focusing primarily on faces, motion content, and contrast level. Activity mapping using the face feature model readily yielded functional regions closely resembling face patches obtained using a block design in the same animals. Overall, the motion feature model dominated responses in nearly all visually driven areas, including the face patches as well as ventral visual areas V4, TEO, and TE. Control experiments presenting dynamic movies, whose content was free of animals, demonstrated that biological movement critically contributed to the predominance of motion in fMRI responses. These results highlight the value of natural viewing paradigms for studying the brain’s functional organization and also underscore the paramount contribution of magnocellular input to the ventral visual pathway during natural vision. PMID:25579448

  13. Functional MRI mapping of dynamic visual features during natural viewing in the macaque.

    PubMed

    Russ, Brian E; Leopold, David A

    2015-04-01

    The ventral visual pathway of the primate brain is specialized to respond to stimuli in certain categories, such as the well-studied face selective patches in the macaque inferotemporal cortex. To what extent does response selectivity determined using brief presentations of isolated stimuli predict activity during the free viewing of a natural, dynamic scene, where features are superimposed in space and time? To approach this question, we obtained fMRI activity from the brains of three macaques viewing extended video clips containing a range of social and nonsocial content and compared the fMRI time courses to a family of feature models derived from the movie content. Starting with more than two dozen feature models extracted from each movie, we created functional maps based on features whose time courses were nearly orthogonal, focusing primarily on faces, motion content, and contrast level. Activity mapping using the face feature model readily yielded functional regions closely resembling face patches obtained using a block design in the same animals. Overall, the motion feature model dominated responses in nearly all visually driven areas, including the face patches as well as ventral visual areas V4, TEO, and TE. Control experiments presenting dynamic movies, whose content was free of animals, demonstrated that biological movement critically contributed to the predominance of motion in fMRI responses. These results highlight the value of natural viewing paradigms for studying the brain's functional organization and also underscore the paramount contribution of magnocellular input to the ventral visual pathway during natural vision. PMID:25579448

  14. Dynamic feature analysis of vector-based images for neuropsychological testing

    NASA Astrophysics Data System (ADS)

    Smith, Stephen L.; Cervantes, Basilio R.

    1998-07-01

    The dynamic properties of human motor activities, such as those observed in the course of drawing simple geometric shapes, are considerably more complex and often more informative than the goal to be achieved; in this case a static line drawing. This paper demonstrates how these dynamic properties may be used to provide a means of assessing a patient's visuo-spatial ability -- an important component of neuropsychological testing. The work described here provides a quantitative assessment of visuo-spatial ability, whilst preserving the conventional test environment. Results will be presented for a clinical population of long-term haemodialysis patients and test population comprises three groups of children (1) 7-8 years, (2) 9-10 years and (3) 11-12 years, all of which have no known neurological dysfunction. Ten new dynamic measurements extracted from patient responses in conjunction with one static feature deduced from earlier work describe a patient's visuo-spatial ability in a quantitative manner with sensitivity not previously attainable. The dynamic feature measurements in isolation provide a unique means of tracking a patient's approach to motor activities and could prove useful in monitoring a child' visuo-motor development.

  15. Community-Onset Bloodstream and Other Infections, Caused by Carbapenemase-Producing Enterobacteriaceae: Epidemiological, Microbiological, and Clinical Features

    PubMed Central

    Paño-Pardo, José Ramón; López Quintana, Beatriz; Lázaro Perona, Fernando; Ruiz Carrascoso, Guillermo; Romero-Gómez, María Pilar; Loeches Yagüe, Belén; Díaz-Pollán, Beatriz; Martínez-Virto, Ana; Mingorance, Jesús; García Rodríguez, Julio; Arribas, José Ramón; Gómez-Gil, Rosa

    2016-01-01

    Background. Because most infections caused by carbapenemase-producing Enterobacteriaceae (CPE) begin during hospitalization, there are limited data about community-onset (CO) infections caused by CPE. Our aim is to describe the frequency of CO infections caused by CPE as well as the clinical features of CO bloodstream infections (CO-BSIs). Methods. This study includes retrospective case series of CO infections caused by CPE in a tertiary hospital from January 2010 to July 2014. Any clinical sample with a positive culture for CPE that had been ordered by primary care doctors or by doctors at the emergency room (ER) were classified as CO. Epidemiological and microbiological features of CO cases were assessed as were clinical features of CO-BSIs. Results. Of 780 clinical samples with CPE, 180 were requested at the ER or by primary care doctors (22.9%), 150 of which were produced by Klebsiella pneumoniae (83.3%). The blaOXA−48 gene was detected in 149 isolates (82.8%) followed by the blaVIM gene, 29 (16.1%). Sixty-one patients (33.9%) had a prior history of CPE infection/colonization. Thirty-four of the 119 (28.6%) patients without prior history of CPE infection/colonization did not fulfill Friedman criteria for healthcare-associated infections (HAIs). Considering previous hospitalization of up to 12 months as a criterion for defining HAI, only 16 (13.4%) cases were identified as community-acquired infections. The most frequent positive sample was urine (133 of 180; 73.9%). Twenty-one (11.7%) patients had a BSI, 9 of them secondary to urinary tract infections (42.9%). Thirty-day crude mortality among patients with BSI was 23.8% (5 of 21). Conclusions. Community-onset infections caused by CPE are an important subgroup of all CPE infections. The urinary tract is the main source. Bloodstream infections accounted for more than 10% of the cases. PMID:27703997

  16. Mapping the Structural and Dynamical Features of Multiple p53 DNA Binding Domains: Insights into Loop 1 Intrinsic Dynamics

    PubMed Central

    Lukman, Suryani; Lane, David P.; Verma, Chandra S.

    2013-01-01

    The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site. PMID:24324553

  17. Different developmental trajectories across feature types support a dynamic field model of visual working memory development

    PubMed Central

    Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin

    2015-01-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253

  18. Sleep apnoea detection in children using PPG envelope-based dynamic features.

    PubMed

    Sepúlveda-Cano, L M; Gil, E; Laguna, P; Castellanos-Dominguez, G

    2011-01-01

    Photopletysmography signal has been developed for monitoring of Obstructive Sleep Apnoea, in particular, whenever an apneic episode occurs, that is reflected by decreases in the photopletysmography signal amplitude fluctuation. However, other physiological events such as artifacts and deep inspiratory gasp produce sympathetic activation, being unrelated to apnea. Thus, its high sensitivity can produce misdetections and overestimate apneic episodes. In this regard, a methodology for selecting a set of relevant non-stationary features to increase the specificity of the obstructive sleep apnea detector is discussed. A time-evolving version of the standard linear multivariate decomposition is discussed to perform stochastic dimensionality reduction. As a result, performed outcomes of accuracy bring enough evidence that if using a subset of cepstral-based dynamic features, then patient classification accuracy is 83.3%. Therefore, photoplethysmography--based detection provides an adequate scheme for obstructive sleep apnea diagnosis. PMID:22254600

  19. Common Dynamical Features for Thermal Convection in Golden Syrup and Gelatin Solution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei

    2016-10-01

    Recent work has shown that the primary mode for heat transport in a gelatin solution oscillates between convection and conduction. This dynamical change is induced by stagnant domain formation where there is no flow. Here, we show that this phenomenon does not occur only in gelatin solution, but also in Golden Syrup, which is a simple fluid. We investigate thermal convection in Golden Syrup and find similar behaviors, such as stagnant domain formation. This suggests that the origin of previously reported unusual thermal convection accompanied by stagnant domain formation should not be a viscoelastic feature of gelatin solution.

  20. Phobos and deimos: Analysis of surface features, ejecta dynamics and a volatile loss mechanism

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Greenberg, R.; Weidenschilling, S. J.

    1980-01-01

    The question of whether the crater population on Phobos represents a production population or an equilibrium population is considered. The absolute ages of cratered surfaces are interpreted and analyzed. A computer program was developed to study the dynamics of material ejected from Martian satellites and to investigate the hypothesis that at least some of the extensive set of linear features discovered on the surface of Phobos could be the result of secondary cratering from the Stickney impact. The possibility that Deimos was catastrophically disrupted by a large impact but subsequently reaccreted is considered as well as the probability the Phobos had an impact nearly large enough to disrupt it are also discussed.

  1. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  2. Dynamic features analysis for the large-scale logistics system warehouse-out operation

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Ji-Nan; Liu, Xiao-Feng; Zheng, Xu-Zhou

    2014-12-01

    In the paper, we research on the behavior dynamics for the large-scale logistics system warehouse-out operation systematically. First, we discover that steel products warehouse-out of different warehouses in a large-scale logistics system can be characterized by burst, and the warehouse-out inter-event time follows the power-law distribution with exponents close to α=2.5, which differs from the two classical models proposed by Barabasi (2005) and Vazquez (2005) respectively. By analyzing the warehouse-out inter-event time distribution of the products in one certain large-scale logistics system, we further discuss burst features and mechanisms of logistics system. Additionally, we find that in population behaviors, burst features can be explained by the priority that rooted in holidays and interior task scheduling. However, warehouse-out behaviors of active individuals do not show any features of burst. Further, we find that warehouse-out quantity of steel products follows Fractal Brownian motion with the HURST exponent higher than 0.5 by means of R/S, which infers that the quantity of products in a logistics system is not only guided by prices in the present market, but also related closely to the previous quantity of warehouse-out. Based on V statistic, we compare memory length of different products in warehouses. Finally, we apply complex networks visibility graphs for further validation of fractal features in a logistics system and find that almost every visibility graph exhibits small-world and scale-free features. Both R/S and complex networks visibility graphs reinforce that the warehouse-out quantity of products in a logistics system is not a random walk process, but contains intrinsic regularities and long-term correlation between present and previous warehouse-out quantity.

  3. Studying the NDVI dynamics features for vegetation monitoring method development in the south of Central Siberia

    NASA Astrophysics Data System (ADS)

    Pugacheva, Irina

    Monitoring of vegetation state can be based on studying their dynamics features. Effective methods of satellite data interpretation using spectral feature distinctions should be applied for this purpose. Studying the time series of Normalized Difference Vegetation Index (NDVI) during growth period is one of such approaches. The analysis of NDVI temporal profile shape allows to identify vegetation objects on satellite image. The NDVI curve transformation regularities during growth period are studied in the process of study carried out. Growth rate in specific phenological phases (growth of vegetative organs; maturation and fruiting) and extreme NDVI values during total growth period are detected. Growth rate is calculated as a NDVI curve slope. The NDVI dynamics of different vegetation types (agricultural crops - wheat, oats, buckwheat; abandoned fields of different age, meadow steppe, stony steppe, feather-grass steppe, flood meadow etc.), located in the south of Central Siberia (Krasnoyarsk krai, Khakasia), has been derived and analyzed. Results of this study are as the basis for developed software, which produces the automatic identification of canopy using Terra Modis satellite measurement data.

  4. Site-Specific DNA Structural and Dynamic Features Revealed by Nucleotide-Independent Nitroxide Probes†

    PubMed Central

    Popova, Anna M.; Kálai, Tamás; Hideg, Kálmán; Qin, Peter Z.

    2009-01-01

    In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to “scan” a given DNA molecule in order to interrogate its local structural and dynamic features. PMID:19650666

  5. Site-Specific DNA Structural and Dynamic Features Revealed by Nucleotide-Independent Nitroxide Probes

    SciTech Connect

    Popova, Anna; Kalai, Tamas; Hideg, Kalman; Qin, Peter Z.

    2009-09-15

    In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to “scan” a given DNA molecule in order to interrogate its local structural and dynamic features.

  6. Simple topological features reflect dynamics and modularity in protein interaction networks.

    PubMed

    Pritykin, Yuri; Singh, Mona

    2013-01-01

    The availability of large-scale protein-protein interaction networks for numerous organisms provides an opportunity to comprehensively analyze whether simple properties of proteins are predictive of the roles they play in the functional organization of the cell. We begin by re-examining an influential but controversial characterization of the dynamic modularity of the S. cerevisiae interactome that incorporated gene expression data into network analysis. We analyse the protein-protein interaction networks of five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, and confirm significant and consistent functional and structural differences between hub proteins that are co-expressed with their interacting partners and those that are not, and support the view that the former tend to be intramodular whereas the latter tend to be intermodular. However, we also demonstrate that in each of these organisms, simple topological measures are significantly correlated with the average co-expression of a hub with its partners, independent of any classification, and therefore also reflect protein intra- and inter- modularity. Further, cross-interactomic analysis demonstrates that these simple topological characteristics of hub proteins tend to be conserved across organisms. Overall, we give evidence that purely topological features of static interaction networks reflect aspects of the dynamics and modularity of interactomes as well as previous measures incorporating expression data, and are a powerful means for understanding the dynamic roles of hubs in interactomes. PMID:24130468

  7. Distinguishing features of flow in heterogeneous porous media: 4, Is a more general dynamic description required

    SciTech Connect

    Nelson, R.W.

    1990-11-01

    Groundwater theory that applies to only homogeneous systems is often too restricted to adequately solve actual groundwater pollution problems. For adequate solutions, the more general theory for heterogeneous porous systems is needed. However, the present dynamic and kinematic descriptions in heterogeneous materials have evolved largely from the restricted and less general homogeneous theory. These descriptions are inadequate because they fail to account for all the energy dissipation in the system. The basic distinguishing dynamic feature of heterogeneous flow theory from the less general homogeneous-based theory is the macroscopic rotational flow component. Specifically, existence of rotational flow components and their independence from the translational flow components are the necessary and sufficient conditions that completely differentiate between the complex lamellar heterogeneous flow theory and the simpler lamellar flow of homogeneous theory. This paper proposes a more general dynamic form of the flow equation to include the added rotational dissipation that is missing from the present Darcian description of flow in heterogeneous media. 31 refs.

  8. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Guan, P. F.; Li, M. Z.; Liu, C. T.; Yang, Y.; Bai, H. Y.; Wang, W. H.

    2016-06-01

    Heterogeneity is commonly believed to be intrinsic to metallic glasses (MGs). Nevertheless, how to distinguish and characterize the heterogeneity at the atomic level is still debated. Based on the extensive molecular dynamics simulations that combine isoconfigurational ensemble and atomic pinning methods, we directly reveal that MG contains flow units and the elastic matrix which can be well distinguished by their distinctive atomic-level responsiveness and mechanical performance. The microscopic features of the flow units, such as the shape, spatial distribution dimensionality, and correlation length, are characterized from atomic position analyses. Furthermore, the correlation between the flow units and the landscape of energy state, free volume, atomic-level stress, and especially the local bond orientational order parameter is discussed.

  9. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (Nstudy1 = 75; Nstudy2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  10. Hand Gesture Spotting Based on 3D Dynamic Features Using Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Elmezain, Mahmoud; Al-Hamadi, Ayoub; Michaelis, Bernd

    In this paper, we propose an automatic system that handles hand gesture spotting and recognition simultaneously in stereo color image sequences without any time delay based on Hidden Markov Models (HMMs). Color and 3D depth map are used to segment hand regions. The hand trajectory will determine in further step using Mean-shift algorithm and Kalman filter to generate 3D dynamic features. Furthermore, k-means clustering algorithm is employed for the HMMs codewords. To spot meaningful gestures accurately, a non-gesture model is proposed, which provides confidence limit for the calculated likelihood by other gesture models. The confidence measures are used as an adaptive threshold for spotting meaningful gestures. Experimental results show that the proposed system can successfully recognize isolated gestures with 98.33% and meaningful gestures with 94.35% reliability for numbers (0-9).

  11. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  12. A combination of vocal fo dynamic and summary features discriminates between three pragmatic categories of infant-directed speech.

    PubMed

    Katz, G S; Cohn, J F; Moore, C A

    1996-02-01

    To assess the relative contribution of dynamic and summary features of vocal fundamental frequency (f0) to the statistical discrimination of pragmatic categories in infant-directed speech, 49 mothers were instructed to use their voice to get their 4-month-old baby's attention, show approval, and provide comfort. Vocal f0 from 621 tokens was extracted using a Computerized Speech Laboratory and custom software. Dynamic features were measured with convergent methods (visual judgment and quantitative modeling of f0 contour shape). Summary features were f0 mean, standard deviation, and duration. Dynamic and summary features both individually and in combination statistically discriminated between each of the pragmatic categories. Classification rates were 69% and 62% in initial and cross-validation DFAs, respectively.

  13. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Soliman, Mahmoud E S

    2015-01-01

    The first account on the dynamic features of Nef or negative factor, a small myristoylated protein located in the cytoplasm believes to increase HIV-1 viral titer level, is reported herein. Due to its major role in HIV-1 pathogenicity, Nef protein is considered an emerging target in anti-HIV drug design and discovery process. In this study, comparative long-range all-atom molecular dynamics simulations were employed for apo and bound protein to unveil molecular mechanism of HIV-Nef dimerization and inhibition. Results clearly revealed that B9, a newly discovered Nef inhibitor, binds at the dimeric interface of Nef protein and caused significant separation between orthogonally opposed residues, namely Asp108, Leu112 and Gln104. Large differences in magnitudes were observed in the radius of gyration (∼1.5 Å), per-residue fluctuation (∼2 Å), C-alpha deviations (∼2 Å) which confirm a comparatively more flexible nature of apo conformation due to rapid dimeric association. Compared to the bound conformer, a more globally correlated motion in case of apo structure of HIV-Nef confirms the process of dimeric association. This clearly highlights the process of inhibition as a result of ligand binding. The difference in principal component analysis (PCA) scatter plot and per-residue mobility plot across first two normal modes further justifies the same findings. The in-depth dynamic analyses of Nef protein presented in this report would serve crucial in understanding its function and inhibition mechanisms. Information on inhibitor binding mode would also assist in designing of potential inhibitors against this important HIV target. PMID:26355431

  14. Structural features of cholesteryl ester transfer protein: a molecular dynamics simulation study.

    PubMed

    Lei, Dongsheng; Zhang, Xing; Jiang, Shengbo; Cai, Zhaodi; Rames, Matthew J; Zhang, Lei; Ren, Gang; Zhang, Shengli

    2013-03-01

    Cholesteryl ester transfer protein (CETP) mediates the net transfer of cholesteryl esters (CEs) from atheroprotective high-density lipoproteins (HDLs) to atherogenic low-density lipoproteins (LDLs) or very-low-density lipoproteins (VLDLs). Inhibition of CETP raises HDL cholesterol (good cholesterol) levels and reduces LDL cholesterol (bad cholesterol) levels, making it a promising drug target for the prevention and treatment of coronary heart disease. Although the crystal structure of CETP has been determined, the molecular mechanism mediating CEs transfer is still unknown, even the structural features of CETP in a physiological environment remain elusive. We performed molecular dynamics simulations to explore the structural features of CETP in an aqueous solution. Results show that the distal portion flexibility of N-terminal β-barrel domain is considerably greater in solution than in crystal; conversely, the flexibility of helix X is slightly less. During the simulations the distal end of C-terminal β-barrel domain expanded while the hydrophilic surface increasing more than the hydrophobic surface. In addition, a new surface pore was generated in this domain. This surface pore and all cavities in CETP are stable. These results suggest that the formation of a continuous tunnel within CETP by connecting cavities is permitted in solution. PMID:23042613

  15. Dynamic impact and pressure analysis of the insensitive munitions container PA103 with modified design features

    SciTech Connect

    Handy, K.D.

    1993-06-01

    This report presents analytical analyses of the insensitive munitions container PA103, with modified design features for a static internal pressure of 500 psi and for a dynamic impact resulting from a 7-ft free fall onto a rigid surface. The modified design features addressed by the analyses were the inclusion of a score pattern on the container cylindrical body and a plastic plate (fuse) sandwiched between metal flanges on the container end. The objectives of both the pressure and impact analyses were to determine if the induced stresses at the score patterns in the cylindrical body of the container were sufficient to induce failure. Analytical responses of the container to the imposed loads were obtained with finite element analysis methodology. The computer codes ABAQUS and VEC/DYNA3D were used to obtain the results. Results of the pressure analysis indicate that failure of the container body would be expected to occur at the score pattern for a static internal pressure of 500 psi. Also, results from three impact orientations for a 7-ft drop indicate that membrane stresses in the vicinity of the score pattern are above critical crack growth stress magnitudes, especially at low ({minus}60{degrees}F) temperatures.

  16. Dynamic impact and pressure analysis of the insensitive munitions container PA103 with modified design features

    SciTech Connect

    Handy, K.D.

    1993-06-01

    This report presents analytical analyses of the insensitive munitions container PA103, with modified design features for a static internal pressure of 500 psi and for a dynamic impact resulting from a 7-ft free fall onto a rigid surface. The modified design features addressed by the analyses were the inclusion of a score pattern on the container cylindrical body and a plastic plate (fuse) sandwiched between metal flanges on the container end. The objectives of both the pressure and impact analyses were to determine if the induced stresses at the score patterns in the cylindrical body of the container were sufficient to induce failure. Analytical responses of the container to the imposed loads were obtained with finite element analysis methodology. The computer codes ABAQUS and VEC/DYNA3D were used to obtain the results. Results of the pressure analysis indicate that failure of the container body would be expected to occur at the score pattern for a static internal pressure of 500 psi. Also, results from three impact orientations for a 7-ft drop indicate that membrane stresses in the vicinity of the score pattern are above critical crack growth stress magnitudes, especially at low ([minus]60[degrees]F) temperatures.

  17. Possible fluid dynamical interpretation of some reported features in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.; Redekopp, L. G.

    1980-01-01

    A fluid dynamical interpretation is presented of the two major types of disturbance found in the southern hemisphere of Jupiter by the Voyager 1 imaging data. The observed features always occur together, and consist of a compact elliptically shaped formation having an anticyclonic flow which is poleward of a pair of more elongated cyclonic structures, as in the Great Red Spot and the white ovals. It is noted that the anticyclonic features at 41 deg S may be described by the cnoidal wave solutions to the appropriate nonlinear evolution equation, and that flow patterns derived in the vicinity of the Great Red Spot and white ovals are strikingly similar to those obtained for the flow around a solitary wave of the type than can exist in a zonal flow such as that found in the Jupiter atmosphere. Results of computations in terms of solitary wave theory of flow fields in the atmospheric structure and zonal velocity profiles determined from Voyager infrared spectroscopy and radiometry data are then presented which show that the pattern must be a singular solitary wave mode, the east-west structure of which is best described by the Korteweg-de-Vries equation

  18. Special Feature: Liquids and Structural Glasses Special Feature: Glass rheology: From mode-coupling theory to a dynamical yield criterion

    NASA Astrophysics Data System (ADS)

    Brader, Joseph M.; Voigtmann, Thomas; Fuchs, Matthias; Larson, Ronald G.; Cates, Michael E.

    2009-09-01

    The mode coupling theory (MCT) of glasses, while offering an incomplete description of glass transition physics, represents the only established route to first-principles prediction of rheological behavior in nonergodic materials such as colloidal glasses. However, the constitutive equations derivable from MCT are somewhat intractable, hindering their practical use and also their interpretation. Here, we present a schematic (single-mode) MCT model which incorporates the tensorial structure of the full theory. Using it, we calculate the dynamic yield surface for a large class of flows.

  19. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2

    PubMed Central

    Piserchio, Andrea; Ramakrishan, Venkatesh; Wang, Hsin; Kaoud, Tamer S.; Arshava, Boris; Dutta, Kaushik; Dalby, Kevin N.; Ghose, Ranajeet

    2015-01-01

    The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS. PMID:26054059

  20. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6 ns, 1064 nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ∼300 Torr, while the electron density showed a maximum ∼100 Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  1. Considerations of solar wind dynamics in mapping of Jupiter's auroral features to magnetospheric sources

    NASA Astrophysics Data System (ADS)

    Gyalay, S.; Vogt, M.; Withers, P.

    2015-12-01

    Previous studies have mapped locations from the magnetic equator to the ionosphere in order to understand how auroral features relate to magnetospheric sources. Vogt et al. (2011) in particular mapped equatorial regions to the ionosphere by using a method of flux equivalence—requiring that the magnetic flux in a specified region at the equator is equal to the magnetic flux in the region to which it maps in the ionosphere. This is preferred to methods relying on tracing field lines from global Jovian magnetic field models, which are inaccurate beyond 30 Jupiter radii from the planet. That previous study produced a two-dimensional model—accounting for changes with radial distance and local time—of the normal component of the magnetic field in the equatorial region. However, this two-dimensional fit—which aggregated all equatorial data from Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Ulysses, and Galileo—did not account for temporal variability resulting from changing solar wind conditions. Building off of that project, this study aims to map the Jovian aurora to the magnetosphere for two separate cases: with a nominal magnetosphere, and with a magnetosphere compressed by high solar wind dynamic pressure. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, intervals of high solar wind dynamic pressure were separated from intervals of low solar wind dynamic pressure—thus creating two datasets of magnetometer measurements to be used for two separate 2D fits, and two separate mappings.

  2. [Invasive Infections Caused by Nontyphoidal Salmonella sp. in Childhood Clinical Features and Incidence Trends between 1994 and 2014].

    PubMed

    Tasaka, Keiji; Matsubara, Kousaku; Nigami, Hiroyuki; Iwata, Aya; Isome, Kenichi; Yamamoto, Go

    2015-11-01

    susceptible antibiotics. In conclusion, this study is the first report on invasive infections caused by nontyphoidal Salmonella sp. in childhood in Japan, and provides important information on their clinical features and incidence trends over the last 20 years. PMID:26821521

  3. Feature analysis and primary causes of pre-flood season "cumulative effect" of torrential rain over South China

    NASA Astrophysics Data System (ADS)

    Chu, Qu-cheng; Wang, Qi-guang; Qiao, Shao-bo; Feng, Guo-lin

    2016-10-01

    When persistent rainfall occurs frequently over South China, meso-scale and micro-scale synoptic systems persist and expand in space and time and eventually form meso-scale and long-scale weather processes. The accumulation of multiple torrential rain processes is defined as a "cumulative effect" of torrential rain (CETR) event. In this paper, daily reanalysis datasets collected by the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) during 1979-2014 are used to study the anomalous features and causes of heavy CETR events over South China. The results show that there is a significant difference in the spatial distribution of the heavy CETR events. Based on the center position of the CETR, the middle region displayed middle-region-heavy CETR events while the western region displayed west-region-heavy CETR events. El Niño events in the previous period (December, January, February, March (DJFM)) are major extra-forcing factors of middle-region-heavy CETR events, which is beneficial for the continuous, anomalous Philippine Sea anticyclone and strengthens the West Pacific Subtropical High (WPSH), extending it more westward than normal. The primary water vapor source for precipitation in middle-region-heavy CETR events is the Tropical Western Pacific Ocean. The major extra-forcing factor of a west-region-heavy CETR is the negative anomaly in the southern Tropical Indian Ocean (TIO) during the previous period (DJFM). This factor is beneficial for strengthening the cross-equatorial flow and westerly winds from the Bay of Bengal to the South China Sea (SCS) and early SCS summer monsoon onset. The primary water vapor source of precipitation in the west-region-heavy CETR is the southern TIO.

  4. Specific Features of the Nucleation and Growth of Fatigue Cracks in Steel under Cyclic Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Popelyukh, A. I.; Popelyukh, P. A.; Bataev, A. A.; Nikulina, A. A.; Smirnov, A. I.

    2016-03-01

    The processes of the fracture of 40Kh and U8 steels under cyclic dynamic compression are studied. It has been found that the main cause for the fracture of the cyclically compressed specimens is the propagation of cracks due to the effect of residual tensile stresses, which arise near the tips of the cracks at the stage of the unloading of the specimens. The growth rate of a crack has the maximum value at the initial stage of its propagation in the vicinity of the stress concentrator. As the crack propagates deep into the specimen, its growth rate decreases and depends only slightly on the real cross section of the specimen. The model of the process of the fatigue fracture of the steels under dynamic loading by a cyclically varied compressive force is proposed. It has been found that the high fatigue endurance is provided by tempering at 200°C for the 40Kh steel and at 300°C for the U8 steel.

  5. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  6. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    SciTech Connect

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  7. Molecular crowding causes narrowing of population heterogeneity and restricts internal dynamics in a protein

    NASA Astrophysics Data System (ADS)

    Mondal, Samsuzzoha; Kallianpur, Mamata V.; Udgaonkar, Jayant B.; Krishnamoorthy, G.

    2016-03-01

    Macromolecular crowding is a distinguishing property of intracellular media. Knowledge on the structure and dynamics of a protein in a crowded environment is essential for a complete understanding of its function. Reduction in intermolecular space could cause structural and functional alterations. Here, we have studied a model protein barstar to see how polyethylene glycol (PEG)-induced crowding affects its various structural states (native, unfolded and molten-globule-like) with different extents of change in conformational heterogeneity. Intramolecular distances and distance distributions were determined by time-resolved Förster resonance energy transfer from Trp53 to several acceptor sites by analysis of fluorescence decay kinetics using the Maximum Entropy Method. We observed PEG-induced narrowing of population distributions along with shifting of populations towards more compact states. Structural compactness also resulted in the slowing down of internal dynamics of the protein as revealed by fluorescence anisotropy decay kinetics of the fluorophore IAEDANS attached at several sites.

  8. Gilbert-like damping caused by time retardation in atomistic magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Thonig, Danny; Henk, Jürgen; Eriksson, Olle

    2015-09-01

    Gilbert-like damping in magnetization dynamics is commonly attributed to the interplay of the spin, the electron, and the phonon reservoirs. Spatial correlations within the spin reservoir itself, for example magnons, mediate damping as well. We show theoretically that temporal correlations within the spin reservoir cause a similar effect. We investigate the role of time retardation in the atomistic Landau-Lifshitz-Gilbert equation using two different retardation kernels. Although viscous damping is explicitly excluded, we find both analytically and numerically that damping and higher-order effects emerge due to time retardation. Thus, our results establish a mechanism for damping and inertia in magnetic systems.

  9. Is the emotion recognition deficit associated with frontotemporal dementia caused by selective inattention to diagnostic facial features?

    PubMed

    Oliver, Lindsay D; Virani, Karim; Finger, Elizabeth C; Mitchell, Derek G V

    2014-07-01

    Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder characterized by severely impaired social and emotional behaviour, including emotion recognition deficits. Though fear recognition impairments seen in particular neurological and developmental disorders can be ameliorated by reallocating attention to critical facial features, the possibility that similar benefits can be conferred to patients with FTD has yet to be explored. In the current study, we examined the impact of presenting distinct regions of the face (whole face, eyes-only, and eyes-removed) on the ability to recognize expressions of anger, fear, disgust, and happiness in 24 patients with FTD and 24 healthy controls. A recognition deficit was demonstrated across emotions by patients with FTD relative to controls. Crucially, removal of diagnostic facial features resulted in an appropriate decline in performance for both groups; furthermore, patients with FTD demonstrated a lack of disproportionate improvement in emotion recognition accuracy as a result of isolating critical facial features relative to controls. Thus, unlike some neurological and developmental disorders featuring amygdala dysfunction, the emotion recognition deficit observed in FTD is not likely driven by selective inattention to critical facial features. Patients with FTD also mislabelled negative facial expressions as happy more often than controls, providing further evidence for abnormalities in the representation of positive affect in FTD. This work suggests that the emotional expression recognition deficit associated with FTD is unlikely to be rectified by adjusting selective attention to diagnostic features, as has proven useful in other select disorders.

  10. Dynamic response of the High Flux Isotope Reactor structure caused by nearby heavy load drop

    SciTech Connect

    Chang, S.J.

    1995-12-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code. The results show that both the HFIR vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged.

  11. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    SciTech Connect

    Chang, Shih-Jung

    1995-09-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged.

  12. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    PubMed

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. PMID:24152872

  13. Explaining the features of the Bipolar Nebulae of η-Carinae through gas dynamical simulations

    NASA Astrophysics Data System (ADS)

    de Gouveia dal Pino, E. M.; Gonzalez, R. F.; Raga, A. C.; Velezquez, P. F.

    2005-09-01

    Employing an alternative scenario to previous interacting stellar wind models that is supported both by theoretical and observational evidence, we let a nonspherical outburst wind (with a latitudinal velocity dependence that matches the observations of the large Homunculus) interact with a preeruptive slow wind also with a toroidal density distribution but with a much smaller equator-to-polar density contrast than that assumed in previous models. A second eruptive wind with spherical shape is ejected about 50 years after the first outburst and causes the development of the little internal nebula. We find that as a result of an appropriate combination of the parameters that control the degree of asymmetry of the interacting winds, the model is able to produce not only the structure and kinematics of both Homunculi but also the high-velocity components of the equatorial ejecta. These latter arise from the impact between the nonspherical outburst and the preoutburst winds in the equatorial plane (see Figs. 1 and 2 in Gonzalez, de Gouveia Dal Pino, Raga & Velazquez 2004a). Our model predicts that most of the features of the bipolar winds of eta-Carinae and the source ejection mechanism are directly linked to the central star only, therefore without requiring to invoke the secondary wind of the companion star to explain, e.g., the equatorial ejecta (Gonzalez, de Gouveia Dal Pino, Raga & Velazquez 2004b).

  14. Small Deletions of SATB2 Cause Some of the Clinical Features of the 2q33.1 Microdeletion Syndrome

    PubMed Central

    Rosenfeld, Jill A.; Ballif, Blake C.; Lucas, Ann; Spence, Edward J.; Powell, Cynthia; Aylsworth, Arthur S.; Torchia, Beth A.; Shaffer, Lisa G.

    2009-01-01

    Recurrent deletions of 2q32q33 have recently been reported as a new microdeletion syndrome. Clinical features of this syndrome include severe mental retardation, growth retardation, dysmorphic features, thin and sparse hair, feeding difficulties and cleft or high palate. The commonly deleted region contains at least seven genes. Haploinsufficiency of one of these genes, SATB2, a DNA-binding protein that regulates gene expression, has been implicated as causative in the cleft or high palate of individuals with 2q32q33 microdeletion syndrome. In this study we describe three individuals with smaller microdeletions of this region, within 2q33.1. The deletions ranged in size from 173.1 kb to 185.2 kb and spanned part of SATB2. Review of clinical records showed similar clinical features among these individuals, including severe developmental delay and tooth abnormalities. Two of the individuals had behavioral problems. Only one of the subjects presented here had a cleft palate, suggesting reduced penetrance for this feature. Our results suggest that deletion of SATB2 is responsible for several of the clinical features associated with 2q32q33 microdeletion syndrome. PMID:19668335

  15. An Analysis of the Structure and Dynamics of Inner Core Precipitation Features in a Tropical Cyclone

    NASA Astrophysics Data System (ADS)

    Didlake, Anthony C., Jr.

    Airborne Doppler radar observations of the stationary rainband complex and secondary eyewall in Hurricane Rita (2005) were analyzed to better understand the inner-core dynamics of tropical cyclones. In the upwind end of the rainband complex, convective cells displayed kinematic structures that varied with radius. Cells at smaller radii contained a low-level tangential jet constrained in altitude largely by tangential acceleration due to angular momentum conservation, while cells at larger radii contained a low-level and/or midlevel jet determined jointly by angular momentum conservation and vertical advection. These variations are attributable to vortex-scale dynamics in which convective buoyancy (associated with vertical advection) and vertical shear of the radial wind (associated with angular momentum conservation) change with radius. With jets constrained to low altitudes, inner cells are more likely to increase low-level convergence and amplify convection, possibly influencing the formation of a secondary eyewall. In the downwind end of the rainband complex, collapsing convective cells formed a mesoscale stratiform rainband that contained rising radial outflow within the stratiform cloud layer. Below the cloud layer, descending radial inflow was driven by horizontal buoyancy gradients, and thus horizontal vorticity generation, introduced by regions of sublimational and melting cooling. This inflow advected higher angular momentum inward, which resulted in the development of a midlevel tangential jet and broadening of the tangential wind field. This circulation may have also contributed to ventilation of the eyewall as inflow of low-entropy air continued past the rainband in both the boundary layer and midlevels. The stationary rainband complex soon evolved into a secondary eyewall, consisting of a ring of heavy precipitation outside the pre-existing eyewall. Enhanced radial outflow was located just above the boundary layer which modified the deeper overturning

  16. Dynamic genetic features of eukaryotic plankton diversity in the Nakdong River estuary of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jee Eun; Chung, Ik Kyo; Lee, Sang-Rae

    2016-08-01

    Estuaries are environments where freshwater and seawater mix and they display various salinity profiles. The construction of river barrages and dams has rapidly changed these environments and has had a wide range of impacts on plankton communities. To understand the dynamics of such communities, researchers need accurate and rapid techniques for detecting plankton species. We evaluated the diversity of eukaryotic plankton over a salinity gradient by applying a metagenomics tool at the Nakdong River estuary in Korea. Environmental samples were collected on three dates during summer and autumn of 2011 at the Eulsukdo Bridge at the mouth of that river. Amplifying the 18S rDNA allowed us to analyze 456 clones and 122 phylotypes. Metagenomic sequences revealed various taxonomic groups and cryptic genetic variations at the intra- and inter-specific levels. By analyzing the same station at each sampling date, we observed that the phylotypes presented a salinity-related pattern of diversity in assemblages. The variety of species within freshwater samples reflected the rapid environmental changes caused by freshwater inputs. Dinophyceae phylotypes accounted for the highest proportion of overall diversity in the seawater samples. Euryhaline diatoms and dinoflagellates were observed in the freshwater, brackish and seawater samples. The biological data for species composition demonstrate the transitional state between freshwater and seawater. Therefore, this metagenomics information can serve as a biological indicator for tracking changes in aquatic environments.

  17. Experimental investigation of door dynamic opening caused by impinging shock wave

    NASA Astrophysics Data System (ADS)

    Biamino, L.; Jourdan, G.; Mariani, C.; Igra, O.; Massol, A.; Houas, L.

    2011-02-01

    To prevent damage caused by accidental overpressure inside a closed duct (e.g. jet engine) safety valves are introduced. The present study experimentally investigates the dynamic opening of such valves by employing a door at the end of a shock tube driven section. The door is hung on an axis and is free to rotate, thereby opening the tube. The evolved flow and wave pattern due to a collision of an incident shock wave with the door, causing the door opening, is studied by employing a high speed schlieren system and recording pressures at different places inside the tube as well as on the rotating door. Analyzing this data sheds light on the air flow evolution and the behavior of the opening door. In the present work, emphasis is given to understanding the complex, unsteady flow developed behind the transmitted shock wave as it diffracts over the opening door. It is shown that both the door inertia and the shock wave strength influence the opening dynamic evolution, but not in the proportions that might be expected.

  18. Investigation of the potential causes of partial scan artifacts in dynamic CT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Tao, Yinghua; Speidel, Michael; Szczykutowicz, Timothy; Chen, Guang-Hong

    2014-03-01

    In recent years, there have been several findings regarding CT number variations (partial scan artifact or PSA) across time in dynamic myocardial perfusion studies with short scan gated reconstruction. These variations are correlated with the view angle range corresponding to the short scan acquisition for a given cardiac phase, which can vary from one cardiac cycle to another due to the asynchrony between heart rate and gantry rotation speed. In this study, we investigate several potential causes of PSA, including noise, beam hardening and scatter, using numerical simulations. In addition, we investigate partial scan artifact in a single source 64-slice diagnostic CT scanner in vivo data sets, and report its effect on perfusion analysis. Results indicated that among all three factors investigated, scatter can cause obvious partial scan artifact in dynamic myocardial perfusion imaging. Further, scatter is a low frequency phenomenon and is not heavily dependent on the changing contrasts, as both the frequency method and the virtual scan method are effective in reducing partial scan artifact. However, PSA does not necessarily lead to different blood volume maps compared to the full scan, because these maps are usually generated with a curve fitting procedure.

  19. [Landscape pattern gradient dynamics and desakota features in rapid urbanization area: a case study in Panyu of Guangzhou].

    PubMed

    Yu, Long-Sheng; Fu, Yi-Fu; Yu, Huai-Yi; Li, Zhi-Qin

    2011-01-01

    In order to understand the landscape pattern gradient dynamics and desakota features in rapid urbanization area, this paper took the rapidly urbanizing Panyu District of Guangzhou City as a case, and analyzed its land use and land cover data, based on four Landsat TM images from 1990 to 2008. With the combination of gradient analysis and landscape pattern analysis, and by using the landscape indices in both class and landscape scales, the spatial dynamics and desakota feature of this rapidly urbanizing district were quantified. In the study district, there was a significant change in the landscape pattern, and a typical desakota feature presented along buffer gradient zones. Urban landscape increased and expanded annually, accompanied with serious fragmentation of agricultural landscape. The indices patch density, contagion, and landscape diversity, etc., changed regularly in the urbanization gradient, and the peak of landscape indices appeared in the gradient zone of 4-6 km away from the urban center. The landscape patterns at time series also reflected the differences among the dynamics in different gradient zones. The landscape pattern in desakota region was characterized by complex patch shape, high landscape diversity and fragmentation, and remarkable landscape dynamics. The peaks of landscape indices spread from the urban center to border areas, and desakota region was expanding gradually. The general trend of spatiotemporal dynamics in desakota region and its driving forces were discussed, which could be benefit to the regional land use policy-making and sustainable development planning.

  20. The hydraulic separator Multidune: preliminary tests on fluid-dynamic features and plastic separation feasibility.

    PubMed

    De Sena, Giulia; Nardi, Camillo; Cenedese, Antonio; La Marca, Floriana; Massacci, Paolo; Moroni, Monica

    2008-01-01

    Recycling of plastic materials is a rapidly developing discipline because of environmental awareness, the need to conserve materials and energy, and the growing demand to increase the production economy. The main problem in plastics recovery and recycling is related to the variety of plastic wastes, even if selective collection occurs. Therefore, plastic materials can be recycled either as mixtures or as single types, separating the different typologies by their physical (size, specific mass, etc.) and/or chemical properties. However, separation of plastics in single typologies by traditional processes and devices is difficult due to their typical low variability in properties. This paper presents a new research development for recycling industry: the Multidune separator. This is a device constructed from a sequence of parallel semi-cylindrical tubes of transparent plastic welded together in a plane. The lower half is shifted laterally and then fixed relative to the upper half. Flow is then induced in the lateral direction normal to the axis of the tubes, creating a main flow channel and two recirculation zones. This apparatus creates a differential transport of particles of low specific mass, near to 1g/cm3, allowing their separation. The flow field in the Multidune separator is studied via Particle Tracking Velocimetry (PTV). Eulerian analysis of the data is performed to gather information about the fluid-dynamics features established by different hydraulic heads at the inlet of the Multidune. Preliminary tests on monomaterial samples have been performed, varying several operative parameters to determine the best set of values. Therefore, separation tests have been executed on composite samples, obtaining satisfactory results in terms of plastic separation feasibility.

  1. Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium.

    PubMed

    Lee, Juho; Jeong, Ki-Woong; Jin, Bonghwan; Ryu, Kyoung-Seok; Kim, Eun-Hee; Ahn, Joong-Hoon; Kim, Yangmee

    2013-04-01

    Cold-shock proteins (Csps), proteins expressed when the ambient temperature drops below the growth-supporting temperature, bind to single-stranded nucleic acids and act as RNA chaperones to regulate translation. Listeria monocytogenes is a psychrophilic food-borne pathogen that is problematic for the food industry. Structures of Csps from psychrophilic bacteria have not yet been studied. Despite dramatic differences in the thermostability of Csps of various thermophilic microorganisms, these proteins share a high degree of primary sequence homology and a high degree of three-dimensional structural similarity. Here, we investigated the structural and dynamic features as well as the thermostability of L. monocytogenes CspA (Lm-CspA). Lm-CspA has a five-stranded β-barrel structure with hydrophobic core packing and two salt bridges. When heptathymidine (dT(7)) binds, values for the heteronuclear nuclear Overhauser effect and order parameters of residues in surface loop regions near nucleic acid binding sites increase dramatically. Moreover, Carr-Purcell-Meiboom-Gill experiments showed that slow motions observed for the nucleic acid binding residues K7, W8, F15, F27, and R56 disappeared in Lm-CspA-dT(7). Lm-CspA is less thermostable than mesophilic and thermophilic Csps, with a lower melting temperature (40 °C). The structural flexibility that accompanies longer surface loops and less hydrophobic core packing and a number of salt bridges and unfavorable electrostatic repulsion are likely key factors in the low thermostability of Lm-CspA. This implies that the large conformational flexibility of psychrophilic Lm-CspA, which more easily accommodates nucleic acids at low temperature, is required for RNA chaperone function under cold-shock conditions and for the cold adaptation of L. monocytogenes. PMID:23506337

  2. Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction.

    PubMed

    Huber, B R; Meabon, J S; Hoffer, Z S; Zhang, J; Hoekstra, J G; Pagulayan, K F; McMillan, P J; Mayer, C L; Banks, W A; Kraemer, B C; Raskind, M A; McGavern, D B; Peskind, E R; Cook, D G

    2016-04-01

    Exposure to blast overpressure (BOP) is associated with behavioral, cognitive, and neuroimaging abnormalities. We investigated the dynamic responses of cortical vasculature and its relation to microglia/macrophage activation in mice using intravital two-photon microscopy following mild blast exposure. We found that blast caused vascular dysfunction evidenced by microdomains of aberrant vascular permeability. Microglial/macrophage activation was specifically associated with these restricted microdomains, as evidenced by rapid microglial process retraction, increased ameboid morphology, and escape of blood-borne Q-dot tracers that were internalized in microglial/macrophage cell bodies and phagosome-like compartments. Microdomains of cortical vascular disruption and microglial/macrophage activation were also associated with aberrant tight junction morphology that was more prominent after repetitive (3×) blast exposure. Repetitive, but not single, BOPs also caused TNFα elevation two weeks post-blast. In addition, following a single BOP we found that aberrantly phosphorylated tau rapidly accumulated in perivascular domains, but cleared within four hours, suggesting it was removed from the perivascular area, degraded, and/or dephosphorylated. Taken together these findings argue that mild blast exposure causes an evolving CNS insult that is initiated by discrete disturbances of vascular function, thereby setting the stage for more protracted and more widespread neuroinflammatory responses.

  3. Novel features of end-gas aotoignition revealed by computational fluid dynamics

    SciTech Connect

    Griffiths, J.F.; Rose, D.J. ); Schreiber, M.; Meyer, J.; Knoche, K.F. )

    1992-11-01

    Autoignition of the end-gas in the combustion chamber is believed to be a primary cause of knock in spark ignition engines. Fundamental studies of the autoignition of hydrocarbon + air mixtures has been performed successfully in rapid compression machines. There has also been considerable progress towards the numerical modeling of these phenomena, but applications to combustion in a rapid compression machine have been based only on a spatially uniform well-mixed condition. The authors report in this paper the implementation of a fluid dynamics code in conjunction with the Shell generalized (or reduced) kinetic model, which represents the exothermic oxidation of the alkane components of gasoline, to predict the development of autoignition in the combustion chamber. The numerical simulations reported in this paper were matched to the performance of the rapid compression apparatus in use at Leeds. In this system, combustion occurred in a cylindrical chamber, the flat, end faces of which were the piston crown and cylinder head. The reactants were compressed by a piston, which was then brought to rest at the end of its stroke. The geometric configuration of the combustion chamber of the rapid compression machine is fully axisymmetric. This permitted a two-dimensional treatment of spatial conditions on a plane representing piston displacement and half radius. Reactive gas flows were simulated on a 14 [times] 50 mesh at the start of compression, which was reduced to 14 [times] 10 cells as the piston reached top-dead-center. The resolution within the vicinity of the cylinder wall was enhanced by a nonequidistant grid structure.

  4. Progeroid laminopathy with restrictive dermopathy-like features caused by an isodisomic LMNA mutation p.R435C.

    PubMed

    Starke, Sven; Meinke, Peter; Camozzi, Daria; Mattioli, Elisabetta; Pfaeffle, Roland; Siekmeyer, Manuela; Hirsch, Wolfgang; Horn, Lars Christian; Paasch, Uwe; Mitter, Diana; Lattanzi, Giovanna; Wehnert, Manfred; Kiess, Wieland

    2013-06-01

    The clinical course of a female patient affected by a progeroid syndrome with Restrictive Dermopathy (RD)-like features was followed up. Besides missing hairiness, stagnating weight and growth, RD-like features including progressive skin swelling and solidification, acrocontractures, osteolysis and muscular hypotension were observed until the patient died at the age of 11 months. A homozygousLMNA mutation c.1303C>T (p.R435C) was found by Sanger sequencing. Haplotyping revealed a partial uniparental disomy of chromosome 1 (1q21.3 to 1q23.1) including the LMNA gene. In contrast to reported RD patients with LMNA mutations, LMNA p.R435C is not located at the cleavage site necessary for processing of prelamin A by ZMPSTE24 and leads to a distinct phenotype combining clinical features of Restrictive Dermopathy, Mandibuloacral Dysplasia and Hutchinson-Gilford Progeria. Functionally, LMNA p.R435C is associated with increasing DNA double strand breaks and decreased recruitment of P53 binding protein 1 (53BP1) to DNA-damage sites indicating delayed DNA repair. The follow-up of the complete clinical course in the patient combined with functional studies showed for the first time that a progressive loss of lamin A rather than abnormal accumulation of prelamin A species could be a pathophysiological mechanism in progeroid laminopathies, which leads to DNA repair deficiency accompanied by advancing tissue degeneration. PMID:23804595

  5. Intraseasonal variability of organized convective systems in the Central Andes: Relationship to Regional Dynamical Features

    NASA Astrophysics Data System (ADS)

    Mohr, K. I.; Slayback, D. A.; Nicholls, S.; Yager, K.

    2013-12-01

    The Andes extend from the west coast of Colombia (10N) to the southern tip of Chile (53S). In southern Peru and Bolivia, the Central Andes is split into separate eastern and western cordilleras, with a high plateau (≥ 3000 m), the Altiplano, between them. Because 90% of the Earth's tropical mountain glaciers are located in the Central Andes, our study focuses on this region, defining its zonal extent as 7S-21S and the meridional extent as the terrain 1000 m and greater. Although intense convection occurs during the wet season in the Altiplano, it is not included in the lists of regions with frequent or the most intense convection. The scarcity of in-situ observations with sufficient density and temporal resolution to resolve individual storms or even mesoscale-organized cloud systems and documented biases in microwave-based rainfall products in poorly gauged mountainous regions have impeded the development of an extensive literature on convection and convective systems in this region. With the tropical glaciers receding at unprecedented rates, leaving seasonal precipitation as an increasingly important input to the water balance in alpine valley ecosystems and streams, understanding the nature and characteristics of the seasonal precipitation becomes increasingly important for the rural economies in this region. Previous work in analyzing precipitation in the Central Andes has emphasized interannual variability with respect to ENSO, this is the first study to focus on shorter scale variability with respect to organized convection. The present study took advantage of the University of Utah's Precipitation Features database compiled from 14 years of TRMM observations (1998-2012), supplemented by field observations of rainfall and streamflow, historical gauge data, and long-term WRF-simulations, to analyze the intraseasonal variability of precipitating systems and their relationship regional dynamical features such as the Bolivian High. Through time series and

  6. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations.

    PubMed

    Sum, Tze Chien; Mathews, Nripan; Xing, Guichuan; Lim, Swee Sien; Chong, Wee Kiang; Giovanni, David; Dewi, Herlina Arianita

    2016-02-16

    Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation

  7. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    NASA Astrophysics Data System (ADS)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  8. An investigation into potential causes of the anomalistic feature observed by the Rosetta Alice spectrograph around 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Noonan, John; Schindhelm, Eric; Parker, Joel Wm.; Steffl, Andrew; Davis, Michael; Stern, S. Alan; Levin, Zuni; Kempf, Sascha; Horanyi, Mihaly

    2016-08-01

    The Alice far-ultraviolet spectrograph in operation around the comet 67P/Churyumov-Gerasimenko on the Rosetta spacecraft experiences an anomalistic feature (AF) that is ubiquitous at comet separations less than 450 km. This feature is highly temporally variable and displays no relation to any studied parameters with the exception of comet separation. This paper tests several possible causes with simulations and finds that positive ions produce a partial explanation for the anomaly, but still finds no definitive source of the AF.

  9. [Dynamic bladder neck stenosis as a cause of psychogenic mictrition discomforts and mictrition disorders].

    PubMed

    Günthert, E-A

    2004-05-01

    Symptoms of an "overactive bladder" can be psychological and in many cases are considered to be the result of psychogenic muscular tension of the pelvic floor causing a "dynamic stenosis" of the bladder neck. Psychogenic muscular tension can have its origin in psychic trauma during bladder training at the age of 1-3 years, leading to an obsessive-compulsive personality structure. A tendency to muscular tension, especially in the pelvic region, as well as to disorders of the lower bowl can be found in afflicted persons. Psychological defence and avoidance reactions, problems with contact and security, sexual abuse in childhood, as well as stress, anxiety, disappointment and anger can be the result of psychic trauma. Typical triggers involve psychological actualisation or compression. Because of the tendency to muscular tension with many psychogenic symptoms of voiding dysfunction, dispensing of medication, physical muscle relaxant measures show good therapeutic results.

  10. Molecular dynamics-based ion-surface interaction models for ionized physical vapor deposition feature scale simulations

    SciTech Connect

    Coronell, D.G.; Hansen, D.E.; Voter, A.F.; Liu, C.; Liu, X.; Kress, J.D.

    1998-12-01

    A procedure is presented for incorporating the results of atomistic simulations of ion{endash}surface interactions into integrated circuit topographic simulations of ionized physical vapor deposition (PVD). Energy and angular dependent sticking probabilities for energetic Cu atoms impacting a {l_brace}111{r_brace} Cu surface, obtained from molecular dynamics simulations, were implemented in a simple Monte Carlo flux model. The resulting flux-averaged Cu sticking probability was found to vary significantly with position within submicron features and with the feature geometry. This illustrates the shortcomings of a constant (energy and angle independent) sticking probability model for ionized PVD. {copyright} {ital 1998 American Institute of Physics.}

  11. Thermal structure and dynamics of the Jovian atmosphere. 2: Visible cloud features

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Flasar, F. M.; Pirraglia, J. A.; Gierasch, P. J.; Hunt, G. E.

    1980-01-01

    Voyager IRIS data reveal strong similarities among a broad range of features which differ considerably in visual appearance. The atmosphere above anticyclonic features, including the major white ovals, the Great Red Spot, and a zone, are cold relative to the immediate surroundings in the upper troposphere and tropopause region. These results are consistent with upwelling and divergence in this part of the atmosphere. A hot spot and a barge, which are localized cyclonic features, are found to be warm relative to their surroundings, implying subsidence with accompanying convergence. In all cases, the thermal wind shear associated with the features indicates a decay of the vorticity with height in the upper troposphere and lower stratosphere. Vertical velocities inferred from the observed temperature perturbations imply an upper limit of vertical mixing times near the tropopause of approximately 20 years. Temperatures in the upper stratosphere above the anticyclonic features show considerable variation, but in most cases are found to be relatively warm.

  12. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations.

    PubMed

    Fisher, Rosie; McDowell, Nate; Purves, Drew; Moorcroft, Paul; Sitch, Stephen; Cox, Peter; Huntingford, Chris; Meir, Patrick; Woodward, F Ian

    2010-08-01

    *Second-generation Dynamic Global Vegetation Models (DGVMs) have recently been developed that explicitly represent the ecological dynamics of disturbance, vertical competition for light, and succession. Here, we introduce a modified second-generation DGVM and examine how the representation of demographic processes operating at two-dimensional spatial scales not represented by these models can influence predicted community structure, and responses of ecosystems to climate change. *The key demographic processes we investigated were seed advection, seed mixing, sapling survival, competitive exclusion and plant mortality. We varied these parameters in the context of a simulated Amazon rainforest ecosystem containing seven plant functional types (PFTs) that varied along a trade-off surface between growth and the risk of starvation induced mortality. *Varying the five unconstrained parameters generated community structures ranging from monocultures to equal co-dominance of the seven PFTs. When exposed to a climate change scenario, the competing impacts of CO(2) fertilization and increasing plant mortality caused ecosystem biomass to diverge substantially between simulations, with mid-21st century biomass predictions ranging from 1.5 to 27.0 kg C m(-2). *Filtering the results using contemporary observation ranges of biomass, leaf area index (LAI), gross primary productivity (GPP) and net primary productivity (NPP) did not substantially constrain the potential outcomes. We conclude that demographic processes represent a large source of uncertainty in DGVM predictions. PMID:20618912

  13. 3D quantitative visualization of altered LV wall thickening dynamics caused by coronary microembolization

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Mohlenkamp, Stefan; Ritman, Erik L.; Robb, Richard A.

    2001-05-01

    Regional heart wall dynamics has been shown to be a sensitive indicator of LV wall ischemia. Rates of local LV wall thickening during a cardiac cycle can be measured and illustrated using functional parametric mappings. This display conveys the spatial distribution of dynamic strain in the myocardium and thereby provides a rapid qualitative appreciation of the severity and extent of the ischemic region. 3D reconstructions were obtained in an anesthetized pig from 8 adjacent, shortaxis, slices of the left ventricle imaged with an Electron Beam Computer Tomograph at 11 time points through one complete cardiac cycle. The 3D reconstructions were obtained before and after injection of 100 micrometer microspheres into the Left Anterior Descending (LAD) coronary artery. This injection causes microembolization of LAD artery branches within the heart wall. The image processing involved radially dividing the tomographic images of the myocardium into small subdivisions with color encoding of the local magnitude of regional thickness or regional velocities of LV wall thickening throughout the cardiac cycle. We compared the effectiveness of animation of wall thickness encoded in color versus a static image of computed rate of wall thickness change in color. The location, extent and severity of regional wall akinesis or dyskinesis, as determined from these displays, can then be compared to the region of embolization as indicated by the distribution of altered LV wall perfusion.

  14. Climate change causing phase transitions of walleye pollock (Theragra chalcogramma) recruitment dynamics.

    PubMed

    Ciannelli, Lorenzo; Bailey, Kevin M; Chan, Kung-Sik; Belgrano, Andrea; Stenseth, Nils Chr

    2005-08-22

    In 1976 the North Pacific climate shifted, resulting in an average increase of the water temperature. In the Gulf of Alaska the climate shift was followed (i.e. early 1980s) by a gradual but dramatic increase in the abundance of groundfish species that typically prey on pre-recruitment stages of walleye pollock. In the present study we used a previously parameterized model to investigate the effect of these climate and biological changes on the recruitment dynamics of walleye pollock in the Gulf of Alaska. Simulations covered the 1970-2000 time frame and emphasized the medium-to-long temporal scale (i.e. about 5-10 years) of environmental variability. Results showed that during periods characterized by high sea surface temperature and high predation on juvenile pollock stages, recruitment variability and magnitude were below average, and recruitment control was delayed to stages older than the 0-group. Opposite dynamics (i.e. high abundance and variability, and early recruitment control) occurred during periods characterized by low temperature and predation. These results are in general agreement with empirical observations, and allowed us to formulate causal explanations for their occurrence. We interpreted the delay of recruitment control and the reduction of variability as an effect of increased constraint on the abundance of post age-0 stages, in turn imposed by high density dependence and predation mortality. On the other hand, low density-dependence and predation favoured post age-0 survival, and allowed for an unconstrained link between larval and recruitment abundance. Our findings demonstrate that the dominant mechanisms of pollock survival change over contrasting climate regimes. Such changes may in turn cause a phase transition of recruitment dynamics with profound implications for the management of the entire stock. PMID:16087430

  15. Deviations in the endocrine system and brain of patients with fibromyalgia: cause or consequence of pain and associated features?

    PubMed

    Geenen, Rinie; Bijlsma, Johannes W J

    2010-04-01

    The brain and endocrine system are crucial interfaces responding to pathological and psychological processes. This review discusses whether endocrine deviations and structural and functional changes in the brain are a cause or consequence of fibromyalgia. Studies in patients with fibromyalgia virtually uniformly observed subtle alterations in hypothalamic pituitary adrenal functioning, hyporeactive autonomic nervous system responsiveness to stressors, and structural and functional changes in the brain. Our model proposes that predisposing factors, such as genetic vulnerability and trauma, have led to an alteration of the nociceptive system including several neuroendocrine changes. The resulting pain and associated symptoms, such as sleep disturbance, low fitness, fatigue, stress, and distress, are a cause of new neuroendocrine changes. The model predicts that favorable neuroendocrine changes are to be expected after successful pharmacological or non-pharmacological interventions that target pain and associated symptoms.

  16. The dynamics of spreading bacterial diseases and ilnesses caused by helminthosis in Adjara Autonomous Republic 2011.

    PubMed

    Lomtatidze, N; Chachnelidze, R; Chkaidze, M

    2013-01-01

    According to the data of past few years it has been determined that the general incidence and the prevalence of the bacterial and helminthosis diseases have increased. Epidemic Supervision has registered a slight increase of such diseases in data of 2011. Taking into consideration this fact, this research is quite important for the region of Adjara. The aim of our research is to study the dynamics of spreading some bacterial and helminthosis diseases in Adjara Autonomous Republic. In particular, the diseases caused by different bacterias of leptospira family - leptospirosis and illnesses caused by helminthosis - ascariasis, enterobiasis and trichocephalosis. according to the reseaches held it has been determined that there have been several cases of leptospirosis registered in Adjara. Specifically, 10 cases in 2008, 6 in 2009, 30 in 2010 and 31 cases in 2011 out of which 10 of the cases where laboratorily claimed. There were cases of ascariasis, enterobiasis and trichocephalosis. According to data, there are 5 times less cases of trichocephalosis than of ascariasis. As for enterobiasis, it's less than ascariasis (the difference is 205 cases). In therms of the aging, all the cases occur more frequently in the group of children below the age of 14.

  17. Rabbit System. Low cost, high reliability front end electronics featuring 16 bit dynamic range. [Redundant Analog Bus Based Information Transfer

    SciTech Connect

    Drake, G.; Droege, T.F.; Nelson, C.A. Jr.; Turner, K.J.; Ohska, T.K.

    1985-10-01

    A new crate-based front end system has been built which features low cost, compact packaging, command capability, 16 bit dynamic range digitization, and a high degree of redundancy. The crate can contain a variety of instrumentation modules, and is designed to be situated close to the detector. The system is suitable for readout of a large number of channels via parallel multiprocessor data acquisition.

  18. Feature activated molecular dynamics: an efficient approach for atomistic simulation of solid-state aggregation phenomena.

    PubMed

    Prasad, Manish; Sinno, Talid

    2004-11-01

    An efficient approach is presented for performing efficient molecular dynamics simulations of solute aggregation in crystalline solids. The method dynamically divides the total simulation space into "active" regions centered about each minority species, in which regular molecular dynamics is performed. The number, size, and shape of these regions is updated periodically based on the distribution of solute atoms within the overall simulation cell. The remainder of the system is essentially static except for periodic rescaling of the entire simulation cell in order to balance the pressure between the isolated molecular dynamics regions. The method is shown to be accurate and robust for the Environment-Dependant Interatomic Potential (EDIP) for silicon and an Embedded Atom Method potential (EAM) for copper. Several tests are performed beginning with the diffusion of a single vacancy all the way to large-scale simulations of vacancy clustering. In both material systems, the predicted evolutions agree closely with the results of standard molecular dynamics simulations. Computationally, the method is demonstrated to scale almost linearly with the concentration of solute atoms, but is essentially independent of the total system size. This scaling behavior allows for the full dynamical simulation of aggregation under conditions that are more experimentally realizable than would be possible with standard molecular dynamics.

  19. Association between dynamic features of breast DCE-MR imaging and clinical response of neoadjuvant chemotherapy: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Huang, Lijuan; Fan, Ming; Li, Lihua; Zhang, Juan; Shao, Guoliang; Zheng, Bin

    2016-03-01

    Neoadjuvant chemotherapy (NACT) is being used increasingly in the management of patients with breast cancer for systemically reducing the size of primary tumor before surgery in order to improve survival. The clinical response of patients to NACT is correlated with reduced or abolished of their primary tumor, which is important for treatment in the next stage. Recently, the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used for evaluation of the response of patients to NACT. To measure this correlation, we extracted the dynamic features from the DCE- MRI and performed association analysis between these features and the clinical response to NACT. In this study, 59 patients are screened before NATC, of which 47 are complete or partial response, and 12 are no response. We segmented the breast areas depicted on each MR image by a computer-aided diagnosis (CAD) scheme, registered images acquired from the sequential MR image scan series, and calculated eighteen features extracted from DCE-MRI. We performed SVM with the 18 features for classification between patients of response and no response. Furthermore, 6 of the 18 features are selected to refine the classification by using Genetic Algorithm. The accuracy, sensitivity and specificity are 87%, 95.74% and 50%, respectively. The calculated area under a receiver operating characteristic (ROC) curve is 0.79+/-0.04. This study indicates that the features of DCE-MRI of breast cancer are associated with the response of NACT. Therefore, our method could be helpful for evaluation of NACT in treatment of breast cancer.

  20. Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance

    PubMed Central

    Kaiser, Frank J.; Ansari, Morad; Braunholz, Diana; Concepción Gil-Rodríguez, María; Decroos, Christophe; Wilde, Jonathan J.; Fincher, Christopher T.; Kaur, Maninder; Bando, Masashige; Amor, David J.; Atwal, Paldeep S.; Bahlo, Melanie; Bowman, Christine M.; Bradley, Jacquelyn J.; Brunner, Han G.; Clark, Dinah; Del Campo, Miguel; Di Donato, Nataliya; Diakumis, Peter; Dubbs, Holly; Dyment, David A.; Eckhold, Juliane; Ernst, Sarah; Ferreira, Jose C.; Francey, Lauren J.; Gehlken, Ulrike; Guillén-Navarro, Encarna; Gyftodimou, Yolanda; Hall, Bryan D.; Hennekam, Raoul; Hudgins, Louanne; Hullings, Melanie; Hunter, Jennifer M.; Yntema, Helger; Innes, A. Micheil; Kline, Antonie D.; Krumina, Zita; Lee, Hane; Leppig, Kathleen; Lynch, Sally Ann; Mallozzi, Mark B.; Mannini, Linda; Mckee, Shane; Mehta, Sarju G.; Micule, Ieva; Mohammed, Shehla; Moran, Ellen; Mortier, Geert R.; Moser, Joe-Ann S.; Noon, Sarah E.; Nozaki, Naohito; Nunes, Luis; Pappas, John G.; Penney, Lynette S.; Pérez-Aytés, Antonio; Petersen, Michael B.; Puisac, Beatriz; Revencu, Nicole; Roeder, Elizabeth; Saitta, Sulagna; Scheuerle, Angela E.; Schindeler, Karen L.; Siu, Victoria M.; Stark, Zornitza; Strom, Samuel P.; Thiese, Heidi; Vater, Inga; Willems, Patrick; Williamson, Kathleen; Wilson, Louise C.; Hakonarson, Hakon; Quintero-Rivera, Fabiola; Wierzba, Jolanta; Musio, Antonio; Gillessen-Kaesbach, Gabriele; Ramos, Feliciano J.; Jackson, Laird G.; Shirahige, Katsuhiko; Pié, Juan; Christianson, David W.; Krantz, Ian D.; Fitzpatrick, David R.; Deardorff, Matthew A.

    2014-01-01

    Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS. PMID:24403048

  1. Editor's Highlight: Abrasion of Artificial Stones as a New Cause of an Ancient Disease. Physicochemical Features and Cellular Responses.

    PubMed

    Pavan, Cristina; Polimeni, Manuela; Tomatis, Maura; Corazzari, Ingrid; Turci, Francesco; Ghigo, Dario; Fubini, Bice

    2016-09-01

    New outbursts of silicosis were recently reported among workers manufacturing an engineered material known as "artificial stone," composed by high percentages of quartz (up to 98%) agglomerated with pigments and polymeric resins. Dusts released by abrasion during artificial stone polishing were characterized for particle size, morphology, and elemental composition and studied for (1) ability to catalyze free radical generation in acellular tests, (2) membranolytic potential on human erythrocytes, (3) cytotoxic activity (lactate dehydrogenase release) on murine alveolar macrophages (MH-S) and human bronchial epithelial (BEAS-2B) cell lines, (4) induction of epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Min-U-Sil 5 was used as reference quartz. Artificial stone dusts exhibited morphological features close to quartz, but contained larger amount of metal transition ions (mainly, Fe, Cu, and Ti), potentially responsible for the high reactivity in free radical generation observed. Opposite to Min-U-Sil 5, they were neither hemolytic nor cytotoxic on MH-S cells, a low cytotoxicity only being observed with BEAS-2B cells. The presence on the particle surface of residues of the resin accounts for this attenuated behavior, as hemolysis appeared and cytotoxicity increased after thermal degradation of the resin, when the free quartz surface was exposed. All dusts induced EMT with loss of E-cadherin expression and increased the expression of mesenchymal proteins (α-smooth muscle actin and vimentin). This may contribute to explain the development of fibrosis on workers exposed to artificial stone dusts. PMID:27255382

  2. Editor's Highlight: Abrasion of Artificial Stones as a New Cause of an Ancient Disease. Physicochemical Features and Cellular Responses.

    PubMed

    Pavan, Cristina; Polimeni, Manuela; Tomatis, Maura; Corazzari, Ingrid; Turci, Francesco; Ghigo, Dario; Fubini, Bice

    2016-09-01

    New outbursts of silicosis were recently reported among workers manufacturing an engineered material known as "artificial stone," composed by high percentages of quartz (up to 98%) agglomerated with pigments and polymeric resins. Dusts released by abrasion during artificial stone polishing were characterized for particle size, morphology, and elemental composition and studied for (1) ability to catalyze free radical generation in acellular tests, (2) membranolytic potential on human erythrocytes, (3) cytotoxic activity (lactate dehydrogenase release) on murine alveolar macrophages (MH-S) and human bronchial epithelial (BEAS-2B) cell lines, (4) induction of epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Min-U-Sil 5 was used as reference quartz. Artificial stone dusts exhibited morphological features close to quartz, but contained larger amount of metal transition ions (mainly, Fe, Cu, and Ti), potentially responsible for the high reactivity in free radical generation observed. Opposite to Min-U-Sil 5, they were neither hemolytic nor cytotoxic on MH-S cells, a low cytotoxicity only being observed with BEAS-2B cells. The presence on the particle surface of residues of the resin accounts for this attenuated behavior, as hemolysis appeared and cytotoxicity increased after thermal degradation of the resin, when the free quartz surface was exposed. All dusts induced EMT with loss of E-cadherin expression and increased the expression of mesenchymal proteins (α-smooth muscle actin and vimentin). This may contribute to explain the development of fibrosis on workers exposed to artificial stone dusts.

  3. Genetic diversity and dynamic distribution of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in Thailand.

    PubMed

    Srilohasin, Prapaporn; Chaiprasert, Angkana; Tokunaga, Katsushi; Nishida, Nao; Prammananan, Therdsak; Smittipat, Nat; Mahasirimongkol, Surakameth; Chaiyasirinroje, Boonchai; Yanai, Hideki; Palittapongarnpim, Prasit

    2014-12-01

    This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies.

  4. Human-caused mortality influences spatial population dynamics: pumas in landscapes with varying mortality risks

    USGS Publications Warehouse

    Newby, Jesse R.; Mills, L. Scott; Ruth, Toni K.; Pletscher, Daniel H.; Mitchell, Michael S.; Quigley, Howard B.; Murphy, Kerry M.; DeSimone, Rich

    2013-01-01

    An understanding of how stressors affect dispersal attributes and the contribution of local populations to multi-population dynamics are of immediate value to basic and applied ecology. Puma (Puma concolor) populations are expected to be influenced by inter-population movements and susceptible to human-induced source–sink dynamics. Using long-term datasets we quantified the contribution of two puma populations to operationally define them as sources or sinks. The puma population in the Northern Greater Yellowstone Ecosystem (NGYE) was largely insulated from human-induced mortality by Yellowstone National Park. Pumas in the western Montana Garnet Mountain system were exposed to greater human-induced mortality, which changed over the study due to the closure of a 915 km2 area to hunting. The NGYE’s population growth depended on inter-population movements, as did its ability to act as a source to the larger region. The heavily hunted Garnet area was a sink with a declining population until the hunting closure, after which it became a source with positive intrinsic growth and a 16× increase in emigration. We also examined the spatial and temporal characteristics of individual dispersal attributes (emigration, dispersal distance, establishment success) of subadult pumas (N = 126). Human-caused mortality was found to negatively impact all three dispersal components. Our results demonstrate the influence of human-induced mortality on not only within population vital rates, but also inter-population vital rates, affecting the magnitude and mechanisms of local population’s contribution to the larger metapopulation.

  5. Bacteraemia caused by Mycobacterium abscessus subsp. abscessus and M. abscessus subsp. bolletii: clinical features and susceptibilities of the isolates.

    PubMed

    Lee, Meng-Rui; Ko, Jen-Chung; Liang, Sheng-Kai; Lee, Shih-Wei; Yen, David Hung-Tsang; Hsueh, Po-Ren

    2014-05-01

    Mycobacterium abscessus complex (M. abscessus subsp. abscessus and M. abscessus subsp. bolletii) is an emerging pathogen causing various human infections. However, few studies have focused on M. abscessus complex bacteraemia with detailed species differentiation. The clinical characteristics of patients with bacteraemia due to M. abscessus complex treated at National Taiwan University Hospital from 2005-2012 were evaluated. Species identification was performed by molecular methods, and minimum inhibitory concentrations (MICs) were determined using a Sensititre RAPMYCO Panel Test for preserved M. abscessus complex isolates. During the study period, 15 patients with M. abscessus complex bacteraemia were found but only 14 isolates from 13 patients were preserved for analysis. One patient had two episodes of bacteraemia (one caused by M. abscessus subsp. bolletii and one by M .abscessus subsp. abscessus with a 9-month interval). Of the remaining 12 patients, 9 patients had M. abscessus subsp. bolletii bacteraemia and 3 had M .abscessus subsp. abscessus bacteraemia. Patients were mainly middle-aged adults with various co-morbidities. Steroid usage and malignancy (5/15) were the most common immunocompromised statuses, followed by diabetes mellitus (4/15). Surgical wound infection was the most common infection foci in all patients (5/15), particularly in M. abscessus subsp. bolletii bacteraemia patients. Clarithromycin and tigecycline exhibited good in vitro activities. Overall, the 14-day mortality was 20% (3/15). M. abscessus complex bacteraemia should be considered an emerging opportunistic infection in immunocompromised hosts. Clarithromycin and tigecycline have potent in vitro activities and are promising agents for treating infections due to M. abscessus complex. PMID:24718088

  6. CT features and common causes of arc of Riolan expansion: an analysis with 64-detector-row computed tomographic angiography

    PubMed Central

    Xie, Yuanliang; Jin, Chaolin; Zhang, Shutong; Wang, Xiang; Jiang, Yanping

    2015-01-01

    Objective: To study the manifestations of arc of Riolan expansion (ARE) using multi-detector computed tomography angiography (MDCTA). Materials and methods: The manifestations and clinical data of 626 consecutive mesentery CTA images were retrospectively analyzed. The 47 cases with ARE and 47 patients without expansion were involved. The average diameter of arc of Riolan was measured. Two radiologists after reaching consensus analyzed the shapes of mesenteric artery, CT findings and the occurrence and causes of ARE. Results: The mean diameter of arc of Riolan was 1.2 mm, 4.6 mm, 2.5 mm, 2.3 mm, 1.9 mm, 2.5 mm, and 2.0 mm at baseline and following obstruction of superior mesenteric artery (SMA), stenosis of SMA, obstruction of inferior mesenteric artery (IMA), stenosis of IMA, colon cancer, and active ulcerative colitis, respectively. The expansion of arc of Riolan was the most significant following obstruction of SMA. The diameters of arc of Riolan were significantly different between the upward flow group and the downward or the two-way flow groups, and between the colon tumor group and the active ulcerative colitis group. CT findings such as bowel wall thickening, contrast enhancement, intestinal obstruction, marginal artery expansion, lymph node enlargement varied and were help to identify the cause of ARE. Conclusions: ARE often suggests the occurrence of obstructed intestinal feeding artery or intestinal lesions. MDCTA can clearly display the situation of arc of Riolan and collateral circulation, and together with CT symptoms, can guide the selection of diagnosis and treatment schemes in clinic. PMID:26064208

  7. Infection dynamics in frog populations with different histories of decline caused by a deadly disease.

    PubMed

    Sapsford, Sarah J; Voordouw, Maarten J; Alford, Ross A; Schwarzkopf, Lin

    2015-12-01

    Pathogens can drive host population dynamics. Chytridiomycosis is a fungal disease of amphibians that is caused by the fungus Batrachochytrium dendrobatidis (Bd). This pathogen has caused declines and extinctions in some host species whereas other host species coexist with Bd without suffering declines. In the early 1990s, Bd extirpated populations of the endangered common mistfrog, Litoria rheocola, at high-elevation sites, while populations of the species persisted at low-elevation sites. Today, populations have reappeared at many high-elevation sites where they presently co-exist with the fungus. We conducted a capture-mark-recapture (CMR) study of six populations of L. rheocola over 1 year, at high and low elevations. We used multistate CMR models to determine which factors (Bd infection status, site type, and season) influenced rates of frog survival, recapture, infection, and recovery from infection. We observed Bd-induced mortality of individual frogs, but did not find any significant effect of Bd infection on the survival rate of L. rheocola at the population level. Survival and recapture rates depended on site type and season. Infection rate was highest in winter when temperatures were favourable for pathogen growth, and differed among site types. The recovery rate was high (75.7-85.8%) across seasons, and did not differ among site types. The coexistence of L. rheocola with Bd suggests that (1) frog populations are becoming resistant to the fungus, (2) Bd may have evolved lower virulence, or (3) current environmental conditions may be inhibiting outbreaks of the fatal disease. PMID:26293680

  8. Infection dynamics in frog populations with different histories of decline caused by a deadly disease.

    PubMed

    Sapsford, Sarah J; Voordouw, Maarten J; Alford, Ross A; Schwarzkopf, Lin

    2015-12-01

    Pathogens can drive host population dynamics. Chytridiomycosis is a fungal disease of amphibians that is caused by the fungus Batrachochytrium dendrobatidis (Bd). This pathogen has caused declines and extinctions in some host species whereas other host species coexist with Bd without suffering declines. In the early 1990s, Bd extirpated populations of the endangered common mistfrog, Litoria rheocola, at high-elevation sites, while populations of the species persisted at low-elevation sites. Today, populations have reappeared at many high-elevation sites where they presently co-exist with the fungus. We conducted a capture-mark-recapture (CMR) study of six populations of L. rheocola over 1 year, at high and low elevations. We used multistate CMR models to determine which factors (Bd infection status, site type, and season) influenced rates of frog survival, recapture, infection, and recovery from infection. We observed Bd-induced mortality of individual frogs, but did not find any significant effect of Bd infection on the survival rate of L. rheocola at the population level. Survival and recapture rates depended on site type and season. Infection rate was highest in winter when temperatures were favourable for pathogen growth, and differed among site types. The recovery rate was high (75.7-85.8%) across seasons, and did not differ among site types. The coexistence of L. rheocola with Bd suggests that (1) frog populations are becoming resistant to the fungus, (2) Bd may have evolved lower virulence, or (3) current environmental conditions may be inhibiting outbreaks of the fatal disease.

  9. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    PubMed Central

    Ouyang, Qing; Nakayama, Tojo; Baytas, Ozan; Davidson, Shawn M.; Yang, Chendong; Schmidt, Michael; Lizarraga, Sofia B.; Mishra, Sasmita; EI-Quessny, Malak; Niaz, Saima; Gul Butt, Mirrat; Imran Murtaza, Syed; Javed, Afzal; Chaudhry, Haroon Rashid; Vaughan, Dylan J.; Hill, R. Sean; Partlow, Jennifer N.; Yoo, Seung-Yun; Lam, Anh-Thu N.; Nasir, Ramzi; Al-Saffar, Muna; Barkovich, A. James; Schwede, Matthew; Nagpal, Shailender; Rajab, Anna; DeBerardinis, Ralph J.; Housman, David E.; Mochida, Ganeshwaran H.; Morrow, Eric M.

    2016-01-01

    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms. PMID:27601654

  10. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features.

    PubMed

    Ouyang, Qing; Nakayama, Tojo; Baytas, Ozan; Davidson, Shawn M; Yang, Chendong; Schmidt, Michael; Lizarraga, Sofia B; Mishra, Sasmita; Ei-Quessny, Malak; Niaz, Saima; Gul Butt, Mirrat; Imran Murtaza, Syed; Javed, Afzal; Chaudhry, Haroon Rashid; Vaughan, Dylan J; Hill, R Sean; Partlow, Jennifer N; Yoo, Seung-Yun; Lam, Anh-Thu N; Nasir, Ramzi; Al-Saffar, Muna; Barkovich, A James; Schwede, Matthew; Nagpal, Shailender; Rajab, Anna; DeBerardinis, Ralph J; Housman, David E; Mochida, Ganeshwaran H; Morrow, Eric M

    2016-09-20

    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms. PMID:27601654

  11. Distribution of Spiral Galaxies in the Virgo and Fornax Clusters and Their Dynamic Features

    NASA Astrophysics Data System (ADS)

    Kogoshvili, N. G.; Borchkhadze, T. M.; Kalloghlian, A. T.

    2014-12-01

    The dynamic characteristics of spiral galaxies with absolute magnitudes M ≥ -20m.6 in the Virgo and Fornax clusters are studied using data from the Merged Catalog of Galaxies MERCG. The galactic diameters from MERCG are used to determine the radius RD that defines the region of possible concentration of dark matter, and the dynamic parameters Mdyn and Mdyn/LB of the spiral galaxies are calculated based on the centrifugal equilibrium condition. Results from the theory of angular momentum transfer are used to estimate the central surface density m0 and angular momentum K of stars in these galaxies. A comparison of the dynamic parameters of the spiral galaxies with M ≥ -20.6 and M ≤ -20.6 reveals a statistically significant higher fraction of dark matter in the spiral galaxies with M ≤ -20.6, at 26.3% in Virgo and 27% in Fornax.

  12. Low doses of mercuric chloride cause the main features of anti-nucleolar autoimmunity in female outbred CFW mice.

    PubMed

    Arefieva, Alla S; Kamaeva, Alfia G; Krasilshchikova, Marina S

    2016-09-01

    The growth of the influence of anthropogenic factors aimed on the improvement of human life has its side effect, for example, living organisms receive increasing exposure to toxic mercuric compounds. Experimental data show that mercury (Hg) salts are able to induce systemic autoimmunity in rodents. This Hg-induced autoimmune process (HgIA) is characterized by T cell-dependent polyclonal activation of B lymphocytes, increased level of serum immunoglobulin G1 (IgG1) and immunoglobulin E (IgE), production of antinucleolar autoantibodies (ANoA), and immune complex deposition in multiple organs. HgIA in mice is used as a model of human systemic autoimmune disorders. However, the dose of mercuric chloride (HgCl2) usually used in laboratory mice to induce HgIA is above the allowable limit for everyday levels of Hg exposure in humans. So, we decided to determine the lowest dose of HgCl2 that is able to trigger autoimmunity in outbred Carworth Farms Swiss Webster (CFW) mice not genetically prone to HgIA development. The lowest dose (50 µg/kg body weight (b.w.)/week) was chosen to match the World Health Organization provisional weekly tolerable intake of total Hg for humans. We also tested HgCl2 at 500 and 1500 µg/kg b.w./week (6.5- and 2-fold less than usually used for induction of HgIA in mice). We found that even the lowest dose of Hg resulted in a statistically significant increase in serum level of IgG1 after 8 weeks of treatment. HgCl2 in doses 500 and 1500 µg/kg b.w./week resulted in a significant increase in serum level of IgG1 after 4 weeks of treatment, followed by ANoA production. Sera of HgCl2-treated mice stained the regions in which the major autoantigen in HgIA, fibrillarin, was revealed. These results suggest that low doses of Hg are able to induce the main features of HgIA in genetically heterozygous mice, and that humans chronically exposed to low doses of Hg may be at risk of autoimmunity induction regardless of their genetic background.

  13. [Analysis and computational fluid dynamics simulation of hemodynamic influences caused by splenic vein thrombosis].

    PubMed

    Zhou, Hongyu; Gong, Peiyun; Du, Xuesen; Wang, Meng

    2015-02-01

    This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.

  14. On the Causes and Dynamics of the Early Twentieth Century North American Pluvial

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Seager, Richard; Miller, Ron L.

    2011-01-01

    The early twentieth century North American pluvial (1905-1917) was one of the most extreme wet periods of the last five hundred years and directly led to overly generous water allotments in the water-limited American West. Here we examine the causes and dynamics of the pluvial event using a combination of observation-based data sets and general circulation model (GCM) experiments. The character of the moisture surpluses during the pluvial differed by region, alternately driven by increased precipitation (the Southwest), low evaporation from cool temperatures (the Central Plains), or a combination of the two (the Pacific Northwest). Cool temperature anomalies covered much of the west and persisted through most months, part of a globally extensive period of cooler land and sea surface temperatures (SST). Circulation during boreal winter favored increased moisture import and precipitation in the southwest, while other regions and seasons were characterized by near normal or reduced precipitation. Anomalies in the mean circulation, precipitation, and SST fields are partially consistent with the relatively weak El Nino forcing during the pluvial, and also reflect the impact of positive departures in the Arctic Oscillation that occurred in ten of the thirteen pluvial winters. Differences between the reanalysis dataset, an independent statistical drought model, and GCM simulations highlight some of the remaining uncertainties in understanding the full extent of SST forcing of North American hydroclimatic variability.

  15. Experimental and numerical study on the dynamic pressure caused by the bubble jet

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, A. M.; Yao, X. L.

    2015-12-01

    The high speed liquid jet is an important mechanism of damage to hydraulic machinery by cavitation bubbles, as well as damage to vessels by underwater explosion bubble. In this study, the bubble motion near a wall and the pressure impulse are investigated through experimental and numerical methods. In the experiment, the bubble is generated by the electric discharge, and a high speed camera is used to capture the bubble motion. Numerical studies are conducted using the boundary element method, and the vortex ring model is adopted to deal with the discontinued potential of the toroidal bubble. Calculated results show excellent agreement with experimental observations. Meanwhile, the dynamic pressure caused by the bubble in the flow domain is calculated by an auxiliary function, which improves the accuracy of the results. A highly localized pressure region will be generated on the wall by the bubble jet. The optimal stand-off parameter (the ratio of the distance the bubble center at inception from the wall to the maximum bubble radius) for a most damaging jet formation is around 0.9.

  16. Extraction of Dynamic Features from Hand Drawn Data for the Identification of Children with Handwriting Difficulty

    ERIC Educational Resources Information Center

    Khalid, Puspa Inayat; Yunus, Jasmy; Adnan, Robiah

    2010-01-01

    Studies have shown that differences between children with and without handwriting difficulties lie not only in the written product (static data) but also in dynamic data of handwriting process. Since writing system varies among countries and individuals, this study was conducted to determine the feasibility of using quantitative outcome measures…

  17. Preface: Special issue featuring papers from the International Conference on Nonequilibrium Carrier Dynamics in Semiconductors

    NASA Astrophysics Data System (ADS)

    Reggiani, L.; Bordone, P.; Brunetti, R.

    2004-02-01

    The International Conference on Nonequilibrium Carrier Dynamics in Semiconductors (HCIS-13) celebrates 30 years since it first took place in Modena. Nonequilibrium dynamics of charge carriers, pioneered by the hot-electron concept, is an important issue for understanding electro-optic transport properties in semiconductor materials and structures. In these 30 years several topics have matured, and new ones have emerged thus fertilizing the field with a variety of physical problems and new ideas. The history of the conference is summarized in the opening paper `30 years of HCIS'. The future of the conference seems secure considering the continued lively interest of the participants. The conference addressed eleven major topics which constitute the backbone of the proceedings and are summarized as follows: carrier transport in low dimensional and nanostructure systems, nonequilibrium carriers in superlattices and devices, small devices and related phenomena, carrier dynamics and fluctuations, carrier quantum dynamics, coherent/incoherent carrier dynamics of optical excitations and ultra-fast optical phenomena, nonlinear optical effects, transport in organic matter, semiconductor-based spintronics, coherent dynamics in solid state systems for quantum processing and communication, novel materials and devices. Nanometric space scale and femtosecond time scale represent the ultimate domains of theoretical, experimental and practical interest. Traditional fields such as bulk properties, quantum transport, fluctuations and chaotic phenomena, etc, have received thorough and continuous attention. Emerging fields from previous conferences, such as quantum processing and communication, have been better assessed. New fields, such as spintronics and electron transport in organic matter, have appeared for the first time. One plenary talk, 11 invited talks, 230 submitted abstracts covering all these topics constituted a single-session conference. Following scientific selection

  18. Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra

    NASA Astrophysics Data System (ADS)

    Litvinenko, G. V.; Shaposhnikov, V. E.; Konovalenko, A. A.; Zakharenko, V. V.; Panchenko, M.; Dorovsky, V. V.; Brazhenko, A. I.; Rucker, H. O.; Vinogradov, V. V.; Melnik, V. N.

    2016-07-01

    We investigate the dynamic spectra of the Sun and jovian decametric radiation obtained by the authors with the radio telescopes UTR-2 and URAN-2 (Kharkov, Poltava, Ukraine). We focus on the similar structures that appear on the dynamic spectra of those objects: S-bursts, drifting pairs, absorption bursts and zebra patterns. Similarity in structures allows us to assume that the plasma processes in the solar corona and in the jovian magnetosphere might have similar properties. We analyze and compare the main parameters of those structures and describe briefly some mechanisms of their generation that have already discussed in publications. We selected the mechanisms which, in our opinion, most completely and consistently explain the properties of the structures under consideration.

  19. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  20. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  1. Dynamic application of digital image and colour processing in characterizing flame radiation features

    NASA Astrophysics Data System (ADS)

    Huang, Hua Wei; Zhang, Yang

    2010-08-01

    In this work, the experimental investigation of the dynamic flame properties of flame flickering and equivalence ratio sensing of a combustion process was done. In particular, the time-varied flame properties were examined using a novel digital image and colour processing methodology. This technique makes use of the observed correlation between a digital image colour signal and physical flame radiation characteristics in the visible wavelength domain. Aspects of RGB and HSV colour modelling principles were applied to show that the addition of colour identification in the image processing of high-speed flame image data could yield three useful parameters which are related to the dynamic behaviour of different flame emanating components. First, the validity of the colour identities for tracking the yellowish-red diffusion and greenish-blue premixed flame colourations were examined by comparing their respective flickering frequency profiles. Then, the usefulness of the extracted Rdiffusion, Gpremixed and Bpremixed colour signals to abstractly represent the behaviour of soot, C2* and CH* emission characteristics in a dynamic flame transition from diffusion to stoichiometric premixed condition was demonstrated. In particular, the colour signal ratio Bpremixed/Gpremixed was correlated to exemplify the approximate time-varied state of the equivalence ratio from the imaged combustion phenomenon.

  2. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Giacomoni, Pier Paolo; Ferlito, Carmelo; Cristofolini, Renato

    2010-04-01

    A systematic study of textural and compositional zoning (An% and FeO variation) in plagioclase phenocrysts of historic (pre-1971) and recent (post-1971) lavas at Mount Etna was made through back-scattered electron (BSE) images and electron microprobe analyses (EMP). The textures considered include oscillatory zoning and several types of dissolution, resorption and growth textures at the phenocryst cores and/or rims. Two patterns of oscillation were recognized from the combined An-FeO variation: 1) Low Amplitude-High Frequency (LAHF) and 2) High Amplitude-Low Frequency (HALF). The first pattern is interpreted here as due to kinetic effects at the plagioclase/melt interface which developed during crystallization in closed reservoirs. The second, which sometimes involves thin dissolution surfaces marked by irregular edges, angular unconformities and complex dissolution-regrowth patterns, might imply crystallization in a more dynamic regime, probably driven by chemical and physical gradients of the system (e.g., convection in a steadily degassing open-conduit). Dissolution and resorption textures at the core vary from patchy (exclusive to plagioclases within pre-1971 lavas) to strongly sieved, and can be related to increasing rates of decompression under H 2O-undersaturated conditions. Thick sieve-textured envelopes at the phenocryst rims, generally coupled with marked An-FeO increase, result from mixing with more primitive and volatile-rich magmas. In the same crystals from recent activity, An and, to a lesser extent, FeO increase, consistent with the mixing of H 2O-rich magmas similar in their mafic character to the resident magma (cryptic mixing). Two types of growth textures were also recognized at the crystal rims: 1) stripes of regularly-shaped melt inclusions and 2) swallow-tailed, skeletal crystals. In the first instance, the concordant An-FeO decrease suggests crystallization caused by fast ascent-related decompression accompanied by volatile loss. In the

  3. Wrisberg-variant discoid lateral meniscus: current concepts, treatment options, and imaging features with emphasis on dynamic ultrasonography.

    PubMed

    Jose, Jean; Buller, Leonard T; Rivera, Sebastian; Carvajal Alba, Jaime A; Baraga, Michael

    2015-03-01

    Discoid lateral menisci represent a range of morphologic abnormalities of the lateral meniscus. The Wrisberg-variant discoid lateral meniscus is an unstable type that lacks posterior ligament attachments, resulting in "snapping knee syndrome." Abnormally mobile discoid lateral menisci are difficult to diagnose both clinically and with traditional static imaging, such as magnetic resonance imaging. In this article, we discuss the pathophysiology, clinical features, imaging findings, and treatment options for Wrisberg-variant discoid lateral menisci. We focus on the role of dynamic ultrasonography in revealing lateral meniscal subluxation during provocative maneuvers.

  4. Dynamic Measurements of Greenhouse Gas Respirations Caused by Changing Oxygen Levels

    NASA Astrophysics Data System (ADS)

    Fleck, D.; Saad, N.

    2015-12-01

    The necessity for constant monitoring of greenhouse gases (GHGs) is clearly evident now more than ever. Moreover, interpreting and understanding the processes that dictate the production and consumption of these gases will allow for proper management of GHGs in order to mitigate its detrimental climate effects. Presence of oxygen, or lack of it, is the driving force for determining pathways within biochemical redox reactions. Experiments to find correlations between oxygen and greenhouse gases have helped us understand photosynthesis, denitrification and beyond. Within the past few years measurements of O2 and nitrous oxide have been used over a wide ranging array of disciplines; from studying avenues for redox chemistry to characterizing gas profiles in sputum of cystic fibrosis patients. We present a full analysis solution, based on cavity ring-down spectroscopy, for simultaneous measurements of N2O, CO2, CH4, H2O, NH3, and O2 concentrations in soil flux, in order to better understand dynamics of ecological and biogeochemical processes. The stability and high temporal resolution of the five-species CRDS analyzer, coupled with a continuous high-precision O2 measurement (1-σ <200ppm) produces a complete picture of biogeochemical processes, for which a multitude of additional research experiments can be conceived. Adding another dimension to explore to help determine the rate at which these greenhouse gases are produced or consumed, allows scientists to further address fundamental scientific questions. Data is presented showing precision, drift and limitations of the O2 sensor measurement as well as the validity of spectroscopic corrections with the CRDS analyzer caused by changing O2. Experimental data is also presented to explore correlations of soil respiration rates of N2O, CO2 and CH4 due to differing soil O2 contents at varying timescales from minutes to days.

  5. Causes, Dynamics and Impacts of Lahars Generated by the April, 2015 Calbuco Eruption, Chile.

    NASA Astrophysics Data System (ADS)

    Russell, A. J.; Dussaillant, A. R.; Meier, C. I.; Rivera, A.; Barra, M. M.; Urzua, N. G.; Hernandez, J. F.; Napoleoni, F.; Gonzalez, C.

    2015-12-01

    Calbuco is a 2015m high, glacier capped, stratovolcano in the heavily populated Los Lagos district of southern Chile with a history of large volcanic eruptions in 1893-95, 1906-7, 1911-12, 1917, 1932, 1945, 1961 and 1972. Calbuco experienced a powerful 90 minute eruption at 18:04h on 22 April, 2015 followed by additional major eruptions at 01:00h and 13:10h on 23 & 30 April, respectively, resulting in the evacuation of 6500 people and the imposition of a 20 km radius exclusion zone. Pyroclastic flows descended into several river catchments radiating from the volcano with lahars travelling distances of up to 14 km, reaching populated areas. We present preliminary findings regarding the causes, dynamics and impacts of lahars generated by the April 2015 eruption. Pyroclastic flows melted glacier ice and snow generating the largest lahars in the Rio Este and Rio Blanco Sur on the southern flanks of the volcano. Lahar deposits in the Rio Blanco Norte were buried by pyroclastic flow deposits with measured temperatures of up to 282°C three months after emplacement. Lahar erosional impacts included bedrock erosion, alluvial channel incision, erosion of surficial deposits and the felling of large areas of forest. Depositional landforms included boulder run-ups on the outsides of channel bends, boulder clusters and large woody debris jams. Lahars deposited up to 8m of sediment within distal reaches. Deposits on the southern flanks of Calbuco indicate the passage of multiple pulses of contrasting rheology. Lahar occurrence and magnitude was controlled by the pre-eruption distribution of snow and ice on the volcano. Pre-existing lahar channels controlled flows to lower piedmont zones where routing was determined by palaeo lahar geomorphology. Ongoing erosion of proximal pyroclastic flow and lahar deposits provides large volumes of sediment to distal portions of fluvial systems radiating from Calbuco.

  6. Dynamic features of adherens junctions during Drosophila embryonic epithelial morphogenesis revealed by a Dalpha-catenin-GFP fusion protein.

    PubMed

    Oda, H; Tsukita, S

    1999-04-01

    Cell-cell adherens junctions (AJs), comprised of the cadherin-catenin adhesion system, contribute to cell shape changes and cell movements in epithelial morphogenesis. However, little is known about the dynamic features of AJs in cells of the developing embryo. In this study, we constructed Dalpha-catenin fused with a green fluorescent protein (Dalpha-catenin-GFP), and found that it targeted apically located AJ-based contacts but not other lateral contacts in epithelial cells of living Drosophila embryos. Using time-lapse fluorescence microscopy, we examined the dynamic performance of AJs containing Dalpha-catenin-GFP in epithelial morphogenetic movements. In the ventral ectoderm of stage 11 embryos, concentration and deconcentration of Dalpha-catenin-GFP occurred concomitantly with changes in length of AJ contacts. In the lateral ectoderm of embryos at the same stage, dynamic behaviour of AJs was concerted with division and delamination of sensory organ precursor (SOP) cells. Moreover, changes in patterns of AJ networks during tracheal extension could be followed. Finally, we utilized Dalpha-catenin-GFP to precisely observe the defects in tracheal fusion in shotgun mutants. Thus, the Dalpha-catenin-GFP fusion protein is a helpful tool to simultaneously observe morphogenetic movements and AJ dynamics at high spatio-temporal resolution.

  7. Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution.

    PubMed

    Kenney, Jason A; Hwang, Gyeong S

    2005-07-01

    A two-dimensional computational model is developed to describe electrochemical nanostructuring of conducting materials with ultrashort voltage pulses. The model consists of (1) a transient charging simulation to describe the evolution of the overpotentials at the tool and workpiece surfaces and the resulting dissolution currents and (2) a feature profile evolution tool which uses the level set method to describe either vertical or lateral etching of the workpiece. Results presented include transient currents at different separations between tool and workpiece, evolution of overpotentials and dissolution currents as a function of position along the workpiece, and etch profiles as a function of pulse duration. PMID:21727446

  8. Combination of Whole Genome Sequencing, Linkage, and Functional Studies Implicates a Missense Mutation in Titin as a Cause of Autosomal Dominant Cardiomyopathy With Features of Left Ventricular Noncompaction

    PubMed Central

    Hastings, Robert; de Villiers, Carin P.; Hooper, Charlotte; Ormondroyd, Liz; Pagnamenta, Alistair; Lise, Stefano; Salatino, Silvia; Knight, Samantha J.L.; Taylor, Jenny C.; Thomson, Kate L.; Arnold, Linda; Chatziefthimiou, Spyros D.; Konarev, Petr V.; Wilmanns, Matthias; Ehler, Elisabeth; Ghisleni, Andrea; Gautel, Mathias; Blair, Edward; Watkins, Hugh

    2016-01-01

    Background— High throughput next-generation sequencing techniques have made whole genome sequencing accessible in clinical practice; however, the abundance of variation in the human genomes makes the identification of a disease-causing mutation on a background of benign rare variants challenging. Methods and Results— Here we combine whole genome sequencing with linkage analysis in a 3-generation family affected by cardiomyopathy with features of autosomal dominant left ventricular noncompaction cardiomyopathy. A missense mutation in the giant protein titin is the only plausible disease-causing variant that segregates with disease among the 7 surviving affected individuals, with interrogation of the entire genome excluding other potential causes. This A178D missense mutation, affecting a conserved residue in the second immunoglobulin-like domain of titin, was introduced in a bacterially expressed recombinant protein fragment and biophysically characterized in comparison to its wild-type counterpart. Multiple experiments, including size exclusion chromatography, small-angle x ray scattering, and circular dichroism spectroscopy suggest partial unfolding and domain destabilization in the presence of the mutation. Moreover, binding experiments in mammalian cells show that the mutation markedly impairs binding to the titin ligand telethonin. Conclusions— Here we present genetic and functional evidence implicating the novel A178D missense mutation in titin as the cause of a highly penetrant familial cardiomyopathy with features of left ventricular noncompaction. This expands the spectrum of titin’s roles in cardiomyopathies. It furthermore highlights that rare titin missense variants, currently often ignored or left uninterpreted, should be considered to be relevant for cardiomyopathies and can be identified by the approach presented here. PMID:27625337

  9. Tidal-Induced Ocean Dynamics as Cause of Enceladus' Tiger Stripe Pattern

    NASA Astrophysics Data System (ADS)

    Vermeersen, B. L.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2013-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. The periodic activity of the tiger stripe faults shows a strong correlation with tidal forcing. Jets emanating from specific fault lines seem to be triggered at those places of the faults where tidal-induced stresses are largest immediately following closest orbital approach with Saturn [e.g., Hurford et al., Nature, 447, 292-294, 2007]. Thus jet activity seems to be directly induced by tidal forcing. However, this does not explain the characteristic regular pattern of the stripes themselves. Here we explore the possibility that this pattern is formed and maintained by induced, tidally and rotationally driven, fluid motions in the ocean underneath the icy surface of the tiger-stripe region. The remarkable spatial regularity of Enceladus' SPT fault lines is reminiscent of that observed at the surface of confined density-stratified fluids by the action of induced internal gravity waves. Theoretical analysis, numerical simulations and laboratory water tank experiments all indicate that wave attractors - particular limit orbits to which waves are focused in a fluid basin - naturally emerge in gravitationally (radial salt concentration or temperature differences) or rotationally stratified confined fluids as a function of forcing periodicity and fluid basin geometry [Maas et al., Nature, 338, 557-561, 1997]. We have found that ocean dynamical wave attractors induced by tidal-effective forcing

  10. Special Features of the Structure of Copper-containing Products of Plasma Dynamic Synthesis

    NASA Astrophysics Data System (ADS)

    Ivashutenko, A. S.; Nazarenko, O. B.; Sivkov, A. A.; Saigash, A. S.; Stepanov, K. I.

    2015-03-01

    Results of investigation of the dispersed, phase, and chemical compositions of products of plasma dynamic synthesis in a high-speed pulsed jet of copper-containing electroerosive plasma flowing into a closed volume with the air atmosphere are presented. Products of synthesis are investigated by the methods of x-ray phase and thermal analyses, electron microscopy, and IR spectroscopy. The structure of the synthesized powder includes metal copper, Cu2O and CuO copper oxides, and hydrated copper hydroxide Cu(OH)2·N2O. Results of investigations of structural changes of the synthesized products during heating in vacuum and air are presented.

  11. An NMR and molecular dynamics investigation of the avian prion hexarepeat conformational features in solution

    NASA Astrophysics Data System (ADS)

    Pietropaolo, Adriana; Raiola, Luca; Muccioli, Luca; Tiberio, Giustiniano; Zannoni, Claudio; Fattorusso, Roberto; Isernia, Carla; Mendola, Diego La; Pappalardo, Giuseppe; Rizzarelli, Enrico

    2007-07-01

    The prion protein is a copper binding glycoprotein that in mammals can misfold into a pathogenic isoform leading to prion diseases, as opposed, surprisingly, to avians. The avian prion N-terminal tandem repeat is richer in prolines than the mammal one, and understanding their effect on conformation is of great biological importance. Here we succeeded in investigating the conformations of a single avian hexarepeat by means of NMR and molecular dynamics techniques. We found a high flexibility and a strong conformational dependence on pH: local turns are present at acidic and neutral pH, while unordered regions dominate at basic conditions.

  12. Low Band Gap Coplanar Conjugated Molecules Featuring Dynamic Intramolecular Lewis Acid-Base Coordination.

    PubMed

    Zhu, Congzhi; Guo, Zi-Hao; Mu, Anthony U; Liu, Yi; Wheeler, Steven E; Fang, Lei

    2016-05-20

    Ladder-type conjugated molecules with a low band gap and low LUMO level were synthesized through an N-directed borylation reaction of pyrazine-derived donor-acceptor-donor precursors. The intramolecular boron-nitrogen coordination bonds played a key role in rendering the rigid and coplanar conformation of these molecules and their corresponding electronic structures. Experimental investigation and theoretical simulation revealed the dynamic nature of such coordination, which allowed for active manipulation of the optical properties of these molecules by using competing Lewis basic solvents. PMID:27096728

  13. Correlation Spectroscopy and Molecular Dynamics Simulations to Study the Structural Features of Proteins

    PubMed Central

    Varriale, Antonio; Marabotti, Anna; Mei, Giampiero; Staiano, Maria; D’Auria, Sabato

    2013-01-01

    In this work, we used a combination of fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulation methodologies to acquire structural information on pH-induced unfolding of the maltotriose-binding protein from Thermus thermophilus (MalE2). FCS has emerged as a powerful technique for characterizing the dynamics of molecules and it is, in fact, used to study molecular diffusion on timescale of microsecond and longer. Our results showed that keeping temperature constant, the protein diffusion coefficient decreased from 84±4 µm2/s to 44±3 µm2/s when pH was changed from 7.0 to 4.0. An even more marked decrease of the MalE2 diffusion coefficient (31±3 µm2/s) was registered when pH was raised from 7.0 to 10.0. According to the size of MalE2 (a monomeric protein with a molecular weight of 43 kDa) as well as of its globular native shape, the values of 44 µm2/s and 31 µm2/s could be ascribed to deformations of the protein structure, which enhances its propensity to form aggregates at extreme pH values. The obtained fluorescence correlation data, corroborated by circular dichroism, fluorescence emission and light-scattering experiments, are discussed together with the MD simulations results. PMID:23750215

  14. Swine manure vermicomposting via housefly larvae (Musca domestica): the dynamics of biochemical and microbial features.

    PubMed

    Zhang, ZhiJian; Wang, Hang; Zhu, Jun; Suneethi, Sundar; Zheng, JianGuo

    2012-08-01

    Improper handling of animal manure generated from concentrated swine operations greatly deteriorates water ecosystems. In this study, a full-scale vermireactor using housefly larvae (Musca domestica) was designed to investigate the effectiveness and efficiency of swine manure reduction, and to explore the associated biochemical-biological mechanisms. The one-week larvae vermireactor resulted in a total weight reduction rate of 106±17 kg/(m(3) d) and moisture reduction of 80.2%. Microbial activities in manure decreased by 45% after vermicomposting, while the activities of cellulose, proteases, and phosphatases in the vermicompost were significantly 69 times, 48%, and 82% lower than those in raw manure, respectively. The vermicompost was exclusively dominated by Entomoplasma somnilux, Proteobacterium, and Clostridiaceae bacterium where the microbial diversity was decreased from 2.57 in raw manure to 1.77. Correlation coefficients statistic showed that organic C might be a key indicator of the biochemical features and microbial functions of the larvae vermireactor.

  15. Protecting persistent dynamic oceanographic features: transboundary conservation efforts are needed for the critically endangered Balearic shearwater.

    PubMed

    Louzao, Maite; Delord, Karine; García, David; Boué, Amélie; Weimerskirch, Henri

    2012-01-01

    The protection of key areas for biodiversity at sea is not as widespread as on land and research investment is necessary to identify biodiversity hotspots in the open ocean. Spatially explicit conservation measures such as the creation of representative networks of marine protected areas (MPAs) is a critical step towards the conservation and management of marine ecosystems, as well as to improve public awareness. Conservation efforts in ecologically rich and threatened ecosystems are specially needed. This is particularly urgent for the Mediterranean marine biodiversity, which includes highly mobile marine vertebrates. Here, we studied the at sea distribution of one of the most endangered Mediterranean seabird, the critically endangered Balearic shearwater Puffinus mauretanicus. Present knowledge, from vessel-based surveys, suggests that this species has a coastal distribution over the productive Iberian shelf in relation to the distribution of their main prey, small pelagic fish. We used miniaturised satellite transmitters to determine the key marine areas of the southern population of Balearic shearwaters breeding on Eivissa and spot the spatial connections between breeding and key marine areas. Our tracking study indicates that Balearic shearwaters do not only forage along the Iberian continental shelf but also in more distant marine areas along the North African coast, in particular W of Algeria, but also NE coast of Morocco. Birds recurrently visit these shelf areas at the end of the breeding season. Species distribution modelling identified chlorophyll a as the most important environmental variable in defining those oceanographic features characterizing their key habitats in the western Mediterranean. We identified persistent oceanographic features across time series available in the study area and discuss our results within the current conservation scenario in relation to the ecology of the species. PMID:22590510

  16. Frozen debris lobe morphology and movement: an overview of eight dynamic features, southern Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Darrow, Margaret M.; Gyswyt, Nora L.; Simpson, Jocelyn M.; Daanen, Ronald P.; Hubbard, Trent D.

    2016-05-01

    Frozen debris lobes (FDLs) are elongated, lobate permafrost features that mostly move through shear in zones near their bases. We present a comprehensive overview of eight FDLs within the Dalton Highway corridor (southern Brooks Range, Alaska), including their catchment geology and rock strengths, lobe soil characteristics, surface movement measurements collected between 2012 and 2015, and analysis of historic and modern imagery from 1955 to 2014. Field mapping and rock strength data indicate that the metasedimentary and metavolcanic bedrock forming the majority of the lobe catchments has very low to medium strength and is heavily fractured, thus easily contributing to FDL formation. The eight investigated FDLs consist of platy rocks typical of their catchments, organic debris, and an ice-poor soil matrix; massive ice, however, is present within FDLs as infiltration ice, concentrated within cracks open to the surface. Exposure of infiltration ice in retrogressive thaw slumps (RTSs) and associated debris flows leads to increased movement and various stages of destabilization, resulting in morphological differences among the lobes. Analysis of historic imagery indicates that movement of the eight investigated FDLs has been asynchronous over the study period, and since 1955, there has been an overall increase in movement rates of the investigated FDLs. The formation of surface features, such as cracks, scarps, and RTSs, suggests that the increased movement rates correlate to general instability, and even at their current distances, FDLs are impacting infrastructure through increased sediment mobilization. FDL-A is the largest of the investigated FDLs. As of August 2015, FDL-A was 39.2 m from the toe of the Dalton Highway embankment. Based on its current distance and rate of movement, we predict that FDL-A will reach the Dalton Highway alignment by 2023.

  17. Cortical pitch response components index stimulus onset/offset and dynamic features of pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Voice pitch is an important information-bearing component of language that is subject to experience dependent plasticity at both early cortical and subcortical stages of processing. We’ve already demonstrated that pitch onset component (Na) of the cortical pitch response (CPR) is sensitive to flat pitch and its salience. In regards to dynamic pitch, we do not yet know whether the multiple pitch-related transient components of the CPR reflect specific temporal attributes of such stimuli. Here we examine the sensitivity of the multiple transient components of CPR to changes in pitch acceleration associated with the Mandarin high rising lexical tone. CPR responses from Chinese listeners were elicited by three citation forms varying in pitch acceleration and duration. Results showed that the pitch onset component (Na) was invariant to changes in acceleration. In contrast, Na-Pb and Pb-Nb showed a systematic increase in the interpeak latency and decrease in amplitude with increase in pitch acceleration that followed the time course of pitch change across the three stimuli. A strong correlation with pitch acceleration was observed for these two components only – a putative index of pitch-relevant neural activity associated with the more rapidly-changing portions of the pitch contour. Pc-Nc marks unambiguously the stimulus offset. We therefore propose that in the early stages of cortical sensory processing, a series of neural markers flag different temporal attributes of a dynamic pitch contour: onset of temporal regularity (Na); changes in temporal regularity between onset and offset (Na-Pb, Pb-Nb); and offset of temporal regularity (Pc-Nc). At the temporal electrode sites, the stimulus with the most gradual change in pitch acceleration evoked a rightward asymmetry. Yet within the left hemisphere, stimuli with more gradual change were indistinguishable. These findings highlight the emergence of early hemispheric preferences and their functional roles as related to

  18. Mapping and Monitoring of Dynamic Seafloor Features with Hydroacoustic Devices in Sandy Coastal Areas (German Bight, North Sea)

    NASA Astrophysics Data System (ADS)

    Papenmeier, S.; Mielck, F.; Hass, H. C.

    2014-12-01

    In order to understand marine ecosystems and to provide basic data for a sustainable management in these vulnerable areas, seafloor mapping has become increasingly important. Since the knowledge regarding the seabed environments and their dynamics are still sparse, new mapping techniques have evolved in the last years and hydroacoustic devices became an important tool for quick and reliable mapping. In 2007 we started a monitoring program in the German Bight (North Sea) using sidescan sonar (Imagenex YellowFin, 330 kHz) in a study site comprising approximately 1,500 km2. In subsequent years, the area was mapped repeatedly with a resolution of ~25 cm. For ground truthing, several hundred sediment samples were taken. The investigations reveal that the area is mainly characterized by fine to coarse sand which is arranged in different seafloor features such as subaquatic dunes or relicts of Pleistocene moraines. While the alignment and position of the moraines was stable throughout the years, the dunes can be highly dynamic. Their migration indicates the amount of sediment transport in these areas. Some seafloor features could be identified as so-called sorted bedforms, which are spatially-grain-size-sorted patterns on the seafloor consisting of small rippled medium sand surrounded by smooth fine sand. These flow-transverse features are morphological linked to ridges and depressions and are further maintained by ebb and flood currents of almost equal strengths. The medium sand is separated from the fine sand by sharp boundaries in all directions which were generated by the bidirectional flow field. The extend and alignment of the sorted bedforms seem to be relatively stable in a time frame of 6 years, however small-scale variabilities up to serveral meters could be detected. We suppose that these processes mainly occur during storm surges while the fine-sand layers are winnowed away and hence the shapes of the bedforms changes.

  19. Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing

    NASA Astrophysics Data System (ADS)

    Casaccia, S.; Sirevaag, E. J.; Richter, E. J.; O'Sullivan, J. A.; Scalise, L.; Rohrbaugh, J. W.

    2016-10-01

    This report amplifies and extends prior descriptions of the use of laser Doppler vibrometry (LDV) as a method for assessing cardiovascular activity, on a non-contact basis. A rebreathing task (n = 35 healthy individuals) was used to elicit multiple effects associated with changes in autonomic drive as well as blood gases including hypercapnia. The LDV pulse was obtained from two sites overlying the carotid artery, separated by 40 mm. A robust pulse signal was obtained from both sites, in accord with the well-described changes in carotid diameter over the blood pressure cycle. Emphasis was placed on extracting timing measures from the LDV pulse, which could serve as surrogate measures of pulse wave velocity (PWV) and the associated arterial stiffness. For validation purposes, a standard measure of pulse transit time (PTT) to the radial artery was obtained using a tonometric sensor. Two key measures of timing were extracted from the LDV pulse. One involved the transit time along the 40 mm distance separating the two LDV measurement sites. A second measure involved the timing of a late feature of the LDV pulse contour, which was interpreted as reflection wave latency and thus a measure of round-trip travel time. Both LDV measures agreed with the conventional PTT measure, in disclosing increased PWV during periods of active rebreathing. These results thus provide additional evidence that measures based on the non-contact LDV technique might provide surrogate measures for those obtained using conventional, more obtrusive assessment methods that require attached sensors.

  20. Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity.

    PubMed

    Bichler, Olivier; Querlioz, Damien; Thorpe, Simon J; Bourgoin, Jean-Philippe; Gamrat, Christian

    2012-08-01

    A biologically inspired approach to learning temporally correlated patterns from a spiking silicon retina is presented. Spikes are generated from the retina in response to relative changes in illumination at the pixel level and transmitted to a feed-forward spiking neural network. Neurons become sensitive to patterns of pixels with correlated activation times, in a fully unsupervised scheme. This is achieved using a special form of Spike-Timing-Dependent Plasticity which depresses synapses that did not recently contribute to the post-synaptic spike activation, regardless of their activation time. Competitive learning is implemented with lateral inhibition. When tested with real-life data, the system is able to extract complex and overlapping temporally correlated features such as car trajectories on a freeway, after only 10 min of traffic learning. Complete trajectories can be learned with a 98% detection rate using a second layer, still with unsupervised learning, and the system may be used as a car counter. The proposed neural network is extremely robust to noise and it can tolerate a high degree of synaptic and neuronal variability with little impact on performance. Such results show that a simple biologically inspired unsupervised learning scheme is capable of generating selectivity to complex meaningful events on the basis of relatively little sensory experience.

  1. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features.

    PubMed

    Cina, Jeffrey A; Kovac, Philip A; Jumper, Chanelle C; Dean, Jacob C; Scholes, Gregory D

    2016-05-01

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to a simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done. PMID:27155654

  2. Accelerated Molecular Dynamics Simulation of Hypersonic Flow Features in Dilute Gases

    NASA Astrophysics Data System (ADS)

    Schwartzentruber, Thomas; Valentini, Paolo

    2009-11-01

    Accurate simulation of high-altitude hypersonic flows requires advanced physical models capable of predicting the transfer of energy between translational, rotational, vibrational, and chemical modes of a gas in strong thermochemical non-equilibrium. A combined Event-Driven / Time-Driven (ED/TD) Molecular Dynamics (MD) algorithm is presented that greatly accelerates the MD simulation of dilute gases. The goal of this research is to utilize advances in computational chemistry to study thermochemical non-equilibrium processes in hypersonic flows. The ED/TD MD method identifies impending collisions (including multi-body collisions) and advances molecules directly to their next interaction, however, then integrates each interaction accurately using an arbitrary interatomic potential via conventional MD with small timesteps. First, the ED/TD MD algorithm and efficiency will be detailed. Next, ED/TD MD simulations of normal shock waves in dilute argon will be validated with experiment and direct simulation Monte Carlo simulations employing the variable-hard-sphere collision model. Profiling of the code reveals that the relative computational time required for the MD integration of collisions is extremely low and the potential for incorporating advanced classical and first-principles interatomic potentials within the ED/TD MD method will be discussed.

  3. Simple dynamical models capturing the key features of the Central Pacific El Niño

    PubMed Central

    Chen, Nan; Majda, Andrew J.

    2016-01-01

    The Central Pacific El Niño (CP El Niño) has been frequently observed in recent decades. The phenomenon is characterized by an anomalous warm sea surface temperature (SST) confined to the central Pacific and has different teleconnections from the traditional El Niño. Here, simple models are developed and shown to capture the key mechanisms of the CP El Niño. The starting model involves coupled atmosphere–ocean processes that are deterministic, linear, and stable. Then, systematic strategies are developed for incorporating several major mechanisms of the CP El Niño into the coupled system. First, simple nonlinear zonal advection with no ad hoc parameterization of the background SST gradient is introduced that creates coupled nonlinear advective modes of the SST. Secondly, due to the recent multidecadal strengthening of the easterly trade wind, a stochastic parameterization of the wind bursts including a mean easterly trade wind anomaly is coupled to the simple atmosphere–ocean processes. Effective stochastic noise in the wind burst model facilitates the intermittent occurrence of the CP El Niño with realistic amplitude and duration. In addition to the anomalous warm SST in the central Pacific, other major features of the CP El Niño such as the rising branch of the anomalous Walker circulation being shifted to the central Pacific and the eastern Pacific cooling with a shallow thermocline are all captured by this simple coupled model. Importantly, the coupled model succeeds in simulating a series of CP El Niño that lasts for 5 y, which resembles the two CP El Niño episodes during 1990–1995 and 2002–2006. PMID:27698122

  4. Features of exciton dynamics in molecular nanoclusters (J-aggregates): Exciton self-trapping (Review Article)

    NASA Astrophysics Data System (ADS)

    Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.

    2016-06-01

    We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g < 1) and a strong (g > 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.

  5. Dynamics of glass-forming liquids. XV. Dynamical features of molecular liquids that form ultra-stable glasses by vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Richert, Ranko

    2011-09-01

    The dielectric relaxation behavior of ethylbenzene (EBZ) in its viscous regime is measured, and the glass transition temperature (Tg = 116 K) as well as fragility (m = 98) are determined. While the Tg of EBZ from this work is consistent with earlier results, the fragility is found much higher than what has been assumed previously. Literature data is supplemented by the present results on EBZ to compile the dynamic behavior of those glass formers that are known to form ultra-stable glasses by vapor deposition. These dynamics are contrasted with those of ethylcyclohexane, a glass former for which a comparable vapor deposition failed to produce an equally stable glassy state. In a graph that linearizes Vogel-Fulcher-Tammann behavior, i.e., the derivative of -logτ with respect to T/Tg raised to the power of -1/2 versus T/Tg, all ultra-stable glass formers fall onto one master curve in a wide temperature range, while ethylcyclohexane deviates for T ≫ Tg. This result suggests that ultra-stable glass formers share common behavior regarding the dynamics of their supercooled liquid state if scaled to their respective Tg values, and that fragility and related features are linked to the ability to form ultra-stable materials.

  6. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features

    PubMed Central

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T.

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may

  7. Common neuropathological features underlie distinct clinical presentations in three siblings with hereditary diffuse leukoencephalopathy with spheroids caused by CSF1R p.Arg782His.

    PubMed

    Robinson, John L; Suh, EunRan; Wood, Elisabeth M; Lee, Edward B; Coslett, H Branch; Raible, Kevin; Lee, Virginia M-Y; Trojanowski, John Q; Van Deerlin, Vivianna M

    2015-01-01

    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) presents with a variety of clinical phenotypes including motor impairments such as gait dysfunction, rigidity, tremor and bradykinesia as well as cognitive deficits including personality changes and dementia. In recent years, colony stimulating factor 1 receptor gene (CSF1R) has been identified as the primary genetic cause of HDLS. We describe the clinical and neuropathological features in three siblings with HDLS and the CSF1R p.Arg782His (c.2345G > A) pathogenic mutation. Each case had varied motor symptoms and clinical features, but all included slowed movements, poor balance, memory impairment and frontal deficits. Neuroimaging with magnetic resonance imaging revealed atrophy and increased signal in the deep white matter. Abundant white matter spheroids and CD68-positive macrophages were the predominant pathologies in these cases. Similar to other cases reported in the literature, the three cases described here had varied clinical phenotypes with a pronounced, but heterogeneous distribution of axonal spheroids and distinct microglia morphology. Our findings underscore the critical importance of genetic testing for establishing a clinical and pathological diagnosis of HDLS. PMID:26141825

  8. Outcome Prediction for Patients with Traumatic Brain Injury with Dynamic Features from Intracranial Pressure and Arterial Blood Pressure Signals: A Gaussian Process Approach.

    PubMed

    Pimentel, Marco A F; Brennan, Thomas; Lehman, Li-Wei; King, Nicolas Kon Kam; Ang, Beng-Ti; Feng, Mengling

    2016-01-01

    Previous work has been demonstrated that tracking features describing the dynamic and time-varying patterns in brain monitoring signals provide additional predictive information beyond that derived from static features based on snapshot measurements. To achieve more accurate predictions of outcomes of patients with traumatic brain injury (TBI), we proposed a statistical framework to extract dynamic features from brain monitoring signals based on the framework of Gaussian processes (GPs). GPs provide an explicit probabilistic, nonparametric Bayesian approach to metric regression problems. This not only provides probabilistic predictions, but also gives the ability to cope with missing data and infer model parameters such as those that control the function's shape, noise level and dynamics of the signal. Through experimental evaluation, we have demonstrated that dynamic features extracted from GPs provide additional predictive information in addition to the features based on the pressure reactivity index (PRx). Significant improvements in patient outcome prediction were achieved by combining GP-based and PRx-based dynamic features. In particular, compared with the a baseline PRx-based model, the combined model achieved over 30 % improvement in prediction accuracy and sensitivity and over 20 % improvement in specificity and the area under the receiver operating characteristic curve.

  9. Ionospheric plasma dynamics and instability caused by upward currents above thunderstorms

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Lee, L. C.

    2015-04-01

    Thunderstorms are electric generators, which drive currents upwardly into the ionosphere. In this paper, we examine the effects of thunderstorm upward current on the ionosphere. We use a thunderstorm model to calculate the three-dimensional current flows in the atmosphere and to simulate the upward current above the thunderstorm with the tripole-charge structure. The upward current flows into the ionosphere, while the associated electric field causes the plasma E × B motion. The caused plasma motion redistributes the plasma density, leading to ionospheric density variations. In the nighttime ionosphere, the E × B motion may also cause the formation of plasma bubbles.

  10. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease.

    PubMed

    Peng, Yueping; Wang, Jue; Zheng, Chongxun

    2016-01-01

    In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory.

  11. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions

    PubMed Central

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K.; Cho, Megan T.; Schnur, Rhonda E.; Monaghan, Kristin G.; Juusola, Jane; Rosenfeld, Jill A.; Bhoj, Elizabeth; Zackai, Elaine H.; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G.M.; de Vries, Bert B.A.; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R.; van Haelst, Mieke M.; van Gassen, Koen L.I.; van Binsbergen, Ellen; Barkovich, A. James; Scott, Daryl A.; Sherr, Elliott H.

    2016-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions. PMID:27087320

  12. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions.

    PubMed

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K; Cho, Megan T; Schnur, Rhonda E; Monaghan, Kristin G; Juusola, Jane; Rosenfeld, Jill A; Bhoj, Elizabeth; Zackai, Elaine H; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G M; de Vries, Bert B A; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R; van Haelst, Mieke M; van Gassen, Koen L I; van Binsbergen, Ellen; Barkovich, A James; Scott, Daryl A; Sherr, Elliott H

    2016-05-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.

  13. Association between dynamic contrast enhanced MRI imaging features and WHO histopathological grade in patients with invasive ductal breast cancer

    PubMed Central

    HUANG, JUAN; YU, JIANQUN; PENG, YULAN

    2016-01-01

    The present study aimed to investigate the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and World Health Organization (WHO) histopathological grade in patients with invasive ductal breast cancer. A retrospective analysis on the results of DCE-MRI of 92 patients, who were diagnosed with invasive ductal breast cancer following surgery or biopsy, and these results were correlated with WHO histopathological grade. The statistical analysis demonstrated that the tumor size, shape and characteristics of early enhancement were associated with the WHO histopathological grade: The larger the lesion's long diameter, the higher the WHO histopathological grade; the WHO histopathological grades of round and oval masses were relatively lower, while those of lobulated and irregular masses were higher; and tumors with heterogeneous and ring-like enhancement exhibited higher WHO histopathological grades, while those of homogeneous enhancement were lower. The lesion's margin shape was not associated with the WHO histopathological grade. The present study demonstrates that features of DCE-MRI and WHO histopathological grade in patients with invasive ductal breast cancer are correlated, and these MRI features could be used to evaluate the biological behavior and prognosis of lesions. PMID:27123145

  14. Acyclic forms of aldohexoses and ketohexoses in aqueous and DMSO solutions: conformational features studied using molecular dynamics simulations.

    PubMed

    Plazinski, Wojciech; Plazinska, Anita; Drach, Mateusz

    2016-04-14

    The molecular properties of aldohexoses and ketohexoses are usually studied in the context of their cyclic, furanose or pyranose structures which is due to the abundance of related tautomeric forms in aqueous solution. We studied the conformational features of a complete series of D-aldohexoses (D-allose, D-altrose, D-glucose, D-mannose, D-gulose, d-idose, D-galactose and D-talose) and D-ketohexoses (D-psicose, D-fructose, D-sorbose and D-tagatose) as well as of L-psicose by using microsecond-timescale molecular dynamics in explicit water and DMSO with the use of enhanced sampling methods. In each of the studied cases the preferred conformation corresponded to an extended chain structure; the less populated conformers included the quasi-cyclic structures, close to furanose rings and common for both aldo- and ketohexoses. The orientational preferences of the aldehyde or ketone groups are correlated with the relative populations of anomers characteristic of cyclic aldo- and ketohexoses, respectively, thus indicating that basic features of anomeric equilibria are preserved even if hexose molecules are not in their cyclic forms. No analogous relationship is observed in the case of other structural characteristics, such as the preferences of acyclic molecules to form either the furanose-or pyranose-like structures or maintaining the chair-like geometry of pseudo-pyranose rings.

  15. Coinciding Features in a Turbulent Boundary Layer via Lagrangian Coherent Structures, Dynamic Mode Decomposition and Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Ali, Naseem; Tutkun, Murat; Cal, Rau'l.

    2015-11-01

    Low order decompositions and Lagrangian coherent structures are used to identify structures in a high-Reynolds-number turbulent boundary layer flow. Data are collected in Laboratoire de Mécanique de Lille (LML) wind tunnel using time resolved stereo particle image velocimetry. Low-order descriptors are based on proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) frameworks to obtain energy content and frequency information of the flow, respectively. Repelling and attracting Lagrangian coherent structures (LCS)s reveal complex patterns within the flow field containing a hyperbolic behavior and the shapes of the attracting and repelling vary with advection time as result of the temporal coherence. The attracting and repelling LCSs are matched with POD and DMD modes to understand the relationship between the frameworks and respective representations. The POD is used as a low pass filtering of kinetic energy and then mode-dependent velocity reconstructions provide, firstly, the most coherent features of the flow and second are employed to generate new mode-based LCSs. This representations then provide clarity as to the organization of the LCS based on the energy contained in them and the dynamic coherence.

  16. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources

    NASA Astrophysics Data System (ADS)

    Polovina, Jeffrey J.; Howell, Evan; Kobayashi, Donald R.; Seki, Michael P.

    Pelagic ecosystem dynamics on all temporal scales may be driven by the dynamics of very specialized oceanic habitats. One such habitat is the basin-wide chlorophyll front located at the boundary between the low chlorophyll subtropical gyres and the high chlorophyll subarctic gyres. Global satellite maps of surface chlorophyll clearly show this feature in all oceans. In the North Pacific, the front is over 8000 km long and seasonally migrates north and south about 1000 km. In the winter this front is located at about 30-35°N latitude and in the summer at about 40-45°N. It is a zone of surface convergence where cool, vertically mixed, high chlorophyll, surface water on the north side sinks beneath warm, stratified, low chlorophyll water on the south side. Satellite telemetry data on movements of loggerhead turtles and detailed fisheries data for albacore tuna show that both apex predators travel along this front as they migrate across the North Pacific. The front is easily monitored with ocean color satellite remote sensing. A change in the position of the TZCF between 1997 and 1998 appears to have altered the spatial distribution of loggerhead turtles. The position and dynamics of the front varied substantially between the 1998 El Niño and the 1999 La Niña. For example, from May to July 1999 the transition zone chlorophyll front (TZCF) remained between about 35°N and 40°N latitude showing very little meandering, whereas in 1998, during the same period, the TZCF exhibited considerable meandering and greater monthly latitudinal movement. Catch rates for albacore were considerably higher in 1998 than in 1999, and we hypothesize that a meandering TZCF creates regions of convergence, which enhances the foraging habitat for apex predators along the front.

  17. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure

    PubMed Central

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-01-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee

  18. Clinical Features and Treatment Outcomes of Bloodstream Infections Caused by Extended-Spectrum β-Lactamase-Producing Escherichia coli Sequence Type 131.

    PubMed

    Cho, Sun Young; Kang, Cheol-In; Cha, Min Kyeong; Wi, Yu Mi; Ha, Young Eun; Chung, Doo Ryeon; Lee, Nam Yong; Peck, Kyong Ran; Song, Jae-Hoon

    2015-08-01

    Despite the remarkable emergence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli sequence type 131 (ST131), the clinical features and outcomes of infections caused by ST131 remain poorly described. From 2011 to 2012, we collected ESBL-producing E. coli isolates from patients with bloodstream infections in 13 hospitals in Korea and compared clinical characteristics and outcomes between ST131 and non-ST131 clones. Of the 110 ESBL-producing isolates, the most common ST was ST131 (30.9%). Multivariate analysis showed that recent operation was the only variable associated with the ST131 clone; other comorbid conditions and clinical features were similar between ST131 and non-ST131 clones. CTX-M-14 and CTX-M-15 were the predominant types of ESBLs, and CTX-M-15 was significantly associated with ST131. The rate of nonsusceptibility to ciprofloxacin was higher in ST131 than in non-ST131 clones (94.1% vs. 75.0%). No significant differences in 30-day mortality rates were found between ST131 and non-ST131 clones. Multivariate analysis revealed that older age (odds ratio [OR]=5.39, 95% confidence interval [CI] 1.22-23.89; p=0.027), nosocomial infection (OR=4.81, 95% CI 1.15-20.15; p=0.032), and higher Pitt bacteremia score (OR=7.26, 95% CI 1.41-37.42; p=0.018) were independent risk factors for 30-day mortality. The ESBL-producing E. coli ST131 clone has emerged and disseminated in Korea. Our findings reveal similarities in clinical and demographic characteristics between ST131 and non-ST131 clones. Although a more resistant profile has been detected in ST131, patients with the ST131 clone did not exhibit a higher mortality rate.

  19. Fraunhofer diffraction of Laguerre-Gaussian beam caused by a dynamic superposed dual-triangular aperture

    NASA Astrophysics Data System (ADS)

    Li, Xinzhong; Tai, Yuping; Nie, Zhaogang; Wang, Hui; Li, Hehe; Wang, Jingge; Tang, Jie; Wang, Yishan

    2015-12-01

    We investigate the Fraunhofer diffraction of a Laguerre-Gaussian (LG) beam incident on a dynamic superposed dual-triangular aperture. The evolution of the diffraction pattern from this aperture is analyzed experimentally and theoretically. A special aperture, called the hex-star triangular aperture, demonstrates interesting diffraction patterns. Further, the diffraction properties of integer, half-integer, and fractional orders of topological charges at the Fraunhofer zone are studied by using the hex-star triangular aperture. This study can provide additional information to enhance the understanding of the diffraction properties of the LG beam transmitted through a complex aperture.

  20. Pharmacophore modeling and molecular dynamics simulation to identify the critical chemical features against human sirtuin 2 inhibitors

    NASA Astrophysics Data System (ADS)

    Sakkiah, Sugunadevi; Baek, Ayoung; Lee, Keun Woo

    2012-03-01

    Sirtuin 2 (SIRT2) is one of the emerging targets in chemotherapy field and mainly associated with many diseases such as cancer and Parkinson's. Hence, quantitative hypothesis was developed using Discovery Studio v2.5. Top ten resultant hypotheses were generated, among them Hypo1 was selected as a best hypothesis based on the statistical parameters like high cost difference (52), lowest RMS (0.71), and good correlation coefficient (0.96). Hypo1 has been validated by using well known methodologies such as Fischer's randomization method (95% confidence level), test set which has shown the correlation coefficient of 0.93 as well as the goodness of hit (0.65), and enrichment factor (8.80). All the above statistical validations confirm that the chemical features in Hypo1 (1 hydrogen bond acceptor, 1 hydrophobic, and 2 ring aromatic features) was able to inhibit the function of SIRT2. Hence, Hypo1 was used as a query in virtual screening to find a novel scaffolds by screening the various chemical databases. The screened molecules from the databases were checked for the ADMET as well as the drug-like properties. Due to the lack of SIRT2-ligand complex structure in PDB, molecular docking and molecular dynamics (MD) simulation was carried out to find the suitable orientation of ligand in the active site. The representative structure from MD simulations was used as a receptor to dock the molecules which passed the drug-like properties from the virtual screening. Finally, 29 compounds were selected as a potent candidate leads based on the interactions with the active site residues of SIRT2. Thus, the resultant pharmacophore can be used to discover and design the SIRT2 inhibitors with desired biological activity.

  1. Spatio-temporal dynamics and laterality effects of face inversion, feature presence and configuration, and face outline

    PubMed Central

    Marinkovic, Ksenija; Courtney, Maureen G.; Witzel, Thomas; Dale, Anders M.; Halgren, Eric

    2014-01-01

    Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit. PMID

  2. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.

    PubMed

    Fernández-Chacón, Albert; Stefanescu, Constantí; Genovart, Meritxell; Nichols, James D; Hines, James E; Páramo, Ferran; Turco, Marco; Oro, Daniel

    2014-01-01

    Many species are found today in the form of fragmented populations occupying patches of remnant habitat in human-altered landscapes. The persistence of these population networks requires a balance between extinction and colonization events assumed to be primarily related to patch area and isolation, but the contribution of factors such as the characteristics of patch and matrix habitats, the species' traits (habitat specialization and dispersal capabilities) and variation in climatic conditions have seldom been evaluated simultaneously. The identification of environmental variables associated with patch occupancy and turnover may be especially useful to enhance the persistence of multiple species under current global change. However, for robust inference on occupancy and related parameters, we must account for detection errors, a commonly overlooked problem that leads to biased estimates and misleading conclusions about population dynamics. Here, we provide direct empirical evidence of the effects of different environmental variables on the extinction and colonization rates of a rich butterfly community in the western Mediterranean. The analysis was based on a 17-year data set containing detection/nondetection data on 73 butterfly species for 26 sites in north-eastern Spain. Using multiseason occupancy models, which take into account species' detectability, we were able to obtain robust estimates of local extinction and colonization probabilities for each species and test the potential effects of site covariates such as the area of suitable habitat, topographic variability, landscape permeability around the site and climatic variability in aridity conditions. Results revealed a general pattern across species with local habitat composition and landscape features as stronger predictors of occupancy dynamics compared with topography and local aridity. Increasing area of suitable habitat in a site strongly decreased local extinction risks and, for a number of species

  3. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.

    PubMed

    Fernández-Chacón, Albert; Stefanescu, Constantí; Genovart, Meritxell; Nichols, James D; Hines, James E; Páramo, Ferran; Turco, Marco; Oro, Daniel

    2014-01-01

    Many species are found today in the form of fragmented populations occupying patches of remnant habitat in human-altered landscapes. The persistence of these population networks requires a balance between extinction and colonization events assumed to be primarily related to patch area and isolation, but the contribution of factors such as the characteristics of patch and matrix habitats, the species' traits (habitat specialization and dispersal capabilities) and variation in climatic conditions have seldom been evaluated simultaneously. The identification of environmental variables associated with patch occupancy and turnover may be especially useful to enhance the persistence of multiple species under current global change. However, for robust inference on occupancy and related parameters, we must account for detection errors, a commonly overlooked problem that leads to biased estimates and misleading conclusions about population dynamics. Here, we provide direct empirical evidence of the effects of different environmental variables on the extinction and colonization rates of a rich butterfly community in the western Mediterranean. The analysis was based on a 17-year data set containing detection/nondetection data on 73 butterfly species for 26 sites in north-eastern Spain. Using multiseason occupancy models, which take into account species' detectability, we were able to obtain robust estimates of local extinction and colonization probabilities for each species and test the potential effects of site covariates such as the area of suitable habitat, topographic variability, landscape permeability around the site and climatic variability in aridity conditions. Results revealed a general pattern across species with local habitat composition and landscape features as stronger predictors of occupancy dynamics compared with topography and local aridity. Increasing area of suitable habitat in a site strongly decreased local extinction risks and, for a number of species

  4. Hereditary nonspherocytic hemolytic anemia caused by red cell glucose-6-phosphate isomerase (GPI) deficiency in two Portuguese patients: Clinical features and molecular study.

    PubMed

    Manco, Licínio; Bento, Celeste; Victor, Bruno L; Pereira, Janet; Relvas, Luís; Brito, Rui M; Seabra, Carlos; Maia, Tabita M; Ribeiro, M Letícia

    2016-09-01

    Glucose-6-phosphate isomerase (GPI) deficiency cause hereditary nonspherocytic hemolytic anemia (HNSHA) of variable severity in individuals homozygous or compound heterozygous for mutations in GPI gene. This work presents clinical features and genotypic results of two patients of Portuguese origin with GPI deficiency. The patients suffer from a mild hemolytic anemia (Hb levels ranging from 10 to 12.7g/mL) associated with macrocytosis, reticulocytosis, hyperbilirubinemia, hyperferritinemia and slight splenomegaly. Genomic DNA sequencing revealed in one patient homozygosity for a new missense mutation in exon 3, c.260G>C (p.Gly87Ala), and in the second patient compound heterozygosity for the same missense mutation (p.Gly87Ala), along with a frameshift mutation resulting from a single nucleotide deletion in exon 14, c.1238delA (p.Gln413Arg fs*24). Mutation p.Gln413Arg fs*24 is the first frameshift null mutation to be described in GPI deficiency. Molecular modeling suggests that the structural change induced by the p.Gly87Ala pathogenic variant has direct impact in the structural arrangement of the region close to the active site of the enzyme. PMID:27519939

  5. Features of the short-term position variation of the west Pacific subtropical high during the torrential rain in Yangtze-Huaihe river valley and its possible cause

    NASA Astrophysics Data System (ADS)

    Guan, Zhaoyong; Yu, Bo; Wang, Lijuan; He, Jielin; Zeng, Gang

    2009-08-01

    By using the NCEP/NCAR daily reanalysis data, CMAP precipitation data , daily precipitation data of 740 stations in China and some remote sensing data, features of the short-term position variation of the west Pacific subtropical high(WPSH) during the torrential rain in Yangtze-Huaihe river valley and its possible cause are analyzed. Results show that the short-term position variation of WPSH is closely associated with the diabatic heating. During the torrential rain period, the apparent heating source and apparent moisture sink are exceptionally strong over Yangtze-Huaihe river valley( on the northwest side of WPSH )and the Bay of Bengal (to the west of WPSH). Based on the complete form of vertical vorticity tendency equation, it is found that the heating field over Yangtze-Huaihe river valley during the torrential rain period, which is in favor of the increase of cyclonic vorticity on the north side of WPSH, is unfavorable to the WPSH moving northward. And the heat source over the Bay of Bengal ,which is in favor of the increase of anti-cyclonic vorticity on the west of WPSH, may induce the westward extension of WPSH.

  6. Theoretical calculations and experimental verification for the pumping effect caused by the dynamic micro-tapered angle

    NASA Astrophysics Data System (ADS)

    Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng

    2016-05-01

    The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.

  7. Diseases and Causes of Death in European Bats: Dynamics in Disease Susceptibility and Infection Rates

    PubMed Central

    Mühldorfer, Kristin; Speck, Stephanie; Kurth, Andreas; Lesnik, René; Freuling, Conrad; Müller, Thomas; Kramer-Schadt, Stephanie; Wibbelt, Gudrun

    2011-01-01

    Background Bats receive increasing attention in infectious disease studies, because of their well recognized status as reservoir species for various infectious agents. This is even more important, as bats with their capability of long distance dispersal and complex social structures are unique in the way microbes could be spread by these mammalian species. Nevertheless, infection studies in bats are predominantly limited to the identification of specific pathogens presenting a potential health threat to humans. But the impact of infectious agents on the individual host and their importance on bat mortality is largely unknown and has been neglected in most studies published to date. Methodology/Principal Findings Between 2002 and 2009, 486 deceased bats of 19 European species (family Vespertilionidae) were collected in different geographic regions in Germany. Most animals represented individual cases that have been incidentally found close to roosting sites or near human habitation in urban and urban-like environments. The bat carcasses were subjected to a post-mortem examination and investigated histo-pathologically, bacteriologically and virologically. Trauma and disease represented the most important causes of death in these bats. Comparative analysis of pathological findings and microbiological results show that microbial agents indeed have an impact on bats succumbing to infectious diseases, with fatal bacterial, viral and parasitic infections found in at least 12% of the bats investigated. Conclusions/Significance Our data demonstrate the importance of diseases and infectious agents as cause of death in European bat species. The clear seasonal and individual variations in disease prevalence and infection rates indicate that maternity colonies are more susceptible to infectious agents, underlining the possible important role of host physiology, immunity and roosting behavior as risk factors for infection of bats. PMID:22216354

  8. A dynamic magnetic tension force as the cause of failed solar eruptions

    NASA Astrophysics Data System (ADS)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan; Savcheva, Antonia; Deluca, Edward E.

    2015-12-01

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  9. Secondary sympatry caused by range expansion informs on the dynamics of microendemism in a biodiversity hotspot.

    PubMed

    Nattier, Romain; Grandcolas, Philippe; Elias, Marianne; Desutter-Grandcolas, Laure; Jourdan, Hervé; Couloux, Arnaud; Robillard, Tony

    2012-01-01

    Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion. PMID:23139758

  10. The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien

    2014-11-01

    Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.

  11. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE PAGES

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan; Savcheva, Antonia; DeLuca, Edward E.

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  12. Secondary Sympatry Caused by Range Expansion Informs on the Dynamics of Microendemism in a Biodiversity Hotspot

    PubMed Central

    Nattier, Romain; Grandcolas, Philippe; Elias, Marianne; Desutter-Grandcolas, Laure; Jourdan, Hervé; Couloux, Arnaud; Robillard, Tony

    2012-01-01

    Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion. PMID:23139758

  13. A dynamic magnetic tension force as the cause of failed solar eruptions

    SciTech Connect

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan; Savcheva, Antonia; DeLuca, Edward E.

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  14. Single Cell Dynamics Causes Pareto-Like Effect in Stimulated T Cell Populations.

    PubMed

    Cosette, Jérémie; Moussy, Alice; Onodi, Fanny; Auffret-Cariou, Adrien; Neildez-Nguyen, Thi My Anh; Paldi, Andras; Stockholm, Daniel

    2015-12-09

    Cell fate choice during the process of differentiation may obey to deterministic or stochastic rules. In order to discriminate between these two strategies we used time-lapse microscopy of individual murine CD4 + T cells that allows investigating the dynamics of proliferation and fate commitment. We observed highly heterogeneous division and death rates between individual clones resulting in a Pareto-like dominance of a few clones at the end of the experiment. Commitment to the Treg fate was monitored using the expression of a GFP reporter gene under the control of the endogenous Foxp3 promoter. All possible combinations of proliferation and differentiation were observed and resulted in exclusively GFP-, GFP+ or mixed phenotype clones of very different population sizes. We simulated the process of proliferation and differentiation using a simple mathematical model of stochastic decision-making based on the experimentally observed parameters. The simulations show that a stochastic scenario is fully compatible with the observed Pareto-like imbalance in the final population.

  15. Statistical Investigations on Solar Wind Dynamic Pressure Pulses:Basic features and Their Impacts on Geosynchronous Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zuo, Pingbing; Feng, Xueshang

    2016-07-01

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure abruptly changes over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. Recently we have developed a novel procedure that is able to rapidly identify the DPPs from the plasma data stream, and simultaneously define the transition region and smartly select the upstream and downstream region for analysis. The plasma data with high time-resolution from 3DP instrument on board the WIND spacecraft are inspected with this automatic DPP-searching code, and a complete list of solar wind DPPs of historic WIND observations are built up. We perform a statistical survey on the properties of DPPs near 1 AU based on this event list. It is found that overwhelming majority of DPPs are associated with the solar wind disturbances including the CME-related flows, the corotating interaction regions, as well as the complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activities. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears no systematic investigations on the response of GMFs to negative DPPs. Here we also study the decompression/compression effects of very strong negative/positive DPPs on GMFs under northward IMFs. In response to the decompression of strong negative DPPs, GMFs on dayside, near the dawn and dusk on nightside are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of events when GOES is located at the midnight sector, GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that on certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Statistically, both the decompression effect of

  16. [Progress on the cause and mechanism of a separation of clinical symptoms and signs and imaging features in lumbar disk herniation].

    PubMed

    Hu, Xing-xin; Liu, Li-min

    2015-10-01

    A few of patients with lumbar disk herniation having a separation of clinical symptoms and signs and imaging features, can be found in clinic, but the traditional theory of direct mechanical compression of nerve roots by herniated nucleus pulposus can't be used to explain this abnormal protrusion of lumbar intervertebral disc. The clinical symptoms and signs of the atypical lumbar disk herniation are affected by multiple factors. The indirect mechanical compression and distraction effect of spinal nerve roots may play an important role in the occurrence of the separation, and the appearance of abnormal clinical symptoms and signs is closely related to the migration of herniated nucleus pulposus tissue, transmission of injury information in the nervous system, and the complex interactions among the nucleus pulposus, dural sac and nerve roots. Moreover,the changes of microcirculation and inflammation secondary to the herniated nucleus pulposus tissue, the hyperosteogeny in the corresponding segment of the lumbar vertebrae and the posture changes all results in a diversity of symptoms and signs in patients with lumbar intervertebral disc herniation. Besides, there exist congenital variation of lumbosacral nerve roots and vertebral bodies in some patients, and the misdiagnosis or missed diagnosis of imaging finding may occur in some cases. However, the appearance of a separation of clinical symptoms and signs and imaging examination in patients may be caused by a variety of reasons in clinic. The exact mechanism involved in the interaction among nucleus pulposus tissue, dural sac and nerve root, secondary changes of pathophysiology and biomechanics around the nucleus pulposus, the determination of lesioned responsible segments, and how to overcome the limitations of imaging all need the further researches. PMID:26727796

  17. Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P2 phosphatase FIG4

    PubMed Central

    Nicholson, Garth; Lenk, Guy M.; Reddel, Stephen W.; Grant, Adrienne E.; Towne, Charles F.; Ferguson, Cole J.; Simpson, Ericka; Scheuerle, Angela; Yasick, Michelle; Hoffman, Stuart; Blouin, Randall; Brandt, Carla; Coppola, Giovanni; Biesecker, Leslie G.; Batish, Sat D.

    2011-01-01

    Charcot–Marie–Tooth disease is a genetically heterogeneous group of motor and sensory neuropathies associated with mutations in more than 30 genes. Charcot–Marie–Tooth disease type 4J (OMIM 611228) is a recessive, potentially severe form of the disease caused by mutations of the lipid phosphatase FIG4. We provide a more complete view of the features of this disorder by describing 11 previously unreported patients with Charcot–Marie–Tooth disease type 4J. Three patients were identified from a small cohort selected for screening because of their early onset disease and progressive proximal as well as distal weakness. Eight patients were identified by large-scale exon sequencing of an unselected group of 4000 patients with Charcot–Marie–Tooth disease. In addition, 34 new FIG4 variants were detected. Ten of the new CMT4J cases have the compound heterozygous genotype FIG4I41T/null described in the original four families, while one has the novel genotype FIG4L17P/null. The population frequency of the I41T allele was found to be 0.001 by genotyping 5769 Northern European controls. Thirty four new variants of FIG4 were identified. The severity of Charcot–Marie–Tooth disease type 4J ranges from mild clinical signs to severe disability requiring the use of a wheelchair. Both mild and severe forms have been seen in patients with the same genotype. The results demonstrate that Charcot–Marie–Tooth disease type 4J is characterized by highly variable onset and severity, proximal as well as distal and asymmetric muscle weakness, electromyography demonstrating denervation in proximal and distal muscles, and frequent progression to severe amyotrophy. FIG4 mutations should be considered in Charcot–Marie–Tooth patients with these characteristics, especially if found in combination with sporadic or recessive inheritance, childhood onset and a phase of rapid progression. PMID:21705420

  18. Seasonal Dynamics of Phlebotomine Sand Fly Species Proven Vectors of Mediterranean Leishmaniasis Caused by Leishmania infantum

    PubMed Central

    Alten, Bulent; Maia, Carla; Afonso, Maria Odete; Campino, Lenea; Jiménez, Maribel; González, Estela; Molina, Ricardo; Bañuls, Anne Laure; Prudhomme, Jorian; Vergnes, Baptiste; Toty, Celine; Cassan, Cécile; Rahola, Nil; Thierry, Magali; Sereno, Denis; Bongiorno, Gioia; Bianchi, Riccardo; Khoury, Cristina; Tsirigotakis, Nikolaos; Dokianakis, Emmanouil; Antoniou, Maria; Christodoulou, Vasiliki; Mazeris, Apostolos; Karakus, Mehmet; Ozbel, Yusuf; Arserim, Suha K.; Erisoz Kasap, Ozge; Gunay, Filiz; Oguz, Gizem; Kaynas, Sinan; Tsertsvadze, Nikoloz; Tskhvaradze, Lamzira; Gramiccia, Marina; Volf, Petr; Gradoni, Luigi

    2016-01-01

    Background The recent geographical expansion of phlebotomine vectors of Leishmania infantum in the Mediterranean subregion has been attributed to ongoing climate changes. At these latitudes, the activity of sand flies is typically seasonal; because seasonal phenomena are also sensitive to general variations in climate, current phenological data sets can provide a baseline for continuing investigations on sand fly population dynamics that may impact on future scenarios of leishmaniasis transmission. With this aim, in 2011–2013 a consortium of partners from eight Mediterranean countries carried out entomological investigations in sites where L. infantum transmission was recently reported. Methods/Principal Findings A common protocol for sand fly collection included monthly captures by CDC light traps, complemented by sticky traps in most of the sites. Collections were replicated for more than one season in order to reduce the effects of local weather events. In each site, the trapping effort was left unchanged throughout the survey to legitimate inter-seasonal comparisons. Data from 99,000 collected specimens were analyzed, resulting in the description of seasonal dynamics of 56,000 sand flies belonging to L. infantum vector species throughout a wide geographical area, namely P. perniciosus (Portugal, Spain and Italy), P. ariasi (France), P. neglectus (Greece), P. tobbi (Cyprus and Turkey), P. balcanicus and P. kandelakii (Georgia). Time of sand fly appearance/disappearance in collections differed between sites, and seasonal densities showed variations in each site. Significant correlations were found between latitude/mean annual temperature of sites and i) the first month of sand fly appearance, that ranged from early April to the first half of June; ii) the type of density trend, varying from a single peak in July/August to multiple peaks increasing in magnitude from May through September. A 3-modal trend, recorded for P. tobbi in Cyprus, represents a novel

  19. Differentiating causes for erosion at the catchment scale: do soil conservation measures mitigate weather dynamics?

    NASA Astrophysics Data System (ADS)

    Barneveld, Robert; Greipsland, Inga

    2016-04-01

    The efficacy of most measures to control soil loss is well established at the field or plot scale. Less well documented are the changes in hydrological behaviour and sediment production at the scale of the (small) catchment. In Norway, incentives to reduce tillage have been in place for over decades. However, even long time (20 years) discharge monitoring of a series of small catchments does not show a clear effect of the application of conservation measures. This research hypothesizes that the effect of weather conditions for a 4.2 km2 catchment in southeastern Norway outweighs the effect of conservation measures in the time series on runoff and sediment load. To test this, it was assumed that trends and changes in soil loss E over time are the product of an agromic index C, precipitation P and rainfall erosivity R. The values of C were calculated based on extensive farm records, covering every tillage operation for every field in the catchment for the period of investigation. Runoff and sediment load records were used to parameterise and test different correlative models. In order to quantify the effect of topography on the degree to which conservations measures reduce soil loss at catchment level, a spatially distributed connectivity index was calculated and multiplied with C. Calculations were carried out for a 10 year period, in monthly time steps. The following statistical models proved the most promising to correlate sediment load to precipitation and agronomic practice. Et=a \\cdot Ptb \\cdot Pt-1c \\cdot Ctd Et=a \\cdot Rtb \\cdot Pt-1c \\cdot Ctd where Pt-1c, the precipition in the prior month, is a proxy indicator for antecedent moisture conditions. The results show that precipitation dynamics outweigh the effect of soil conservation measures for this typical agricultural catchment. It also shows that the inclusion of a hydrological connectivity index improves the quantification of the effect of soil conservation measures on the catchment scale.

  20. A Molecular Rotor that Measures Dynamic Changes of Lipid Bilayer Viscosity Caused by Oxidative Stress.

    PubMed

    Vyšniauskas, Aurimas; Qurashi, Maryam; Kuimova, Marina K

    2016-09-01

    Oxidation of cellular structures is typically an undesirable process that can be a hallmark of certain diseases. On the other hand, photooxidation is a necessary step of photodynamic therapy (PDT), a cancer treatment causing cell death upon light irradiation. Here, the effect of photooxidation on the microscopic viscosity of model lipid bilayers constructed of 1,2-dioleoyl-sn-glycero-3-phosphocholine has been studied. A molecular rotor has been employed that displays a viscosity-dependent fluorescence lifetime as a quantitative probe of the bilayer's viscosity. Thus, spatially-resolved viscosity maps of lipid photooxidation in giant unilamellar vesicles (GUVs) were obtained, testing the effect of the positioning of the oxidant relative to the rotor in the bilayer. It was found that PDT has a strong impact on viscoelastic properties of lipid bilayers, which 'travels' through the bilayer to areas that have not been irradiated directly. A dramatic difference in viscoelastic properties of oxidized GUVs by Type I (electron transfer) and Type II (singlet oxygen-based) photosensitisers was also detected. PMID:27487026

  1. Do Woody Plants Operate Near the Point of Catastrophic Xylem Dysfunction Caused by Dynamic Water Stress? 1

    PubMed Central

    Tyree, Melvin T.; Sperry, John S.

    1988-01-01

    We discuss the relationship between the dynamically changing tension gradients required to move water rapidly through the xylem conduits of plants and the proportion of conduits lost through embolism as a result of water tension. We consider the implications of this relationship to the water relations of trees. We have compiled quantitative data on the water relations, hydraulic architecture and vulnerability of embolism of four widely different species: Rhizophora mangle, Cassipourea elliptica, Acer saccharum, and Thuja occidentalis. Using these data, we modeled the dynamics of water flow and xylem blockage for these species. The model is specifically focused on the conditions required to generate `runaway embolism,' whereby the blockage of xylem conduits through embolism leads to reduced hydraulic conductance causing increased tension in the remaining vessels and generating more tension in a vicious circle. The model predicted that all species operate near the point of catastrophic xylem failure due to dynamic water stress. The model supports Zimmermann's plant segmentation hypothesis. Zimmermann suggested that plants are designed hydraulically to sacrifice highly vulnerable minor branches and thus improve the water balance of remaining parts. The model results are discussed in terms of the morphology, hydraulic architecture, eco-physiology, and evolution of woody plants. PMID:16666351

  2. Time-varying imagery of ice features dynamic scattering in presence climate change: polytypical lakes Ladoga and Peipus as example

    NASA Astrophysics Data System (ADS)

    Melentyev, V.; Melentyev, K.; Pettersson, L.; Mushkudiany, M.

    2009-04-01

    The Problem of dynamical instability of ice conditions and modification of ice regime of polytypical lakes owing to global warming was investigated using time-varying satellite imagery. Deep-water Lake Ladoga and shallow-water Lake Peipus both situated at the north-western part of Russian Federation in moderate climatic zone but possessed different heat capacity were used for comparative studies. The comprehensive analysis of ERS/RADARSAT/Envisat SAR images was provided using the results of long-term studies of thermal structures of these inland water bodies and peculiarities of their variability during open water season as well calculations of heat supply in different weather conditions. 1993-2008 NERSC/NIERSC SAR archive as well materials sub-satellite experiments on board research vessel and research aircraft since 1960-s is used. Shipborne observations were used for validation satellite information. Thematic interpretation of satellite data shows that SAR signature of ice could be applied as tracer of various natural processes and phenomena, including climatically and ecologically important ones. As result dependence of hydrological features and the time of freeze-up and ice destruction in both selected lakes in consequence of climate change and softening of winter severity in nowadays was assessed. Wind regime patterns (speed and direction) were analyzed using algorithm CMOD 4 and in the upshot the increase of seasonal and regional variability of windy weather in studied regions was fixed. In frame of these studies wind cadastre appurtenant to the NW part of RF was composed on the basis of satellite SAR survey. In particular the modification of "wind climate" was disclosed. And what is more: it was revealed that intensification of windy weather resulted in intensification of dynamic range of water and ice exchange between the central part of both studied polytypical lakes and their gulfs. These natural processes took place due to widening duration of the open

  3. Time-varying imagery of ice features dynamic scattering in presence climate change: polytypical lakes Ladoga and Peipus as example

    NASA Astrophysics Data System (ADS)

    Melentyev, V. V.; Melentyev, K. V.; Pettersson, L. H.; Mushkudany, M. I.

    2009-04-01

    Problem of dynamical instability of ice conditions and modification of ice regime of polytypical lakes owing to global warming were investigated using time-varying satellite imagery. Deep-water Lake Ladoga and shallow-water Lake Peipus both situated at the north-western part of Russian Federation in moderate climatic zone but possessed different heat capacity were used for comparative studies. The comprehensive analysis of ERS/RADARSAT/Envisat SAR images was provided using the results of long-term studies of thermal structures of these inland waterbodies and peculiarities of their variability during open water season as well calculations of heat supply in different weather conditions. 1993-2008 NERSC/NIERSC SAR archive as well materials sub-satellite experiments onboard research vessel and research aircraft since 1960-s is used. Shipborne observations were used for validation satellite information. Thematic interpretation of satellite data shows that SAR signature of ice could be applied as tracer of various natural processes and phenomena, including climatically and ecologically important ones. As result dependence of hydrological features and the time of freeze-up and ice destruction in both selected lakes in consequence of climate change and softening of winter severity in nowadays was assessed. Wind regime patterns (speed and direction) were analyzed using algorithm CMOD 4 and in the upshot the increase of seasonal and regional variability of windy weather in studied regions was fixed. In frame of these studies wind cadastre appurtenant to the NW part of RF was composed on the basis of satellite SAR survey. In particular the modification of "wind climate" was disclosed. And what is more: it was revealed that intensification of windy weather resulted in intensification of dynamic range of water and ice exchange between the central part of both studied polytypical lakes and their gulfs. These natural processes took place due to widening duration of the open water

  4. Salient Features of the 2015 Gorkha, Nepal Earthquake in Relation to Earthquake Cycle and Dynamic Rupture Models

    NASA Astrophysics Data System (ADS)

    Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.

    2015-12-01

    Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity

  5. Evaluation of bridge instability caused by dynamic scour based on fractal theory

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Wu, Rih-Teng; Chang, Kuo-Chun; Shian Chang, Yu

    2013-07-01

    Given their special structural characteristics, bridges are prone to suffer from the effects of many hazards, such as earthquakes, wind, or floods. As most of the recent unexpected damage and destruction of bridges has been caused by hydraulic issues, monitoring the scour depth of bridges has become an important topic. Currently, approaches to scour monitoring mainly focus on either installing sensors on the substructure of a bridge or identifying the physical parameters of a bridge, which commonly face problems of system survival or reliability. To solve those bottlenecks, a novel structural health monitoring (SHM) concept was proposed by utilizing the two dominant parameters of fractal theory, including the fractal dimension and the topothesy, to evaluate the instability condition of a bridge structure rapidly. To demonstrate the performance of this method, a series of experiments has been carried out. The function of the two parameters was first determined using data collected from a single bridge column scour test. As the fractal dimension gradually decreased, following the trend of the scour depth, it was treated as an alternative to the fundamental frequency of a bridge structure in the existing methods. Meanwhile, the potential of a positive correlation between the topothesy and the amplitude of vibration data was also investigated. The excellent sensitivity of the fractal parameters related to the scour depth was then demonstrated in a full-bridge experiment. Moreover, with the combination of these two parameters, a safety index to detect the critical scour condition was proposed. The experimental results have demonstrated that the critical scour condition can be predicted by the proposed safety index. The monitoring system developed greatly advances the field of bridge scour health monitoring and offers an alternative choice to traditional scour monitoring technology.

  6. Water-level oscillations caused by volumetric and deviatoric dynamic strains

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Kurzon, Ittai; Doan, Mai-Linh; Lyakhovsky, Vladimir

    2016-02-01

    Travelling seismic waves and Earth tides are known to cause oscillations in well water levels due to the volumetric strain characteristics of the ground motion. Although the response of well water levels to S and Love waves has been reported, it has not yet been quantified. In this paper we describe and explain the behaviour of a closed artesian water well (Gomè 1) in response to teleseismic earthquakes. This well is located within a major fault zone and screened at a highly damaged (cracked) sandstone layer. We adopt the original Skempton approach where both volumetric and deviatoric stresses (and strains) affect pore pressure. Skempton's coefficients < tex - mathid = "IM0001" > B and < tex - mathid = "IM0002" > A couple the volumetric and deviatoric stresses respectively with pore pressure and < tex - mathid = "IM0003" > BKu and < tex - mathid = "IM0004" > N are the equivalent coupling terms to volumetric and deviatoric strains. The water level in this well responds dramatically to volumetric strain (P and Rayleigh waves) as well as to deviatoric strain (S and Love waves). This response is explained by the nonlinear elastic behaviour of the highly damaged rocks. The water level response to deviatoric strain depends on the damage in the rock; deviatoric strain loading on damaged rock results in high water level amplitudes, and no response in undamaged rock. We find high values of < tex - mathid = "IM0005" > N= 8.5 GPa that corresponds to -0.5 < A < -0.25 expected at highly damaged rocks. We propose that the Gomè 1 well is located within fractured rocks, and therefore, dilatency is high, and the response of water pressure to deviatoric deformation is high. This analysis is supported by the agreement between the estimated compressibility of the aquifer, independently calculated from Earth tides, seismic response of the water pressure and other published data.

  7. Statistical perturbations in personal exposure meters caused by the human body in dynamic outdoor environments.

    PubMed

    Rodríguez, Begoña; Blas, Juan; Lorenzo, Rubén M; Fernández, Patricia; Abril, Evaristo J

    2011-04-01

    Personal exposure meters (PEM) are routinely used for the exposure assessment to radio frequency electric or magnetic fields. However, their readings are subject to errors associated with perturbations of the fields caused by the presence of the human body. This paper presents a novel analysis method for the characterization of this effect. Using ray-tracing techniques, PEM measurements have been emulated, with and without an approximation of this shadowing effect. In particular, the Global System for Mobile Communication mobile phone frequency band was chosen for its ubiquity and, specifically, we considered the case where the subject is walking outdoors in a relatively open area. These simulations have been contrasted with real PEM measurements in a 35-min walk. Results show a good agreement in terms of root mean square error and E-field cumulative distribution function (CDF), with a significant improvement when the shadowing effect is taken into account. In particular, the Kolmogorov-Smirnov (KS) test provides a P-value of 0.05 when considering the shadowing effect, versus a P-value of 10⁻¹⁴ when this effect is ignored. In addition, although the E-field levels in the absence of a human body have been found to follow a Nakagami distribution, a lognormal distribution fits the statistics of the PEM values better than the Nakagami distribution. As a conclusion, although the mean could be adjusted by using correction factors, there are also other changes in the CDF that require particular attention due to the shadowing effect because they might lead to a systematic error.

  8. Recent calving dynamics of Glaciar Jorge Montt (Southern Patagonia Icefield) based on feature tracking techniques and oceanographic surveys

    NASA Astrophysics Data System (ADS)

    Bown, F.; Moffat, C. F.; Rivera, A.; Cisternas, S.; Kohoutek, T.

    2013-12-01

    Glaciers in the Southern Patagonia Icefield (SPI) have been retreating, thinning and accelerating in recent decades. Most of the SPI is comprised of temperate ice, therefore melting is the dominant wasting factor, however, calving is also playing a very important role, especially because calving is enhancing ice dynamic responses, mainly when glaciers calve into deep waters. Some of the most exacerbated responses are connected to the well documented and long-term tidewater calving cycle (TCC) overlapped by recent climate-related glacier responses. Glaciar Jorge Montt (48S/73W), is a tidewater glacier (~500 km2) which has experienced the maximum frontal retreat of the whole SPI (near 20 km in 112 years) while retreating up to 400 m water depth. Dead trees found in areas recently open by the glacier's retreat prove a date for the previous advancing cycle which took place during the Little Ice Age (250-400 years BP). This result indicates that the glacier is experiencing the retreating phase of the TCC in centennial time-scales. However, very little is known if this phase will stop or will continue, or how do climate change dynamcis will affect it. In order to understand the present behaviour of the glacier, several surveys have recently been conducted in the area, including airborne lidar and radar surveys, water depth measurements and ice dynamic studies. In order to survey the ice dynamic of the glacier front in connection with tides at the inner fjord, a camera pointing to the glacier terminus and collecting up to 8 photographs per day was installed in April 2012. The camera was continuously working for 60 days, allowing to study in detail the ice velocities, calving fluxes and tides near the ice. Thanks to the geo-location of the oblique photographs, feature tracking techniques were applied to the series in order to determine ice velocities and frontal retreat during the operational period. The resulting average velocities are lower than 10 m d-1, which are

  9. O the Foundations of the Dynamical Theory of Fractured Porous Media and the Gravity Variations Caused by Dilatancies.

    NASA Astrophysics Data System (ADS)

    Sun, Yue-Feng

    This thesis investigates the dynamical theory of multiphase fractured porous media, by which the shear wave velocities can now be obtained that are in agreement with experiments, which were against the prediction of the Biot theory. The anisotropy, P and S wave velocities, and also waveforms can now be explicitly expressed as functions of structural, physical, and reservoir parameters such as porosity and pore fluid content, which are the key for the enhancement of seismic resolution and the determination of detailed subsurface structures and in-situ physical properties of subsurface materials, and so are essential for reservoir characterization and reservoir modeling. In addition, there generally exist 2 times A kinds of waves in an A-phase fractured porous medium, i.e., A kinds of P (compressional) waves and A kinds of S (shear) waves. The theory includes the Biot theory and the squirt mechanisms as special cases. The theory is developed using topological spaces and the principle of covariance. The basic theory of 3A -dimensional Riemannian manifold of an A-phase fractured porous medium is given. The equations governing the structural evolution and the interactions between physical properties and structural changes in space and time are also derived, which are needed to understand many new phenomena associated with structural aggregated systems in many fields such as the studies of multiphase structural media, non-Newtonian fluids, and condensed-matter physics. The thermo-dynamics of structural media is also discussed. The deformation, fracturing, and stress relaxation with or without fluid invasion cause dilatations of the fractured porous medium under a tectonic stress. The gravity change caused by these dilatancies has been formulated using the variational principle. The concept of mepicentroid is developed, which, differing from the concept of epicenter, is an essential concept for understanding the association of gravity variation in space and time with the

  10. Study of solar features causing GMSs with 250c'gamma' 'smaller than' H 'smaller than' 400'gamma' during the period 1999-2010

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv

    2016-07-01

    The effect of solar features on geospheric conditions leading to geomagnetic storms (GMSs) with planetary index,A P ≥ 20 and the range of horizontal component of the Earth's magnetic field H such that 250γ causing GMSs at the Earth. Keywords Geomagnetic storm solar flares active

  11. Dynamical instability as the cause of the massive outbursts in Eta Carinae and other luminous blue variables

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-Wen

    1993-01-01

    A new type of stellar envelope structure has been computationally discovered at very high stellar masses. The outer part of the envelope resembles a nearly detached, diffusely filled shell overlying an ultrahot surface of small radius. This structural anomaly is caused by a large iron bump occurring in the new opacities of Iglesias et al. (1992). The new stellar models with normal metallicity encounter a strong ionization-induced dynamical instability in the outer envelope as they rapidly transit the H-R diagram after the end of central hydrogen burning. Preliminary evolutionary and hydrodynamical calculations successfully mimic the most basic observed properties of Eta Carinae and other very luminous blue variables. The Humphreys-Davidson sloped line in the H-R diagram, however, seems to be unrelated to these variables, and is instead the observed terminus of the main-sequence phase of evolution if convective core overshooting is insignificant.

  12. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  13. Evolution of Site-Selection Stabilizes Population Dynamics, Promotes Even Distribution of Individuals, and Occasionally Causes Evolutionary Suicide.

    PubMed

    Parvinen, Kalle; Brännström, Åke

    2016-08-01

    Species that compete for access to or use of sites, such as parasitic mites attaching to honey bees or apple maggots laying eggs in fruits, can potentially increase their fitness by carefully selecting sites at which they face little or no competition. Here, we systematically investigate the evolution of site-selection strategies among animals competing for discrete sites. By developing and analyzing a mechanistic and population-dynamical model of site selection in which searching individuals encounter sites sequentially and can choose to accept or continue to search based on how many conspecifics are already there, we give a complete characterization of the different site-selection strategies that can evolve. We find that evolution of site-selection stabilizes population dynamics, promotes even distribution of individuals among sites, and occasionally causes evolutionary suicide. We also discuss the broader implications of our findings and propose how they can be reconciled with an earlier study (Nonaka et al. in J Theor Biol 317:96-104, 2013) that reported selection toward ever higher levels of aggregation among sites as a consequence of site-selection. PMID:27647007

  14. Evolution of Site-Selection Stabilizes Population Dynamics, Promotes Even Distribution of Individuals, and Occasionally Causes Evolutionary Suicide.

    PubMed

    Parvinen, Kalle; Brännström, Åke

    2016-08-01

    Species that compete for access to or use of sites, such as parasitic mites attaching to honey bees or apple maggots laying eggs in fruits, can potentially increase their fitness by carefully selecting sites at which they face little or no competition. Here, we systematically investigate the evolution of site-selection strategies among animals competing for discrete sites. By developing and analyzing a mechanistic and population-dynamical model of site selection in which searching individuals encounter sites sequentially and can choose to accept or continue to search based on how many conspecifics are already there, we give a complete characterization of the different site-selection strategies that can evolve. We find that evolution of site-selection stabilizes population dynamics, promotes even distribution of individuals among sites, and occasionally causes evolutionary suicide. We also discuss the broader implications of our findings and propose how they can be reconciled with an earlier study (Nonaka et al. in J Theor Biol 317:96-104, 2013) that reported selection toward ever higher levels of aggregation among sites as a consequence of site-selection.

  15. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  16. 18F-FDG PET imaging for identifying the dynamics of intestinal disease caused by SFTSV infection in a mouse model.

    PubMed

    Hayasaka, Daisuke; Nishi, Kodai; Fuchigami, Takeshi; Shiogama, Kazuya; Onouchi, Takanori; Shimada, Satoshi; Tsutsumi, Yutaka; Morita, Kouichi

    2016-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment. PMID:26700962

  17. 18F-FDG PET imaging for identifying the dynamics of intestinal disease caused by SFTSV infection in a mouse model

    PubMed Central

    Hayasaka, Daisuke; Nishi, Kodai; Fuchigami, Takeshi; Shiogama, Kazuya; Onouchi, Takanori; Shimada, Satoshi; Tsutsumi, Yutaka; Morita, Kouichi

    2016-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment. PMID:26700962

  18. Dynamics of Soil Deflation Features in Kangerlussuaq, Greenland Revealed by Variations in Lichen Diameters on Exposed Surfaces

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Kelly, M. A.; Virginia, R. A.

    2013-12-01

    Little is known about the pervasive soil deflation features in the Kangerlussuaq region, West Greenland, an area deglaciated between ~6,800 and 150 years ago. While the majority of the landscape is vegetated with low-lying shrubs and graminoids, wind erosion has removed loess and vegetation from distinct patches ranging in size from a few to tens of meters across, leaving the underlying glacial till or bedrock exposed. Although previous work has considered aeolian landforms and regional loess deposition along the Watson River Valley, these deflation features have not been investigated in detail. We aim to determine both the timing and mechanisms of formation of the deflation features and will examine whether these mechanisms were related to regional climatic conditions, such as increased aridity, to fluctuations in the Greenland Ice Sheet, or to other factors. Our ongoing research investigating these features includes geomorphic mapping using field observations and satellite imagery, lichenometry of the exposed surfaces, and cosmogenic nuclide dating of boulders and bedrock within and near the deflation features. Here we present initial results from our lichenometry studies. During the summer of 2013, we measured maximum lichen (Rhizocarpon sp.) diameters on boulder and bedrock surfaces in 15 soil deflation features located between Kangerlussuaq and the ice sheet margin. Lichen diameters vary from only a few millimeters at the outer margins of deflation features to multiple centimeters (maximum ~50 mm) in the centers of the unvegetated patches. This distinct pattern suggests that the outer margins of the soil deflation features are currently active. Based on a previously established lichen growth curve for Rhizocarpon sp. in West Greenland, our results indicate that the features are expanding at a rate of ~1.5 m per 100 yrs. In addition, the large lichen diameters (~40-50 mm) that occur in the centers of deflation features suggest that the formation mechanism has

  19. Ocean dynamic processes causing spatially heterogeneous distribution of sedimentary caesium-137 massively released from the Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Higashi, H.; Morino, Y.; Furuichi, N.; Ohara, T.

    2015-12-01

    Massive amounts of anthropogenic radiocaesium 137Cs that were released into the environment by the Fukushima Daiichi Nuclear Power Plant accident in March 2011 are widely known to have extensively migrated to Pacific Ocean sediment off of eastern Japan. Several recent reports have stated that the sedimentary 137Cs is now stable with a remarkably heterogeneous distribution. The present study elucidates ocean dynamic processes causing this heterogeneous sedimentary 137Cs distribution in and around the shelf off Fukushima and adjacent prefectures. We performed a numerical simulation of oceanic 137Cs behaviour for about 10 months after the accident, using a comprehensive dynamic model involving advection-diffusion transport in seawater, adsorption and desorption to and from particulate matter, sedimentation and suspension on and from the bottom, and vertical diffusion transport in the sediment. A notable simulated result was that the sedimentary 137Cs significantly accumulated in a swath just offshore of the shelf break (along the 50-100 m isobath) as in recent observations, although the seabed in the entire simulation domain was assumed to have ideal properties such as identical bulk density, uniform porosity, and aggregation of particles with a single grain diameter. This result indicated that the heterogeneous sedimentary 137Cs distribution was not necessarily a result of the spatial distribution of 137Cs sediment adsorptivity. The present simulation suggests that the shape of the swath is mainly associated with spatiotemporal variation between bottom shear stress in the shallow shelf (< 50 m depths) and that offshore of the shelf break. In a large part of the shallow shelf, the simulation indicated that strong bottom friction suspending particulate matter from the seabed frequently occurred via a periodic spring tide about every 2 weeks and via occasional strong wind. The sedimentary 137Cs thereby could hardly stay on the surface of the seabed with the result that

  20. E-photosynthesis: a comprehensive modeling approach to understand chlorophyll fluorescence transients and other complex dynamic features of photosynthesis in fluctuating light.

    PubMed

    Nedbal, Ladislav; Cervený, Jan; Rascher, Uwe; Schmidt, Henning

    2007-01-01

    Plants are exposed to a temporally and spatially heterogeneous environment, and photosynthesis is well adapted to these fluctuations. Understanding of the complex, non-linear dynamics of photosynthesis in fluctuating light requires novel-modeling approaches that involve not only the primary light and dark biochemical reactions, but also networks of regulatory interactions. This requirement exceeds the capacity of the existing molecular models that are typically reduced to describe a partial process, dynamics of a specific complex or its particular dynamic feature. We propose a concept of comprehensive model that would represent an internally consistent, integral framework combining information on the reduced models that led to its construction. This review explores approaches and tools that exist in engineering, mathematics, and in other domains of biology that can be used to develop a comprehensive model of photosynthesis. Equally important, we investigated techniques by which one can rigorously reduce such a comprehensive model to models of low dimensionality, which preserve dynamic features of interest and, thus, contribute to a better understanding of photosynthesis under natural and thus fluctuating conditions. The web-based platform www.e-photosynthesis.org is introduced as an arena where these concepts and tools are being introduced and tested.

  1. E-photosynthesis: a comprehensive modeling approach to understand chlorophyll fluorescence transients and other complex dynamic features of photosynthesis in fluctuating light.

    PubMed

    Nedbal, Ladislav; Cervený, Jan; Rascher, Uwe; Schmidt, Henning

    2007-01-01

    Plants are exposed to a temporally and spatially heterogeneous environment, and photosynthesis is well adapted to these fluctuations. Understanding of the complex, non-linear dynamics of photosynthesis in fluctuating light requires novel-modeling approaches that involve not only the primary light and dark biochemical reactions, but also networks of regulatory interactions. This requirement exceeds the capacity of the existing molecular models that are typically reduced to describe a partial process, dynamics of a specific complex or its particular dynamic feature. We propose a concept of comprehensive model that would represent an internally consistent, integral framework combining information on the reduced models that led to its construction. This review explores approaches and tools that exist in engineering, mathematics, and in other domains of biology that can be used to develop a comprehensive model of photosynthesis. Equally important, we investigated techniques by which one can rigorously reduce such a comprehensive model to models of low dimensionality, which preserve dynamic features of interest and, thus, contribute to a better understanding of photosynthesis under natural and thus fluctuating conditions. The web-based platform www.e-photosynthesis.org is introduced as an arena where these concepts and tools are being introduced and tested. PMID:17492490

  2. The MECP2 variant c.925C>T (p.Arg309Trp) causes intellectual disability in both males and females without classic features of Rett syndrome.

    PubMed

    Schönewolf-Greulich, B; Tejada, M-I; Stephens, K; Hadzsiev, K; Gauthier, J; Brøndum-Nielsen, K; Pfundt, R; Ravn, K; Maortua, H; Gener, B; Martínez-Bouzas, C; Piton, A; Rouleau, G; Clayton-Smith, J; Kleefstra, T; Bisgaard, A-M; Tümer, Z

    2016-06-01

    Missense MECP2 variants can have various phenotypic effects ranging from a normal phenotype to typical Rett syndrome (RTT). In females, the phenotype can also be influenced by the X-inactivation pattern. In this study, we present detailed clinical descriptions of six patients with a rare base-pair substitution affecting Arg309 at the C-terminal end of the transcriptional repression domain (TRD). All patients have intellectual disability and present with some RTT features, but they do not fulfill the clinical criteria for typical or atypical RTT. Most of the patients also have mild facial dysmorphism. Intriguingly, the mother of an affected male patient is an asymptomatic carrier of this variant. It is therefore likely that the p.(Arg309Trp) variation does not necessarily lead to male lethality, and it results in a wide range of clinical features in females, probably influenced by different X-inactivation patterns in target tissues. PMID:26936630

  3. The MECP2 variant c.925C>T (p.Arg309Trp) causes intellectual disability in both males and females without classic features of Rett syndrome.

    PubMed

    Schönewolf-Greulich, B; Tejada, M-I; Stephens, K; Hadzsiev, K; Gauthier, J; Brøndum-Nielsen, K; Pfundt, R; Ravn, K; Maortua, H; Gener, B; Martínez-Bouzas, C; Piton, A; Rouleau, G; Clayton-Smith, J; Kleefstra, T; Bisgaard, A-M; Tümer, Z

    2016-06-01

    Missense MECP2 variants can have various phenotypic effects ranging from a normal phenotype to typical Rett syndrome (RTT). In females, the phenotype can also be influenced by the X-inactivation pattern. In this study, we present detailed clinical descriptions of six patients with a rare base-pair substitution affecting Arg309 at the C-terminal end of the transcriptional repression domain (TRD). All patients have intellectual disability and present with some RTT features, but they do not fulfill the clinical criteria for typical or atypical RTT. Most of the patients also have mild facial dysmorphism. Intriguingly, the mother of an affected male patient is an asymptomatic carrier of this variant. It is therefore likely that the p.(Arg309Trp) variation does not necessarily lead to male lethality, and it results in a wide range of clinical features in females, probably influenced by different X-inactivation patterns in target tissues.

  4. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    SciTech Connect

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  5. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens.

    PubMed

    Moniruzzaman, Mohammad; Gann, Eric R; LeCleir, Gary R; Kang, Yoonja; Gobler, Christopher J; Wilhelm, Steven W

    2016-05-01

    Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients.

  6. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance. PMID:26972300

  7. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens.

    PubMed

    Moniruzzaman, Mohammad; Gann, Eric R; LeCleir, Gary R; Kang, Yoonja; Gobler, Christopher J; Wilhelm, Steven W

    2016-05-01

    Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients. PMID:26985013

  8. Deep crescentic features caused by subglacial boulder point pressure on jointed rock; an example from Virkisjökull, SE Iceland

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.; Everest, J.

    2012-04-01

    A variety of subglacially formed, erosional crescentic features (e.g. crescentic gouges, lunate fractures) have been widely reported on deglaciated bedrock surfaces. They are characterised by a conchoidal fracture that dips in the same direction as the palaeo-ice flow direction, and a steeper fracture that faces against the ice flow. They are generally interpreted as being formed by point pressure exerted by large boulders entrained in basal ice. They are significant in that they record palaeo-ice flow even if shallower glacial striae are obliterated by post-glacial weathering [1, 2, 3]. This contribution reports on deep scallop-shaped, crescentic depressions observed on abraded surfaces of roche moutonnées and whalebacks recently (<10yrs) exposed beneath the actively retreating Virkisjökull, an outlet glacier of the Oraefajökull ice cap in southeast Iceland. The substrate comprises hard rhyolitic rock (relatively rare in Iceland compared to more common basalt and hyaloclastite) with polygonal, columnar jointing. The crescentic depressions at Virkisjökull are cut into smoothed, abraded surfaces festooned with abundant glacial striae. Differences with previously reported crescentic features are: • The scallop-shaped depressions are considerably deeper (5-20 cm); • The steep fracture facing ice flow coincides in all cases with a pre-existing joint that cuts the entire whaleback. The steep joints developed thus before the conchoidal fracture, whilst in reported crescentic features they develop after the conchoidal fracture. We suggest the following formation mechanism. A boulder encased in basal ice exerts continuous pressure on its contact point as it moves across the ice-bedrock contact. This sets up a stress field in the bedrock that does not necessarily exceed the intact rock strength (other crescentic features are rare to absent at Virkisjökull). However, as the stress field migrates (with the transported boulder) and encounters a subvertical, pre

  9. Extremely Selective Attention: Eye-Tracking Studies of the Dynamic Allocation of Attention to Stimulus Features in Categorization

    ERIC Educational Resources Information Center

    Blair, Mark R.; Watson, Marcus R.; Walshe, R. Calen; Maj, Fillip

    2009-01-01

    Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories…

  10. Detection of the main stream of the Yellow River based on spectral feature and the dynamic transmission model

    NASA Astrophysics Data System (ADS)

    She, Hong-Wei; Zhang, Yan-Ning; Liu, Xue-Gong; Zhao, Na

    2008-12-01

    The problem of Yellow River main-stream detection with multi-spectral remote sensing images is investigated in this paper. Firstly, the flow characteristic of Yellow River was analyzed. The spectral similarity of the main-stream was discussed in succession. Then, based on the principle of spatial continuity, a main-stream dynamic transmission model was proposed. Finally, a main-stream detection approach called Main-stream Spectral Correlation Dynamic Transmission Approach (MSCDEA) was presented. The experiment indicates that the proposed algorithm is effective and can be used in practice.

  11. Dynamics of speckles with a small number of scattering events: specific features of manifestation of the Doppler effect.

    PubMed

    Ulyanov, Sergey S

    2014-04-01

    Spectra of intensity fluctuations of dynamic non-Gaussian speckles formed with a small number of scattering events have been studied theoretically and experimentally. A new type of manifestation of the Doppler effect has been observed. The dependence of frequency position of the Doppler peak and the shape of the Doppler spectrum on the number of scatterers has been analyzed.

  12. Dynamics of speckles with a small number of scattering events: specific features of manifestation of the Doppler effect.

    PubMed

    Ulyanov, Sergey S

    2014-04-01

    Spectra of intensity fluctuations of dynamic non-Gaussian speckles formed with a small number of scattering events have been studied theoretically and experimentally. A new type of manifestation of the Doppler effect has been observed. The dependence of frequency position of the Doppler peak and the shape of the Doppler spectrum on the number of scatterers has been analyzed. PMID:24787223

  13. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome

    PubMed Central

    Kolanczyk, Mateusz; Krawitz, Peter; Hecht, Jochen; Hupalowska, Anna; Miaczynska, Marta; Marschner, Katrin; Schlack, Claire; Emmerich, Denise; Kobus, Karolina; Kornak, Uwe; Robinson, Peter N; Plecko, Barbara; Grangl, Gernot; Uhrig, Sabine; Mundlos, Stefan; Horn, Denise

    2015-01-01

    Ritscher-Schinzel syndrome (RSS)/3C (cranio-cerebro-cardiac) syndrome (OMIM#220210) is a rare and clinically heterogeneous developmental disorder characterized by intellectual disability, cerebellar brain malformations, congenital heart defects, and craniofacial abnormalities. A recent study of a Canadian cohort identified homozygous sequence variants in the KIAA0196 gene, which encodes the WASH complex subunit strumpellin, as a cause for a form of RSS/3C syndrome. We have searched for genetic causes of a phenotype similar to RSS/3C syndrome in an Austrian family with two affected sons. To search for disease-causing variants, whole-exome sequencing (WES) was performed on samples from two affected male children and their parents. Before WES, CGH array comparative genomic hybridization was applied. Validation of WES and segregation studies was done using routine Sanger sequencing. Exome sequencing detected a missense variant (c.1670A>G; p.(Tyr557Cys)) in exon 15 of the CCDC22 gene, which maps to chromosome Xp11.23. Western blots of immortalized lymphoblastoid cell lines (LCLs) from the affected individual showed decreased expression of CCDC22 and an increased expression of WASH1 but a normal expression of strumpellin and FAM21 in the patients cells. We identified a variant in CCDC22 gene as the cause of an X-linked phenotype similar to RSS/3C syndrome in the family described here. A hypomorphic variant in CCDC22 was previously reported in association with a familial case of syndromic X-linked intellectual disability, which shows phenotypic overlap with RSS/3C syndrome. Thus, different inactivating variants affecting CCDC22 are associated with a phenotype similar to RSS/3C syndrome. PMID:24916641

  14. Population dynamics of aphids on cereals: digging in the time-series data to reveal population regulation caused by temperature.

    PubMed

    Brabec, Marek; Honěk, Alois; Pekár, Stano; Martinková, Zdenka

    2014-01-01

    Aphid populations show periodic fluctuations and many causes are attributed to their dynamic. We investigated the regulation by temperature of the aphid populations composed of Metopolophium dirhodum, Sitobion avenae, and Rhopalosiphum padi on winter wheat using a 24 years long time series data. We computed the sum of daily temperatures above 5 °C, the threshold temperature for aphid development, and the sum of daily temperatures within the [0(threshold for wheat development),5] °C interval. Applying Generalised Additive Model framework we tested influences of temperature history expressed via degree days before the start of the aphid immigration on the length of their occurrence. We aimed to estimate the magnitude and direction of this influence, and how far to the past before the start of the aphid season the temperature effect goes and then identify processes responsible for the effect. We fitted four models that differed in the way of correcting for abundance in the previous year and in specification of temperature effects. Abundance in the previous year did not affect the length of period of aphid population growth on wheat. The temperature effect on the period length increased up to 123 days before the start of the current season, i.e. when wheat completed vernalization. Increased sum of daily temperatures above 5 °C and the sum of daily temperatures within the [0,5] °C interval both shortened the length of period of aphid population growth. Stronger effect of the latter suggests that wheat can escape from aphid attacks if during winter temperatures range from 0 to 5 °C. The temperature influence was not homogeneous in time. The strongest effect of past temperature was about 50 to 80 and 90 to 110 days before the beginning of the current aphid season indicating important role of termination of aphid egg dormancy and egg hatching.

  15. Population Dynamics of Aphids on Cereals: Digging in the Time-Series Data to Reveal Population Regulation Caused by Temperature

    PubMed Central

    Brabec, Marek; Honěk, Alois; Pekár, Stano; Martinková, Zdenka

    2014-01-01

    Aphid populations show periodic fluctuations and many causes are attributed to their dynamic. We investigated the regulation by temperature of the aphid populations composed of Metopolophium dirhodum, Sitobion avenae, and Rhopalosiphum padi on winter wheat using a 24 years long time series data. We computed the sum of daily temperatures above 5°C, the threshold temperature for aphid development, and the sum of daily temperatures within the [0(threshold for wheat development),5] °C interval. Applying Generalised Additive Model framework we tested influences of temperature history expressed via degree days before the start of the aphid immigration on the length of their occurrence. We aimed to estimate the magnitude and direction of this influence, and how far to the past before the start of the aphid season the temperature effect goes and then identify processes responsible for the effect. We fitted four models that differed in the way of correcting for abundance in the previous year and in specification of temperature effects. Abundance in the previous year did not affect the length of period of aphid population growth on wheat. The temperature effect on the period length increased up to 123 days before the start of the current season, i.e. when wheat completed vernalization. Increased sum of daily temperatures above 5°C and the sum of daily temperatures within the [0,5] °C interval both shortened the length of period of aphid population growth. Stronger effect of the latter suggests that wheat can escape from aphid attacks if during winter temperatures range from 0 to 5°C. The temperature influence was not homogeneous in time. The strongest effect of past temperature was about 50 to 80 and 90 to 110 days before the beginning of the current aphid season indicating important role of termination of aphid egg dormancy and egg hatching. PMID:25184219

  16. Analysis of risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types.

    PubMed

    Alsaleh, Aliya A; Gumel, Abba B

    2014-07-01

    A new deterministic model is designed and used to assess the community-wide impact of mass vaccination of new sexually active individuals on the dynamics of the oncogenic and warts-causing HPV types. Rigorous qualitative analyses of the model, which incorporates the two currently available anti-HPV vaccines, reveal that it undergoes competitive exclusion when the reproduction of one HPV risk type (low/high) exceeds unity, while that of the other HPV risk type is less than unity. For the case when the reproduction numbers of the two HPV risk types (low/high) exceed unity, the two risk types co-exist. It is shown that the sub-model with the low-risk HPV types only has at least one endemic equilibrium whenever the associated reproduction threshold exceeds unity. Furthermore, this sub-model undergoes a re-infection-induced backward bifurcation under certain conditions. In the absence of the re-infection of recovered individuals and cancer-induced mortality in males, the associated disease-free equilibrium of the full (risk-structured) model is shown to be globally asymptotically stable whenever the reproduction number of the model is less than unity (that is, the full model does not undergo backward bifurcation under this setting). It is shown, via numerical simulations, that the use of the Gardasil vaccine could lead to the effective control of HPV in the community if the coverage rate is in the range of 73-95 % (84 %). If 70 % of the new sexually active susceptible females are vaccinated with the Gardasil vaccine, additionally vaccinating 34-56 % (45 %) of the new sexually active susceptible males can lead to the effective community-wide control (or elimination) of the HPV types. PMID:25033777

  17. A novel PNPLA2 mutation causes neutral lipid storage disease with myopathy (NLSDM) presenting muscular dystrophic features with lipid storage and rimmed vacuoles.

    PubMed

    Chen, J; Hong, D; Wang, Z; Yuan, Y

    2010-01-01

    Neutral lipid storage disease with myopathy (NLSDM) is a type of lipid storage myopathy arising due to a mutation in the PNPLA2 gene encoding an adipose triglyceride lipase responsible for the degradation of intracellular triglycerides. Herein, we report the cases of two siblings manifesting slowly progressive proximal and distal limb weakness in adulthood. One of the patients had dilated cardiomyopathy, hearing loss and short stature. Muscle specimens of the 2 patients revealed muscular dystrophic features with massive lipid droplets and numerous rimmed vacuoles in the fibers. A novel homozygous mutation IVS2+1G > A in the PNPLA2 gene was identified in the 2 cases, but not in the healthy familial individuals. The presence of massive lipid droplets with muscular dystrophic changes and rimmed vacuoles in muscle fibers might be one of the characteristic pathological changes of NLSDM.

  18. Mapping the spatiotemporal dynamics of processing task-relevant and task-irrelevant sound feature changes using concurrent EEG-fMRI.

    PubMed

    Puschmann, Sebastian; Huster, René J; Thiel, Christiane M

    2016-10-01

    The cortical processing of changes in auditory input involves auditory sensory regions as well as different frontoparietal brain networks. The spatiotemporal dynamics of the activation spread across these networks has, however, not been investigated in detail so far. We here approached this issue using concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), providing us with simultaneous information on both the spatial and temporal patterns of change-related activity. We applied an auditory stimulus categorization task with switching categorization rules, allowing to analyze change-related responses as a function of the changing sound feature (pitch or duration) and the task relevance of the change. Our data show the successive progression of change-related activity from regions involved in early change detection to the ventral and dorsal attention networks, and finally the central executive network. While early change detection was found to recruit feature-specific networks involving auditory sensory but also frontal and parietal brain regions, the later spread of activity across the frontoparietal attention and executive networks was largely independent of the changing sound feature, suggesting the existence of a general feature-independent processing pathway of change-related information. Task relevance did not modulate early auditory sensory processing, but was mainly found to affect processing in frontal brain regions. Hum Brain Mapp 37:3400-3416, 2016. © 2016 Wiley Periodicals, Inc.

  19. Mapping the spatiotemporal dynamics of processing task-relevant and task-irrelevant sound feature changes using concurrent EEG-fMRI.

    PubMed

    Puschmann, Sebastian; Huster, René J; Thiel, Christiane M

    2016-10-01

    The cortical processing of changes in auditory input involves auditory sensory regions as well as different frontoparietal brain networks. The spatiotemporal dynamics of the activation spread across these networks has, however, not been investigated in detail so far. We here approached this issue using concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), providing us with simultaneous information on both the spatial and temporal patterns of change-related activity. We applied an auditory stimulus categorization task with switching categorization rules, allowing to analyze change-related responses as a function of the changing sound feature (pitch or duration) and the task relevance of the change. Our data show the successive progression of change-related activity from regions involved in early change detection to the ventral and dorsal attention networks, and finally the central executive network. While early change detection was found to recruit feature-specific networks involving auditory sensory but also frontal and parietal brain regions, the later spread of activity across the frontoparietal attention and executive networks was largely independent of the changing sound feature, suggesting the existence of a general feature-independent processing pathway of change-related information. Task relevance did not modulate early auditory sensory processing, but was mainly found to affect processing in frontal brain regions. Hum Brain Mapp 37:3400-3416, 2016. © 2016 Wiley Periodicals, Inc. PMID:27280466

  20. Compressed exponential relaxation in liquid silicon: Universal feature of the crossover from ballistic to diffusive behavior in single-particle dynamics

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2012-07-01

    We report a first-principles molecular-dynamics study of the relaxation dynamics in liquid silicon (l-Si) over a wide temperature range (1000-2200 K). We find that the intermediate scattering function for l-Si exhibits a compressed exponential decay above 1200 K including the supercooled regime, which is in stark contrast to that for normal "dense" liquids which typically show stretched exponential decay in the supercooled regime. The coexistence of particles having ballistic-like motion and those having diffusive-like motion is demonstrated, which accounts for the compressed exponential decay in l-Si. An attempt to elucidate the crossover from the ballistic to the diffusive regime in the "time-dependent" diffusion coefficient is made and the temperature-independent universal feature of the crossover is disclosed.

  1. Structural and dynamic features of Candida rugosa lipase 1 in water, octane, toluene, and ionic liquids BMIM-PF6 and BMIM-NO3.

    PubMed

    Burney, Patrick R; Pfaendtner, Jim

    2013-03-01

    Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF6 and BMIM-NO3, as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 μs. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF6. Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.

  2. Investigation of structural and dynamic features of the radicals produced in gamma irradiated sulfanilamide: an ESR study.

    PubMed

    Colak, S; Korkmaz, M

    2003-11-28

    Characteristic features of the radiolytical intermediates produced in gamma irradiated solid sulfanilamide (SA) were investigated in the present work using ESR spectroscopy. SO(2), which is the most sensitive group to radiation of SA molecule, was found to be at the origin of radiation produced ionic radical species. The latters give rise to an axially symmetric and an isotropic ESR spectra so that their sum appears as a three line antisymmetric ESR spectrum. Heights of these lines measured with respect to the base line were used to monitor microwave, temperature, time-dependent and kinetic features of the radical species contributing to ESR spectrum. Based on the experimental results derived from this study, it was concluded that as in the case of other solid sulfonamides radiation, yield of solid SA is very low (G=0.5) compared with those obtained for sulfonamide aqueous solutions (G=3.5-5.1), so that SA and SA-containing drugs could be safely sterilized by radiation.

  3. High speed optical tomography system for quantitative measurement and visualization of dynamic features in a round jet

    NASA Astrophysics Data System (ADS)

    McMackin, L.; Hugo, R. J.; Bishop, K. P.; Chen, E. Y.; Pierson, R. E.; Truman, C. R.

    An optical tomography system that is capable of operating at frame rates of up to 5 kHz has been used to obtain spatially resolved cross-sectional temperature images of a heated round jet. These tomographic images show dynamic details in the evolving vortical flow structures found in the near field of the jet that are consistent with previous studies of low speed jet flow. Reconstructions produced by the system are quantitative temperature distributions of a planar cross section of the jet measuring temperature differences with a spatial resolution of 1.4 mm.

  4. High-Pressure Geoscience Special Feature: Dynamic pressure-induced dendritic and shock crystal growth of ice VI

    NASA Astrophysics Data System (ADS)

    Lee, Geun Woo; Evans, William J.; Yoo, Choong-Shik

    2007-05-01

    Crystal growth mechanisms are crucial to understanding the complexity of crystal morphologies in nature and advanced technological materials, such as the faceting and dendrites found in snowflakes and the microstructure and associated strength properties of structural and icy planetary materials. In this article, we present observations of pressure-induced ice VI crystal growth, which have been predicted theoretically, but had never been observed experimentally to our knowledge. Under modulated pressure conditions in a dynamic-diamond anvil cell, rough single ice VI crystal initially grows into well defined octahedral crystal facets. However, as the compression rate increases, the crystal surface dramatically changes from rough to facet, and from convex to concave because of a surface instability, and thereby the growth rate suddenly increases by an order of magnitude. Depending on the compression rate, this discontinuous jump in crystal growth rate or "shock crystal growth" eventually produces 2D carpet-type fractal morphology, and moreover dendrites form under sinusoidal compression, whose crystal morphologies are remarkably similar to those predicted in theoretical simulations under a temperature gradient field. The observed strong dependence of the growth mechanism on compression rate, therefore, suggests a different approach to developing a comprehensive understanding of crystal growth dynamics.

  5. Causes, Dynamics and Impacts of Lahar Mass Flows due to the April 2015 Eruption of Calbuco Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Dussaillant, Alejandro; Russell, Andy; Meier, Claudio; Rivera, Andres; Mella, Mauricio; Garrido, Natalia; Hernandez, Jorge; Napoleoni, Felipe; Gonzalez, Cristian

    2016-04-01

    Calbuco is a 2015m high, glacier capped, stratovolcano in the heavily populated Los Lagos region of southern Chile with a history of large volcanic eruptions in 1893-95, 1906-7, 1911-12, 1917, 1932, 1945, 1961 and 1972. Calbuco volcano experienced a powerful 90 minute eruption at 18:04h on 22 April, 2015 followed by additional major eruptions at 01:00h and 13:10h on 23 & 30 April, respectively, resulting in the evacuation of 6500 people and the imposition of a 20 km radius exclusion zone. Pyroclastic flows descended into several river catchments radiating from the volcano with lahars travelling distances of up to 14 km, reaching populated areas. We present findings from detailed field observations from April and July 2015, and January 2016, regarding the causes, dynamics and impacts of lahars generated by the April 2015 eruption, supported by satellite imagery, LiDAR and detailed rtkGPS & TLS surveys, as well as sediment sampling. Pyroclastic flows melted glacier ice and snow generating the largest lahars in the Rio Este and Rio Blanco Sur on the southern flanks of the volcano. Lahar deposits in the Rio Blanco Norte were buried by pyroclastic flow deposits with measured temperatures of up to 282°C three months after emplacement. Lahar erosional impacts included bedrock erosion, alluvial channel incision, erosion of surficial deposits and the felling of large areas of forest. Depositional landforms included boulder run-ups on the outsides of channel bends, boulder clusters and large woody debris jams. Lahars deposited up to 8m of sediment within distal reaches. Deposits on the southern flanks of Calbuco indicate the passage of multiple pulses of contrasting rheology. Lahar occurrence and magnitude was controlled by the pre-eruption distribution of snow and ice on the volcano. Pre-existing lahar channels controlled flows to lower piedmont zones where routing was determined by palaeo-lahar geomorphology. Ongoing erosion of proximal pyroclastic flow and lahar deposits

  6. TGFB2 loss of function mutations cause familial thoracic aortic aneurysms and acute aortic dissections associated with mild systemic features of the Marfan syndrome

    PubMed Central

    Boileau, Catherine; Guo, Dong-Chuan; Hanna, Nadine; Regalado, Ellen S.; Detaint, Delphine; Gong, Limin; Varret, Mathilde; Prakash, Siddharth; Li, Alexander H.; d’Indy, Hyacintha; Braverman, Alan C.; Grandchamp, Bernard; Kwartler, Callie S.; Gouya, Laurent; Santos-Cortez, Regie Lyn P.; Abifadel, Marianne; Leal, Suzanne M.; Muti, Christine; Shendure, Jay; Gross, Marie-Sylvie; Rieder, Mark J.; Vahanian, Alec; Nickerson, Deborah A.; Michel, Jean Baptiste; Jondeau, Guillaume; Milewicz, Dianna M.

    2014-01-01

    A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease, followed by whole exome sequencing of affected relatives, identified causative mutations in TGFB2. These mutations, a frameshift mutation in exon 6 and a nonsense mutation in exon 4, segregated with disease with a combined LOD score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified two additional TGFB2 mutations. TGFB2 encodes the transforming growth factor beta-2 (TGF-β2) and the mutations are predicted to cause haploinsufficiency for TGFB2, but aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency of TGFB2 predisposes to thoracic aortic disease, suggesting the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta. PMID:22772371

  7. Special Features of the Structure of Secular Resonances in the Dynamics of Near-Earth Space Objects

    NASA Astrophysics Data System (ADS)

    Bordovitsyna, T. V.; Tomilova, I. V.

    2016-07-01

    The special features of the structure of secular resonances in the near-earth orbital space bounded by the following range of orbital parameters: semimajor axis from 8000 to 55 000 km, inclination from 0 to 90°, and eccentricity equal to 0.01, 0.6, and 0.8 are analyzed. The influence of stable and unstable secular resonances on the long-term orbital evolution of near-earth space objects is also considered. It is demonstrated that the joint effect of the stable secular resonances of different spectral classes does not violate the regularity of motion. The chaoticity arises when stable secular resonances of one spectral class are imposed.

  8. Counter-intuitive features of the dynamic topography unveiled by tectonically realistic 3D numerical models of mantle-lithosphere interactions

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni; Gerya, Taras

    2013-04-01

    It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of

  9. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  10. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features

    PubMed Central

    Ruiz, Duncan D. A.; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  11. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D A; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  12. Emotional Intolerance and Core Features of Anorexia Nervosa: A Dynamic Interaction during Inpatient Treatment? Results from a Longitudinal Diary Study

    PubMed Central

    Stroe-Kunold, Esther; Friederich, Hans-Christoph; Stadnitski, Tatjana; Wesche, Daniela; Herzog, Wolfgang; Schwab, Michael; Wild, Beate

    2016-01-01

    Objective The role of emotion dysregulation with regard to the psychopathology of anorexia nervosa (AN) is increasingly discussed. It is both assumed that AN symptoms have an impact on difficulties in tolerating aversive emotions and that—conversely—emotion dysregulation influences AN. To date, such conclusions are drawn on the basis of cross-sectional data not allowing for inferences on the temporal dynamics. The current study investigates the longitudinal interaction between emotional intolerance and core AN symptoms over the course of inpatient treatment by comparing patients with high (BMI<15 kg/m2) vs. low symptom severity (HSS vs. LSS). Method The study adopted a longitudinal, process-oriented design with N = 16 analysed electronic diaries. Throughout the course of their inpatient treatment, the patients answered questions daily about emotional intolerance and their AN-specific cognitions and behaviours. The temporal dynamics between emotional intolerance and these variables were analysed using a multivariate time series approach. Results The time series of the processes under investigation adequately reflected the individual treatment courses. The majority of significant linear time trends was found for HSS patients. Most importantly, analysis revealed significant temporal interactions between emotional intolerance and AN symptoms in almost 70% of HSS patients. Thereby, up to 37% of variance in eating restraint and up to 23% in weight concern could be attributed to changes in emotional intolerance. Conclusions The findings support the notion that intolerable unpleasant emotions in severely affected AN patients influence their psychopathology. Additionally, time series analysis outlined the inter-individual heterogeneity of psychosomatic treatment courses of AN patients. PMID:27191959

  13. Effects of temperature, particle features and vent geometry on volcanic jet dynamics, a shock-tube investigation.

    NASA Astrophysics Data System (ADS)

    Cigala, Valeria; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    The lowermost part of an eruptive plume commonly shows characteristics of an underexpanded jet. The dynamics of this gas-thrust region are likely to be a direct consequence of intrinsic (magma properties, overpressure) and extrinsic (vent geometry, weather) eruption conditions. Additionally, they affect the subsequent evolution of the eruptive column and have, therefore, important hazard assessment implications for both near- and far-field. Direct observation of eruptive events is possible, but often insufficient for complete characterization. Important complementary data can be achieved using controlled and calibrated laboratory experiments. Loose natural particles were ejected from a shock-tube while controlling temperature (25° and 500°C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), density (basaltic and phonolitic), gas-particle ratio and vent geometry (nozzle, cylindrical, funnel with a flaring of 15° and 30°, respectively). For each experiment, we quantified the velocity of individual particles, the jet spreading angle, the presence of electric discharges and the production of fines and analysed their dynamic evolution. Data shows velocity of up to 296 m/s and deceleration patterns following nonlinear paths. Gas spreading angles range between 21° and 41° while the particle spreading angles between 3° and 32°. Electric discharges, in the form of lightning, are observed, quantified and described. Moreover, a variation in the production of fines is recognized during the course of single experiments. This experimental investigation, which mechanistically mimics the process of pyroclast ejection, is shown to be capable of constraining the effects of input parameters and conduit/vent geometry on pyroclastic plumes. Therefore, the results should greatly enhance the ability of numerically model explosive ejecta in nature.

  14. Methyl Radical in Clathrate Silica Voids. The Peculiar Physisorption Features of the Guest-Host Molecular Dynamics Interaction.

    PubMed

    Dmitriev, Yurij A; Buscarino, Gianpiero; Benetis, Nikolas P

    2016-08-11

    EPR line shape simulations of CH3/SiO2 clathrates and comparison to CH3/N2O and CH3/SiO2 experiments reveal the motional conditions of the CH3 radical up to the unusual regime of its stability, the high-temperature diffusional regime, at 300 K. In the low-temperature region, the CH3 in clathrates is found to rotate around the in-plane axes even at as low temperatures as 3.8 K. However, nonrotating methyls performing only libration about the C2-axes as well as around the C3-axis are also found, proving the existence of special sites in the clathrate voids that begin to accumulate a significant fraction of methyl radicals at temperatures below approximately 7 K. A distinctive feature in the spectrum anisotropy and line width temperature profiles is found nearby 25 K, which is interpreted as the radical physisorption inside the voids that occurs with the sample temperature lowering. The unusual increase of the CH3/SiO2 clathrate EPR spectral width with temperature over approximately 120 K has its origin in repeated angular momentum vector alterations due to frequent collisions with the clathrate void walls between periodical free rotation periods. This relaxation mechanism resembles to spin-rotation interaction known only for small molecular species in nonviscous fluids but unknown earlier for methyl hosted in solids. PMID:27405003

  15. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    PubMed Central

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  16. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin.

    PubMed

    Lerch, Michael T; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L

    2013-12-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875-85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  17. Using Consumer Electronics and Apps in Industrial Environments - Development of a Framework for Dynamic Feature Deployment and Extension by Using Apps on Field Devices

    NASA Astrophysics Data System (ADS)

    Schmitt, Mathias

    2014-12-01

    The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions

  18. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei.

    PubMed

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Li, Fuhua; Xiang, Jianhai

    2014-09-01

    The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition.

  19. Implosion dynamics and radiation features of planar, compact cylindrical, and nested wire arrays on 1 MA, 100 ns z-pinch generators

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K.; Shrestha, I.; Osborne, G.; Ouart, N. D.; Yilmaz, M. F.; Shlyaptseva, V.; Greenly, J. B.; Douglass, J. D.; McBride, R. D.; Chalenski, D. A.; Hammer, D. A.; Kusse, B. R.; Rudakov, L. I.; Chuvatin, A. S.

    2007-11-01

    Plasma formation and implosion features of planar wire arrays (PWA), compact cylindrical wire arrays (CWA), and low-wire number nested wire arrays (NWA) of the small size (6-15 mm) were studied on the 1 MA, 100 ns UNR Zebra and Cornell COBRA generators. The powers and yields were maximum for Mo double PWA, followed by W compact CWA and PWA, Mo single PWA and compact CWA, stainless steel (SS304) and Al compact CWAs, and Al/SS304 and SS304/SS304 NWAs. Despite different implosion dynamics of PWAs and compact CWAs they formed plasma that radiated similar yields and powers. The possibility of radiation pulse shaping by varying geometry and materials of PWAs and NWAs will be discussed. Simulations with Wire Dynamics Model and 2D MHD model with enhanced resistivity will be presented. Work was supported by DOE/NNSA under Coop. Agr. DE-FC52-06NA27586, DE-FC52-06NA27588, DE-F03-02NA00057, and in part by DE-FC52 06NA27616.

  20. Rainfall Enhancement by Dynamic Cloud Modification: Massive silver iodide seeding causes rainfall increases from single clouds over southern Florida.

    PubMed

    Woodley, W L

    1970-10-01

    In summary, the following points are made: 1) There are essentially two approaches to seeding for rain inducement, static and dynamic. 2) The dynamic approach is effective in inducing growth and increasing precipitation from individually seeded convective clouds under specifiable conditions. 3) The static approach to seeding for precipitation increases is apparently not relevant to the summer cumuli of Florida and Missouri. 4) Regional seeding climatologies, including studies of natural freezing processes in convective clouds, should be completed before commencement of a seeding operation. 5) The results of a seeding operation are frequently better understood by stratification of the data, especially with respect to weather conditions. Precipitation increases from seeding are usually found under fair weather regimes with isolated showers, whereas decreases are often noted under naturally rainy conditions.

  1. Group dynamics and landscape features constrain the exploration of herds in fusion-fission societies: the case of European roe deer.

    PubMed

    Pays, Olivier; Fortin, Daniel; Gassani, Jean; Duchesne, Jean

    2012-01-01

    Despite the large number of movement studies, the constraints that grouping imposes on movement decisions remain essentially unexplored, even for highly social species. Such constraints could be key, however, to understanding the dynamics and spatial organisation of species living in group fusion-fission systems. We investigated the winter movements (speed and diffusion coefficient) of groups of free-ranging roe deer (Capreolus capreolus), in an agricultural landscape characterised by a mosaic of food and foodless patches. Most groups were short-lived units that merged and split up frequently during the course of a day. Deer groups decreased their speed and diffusion rate in areas where food patches were abundant, as well as when travelling close to main roads and crest lines and far from forests. While accounting for these behavioural adjustments to habitat features, our study revealed some constraints imposed by group foraging: large groups reached the limit of their diffusion rate faster than small groups. The ability of individuals to move rapidly to new foraging locations following patch depression thus decreases with group size. Our results highlight the importance of considering both habitat heterogeneity and group dynamics when predicting the movements of individuals in group fusion-fission societies. Further, we provide empirical evidence that group cohesion can restrain movement and, therefore, the speed at which group members can explore their environment. When maintaining cohesion reduces foraging gains because of movement constraints, leaving the group may become a fitness-rewarding decision, especially when individuals can join other groups located nearby, which would tend to maintain highly dynamical group fusion-fission systems. Our findings also provide the basis for new hypotheses explaining a broad range of ecological patterns, such as the broader diet and longer residency time reported for larger herbivore groups. PMID:22479652

  2. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    PubMed

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-01-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136

  3. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion

    PubMed Central

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-01-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0–7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136

  4. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    PubMed

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-01-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

  5. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion

    NASA Astrophysics Data System (ADS)

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-02-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

  6. What Causes Sarcoidosis?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Causes Sarcoidosis? The cause of sarcoidosis isn't known. More ... Content: NEXT >> Featured Video Living With and Managing Sarcoidosis 05/18/2011 This video—presented by the ...

  7. What Causes Atherosclerosis?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Causes Atherosclerosis? The exact cause of atherosclerosis isn't known. ... Rate This Content: NEXT >> Featured Video What is atherosclerosis? 05/22/2014 Describes how the build-up ...

  8. Brine Flow Up a Borehole Caused by Pressure Perturbation From CO2 Storage: Static and Dynamic Evaluations

    EPA Science Inventory

    Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...

  9. Pattern evolution caused by dynamic coupling between wetting and phase separation in binary liquid mixture containing glass particles

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime; Lovinger, Andew J.; Davis, Don D.

    1994-04-01

    We demonstrate here that the pattern evolution in a binary liquid mixture containing glass spheres is strongly affected by the dynamic coupling between phase separation and wetting. Because of the difference in the wettability to glass between the two phases, the glass particles are preferentially included in the more wettable phase. The resulting pattern is strongly dependent on whether the spheres are mobile or immobile. For a high density of mobile particles, we find that an initially random pattern of spheres transforms into an ordered pattern because of geometrical confinement of particles into the more wettable phase.

  10. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation.

    PubMed

    Poole, G C; Berman, C H

    2001-06-01

    While external factors (drivers) determine the net heat energy and water delivered to a stream, the internal structure of a stream determines how heat and water will be distributed within and exchanged among a stream's components (channel, alluvial aquifer, and riparian zone/floodplain). Therefore, the interaction between external drivers of stream temperature and the internal structure of integrated stream systems ultimately determines channel water temperature. This paper presents a synoptic, ecologically based discussion of the external drivers of stream temperature, the internal structures and processes that insulate and buffer stream temperatures, and the mechanisms of human influence on stream temperature. It provides a holistic perspective on the diversity of natural dynamics and human activities that influence stream temperature, including discussions of the role of the hyporheic zone. Key management implications include: (1) Protecting or reestablishing in-stream flow is critical for restoring desirable thermal regimes in streams. (2) Modified riparian vegetation, groundwater dynamics, and channel morphology are all important pathways of human influence on channel-water temperature and each pathway should be addressed in management plans. (3) Stream temperature research and monitoring programs will be jeopardized by an inaccurate or incomplete conceptual understanding of complex temporal and spatial stream temperature response patterns to anthropogenic influences. (4) Analyses of land-use history and the historical vs contemporary structure of the stream channel, riparian zone, and alluvial aquifer are important prerequisites for applying mechanistic temperature models to develop management prescriptions to meet in-channel temperature goals.

  11. Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human-caused mortality

    USGS Publications Warehouse

    Gude, J.A.; Mitchell, M.S.; Russell, R.E.; Sime, C.A.; Bangs, E.E.; Mech, L.D.; Ream, R.R.

    2012-01-01

    Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). We replicated their analyses considering only those years in which field monitoring was consistent, and we considered the effect of annual variation in recruitment on wolf population growth. Rather than assuming constant rates, we used model selection methods to evaluate and incorporate models of factors driving recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We document that recruitment rates have decreased over time, and we speculate that rates have decreased with increasing population sizes and/or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Estimates of positive wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP for 2008-2010, whereas the predictions for declining wolf populations of Creel and Rotella (2010) are not. Familiarity with limitations of raw data, obtained first-hand or through consultation with scientists who collected the data, helps generate more reliable inferences and conclusions in analyses of publicly available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources

  12. A study on the structural features of SELK, an over-expressed protein in hepatocellular carcinoma, by molecular dynamics simulations in a lipid-water system.

    PubMed

    Polo, Andrea; Guariniello, Stefano; Colonna, Giovanni; Ciliberto, Gennaro; Costantini, Susan

    2016-10-20

    Human SELK is a small trans-membrane selenoprotein characterized by a single trans-membrane helix, while the N-terminal region protrudes into the lumen and the long C-terminal domain into the cytoplasm. SELK is over-expressed in some cancers, like hepatocellular carcinoma; however its precise role in cancer development is presently unknown. SELK is involved in promoting the calcium flux, catalyzing palmitoylation reactions and protein degradation in the endoplasmic reticulum (ER). Therefore, this protein should bind many different proteins like p97/VCP in the supramolecular complex involved in the ER degradation pathway. To study the structural features of SELK in the membrane, we have modeled the protein and then subjected it to molecular dynamics simulations in a lipid-water system. The model shows a N-terminal domain with three β-strands and a short helix, a well-defined trans-membrane helix and a C-terminal domain that lacks a persistent secondary structure and contains long disordered regions. The trajectory analysis during the simulation evidences that: (i) the N-terminal region explores a limited conformational space and is stabilized by intra-peptide H-bonds as well with membrane lipids and water, (ii) the trans-membrane helix was found to be quite stable and (iii) the disordered C-terminal region is stabilized by H-bonds with clustered water molecules as well as by rapidly interchanging intra-peptidic H-bonds, with a structural tendency to compact around the four HUB residues found for this domain. Moreover, N-terminal and C-terminal clusters are distributed differently in the conformational space suggesting that their dynamics are coupled complicatedly through the membrane. Further analyses have shown that the N-terminal has a tendency to pivot around the insertion with the TM-helix through the fluctuations of the three β-strands, which, in turn, show features similar to WW-domains. These results will be useful to study the SELK, SELS and VCP complex

  13. The raft of the Saint-Jean River, Gaspé (Québec, Canada): A dynamic feature trapping most of the wood transported from the catchment

    NASA Astrophysics Data System (ADS)

    Boivin, Maxime; Buffin-Bélanger, Thomas; Piégay, Hervé

    2015-02-01

    The rivers of the Gaspé Peninsula, Québec (Canada), a coastal drainage system of the St. Lawrence River, receive and transport vast quantities of large wood. The rapid rate of channel shifting caused by high-energy flows and noncohesive banks allows wood recruitment that in turn greatly influences river dynamics. The delta of the Saint-Jean River has accumulated wood since 1960, leading to frequent avulsions over that time period. The wood raft there is now more than 3-km in length, which is unusual but natural. This jam configuration allows a unique opportunity to estimate a wood budget at the scale of a long river corridor and to better understand the dynamics of large wood (LW) in rivers. A wood budget includes the evaluation of wood volumes (i) produced by bank erosion (input), (ii) still in transit in the river corridor (deposited on sand bars or channel edges), and (iii) accumulated in the delta (output). The budget is based on an analysis of aerial photos dating back to 1963 as well as surveys carried out in 2010, all of which were used to locate and describe large wood accumulations along a 60-km river section. The main results of this paper show that the raft formation in the delta is dynamic and can be massive, but it is a natural process. Considering the estimated wood volume trapped in the delta from 1963 to 2013 (≈ 25,000 m3), two important points are revealed by the quantification of the wood recruitment volume from 1963 to 2004 (≈ 27,000 m3 ± 400 m3) and of the wood volume stored on the bars in 2010 (≈ 5950 m3). First, the recruitment of large wood from lateral migration for the 40-year period can account for the volume of large wood in the delta and in transit. Second, the excess wood volume produced by lateral migration and avulsion represents a minimum estimation of the large wood trapped on the floodplain owing to wood volume that has decomposed and large wood that exited the river system. Rafts are major trapping structures that provide

  14. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOEpatents

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  15. Energetic Changes Caused by Antigenic Module Insertion in a Virus-Like Particle Revealed by Experiment and Molecular Dynamics Simulations

    PubMed Central

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K.; Lua, Linda H. L.; Chuan, Yap P.; Middelberg, Anton P. J.; Sun, Yan

    2014-01-01

    The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines. PMID:25215874

  16. Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association

    PubMed Central

    Cenens, William; Makumi, Angela; Govers, Sander K.; Lavigne, Rob; Aertsen, Abram

    2015-01-01

    Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host. PMID:26720743

  17. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms.

    PubMed

    Pavlek, Martina; Gelfand, Yevgeniy; Plohl, Miroslav; Meštrović, Nevenka

    2015-12-01

    Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1-Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.

  18. Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes

    USGS Publications Warehouse

    Work, Thierry M.; Russell, Robin; Aeby, Greta S.

    2012-01-01

    Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings.

  19. Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes.

    PubMed

    Work, Thierry M; Russell, Robin; Aeby, Greta S

    2012-11-01

    Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings. PMID:22951746

  20. Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes

    PubMed Central

    Work, Thierry M.; Russell, Robin; Aeby, Greta S.

    2012-01-01

    Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings. PMID:22951746

  1. Control of plasmon fields via irreversible ultrafast dynamics caused by interaction of infrared laser pulses with quantum-dot-metallic-nanoparticle molecules

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.

    2015-08-01

    We study irreversible ultrafast dynamics caused by interaction of a semiconductor quantum-dot-metallic-nanorod system with an infrared laser field. We show that when this system supports exciton-plasmon coupling, by just varying the amplitude of this laser for a short period of time (several nanoseconds), one can decide the instance when the plasmon field of the nanorod becomes significant and its duration. This is done by showing that a sudden rise in the amplitude of the infrared laser (positive pulse) can induce irreversible transition from one of the collective molecular states of this system to another, making the plasmon field significant. When this amplitude reduces for a short period of time (negative pulse), the system returns back to its initial state, suppressing this field. We provide a detailed description of how, depending on the location, the infrared-induced dynamics can lend itself to different time-dependent plasmon fields around the nanorod. Our results show that at a given moment of time at each location we can have dramatically different types of dynamics for the phase and amplitude of the plasmon field. Using these we show that a quantum-dot-metallic-nanoparticle system can act as an all-optical and logic gate.

  2. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and

  3. Dynamical behavior caused by numerical dynamo simulations in a rotating spherical shell with the heterogeneous outer boundary

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Aubert, J.

    2013-12-01

    We use numerical dynamo simulations in a rotating spherical shell to investigate the thermal structure in the core influenced by the heterogeneous top boundary. The experimental study in a rotating hemispherical shell with huge anomalous heterogeneous outer boundary suggested that the ';front' structure caused by huge amplitude of thermal anomalies at the top boundary but not checked in the various dynamo regimes [Sumita and Olson, 2002], which predicted that the major physical mechanism for the ';front' structure could be understood by the thermal wind balance. Aurnou and Aubert [2011] suggested that there would be several regimes when the heterogeneous condition at the top boundary was imposed in numerical dynamo simulations but not investigated thermal structure in the core to check the experimental consequences as well as the regime transition between convective and boundary modulated dynamo regimes. Here we use two Ekman number (10^-4 and 3x10^-5) and fixed magnetic and thermal Prandtl number (the unity) with varying various Rayleigh number defined the amplitude of lateral variation of heat flux across the top boundary. The pattern of heterogeneous boundary condition is used as (l,m)=(2,2). The two or more ';fronts' are found in imposed heterogeneous boundary at least. These fronts are very small time-dependence for their positions with large lateral temperature variations near fronts. This means that the ';front' structure could be found in the MHD dynamo system as well as non-magnetic cases shown in Sumita and Olson [2002] because the Lorentz force contribution to thermal wind balance seems to be very weak compared to the buoyancy flux to balance the Coriolis effect. More information will be provided in the presentation.

  4. Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin

    PubMed Central

    Lu, Hailong; Fagnant, Patricia M.; Bookwalter, Carol S.; Joel, Peteranne; Trybus, Kathleen M.

    2015-01-01

    Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region. Both aspects of R258C function therefore need investigation. Total internal reflection fluorescence (TIRF) microscopy was used to quantify the growth of single actin filaments as a function of time. R258C filaments are less stable than WT and more susceptible to severing by cofilin. Smooth muscle tropomyosin offers little protection from cofilin cleavage, unlike its effect on WT actin. Unexpectedly, profilin binds tighter to the R258C monomer, which will increase the pool of globular actin (G-actin). In an in vitro motility assay, smooth muscle myosin moves R258C filaments more slowly than WT, and the slowing is exacerbated by smooth muscle tropomyosin. Under loaded conditions, small ensembles of myosin are unable to produce force on R258C actin-tropomyosin filaments, suggesting that tropomyosin occupies an inhibitory position on actin. Many of the observed defects cannot be explained by a direct interaction with the mutated residue, and thus the mutation allosterically affects multiple regions of the monomer. Our results align with the hypothesis that defective contractile function contributes to the pathogenesis of TAAD. PMID:26153420

  5. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and

  6. In-Silico Analysis of Binding Site Features and Substrate Selectivity in Plant Flavonoid-3-O Glycosyltransferases (F3GT) through Molecular Modeling, Docking and Dynamics Simulation Studies

    PubMed Central

    Sharma, Ranu; Panigrahi, Priyabrata; Suresh, C.G.

    2014-01-01

    Flavonoids are a class of plant secondary metabolites that act as storage molecules, chemical messengers, as well as participate in homeostasis and defense processes. They possess pharmaceutical properties important for cancer treatment such as antioxidant and anti-tumor activities. The drug-related properties of flavonoids can be improved by glycosylation. The enzymes glycosyltransferases (GTs) glycosylate acceptor molecules in a regiospecific manner with the help of nucleotide sugar donor molecules. Several plant GTs have been characterized and their amino acid sequences determined. However, three-dimensional structures of only a few are reported. Here, phylogenetic analysis using amino acid sequences have identified a group of GTs with the same regiospecific activity. The structures of these closely related GTs were modeled using homologous GT structures. Their substrate binding sites were elaborated by docking flavonoid acceptor and UDP-sugar donor molecules in the modeled structures. Eight regions near the acceptor binding site in the N- and C- terminal domain of GTs have been identified that bind and specifically glycosylate the 3-OH group of acceptor flavonoids. Similarly, a conserved motif in the C-terminal domain is known to bind a sugar donor substrate. In certain GTs, the substitution of a specific glutamine by histidine in this domain changes the preference of sugar from glucose to galactose as a result of changed pattern of interactions. The molecular modeling, docking, and molecular dynamics simulation studies have revealed the chemical and topological features of the binding site and thus provided insights into the basis of acceptor and donor recognition by GTs. PMID:24667893

  7. Cellular Composition of the Spleen and Changes in Splenic Lysosomes in the Dynamics of Dyslipidemia in Mice Caused by Repeated Administration of Poloxamer 407.

    PubMed

    Goncharova, N V; Shurlygina, A V; Mel'nikova, E V; Karmatskikh, O L; Avrorov, P A; Loktev, K V; Korolenko, T A

    2015-11-01

    We studied the effect of dyslipidemia induced by poloxamer 407 (300 mg/kg twice a week for 30 days) on cellular composition of the spleen and splenocyte lysosomes in mice. Changes in blood lipid profile included elevated concentrations of total cholesterol, aterogenic LDL, and triglycerides most pronounced in 24 h after the last poloxamer 407 injection; gradual normalization of lipid profile was observed in 4 days (except triglycerides) and 10 days. The most pronounced changes in the spleen (increase in organ weight and number of cells, inhibition in apoptosis, and reduced accumulation of vital dye acridine orange in lysosomes) were detected on day 4; on day 10, the indices returned to normal. Cathepsin D activity in the spleen also increased at these terms. The relationship between changes in the cellular composition of the spleen and dynamics of serum lipid profile in mice in dyslipidemia caused by repeated administrations of relatively low doses of poloxamer 407 is discussed.

  8. Cellular Composition of the Spleen and Changes in Splenic Lysosomes in the Dynamics of Dyslipidemia in Mice Caused by Repeated Administration of Poloxamer 407.

    PubMed

    Goncharova, N V; Shurlygina, A V; Mel'nikova, E V; Karmatskikh, O L; Avrorov, P A; Loktev, K V; Korolenko, T A

    2015-11-01

    We studied the effect of dyslipidemia induced by poloxamer 407 (300 mg/kg twice a week for 30 days) on cellular composition of the spleen and splenocyte lysosomes in mice. Changes in blood lipid profile included elevated concentrations of total cholesterol, aterogenic LDL, and triglycerides most pronounced in 24 h after the last poloxamer 407 injection; gradual normalization of lipid profile was observed in 4 days (except triglycerides) and 10 days. The most pronounced changes in the spleen (increase in organ weight and number of cells, inhibition in apoptosis, and reduced accumulation of vital dye acridine orange in lysosomes) were detected on day 4; on day 10, the indices returned to normal. Cathepsin D activity in the spleen also increased at these terms. The relationship between changes in the cellular composition of the spleen and dynamics of serum lipid profile in mice in dyslipidemia caused by repeated administrations of relatively low doses of poloxamer 407 is discussed. PMID:26608379

  9. Modeling the dynamics of a plasma bulge with a high specific energy in the upper atmosphere. 2. Numerical simulation and physical features of a large-scale plasma flow at its late development stage: A review

    NASA Astrophysics Data System (ADS)

    Stupitsky, E. L.; Kholodov, A. S.

    2012-09-01

    The results of three-dimensional calculations of a plasma flow caused by a cosmic nuclear explosion, performed in an MHD approximation, are presented. The main regularities and specific features of the development of a large-scale plasma flow have been analyzed for a later stage (up to several hundreds of seconds) depending on the altitude and plasma bulge energy.

  10. Structural Stability and Local Dynamics in Disease-Causing Mutants of Human Apolipoprotein A-I: What Makes the Protein Amyloidogenic?

    PubMed

    Das, Madhurima; Wilson, Christopher J; Mei, Xiaohu; Wales, Thomas E; Engen, John R; Gursky, Olga

    2016-01-29

    ApoA-I, the major protein of plasma high-density lipoprotein, removes cellular cholesterol and protects against atherosclerosis. ApoA-I mutations can cause familial amyloidosis, a life-threatening disease wherein N-terminal protein fragments form fibrils in vital organs. To unveil the protein misfolding mechanism and to understand why some mutations cause amyloidosis while others do not, we analyzed the structure, stability, and lipid-binding properties of naturally occurring mutants of full-length human apoA-I causing either amyloidosis (G26R, W50R, F71Y, and L170P) or aberrant lipid metabolism (L159R). Global and local protein conformation and dynamics in solution were assessed by circular dichroism, fluorescence, and hydrogen-deuterium exchange mass spectrometry. All mutants showed increased deuteration in residues 14-22, supporting our hypothesis that decreased protection of this major amyloid "hot spot" can trigger protein misfolding. In addition, L159R showed local helical unfolding near the mutation site, consistent with cleavage of this mutant in plasma to generate the labile 1-159 fragment. Together, the results suggest that reduced protection of the major amyloid "hot spot", combined with the structural integrity of the native helix bundle conformation, shifts the balance from protein clearance to β-aggregation. A delicate balance between the overall structural integrity of a globular protein and the local destabilization of its amyloidogenic segments may be a fundamental determinant of this and other amyloid diseases. Furthermore, mutation-induced conformational changes observed in the helix bundle, which comprises the N-terminal 75% of apoA-I, and its flexible C-terminal tail suggest the propagation of structural perturbations to distant sites via an unexpected template-induced ensemble-based mechanism, challenging the classical structure-based view.

  11. Leading Causes of Blindness

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Feature: Vision Leading Causes of Blindness Past Issues / Summer 2008 ... of the lenses in your eyes. They affect vision and are very common in older people. More ...

  12. Collisional Features in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Attree, Nicholas; Murray, Carl D; Cooper, Nicholas; Williams, Gareth

    2014-05-01

    Saturn’s F ring is a highly dynamic environment; changeable over timescales from hours to years and displaying a variety of features caused by both gravitational and collisional interactions with local objects. These objects range from the ‘shepherding’ moons Prometheus and Pandora down to small (radius < 1 km) moonlets, embedded in the ring or on nearby orbits. Previously (Attree et al. 2014) we catalogued nearly 900 small-scale collisional features (“mini-jets”) from Cassini images, placing constraints on the size and orbital distribution of the local colliding population. Here we will present the latest work on F ring collisions; updating the catalogue with new Cassini images to further refine our statistics of the population as well as discussing specific, interesting features which shed light on the collision process. We will also present the results of N-body simulations of the collisions and discuss ongoing work to survey the larger “jet” features. These are caused by higher velocity collisions 30m/s) with more distant objects like S/2004 S 6 which may represent the upper end of the moonlet population in size and in orbit.

  13. From dynamic combinatorial 'hit' to lead: in vitro and in vivo activity of compounds targeting the pathogenic RNAs that cause myotonic dystrophy.

    PubMed

    Ofori, Leslie O; Hoskins, Jason; Nakamori, Masayuki; Thornton, Charles A; Miller, Benjamin L

    2012-07-01

    The myotonic dystrophies (DM) are human diseases in which the accumulation of toxic RNA (CUG or CCUG) repeats in the cell causes sequestration of splicing factors, including MBNL1, leading to clinical symptoms such as muscle wasting and myotonia. We previously used Dynamic Combinatorial Chemistry to identify the first compounds known to inhibit (CUG)-MBNL1 binding in vitro. We now report transformation of those compounds into structures with activity in vivo. Introduction of a benzo[g]quinoline substructure previously unknown in the context of RNA recognition, as well as other modifications, provided several molecules with enhanced binding properties, including compounds with strong selectivity for CUG repeats over CAG repeats or CAG-CUG duplex RNA. Compounds readily penetrate cells, and improve luciferase activity in a mouse myoblast assay in which enzyme function is coupled to a release of nuclear CUG-RNA retention. Most importantly, two compounds are able to partially restore splicing in a mouse model of DM1. PMID:22492623

  14. General features

    SciTech Connect

    Wallace, R.E.

    1990-01-01

    The San Andreas fault system, a complex of faults that display predominantly large-scale strike slip, is part of an even more complex system of faults, isolated segments of the East Pacific Rise, and scraps of plates lying east of the East Pacific Rise that collectively separate the North American plate from the Pacific plate. This chapter briefly describes the San Andreas fault system, its setting along the Pacific Ocean margin of North America, its extent, and the patterns of faulting. Only selected characteristics are described, and many features are left for depictions on maps and figures.

  15. Time Varying Feature Data

    NASA Astrophysics Data System (ADS)

    Echterhoff, J.; Simonis, I.; Atkinson, R.

    2012-04-01

    The infrastructure to gather, store and access information about our environment is improving and growing rapidly. The increasing amount of information allows us to get a better understanding of the current state of our environment, historical processes and to simulate and predict the future state of the environment. Finer grained spatial and temporal data and more reliable communications make it easier to model dynamic states and ephemeral features. The exchange of information within and across geospatial domains is facilitated through the use of harmonized information models. The Observations & Measurements (O&M) developed through OGC and standardised by ISO is an example of such a cross-domain information model. It is used in many domains, including meteorology, hydrology as well as the emergency management. O&M enables harmonized representation of common metadata that belong to the act of determining the state of a feature property, whether by sensors, simulations or humans. In addition to the resulting feature property value, information such as the result quality but especially the time that the result applies to the feature property can be represented. Temporal metadata is critical to modelling past and future states of a feature. The features, and the semantics of each property, are defined in domain specific Application Schema using the General Feature Model (GFM) from ISO 19109 and usually encoded following ISO 19136. However, at the moment these standards provide only limited support for the representation and handling of time varying feature data. Features like rivers, wildfires or gas plumes have a defined state - for example geographic extent - at any given point in time. To keep track of changes, a more complex model for example using time-series coverages is required. Furthermore, the representation and management of feature property value changes via the service interfaces defined by OGC and ISO - namely: WFS and WCS - would be rather complex

  16. Flexible Feature-Based Inhibition in Visual Search Mediates Magnified Impairments of Selection: Evidence from Carry-Over Effects under Dynamic Preview-Search Conditions

    ERIC Educational Resources Information Center

    Andrews, Lucy S.; Watson, Derrick G.; Humphreys, Glyn W.; Braithwaite, Jason J.

    2011-01-01

    Evidence for inhibitory processes in visual search comes from studies using preview conditions, where responses to new targets are delayed if they carry a featural attribute belonging to the old distractor items that are currently being ignored--the negative carry-over effect (Braithwaite, Humphreys, & Hodsoll, 2003). We examined whether…

  17. Ocean dynamic processes causing spatially heterogeneous distribution of sedimentary caesium-137 massively released from the Fukushima Dai-ichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Higashi, H.; Morino, Y.; Furuichi, N.; Ohara, T.

    2015-08-01

    Massive amounts of anthropogenic radiocaesium 137Cs that was released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident on March 2011 are widely known to have extensively migrated to Pacific oceanic sediment off of east Japan. Several recent reports have stated that the sedimentary 137Cs is now stable with a remarkably heterogeneous distribution. The present study elucidates ocean dynamic processes causing this heterogeneous sedimentary 137Cs distribution in and around the shelf off Fukushima and adjacent prefectures. We performed a numerical simulation of oceanic 137Cs behaviour for about 10 months after the accident, using a comprehensive dynamic model involving advection-diffusion transport in seawater, adsorption and desorption to and from particulate matter, sedimentation and suspension on and from the bottom, and vertical diffusion transport in the sediment. A notable simulated result was that the sedimentary 137Cs significantly accumulated in a swath just offshore of the shelf break (along the 50-100 m isobath) as in recent observations, although the seabed in the entire simulation domain was assumed to have ideal properties such as identical bulk density, uniform porosity, and aggregation of particles with a single grain diameter. This result indicated that the heterogeneous sedimentary 137Cs distribution was not necessarily a result of the spatial distribution of 137Cs sediment adsorptivity. The present simulation suggests that the shape of the swath is mainly associated with spatiotemporal variation between bottom shear stress in the shallow shelf (< 50 m depths) and that offshore of the shelf break. In a large part of the shallow shelf, the simulation indicated that strong bottom friction suspending particulate matter from the seabed frequently occurred via a periodic spring tide about every 2 weeks and via occasional strong wind. The sedimentary 137Cs thereby could hardly stay on the surface of the seabed with the result that

  18. A Computer-Aided Diagnosis System for Dynamic Contrast-Enhanced MR Images Based on Level Set Segmentation and ReliefF Feature Selection

    PubMed Central

    Zhu, Dongmei; Li, Li

    2015-01-01

    This study established a fully automated computer-aided diagnosis (CAD) system for the classification of malignant and benign masses via breast magnetic resonance imaging (BMRI). A breast segmentation method consisting of a preprocessing step to identify the air-breast interfacing boundary and curve fitting for chest wall line (CWL) segmentation was included in the proposed CAD system. The Chan-Vese (CV) model level set (LS) segmentation method was adopted to segment breast mass and demonstrated sufficiently good segmentation performance. The support vector machine (SVM) classifier with ReliefF feature selection was used to merge the extracted morphological and texture features into a classification score. The accuracy, sensitivity, and specificity measurements for the leave-half-case-out resampling method were 92.3%, 98.2%, and 76.2%, respectively. For the leave-one-case-out resampling method, the measurements were 90.0%, 98.7%, and 73.8%, respectively. PMID:25628755

  19. Vertical Feature Mask Feature Classification Flag Extraction

    Atmospheric Science Data Center

    2013-03-28

      Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...

  20. Time variant analysis of large scale constrained rotorcraft systems dynamics - An exploitation of IBM-3090 vector-processor's pipe-lining feature

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Shareef, N. H.; Xie, M.

    1991-01-01

    A generalized algorithmic procedure is presented for handling the constraints in transmissions, which are treated as a multibody system of interconnected rigid/flexible bodies. The type of constraints are classified based on the interconnection of the bodies, assuming one or more points of contact to exist between them. The method is explained through flow charts and configuration/interaction tables. A significant increase in speed of execution is achieved by vectorizing the developed code in computationally intensive areas. The study of an example consisting of two meshing disks rotating at high angular velocity is carried out. The dynamic behavior of the constraint forces associated with the generalized coordinates of the system are plotted by selecting various modes. Applications are intended for the study of dynamic and subsequent prediction of constraint forces at the gear teeth contacting points in helicopter transmissions with the aim of improving performance dependability.

  1. Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics

    NASA Astrophysics Data System (ADS)

    Osmaston, M. F.

    2012-04-01

    Introduction. The 'deep-keeled cratons' frame for global dynamics is the result of seeking Earth-behaviour answers to the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Surprisingly it has turned out [1 - 4] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that there is a rational petrological explanation for the otherwise-unexpected immobility of subcratonic material to such depths [5 - 7]. Clockwise rotation of Antarctica? This contribution greatly amplifies my original plate dynamical arguments for suggesting [8] that such rotation is ongoing. Convection is unsuited to causing rotation about a pole within the plate so, as noted then, a gearwheel-like linkage to Africa at the SWIR would provide its clearly CCW (Biscay-Caucasus) relationship to the Mediterranean belt for the past 100 Ma, also seen in its separation from South America. Gearwheel-like linkage of motion requires the presence of some kind of E-W restraint further north. In that case it was the N Africa/Arabia involvement in the Alpide belt, but the earlier opening of the central Atlantic by the eastward motion of Africa, suggests its rigid Gondwanan attachment to Antarctica rotation at that time, with little constraint in the north. Further east, the seafloor data show that Australia-Antarctica separation involved no such opposite rotational linkage, so, with no E-W mechanical constraint in the north by Indonesia, they must have rotated together, as is recorded by Australia's eastward motion to generate the Mesozoic seafloor at its western

  2. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees.

    PubMed

    Santolaria, Zoe; Arruebo, Tomas; Urieta, José Santiago; Lanaja, Francisco Javier; Pardo, Alfonso; Matesanz, José; Rodriguez-Casals, Carlos

    2015-01-01

    Increasing the understanding of high mountain lake dynamics is essential to use these remote aquatic ecosystems as proxies of global environmental changes. With this aim, at Sabocos, a Pyrenean cirque glacial lake or tarn, this study shows the main results of a morphological and catchment characterization, along with statistical analyses of its hydrochemical trends and their concomitant driving factors from 2010 to 2013. Dissolved oxygen, water temperature stratification, and its snow and ice cover composition and dynamics have been also investigated. According to morphological analyses, Sabocos can be classified as a medium-large and deep lake, having a circular contour and a long water retention time as compared to Pyrenean glacial lake average values. Sabocos hydrochemistry is mainly determined by very high alkalinity, pH and conductivity levels, and high Ca(2+), Mg(2+), and SO4(2-) content, coming from the easily weatherable limestone-dolomite bedrock. Thus, lake water is well buffered, and therefore, Sabocos tarn is non-sensitive to acidification processes. On the other hand, the main source of K(+), Na(+), and Cl(-) (sea salts) and nutrients (NH4(+), NO3(-), and phosphorous) to lake water appears to be atmospheric deposition. Primary production is phosphorous limited, and due to the N-saturation stage of the poorly developed soils of Sabocos catchment, NO3(-) is the chief component in the total nitrogen pool. External temperature seems to be the major driver regulating lake productivity, since warm temperatures boot primary production. Although precipitation might also play an important role in lake dynamics, especially regarding to those parameters influenced by the weathering of the bedrock, its influence cannot be easily assessed due to the seasonal isolation produced by the ice cover. Also, as occurs in the whole Pyrenean lake district, chemical composition of bulk deposition is highly variable due to the contribution of air masses with different origin

  3. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees.

    PubMed

    Santolaria, Zoe; Arruebo, Tomas; Urieta, José Santiago; Lanaja, Francisco Javier; Pardo, Alfonso; Matesanz, José; Rodriguez-Casals, Carlos

    2015-01-01

    Increasing the understanding of high mountain lake dynamics is essential to use these remote aquatic ecosystems as proxies of global environmental changes. With this aim, at Sabocos, a Pyrenean cirque glacial lake or tarn, this study shows the main results of a morphological and catchment characterization, along with statistical analyses of its hydrochemical trends and their concomitant driving factors from 2010 to 2013. Dissolved oxygen, water temperature stratification, and its snow and ice cover composition and dynamics have been also investigated. According to morphological analyses, Sabocos can be classified as a medium-large and deep lake, having a circular contour and a long water retention time as compared to Pyrenean glacial lake average values. Sabocos hydrochemistry is mainly determined by very high alkalinity, pH and conductivity levels, and high Ca(2+), Mg(2+), and SO4(2-) content, coming from the easily weatherable limestone-dolomite bedrock. Thus, lake water is well buffered, and therefore, Sabocos tarn is non-sensitive to acidification processes. On the other hand, the main source of K(+), Na(+), and Cl(-) (sea salts) and nutrients (NH4(+), NO3(-), and phosphorous) to lake water appears to be atmospheric deposition. Primary production is phosphorous limited, and due to the N-saturation stage of the poorly developed soils of Sabocos catchment, NO3(-) is the chief component in the total nitrogen pool. External temperature seems to be the major driver regulating lake productivity, since warm temperatures boot primary production. Although precipitation might also play an important role in lake dynamics, especially regarding to those parameters influenced by the weathering of the bedrock, its influence cannot be easily assessed due to the seasonal isolation produced by the ice cover. Also, as occurs in the whole Pyrenean lake district, chemical composition of bulk deposition is highly variable due to the contribution of air masses with different origin.

  4. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    SciTech Connect

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  5. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    PubMed

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  6. Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics

    NASA Astrophysics Data System (ADS)

    Osmaston, M. F.

    2012-04-01

    Introduction. The 'deep-keeled cratons' frame for global dynamics is the result of seeking Earth-behaviour answers to the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Surprisingly it has turned out [1 - 4] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that there is a rational petrological explanation for the otherwise-unexpected immobility of subcratonic material to such depths [5 - 7]. Clockwise rotation of Antarctica? This contribution greatly amplifies my original plate dynamical arguments for suggesting [8] that such rotation is ongoing. Convection is unsuited to causing rotation about a pole within the plate so, as noted then, a gearwheel-like linkage to Africa at the SWIR would provide its clearly CCW (Biscay-Caucasus) relationship to the Mediterranean belt for the past 100 Ma, also seen in its separation from South America. Gearwheel-like linkage of motion requires the presence of some kind of E-W restraint further north. In that case it was the N Africa/Arabia involvement in the Alpide belt, but the earlier opening of the central Atlantic by the eastward motion of Africa, suggests its rigid Gondwanan attachment to Antarctica rotation at that time, with little constraint in the north. Further east, the seafloor data show that Australia-Antarctica separation involved no such opposite rotational linkage, so, with no E-W mechanical constraint in the north by Indonesia, they must have rotated together, as is recorded by Australia's eastward motion to generate the Mesozoic seafloor at its western

  7. Mechanisms of Disease and Clinical Features of Mutations of the Gene for Mitofusin 2: An Important Cause of Hereditary Peripheral Neuropathy with Striking Clinical Variability in Children and Adults

    ERIC Educational Resources Information Center

    Ouvrier, Robert; Grew, Simon

    2010-01-01

    Mitofusin 2, a large transmembrane GTPase located in the outer mitochondrial membrane, promotes membrane fusion and is involved in the maintenance of the morphology of axonal mitochondria. Mutations of the gene encoding mitofusin 2 ("MFN2") have recently been identified as the cause of approximately one-third of dominantly inherited cases of the…

  8. Birth dates vary with fixed and dynamic maternal features, offspring sex, and extreme climatic events in a high-latitude marine mammal.

    PubMed

    Rotella, Jay J; Paterson, J Terrill; Garrott, Robert A

    2016-04-01

    Reproductive synchrony tends to be widespread in diverse species of plants and animals, especially at higher latitudes. However, for long-lived mammals, birth dates for different individuals can vary by weeks within a population. A mother's birth timing can reveal useful information about her reproductive abilities and have important implications for the characteristics and survival of her offspring. Despite this, our current knowledge of factors associated with variation in birth dates is modest. We used long-term data for known-age Weddell seals in Antarctica and a Bayesian hierarchical modeling approach to study how birth dates varied with fixed and temporally varying features of mothers, whether sex allocation varied with birth timing, and annual variation in birth dates. Based on birth dates for 4465 pups born to 1117 mothers aged 4-31, we found that diverse features of mothers were associated with variation in birth dates. Maternal identity was the most important among these. Unlike most studies, which have reported that birth dates occur earlier as mothers age, we found that birth dates progressively occurred earlier in the year in the early part of a mother's reproductive life, reached a minimum at age 16, and then occurred later at later ages. Birth dates were positively related to a mother's age at primiparity and recent reproductive effort. The earliest birth dates were for pups born to prime-age mothers who did not reproduce in the previous year but began reproduction early in life, suggesting that females in the best condition gave birth earlier than others. If so, our finding that male pups tended to be born earlier than females provides support for the Trivers-Willard sex-allocation model. Average birth dates were quite consistent across years, except for 2 years that had notable delays and occurred during the period when massive icebergs were present and disrupted the ecosystem. PMID:27099704

  9. Structural features and the microscopic dynamics of the three-component Zr47Cu46Al7 system: Equilibrium melt, supercooled melt, and amorphous alloy

    NASA Astrophysics Data System (ADS)

    Khusnutdinoff, R. M.; Mokshin, A. V.; Klumov, B. A.; Ryltsev, R. E.; Chtchelkatchev, N. M.

    2016-08-01

    The structural and dynamic properties of the three-component Zr47Cu46Al7 system are subjected to a molecular dynamics simulation in the temperature range T = 250-3000 K at a pressure p = 1.0 bar. The temperature dependences of the Wendt-Abraham parameter and the translation order parameter are used to determine the glass transition temperature in the Zr47Cu46Al7 system, which is found to be T c ≈ 750 K. It is found that the bulk amorphous Zr47Cu46Al7 alloy contains localized regions with an ordered atomic structures. Cluster analysis of configuration simulation data reveals the existence of quasi-icosahedral clusters in amorphous metallic Zr-Cu-Al alloys. The spectral densities of time radial distribution functions of the longitudinal ( C˜ L( k, ω)) and transverse ( C˜ T ( k, ω)) fluxes are calculated in a wide wavenumber range in order to study the mechanisms of formation of atomic collective excitations in the Zr47Cu46Al7 system. It was found that a linear combination of three Gaussian functions is sufficient to reproduce the ( C˜ L ( k, ω)) spectra, whereas at least four Gaussian contributions are necessary to exactly describe the ( C˜ T ( k, ω)) spectra of the supercooled melt and the amorphous metallic alloy. It is shown that the collective atomic excitations in the equilibrium melt at T = 3000 K and in the amorphous metallic alloy at T = 250 K are characterized by two dispersion acoustic-like branches related with longitudinal and transverse polarizations.

  10. Spatial and temporal dynamics of biotic and abiotic features of temperate coastal ecosystems as revealed by a combination of ecological indicators

    NASA Astrophysics Data System (ADS)

    Grangeré, K.; Lefebvre, S.; Blin, J.-L.

    2012-08-01

    Coastal ecosystems exhibit complex spatio-temporal patterns due to their position at the interface between land and sea. This is particularly the case of temperate ecosystems where exploitation of coastal resources (fisheries and aquaculture) and intensive agricultural use of watersheds further complicate our understanding of their dynamics. The aim of the present study was to unravel the spatio-temporal dynamics of contrasted megatidal coastal ecosystems located at the same regional scale (i.e. under the same regional climate), but under different kinds of human pressure. Two kinds of ecological indicators were assessed over a period of four years at 11 locations along the coast of the Cotentin peninsula (Normandy, France). A first set of hydrobiological variables (dissolved nutrients, Chl a, temperature, salinity, etc.) was measured fortnightly in the water column. These data were analysed by principal components analysis (PCA). A second set of variables were the carbon and nitrogen stable isotope ratios of the adductor muscles of cultured Crassostrea gigas introduced every year to typify the bentho-pelagic coupling at each location. Food sources were also investigated using a mixing model with data on the isotopic composition of the food sources obtained previously. To identify which environmental variables played a significant role in determining the oyster diet, the contributions of oyster food sources were combined with environmental variables in a canonical correspondence analysis (CCA). Isotopic values of adductor muscles varied significantly between -20.12‰ and -16.79‰ for δ13C and between 8.28‰ and 11.87‰ for δ15N. The PCA distinguished two groups of coastal ecosystems that differed in their coastal hydrology, nutrient inputs, and the size of their respective watershed, irrespective of the year. In each zone, different spatial patterns in the measured variables were observed depending on the year showing that local impacts differed temporally

  11. Universal Features of Electron Dynamics in Solar Cells with TiO2 Contact: From Dye Solar Cells to Perovskite Solar Cells.

    PubMed

    Todinova, Anna; Idígoras, Jesús; Salado, Manuel; Kazim, Samrana; Anta, Juan A

    2015-10-01

    The electron dynamics of solar cells with mesoporous TiO2 contact is studied by electrochemical small-perturbation techniques. The study involved dye solar cells (DSC), solid-state perovskite solar cells (SSPSC), and devices where the perovskite acts as sensitizer in a liquid-junction device. Using a transport-recombination continuity equation we found that mid-frequency time constants are proper lifetimes that determine the current-voltage curve. This is not the case for the SSPSC, where a lifetime of ∼1 μs, 1 order of magnitude longer, is required to reproduce the current-voltage curve. This mismatch is attributed to the dielectric response on the mid-frequency component. Correcting for this effect, lifetimes lie on a common exponential trend with respect to open-circuit voltage. Electron transport times share a common trend line too. This universal behavior of lifetimes and transport times suggests that the main difference between the cells is the power to populate the mesoporous TiO2 contact with electrons. PMID:26704621

  12. Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil

    NASA Astrophysics Data System (ADS)

    Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.

    2011-08-01

    The annual dynamics of the number and taxonomic composition of yeast communities were studied in the phyllosphere, on the flowers, and on the roots of Indian balsam ( Impatiens glandulifera Royle) and in the mucky gley soil under the thickets of this plant. It was shown that typical phyllosphere yeast communities with a predominance of the red-pigmented species Rhodotorula mucilaginosa and Rhodotorula glutinis and the typical epiphyte Cryptococcus magnus are formed on the leaves of this annual hygrophyte. However, yeast groups with a predominance of the ascosporous species Saccharomyces paradoxus, Kazachstania barnettii, and Torulaspora delbrueckii, which are not typical of soils at all, were found in the mucky gley soil under the thickets of Indian balsam. Thus, the epiphytic and soil yeast complexes under the thickets of Indian balsam are represented by two entirely discrete communities without common species. In other biogeocenoses of the forest zone, the rearrangement of the structure of yeast communities in passing from the aboveground substrates to the soil proceeds gradually, and most of the species can be isolated both from the aboveground parts of plants and from the soil. The strong difference between the yeast communities in the phyllosphere of Indian balsam and in the soil under its thickets is apparently related to the fact that the annual hygrophytes are decomposed very quickly (during several days after the first frosts). Because of this, an intermediate layer between the phyllosphere and the soil (the litter layer), in which epiphytic microorganisms can develop, is not formed under these plants.

  13. Experimental and molecular dynamics studies of dysprosium(III) salt solutions for a better representation of the microscopic features used within the binding mean spherical approximation theory.

    PubMed

    Ruas, Alexandre; Guilbaud, Philippe; Den Auwer, Christophe; Moulin, Christophe; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2006-10-19

    This work is aimed at a predictive description of the thermodynamic properties of actinide(III) salt solutions at high concentration and 25 degrees C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1:1 and also 1:2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide(III) cation: dysprosium(III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol.kg-1) for a study of the microscopic behavior of DyCl3 binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA.

  14. Study of the dynamical features of the austenite-martensite phase transition in the Ni50(Mn, 1%Fe)34In16 alloy using scanning Hall probe imaging

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, M. K.; Morrison, K.; Dupas, A.; Sharma, V. K.; Sharath Chandra, L. S.; Cohen, L. F.; Roy, S. B.

    2012-03-01

    We have performed scanning Hall probe imaging experiments to study the martensite to austenite phase transition in the Ni50(Mn, 1%Fe)34In16 alloy as a function of temperature and magnetic field. We observe that the martensite and austenite phase regions are separated by a distinct interface. The relative growth of phase across the phase transition is associated with the movement of this interface. The movement of the interface becomes arrested at low temperature, which leads to the formation of a "magnetic glass" state in the alloy. The dynamics of the martensite to austenite phase transition in the Ni50(Mn, 1%Fe)34In16 alloy is found to be qualitatively different when the transition is field induced than what it is when the same transition is induced by temperature. While both nucleation and growth of the martensite phase is observed during the austenite to martensite phase transition in the alloy during cooling down, the martensite to austenite phase transition during warming up appears to be growth oriented. In contrast, both nucleation and growth of the product phases are observed during the field induced martensite to austenite phase transition both during increasing and decreasing field experiments. The physical reasons behind these different observations are explored.

  15. Universal Features of Electron Dynamics in Solar Cells with TiO2 Contact: From Dye Solar Cells to Perovskite Solar Cells.

    PubMed

    Todinova, Anna; Idígoras, Jesús; Salado, Manuel; Kazim, Samrana; Anta, Juan A

    2015-10-01

    The electron dynamics of solar cells with mesoporous TiO2 contact is studied by electrochemical small-perturbation techniques. The study involved dye solar cells (DSC), solid-state perovskite solar cells (SSPSC), and devices where the perovskite acts as sensitizer in a liquid-junction device. Using a transport-recombination continuity equation we found that mid-frequency time constants are proper lifetimes that determine the current-voltage curve. This is not the case for the SSPSC, where a lifetime of ∼1 μs, 1 order of magnitude longer, is required to reproduce the current-voltage curve. This mismatch is attributed to the dielectric response on the mid-frequency component. Correcting for this effect, lifetimes lie on a common exponential trend with respect to open-circuit voltage. Electron transport times share a common trend line too. This universal behavior of lifetimes and transport times suggests that the main difference between the cells is the power to populate the mesoporous TiO2 contact with electrons.

  16. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  17. Intrinsic Feature Motion Tracking

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over timemore » can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.« less

  18. Feature integration across space, time, and orientation

    PubMed Central

    Otto, Thomas U.; Öğmen, Haluk; Herzog, Michael H.

    2012-01-01

    The perception of a visual target can be strongly influenced by flanking stimuli. In static displays, performance on the target improves when the distance to the flanking elements increases- proposedly because feature pooling and integration vanishes with distance. Here, we studied feature integration with dynamic stimuli. We show that features of single elements presented within a continuous motion stream are integrated largely independent of spatial distance (and orientation). Hence, space based models of feature integration cannot be extended to dynamic stimuli. We suggest that feature integration is guided by perceptual grouping operations that maintain the identity of perceptual objects over space and time. PMID:19968428

  19. Feature Integration across Space, Time, and Orientation

    ERIC Educational Resources Information Center

    Otto, Thomas U.; Ogmen, Haluk; Herzog, Michael H.

    2009-01-01

    The perception of a visual target can be strongly influenced by flanking stimuli. In static displays, performance on the target improves when the distance to the flanking elements increases--presumably because feature pooling and integration vanishes with distance. Here, we studied feature integration with dynamic stimuli. We show that features of…

  20. Assessment of Immunologically Relevant Dynamic Tertiary Structural Features of the HIV-1 V3 Loop Crown R2 Sequence by ab initio Folding

    PubMed Central

    Almond, David; Cardozo, Timothy

    2010-01-01

    The antigenic diversity of HIV-1 has long been an obstacle to vaccine design, and this variability is especially pronounced in the V3 loop of the virus' surface envelope glycoprotein. We previously proposed that the crown of the V3 loop, although dynamic and sequence variable, is constrained throughout the population of HIV-1 viruses to an immunologically relevant β-hairpin tertiary structure. Importantly, there are thousands of different V3 loop crown sequences in circulating HIV-1 viruses, making 3D structural characterization of trends across the diversity of viruses difficult or impossible by crystallography or NMR. Our previous successful studies with folding of the V3 crown1, 2 used the ab initio algorithm 3 accessible in the ICM-Pro molecular modeling software package (Molsoft LLC, La Jolla, CA) and suggested that the crown of the V3 loop, specifically from positions 10 to 22, benefits sufficiently from the flexibility and length of its flanking stems to behave to a large degree as if it were an unconstrained peptide freely folding in solution. As such, rapid ab initio folding of just this portion of the V3 loop of any individual strain of the 60,000+ circulating HIV-1 strains can be informative. Here, we folded the V3 loop of the R2 strain to gain insight into the structural basis of its unique properties. R2 bears a rare V3 loop sequence thought to be responsible for the exquisite sensitivity of this strain to neutralization by patient sera and monoclonal antibodies4, 5. The strain mediates CD4-independent infection and appears to elicit broadly neutralizing antibodies. We demonstrate how evaluation of the results of the folding can be informative for associating observed structures in the folding with the immunological activities observed for R2. PMID:20864931

  1. Characterization of Continuum Coma features in Comets

    NASA Astrophysics Data System (ADS)

    Mueller, Beatrice E. A.; Samarasinha, Nalin H.; Hergenrother, Carl W.

    2016-10-01

    We will present the results of an analysis of continuum coma features of comets belonging to different dynamical classes at geocentric distances less than 1.5 AU. Our analysis focusses on groundbased visible observations of over a dozen comets. The position angles of the continuum features close to the nucleus, the curvatures, and extents of radial features will be determined, and the dynamics of dust grains will be investigated. We will also use the change in position angles (if relevant) to place constraints on the periodicity of the repeatability of the features. The prevalence of the features in the sunward direction compared to other orientations will be investigated. We will further compare continuum features with CN features when available. This investigation will eventually lead to the discrimination between hemispherical and localized outgassing for the sunward continuum features seen in comets.We acknowledge support from the NASA SSW and PAST programs.

  2. Studying Dynamic Features in Myocardial Infarction Progression by Integrating miRNA-Transcription Factor Co-Regulatory Networks and Time-Series RNA Expression Data from Peripheral Blood Mononuclear Cells.

    PubMed

    Shi, Hongbo; Zhang, Guangde; Wang, Jing; Wang, Zhenzhen; Liu, Xiaoxia; Cheng, Liang; Li, Weimin

    2016-01-01

    Myocardial infarction (MI) is a serious heart disease and a leading cause of mortality and morbidity worldwide. Although some molecules (genes, miRNAs and transcription factors (TFs)) associated with MI have been studied in a specific pathological context, their dynamic characteristics in gene expressions, biological functions and regulatory interactions in MI progression have not been fully elucidated to date. In the current study, we analyzed time-series RNA expression data from peripheral blood mononuclear cells. We observed that significantly differentially expressed genes were sharply up- or down-regulated in the acute phase of MI, and then changed slowly until the chronic phase. Biological functions involved at each stage of MI were identified. Additionally, dynamic miRNA-TF co-regulatory networks were constructed based on the significantly differentially expressed genes and miRNA-TF co-regulatory motifs, and the dynamic interplay of miRNAs, TFs and target genes were investigated. Finally, a new panel of candidate diagnostic biomarkers (STAT3 and ICAM1) was identified to have discriminatory capability for patients with or without MI, especially the patients with or without recurrent events. The results of the present study not only shed new light on the understanding underlying regulatory mechanisms involved in MI progression, but also contribute to the discovery of true diagnostic biomarkers for MI. PMID:27367417

  3. Studying Dynamic Features in Myocardial Infarction Progression by Integrating miRNA-Transcription Factor Co-Regulatory Networks and Time-Series RNA Expression Data from Peripheral Blood Mononuclear Cells

    PubMed Central

    Wang, Jing; Wang, Zhenzhen; Liu, Xiaoxia; Cheng, Liang; Li, Weimin

    2016-01-01

    Myocardial infarction (MI) is a serious heart disease and a leading cause of mortality and morbidity worldwide. Although some molecules (genes, miRNAs and transcription factors (TFs)) associated with MI have been studied in a specific pathological context, their dynamic characteristics in gene expressions, biological functions and regulatory interactions in MI progression have not been fully elucidated to date. In the current study, we analyzed time-series RNA expression data from peripheral blood mononuclear cells. We observed that significantly differentially expressed genes were sharply up- or down-regulated in the acute phase of MI, and then changed slowly until the chronic phase. Biological functions involved at each stage of MI were identified. Additionally, dynamic miRNA–TF co-regulatory networks were constructed based on the significantly differentially expressed genes and miRNA–TF co-regulatory motifs, and the dynamic interplay of miRNAs, TFs and target genes were investigated. Finally, a new panel of candidate diagnostic biomarkers (STAT3 and ICAM1) was identified to have discriminatory capability for patients with or without MI, especially the patients with or without recurrent events. The results of the present study not only shed new light on the understanding underlying regulatory mechanisms involved in MI progression, but also contribute to the discovery of true diagnostic biomarkers for MI. PMID:27367417

  4. Dynamic analysis of multibodies system with a floating base for rolling of ro-ro ship caused by wave and slip of heavy load

    NASA Astrophysics Data System (ADS)

    Shen, Qing; Li, Yue; Chen, Xu-Jun

    2003-12-01

    Common effect of wave and slip of internal heavy load will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibodies System with a floating base is composed of ro-ro ship and slipping heavy load. This paper takes the rolling angle of the ship and the transverse displacement of the heavy load on desk as two freedoms. Making use of analysis of apparent gravitation and apparent buoyancy, the wave rolling moment is derived. By use of dynamic method of multibodies system with a floating base, dynamic equations of the system are established. Taking a certain channel ferry as an example, a set of numerical calculation have been carried out for rolling response of the ship and displacement response of the slipping heavy load under common effect of synchro-slipping heavy loads and wave.

  5. The Unique Ability of the Electron-Positron (Epo) Lattice (Epola) Model of Space to Explain the Natural Causes of All Known Physical Features and Phenomena, Extrinsic to Nuclear Particles

    NASA Astrophysics Data System (ADS)

    Simhony, Menahem

    1999-10-01

    The binding energy _bE of an epo pair in the epola is 1.02 MeV. In an epola spot, deformed by a "guest" nucleus, such a quantum can be absorbed; this frees an epo pair off bonds, making it appear to our detection. The epo lattice constant is 4.4 fm, 50 R_e. Thus atomic bodies can move in the epola, sweeping their constituent nuclei and electrons between epola particles, creating EM de Broglie waves in the epola space, but no winds or currents. Starting a motion provides the energy of the bound epola particles that vibrate in the waves. This led us to answer the question WHY there is inertia. Epola deformations by masses of constituent nuclear particles of atomic bodies led us to answer the question WHY there is gravity. Epola deformations by electric charges and magnetism of the particles lead to answer the questions of HOW and WHY does space carry and transfer with the speed c of light the tremendous gravitational and EM interaction forces, energies, and radiations. The lattice structure per se causes all quantizations, and the applicability of the otherwise "divine" principles of uncertainty, exclusion, particle-wave duality, universality of our backyard findings, etc. 1.M.Simhony, The Epola Space, 1990, 160 pp, and The Story of Matter and Space, 1999, 70 pp (available from the author). M.Simhony, Invitation to the Natural Physics or Matter, Space, and Radiation, World Scientific, 1994. See the website: http://come.to/natural_physics

  6. Microbial dynamics during shelf-life of industrial Ricotta cheese and identification of a Bacillus strain as a cause of a pink discolouration.

    PubMed

    Sattin, E; Andreani, N A; Carraro, L; Fasolato, L; Balzan, S; Novelli, E; Squartini, A; Telatin, A; Simionati, B; Cardazzo, B

    2016-08-01

    Dairy products are perishable and have to be preserved from spoilage during the food chain to achieve the desired shelf-life. Ricotta is a typical Italian soft dairy food produced by heat coagulation of whey proteins and is considered to be a light and healthy product. The shelf-life of Ricotta could be extended, as required by the international food trade market; however, heat resistant microflora causes spoilage and poses issues regarding the safety of the product. Next-generation sequencing (NGS) applied to the Ricotta samples defined the composition of the microbial community in-depth during the shelf-life. The analysis demonstrated the predominance of spore-forming bacteria throughout the shelf-life, mostly belonging to Bacillus, Paenibacillus and Clostridium genera. A strain involved in spoilage and causing a pink discolouration of Ricotta was isolated and characterised as Bacillus mycoides/weihenstephanensis. This is the first report of a food discolouration caused by a toxigenic strain belonging to the Bacillus cereus group that resulted the predominant strain in the community of the defective ricotta. These results suggest that the processing of raw materials to eliminate spores and residual microflora could be essential for improving the quality and the safety of the product and to extend the shelf-life of industrial Ricotta. PMID:27052696

  7. Microbial dynamics during shelf-life of industrial Ricotta cheese and identification of a Bacillus strain as a cause of a pink discolouration.

    PubMed

    Sattin, E; Andreani, N A; Carraro, L; Fasolato, L; Balzan, S; Novelli, E; Squartini, A; Telatin, A; Simionati, B; Cardazzo, B

    2016-08-01

    Dairy products are perishable and have to be preserved from spoilage during the food chain to achieve the desired shelf-life. Ricotta is a typical Italian soft dairy food produced by heat coagulation of whey proteins and is considered to be a light and healthy product. The shelf-life of Ricotta could be extended, as required by the international food trade market; however, heat resistant microflora causes spoilage and poses issues regarding the safety of the product. Next-generation sequencing (NGS) applied to the Ricotta samples defined the composition of the microbial community in-depth during the shelf-life. The analysis demonstrated the predominance of spore-forming bacteria throughout the shelf-life, mostly belonging to Bacillus, Paenibacillus and Clostridium genera. A strain involved in spoilage and causing a pink discolouration of Ricotta was isolated and characterised as Bacillus mycoides/weihenstephanensis. This is the first report of a food discolouration caused by a toxigenic strain belonging to the Bacillus cereus group that resulted the predominant strain in the community of the defective ricotta. These results suggest that the processing of raw materials to eliminate spores and residual microflora could be essential for improving the quality and the safety of the product and to extend the shelf-life of industrial Ricotta.

  8. Chronic, long-term social stress can cause decreased microtubule protein network activity and dynamics in cerebral cortex of male Wistar rats.

    PubMed

    Eskandari Sedighi, Ghazaleh; Riazi, Gholam Hossein; Vaez Mahdavi, Mohammad Reza; Cheraghi, Tayebe; Atarod, Deyhim; Rafiei, Shahrbanoo

    2015-03-01

    Social stress is viewed as a factor in the etiology of a variety of psychopathologies such as depression and anxiety. Animal models of social stress are well developed and widely used in studying clinical and physiological effects of stress. Stress is known to significantly affect learning and memory, and this effect strongly depends on the type of stress, its intensity, and duration. It has been demonstrated that chronic and acute stress conditions can change neuronal plasticity, characterized by retraction of apical dendrites, reduction in axonogenesis, and decreased neurogenesis. Various behavioral studies have also confirmed a decrease in learning and memory upon exposure of animals to long-term chronic stress. On the other hand, the close relationship between microtubule (MT) protein network and neuroplasticity controlling system suggests the possibility of MT protein alterations in high stressful conditions. In this work, we have studied the kinetics, activity, and dynamicity changes of MT proteins in the cerebral cortex of male Wistar rats that were subjected to social instability for 35 and 100 days. Our results indicate that MT protein network dynamicity and polymerization ability is decreased under long-term (100 days) social stress conditions.

  9. Population dynamics of sea ducks: using models to understand the causes, consequences, evolution, and management of variation in life history characteristics

    USGS Publications Warehouse

    Flint, Paul L.

    2015-01-01

    In this chapter, I explore population dynamics of sea ducks by developing population models. In determining which life history characteristics had the greatest influence on future population dynamics, adult female survival consistently had the highest sensitivity and elasticity and this result was robust across a wide range of life history parameter values. Conversely, retrospective models consistently found that the majority of annual variation in lambda was associate with variation in productivity. Stochastic models that are base on process variation and incorporate correlations among life history parameters are the most useful for visualizing the probability of achieving a desired management outcome. Effective management targets both the mean and the variance parameters and takes advantage of correlations among life history parameters. Example models demonstrate that sea duck species can achieve equal fitness using a variety of survival and productivity combinations. Sea duck populations will tend to have long time largest in terms of responding to management actions. Understanding the role of density-dependent population regulation is critical for effective sea duck management and conservation.

  10. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal.

    PubMed

    Ueda, Akira; Yamada, Shota; Isono, Takayuki; Kamo, Hiromichi; Nakao, Akiko; Kumai, Reiji; Nakao, Hironori; Murakami, Youichi; Yamamoto, Kaoru; Nishio, Yutaka; Mori, Hatsumi

    2014-08-27

    A hydrogen bond (H-bond) is one of the most fundamental and important noncovalent interactions in chemistry, biology, physics, and all other molecular sciences. Especially, the dynamics of a proton or a hydrogen atom in the H-bond has attracted increasing attention, because it plays a crucial role in (bio)chemical reactions and some physical properties, such as dielectricity and proton conductivity. Here we report unprecedented H-bond-dynamics-based switching of electrical conductivity and magnetism in a H-bonded purely organic conductor crystal, κ-D3(Cat-EDT-TTF)2 (abbreviated as κ-D). This novel crystal κ-D, a deuterated analogue of κ-H3(Cat-EDT-TTF)2 (abbreviated as κ-H), is composed only of a H-bonded molecular unit, in which two crystallographically equivalent catechol-fused ethylenedithiotetrathiafulvalene (Cat-EDT-TTF) skeletons with a +0.5 charge are linked by a symmetric anionic [O···D···O](-1)-type strong H-bond. Although the deuterated and parent hydrogen systems, κ-D and κ-H, are isostructural paramagnetic semiconductors with a dimer-Mott-type electronic structure at room temperature (space group: C2/c), only κ-D undergoes a phase transition at 185 K, to change to a nonmagnetic insulator with a charge-ordered electronic structure (space group: P1). The X-ray crystal structure analysis demonstrates that this dramatic switching of the electronic structure and physical properties originates from deuterium transfer or displacement within the H-bond accompanied by electron transfer between the Cat-EDT-TTF π-systems, proving that the H-bonded deuterium dynamics and the conducting TTF π-electron are cooperatively coupled. Furthermore, the reason why this unique phase transition occurs only in κ-D is qualitatively discussed in terms of the H/D isotope effect on the H-bond geometry and potential energy curve.

  11. Differences in intracellular calcium dynamics cause differences in α-granule secretion and phosphatidylserine expression in platelets adhering on glass and TiO2.

    PubMed

    Gupta, Swati; Donati, Alessia; Reviakine, Ilya

    2016-06-01

    In this study, the activation of purified human platelets due to their adhesion on glass and TiO2 in the absence of extracellular calcium was investigated. Differences in α-granule secretion between platelets adhering on the two surfaces were detected by examining the expression and secretion of the α-granule markers P-selectin (CD62P) and β-thromboglobulin. Similarly, differences in the expression of phosphatidylserine (PS), and in the activation of the major integrin GPIIb/IIIa, on the surfaces of the adhering platelets, were also observed. While all of these activation markers were expressed in platelets adhering on glass, the surface markers were not expressed in platelets adhering on TiO2, and β-thromboglobulin secretion levels were substantially reduced. Differences in marker expression and secretion correlated with differences in the intracellular calcium dynamics. Calcium ionophore treatment triggered α-granule secretion and PS expression in TiO2-adhering platelets but had no effect on the activation of GPIIb/IIIa. These results demonstrate specificity in the way surfaces of artificial materials activate platelets, link differences in the intracellular calcium dynamics observed in the platelets adhering on the two surfaces to the differences in some of the platelet responses (α-granule secretion and PS expression), but also highlight the involvement of synergistic, calcium-independent pathways in platelet activation. The ability to control activation in surface-adhering platelets makes this an attractive model system for studying platelet signaling pathways and for tissue engineering applications. PMID:27124595

  12. Hdr Imaging for Feature Detection on Detailed Architectural Scenes

    NASA Astrophysics Data System (ADS)

    Kontogianni, G.; Stathopoulou, E. K.; Georgopoulos, A.; Doulamis, A.

    2015-02-01

    3D reconstruction relies on accurate detection, extraction, description and matching of image features. This is even truer for complex architectural scenes that pose needs for 3D models of high quality, without any loss of detail in geometry or color. Illumination conditions influence the radiometric quality of images, as standard sensors cannot depict properly a wide range of intensities in the same scene. Indeed, overexposed or underexposed pixels cause irreplaceable information loss and degrade digital representation. Images taken under extreme lighting environments may be thus prohibitive for feature detection/extraction and consequently for matching and 3D reconstruction. High Dynamic Range (HDR) images could be helpful for these operators because they broaden the limits of illumination range that Standard or Low Dynamic Range (SDR/LDR) images can capture and increase in this way the amount of details contained in the image. Experimental results of this study prove this assumption as they examine state of the art feature detectors applied both on standard dynamic range and HDR images.

  13. Features of the dynamics of postdetonation waves

    NASA Astrophysics Data System (ADS)

    Gimaltdinov, I. K.; Arslanbekova, R. R.; Levina, T. M.

    2016-05-01

    We present the results of numerical investigations of the parameters of postdetonation waves forming at a passage from the zone occupied with a bubbly liquid formed by the detonation wave to a zone filled with a liquid without bubbles. The dependence of the pressure amplitude of detonation waves and postdetonation waves on the gas volumetric content of bubbles has been studied. A possibility of the detonation transfer through the layer of a bubble-free liquid separating the regions of the bubbly liquid has been shown, the map of possible situations at the detonation transfer through the layer of this liquid has been presented.

  14. Dynamics of change of lipid and monoamine metabolisms and the blood coagulation system during experimental atherosclerosis caused by restriction of movement

    NASA Technical Reports Server (NTRS)

    Gvishiani, G. S.; Kobakhidze, N. G.

    1980-01-01

    Shifts in lipid, catecholamine, and blood coagulation systems following various periods (1, 2, 3, and 4 months) of experimentally induced atherosclerosis were studied. The same indices were studied in the tissues of the myocardium, liver, and brain stem-reticular formation after decapitation of the animals at the end of the experiment. Periodic motion restriction caused an increase in blood beta-lipoproteins in the rabbits at the beginning of the experiment. An increase in general cholesterol content and a decrease in the lecithincholesterol index were established at the end of the experiment. Myocardial beta-lipoprotein and brain stem reticular formation general cholesterol contents were elevated; catecholamine content was increased at the end of the experiment. In the initial months, free adrenaline basically increased, while in later months blood adrenaline decreased and blood noradrenaline increased.

  15. Rates, causes, and dynamic of long-term landscape evolution of the South Atlantic "passive continental margin", Brazil and Namibia, as revealed by thermo-kinematic numerical modeling.

    NASA Astrophysics Data System (ADS)

    Christian, Stippich; Anton, Glasmacher Ulrich; Peter, Christian, Hackspacher

    2014-05-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE and FastCape). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates.

  16. The sexually driven epidemic in youths in China’s southwestern border region was caused by dynamic emerging multiple recombinant HIV-1 strains

    PubMed Central

    Wei, Huamian; Xing, Hui; Hsi, Jenny H.; Jia, Manhong; Feng, Yi; Duan, Song; He, Cui; Yao, Shitang; Ruan, Yuhua; He, Xiang; Liao, Lingjie; Ma, Yanling; Huang, Yunda; Lu, Lin; Shao, Yiming

    2015-01-01

    Dehong prefecture, Yunnan province on China’s southwestern border was the gateway of the country’s AIDS epidemic. Studies on HIV-1 molecular epidemiology will provide key information on virus transmission dynamics and help to inform HIV prevention strategies. HIV-1 infected youths (age 16–25 years) diagnosed in the continuous 3 months in 2009 to 2012 were enrolled. By means of phylogenetic and statistical analyses, It was showed that two thirds (133/205) of youths in Dehong, of which 74.1% were infected sexually, were infected by uncharacterized recombinant HIV-1 strains. Among them about 59.4% (79/131) were unique recombinant forms (URFs) and 40.6% (54/131) formed 11 transmission clusters, termed potential circulating recombinant forms (pCRFs). The emergence of recombinants was statistically significant related with people of low education, residents outside the capital city of Dehong and being Myanmar residents. It was the first report with ongoing HIV-1 recombinant strains in a sexually driven epidemic area in China. Great efforts should be put on reducing multiple risk exposures behavior in local young people, containing the spread of pCRFs to other regions, and preventing the URFs from evolving into future CRFs. Collaborative prevention across border is needed to better control the local AIDS epidemic. PMID:26133091

  17. The Enigmatic Thirteen Micron Feature

    NASA Astrophysics Data System (ADS)

    de Queiroz e Souza, Nelson

    Low and intermediate mass stars (0.8--8 solar masses) will eventually evolve into Asymptotic Giant Branch (AGB) stars and pulsate out their atmosphere into the space around them. That ejected material will eventually cool and form dust. Understanding the nature and formation of cosmic dust is crucial to understanding the Universe. Evolved intermediate mass stars (i.e. AGB stars) are major contributors of dust to the cosmos. Dust around AGB stars are studied by means of infrared spectroscopy from which we observe several interesting spectral features. The observed AGB star spectra have been classified according to their shapes and wavelength positions of the dust features. Alongside the main spectral features around 8-12mum, there is an enigmatic 13mum feature that appears in about half the oxygen-rich AGB stars. The carrier of this feature has not yet been unequivocally identified but has been attributed to various dust species, including corundum (crystalline Al2O3), spinel (MgAl2O4), and silica (SiO2). While there have been several attempts to determine the cause of this 13mum feature, previous studies have been somewhat contradictory. In order to investigate the origin and characteristics of this spectral feature we observe variations in the 13mum feature over varying stellar parameters. We have also acquired spatially resolved spectroscopic observations of nearby O-rich AGB stars using Michelle on Gemini North. Here we present data on the 13mum feature strength mapped over space around their respective AGB star. The most popular hypothesis for the carrier of the 13mm feature is not supported by our findings.

  18. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics.

    PubMed

    Chang, Ling-Chu; Yu, Yung-Luen; Hsieh, Min-Tsang; Wang, Sheng-Hung; Chou, Ruey-Hwang; Huang, Wei-Chien; Lin, Hui-Yi; Hung, Hsin-Yi; Huang, Li-Jiau; Kuo, Sheng-Chu

    2016-01-01

    We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy. PMID:27186428

  19. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics

    PubMed Central

    Chang, Ling-Chu; Yu, Yung-Luen; Hsieh, Min-Tsang; Wang, Sheng-Hung; Chou, Ruey-Hwang; Huang, Wei-Chien; Lin, Hui-Yi; Hung, Hsin-Yi; Huang, Li-Jiau; Kuo, Sheng-Chu

    2016-01-01

    We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy. PMID:27186428

  20. Economic inequality caused by feedbacks between poverty and the dynamics of a rare tropical disease: the case of Buruli ulcer in sub-Saharan Africa.

    PubMed

    Garchitorena, Andrés; Ngonghala, Calistus N; Guegan, Jean-Francois; Texier, Gaëtan; Bellanger, Martine; Bonds, Matthew; Roche, Benjamin

    2015-11-01

    Neglected tropical diseases (NTDs) have received increasing attention in recent years by the global heath community, as they cumulatively constitute substantial burdens of disease as well as barriers for economic development. A number of common tropical diseases such as malaria, hookworm or schistosomiasis have well-documented economic impacts. However, much less is known about the population-level impacts of diseases that are rare but associated with high disability burden, which represent a great number of tropical diseases. Using an individual-based model of Buruli ulcer (BU), we demonstrate that, through feedbacks between health and economic status, such NTDs can have a significant impact on the economic structure of human populations even at low incidence levels. While average wealth is only marginally affected by BU, the economic conditions of certain subpopulations are impacted sufficiently to create changes in measurable population-level inequality. A reduction of the disability burden caused by BU can thus maximize the economic growth of the poorest subpopulations and reduce significantly the economic inequalities introduced by the disease in endemic regions.

  1. Observation and prediction of dynamic ground strains, tilts, and torsions caused by the Mw 6.0 2004 Parkfield, California, earthquake and aftershocks, derived from UPSAR array observations

    USGS Publications Warehouse

    Spudich, P.; Fletcher, Joe B.

    2008-01-01

    The 28 September 2004 Parkfield, California, earthquake (Mw 6.0) and four aftershocks (Mw 4.7-5.1) were recorded on 12 accelerograph stations of the U.S. Geological Survey Parkfield seismic array (UPSAR), an array of three-component accelerographs occupying an area of about 1 km2 located 8.8 km from the San Andreas fault. Peak horizontal acceleration and velocity at UPSAR during the mainshock were 0.45g and 27 cm/sec, respectively. We determined both time-varying and peak values of ground dilatations, shear strains, torsions, tilts, torsion rates, and tilt rates by applying a time-dependent geodetic analysis to the observed array displacement time series. Array-derived dilatations agree fairly well with point measurements made on high sample rate recordings of the Parkfield-area dilatometers (Johnston et al., 2006). Torsion Fourier amplitude spectra agree well with ground velocity spectra, as expected for propagating plane waves. A simple predictive relation, using the predicted peak velocity from the Boore-Atkinson ground-motion prediction relation (Boore and Atkinson, 2007) scaled by a phase velocity of 1 km/sec, predicts observed peak Parkfield and Chi-Chi rotations (Huang, 2003) well. However, rotation rates measured during Mw 5 Ito, Japan, events observed on a gyro sensor (Takeo, 1998) are factors of 5-60 greater than those predicted by our predictive relation. This discrepancy might be caused by a scale dependence in rotation, with rotations measured over a short baseline exceeding those measured over long baselines. An alternative hypothesis is that events having significant non-double-couple mechanisms, like the Ito events, radiate much stronger rotations than double-couple events. If this is true, then rotational observations might provide an important source of new information for monitoring seismicity in volcanic areas.

  2. Water erosion as a cause for agricultural soil loss: modeling of dynamic processes using high-resolution ground based LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Filin, Sagi; Assouline, Shmuel; Shtain, Zachi; Furman, Alexander

    2016-04-01

    Soil erosion by rainfall and water flow is a frequent natural geomorphic process shaping the earth's surface at various scales. Conventional agrotechnical methods enhance soil erosion at the field scale and are at the origin of the reduction of the upper soil layer depth. This reduction is expressed in two aspects: decrease of soil depth, mainly due to erosion, and the diminution of soil quality, mainly due to the loss of fine material, nutrients and organic matter. Rain events, not even the most extremes, cause detachment and transport of fertile soil rich in organic matter and nutrients away from the fields, filling and plugging drainage channels, blocking infrastructure and contaminating water sources. Empirical, semi-empirical and mechanistic models are available to estimate soil erosion by water flow and sediment transport (e.g. WEPP, KINEROSS, EUROSEM). Calibration of these models requires data measured at high spatial and temporal resolutions. Development of high-resolution measurement tools (for both spatial and temporal aspects) should improve the calibration of functions related to particles detachment and transport from the soil surface. In addition, despite the great impact of different tillage systems on the soil erosion process, the vast majority of the models ignore this fundamental factor. The objective of this study is to apply high-resolution ground-based LiDAR measurements to different tillage schemes and scales to improve the ability of models to accurately describe the process of soil erosion induced by rainfall and overland flow. Ground-based laser scans provide high resolution accurate and subtle geomorphic changes, as well as larger-scale deformations. As such, it allows frequent monitoring, so that even the effect of a single storm can be measured, thus improving the calibration of the erosion models. Preliminary results for scans made in the field show the potential and limitations of ground-based LiDAR, and at this point qualitatively can

  3. Rare causes of osteoporosis

    PubMed Central

    Marcucci, Gemma; Brandi, Maria Luisa

    2015-01-01

    Summary Osteoporosis is a metabolic bone disease characterized by loss of bone mass and strength, resulting in increased risk of fractures. It is classically divided into primary (post-menopausal or senile), secondary and idiopathic forms. There are many rare diseases, that cause directly or indirectly osteoporosis. The identification and classification of most of these rare causes of osteoporosis is crucial for the specialists in endocrinology and not, in order to prevent this bone complication and to provide for an early therapy. Several pathogenic mechanisms are involved, including various aspects of bone metabolism such as: decreased bone formation, increased bone resorption, altered calcium, phosphorus and/or vitamin D homeostasis, and abnormal collagen synthesis. In this review, less common forms of primary and secondary osteoporosis are described, specifying, if applicable: genetic causes, epidemiology, clinical features, and pathogenic mechanisms causing osteoporosis. A greater awareness of all rare causes of osteoporosis could reduce the number of cases classified as idiopathic osteoporosis and allow the introduction of appropriate and timely treatments. PMID:26604941

  4. Multivariate Feature Selection for Predicting Scour-Related Bridge Damage using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Anderson, I.

    2015-12-01

    Scour and hydraulic damage are the most common cause of bridge failure, reported to be responsible for over 60% of bridge failure nationwide. Scour is a complex process, and is likely an epistatic function of both bridge and stream conditions that are both stationary and in dynamic flux. Bridge inspections, conducted regularly on bridges nationwide, rate bridge health assuming a static stream condition, and typically do not include dynamically changing geomorphological adjustments. The Vermont Agency of Natural Resources stream geomorphic assessment data could add value into the current bridge inspection and scour design. The 2011 bridge damage from Tropical Storm Irene served as a case study for feature selection to improve bridge scour damage prediction in extreme events. The bridge inspection (with over 200 features on more than 300 damaged and 2,000 non-damaged bridges), and the stream geomorphic assessment (with over 300 features on more than 5000 stream reaches) constitute "Big Data", and together have the potential to generate large numbers of combined features ("epistatic relationships") that might better predict scour-related bridge damage. The potential combined features pose significant computational challenges for traditional statistical techniques (e.g., multivariate logistic regression). This study uses a genetic algorithm to perform a search of the multivariate feature space to identify epistatic relationships that are indicative of bridge scour damage. The combined features identified could be used to improve bridge scour design, and to better monitor and rate bridge scour vulnerability.

  5. High resolution cloud feature tracking on Venus by Galileo

    NASA Technical Reports Server (NTRS)

    Toigo, Anthony; Gierasch, Peter J.; Smith, Michael D.

    1994-01-01

    The Venus cloud deck was monitored in February 1990 for 16 hours at 400 nanometers wavelength by the Galileo imaging system, with a spatial resolution of about 15 km and with image time separations as small as 10 minutes. Velocities are deduced by following the motion of small cloud features. In spite of the high temporal frequence is capable of being detected, no dynamical phenomena are apparent in the velocity data except the already well-known solar tides, possibly altered by the slow 4-day wave and the Hadley circulation. There is no evidence, to a level of approximately 4 m/s, of eddy or wavelike activity. The dominant size of sub-global scale albedo features is 200-500 km, and their contrast is approximately 5%. At low altitudes there are patches of blotchy, cell-like structures but at most locations the markings are streaky. The patterns are similar to those discovered by Mariner 10 and Pioneer Venus (M. J. S. Belton et al., 1976, W. B. Rossow et al., 1980). Scaling arguments are presented to argue that the mesoscale blotchy cell-like cloud patterns are caused by local dynamics driven in a shallow layer by differential absorption of sunlight. It is also argued that mesoscale albedo features are either streaky or cell-like simply depending on whether the horizontal shear of the large scale flow exceeds a certain critical value.

  6. Persuasion dynamics

    NASA Astrophysics Data System (ADS)

    Weisbuch, Gérard; Deffuant, Guillaume; Amblard, Frédéric

    2005-08-01

    We here discuss a model of continuous opinion dynamics in which agents adjust continuous opinions as a result of random binary encounters whenever their difference in opinion is below a given threshold. We concentrate on the version of the model in the presence of few extremists which might drive the dynamics to generalized extremism. A network version of the dynamics is presented here, and its results are compared to those previously obtained for the full-mixing case. The same dynamical regimes are observed, but in rather different parameter regions. We here show that the combination of meso-scale features resulting from the first interaction steps determines the asymptotic state of the dynamics.

  7. Molecular dynamics simulation and free energy landscape methods in probing L215H, L217R and L225M βI-tubulin mutations causing paclitaxel resistance in cancer cells.

    PubMed

    Tripathi, Shubhandra; Srivastava, Gaurava; Sharma, Ashok

    2016-08-01

    Drug resistance poses a threatening challenge for mankind, as the development of resistance to already well-established drugs causes serious therapeutic problems. Resistance to paclitaxel (Ptxl), a complex diterpenoid working as microtubule stabilizer, is one such issue in cancer treatment. Microtubule stabilizer drugs, stabilises microtubules upon binding to β-tubulin subunit of tubulin heterodimer thus causing mitotic arrest leading to death of cancer cell. Leucine point mutations viz. L215H, L217R, and L225M were reported for Ptxl resistance in various cancers. In the current study, molecular mechanism of these resistance causing mutations was explored using molecular docking, molecular dynamics (MD) simulation, binding energy estimation (MMPBSA), free energy decomposition, principle component analysis (PCA) and free energy landscape (FEL) methods. A total of five systems including unbound βI-tubulin (Apo), docked wild+Ptxl, L215H+Ptxl, L217R+Ptxl and L225M+Ptxl were prepared, and 50 ns MD simulation was performed for each system. Binding energy estimation indicated that leucine mutation reduces the binding affinity of Ptxl in mutant types (MTs) as compared to wild type (WT). Further, in contrast to WT Ptxl interactions with the M-loop (PHE270-VAL286), S6-S7 loop and H9-H10 were significantly altered in MTs. Results showed that in MTs, Ptxl had weak interaction with M-loop residues, while having strong affinity with S6-S7 loop and H6-H7 loop. Moreover, PCA and FEL analysis revealed that M-loop flexible region (THR274-LEU284) was strongly bound with Ptxl in WT preventing its flexible movement and the causing factor for microtubule stabilization. In MTs due to poor interaction with Ptxl, M-loop flexible region retains its flexibility, therefore unable to stabilize microtubule. This study will give an insight into the importance of M-loop flexible region interaction with Ptxl for microtubule stabilization. In addition, it clearly provides the molecular basis of

  8. Molecular dynamics simulation and free energy landscape methods in probing L215H, L217R and L225M βI-tubulin mutations causing paclitaxel resistance in cancer cells.

    PubMed

    Tripathi, Shubhandra; Srivastava, Gaurava; Sharma, Ashok

    2016-08-01

    Drug resistance poses a threatening challenge for mankind, as the development of resistance to already well-established drugs causes serious therapeutic problems. Resistance to paclitaxel (Ptxl), a complex diterpenoid working as microtubule stabilizer, is one such issue in cancer treatment. Microtubule stabilizer drugs, stabilises microtubules upon binding to β-tubulin subunit of tubulin heterodimer thus causing mitotic arrest leading to death of cancer cell. Leucine point mutations viz. L215H, L217R, and L225M were reported for Ptxl resistance in various cancers. In the current study, molecular mechanism of these resistance causing mutations was explored using molecular docking, molecular dynamics (MD) simulation, binding energy estimation (MMPBSA), free energy decomposition, principle component analysis (PCA) and free energy landscape (FEL) methods. A total of five systems including unbound βI-tubulin (Apo), docked wild+Ptxl, L215H+Ptxl, L217R+Ptxl and L225M+Ptxl were prepared, and 50 ns MD simulation was performed for each system. Binding energy estimation indicated that leucine mutation reduces the binding affinity of Ptxl in mutant types (MTs) as compared to wild type (WT). Further, in contrast to WT Ptxl interactions with the M-loop (PHE270-VAL286), S6-S7 loop and H9-H10 were significantly altered in MTs. Results showed that in MTs, Ptxl had weak interaction with M-loop residues, while having strong affinity with S6-S7 loop and H6-H7 loop. Moreover, PCA and FEL analysis revealed that M-loop flexible region (THR274-LEU284) was strongly bound with Ptxl in WT preventing its flexible movement and the causing factor for microtubule stabilization. In MTs due to poor interaction with Ptxl, M-loop flexible region retains its flexibility, therefore unable to stabilize microtubule. This study will give an insight into the importance of M-loop flexible region interaction with Ptxl for microtubule stabilization. In addition, it clearly provides the molecular basis of

  9. Musculoskeletal mnemonics: differentiating features.

    PubMed

    Currie, Jonathan W; Davis, Kirkland W; Lafita, Vaishali S; Blankenbaker, Donna G; De Smet, Arthur A; Rosas, Humberto; Lee, Kenneth S

    2011-01-01

    Mnemonics are often used in musculoskeletal radiology to help radiologists remember long differential diagnoses. However, unless the specific appearance of each entity on a differential is also recalled, mnemonics become useless. This article presents 8 mnemonics with their corresponding differential diagnoses and distinguishing features. Bubbly lucent lesions of bone are recalled with the FEGNOMASHIC mnemonic, but when only lucent lesions of the diaphysis are included, a more appropriate mnemonic is FEMALE. The lucent lesions of bone differentials often can be narrowed based on specific characteristics of the lesion but radiographic findings elsewhere and clinical information often help. Osseous metastases may present as lucent or sclerotic lesions; when sclerotic, the differential is best remembered with the mnemonic 5 "BEES" Like Pollen. The mnemonic for Wormian bones is PORKCHOPS. The Wormian bones in most of these entities are indistinguishable, so one must rely on radiographic findings outside the skull for diagnosis. By contrast, differentiating causes of acro-osteolysis is often possible with findings seen only on the hand radiographs; the mnemonic for acro-osteolysis is RADSHIP. In skeletally immature patients with frayed metaphyses, the mnemonic is CHARMS. Although the appearance of the fraying is seldom diagnostic, findings in the adjacent portions of the long bones may be characteristic. FETISH is the mnemonic used to remember the entities for the differential diagnosis of vertebra plana. Age of the patient, clinical history, and findings in the adjacent spine often help to provide the specific diagnosis. Nearly all the entities on the differential diagnosis for distal clavicle erosion (mnemonic: SHIRT Pocket) are included in other differentials in this article. PMID:21266270

  10. Adaptive feature extraction expert

    SciTech Connect

    Yuschik, M.

    1983-01-01

    The identification of discriminatory features places an upper bound on the recognition rate of any automatic speech recognition (ASR) system. One way to structure the extraction of features is to construct an expert system which applies a set of rules to identify particular properties of the speech patterns. However, these patterns vary for an individual speaker and from speaker to speaker so that another expert is actually needed to learn the new variations. The author investigates the problem by using sets of discriminatory features that are suggested by a feature generation expert, improves the selectivity of these features with a training expert, and finally develops a minimally spanning feature set with a statistical selection expert. 12 references.

  11. Multitask joint spatial pyramid matching using sparse representation with dynamic coefficients for object recognition

    NASA Astrophysics Data System (ADS)

    Hajigholam, Mohammad-Hossein; Raie, Abolghasem-Asadollah; Faez, Karim

    2016-03-01

    Object recognition is considered a necessary part in many computer vision applications. Recently, sparse coding methods, based on representing a sparse feature from an image, show remarkable results on several object recognition benchmarks, but the precision obtained by these methods is not yet sufficient. Such a problem arises where there are few training images available. As such, using multiple features and multitask dictionaries appears to be crucial to achieving better results. We use multitask joint sparse representation, using dynamic coefficients to connect these sparse features. In other words, we calculate the importance of each feature for each class separately. This causes the features to be used efficiently and appropriately for each class. Thus, we use variance of features and particle swarm optimization algorithms to obtain these dynamic coefficients. Experimental results of our work on Caltech-101 and Caltech-256 databases show more accuracy compared with state-of-the art ones on the same databases.

  12. Defeating feature fatigue.

    PubMed

    Rust, Roland T; Thompson, Debora Viana; Hamilton, Rebecca W

    2006-02-01

    Consider a coffeemaker that offers 12 drink options, a car with more than 700 features on the dashboard, and a mouse pad that's also a clock, calculator, and FM radio. All are examples of "feature bloat", or "featuritis", the result of an almost irresistible temptation to load products with lots of bells and whistles. The problem is that the more features a product boasts, the harder it is to use. Manufacturers that increase a product's capability--the number of useful functions it can perform--at the expense of its usability are exposing their customers to feature fatigue. The authors have conducted three studies to gain a better understanding of how consumers weigh a product's capability relative to its usability. They found that even though consumers know that products with more features are harder to use, they initially choose high-feature models. They also pile on more features when given the chance to customize a product for their needs. Once consumers have actually worked with a product, however, usability starts to matter more to them than capability. For managers in consumer products companies, these findings present a dilemma: Should they maximize initial sales by designing high-feature models, which consumers consistently choose, or should they limit the number of features in order to enhance the lifetime value of their customers? The authors' analytical model guides companies toward a happy middle ground: maximizing the net present value of the typical customer's profit stream. The authors also advise companies to build simpler products, help consumers learn which products suit their needs, develop products that do one thing very well, and design market research in which consumers use actual products or prototypes.

  13. New features in MEDM.

    SciTech Connect

    Evans, K., Jr.

    1999-04-13

    MEDM, which is derived from Motif Editor and Display Manager, is the primary graphical interface to the EPICS control system. This paper describes new features that have been added to MEDM in the last two years. These features include new editing capabilities, a PV Info dialog box, a means of specifying limits and precision, a new implementation of the Cartesian Plot, new features for several objects, new capability for the Related Display, help, a user-configurable Execute Menu, reconfigured start-up options, and availability for Windows 95/98/NT. Over one hundred bugs have been fixed, and the program is quite stable and in extensive use.

  14. Exploring strategies for classification of external stimuli using statistical features of the plant electrical response.

    PubMed

    Chatterjee, Shre Kumar; Das, Saptarshi; Maharatna, Koushik; Masi, Elisa; Santopolo, Luisa; Mancuso, Stefano; Vitaletti, Andrea

    2015-03-01

    Plants sense their environment by producing electrical signals which in essence represent changes in underlying physiological processes. These electrical signals, when monitored, show both stochastic and deterministic dynamics. In this paper, we compute 11 statistical features from the raw non-stationary plant electrical signal time series to classify the stimulus applied (causing the electrical signal). By using different discriminant analysis-based classification techniques, we successfully establish that there is enough information in the raw electrical signal to classify the stimuli. In the process, we also propose two standard features which consistently give good classification results for three types of stimuli--sodium chloride (NaCl), sulfuric acid (H₂SO₄) and ozone (O₃). This may facilitate reduction in the complexity involved in computing all the features for online classification of similar external stimuli in future.

  15. Exploring strategies for classification of external stimuli using statistical features of the plant electrical response

    PubMed Central

    Chatterjee, Shre Kumar; Das, Saptarshi; Maharatna, Koushik; Masi, Elisa; Santopolo, Luisa; Mancuso, Stefano; Vitaletti, Andrea

    2015-01-01

    Plants sense their environment by producing electrical signals which in essence represent changes in underlying physiological processes. These electrical signals, when monitored, show both stochastic and deterministic dynamics. In this paper, we compute 11 statistical features from the raw non-stationary plant electrical signal time series to classify the stimulus applied (causing the electrical signal). By using different discriminant analysis-based classification techniques, we successfully establish that there is enough information in the raw electrical signal to classify the stimuli. In the process, we also propose two standard features which consistently give good classification results for three types of stimuli—sodium chloride (NaCl), sulfuric acid (H2SO4) and ozone (O3). This may facilitate reduction in the complexity involved in computing all the features for online classification of similar external stimuli in future. PMID:25631569

  16. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2005-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  17. Feature Profile Simulations and Finite Penetration Depth

    NASA Astrophysics Data System (ADS)

    Moroz, Paul; Moroz, Daniel

    2012-10-01

    In plasma materials processing, energetic ions, neutrals and UV photons typically penetrate deep inside solid materials breaking atomic bonds and displacing atoms on their paths. These important phenomena are rarely taken into consideration in processing simulation software, primarily because the proper penetration depths and the corresponding energy depositions, breaking bonds, and atom displacements are difficult and computationally expensive to compute. The FPS-3D feature profile simulator [1-2] is doing that computationally efficiently by utilizing tabulated results obtained with other methods. We discuss, compare, and present results of such simulations made with different methods, one of which is the molecular dynamics analysis. In general, molecular dynamics could be used for simulating materials processing, etching and deposition, but it is extremely computationally expensive to be used for large groups of atoms. In practice, molecular dynamics methods are too slow to be used for feature profile simulations. However, they could help in defining proper chemical reactions and corresponding rates to be used in an advanced feature profile simulator such as FPS-3D. We present results of FPS-3D simulations for Si and SiO2 etching in Ar/Cl2 and Ar/C4F6/O2 plasmas. [4pt] [1] P. Moroz, ``General Feature Profile Simulator FPS-3D,'' ECS Transactions, 35, 25 (2011). [0pt] [2] P. Moroz, ``Numerical Simulation of Feature Profile Evolution using FPS-3D,'' IEEE Transactions of Plasma Science, 39, 2804 (2011).

  18. Feature selection in bioinformatics

    NASA Astrophysics Data System (ADS)

    Wang, Lipo

    2012-06-01

    In bioinformatics, there are often a large number of input features. For example, there are millions of single nucleotide polymorphisms (SNPs) that are genetic variations which determine the dierence between any two unrelated individuals. In microarrays, thousands of genes can be proled in each test. It is important to nd out which input features (e.g., SNPs or genes) are useful in classication of a certain group of people or diagnosis of a given disease. In this paper, we investigate some powerful feature selection techniques and apply them to problems in bioinformatics. We are able to identify a very small number of input features sucient for tasks at hand and we demonstrate this with some real-world data.

  19. Volcanic features of Io

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  20. Feature Characterization Library

    2006-08-03

    FCLib is a data analysis toolkit constructed to meet the needs of data discovery in large-scale, spatio-temporal data such as finite element simulation data. FCLib is a C library toolkit of building blocks that can be assembled into complex analyses. Important features of FCLib include the following: (1) Support of feature-based analysis, (2) minimization of low-oevel processing, (3) ease of use, and (4) applicable to the wide variety of science domains.

  1. Pseudohypoparathyroidism, rare cause of hypocalcaemia!

    PubMed

    Dosi, Rupal V; Ambaliya, Annirudh P; Joshi, Harshal K; Patell, Rushad D

    2013-10-01

    Pseudohypoparathyroidism is a rare disorder which is characterized by end organ parathormone resistance, which causes hypocalcaemia, hyperphosphataemia and high parathormone levels. We are reporting here case of a young male who had symptoms of chronic hypocalcaemia, with a positive Trousseau's and Chvostek's sign on examination, without any features of Albright's hereditary osteodystrophy. Lab investigations revealed low calcium, high phosphate and high PTH levels. The patient was diagnosed as having Pseudohypoparathyroidism and he was treated successfully with Calcium and Vitamin D supplements.

  2. Cryovolcanic Features on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Stofan, E. R.; Kirk, R. L.; Mitchell, K. L.; LeGall, A.; Barnes, J. W.; Hayes, A.; Kargel, J.; Radebaugh, J.; Janssen, M. A.; Neish, C. D.; Wood, C.; Wall, S. D.; Lunine, J. I.; Malaska, M. J.

    2013-09-01

    We present evidence to support the cryovolcanic origin of some features, which includes the deepest pit known on Titan (Sotra Patera) and some of the highest mountains (Doom and Erebor Montes). We interpret this region to be a cryovolcanic complex of multiple cones, craters, and flows. Elsewhere, a circular feature, approximately 100 km across, is morphologically similar to a laccolith, showing a cross pattern interpreted to be extensional fractures. However, we find that some other previously supposed cryovolcanic features were likely formed by other processes. We discuss implications for eruption style and composition of cryovolcanism on Titan. Our analysis shows the great value of combining data sets when interpreting Titan's geology and in particular stresses the value of topographic data.

  3. Three featured plenary sessions

    NASA Astrophysics Data System (ADS)

    2012-07-01

    The conference included three plenary sessions. The plenary on Governance, Security, Economy, and the Ecosystem of the Changing Arctic featured Vera Alexander, president, Arctic Research Consortium of the U.S.; Alan Thornhill, chief environmental officer, U.S. Department of the Interior's Bureau of Ocean Energy Management; and Fran Ulmer, chair, U.S. Arctic Research Commission. A plenary on the U.N. Convention on the Law of the Sea featured Ambassador David Balton, deputy assistant secretary for oceans and fisheries, U.S. Department of State; and Rear Admiral Frederick Kenney Jr., judge advocate general and chief counsel, U.S. Coast Guard. The plenary on Science and the 21st Century featured Phil Keslin, chief technology officer, small lab within Google.

  4. Dynamic Topography of Oceans and Continents

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C.; Conrad, C. P.

    2004-05-01

    The large contrasts in surface topography are one of the most striking features of our planet. Contributions to topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal thickness and density structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. Upwelling or downwelling flow in Earth's mantle can elevate or depress the earth's surface even if the sources of buoyancy are deep in the mantle. However, direct observation of this ``dynamic topography'' has been elusive, because it is obscured by the isostatic contribution due to crustal and lithospheric structure. Any potential confirmation of the role of dynamic topography, sheds light not only on the impact of mantle dynamics on surface processes, but also on the nature of mantle dynamics itself. For example, we expect dramatically different topographic signals from layered vs. whole mantle convection. We have learned a great deal about the consequences of dynamic topography for continental flooding and the formation of large sedimentary basins since the pioneering work of Mitrovica et al. [1989] and Gurnis [1990]. Recently, unequivocal signals of dynamically supported topography have been found in both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). In all three cases, the identifiable dynamic topography signal results from upwelling mantle. In regions associated with downwellings considerable controversy remains [e.g. Wheeler and White, 2002]. There is a hint in this result that relates to the ability of slabs to penetrate into the lower mantle and of upwellings to reach the surface from great depth. We review in this talk the evidence for dynamic topography in continents and oceans, and present some speculations related to the nature of layering in mantle convection.

  5. MCNP4A: Features and philosophy

    SciTech Connect

    Hendricks, J.S.

    1993-05-01

    This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ``Quality, Value and New Features.`` Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, new photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs.

  6. Segmentation of Infant Hippocampus Using Common Feature Representations Learned for Multimodal Longitudinal Data

    PubMed Central

    Guo, Yanrong; Wu, Guorong; Yap, Pew-Thian; Jewells, Valerie; Lin, Weili

    2016-01-01

    Aberrant development of the human brain during the first year after birth is known to cause critical implications in later stages of life. In particular, neuropsychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), have been linked with abnormal early development of the hippocampus. Despite its known importance, studying the hippocampus in infant subjects is very challenging due to the significantly smaller brain size, dynamically varying image contrast, and large across-subject variation. In this paper, we present a novel method for effective hippocampus segmentation by using a multi-atlas approach that integrates the complementary multimodal information from longitudinal T1 and T2 MR images. In particular, considering the highly heterogeneous nature of the longitudinal data, we propose to learn their common feature representations by using hierarchical multi-set kernel canonical correlation analysis (CCA). Specifically, we will learn (1) within-time-point common features by projecting different modality features of each time point to its own modality-free common space, and (2) across-time-point common features by mapping all time-point-specific common features to a global common space for all time points. These final features are then employed in patch matching across different modalities and time points for hippocampus segmentation, via label propagation and fusion. Experimental results demonstrate the improved performance of our method over the state-of-the-art methods. PMID:27019875

  7. Substation fire protection features

    SciTech Connect

    Hausheer, T.G.

    1995-10-01

    This paper describes Commonwealth Edison`s (ComEd) approach to substation fire protection. Substation fires can have a major operational, financial, as well as political impact on a utility. The overall Company philosophy encompasses both active and passive fire protection features to provide prompt detection, notification, and confinement of fire and its by-products. Conservatively designed smoke detection systems and floor and wall penetration seals form the backbone of this strategy. The Company has implemented a program to install these features in new and existing substations. Thus far these measures have been successful in mitigating the consequences of substation fires.

  8. Escalator design features evaluation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Deshpande, G. K.

    1982-01-01

    Escalators are available with design features such as dual speed (90 and 120 fpm), mat operation and flat steps. These design features were evaluated based on the impact of each on capital and operating costs, traffic flow, and safety. A human factors engineering model was developed to analyze the need for flat steps at various speeds. Mat operation of escalators was found to be cost effective in terms of energy savings. Dual speed operation of escalators with the higher speed used during peak hours allows for efficient operation. A minimum number of flat steps required as a function of escalator speed was developed to ensure safety for the elderly.

  9. Comprehensive Analysis of Neptune's Features

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich

    2007-07-01

    Hubble took an amazing data set of Neptune in nine GO programs between 1994 and 2006, consisting of 408 WFPC2 exposures with several filters present in each program. The PIs of these programs, Hammel, Sromovsky, and Rages, published a variety of results about Neptune's atmosphere based on each program. However, the typical size of the grants for each program did not allow all scientific questions of these rich data sets to be addressed.I propose to analyze these 400 images to create a consistent data set spanning 12 years, and I will make even the intermediate results available, such as 400 consistently calibrated images. The combined data set will then be able to address more far reaching questions than could be done by single data sets. Whereas previous studies focused on only a few center-to-limb measurements for a limited selection of latitudes and wavelengths, I will investigate the whole data set and analyze 16,000 center-to-limb curves. I will use the principal component analysis and various statistical tests to find the hidden variations on Neptune. I created software for a similar project on Hubble's Saturn images. I am ready to adapt and apply it to Hubble's Neptune images.The huge number of variable features on Neptune contain an ideal probe about atmospheric dynamics. Previous investigations have only scratched pieces of the surface of this treasure. It is time for a comprehensive study of the whole data to discover fundamenatal insights about atmospheric dynamics.

  10. Infectious causes of fever of unknown origin.

    PubMed

    McGregor, Alastair C; Moore, David A

    2015-06-01

    The causes of fever of unknown origin (FUO) are changing because advances in clinical practice and diagnostics have facilitated the identification of some infections. A variety of bacterial infections can cause FUO, and these can be divided into those that are easy to identify using culture and those that require serological or molecular tests for identification. A number of viral, parasitic and fungal infections can also cause prolonged fever. This article summarises the clinical features and diagnostic strategy of these infections.

  11. Integrated Education. Feature Issue.

    ERIC Educational Resources Information Center

    York, Jennifer, Ed.; Vandercook, Terri, Ed.

    1988-01-01

    This "feature issue" provides various perspectives on a number of integrated education topics, including successful integration practices and strategies, the changing roles of teachers, the appropriate role of research, the history and future of integrated education, and the realization of dreams of life in the mainstream for children with severe…

  12. Searchable solar feature catalogues

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Aboudarham, J.; Zharkov, S.; Ipson, S. S.; Benkhalil, A. K.; Fuller, N.

    The searchable Solar Feature Catalogues (SFCs) are developed from digitized solar images using automated pattern recognition techniques. The techniques were applied for the detection of sunspots, active regions, filaments and line-of-sight magnetic neutral lines in automatically standardized full disk solar images in Ca II K1, Ca II K3 and Ha lines taken at the Paris-Meudon Observatory and white light images and magnetograms from SOHO/MDI. The results of the automated recognition were verified with manual synoptic maps and available statistical data that revealed good detection accuracy. Based on the recognized parameters, a structured database of Solar Feature Catalogues was built on a MySQL server for every feature and published with various pre-designed search pages on the Bradford University web site http://www.cyber.brad.ac.uk/egso/SFC/. The SFCs with nine year coverage (1996-2004) is to be used for deeper investigation of the feature classification and solar activity forecast.

  13. Assistive Technologies, Feature Issue.

    ERIC Educational Resources Information Center

    Wobschall, Rachel, Ed.; Lakin, Charlie, Ed.

    1995-01-01

    This feature issue of a newsletter on community integration of individuals with developmental disabilities considers the role of assistive technologies. It describes efforts to utilize consumer direction, public policy, creativity, energy, and professional know-how in the pursuit of technology-based opportunities to enhance community inclusion,…

  14. Main features of meiosis

    SciTech Connect

    1993-12-31

    Chapter 17, outlines the main features of meiosis, beginning with its significance and proceeding through the meiotic stages. Meiosis is the most important modification of mitosis because it is the reduction division that gives rise to the haploid generation in the life cycle. 17 refs., 6 figs.

  15. Common Cause Failure Modeling

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Britton, Paul; Ring, Robert; Novack, Steven

    2015-01-01

    Space Launch System (SLS) Agenda: Objective; Key Definitions; Calculating Common Cause; Examples; Defense against Common Cause; Impact of varied Common Cause Failure (CCF) and abortability; Response Surface for various CCF Beta; Takeaways.

  16. What Causes Cardiomyopathy?

    MedlinePlus

    ... and can damage the organs, including the heart. Sarcoidosis : A disease that causes inflammation and can affect ... believe that an abnormal immune response may cause sarcoidosis. This abnormal response causes tiny lumps of cells ...

  17. Quad-polarization SAR features of ocean currents

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V.; Kozlov, I.; Chapron, B.; Johannessen, J. A.

    2014-09-01

    A methodology is demonstrated to exploit the polarization sensitivity of high-resolution radar measurements to interpret and quantify upper ocean dynamics. This study particularly illustrates the potential of quad-polarization synthetic aperture radar (SAR) measurements. The analysis relies on essential characteristics of the electromagnetic scattering mechanisms and hydrodynamical principles. As the relaxation scale of centimeter-scale ocean surface scatters is typically small, radar signal anomalies associated with surface manifestations of the upper ocean dynamics on spatial scales exceeding 100 m are mostly dominated by nonresonant and nonpolarized scatters. These "scalar" contributions can thus efficiently trace local breaking and near-breaking areas, caused by surface current variations. Using dual copolarized measurements, the polarized Bragg-type radar scattering is isolated by considering the difference (PD) between vertically and horizontally polarized radar signals. The nonpolarized (NP) contribution associated with wave breaking is then deduced, using the measured polarization ratio (PR) between polarized signals. Considering SAR scenes depicting various surface manifestations of the upper ocean dynamics (internal waves, mesoscale surface current features, and SST front), the proposed methodology and set of decompositions (PD, PR, and NP) efficiently enable the discrimination between surface manifestation of upper ocean dynamics and wind field variability. Applied to quad-polarized SAR images, such decompositions further provide unique opportunities to more directly assess the cross-polarized (CP for HV or VH) signal sensitivity to surface roughness changes. As demonstrated, such an analysis unambiguously demonstrates and quantitatively evaluates the relative impact of breakers on cross-polarized signals under low to moderate wind conditions.

  18. Inherent design features of the GCFR

    SciTech Connect

    Medwid, W.; Breher, W.; Shenoy, A.; Elliott, R.

    1980-05-01

    This paper discusses several inherent design features of the GCFR that enhance its safety and presents analyses to demonstrate the degree of protection they provide. These features are a subset of a larger group of potential inherent features that form the third line of protection (LOP-3) for the GCFR. The function of LOP-3 is to demonstrate that the inherent response of the reactor system will limit core damage even if active cooling and shutdown systems in LOP-1 and LOP-2 fail. By providing this function with inherent features, which do not depend on active components and are self-controlling, an additional level of protection against common cause failure mechanisms is provided for both protected and unprotected events. The examples of LOP-3 discussed in this paper are natural circulation core cooling to the ultimate atmospheric heat sink and inherent reactor shutdown mechanisms.

  19. North Polar Features

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows banded terrain of the north polar region of Mars. The bands are exposures of layered material, possibly composed of dust and ice. The dark, rounded to elliptical mounds in this image might be the locations of ancient sand dunes that were completely buried in the north polar layered material. In more recent times, these mounds have been exhumed from within the layered material. Alternatively, the dark features are not ancient, exhumed dunes, but perhaps the remnants of a dark layer of material that once covered the entire area shown in the image. These features are located near 79.9oN, 31.4oW. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  20. Isidis Planitia Features

    NASA Technical Reports Server (NTRS)

    2004-01-01

    26 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the most typical features of Isidis Planitia at full (1.5 meters -- 5 feet -- per pixel) resolution. The typical features are: (1) light-toned, ripple-like dunes and (2) mounds with summit pits. The dunes are formed by wind. The double-cone feature in the lower right quarter of the image is similar to many mounds and chains of mounds or cones found all across Isidis Planitia. These were seen at lower resolution in Viking orbiter images in the 1970s and were generally considered to be either small volcanoes or ice-cored mounds known as pingoes. With high resolution MOC images, it became apparent that many of these mounds may simply be the remnants of crater and pit chain floors, elevated above the surrounding plains as the layers of rock into which they formed were stripped away. Like much of Mars, there are more questions than answers. This image is located near 8.6oN, 268.2oW, and covers an area about 1.1 km (0.7 mi) wide. Sunlight illuminates the scene from the left/lower left.

  1. Ceraunius Tholus Feature

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 December 2004 Today's Mars Picture of the Day features two images. The top picture is a mosaic of Viking orbiter images acquired in the late 1970s. The lower image is a high resolution picture from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). The Viking mosaic shows Ceraunius Tholus, a volcano in the Tharsis region that was first viewed in images obtained by Mariner 9 in 1972. Several channels run down the slope of the Ceraunius Tholus volcano. The deepest of those channels ends in an elliptical crater. The elliptical crater was formed by a very oblique meteor impact. Where the channel meets the floor of the elliptical crater, there is a small mound of material. Presumably, this material was deposited in the elliptical crater after running down through the channel on the volcano's northwest flank.

    Near the top/center of the mound in the elliptical crater is a small, circular depression. Some have speculated for years that this depression is related to volcanism, others thought that it may be an impact crater. The MGS MOC image (lower of the two images) shows that crater. It is not the source of lava flows or any other volcanic features. Most likely, it is an old impact crater. This feature is located near 25.2oN, 97.7oW. The MOC image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  2. Featured Image: Modeling Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    This image shows a computer simulation of the hydrodynamics within a supernova remnant. The mixing between the outer layers (where color represents the log of density) is caused by turbulence from the Rayleigh-Taylor instability, an effect that arises when the expanding core gas of the supernova is accelerated into denser shell gas. The past standard for supernova-evolution simulations was to perform them in one dimension and then, in post-processing, manually smooth out regions that undergo Rayleigh-Taylor turbulence (an intrinsically multidimensional effect). But in a recent study, Paul Duffell (University of California, Berkeley) has explored how a 1D model could be used to reproduce the multidimensional dynamics that occur in turbulence from this instability. For more information, check out the paper below!CitationPaul C. Duffell 2016 ApJ 821 76. doi:10.3847/0004-637X/821/2/76

  3. Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of calix[4]arene and delineation of the features of the complex by molecular dynamics.

    PubMed

    Kandpal, Manoj; Bandela, Anil Kumar; Hinge, Vijaya Kumar; Rao, V Ramgopal; Rao, Chebrolu Pulla

    2013-12-26

    A new benzimidazole-functionalized calix[4]arene receptor (R) was synthesized and characterized. The receptor R shows better selectivity toward trinitrotoluene (TNT) compared to the other nitro explosives in solution, which also retains its effectiveness for solid-phase detection. The chemical interactions of the molecule with different nitro explosive analytes were studied by fluorescence spectroscopy and by a molecular dynamics approach. The molecular dynamics studies show a 1:3 complex between R and TNT, and hence high sensitivity was imparted by fluorescence studies. The detection of explosive vapors in ambient conditions was tested by using a sensitive coating layer of R on an SU-8/CB-based piezoresistive cantilever surface. The developed device showed large sensitivity toward TNT compared to cyclotrimethylenetrinitramine (RDX) and pentaerythritol tetranitrate (PETN) in the solid state at their respective vapor pressures at room temperature. The detection sensitivity of the device was estimated to be 35 mV for TNT at ambient conditions. Moreover, the sensor does not show a response when exposed to humidity. These results demonstrate that R can be used as one of the coating materials for a cantilever for the detection of TNT using piezoresistivity measurement. R can also detect the explosives in solution with high sensitivity and selectivity by fluorescence spectroscopy.

  4. Ocular injuries caused by fireworks.

    PubMed

    Levitz, L M; Miller, J K; Uwe, M; Drüsedau, H

    1999-10-01

    What are the consequences of suddenly legalizing fireworks sales in a largely rural society? Would the spectrum of ocular injuries caused by fireworks differ from those found in the Western world? This is the first study on ocular injuries caused by fireworks conducted in the Republic of South Africa. We analyzed the presenting features and prospectively followed up all patients who presented to the casualties served by our ophthalmic department over the New Year celebrations of 1996-1997. The sale of fireworks to the public had been deregulated the previous year. Ocular injuries caused by fireworks had not been reported before 1995. We found that ocular injuries caused by fireworks occurred mainly in young male patients. The injuries were usually unilateral and responded to treatment. This mirrors worldwide studies that show that it is children who are frequently harmed by fireworks injury. Two of our patients were blinded by their injuries. Our findings echo those found in Western countries where fireworks have not been restricted by law. We suggest that young boys, regardless of race, nationality, literacy, or social circumstances, are at risk for ocular injuries caused by fireworks. Countries planning to unban fireworks should aim their education program at this target group.

  5. Electronic Nose Feature Extraction Methods: A Review

    PubMed Central

    Yan, Jia; Guo, Xiuzhen; Duan, Shukai; Jia, Pengfei; Wang, Lidan; Peng, Chao; Zhang, Songlin

    2015-01-01

    Many research groups in academia and industry are focusing on the performance improvement of electronic nose (E-nose) systems mainly involving three optimizations, which are sensitive material selection and sensor array optimization, enhanced feature extraction methods and pattern recognition method selection. For a specific application, the feature extraction method is a basic part of these three optimizations and a key point in E-nose system performance improvement. The aim of a feature extraction method is to extract robust information from the sensor response with less redundancy to ensure the effectiveness of the subsequent pattern recognition algorithm. Many kinds of feature extraction methods have been used in E-nose applications, such as extraction from the original response curves, curve fitting parameters, transform domains, phase space (PS) and dynamic moments (DM), parallel factor analysis (PARAFAC), energy vector (EV), power density spectrum (PSD), window time slicing (WTS) and moving window time slicing (MWTS), moving window function capture (MWFC), etc. The object of this review is to provide a summary of the various feature extraction methods used in E-noses in recent years, as well as to give some suggestions and new inspiration to propose more effective feature extraction methods for the development of E-nose technology. PMID:26540056

  6. Projecting WEIRD features on ancient religions.

    PubMed

    Boyer, Pascal; Baumard, Nicolas

    2016-01-01

    The proposed narrative relies on an anachronistic projection of current religions onto prehistorical and historical cultures that were not concerned with prosocial morality or with public statement of belief. Prosocial morality appeared in wealthier post-Axial environments. Public demonstrations of belief are possible and advantageous when religious diversity starts interacting with coalitional recruitment dynamics in large-scale societies, a typical feature of modern, so-called WEIRD societies. PMID:26948751

  7. Feature extraction through LOCOCODE.

    PubMed

    Hochreiter, S; Schmidhuber, J

    1999-04-01

    Low-complexity coding and decoding (LOCOCODE) is a novel approach to sensory coding and unsupervised learning. Unlike previous methods, it explicitly takes into account the information-theoretic complexity of the code generator. It computes lococodes that convey information about the input data and can be computed and decoded by low-complexity mappings. We implement LOCOCODE by training autoassociators with flat minimum search, a recent, general method for discovering low-complexity neural nets. It turns out that this approach can unmix an unknown number of independent data sources by extracting a minimal number of low-complexity features necessary for representing the data. Experiments show that unlike codes obtained with standard autoencoders, lococodes are based on feature detectors, never unstructured, usually sparse, and sometimes factorial or local (depending on statistical properties of the data). Although LOCOCODE is not explicitly designed to enforce sparse or factorial codes, it extracts optimal codes for difficult versions of the "bars" benchmark problem, whereas independent component analysis (ICA) and principal component analysis (PCA) do not. It produces familiar, biologically plausible feature detectors when applied to real-world images and codes with fewer bits per pixel than ICA and PCA. Unlike ICA, it does not need to know the number of independent sources. As a preprocessor for a vowel recognition benchmark problem, it sets the stage for excellent classification performance. Our results reveal an interesting, previously ignored connection between two important fields: regularizer research and ICA-related research. They may represent a first step toward unification of regularization and unsupervised learning.

  8. Features of MCNP6

    NASA Astrophysics Data System (ADS)

    Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L. J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R. A.; Hendricks, J.; Hughes, H. G.; Johns, R.; Kiedrowski, B.; Martz, R.; Mashnik, S.; McKinney, G.; Pelowitz, D.; Prael, R.; Sweezy, J.; Waters, L.; Wilcox, T.; Zukaitis, T.

    2014-06-01

    MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of these two computer codes. MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory's X Computational Physics Division, Monte Carlo Codes Group (XCP-3) and Nuclear Engineering and Nonproliferation Division, Radiation Transport Modeling Team (NEN-5) respectively, have combined their code development efforts to produce the next evolution of MCNP. While maintenance and major bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. In fact, the initial release of MCNP6 contains numerous new features not previously found in either code. These new features are summarized in this document. Packaged with MCNP6 is also the new production release of the ENDF/B-VII.1 nuclear data files usable by MCNP. The high quality of the overall merged code, usefulness of these new features, along with the desire in the user community to start using the merged code, have led us to make the first MCNP6 production release: MCNP6 version 1. High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, our automated nightly software debugger tests, the underlying high quality nuclear and atomic databases, and significant testing by many beta testers.

  9. [Hereditary angioedema causing colocolic intussusception].

    PubMed

    Sanchez, A; Ecochard, A; Maestracci, M; Rodiere, M

    2008-03-01

    Hereditary angioedema is a rare, autosomal dominant disease inherited. The cause is a quantitative or qualitative congenital deficit in C1 inhibitor. Various clinical symptoms, in particular of sub-cutaneous, upper airways and digestive origin, have been described. Life threatening conditions may be observed. Little information is available on digestive tract localization corresponding to intestinal intussusception associated with hereditary angioedema in children. We report a case of hereditary angioedema observed in a 15-years-old girl who presented such features. We propose a review of the literature and discuss the curative treatment of digestive crisis in children with hereditary angioedema.

  10. Pseudohypoparathyroidism, Rare Cause of Hypocalcaemia!

    PubMed Central

    Dosi, Rupal V.; Ambaliya, Annirudh P.; Joshi, Harshal K.; Patell, Rushad D.

    2013-01-01

    Pseudohypoparathyroidism is a rare disorder which is characterized by end organ parathormone resistance, which causes hypocalcaemia, hyperphosphataemia and high parathormone levels. We are reporting here case of a young male who had symptoms of chronic hypocalcaemia, with a positive Trousseau’s and Chvostek’s sign on examination, without any features of Albright’s hereditary osteodystrophy. Lab investigations revealed low calcium, high phosphate and high PTH levels. The patient was diagnosed as having Pseudohypoparathyroidism and he was treated successfully with Calcium and Vitamin D supplements. PMID:24298504

  11. Dural tear of unusual cause

    PubMed Central

    Kechna, Hicham; Loutid, Jaouad; Ouzzad, Omar; Hanafi, Sidi Mohamed; Hachimi, Moulay Ahmed

    2015-01-01

    Epidural analgesia is highly recommended in cancer anorectal surgery. In addition to the fight against pain it provides some benefit in allowing early rehabilitation of patients. One of the risks of this practice is the dural tear creating a cerebrospinal fluid leak (CSF) in the epidural space (EPD). Clinical features the typical positional headache, a procession of various more or less severe symptoms: nausea, vomiting, dizziness, visual or hearing impairment or radicular pain. We report a dural of unusual cause secondary of the obstruction of tuohy catheter by vertebral cartilage. PMID:26113920

  12. Onychomatricoma with misleading features.

    PubMed

    Fayol, J; Baran, R; Perrin, C; Labrousse, F

    2000-01-01

    Onychomatricoma is a rare tumour of the nail matrix with peculiar clinical and histological features and electron microscopic findings. We report on 5 cases with appearances which were misleading. Three presented as longitudinal melanonychia, a previously unreported observation. One case had the appearance of a cutaneous horn. In 3 of the 5 cases the tumour was associated with an onychomycosis and this may thus have been a predisposing factor in the secondary fungal infestation. Onychomatricoma appears as a multi-faceted tumour which can be mimicked by longitudinal melanonychia and/or onychomycosis. PMID:11200837

  13. qFeature

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic—but they have been successfully applied to a variety of domains, including commercial aviation andmore » electric power grid data.« less

  14. qFeature

    SciTech Connect

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic—but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.

  15. Feature isolation and quantification of evolving datasets

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Identifying and isolating features is an important part of visualization and a crucial step for the analysis and understanding of large time-dependent data sets (either from observation or simulation). In this proposal, we address these concerns, namely the investigation and implementation of basic 2D and 3D feature based methods to enhance current visualization techniques and provide the building blocks for automatic feature recognition, tracking, and correlation. These methods incorporate ideas from scientific visualization, computer vision, image processing, and mathematical morphology. Our focus is in the area of fluid dynamics, and we show the applicability of these methods to the quantification and tracking of three-dimensional vortex and turbulence bursts.

  16. Automated Extraction of Secondary Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne M.; Haimes, Robert

    2005-01-01

    The use of Computational Fluid Dynamics (CFD) has become standard practice in the design and development of the major components used for air and space propulsion. To aid in the post-processing and analysis phase of CFD many researchers now use automated feature extraction utilities. These tools can be used to detect the existence of such features as shocks, vortex cores and separation and re-attachment lines. The existence of secondary flow is another feature of significant importance to CFD engineers. Although the concept of secondary flow is relatively understood there is no commonly accepted mathematical definition for secondary flow. This paper will present a definition for secondary flow and one approach for automatically detecting and visualizing secondary flow.

  17. Recursive Feature Extraction in Graphs

    SciTech Connect

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  18. Temporomandibular disorders: associated features.

    PubMed

    Auvenshine, Ronald C

    2007-01-01

    Temporomandibular disorder (TMD) encompasses a number of clinical problems involving the masticatory muscles or the temporomandibular joints. These disorders are a major cause of nondental pain in the orofacial region, and are considered to be a subclassification of musculoskeletal disorders. Orofacial pain and TMD can be associated with pathologic conditions or disorders related to somatic and neurologic structures. When patients present to the dental office with a chief complaint of pain or headaches, it is vital for the practitioner to understand the cause of the complaint and to perform a thorough examination that will lead to the correct diagnosis and appropriate treatment. A complete understanding of the associated medical conditions with symptomology common to TMD and orofacial pain is necessary for a proper diagnosis.

  19. High Dynamic Range Processing for Magnetic Resonance Imaging

    PubMed Central

    Sukerkar, Preeti A.; Meade, Thomas J.

    2013-01-01

    Purpose To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and TE to generate an image with increased dynamic range. Materials and Methods High Dynamic Range (HDR) processing techniques from the field of photography were applied to a series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested. T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a 7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence. Results HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and T2 in phantoms and revealed more anatomical features in vivo. Conclusions We have developed and tested a method to apply HDR processing to MR images. The increased dynamic range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by magnetization recovery or low SNR. PMID:24250788

  20. Feature Engineering for Drug Name Recognition in Biomedical Texts: Feature Conjunction and Feature Selection

    PubMed Central

    Liu, Shengyu; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming

    2015-01-01

    Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge. PMID:25861377

  1. Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.

    PubMed

    Liu, Shengyu; Tang, Buzhou; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming

    2015-01-01

    Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.

  2. What Causes Anemia?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Causes Anemia? The three main causes of anemia are: Blood ... the blood and can lead to anemia. Aplastic Anemia Some infants are born without the ability to ...

  3. What Causes Cystic Fibrosis?

    MedlinePlus

    ... What Causes Cystic Fibrosis? A defect in the CFTR gene causes cystic fibrosis (CF). This gene makes ... and very salty sweat. Research suggests that the CFTR protein also affects the body in other ways. ...

  4. Causes of Male Infertility

    MedlinePlus

    ... Professional Societies and Organizations Home › Causes of Male Infertility Dr. Roger Lobo of the American Society for Reproductive Medicine covers causes of male infertility. "Understanding Infertility - The Basics" is a series of ...

  5. What Causes Menstrual Irregularities?

    MedlinePlus

    ... menstrual flow Smoking Depression Never having given birth Endometriosis Chronic uterine infection Additional causes of menstrual irregularity include 1 : Endometriosis Endocrine gland-related causes Poorly controlled diabetes Polycystic ...

  6. What Causes Pulmonary Hypertension?

    MedlinePlus

    ... from the NHLBI on Twitter. What Causes Pulmonary Hypertension? Pulmonary hypertension (PH) begins with inflammation and changes in the ... different types of PH. Group 1 pulmonary arterial hypertension (PAH) may have no known cause, or the ...

  7. What Causes Cancer?

    MedlinePlus

    ... articles window. My Saved Articles » My ACS » What Causes Cancer? Cancer is a complex group of diseases with ... cancer. Learn About Cancer Topics Cancer Basics What Causes Cancer? Breast Cancer Colon/Rectum Cancer Lung Cancer Prostate ...

  8. In-silico analysis of the structure and binding site features of an α-expansin protein from mountain papaya fruit (VpEXPA2), through molecular modeling, docking, and dynamics simulation studies.

    PubMed

    Gaete-Eastman, Carlos; Morales-Quintana, Luis; Herrera, Raúl; Moya-León, María Alejandra

    2015-05-01

    Fruit softening is associated to cell wall modifications produced by a set of hydrolytic enzymes and proteins. Expansins are proteins with no catalytic activity, which have been associated with several processes during plant growth and development. A role for expansins has been proposed during softening of fruits, and many fruit-specific expansins have been identified in a variety of species. A 3D model for VpEXPA2, an α-expansin involved in softening of Vasconcellea pubescens fruit, was built for the first time by comparative modeling strategy. The model was validated and refined by molecular dynamics simulation. The VpEXPA2 model shows a cellulose binding domain with a β-sandwich structure, and a catalytic domain with a similar structure to the catalytic core of endoglucanase V (EGV) from Humicola insolens, formed by six β-strands with interconnected loops. VpEXPA2 protein contains essential structural moieties related to the catalytic mechanism of EGV, such as the conserved HFD motif. Nevertheless, changes in the catalytic environment are observed in the protein model, influencing its mode of action. The lack of catalytic activity of this expansin and its preference for cellulose are discussed in light of the structural information obtained from the VpEXPA2 protein model, regarding the distance between critical amino acid residues. Finally, the VpEXPA2 model improves our understanding on the mechanism of action of α-expansins on plant cell walls during softening of V. pubescens fruit.

  9. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  10. What Causes Cardiogenic Shock?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Causes Cardiogenic Shock? Immediate Causes Cardiogenic shock occurs if the heart suddenly can't pump ... to the body. The most common cause of cardiogenic shock is damage to the heart muscle from a ...

  11. Do Allergies Cause Asthma?

    MedlinePlus

    ... Help a Friend Who Cuts? Do Allergies Cause Asthma? KidsHealth > For Teens > Do Allergies Cause Asthma? Print A A A Text Size en español ¿Las alergias provocan asma? Do allergies cause asthma? The answer to that question is: yes and ...

  12. Feature Tracking Using Reeb Graphs

    SciTech Connect

    Weber, Gunther H.; Bremer, Peer-Timo; Day, Marcus S.; Bell, John B.; Pascucci, Valerio

    2010-08-02

    Tracking features and exploring their temporal dynamics can aid scientists in identifying interesting time intervals in a simulation and serve as basis for performing quantitative analyses of temporal phenomena. In this paper, we develop a novel approach for tracking subsets of isosurfaces, such as burning regions in simulated flames, which are defined as areas of high fuel consumption on a temperature isosurface. Tracking such regions as they merge and split over time can provide important insights into the impact of turbulence on the combustion process. However, the convoluted nature of the temperature isosurface and its rapid movement make this analysis particularly challenging. Our approach tracks burning regions by extracting a temperature isovolume from the four-dimensional space-time temperature field. It then obtains isosurfaces for the original simulation time steps and labels individual connected 'burning' regions based on the local fuel consumption value. Based on this information, a boundary surface between burning and non-burning regions is constructed. The Reeb graph of this boundary surface is the tracking graph for burning regions.

  13. New microbiological features.

    PubMed

    Lee, A

    1995-04-01

    Recent developments in the microbiology of Helicobacter pylori have aimed to improve our understanding of the organism in order to define better methods of diagnosis and cure, and to explore possible methods of prevention. Investigations of the basic biochemistry of the bacterium have revealed many interesting physiological anomalies including characteristics of a eukaryotic parasite rather than a bacterium. The latest in a growing list of adhesins to be identified shows specificity for the Lewis b antigen, possibly providing an explanation for the postulated link between blood group and peptic ulceration. However, there are many contradictory features in the H. pylori adhesin story in urgent need of resolution. The search for the ulcerogenic strain has revealed only one possible candidate to date, the cagA phenotype, which appears to be inflammatory. Recently, the cloning frenzy has resulted in the sequencing of a multitude of putative virulence factors, the challenge now is to prove their importance in relevant animal models. PMID:7600134

  14. The dynamics behind Titan's methane clouds

    PubMed Central

    Mitchell, Jonathan L.; Pierrehumbert, Raymond T.; Frierson, Dargan M. W.; Caballero, Rodrigo

    2006-01-01

    We present results of an axisymmetric global circulation model of Titan with a simplified suite of atmospheric physics forced by seasonally varying insolation. The recent discovery of midlatitude tropospheric clouds on Titan has caused much excitement about the roles of surface sources of methane and the global circulation in forming clouds. Although localized surface sources, such as methane geysers or “cryovolcanoes,” have been invoked to explain these clouds, we find in this work that clouds appear in regions of convergence by the mean meridional circulation and over the poles during solstices, where the solar forcing reaches its seasonal maximum. Other regions are inhibited from forming clouds because of dynamical transports of methane and strong subsidence. We find that for a variety of moist regimes, i.e., with the effect of methane thermodynamics included, the observed cloud features can be explained by the large-scale dynamics of the atmosphere. Clouds at the solsticial pole are found to be a robust feature of Titan's dynamics, whereas isolated midlatitude clouds are present exclusively in a variety of moist dynamical regimes. In all cases, even without including methane thermodynamics, our model ceases to produce polar clouds ≈4–6 terrestrial years after solstices. PMID:17121992

  15. The dynamics behind Titan's methane clouds.

    PubMed

    Mitchell, Jonathan L; Pierrehumbert, Raymond T; Frierson, Dargan M W; Caballero, Rodrigo

    2006-12-01

    We present results of an axisymmetric global circulation model of Titan with a simplified suite of atmospheric physics forced by seasonally varying insolation. The recent discovery of midlatitude tropospheric clouds on Titan has caused much excitement about the roles of surface sources of methane and the global circulation in forming clouds. Although localized surface sources, such as methane geysers or "cryovolcanoes," have been invoked to explain these clouds, we find in this work that clouds appear in regions of convergence by the mean meridional circulation and over the poles during solstices, where the solar forcing reaches its seasonal maximum. Other regions are inhibited from forming clouds because of dynamical transports of methane and strong subsidence. We find that for a variety of moist regimes, i.e., with the effect of methane thermodynamics included, the observed cloud features can be explained by the large-scale dynamics of the atmosphere. Clouds at the solsticial pole are found to be a robust feature of Titan's dynamics, whereas isolated midlatitude clouds are present exclusively in a variety of moist dynamical regimes. In all cases, even without including methane thermodynamics, our model ceases to produce polar clouds approximately 4-6 terrestrial years after solstices.

  16. Pynamic: the Python Dynamic Benchmark

    SciTech Connect

    Lee, G L; Ahn, D H; de Supinksi, B R; Gyllenhaal, J C; Miller, P J

    2007-07-10

    Python is widely used in scientific computing to facilitate application development and to support features such as computational steering. Making full use of some of Python's popular features, which improve programmer productivity, leads to applications that access extremely high numbers of dynamically linked libraries (DLLs). As a result, some important Python-based applications severely stress a system's dynamic linking and loading capabilities and also cause significant difficulties for most development environment tools, such as debuggers. Furthermore, using the Python paradigm for large scale MPI-based applications can create significant file IO and further stress tools and operating systems. In this paper, we present Pynamic, the first benchmark program to support configurable emulation of a wide-range of the DLL usage of Python-based applications for large scale systems. Pynamic has already accurately reproduced system software and tool issues encountered by important large Python-based scientific applications on our supercomputers. Pynamic provided insight for our system software and tool vendors, and our application developers, into the impact of several design decisions. As we describe the Pynamic benchmark, we will highlight some of the issues discovered in our large scale system software and tools using Pynamic.

  17. Colonization of cashew plants by Lasiodiplodia theobromae: Microscopical features

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lasiodiplodia theobromae is a phytopathogenic fungus causing gummosis, a threatening disease for cashew plants in Brazil. In an attempt to investigate the ultrastructural features of the pathogen colonization and its response to immunofluorescence labeling, light, confocal and electron microscope st...

  18. Advanced Techniques for Root Cause Analysis

    2000-09-19

    Five items make up this package, or can be used individually. The Chronological Safety Management Template utilizes a linear adaptation of the Integrated Safety Management System laid out in the form of a template that greatly enhances the ability of the analyst to perform the first step of any investigation which is to gather all pertinent facts and identify causal factors. The Problem Analysis Tree is a simple three (3) level problem analysis tree whichmore » is easier for organizations outside of WSRC to use. Another part is the Systemic Root Cause Tree. One of the most basic and unique features of Expanded Root Cause Analysis is the Systemic Root Cause portion of the Expanded Root Cause Pyramid. The Systemic Root Causes are even more basic than the Programmatic Root Causes and represent Root Causes that cut across multiple (if not all) programs in an organization. the Systemic Root Cause portion contains 51 causes embedded at the bottom level of a three level Systemic Root Cause Tree that is divided into logical, organizationally based categorie to assist the analyst. The Computer Aided Root Cause Analysis that allows the analyst at each level of the Pyramid to a) obtain a brief description of the cause that is being considered, b) record a decision that the item is applicable, c) proceed to the next level of the Pyramid to see only those items at the next level of the tree that are relevant to the particular cause that has been chosen, and d) at the end of the process automatically print out a summary report of the incident, the causal factors as they relate to the safety management system, the probable causes, apparent causes, Programmatic Root Causes and Systemic Root Causes for each causal factor and the associated corrective action.« less

  19. Modelling the mechanoreceptor’s dynamic behaviour

    PubMed Central

    Song, Zhuoyi; Banks, Robert W; Bewick, Guy S

    2015-01-01

    All sensory receptors adapt, i.e. they constantly adjust their sensitivity to external stimuli to match the current demands of the natural environment. Electrophysiological responses of sensory receptors from widely different modalities seem to exhibit common features related to adaptation, and these features can be used to examine the underlying sensory transduction mechanisms. Among the principal senses, mechanosensation remains the least understood at the cellular level. To gain greater insights into mechanosensory signalling, we investigated if mechanosensation displayed adaptive dynamics that could be explained by similar biophysical mechanisms in other sensory modalities. To do this, we adapted a fly photoreceptor model to describe the primary transduction process for a stretch-sensitive mechanoreceptor, taking into account the viscoelastic properties of the accessory muscle fibres and the biophysical properties of known mechanosensitive channels (MSCs). The model’s output is in remarkable agreement with the electrical properties of a primary ending in an isolated decapsulated spindle; ramp-and-hold stretch evokes a characteristic pattern of potential change, consisting of a large dynamic depolarization during the ramp phase and a smaller static depolarization during the hold phase. The initial dynamic component is likely to be caused by a combination of the mechanical properties of the muscle fibres and a refractory state in the MSCs. Consistent with the literature, the current model predicts that the dynamic component is due to a rapid stress increase during the ramp. More novel predictions from the model are the mechanisms to explain the initial peak in the dynamic component. At the onset of the ramp, all MSCs are sensitive to external stimuli, but as they become refractory (inactivated), fewer MSCs are able to respond to the continuous stretch, causing a sharp decrease after the peak response. The same mechanism could contribute a faster component in

  20. A prototype feature system for feature retrieval using relationships

    USGS Publications Warehouse

    Choi, J.; Usery, E.L.

    2009-01-01

    Using a feature data model, geographic phenomena can be represented effectively by integrating space, theme, and time. This paper extends and implements a feature data model that supports query and visualization of geographic features using their non-spatial and temporal relationships. A prototype feature-oriented geographic information system (FOGIS) is then developed and storage of features named Feature Database is designed. Buildings from the U.S. Marine Corps Base, Camp Lejeune, North Carolina and subways in Chicago, Illinois are used to test the developed system. The results of the applications show the strength of the feature data model and the developed system 'FOGIS' when they utilize non-spatial and temporal relationships in order to retrieve and visualize individual features.

  1. Causes for "ghost" manifolds

    NASA Astrophysics Data System (ADS)

    Borok, S.; Goldfarb, I.; Gol'dshtein, V.

    2009-05-01

    The paper concerns intrinsic low-dimensional manifold (ILDM) method suggested in [Maas U, Pope SB. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, combustion and flame 1992;88:239-64] for dimension reduction of models describing kinetic processes. It has been shown in a number of publications [Goldfarb I, Gol'dshtein V, Maas U. Comparative analysis of two asymptotic approaches based on integral manifolds. IMA J Appl Math 2004;69:353-74; Kaper HG, Kaper TJ, Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys D 2002;165(1-2):66-93; Rhodes C, Morari M, Wiggins S. Identification of the low order manifolds: validating the algorithm of Maas and Pope. Chaos 1999;9(1):108-23] that the ILDM-method works successfully and the intrinsic low-dimensional manifolds belong to a small vicinity of invariant slow manifolds. The ILDM-method has a number of disadvantages. One of them is appearance of so-called "ghost"-manifolds, which do not have connection to the system dynamics [Borok S, Goldfarb I, Gol'dshtein V. "Ghost" ILDM - manifolds and their discrimination. In: Twentieth Annual Symposium of the Israel Section of the Combustion Institute, Beer-Sheva, Israel; 2004. p. 55-7; Borok S, Goldfarb I, Gol'dshtein V. About non-coincidence of invariant manifolds and intrinsic low-dimensional manifolds (ILDM). CNSNS 2008;71:1029-38; Borok S, Goldfarb I, Gol'dshtein V, Maas U. In: Gorban AN, Kazantzis N, Kevrekidis YG, Ottinger HC, Theodoropoulos C, editors. "Ghost" ILDM-manifolds and their identification: model reduction and coarse-graining approaches for multiscale phenomena. Berlin-Heidelberg-New York: Springer; 2006. p. 55-80; Borok S, Goldfarb I, Gol'dshtein V. On a modified version of ILDM method and its asymptotic analysis. IJPAM 2008; 44(1): 125-50; Bykov V, Goldfarb I, Gol'dshtein V, Maas U. On a modified version of ILDM approach: asymptotic analysis based on integral manifolds. IMA J Appl Math 2006

  2. Approximately Independent Features of Languages

    NASA Astrophysics Data System (ADS)

    Holman, Eric W.

    To facilitate the testing of models for the evolution of languages, the present paper offers a set of linguistic features that are approximately independent of each other. To find these features, the adjusted Rand index (R‧) is used to estimate the degree of pairwise relationship among 130 linguistic features in a large published database. Many of the R‧ values prove to be near zero, as predicted for independent features, and a subset of 47 features is found with an average R‧ of -0.0001. These 47 features are recommended for use in statistical tests that require independent units of analysis.

  3. Tarsal tunnel syndrome: ultrasonographic and MRI features.

    PubMed

    Machiels, F; Shahabpour, M; De Maeseneer, M; Schmedding, E; Wylock, P; Osteaux, M

    1999-04-01

    Tarsal tunnel syndrome is a well-known but rare entrapment neuropathy involving the posterior tibial nerve in the tarsal tunnel, a fibro-osseous channel extending from the medial aspect of the ankle to the midfoot. Posttraumatic fibrosis, ganglion cyst, tenosynovitis, tumor of the nerves or other structures, dilated or tortuous veins can cause significant nerve compression in this anatomic region. Herein, we present the typical ultrasonographic and magnetic resonance features of this disorder in patient with a ganglion cyst.

  4. What Causes Heart Disease?

    MedlinePlus

    ... through menopause. Rate This Content: NEXT >> Featured Video All of Our Stories Are Red: Yaskary's Story 04/ ... part of the National Institutes of Health (NIH). All of Our Stories Are Red: Eileen's Story 04/ ...

  5. Salient features of solitary waves in dusty plasma under the influence of Coriolis force

    SciTech Connect

    Das, G. C.; Nag, Apratim

    2007-08-15

    The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variation caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.

  6. Drawing on Text Features for Reading Comprehension and Composing

    ERIC Educational Resources Information Center

    Risko, Victoria J.; Walker-Dalhouse, Doris

    2011-01-01

    Students read multiple-genre texts such as graphic novels, poetry, brochures, digitized texts with videos, and informational and narrative texts. Features such as overlapping illustrations and implied cause-and-effect relationships can affect students' comprehension. Teaching with these texts and drawing attention to organizational features hold…

  7. Geographic comparison of selected large-scale planetary surface features

    SciTech Connect

    Meszaros, S.P.

    1984-08-01

    Photographic and cartographic comparisons of geographic features on Mercury, the Moon, Earth, Mars, Ganymede, Callisto, Mimas, and Tethys are presented. Planetary structures caused by impacts, volcanism, tectonics, and other natural forces are included. Each feature is discussed individually and then those of similar origin are compared at the same scale.

  8. Causes and effects.

    PubMed

    Cone, Carol L; Feldman, Mark A; DaSilva, Alison T

    2003-07-01

    Most companies make charitable donations, but few approach their contributions with an eye toward enhancing their brands. Those that do take such an approach commit talent and know-how, not just dollars, to a pressing but carefully chosen social need and then tell the world about the cause and their service to it. Through the association, both the business and the cause benefit in ways they could not otherwise. Organizations such as Avon, ConAgra Foods, and Chevrolet have recognized that a sustained cause-branding program can improve their reputations, boost their employees' morale, strengthen relations with business partners, and drive sales. And the targeted causes receive far more money than they could have from direct corporate gifts alone. The authors examine these best practices and offer four principles for building successful cause-branding programs. First, they say, a company should select a cause that advances its corporate goals. That is, unless the competitive logic for supporting the cause is clear, a company shouldn't even consider putting its finite resources behind it. Second, a business should commit to a cause before picking its charitable partners. Otherwise, a cause-branding program may become too dependent on its partners. Third, a company should put all its assets to work, especially its employees. It should leverage the professional skills of its workers as well as its other assets such as distribution networks. And fourth, a company should promote its philanthropic initiatives through every possible channel. In addition to using the media, it should communicate its efforts through the Web, annual reports, direct mail, and so on. Cause branding is a way to turn the obligations of corporate citizenship into a valuable asset. When the cause is well chosen, the commitment genuine, and the program well executed, the cause helps the company, and the company helps the cause.

  9. Causes and effects.

    PubMed

    Cone, Carol L; Feldman, Mark A; DaSilva, Alison T

    2003-07-01

    Most companies make charitable donations, but few approach their contributions with an eye toward enhancing their brands. Those that do take such an approach commit talent and know-how, not just dollars, to a pressing but carefully chosen social need and then tell the world about the cause and their service to it. Through the association, both the business and the cause benefit in ways they could not otherwise. Organizations such as Avon, ConAgra Foods, and Chevrolet have recognized that a sustained cause-branding program can improve their reputations, boost their employees' morale, strengthen relations with business partners, and drive sales. And the targeted causes receive far more money than they could have from direct corporate gifts alone. The authors examine these best practices and offer four principles for building successful cause-branding programs. First, they say, a company should select a cause that advances its corporate goals. That is, unless the competitive logic for supporting the cause is clear, a company shouldn't even consider putting its finite resources behind it. Second, a business should commit to a cause before picking its charitable partners. Otherwise, a cause-branding program may become too dependent on its partners. Third, a company should put all its assets to work, especially its employees. It should leverage the professional skills of its workers as well as its other assets such as distribution networks. And fourth, a company should promote its philanthropic initiatives through every possible channel. In addition to using the media, it should communicate its efforts through the Web, annual reports, direct mail, and so on. Cause branding is a way to turn the obligations of corporate citizenship into a valuable asset. When the cause is well chosen, the commitment genuine, and the program well executed, the cause helps the company, and the company helps the cause. PMID:12858714

  10. Genetic Features of Turner Syndrome

    MedlinePlus

    ... Current Studies Publications Lab Staff Contact Info Links Genetic Features Quick Navigation Introduction X-monosomy X-mosaicism ... Figure 3. X Chromosome Abnormalities Figure 4. Mosaicism Genetic Features of Turner Syndrome Turner syndrome is a ...

  11. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Lovely, David

    1999-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.

  12. Image feature localization by multiple hypothesis testing of Gabor features.

    PubMed

    Ilonen, Jarmo; Kamarainen, Joni-Kristian; Paalanen, Pekka; Hamouz, Miroslav; Kittler, Josef; Kälviäinen, Heikki

    2008-03-01

    Several novel and particularly successful object and object category detection and recognition methods based on image features, local descriptions of object appearance, have recently been proposed. The methods are based on a localization of image features and a spatial constellation search over the localized features. The accuracy and reliability of the methods depend on the success of both tasks: image feature localization and spatial constellation model search. In this paper, we present an improved algorithm for image feature localization. The method is based on complex-valued multi resolution Gabor features and their ranking using multiple hypothesis testing. The algorithm provides very accurate local image features over arbitrary scale and rotation. We discuss in detail issues such as selection of filter parameters, confidence measure, and the magnitude versus complex representation, and show on a large test sample how these influence the performance. The versatility and accuracy of the method is demonstrated on two profoundly different challenging problems (faces and license plates).

  13. Bartholin's gland abscess caused by Brucella melitensis.

    PubMed

    Peled, Neha; David, Yohai; Yagupsky, Pablo

    2004-02-01

    We report herein a case of Bartholin's gland abscess caused by Brucella melitensis. Clinical microbiology laboratory workers in areas where this disease is endemic should be familiar with the bacteriological features of this organism and consider the possibility of a brucellar etiology in a broad range of clinical settings.

  14. Feature Inference Learning and Eyetracking

    ERIC Educational Resources Information Center

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  15. Foundations of Distinctive Feature Theory.

    ERIC Educational Resources Information Center

    Baltaxe, Christiane A. M.

    This treatise on the theoretical and historical foundations of distinctive feature theory traces the evolution of the distinctive features concept in the context of related notions current in linguistic theory, discusses the evolution of individual distinctive features, and criticizes certain acoustic and perceptual correlates attributed to these…

  16. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Rapidly Indicates Vessel Regression in Human Squamous Cell Carcinomas Grown in Nude Mice Caused by VEGF Receptor 2 Blockade with DC1011

    PubMed Central

    Kiessling, Fabian; Farhan, Nabeel; Lichy, Matthias P; Vosseler, Silvia; Heilmann, Melanie; Krix, Martin; Bohlen, Peter; Miller, Dan W; Mueller, Margareta M; Semmler, Wolfhard; Fusenig, Norbert E; Stefan, Delorme

    2004-01-01

    Abstract The purpose of our study was the investigation of early changes in tumor vascularization during antiangiogenic therapy with the vascular endothelial growth factor (VEGF) receptor 2 antibody (DC101) using dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Subcutaneous heterotransplants of human skin squamous cell carcinomas in nude mice were treated with DC101. Animals were examined before and repeatedly during 2 weeks of antiangiogenic treatment using Gd-DTPA-enhanced dynamic T1-weighted MRI. With a two-compartment model, dynamic data were parameterized in “amplitude” (increase of signal intensity relative to precontrast value) and kep (exchange rate constant). Data obtained by MRI were validated by parallel examinations of histological sections immunostained for blood vessels (CD31). Already 2 days after the first DC101 application, a decrease of tumor vascularization was observed, which preceded a reduction of tumor volume. The difference between treated tumors and controls became prominent after 4 days, when amplitudes of treated tumors were decreased by 61% (P = .02). In line with change of microvessel density, the decrease in amplitudes was most pronounced in tumor centers. On day 7, the mean tumor volumes of treated (153 ± 843 mm3) and control animals (596 ± 384 mm3) were significantly different (P = .03). After 14 days, treated tumors showed further growth reduction (83 ± 93 mm3), whereas untreated tumors (1208 ± 822 mm3) continued to increase (P = .02). Our data underline the efficacy of DC101 as antiangiogenic treatment in human squamous cell carcinoma xenografts in nude mice and indicate DCE MRI as a valuable tool for early detection of treatment effects before changes in tumor volume become apparent. PMID:15153333

  17. Clinical features of actinomycosis

    PubMed Central

    Bonnefond, Simon; Catroux, Mélanie; Melenotte, Cléa; Karkowski, Ludovic; Rolland, Ludivine; Trouillier, Sébastien; Raffray, Loic

    2016-01-01

    Abstract Actinomycosis is a rare heterogeneous anaerobic infection with misleading clinical presentations that delay diagnosis. A significant number of misdiagnosed cases have been reported in specific localizations, but studies including various forms of actinomycosis have rarely been published. We performed a multicenter retrospective chart review of laboratory-confirmed actinomycosis cases from January 2000 until January 2014. We described clinical characteristics, diagnostic procedures, differential diagnosis, and management of actinomycosis of clinical significance. Twenty-eight patients were included from 6 hospitals in France. Disease was diagnosed predominately in the abdomen/pelvis (n = 9), orocervicofacial (n = 5), cardiothoracic (n = 5), skeletal (n = 3), hematogenous (n = 3), soft tissue (n = 2), and intracranially (n = 1). Four patients (14%) were immunocompromised. In most cases (92 %), the diagnosis of actinomycosis was not suspected on admission, as clinical features were not specific. Diagnosis was obtained from either microbiology (50%, n = 14) or histopathology (42%, n = 12), or from both methods (7%, n = 2). Surgical biopsy was needed for definite diagnosis in 71% of cases (n = 20). Coinfection was found in 13 patients (46%), among which 3 patients were diagnosed from histologic criteria only. Two-thirds of patients were treated with amoxicillin. Median duration of antibiotics was 120 days (interquartile range 60–180), whereas the median follow-up time was 12 months (interquartile range 5.25–18). Two patients died. This study highlights the distinct and miscellaneous patterns of actinomycosis to prompt accurate diagnosis and earlier treatments, thus improving the outcome. Surgical biopsy should be performed when possible while raising histologist's and microbiologist's awareness of possible actinomycosis to enhance the chance of diagnosis and use specific molecular methods. PMID:27311002

  18. [Family dynamics of autistic children].

    PubMed

    Sprovieri, M H; Assumpção, F B

    2001-06-01

    We studied 15 families with autistics, 15 with Down's syndrome and 15 asymptomatic children. Patients' age ranged from 5 to 15 years-old. The parents of these three families' groups were appraised in regard to their family dynamics, to relate those symptoms to the functioning of an autistic family, in a comparative study. Details were provided of the families, the overall autistic features, the autistic's family, the family and the mental health, their limitations and difficulties throughout the vital cycle. An attempt was made to locate the factors that aid the family in hindering the healthy emotional development of its members. The field research was achieved by use of the instruments of the Family Dynamics Evaluation, (Carneiro, 1983). The data gathered were statistically compared. Considering the family population studied (n = 45), we found that the autistics' families and victims of Down's syndrome made it difficult to sustain the emotional health of group members. We conclude that the autistic's family dynamics caused difficulties to the emotional health of the group's members. PMID:11400032

  19. Seismic features of Winnipegosis mounds in Saskatchewan

    SciTech Connect

    Gendzwill, D.J.

    1988-07-01

    The Winnipegosis Formation of southern Saskatchewan is characterized by reefs or reeflike mounds in its upper member. Several characteristic features of the mounds permit their identification from seismic-reflection data. These features include reflections from the flanks of the mound, a change in the reflection continuity in the middle and base of the mound, a velocity pullup under the mound, and subsidence of strata over the mound. Dissolution of the salt which surrounds the mounds sometimes occurs, resulting in a drape structure. Some or all of these features may be present at the correct seismic stratigraphic level for Winnipegosis mounds, depending on the local conditions. Subsidence of strata over the mounds indicates compaction and porosity loss from the original mound or possibly the degree of dolomitization or pressure dissolution. Salt-removal features over or adjacent to the mounds indicate fluid movements. Approximate ages can be estimated from stratigraphic thinning and thickening relationships above such features. Complications in identifying Winnipegosis mounds may arise from thin-bed effects if the mounds are not very thick compared to a seismic wavelength. Confusion may also arise from anhydrite, which may encase the mounds or which may form a thick horizontal layer at the tops of the mounds, causing an interfering signal.

  20. [Plant Spectral Discrimination Based on Phenological Features].

    PubMed

    Zhang, Lei; Zhao, Jian-long; Jia, Kun; Li, Xiao-song

    2015-10-01

    Spectral analysis plays a significant role onplant characteristic identification and mechanism recognition, there were many papers published on the aspects of absorption features in the spectra of chlorophyll and moisture, spectral analysis onvegetation red edge effect, spectra profile feature extraction, spectra profile conversion, vegetation leaf structure and chemical composition impacts on the spectra in past years. However, fewer researches issued on spectral changes caused by plant seasonal changes of life form, chlorophyll, leaf area index. This paper studied on spectral observation of 11 plants of various life form, plant leaf structure and its size, phenological characteristics, they include deciduous forest with broad vertical leaf, needle leaf evergreen forest, needle leaf deciduous forest, deciduous forest with broadflat leaf, high shrub with big leaf, high shrub with little leaf, deciduous forest with broad little leaf, short shrub, meadow, steppe and grass. Field spectral data were observed with SVC-HR768 (Spectra Vista company, USA), the band width covers 350-2 500 nm, spectral resolution reaches 1-4 nm. The features of NDVI, spectral maximum absorption depth in green band, and spectral maximum absorption depth in red band were measured after continuum removal processing, the mean, amplitude and gradient of these features on seasonal change profile were analyzed, meanwhile, separability research on plant spectral feature of growth period and maturation period were compared. The paper presents a calculation method of separability of vegetation spectra which consider feature spatial distances. This index is carried on analysis of the vegetation discrimination. The results show that: the spectral features during plant growth period are easier to distinguish than them during maturation period. With the same features comparison, plant separability of growth period is 3 points higher than it during maturation period. The overall separabilityof vegetation

  1. [Plant Spectral Discrimination Based on Phenological Features].

    PubMed

    Zhang, Lei; Zhao, Jian-long; Jia, Kun; Li, Xiao-song

    2015-10-01

    Spectral analysis plays a significant role onplant characteristic identification and mechanism recognition, there were many papers published on the aspects of absorption features in the spectra of chlorophyll and moisture, spectral analysis onvegetation red edge effect, spectra profile feature extraction, spectra profile conversion, vegetation leaf structure and chemical composition impacts on the spectra in past years. However, fewer researches issued on spectral changes caused by plant seasonal changes of life form, chlorophyll, leaf area index. This paper studied on spectral observation of 11 plants of various life form, plant leaf structure and its size, phenological characteristics, they include deciduous forest with broad vertical leaf, needle leaf evergreen forest, needle leaf deciduous forest, deciduous forest with broadflat leaf, high shrub with big leaf, high shrub with little leaf, deciduous forest with broad little leaf, short shrub, meadow, steppe and grass. Field spectral data were observed with SVC-HR768 (Spectra Vista company, USA), the band width covers 350-2 500 nm, spectral resolution reaches 1-4 nm. The features of NDVI, spectral maximum absorption depth in green band, and spectral maximum absorption depth in red band were measured after continuum removal processing, the mean, amplitude and gradient of these features on seasonal change profile were analyzed, meanwhile, separability research on plant spectral feature of growth period and maturation period were compared. The paper presents a calculation method of separability of vegetation spectra which consider feature spatial distances. This index is carried on analysis of the vegetation discrimination. The results show that: the spectral features during plant growth period are easier to distinguish than them during maturation period. With the same features comparison, plant separability of growth period is 3 points higher than it during maturation period. The overall separabilityof vegetation

  2. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  3. Confidence-Based Feature Acquisition

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; desJardins, Marie; MacGlashan, James

    2010-01-01

    Confidence-based Feature Acquisition (CFA) is a novel, supervised learning method for acquiring missing feature values when there is missing data at both training (learning) and test (deployment) time. To train a machine learning classifier, data is encoded with a series of input features describing each item. In some applications, the training data may have missing values for some of the features, which can be acquired at a given cost. A relevant JPL example is that of the Mars rover exploration in which the features are obtained from a variety of different instruments, with different power consumption and integration time costs. The challenge is to decide which features will lead to increased classification performance and are therefore worth acquiring (paying the cost). To solve this problem, CFA, which is made up of two algorithms (CFA-train and CFA-predict), has been designed to greedily minimize total acquisition cost (during training and testing) while aiming for a specific accuracy level (specified as a confidence threshold). With this method, it is assumed that there is a nonempty subset of features that are free; that is, every instance in the data set includes these features initially for zero cost. It is also assumed that the feature acquisition (FA) cost associated with each feature is known in advance, and that the FA cost for a given feature is the same for all instances. Finally, CFA requires that the base-level classifiers produce not only a classification, but also a confidence (or posterior probability).

  4. Tracking flow features using overset grids

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana; Banks, David W.

    1993-01-01

    A method is proposed to use overset grid topology to track dynamic flow features. Features of interest such as moving shock waves and vortices are overset with relatively fine tracker grids. Solutions are computed on the various grids and information is exchanged at intergrid boundaries. A grid track-sensor variable such as pressure is used to track the position of the flow feature to be resolved. The tracker grid is moved to the position where the track-sensor variable has the desired value (generally a maximum or a minimum) and new interpolation coefficients are computed for information exchange across grid boundaries. Solutions are computed at the current location and time-step, and grid motion is brought into the solution via time metrics. The method is demonstrated by tracking a moving shock and vortices shed behind a circular cylinder. It is conjectured that the method would show significant benefits in resolving features such as wakes behind oscillating airfoils and trajectories of jets issuing from rotating nozzles as encountered during thrust-vectoring.

  5. Global Monsoon Dynamics and Climate Change

    NASA Astrophysics Data System (ADS)

    Zhisheng, An; Guoxiong, Wu; Jianping, Li; Youbin, Sun; Yimin, Liu; Weijian, Zhou; Yanjun, Cai; Anmin, Duan; Li, Li; Jiangyu, Mao; Hai, Cheng; Zhengguo, Shi; Liangcheng, Tan; Hong, Yan; Hong, Ao; Hong, Chang; Juan, Feng

    2015-05-01

    This article provides a comprehensive review of the global monsoon that encompasses findings from studies of both modern monsoons and paleomonsoons. We introduce a definition for the global monsoon that incorporates its three-dimensional distribution and ultimate causes, emphasizing the direct drive of seasonal pressure system changes on monsoon circulation and depicting the intensity in terms of both circulation and precipitation. We explore the global monsoon climate changes across a wide range of timescales from tectonic to intraseasonal. Common features of the global monsoon are global homogeneity, regional diversity, seasonality, quasi-periodicity, irregularity, instability, and asynchroneity. We emphasize the importance of solar insolation, Earth orbital parameters, underlying surface properties, and land-air-sea interactions for global monsoon dynamics. We discuss the primary driving force of monsoon variability on each timescale and the relationships among dynamics on multiple timescales. Natural processes and anthropogenic impacts are of great significance to the understanding of future global monsoon behavior.

  6. Why Is Parkinsonism Not a Feature of Human Methamphetamine Users?

    ERIC Educational Resources Information Center

    Moszczynska, Anna; Fitzmaurice, Paul; Ang, Lee; Kalasinsky, Kathryn S.; Schmunk, Gregory A.; Peretti, Frank J.; Aiken, Sally S.; Wickham, Dennis J.; Kish, Stephen J.

    2004-01-01

    For more than 50 years, methamphetamine has been a widely used stimulant drug taken to maintain wakefulness and performance and, in high doses, to cause intense euphoria. Animal studies show that methamphetamine can cause short-term and even persistent depletion of brain levels of the neurotransmitter dopamine. However, the clinical features of…

  7. Detection of fungal damaged popcorn using image property covariance features

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Covariance-matrix-based features were applied to the detection of popcorn infected by a fungus that cause a symptom called “blue-eye.” This infection of popcorn kernels causes economic losses because of their poor appearance and the frequently disagreeable flavor of the popped kernels. Images of ker...

  8. Feature++: Automatic Feature Construction for Clinical Data Analysis.

    PubMed

    Sun, Wen; Hao, Bibo; Yu, Yiqin; Li, Jing; Hu, Gang; Xie, Guotong

    2016-01-01

    With the rapid growth of clinical data and knowledge, feature construction for clinical analysis becomes increasingly important and challenging. Given a clinical dataset with up to hundreds or thousands of columns, the traditional manual feature construction process is usually too labour intensive to generate a full spectrum of features with potential values. As a result, advanced large-scale data analysis technologies, such as feature selection for predictive modelling, cannot be fully utilized for clinical data analysis. In this paper, we propose an automatic feature construction framework for clinical data analysis, namely, Feature++. It leverages available public knowledge to understand the semantics of the clinical data, and is able to integrate external data sources to automatically construct new features based on predefined rules and clinical knowledge. We demonstrate the effectiveness of Feature++ in a typical predictive modelling use case with a public clinical dataset, and the results suggest that the proposed approach is able to fulfil typical feature construction tasks with minimal dataset specific configurations, so that more accurate models can be obtained from various clinical datasets in a more efficient way. PMID:27577443

  9. Protein dynamics, solvation, and quasielastic scattering

    NASA Astrophysics Data System (ADS)

    Fenimore, Paul

    2014-03-01

    Quasielastic Mössbauer and neutron scattering (QES) have been used to measure protein dynamics for about 50 years. These low energy transfer spectra show two prominent features: a sharp elastic line and a broad quasielastic band. Current theory assumes that the elastic line and the quasielastic band are independent features of the spectrum, caused by motions in the sample. Current practice extracts information about dynamics from the spectra by assuming specific models with a few parameters that are determined by data fitting. We claim that this approach is flawed; it is based on questionable assumptions and has no predictive power. We propose a model where the elastic line and the broad band are one inhomogeneous spectrum of shifted, sharp natural-width lines. The model makes predictions of QES lineshapes and elastic fractions for Mössbauer and neutron scattering. Essential features of this description include: (i) QES lineshape and elastic fraction are sensitive to protein vibrations, and fluctuations slaved to the hydration shell and bulk solvent. (ii) Independently measured dielectric fluctuation spectra predict the QES lineshape.

  10. What Causes Bronchitis?

    MedlinePlus

    ... exposed to tobacco smoke, dust, fumes, vapors, or air pollution raises your risk for the condition. These lung ... the major cause of the condition. Breathing in air pollution and dust or fumes from the environment or ...

  11. What Causes Hemochromatosis?

    MedlinePlus

    ... each parent), you're at risk for iron overload and signs and symptoms of hemochromatosis. If you ... of another disease or condition that causes iron overload. Examples of such diseases and conditions include: Certain ...

  12. How HIV Causes AIDS

    MedlinePlus

    ... Share this: Main Content Area How HIV Causes AIDS HIV destroys CD4 positive (CD4+) T cells, which ... and disease, ultimately resulting in the development of AIDS. Most people who are infected with HIV can ...

  13. Cause of Flu (Influenza)

    MedlinePlus

    ... Skip Content Marketing Share this: Main Content Area Flu (Influenza) Cause About the Flu Virus Influenza, or flu, is a respiratory infection ... the virus. Influenza A virus. Credit: CDC Where Influenza Comes From In nature, the flu virus is ...

  14. Causes of Paralysis

    MedlinePlus

    ... impact critical functions like thought, comprehension, and speech. > Cerebral palsy CP is caused by abnormal development or damage to the parts of the brain. > Friedreich’s ataxia An inherited disease that leads to ...

  15. Causes of Ataxia

    MedlinePlus

    ... Donate to the National Ataxia Foundation Causes of Ataxia The hereditary ataxias are genetic, which means they ... the disease is inherited as a recessive gene. Ataxia Gene Identified in 1993 The first ataxia gene ...

  16. What Causes Respiratory Failure?

    MedlinePlus

    ... easily move oxygen into your blood and remove carbon dioxide from your blood (gas exchange). This can cause a low oxygen level or high carbon dioxide level, or both, in your blood. Respiratory failure ...

  17. Feature saltation and the evolution of mimicry.

    PubMed

    Gamberale-Stille, Gabriella; Balogh, Alexandra C V; Tullberg, Birgitta S; Leimar, Olof

    2012-03-01

    In Batesian mimicry, a harmless prey species imitates the warning coloration of an unpalatable model species. A traditional suggestion is that mimicry evolves in a two-step process, in which a large mutation first achieves approximate similarity to the model, after which smaller changes improve the likeness. However, it is not known which aspects of predator psychology cause the initial mutant to be perceived by predators as being similar to the model, leaving open the question of how the crucial first step of mimicry evolution occurs. Using theoretical evolutionary simulations and reconstruction of examples of mimicry evolution, we show that the evolution of Batesian mimicry can be initiated by a mutation that causes prey to acquire a trait that is used by predators as a feature to categorize potential prey as unsuitable. The theory that species gain entry to mimicry through feature saltation allows us to formulate scenarios of the sequence of events during mimicry evolution and to reconstruct an initial mimetic appearance for important examples of Batesian mimicry. Because feature-based categorization by predators entails a qualitative distinction between nonmimics and passable mimics, the theory can explain the occurrence of imperfect mimicry.

  18. [Does vaccination cause disease?].

    PubMed

    Zingg, W

    2005-10-01

    Not many inventions in medical history have influenced our society as much as vaccination. The concept is old and simple. When Edward Jenner published his work on cowpox, "variolation" was quite common. In this procedure, pus of patients with mild smallpox was transferred to healthy individuals. Meanwhile smallpox has been eradicated worldwide. Diseases such as poliomyelitis, diphtheria or tetanus almost disappeared in industrialized countries. The same happened with epiglottitis and meningitis due to Haemophilus influenzae type b (Hib) after vaccination against Hib was introduced in Switzerland in 1990. This success was possible because of routine vaccination. Immunization is a save procedure and adverse events are much lower than complications in the natural course of the prevented diseases. However vaccinations were accused to cause diseases themselves such as asthma, multiple sclerosis, diabetes mellitus, chronic arthritis or autism. Hitherto no large cohort study or case-control-study was able to proof responsibility of vaccines in any of these diseases. Public media are eager to publish early data from surveillance reports or case reports which are descriptive and never a principle of cause and effect. In large controlled trials there was no proof that vaccination causes asthma, hepatitis-B-vaccination causes multiple sclerosis or macrophagic myofasciitis, Hib-vaccination causes diabetes mellitus, rubella-vaccination causes chronic arthritis, measles-mumps-rubella-vaccination causes gait disturbance or thiomersal causes autism. These results are rarely published in newspapers or television. Thus, many caring parents are left with negative ideas about immunization. Looking for the best for their children they withhold vaccination and give way to resurgence of preventable diseases in our communities. This must be prevented. There is more evidence than expected that vaccination is safe and this can and must be told to parents. PMID:16277033

  19. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  20. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  1. Dynamics at Surfaces

    SciTech Connect

    Sylvia Ceyer, Nancy Ryan Gray

    2010-05-04

    The 2009 Gordon Conference on Dynamics at Surfaces is the 30th anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state dynamics, non-adiabatic interactions in molecule-metal systems, photon induced desorption from semiconductor and metal surfaces, ultrafast x-ray and electron diffraction as probes of the dynamics of ablation, ultrafast vibrational spectroscopy of water surface dynamics, dynamics of a single adsorbate, growth at nano-scale mineral surfaces, dynamics of atom recombination on interstellar dust grains and the dynamics of the interaction of water with lipid bilayers. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology and biophysics.

  2. Webcam classification using simple features

    NASA Astrophysics Data System (ADS)

    Pramoun, Thitiporn; Choe, Jeehyun; Li, He; Chen, Qingshuang; Amornraksa, Thumrongrat; Lu, Yung-Hsiang; Delp, Edward J.

    2015-03-01

    Thousands of sensors are connected to the Internet and many of these sensors are cameras. The "Internet of Things" will contain many "things" that are image sensors. This vast network of distributed cameras (i.e. web cams) will continue to exponentially grow. In this paper we examine simple methods to classify an image from a web cam as "indoor/outdoor" and having "people/no people" based on simple features. We use four types of image features to classify an image as indoor/outdoor: color, edge, line, and text. To classify an image as having people/no people we use HOG and texture features. The features are weighted based on their significance and combined. A support vector machine is used for classification. Our system with feature weighting and feature combination yields 95.5% accuracy.

  3. Complex Topographic Feature Ontology Patterns

    USGS Publications Warehouse

    Varanka, Dalia E.; Jerris, Thomas J.

    2015-01-01

    Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.

  4. Boosting Shift-Invariant Features

    NASA Astrophysics Data System (ADS)

    Hörnlein, Thomas; Jähne, Bernd

    This work presents a novel method for training shift-invariant features using a Boosting framework. Features performing local convolutions followed by subsampling are used to achieve shift-invariance. Other systems using this type of features, e.g. Convolutional Neural Networks, use complex feed-forward networks with multiple layers. In contrast, the proposed system adds features one at a time using smoothing spline base classifiers. Feature training optimizes base classifier costs. Boosting sample-reweighting ensures features to be both descriptive and independent. Our system has a lower number of design parameters as comparable systems, so adapting the system to new problems is simple. Also, the stage-wise training makes it very scalable. Experimental results show the competitiveness of our approach.

  5. Dynamics of small RNA profiles of virus and host origin in wheat cultivars synergistically infected by Wheat streak mosaic virus and Triticum mosaic virus: virus infection caused a drastic shift in the endogenous small RNA profile.

    PubMed

    Tatineni, Satyanarayana; Riethoven, Jean-Jack M; Graybosch, Robert A; French, Roy; Mitra, Amitava

    2014-01-01

    Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible ('Arapahoe') and temperature-sensitive resistant ('Mace') wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat.

  6. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    PubMed

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression.

  7. Dynamics of Small RNA Profiles of Virus and Host Origin in Wheat Cultivars Synergistically Infected by Wheat Streak Mosaic Virus and Triticum Mosaic Virus: Virus Infection Caused a Drastic Shift in the Endogenous Small RNA Profile

    PubMed Central

    Tatineni, Satyanarayana; Riethoven, Jean-Jack M.; Graybosch, Robert A.; French, Roy; Mitra, Amitava

    2014-01-01

    Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible (‘Arapahoe’) and temperature-sensitive resistant (‘Mace’) wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat. PMID:25365307

  8. FEATURE 3, LARGE GUN POSITION, ARMCO HUT (FEATURE 4) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, ARMCO HUT (FEATURE 4) IN BACKGROUND, VIEW FACING NORTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  9. Genetic features of Mycobacterium tuberculosis modern Beijing sublineage

    PubMed Central

    Liu, Qingyun; Luo, Tao; Dong, Xinran; Sun, Gang; Liu, Zhu; Gan, Mingyun; Wu, Jie; Shen, Xin; Gao, Qian

    2016-01-01

    Mycobacterium tuberculosis (MTB) Beijing strains have caused a great concern because of their rapid emergence and increasing prevalence in worldwide regions. Great efforts have been made to investigate the pathogenic characteristics of Beijing strains such as hypervirulence, drug resistance and favoring transmission. Phylogenetically, MTB Beijing family was divided into modern and ancient sublineages. Modern Beijing strains displayed enhanced virulence and higher prevalence when compared with ancient Beijing strains, but the genetic basis for this difference remains unclear. In this study, by analyzing previously published sequencing data of 1082 MTB Beijing isolates, we determined the genetic changes that were commonly present in modern Beijing strains but absent in ancient Beijing strains. These changes include 44 single-nucleotide polymorphisms (SNPs) and two short genomic deletions. Through bioinformatics analysis, we demonstrated that these genetic changes had high probability of functional effects. For example, 4 genes were frameshifted due to premature stop mutation or genomic deletions, 19 nonsynonymous SNPs located in conservative codons, and there is a significant enrichment in regulatory network for all nonsynonymous mutations. Besides, three SNPs located in promoter regions were verified to alter downstream gene expressions. Our study precisely defined the genetic features of modern Beijing strains and provided interesting clues for future researches to elucidate the mechanisms that underlie this sublineage's successful expansion. These findings from the analysis of the modern Beijing sublineage could provide us a model to understand the dynamics of pathogenicity of MTB. PMID:26905026

  10. Forecasting decadal and shorter time-scale solar cycle features

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi

    2016-07-01

    Solar energetic particles and magnetic fields reach the Earth through the interplanetary medium and affect it in various ways, producing beautiful aurorae, but also electrical blackouts and damage to our technology-dependent economy. The root of energetic solar outputs is the solar activity cycle, which is most likely caused by dynamo processes inside the Sun. It is a formidable task to accurately predict the amplitude, onset and peak timings of a solar cycle. After reviewing all solar cycle prediction methods, including empirical as well as physical model-based schemes, I will describe what we have learned from both validation and nonvalidation of cycle 24 forecasts, and how to refine the model-based schemes for upcoming cycle 25 forecasts. Recent observations indicate that within a solar cycle there are shorter time-scale 'space weather' features, such as bursts of various forms of activity with approximately one year periodicity. I will demonstrate how global tachocline dynamics could play a crucial role in producing such space weather. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  11. Biochemical and clinical features of hereditary hyperprolinemia

    PubMed Central

    Mitsubuchi, Hiroshi; Nakamura, Kimitoshi; Matsumoto, Shirou; Endo, Fumio

    2014-01-01

    There are two classifications of hereditary hyperprolinemia: type I (HPI) and type II (HPII). Each type is caused by an autosomal recessive inborn error of the proline metabolic pathway. HPI is caused by an abnormality in the proline-oxidizing enzyme (POX). HPII is caused by a deficiency of Δ-1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDh). The clinical features of HPI are unclear. Nephropathy, uncontrolled seizures, mental retardation or schizophrenia have been reported in HPI, but a benign phenotype without neurological problems has also been reported. The clinical features of HPII are also unclear. In addition, the precise incidences of HPI and HPII are unknown. Only two cases of HPI and one case of HPII have been identified in Japan through a questionnaire survey and by a study of previous reports. This suggests that hyperprolinemia is a very rare disease in Japan, consistent with earlier reports in Western countries. The one case of HPII found in Japan was diagnosed in an individual with influenza-associated encephalopathy. This suggests that HPII might reduce the threshold for convulsions, thereby increasing the sensitivity of individuals with influenza-associated encephalopathy. The current study presents diagnostic criteria for HPI and HPII, based on plasma proline level, with or without measurements of urinary P5C. In the future, screening for HPI and HPII in healthy individuals, or patients with relatively common diseases such as developmental disabilities, epilepsy, schizophrenia or behavioral problems will be important. PMID:24931297

  12. Dynamical feature extraction at the sensory periphery guides chemotaxis

    PubMed Central

    Schulze, Aljoscha; Gomez-Marin, Alex; Rajendran, Vani G; Lott, Gus; Musy, Marco; Ahammad, Parvez; Deogade, Ajinkya; Sharpe, James; Riedl, Julia; Jarriault, David; Trautman, Eric T; Werner, Christopher; Venkadesan, Madhusudhan; Druckmann, Shaul; Jayaraman, Vivek; Louis, Matthieu

    2015-01-01

    Behavioral strategies employed for chemotaxis have been described across phyla, but the sensorimotor basis of this phenomenon has seldom been studied in naturalistic contexts. Here, we examine how signals experienced during free olfactory behaviors are processed by first-order olfactory sensory neurons (OSNs) of the Drosophila larva. We find that OSNs can act as differentiators that transiently normalize stimulus intensity—a property potentially derived from a combination of integral feedback and feed-forward regulation of olfactory transduction. In olfactory virtual reality experiments, we report that high activity levels of the OSN suppress turning, whereas low activity levels facilitate turning. Using a generalized linear model, we explain how peripheral encoding of olfactory stimuli modulates the probability of switching from a run to a turn. Our work clarifies the link between computations carried out at the sensory periphery and action selection underlying navigation in odor gradients. DOI: http://dx.doi.org/10.7554/eLife.06694.001 PMID:26077825

  13. Dynamic features of rod-shaped Au nanoclusters

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Das, Anindita; Wang, Shuxin; Zhao, Shuo; Byun, Hee Young; Lee, Dana; Kumar, Santosh; Jin, Rongchao; Peteanu, Linda A.

    2015-08-01

    Gold nanoclusters hold many potential applications such as biosensing and optics due to their emission characteristics, small size, and non-toxicity. However, their low quantum yields remain problematic for further applications, and their fluorescence mechanism is still unclear. To increase the low quantum yields, various methods have been performed: doping, tuning structures, and changing number of gold atoms. In the past, most characterizations have been performed on spherical shaped nanoclusters; in this paper, several characterizations of various rod-shaped Au nanoclusters specifically on Au25 are shown. It has been determined that the central gold atom in Au25 nano-rod is crucial in fluorescence. Furthermore, single molecule analysis of silver doped Au25 nano-rod revealed that it has more photo-stability than conjugated polymers and quantum dots.

  14. Dynamical features of interference phenomena in the presence of entanglement

    SciTech Connect

    Kaufherr, T.; Aharonov, Y.; Nussinov, S.; Popescu, S.; Tollaksen, J.

    2011-05-15

    A strongly interacting, and entangling, heavy nonrecoiling external particle effects a significant change of the environment. Described locally, the corresponding entanglement event is a generalized electric Aharonov-Bohm effect, which differs from the original one in a crucial way. We propose a gedanken interference experiment. The predicted shift of the interference pattern is due to a self-induced or ''private'' potential difference experienced while the particle is in vacuum. We show that all nontrivial Born-Oppenheimer potentials are ''private'' potentials. We apply the Born-Oppenheimer approximation to interference states. Using our approach, we calculate the relative phase of the external heavy particle as well as its uncertainty throughout an interference experiment or entanglement event. We thus complement the Born-Oppenheimer approximation for interference states.

  15. Surface features of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Thomas, P.

    1979-01-01

    Viking Orbiter images have provided nearly complete coverage of the two satellites of Mars and have been used to construct maps of the surface features of Phobos and Deimos. The satellites have radically different appearances although nearly all features on both objects were formed directly or indirectly by impact cratering. Phobos has an extensive network of linear depressions (grooves) that probably were formed indirectly by the largest impact recorded on Phobos. Deimos lacks grooves as well as the large number of ridges that occur on Phobos. Craters on Deimos have substantial sediment fill; those on Phobos have none. Evidence of downslope movement of debris is prominent on Deimos but is rare on Phobos. Many of the differences between Phobos and Deimos may be caused by modest differences in mechanical properties. However, the lack of a very large crater on Deimos may be responsible for its lack of grooves.

  16. Episodic Ataxias: Clinical and Genetic Features.

    PubMed

    Choi, Kwang-Dong; Choi, Jae-Hwan

    2016-09-01

    Episodic ataxia (EA) is a clinically heterogeneous group of disorders that are characterized by recurrent spells of truncal ataxia and incoordination lasting minutes to hours. Most have an autosomal dominant inheritance pattern. To date, 8 subtypes have been defined according to clinical and genetic characteristics, and five genes are known to be linked to EAs. Both EA1 and EA2, which are caused by mutations in KCNA1 and CACNA1A, account for the majority of EA, but many patients with no identified mutations still exhibit EA-like clinical features. Furthermore, genetically confirmed EAs have mostly been identified in Caucasian families. In this article, we review the current knowledge on the clinical and genetic characteristics of EAs. Additionally, we summarize the phenotypic features of the genetically confirmed EA2 families in Korea. PMID:27667184

  17. Episodic Ataxias: Clinical and Genetic Features

    PubMed Central

    Choi, Kwang-Dong; Choi, Jae-Hwan

    2016-01-01

    Episodic ataxia (EA) is a clinically heterogeneous group of disorders that are characterized by recurrent spells of truncal ataxia and incoordination lasting minutes to hours. Most have an autosomal dominant inheritance pattern. To date, 8 subtypes have been defined according to clinical and genetic characteristics, and five genes are known to be linked to EAs. Both EA1 and EA2, which are caused by mutations in KCNA1 and CACNA1A, account for the majority of EA, but many patients with no identified mutations still exhibit EA-like clinical features. Furthermore, genetically confirmed EAs have mostly been identified in Caucasian families. In this article, we review the current knowledge on the clinical and genetic characteristics of EAs. Additionally, we summarize the phenotypic features of the genetically confirmed EA2 families in Korea. PMID:27667184

  18. Unique features of animal mitochondrial translation systems

    PubMed Central

    Watanabe, Kimitsuna

    2010-01-01

    In animal mitochondria, several codons are non-universal and their meanings differ depending on the species. In addition, the tRNA structures that decipher codons are sometimes unusually truncated. These features seem to be related to the shortening of mitochondrial (mt) genomes, which occurred during the evolution of mitochondria. These organelles probably originated from the endosymbiosis of an aerobic eubacterium into an ancestral eukaryote. It is plausible that these events brought about the various characteristic features of animal mt translation systems, such as genetic code variations, unusually truncated tRNA and rRNA structures, unilateral tRNA recognition mechanisms by aminoacyl-tRNA synthetases, elongation factors and ribosomes, and compensation for RNA deficits by enlarged proteins. In this article, we discuss molecular mechanisms for these phenomena. Finally, we describe human mt diseases that are caused by modification defects in mt tRNAs. PMID:20075606

  19. Cerebellar ataxia as presenting feature of hypothyroidism.

    PubMed

    Kotwal, Suman Kumar; Kotwal, Shalija; Gupta, Rohan; Singh, Jang Bhadur; Mahajan, Annil

    2016-04-01

    Symptoms and signs of the hypothyroidism vary in relation to the magnitude and acuteness of the thyroid hormone deficiency. The usual clinical features are constipation, fatigue, cold intolerance and weight gain. Rarely it can present with neurologic problems like reversible cerebellar ataxia, dementia, peripheral neuropathy, psychosis and coma. Hypothyroidism should be suspected in all cases of ataxia, as it is easily treatable. A 40 year-old male presented with the history facial puffiness, hoarseness of voice and gait-ataxia. Investigations revealed frank primary hypothyroidism. Anti-TPO antibody was positive. Thyroxine was started and patient improved completely within eight weeks. Hypothyroidism can present with ataxia as presenting feature. Hypothyroidism should be considered in all cases of cerebellar ataxia as it is a reversible cause of ataxia. PMID:26886095

  20. Dynamics of Streptococcus pneumoniae serotypes causing acute otitis media isolated from children with spontaneous middle-ear drainage over a 12-year period (1999-2010) in a region of northern Spain.

    PubMed

    Alonso, Marta; Marimon, José M; Ercibengoa, María; Pérez-Yarza, Eduardo G; Pérez-Trallero, Emilio

    2013-01-01

    The aim of this study was to determine the serotype and clonal distribution of pneumococci causing acute otitis media (AOM) and their relationship with recurrences and mixed infections with other microorganisms under the influence of the 7-valent pneumococcal conjugate vaccine (PCV7). To do this, all pneumococcal isolates collected from the spontaneous middle-ear drainage of children <5 years old diagnosed of AOM by their pediatrician or their general practitioner from 1999 to 2010 were phenotypically characterized and the most frequent serotypes were genotyped. In the 12-year study, 818 episodes of pneumococcal AOM were detected, mostly (70.5%) in children younger than 2 years old. In 262 episodes (32%), the pneumococci were isolated with another bacterium, mainly (n=214) Haemophilus influenzae. Mixed infections were similar in children under or over 2 years old. The most frequent serotypes were 19A (n=227, 27.8%), 3 (n=92, 11.2%) and 19F (n=74, 9%). Serotypes included in the PCV7 sharply decreased from 62.4% in the pre-vaccination (1999-2001) to 2.2% in the late post-vaccination period (2008-2010). Serotype diversity steadily increased after the introduction of the PCV7 but decreased from 2008-2010 due to the predominant role of serotype 19A isolates, mostly ST276 and ST320. The prevalence of serotype 3 doubled from 6.1% (20/326) in 1999-2004 to 14.6% (72/492) in 2005-2010. Relapses mainly occurred in male infants infected with isolates with diminished antimicrobial susceptibility. Reinfections caused by isolates with the same serotype but different genotype were frequent, highlighting the need for genetic studies to differentiate among similar strains. In conclusion, the main change in pneumococcal AOM observed after the introduction of the PCV7 was the sharp decrease in vaccine serotypes. Also notable was the high burden of serotype 19A in total pneumococcal AOM before and especially after the introduction of the PCV7, as well as in relapses and reinfections.