Sample records for dynamics linking aspects

  1. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  2. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  3. Progress on Fault Mechanisms for Gear Transmissions in Coal Cutting Machines: From Macro to Nano Models.

    PubMed

    Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing

    2017-04-01

    Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.

  4. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    PubMed Central

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  5. Mining Multi-Aspect Reflection of News Events in Twitter: Discovery, Linking and Presentation

    PubMed Central

    Wang, Jingjing; Tong, Wenzhu; Yu, Hongkun; Li, Min; Ma, Xiuli; Cai, Haoyan; Hanratty, Tim; Han, Jiawei

    2015-01-01

    A major event often has repercussions on both news media and microblogging sites such as Twitter. Reports from mainstream news agencies and discussions from Twitter complement each other to form a complete picture. An event can have multiple aspects (sub-events) describing it from multiple angles, each of which attracts opinions/comments posted on Twitter. Mining such reflections is interesting to both policy makers and ordinary people seeking information. In this paper, we propose a unified framework to mine multi-aspect reflections of news events in Twitter. We propose a novel and efficient dynamic hierarchical entity-aware event discovery model to learn news events and their multiple aspects. The aspects of an event are linked to their reflections in Twitter by a bootstrapped dataless classification scheme, which elegantly handles the challenges of selecting informative tweets under overwhelming noise and bridging the vocabularies of news and tweets. In addition, we demonstrate that our framework naturally generates an informative presentation of each event with entity graphs, time spans, news summaries and tweet highlights to facilitate user digestion. PMID:27034625

  6. Mining Multi-Aspect Reflection of News Events in Twitter: Discovery, Linking and Presentation.

    PubMed

    Wang, Jingjing; Tong, Wenzhu; Yu, Hongkun; Li, Min; Ma, Xiuli; Cai, Haoyan; Hanratty, Tim; Han, Jiawei

    2015-11-01

    A major event often has repercussions on both news media and microblogging sites such as Twitter. Reports from mainstream news agencies and discussions from Twitter complement each other to form a complete picture. An event can have multiple aspects (sub-events) describing it from multiple angles, each of which attracts opinions/comments posted on Twitter. Mining such reflections is interesting to both policy makers and ordinary people seeking information. In this paper, we propose a unified framework to mine multi-aspect reflections of news events in Twitter. We propose a novel and efficient dynamic hierarchical entity-aware event discovery model to learn news events and their multiple aspects. The aspects of an event are linked to their reflections in Twitter by a bootstrapped dataless classification scheme, which elegantly handles the challenges of selecting informative tweets under overwhelming noise and bridging the vocabularies of news and tweets. In addition, we demonstrate that our framework naturally generates an informative presentation of each event with entity graphs, time spans, news summaries and tweet highlights to facilitate user digestion.

  7. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.

  8. The Use of Web Search Engines in Information Science Research.

    ERIC Educational Resources Information Center

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  9. Calculations of predissociative lifetimes of RG...Hal2 Van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Buchachenko, Alexei A.; Stepanov, N. F.

    1992-07-01

    Good examples of combined energy- and time-resolved techniques linked by the theoretical solution of a nuclear problem may be found in investigations of the dynamics of weakly bound Van der Waals (VdW) complexes, such as Ar-OH and He-stilbene. Our report concerns only the theoretical aspect of this complex approach. However, we shall stress the importance of energy-resolved spectroscopy for the dynamics and try to illustrate this with some numerical results.

  10. A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks

    NASA Astrophysics Data System (ADS)

    Yasami, Yasser; Safaei, Farshad

    2018-02-01

    The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node's membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of cascade prediction in terms of accuracy.

  11. A framework for quantification of groundwater dynamics - redundancy and transferability of hydro(geo-)logical metrics

    NASA Astrophysics Data System (ADS)

    Heudorfer, Benedikt; Haaf, Ezra; Barthel, Roland; Stahl, Kerstin

    2017-04-01

    A new framework for quantification of groundwater dynamics has been proposed in a companion study (Haaf et al., 2017). In this framework, a number of conceptual aspects of dynamics, such as seasonality, regularity, flashiness or inter-annual forcing, are described, which are then linked to quantitative metrics. Hereby, a large number of possible metrics are readily available from literature, such as Pardé Coefficients, Colwell's Predictability Indices or Base Flow Index. In the present work, we focus on finding multicollinearity and in consequence redundancy among the metrics representing different patterns of dynamics found in groundwater hydrographs. This is done also to verify the categories of dynamics aspects suggested by Haaf et al., 2017. To determine the optimal set of metrics we need to balance the desired minimum number of metrics and the desired maximum descriptive property of the metrics. To do this, a substantial number of candidate metrics are applied to a diverse set of groundwater hydrographs from France, Germany and Austria within the northern alpine and peri-alpine region. By applying Principle Component Analysis (PCA) to the correlation matrix of the metrics, we determine a limited number of relevant metrics that describe the majority of variation in the dataset. The resulting reduced set of metrics comprise an optimized set that can be used to describe the aspects of dynamics that were identified within the groundwater dynamics framework. For some aspects of dynamics a single significant metric could be attributed. Other aspects have a more fuzzy quality that can only be described by an ensemble of metrics and are re-evaluated. The PCA is furthermore applied to groups of groundwater hydrographs containing regimes of similar behaviour in order to explore transferability when applying the metric-based characterization framework to groups of hydrographs from diverse groundwater systems. In conclusion, we identify an optimal number of metrics, which are readily available for usage in studies on groundwater dynamics, intended to help overcome analytical limitations that exist due to the complexity of groundwater dynamics. Haaf, E., Heudorfer, B., Stahl, K., Barthel, R., 2017. A framework for quantification of groundwater dynamics - concepts and hydro(geo-)logical metrics. EGU General Assembly 2017, Vienna, Austria.

  12. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  13. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.

    PubMed

    Khare, Ketan S; Khare, Rajesh

    2013-06-20

    We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.

  14. High-speed fiber-optic links for distribution of satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, Afshin S.; Saedi, Reza; Ackerman, Edward; Kunath, Richard; Shalkhauser, Kurt

    1990-01-01

    Low-loss fiberoptic links are designed for distribution of data and the frequency reference in large-aperture phased-array antennas based on the transmit/receive-level data mixing architecture. In particular, design aspects of a fiberoptic link satisfying the distribution requirements of satellite data traffic are presented. The design is addressed in terms of reactively matched optical transmitter and receiver modules. Analog and digital characterization of a 50-m fiberoptic link realized using these modules indicates the applicability of this architecture as the only viable alternative for distribution of data signals inside a satellite at present. It is demonstrated that the design of a reactive matching modules enhances the link performance. A dynamic range of 88 dB/MHz was measured for analog data over a 500-1000-MHz bandwidth.

  15. "I Just Want to Be 'Me' When I Am Exercising": Adrianna's Construction of a Vulnerable Exercise Identity

    ERIC Educational Resources Information Center

    Rossing, Hilde; Ronglan, Lars-Tore; Scott, Susie

    2016-01-01

    This study explores the social and dynamic aspects of the concept "exercise identity". Previous research, mainly in psychology, has documented a link between exercise identity and exercise behaviour. However, the process of identity formation is not straightforward but rather something that can change with time, context and interaction…

  16. A New Dynamic 3D Virtual Methodology for Teaching the Mechanics of Atrial Septation as Seen in the Human Heart

    ERIC Educational Resources Information Center

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H.

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the…

  17. Student Engagement, Peer Social Capital, and School Dropout among Mexican American and Non-Latino White Students

    ERIC Educational Resources Information Center

    Ream, Robert K.; Rumberger, Russell W.

    2008-01-01

    Policy makers are especially concerned about persistently high dropout rates among U.S. Latinos, the largest minority population in the United States. This study used a national longitudinal database to show that the behavioral and social aspects of schooling are dynamically linked in the process of school completion and dropout among Mexican…

  18. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  19. Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making.

    PubMed

    Rich, Erin L; Stoll, Frederic M; Rudebeck, Peter H

    2018-04-01

    Humans and animals demonstrate extraordinary flexibility in choice behavior, particularly when deciding based on subjective preferences. We evaluate options on different scales, deliberate, and often change our minds. Little is known about the neural mechanisms that underlie these dynamic aspects of decision-making, although neural activity in orbitofrontal cortex (OFC) likely plays a central role. Recent evidence from studies in macaques shows that attention modulates value responses in OFC, and that ensembles of OFC neurons dynamically signal different options during choices. When contexts change, these ensembles flexibly remap to encode the new task. Determining how these dynamic patterns emerge and relate to choices will inform models of decision-making and OFC function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Which Brain Regions are Important for Seizure Dynamics in Epileptic Networks? Influence of Link Identification and EEG Recording Montage on Node Centralities.

    PubMed

    Geier, Christian; Lehnertz, Klaus

    2017-02-01

    Nodes in large-scale epileptic networks that are crucial for seizure facilitation and termination can be regarded as potential targets for individualized focal therapies. Graph-theoretical approaches based on centrality concepts can help to identify such important nodes, however, they may be influenced by the way networks are derived from empirical data. Here we investigate evolving functional epileptic brain networks during 82 focal seizures with different anatomical onset locations that we derive from multichannel intracranial electroencephalographic recordings from 51 patients. We demonstrate how the various methodological steps (from the recording montage via node and link inference to the assessment of node centralities) affect importance estimation and discuss their impact on the interpretability of findings in the context of pathophysiological aspects of seizure dynamics.

  1. Distinct eye movement patterns enhance dynamic visual acuity.

    PubMed

    Palidis, Dimitrios J; Wyder-Hodge, Pearson A; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics-eye latency, acceleration, velocity gain, position error-and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns-minimizing eye position error, tracking smoothly, and inhibiting reverse saccades-were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA.

  2. Distinct eye movement patterns enhance dynamic visual acuity

    PubMed Central

    Palidis, Dimitrios J.; Wyder-Hodge, Pearson A.; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics—eye latency, acceleration, velocity gain, position error—and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns—minimizing eye position error, tracking smoothly, and inhibiting reverse saccades—were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA. PMID:28187157

  3. Imaging of Myocardial Fatty Acid Oxidation

    PubMed Central

    Mather, Kieren J; DeGrado, Tim

    2016-01-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. PMID:26923433

  4. Fundamental aspects in the quantitative ultrasonic determination of fracture toughness: General equations

    NASA Technical Reports Server (NTRS)

    Fu, L. S.

    1981-01-01

    The problem of establishing a theoretical groundwork for experimentally-found correlations between ultrasonic and fracture toughness factors in polycrystalline metals is discussed. It is noted that the link between these material properties and ultrasonic factors are the microstructural parameters that interact with stress wave propagation during deformation and fracture. The dynamic response of material inhomogeneities and the strains and displacements they undergo under incident stress waves are considered. Dynamic strains and displacements inside and outside scatterers are treated. The underlying approach, the formulation and governing equations for the eigenstrains, and the determination of the energy due to the presence of inhomogeneities are presented. The stress wave interaction problem is presented in terms of the dynamic eigenstrain concept.

  5. Evolution of Cooperation in Adaptive Social Networks

    NASA Astrophysics Data System (ADS)

    Segbroeck, Sven Van; Santos, Francisco C.; Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M.

    Humans are organized in societies, a phenomenon that would never have been possible without the evolution of cooperative behavior. Several mechanisms that foster this evolution have been unraveled over the years, with population structure as a prominent promoter of cooperation. Modern networks of exchange and cooperation are, however, becoming increasingly volatile, and less and less based on long-term stable structure. Here, we address how this change of paradigm aspects the evolution of cooperation. We discuss analytical and numerical models in which individuals can break social ties and create new ones. Interactions are modeled as two-player dilemmas of cooperation. Once a link between two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different rates. This individual capacity of forming new links or severing inconvenient ones can effectively change the nature of the game. We address random formation of new links and local linking rules as well as different individual capacities to maintain social interactions. We conclude by discussing how adaptive social networks can become an important step towards more realistic models of cultural dynamics.

  6. Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo

    2016-12-01

    Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different timescales make it difficult to study mantle convection and melt migration in a unified framework, especially for 3-D global models. And although experiments suggest an increase in melt volume of up to 20 per cent from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high-resolution, 3-D, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.

  7. Thermal transport dynamics in the quasi-single helicity state

    NASA Astrophysics Data System (ADS)

    McKinney, I. J.; Terry, P. W.

    2017-06-01

    A dynamical model describing oscillations between multiple and single helicity configurations in the quasi-single helicity (QSH) state of the reversed field pinch [P. W. Terry and G. G. Whelan, Plasma Phys. Controlled Fusion 56, 094003 (2014)] is extended to include electron temperature profile dynamics. It is shown that QSH dynamics is linked to the electron temperature profile because the suppression of mode coupling between tearing modes proposed to underlie QSH also suppresses magnetic-fluctuation-induced thermal transport. Above the threshold of dominant-mode shear that marks the transition to QSH, the model produces temperature-gradient steepening in the strong shear region. Oscillations of the dominant and secondary mode amplitudes give rise to oscillations of the temperature gradient. The phasing and amplitude of temperature gradient oscillations relative to those of the dominant mode are in agreement with experiment. This provides further evidence that the model, while heuristic, captures key physical aspects of the QSH state.

  8. Record Balkan floods of 2014 linked to planetary wave resonance.

    PubMed

    Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan

    2016-04-01

    In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.

  9. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses.

    PubMed

    Jansen, Jeroen J; van Dam, Nicole M; Hoefsloot, Huub C J; Smilde, Age K

    2009-12-16

    Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples.

  10. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    PubMed Central

    2009-01-01

    Background Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. Results This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Conclusions Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples. PMID:20015363

  11. A Comparative Study of Three Methodologies for Modeling Dynamic Stall

    NASA Technical Reports Server (NTRS)

    Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.

    2002-01-01

    During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.

  12. Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system

    DOE PAGES

    Wang, Y.; Moritz, B.; Chen, C. -C.; ...

    2016-02-24

    Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softeningmore » due to a stronger coupling near k F. As a result, this behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.« less

  13. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models

    NASA Astrophysics Data System (ADS)

    Dodani, Sheel C.; Kiss, Gert; Cahn, Jackson K. B.; Su, Ye; Pande, Vijay S.; Arnold, Frances H.

    2016-05-01

    The dynamic motions of protein structural elements, particularly flexible loops, are intimately linked with diverse aspects of enzyme catalysis. Engineering of these loop regions can alter protein stability, substrate binding and even dramatically impact enzyme function. When these flexible regions are unresolvable structurally, computational reconstruction in combination with large-scale molecular dynamics simulations can be used to guide the engineering strategy. Here we present a collaborative approach that consists of both experiment and computation and led to the discovery of a single mutation in the F/G loop of the nitrating cytochrome P450 TxtE that simultaneously controls loop dynamics and completely shifts the enzyme's regioselectivity from the C4 to the C5 position of L-tryptophan. Furthermore, we find that this loop mutation is naturally present in a subset of homologous nitrating P450s and confirm that these uncharacterized enzymes exclusively produce 5-nitro-L-tryptophan, a previously unknown biosynthetic intermediate.

  14. Mitochondria in the nervous system: From health to disease, part II.

    PubMed

    Carrì, Maria Teresa; Polster, Brian M; Beart, Philip M

    2018-04-10

    In Part II of this Special Issue on "Mitochondria in the Nervous System: From Health to Disease", the editors bring together more reviews and original articles from researchers in the field of mitochondrial metabolism in the healthy and diseased nervous system. Subjects span from basic mitochondrial physiology to papers on mitochondrial dynamics and to those altered states of the nervous system that can be considered "mitopathologies". Finally, a few papers approach aspects of mitochondrial biology linked to the feasibility and validity of a mitochondrial therapy. Copyright © 2018. Published by Elsevier Ltd.

  15. The protozooplankton-ichthyoplankton trophic link: an overlooked aspect of aquatic food webs.

    PubMed

    Montagnes, David J S; Dower, John F; Figueiredo, Gisela M

    2010-01-01

    Since the introduction of the microbial loop concept, awareness of the role played by protozooplankton in marine food webs has grown. By consuming bacteria, and then being consumed by metazooplankton, protozoa form a trophic link that channels dissolved organic material into the "classic" marine food chain. Beyond enhancing energy transfer to higher trophic levels, protozoa play a key role in improving the food quality of metazooplankton. Here, we consider a third role played by protozoa, but one that has received comparatively little attention: that as prey items for ichthyoplankton. For >100 years it has been known that fish larvae consume protozoa. Despite this, fisheries scientists and biological oceanographers still largely ignore protozoa when assessing the foodweb dynamics that regulate the growth and survival of larval fish. We review evidence supporting the importance of the protozooplankton-ichthyoplankton link, including examples from the amateur aquarium trade, the commercial aquaculture industry, and contemporary studies of larval fish. We then consider why this potentially important link continues to receive very little attention. We conclude by offering suggestions for quantifying the importance of the protozooplankton-ichthyoplankton trophic link, using both existing methods and new technologies.

  16. Multiple Roles of Integrin-Linked Kinase in Epidermal Development, Maturation and Pigmentation Revealed by Molecular Profiling

    PubMed Central

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E.; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function. PMID:22574216

  17. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    PubMed

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  18. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    PubMed Central

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  19. Bifurcation induced by the aspect ratio in a turbulent von Kármán swirling flow

    NASA Astrophysics Data System (ADS)

    Liot, Olivier; Burguete, Javier

    2017-01-01

    We evaluate the effect of the aspect ratio, i.e., the distance between the propellers H divided by the diameter D , on the slow dynamics of a von Kármán swirling flow driven by two propellers in a closed cylinder. We use a cell with a fixed diameter D but where the distance between the propellers can be turned continuously and where the inertia from the propellers can also be changed using different gears. No change on the dynamics is observed when the momentum of inertia is modified. Some dramatic changes of the shear layer position are observed modifying the aspect ratio Γ =H /D . A bifurcation of the shear layer position appears. Whereas for low Γ the shear layer position has a smooth evolution when turning the asymmetry between the rotation frequency of the propellers, for high Γ the transition becomes abrupt and a symmetry breaking appears. Secondly we observe that the spontaneous reversals with large residence times already observed in this experiment for Γ =1 [de la Torre and Burguete, Phys. Rev. Lett. 99, 054101 (2007), 10.1103/PhysRevLett.99.054101] exist only in a narrow window of aspect ratio. We show using an experimental study of the mean flow structure and a numerical approach based on a Langevin equation with colored noise that the shear layer position seems to be decided by the mean flow structure, whereas the reversals are linked to the spatial distribution of the turbulent fluctuations in the cell.

  20. Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    PubMed Central

    Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374

  1. Local difference measures between complex networks for dynamical system model evaluation.

    PubMed

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.

  2. Geometrical aspects in optical wave-packet dynamics.

    PubMed

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  3. Challenges in network science: Applications to infrastructures, climate, social systems and economics

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.

    2012-11-01

    Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.

  4. Integrating Thermodynamic Models in Geodynamic Simulations: The Example of the Community Software ASPECT

    NASA Astrophysics Data System (ADS)

    Dannberg, J.; Heister, T.; Grove, R. R.; Gassmoeller, R.; Spiegelman, M. W.; Bangerth, W.

    2017-12-01

    Earth's surface shows many features whose genesis can only be understood through the interplay of geodynamic and thermodynamic models. This is particularly important in the context of melt generation and transport: Mantle convection determines the distribution of temperature and chemical composition, the melting process itself is then controlled by the thermodynamic relations and in turn influences the properties and the transport of melt. Here, we present our extension of the community geodynamics code ASPECT, which solves the equations of coupled magma/mantle dynamics, and allows to integrate different parametrizations of reactions and phase transitions: They may alternatively be implemented as simple analytical expressions, look-up tables, or computed by a thermodynamics software. As ASPECT uses a variety of numerical methods and solvers, this also gives us the opportunity to compare different approaches of modelling the melting process. In particular, we will elaborate on the spatial and temporal resolution that is required to accurately model phase transitions, and show the potential of adaptive mesh refinement when applied to melt generation and transport. We will assess the advantages and disadvantages of iterating between fluid dynamics and chemical reactions derived from thermodynamic models within each time step, or decoupling them, allowing for different time step sizes. Beyond that, we will expand on the functionality required for an interface between computational thermodynamics and fluid dynamics models from the geodynamics side. Finally, using a simple example of melting of a two-phase, two-component system, we compare different time-stepping and solver schemes in terms of accuracy and efficiency, in dependence of the time scales of fluid flow and chemical reactions relative to each other. Our software provides a framework to integrate thermodynamic models in high resolution, 3d simulations of coupled magma/mantle dynamics, and can be used as a tool to study links between physical processes and geochemical signals in the Earth.

  5. Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function

    PubMed Central

    Hensen, Ulf; Meyer, Tim; Haas, Jürgen; Rex, René; Vriend, Gert; Grubmüller, Helmut

    2012-01-01

    Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics. PMID:22606222

  6. Mesosphere-Stratosphere Coupling: Implications for Climate Variability and Trends

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.

    2004-01-01

    A key aspect of this project is the establishment of a causal link from circulation anomalies in the lower mesosphere and stratopause region downward through the stratosphere to the troposphere. The observational link for stratospheric sudden warmings and surface climate is fairly clear. However, our understanding of the dynamics is incomplete. We have been making significant progress in the area of dynamical mechanisms by which circulation anomalies in the stratosphere affect the troposphere. We are trying to understand the details and sequence of events that occur when a middle atmosphere (wind) anomaly propagates downward to near the tropopause. The wind anomaly could be caused by a warming or solar variations in the low-latitude stratopause region, or could have other causes. The observations show a picture that is consistent with a circulation anomaly that descends to the tropopause region, and can be detected as low as the mid-troposphere. Processes near the stratopause in the tropics appear to be important precursors to the wintertime development of the northern polar vortex. This may affect significantly our understanding of the process by which low-latitude wind anomalies in the low mesosphere and upper stratosphere evolve through the winter and affect the polar vortex.

  7. Complex systems dynamics in aging: new evidence, continuing questions.

    PubMed

    Cohen, Alan A

    2016-02-01

    There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.

  8. In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory.

    PubMed

    Watson, L Ashley; Tsai, Li-Huei

    2017-04-01

    Different aspects of learning, memory, and cognition are regulated by epigenetic mechanisms such as covalent DNA modifications and histone post-translational modifications. More recently, the modulation of chromatin architecture and nuclear organization is emerging as a key factor in dynamic transcriptional regulation of the post-mitotic neuron. For instance, neuronal activity induces relocalization of gene loci to 'transcription factories', and specific enhancer-promoter looping contacts allow for precise transcriptional regulation. Moreover, neuronal activity-dependent DNA double-strand break formation in the promoter of immediate early genes appears to overcome topological constraints on transcription. Together, these findings point to a critical role for genome topology in integrating dynamic environmental signals to define precise spatiotemporal gene expression programs supporting cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Disentangling α and β relaxation in orientationally disordered crystals with theory and experiments

    NASA Astrophysics Data System (ADS)

    Cui, Bingyu; Gebbia, Jonathan F.; Tamarit, Josep-Lluis; Zaccone, Alessio

    2018-05-01

    We use a microscopically motivated generalized Langevin equation (GLE) approach to link the vibrational density of states (VDOS) to the dielectric response of orientational glasses (OGs). The dielectric function calculated based on the GLE is compared with experimental data for the paradigmatic case of two OGs: freon-112 and freon-113, around and just above Tg. The memory function is related to the integral of the VDOS times a spectral coupling function γ (ωp) , which tells the degree of dynamical coupling between molecular degrees of freedom at different eigenfrequencies. The comparative analysis of the two freons reveals that the appearance of a secondary β relaxation in freon-112 is due to cooperative dynamical coupling in the regime of mesoscopic motions caused by stronger anharmonicity (absent in freon-113) and is associated with the comparatively lower boson peak in the VDOS. The proposed framework brings together all the key aspects of glassy physics (VDOS with the boson peak, dynamical heterogeneity, dissipation, and anharmonicity) into a single model.

  10. Crystal-melt interface mobility in bcc Fe: Linking molecular dynamics to phase-field and phase-field crystal modeling

    NASA Astrophysics Data System (ADS)

    Guerdane, M.; Berghoff, M.

    2018-04-01

    By combining molecular dynamics (MD) simulations with phase-field (PF) and phase-field crystal (PFC) modeling we study collision-controlled growth kinetics from the melt for pure Fe. The MD/PF comparison shows, on the one hand, that the PF model can be properly designed to reproduce quantitatively different aspects of the growth kinetics and anisotropy of planar and curved solid-liquid interfaces. On the other hand, this comparison demonstrates the ability of classical MD simulations to predict morphology and dynamics of moving curved interfaces up to a length scale of about 0.15 μ m . After mapping the MD model to the PF one, the latter permits to analyze the separate contribution of different anisotropies to the interface morphology. The MD/PFC agreement regarding the growth anisotropy and morphology extends the trend already observed for the here used PFC model in describing structural and elastic properties of bcc Fe.

  11. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp.

    PubMed

    Duchi, Diego; Mazumder, Abhishek; Malinen, Anssi M; Ebright, Richard H; Kapanidis, Achillefs N

    2018-06-06

    RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.

  12. Thermodynamic aspects of information transfer in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Cafaro, Carlo; Ali, Sean Alan; Giffin, Adom

    2016-02-01

    From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014), 10.1103/PhysRevX.4.031015], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information exchange rate between the two subsystems. In this article, we present a quantitative discussion of the conceptual link between the Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005), 10.1103/PhysRevLett.95.244101]. In particular, the entropic balance arguments employed in the two approaches are compared. Notwithstanding all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic balance arguments.

  13. Agent-based modeling in ecological economics.

    PubMed

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  14. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns

    PubMed Central

    Gonzalez-Castillo, Javier; Hoy, Colin W.; Handwerker, Daniel A.; Robinson, Meghan E.; Buchanan, Laura C.; Saad, Ziad S.; Bandettini, Peter A.

    2015-01-01

    Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition. PMID:26124112

  15. Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores.

    PubMed

    Kersey, Farrell R; Merkel, Timothy J; Perry, Jillian L; Napier, Mary E; DeSimone, Joseph M

    2012-06-12

    We describe the fabrication of filamentous hydrogel nanoparticles using a unique soft lithography based particle molding process referred to as PRINT (particle replication in nonwetting templates). The nanoparticles possess a constant width of 80 nm, and we varied their lengths ranging from 180 to 5000 nm. In addition to varying the aspect ratio of the particles, the deformability of the particles was tuned by varying the cross-link density within the particle matrix. Size characteristics such as hydrodynamic diameter and persistence length of the particles were analyzed using dynamic light scattering and electron microscopy techniques, respectively, while particle deformability was assessed by atomic force microscopy. Additionally, the ability of the particles to pass through membranes containing 0.2 μm pores was assessed by means of a simple filtration technique, and particle recovery was determined using fluorescence spectroscopy. The results show that particle recovery is mostly independent of aspect ratio at all cross-linker concentrations utilized, with the exception of 96 wt % PEG diacrylate 80 × 5000 nm particles, which showed the lowest percent recovery.

  16. Changes in functional connectivity dynamics associated with vigilance network in taxi drivers.

    PubMed

    Shen, Hui; Li, Zhenfeng; Qin, Jian; Liu, Qiang; Wang, Lubin; Zeng, Ling-Li; Li, Hong; Hu, Dewen

    2016-01-01

    An increasing number of neuroimaging studies have suggested that the fluctuations of low-frequency resting-state functional connectivity (FC) are not noise but are instead linked to the shift between distinct cognitive states. However, there is very limited knowledge about whether and how the fluctuations of FC at rest are influenced by long-term training and experience. Here, we investigated how the dynamics of resting-state FC are linked to driving behavior by comparing 20 licensed taxi drivers with 20 healthy non-drivers using a sliding window approach. We found that the driving experience could be effectively decoded with 90% (p<0.001) accuracy by the amplitude of low-frequency fluctuations in some specific connections, based on a multivariate pattern analysis technique. Interestingly, the majority of these connections fell within a set of distributed regions named "the vigilance network". Moreover, the decreased amplitude of the FC fluctuations within the vigilance network in the drivers was negatively correlated with the number of years that they had driven a taxi. Furthermore, temporally quasi-stable functional connectivity segmentation revealed significant differences between the drivers and non-drivers in the dwell time of specific vigilance-related transient brain states, although the brain's repertoire of functional states was preserved. Overall, these results suggested a significant link between the changes in the time-dependent aspects of resting-state FC within the vigilance network and long-term driving experiences. The results not only improve our understanding of how the brain supports driving behavior but also shed new light on the relationship between the dynamics of functional brain networks and individual behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Role of the Dynamic Sensory Perception in the Reformulation of Shakes: Use of TDS for Studying the Effect of Milk, Fiber, and Flavor Addition.

    PubMed

    Tomadoni, Barbara; Fiszman, Susana; Moreira, María R; Tarrega, Amparo

    2018-01-01

    Various factors need to be taken into account when reformulating a food or beverage. The food components, not only macronutrients but also minor ingredients such as flavoring agents, could affect the perception of the sensory sensations, importantly their dynamic aspects, as rising and duration, which are not normally considered. The novelty of this approach is the study of the effects of the addition of several ingredients (fiber, extra milk powder, and strawberry flavoring) on the dynamic perception of a food item (strawberry shakes) using the temporal dominance of sensations (TDS) technique. The occurrence and duration of the key sensory sensations (acid, natural strawberry flavor, thick, sweet, candy strawberry flavor, and milk flavor) extracted from the TDS curves were analyzed and linked to the composition factors and liking and expectations of satiety scores. For example, the addition of flavoring increased the liking scores (increments ranging from 0.3 to 1.1) that was linked to the attenuation of acid sensation; and the addition of extra milk powder increased the expectation of satiety scores (increments ranging from 0.5 to 0.7) that was linked to the perception of early thick sensation in the mouth. In general, the more complex sensory profiles the higher liking and expectations of satiety. This work is a case study on how temporal sensory methods can contribute important information on the actual perception of food during consumption. Depending on the ingredients added these sensory properties appear at different times and with different dominance during evaluation affecting liking or fullness expectations. In consequence, the temporal sensory properties should be taken into account when designing or reformulating food. © 2017 Institute of Food Technologists®.

  18. Hippocampal brain-network coordination during volitional exploratory behavior enhances learning

    PubMed Central

    Voss, Joel L.; Gonsalves, Brian D.; Federmeier, Kara D.; Tranel, Daniel; Cohen, Neal J.

    2010-01-01

    Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. We manipulated how much control subjects had over the position of a moving window through which they studied objects and their locations, in order to elucidate the cognitive and neural determinants of exploratory behaviors. Our behavioral, neuropsychological, and neuroimaging data indicate volitional control benefits memory performance, and is linked to a brain network centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, suggesting that volitional control optimizes interactions among specialized neural systems via the hippocampus. Memory is therefore an active process intrinsically linked to behavior. Furthermore, brain structures typically seen as passive participants in memory encoding (e.g., the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds. PMID:21102449

  19. Hippocampal brain-network coordination during volitional exploratory behavior enhances learning.

    PubMed

    Voss, Joel L; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Daniel; Cohen, Neal J

    2011-01-01

    Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. To elucidate the cognitive and neural determinants of exploratory behaviors, we manipulated the control that human subjects had over the position of a moving window through which they studied objects and their locations. Our behavioral, neuropsychological and neuroimaging data indicate that volitional control benefits memory performance and is linked to a brain network that is centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, which suggests that volitional control optimizes interactions among specialized neural systems through the hippocampus. Memory is therefore an active process that is intrinsically linked to behavior. Furthermore, brain structures that are typically seen as passive participants in memory encoding (for example, the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds.

  20. Path Flow Estimation Using Time Varying Coefficient State Space Model

    NASA Astrophysics Data System (ADS)

    Jou, Yow-Jen; Lan, Chien-Lun

    2009-08-01

    The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.

  1. Human dynamics revealed through Web analytics

    NASA Astrophysics Data System (ADS)

    Gonçalves, Bruno; Ramasco, José J.

    2008-08-01

    The increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University’s Web site. Emory is a medium-sized university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we find that linear preferential linking, priority-based queuing, and the decay of interest for the contents of the pages are the essential ingredients to understand the way users navigate the Web.

  2. Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications

    USGS Publications Warehouse

    Burkett, Virginia R.; Wilcox, Douglas A.; Stottlemyer, Robert; Barrow, Wylie; Fagre, Dan; Baron, Jill S.; Price, Jeff; Nielsen, Jennifer L.; Allen, Craig D.; Peterson, David L.; Ruggerone, Greg; Doyle, Thomas

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.

  3. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success.

    PubMed

    Combes, S A; Crall, J D; Mukherjee, S

    2010-06-23

    Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop-escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival.

  4. Ultrasoft microgels displaying emergent platelet-like behaviours

    NASA Astrophysics Data System (ADS)

    Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.

    2014-12-01

    Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.

  5. Synchronisation and stability in river metapopulation networks.

    PubMed

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  6. Developing Emotional Intelligence Competence among Teachers

    ERIC Educational Resources Information Center

    Dolev, Niva; Leshem, Shosh

    2017-01-01

    A growing body of research has linked emotional intelligence (EI) to different life aspects, including personal well-being, quality of social relationships and professional effectiveness. In the field of education, EI has been linked to different aspects of school life, such as learning, academic achievements and pro-social behaviours among…

  7. Study on general theory of kinematics and dynamics of wheeled mobile robots

    NASA Astrophysics Data System (ADS)

    Tsukishima, Takahiro; Sasaki, Ken; Takano, Masaharu; Inoue, Kenji

    1992-03-01

    This paper proposes a general theory of kinematics and dynamics of wheeled mobile robots (WMRs). Unlike robotic manipulators which are modeled as 3-dimensional serial link mechanism, WMRs will be modeled as planar linkage mechanism with multiple links branching out from the base and/or another link. Since this model resembles a tree with branches, it will be called 'tree-structured-link'. The end of each link corresponds to the wheel which is in contact with the floor. In dynamics of WMR, equation of motion of a WMR is derived from joint input torques incorporating wheel dynamics. The wheel dynamics determines forces and moments acting on wheels as a function of slip velocity. This slippage of wheels is essential in dynamics of WMR. It will also be shown that the dynamics of WMR reduces to kinematics when slippage of wheels is neglected. Furthermore, the equation of dynamics is rewritten in velocity input form, since most of industrial motors are velocity controlled.

  8. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  9. A Common Core for Active Conceptual Modeling for Learning from Surprises

    NASA Astrophysics Data System (ADS)

    Liddle, Stephen W.; Embley, David W.

    The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.

  10. Thermodynamic and Dynamic Aspects of Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan

    2018-01-01

    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  11. Membrane tension and cytoskeleton organization in cell motility.

    PubMed

    Sens, Pierre; Plastino, Julie

    2015-07-15

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  12. The effect of inertial coupling in the dynamics and control of flexible robotic manipulators

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Curran, Carol Cockrell; Graves, Philip Lee

    1988-01-01

    A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances.

  13. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions

    PubMed Central

    Scholes, Natalie S.; Weinzierl, Robert O. J.

    2016-01-01

    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900

  14. Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease

    PubMed Central

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara

    2017-01-01

    Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans. PMID:28811869

  15. Engineering evaluations and studies. Report for Ku-band studies, exhibit A

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Maronde, R. G.; Roberts, D.

    1981-01-01

    System performance aspects of the Ku band radar communication hardware and investigations into the Ku band/payload interfaces are discussed. The communications track problem caused by the excessive signal dynamic range at the servo input was investigated. The management/handover logic is discussed and a simplified description of the transmitter enable logic function is presented. Output noise produced by a voltage-controlled oscillator chip used in the SPA return-link channel 3 mid-bit detector is discussed. The deployed assembly (DA) and EA-2 critical design review data are evaluated. Cross coupling effects on antenna servo stability were examined. A series of meetings on the acceptance test specification for the deployed assembly is summarized.

  16. Matching and selection of a specific subjective experience: conjugate matching and experience.

    PubMed

    Vimal, Ram Lakhan Pandey

    2010-06-01

    We incorporate the dual-mode concept in our dual-aspect PE-SE (proto-experience-subjective experience) framework. The two modes are: (1) the non-tilde mode that is the physical (material) and mental aspect of cognition (memory and attention) related feedback signals in a neural-network, which refers to the cognitive nearest past approaching towards present; and (2) the tilde mode that is the material and mental aspect of the feed-forward signals due to external environmental input and internal endogenous input, which pertains to the nearest future approaching towards present and is a entropy-reversed representation of non-tilde mode. Furthermore, one could argue that there are at least five sub-pathways in the stimulus-dependent feed-forward pathway and cognitive feedback pathway for information transfer in the brain dynamics: (i) classical axonal-dendritic neural sub-pathway including electromagnetic information field sub-pathway; (ii) quantum dendritic-dendritic microtubule (MT) (dendritic webs) sub-pathway; (iii) Ca(++)-related astroglial-neural sub-pathway; (iv) (a) the sub-pathway related to extrasynaptic signal transmission between fine distal dendrites of cortical neurons for the local subtle modulation due to voltages created by intradendritic dual-aspect charged surface effects within the Debye layer around endogenous structures such as microtubules (MT) and endoplasmic reticulum (ER) in dendrites, and (b) the sub-pathway related to extracellular volume transmission as fields of neural activity for the global modulation in axonal-dendritic neural sub-pathway; and (v) the sub-pathway related to information transmission via soliton propagation. We propose that: (i) the quantum conjugate matching between experiences in the mental aspect of the tilde mode and that of the non-tilde mode is related more to the mental aspect of the quantum microtubule-dendritic-web and less to that of the non-quantum sub-pathways; and (ii) the classical matching between experiences in the mental aspect of the tilde mode and that of the non-tilde mode is related to the mental aspect of the non-quantum sub-pathways (such as classical axonal-dendritic neural sub-pathway). In both cases, a specific SE is selected when the tilde mode interacts with the non-tilde mode to match for a specific SE, and when the necessary ingredients of SEs (such as the formation of neural networks, wakefulness, re-entry, attention, working memory, and so on) are satisfied. When the conjugate match is made between the two modes, the world-presence (Now) is disclosed. The material aspects in the tilde mode and that in the non-tilde mode are matched to link structure with function, whereas the mental aspects in the tilde mode and that in the non-tilde mode are matched to link experience with structure and function.

  17. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  18. Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link

    NASA Astrophysics Data System (ADS)

    Mitra, Aditee; Castellani, Claudia; Gentleman, Wendy C.; Jónasdóttir, Sigrún H.; Flynn, Kevin J.; Bode, Antonio; Halsband, Claudia; Kuhn, Penelope; Licandro, Priscilla; Agersted, Mette D.; Calbet, Albert; Lindeque, Penelope K.; Koppelmann, Rolf; Møller, Eva F.; Gislason, Astthor; Nielsen, Torkel Gissel; St. John, Michael

    2014-12-01

    Exploring climate and anthropogenic impacts on marine ecosystems requires an understanding of how trophic components interact. However, integrative end-to-end ecosystem studies (experimental and/or modelling) are rare. Experimental investigations often concentrate on a particular group or individual species within a trophic level, while tropho-dynamic field studies typically employ either a bottom-up approach concentrating on the phytoplankton community or a top-down approach concentrating on the fish community. Likewise the emphasis within modelling studies is usually placed upon phytoplankton-dominated biogeochemistry or on aspects of fisheries regulation. In consequence the roles of zooplankton communities (protists and metazoans) linking phytoplankton and fish communities are typically under-represented if not (especially in fisheries models) ignored. Where represented in ecosystem models, zooplankton are usually incorporated in an extremely simplistic fashion, using empirical descriptions merging various interacting physiological functions governing zooplankton growth and development, and thence ignoring physiological feedback mechanisms. Here we demonstrate, within a modelled plankton food-web system, how trophic dynamics are sensitive to small changes in parameter values describing zooplankton vital rates and thus the importance of using appropriate zooplankton descriptors. Through a comprehensive review, we reveal the mismatch between empirical understanding and modelling activities identifying important issues that warrant further experimental and modelling investigation. These include: food selectivity, kinetics of prey consumption and interactions with assimilation and growth, form of voided material, mortality rates at different age-stages relative to prior nutrient history. In particular there is a need for dynamic data series in which predator and prey of known nutrient history are studied interacting under varied pH and temperature regimes.

  19. Applied socio-hydrology using volunteer geographic information (VGI) to integrate ecosystem-based adaptation (EbA) and disaster risk reduction (DRR)

    NASA Astrophysics Data System (ADS)

    Mendiondo, Eduardo; Taffarello, Denise; Mohor, Guilherme; Guzmán, Diego; Câmara de Freitas, Clarissa; Fava, Maria Clara; Restrepo, Camilo; Abreu, Fernando; Batalini, Marina; Lago, Cesar; Abe, Narumi; Rosa, Altair

    2017-04-01

    Socio-hydrology proposes to understand coupled human-water systems by conceptualizing its components to be dynamically connected by bi-directional feedbacks. For practical purposes, especially in developing countries of South America, socio-hydrology does integrate practical, empirical and theoretical fundamentals from citizens' knowledge and culture. This contribution shows South American examples of how volunteer geographic information (VGI) can help socio-hydrology to integrate emerging aspects with heavy feedbacks, exploding uncertainties and relevant scales of socio-hydrological scales. Here we select examples at different scales of using VGI to link aspects of ecosystem-based adaptation (EbA) and disaster risk reduction (DRR). On the one hand, we show some learning cases of EbA/VGI linked to socio-hydrology also related with water valuation, both monetary and non-monetary, under scenarios of changing conditions of land-use and land cover changes of strategic water supply systems in subtropical biomes. This example brings a bridge of VGI and EbA towards Disaster Risk Reduction (DRR) through water topics of securitization, insurance, smart cities and sustainable urban drainage systems (SUDS). Thus, on the other hand, we also depict how VGI support applied elements for socio-hydrology on South American urban areas, capable of policy actions for DRR through SUDS at human-impacted biomes under extremes of droughts, floods and pollution. We here recommend yardsticks of learning conditions from these real examples of using VGI's knowledge and culture biases for a more resilient socio-hydrology, in order to create opportunities for theoretical, conceptual and applied nature of EbA and DRR with viable alliances from IAHS/Panta Rhei with UN/Sendai/DRR Framework and UN/Sustainable Development Goals. From these examples, however, seem plausible co-evolutionary dynamics with stakeholders if local-scale constraints, from sociopolitical nature, institutions' policies and approaches, were robustly addressed.

  20. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  1. The Inverse Contagion Problem (ICP) vs.. Predicting site contagion in real time, when network links are not observable

    NASA Astrophysics Data System (ADS)

    Mushkin, I.; Solomon, S.

    2017-10-01

    We study the inverse contagion problem (ICP). As opposed to the direct contagion problem, in which the network structure is known and the question is when each node will be contaminated, in the inverse problem the links of the network are unknown but a sequence of contagion histories (the times when each node was contaminated) is observed. We consider two versions of the ICP: The strong problem (SICP), which is the reconstruction of the network and has been studied before, and the weak problem (WICP), which requires "only" the prediction (at each time step) of the nodes that will be contaminated at the next time step (this is often the real life situation in which a contagion is observed and predictions are made in real time). Moreover, our focus is on analyzing the increasing accuracy of the solution, as a function of the number of contagion histories already observed. For simplicity, we discuss the simplest (deterministic and synchronous) contagion dynamics and the simplest solution algorithm, which we have applied to different network types. The main result of this paper is that the complex problem of the convergence of the ICP for a network can be reduced to an individual property of pairs of nodes: the "false link difficulty". By definition, given a pair of unlinked nodes i and j, the difficulty of the false link (i,j) is the probability that in a random contagion history, the nodes i and j are not contaminated at the same time step (or at consecutive time steps). In other words, the "false link difficulty" of a non-existing network link is the probability that the observations during a random contagion history would not rule out that link. This probability is relatively straightforward to calculate, and in most instances relies only on the relative positions of the two nodes (i,j) and not on the entire network structure. We have observed the distribution of false link difficulty for various network types, estimated it theoretically and confronted it (successfully) with the numerical simulations. Based on it, we estimated analytically the convergence of the ICP solution (as a function of the number of contagion histories observed), and found it to be in perfect agreement with simulation results. Finally, the most important insight we obtained is that SICP and WICP are have quite different properties: if one in interested only in the operational aspect of predicting how contagion will spread, the links which are most difficult to decide about are the least influential on contagion dynamics. In other words, the parts of the network which are harder to reconstruct are also least important for predicting the contagion dynamics, up to the point where a (large) constant number of false links in the network (i.e. non-convergence of the network reconstruction procedure) implies a zero rate of the node contagion prediction errors (perfect convergence of the WICP). Thus, the contagion prediction problem (WICP) difficulty is very different from the network reconstruction problem (SICP), in as far as links which are difficult to reconstruct are quite harmless in terms of contagion prediction capability (WICP).

  2. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less

  3. The Dynamics of Mobile Learning Utilization in Vocational Education: Frame Model Perspective Review

    ERIC Educational Resources Information Center

    Mahande, Ridwan Daud; Susanto, Adhi; Surjono, Herman Dwi

    2017-01-01

    This study aimed to describe the dynamics of content aspects, user aspects and social aspects of mobile learning utilization (m-learning) in vocational education from the FRAME Model perspective review. This study was quantitative descriptive research. The population in this study was teachers and students of state vocational school and private…

  4. Structural and Dynamic Aspects of Interest Development: Theoretical Considerations from an Ontogenetic Perspective.

    ERIC Educational Resources Information Center

    Krapp, Andreas

    2002-01-01

    Presents a collection of theoretical concepts and models that can be used to describe and explore structural and dynamic aspects of interest development from an ontogenic research perspective. Outlines basic ideas of an educational-psychological conceptualization of interest that is based on a dynamic theory of personality. (SLD)

  5. The temporal scaling of Caenorhabditis elegans ageing.

    PubMed

    Stroustrup, Nicholas; Anthony, Winston E; Nash, Zachary M; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F; Apfeld, Javier; Fontana, Walter

    2016-02-04

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  6. The temporal scaling of Caenorhabditis elegans ageing

    NASA Astrophysics Data System (ADS)

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-02-01

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  7. The temporal scaling of Caenorhabditis elegans ageing

    PubMed Central

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-01-01

    The process of ageing makes death increasingly likely, but involves a random aspect that produces a wide distribution of lifespan even in homogeneous populations1,2. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating how and how much specific molecular processes contribute to the aspect of ageing that determines lifespan. PMID:26814965

  8. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals.

    PubMed

    Cao, Liming; Yuan, Daosheng; Xu, Chuanhui; Chen, Yukun

    2017-10-19

    Cellulose nanocrystals represent a promising and environmentally friendly reinforcing nanofiller for polymers, especially for rubbers and elastomers. Here, a simple approach via latex mixing is used to fabricate biobased, healable rubber with high strength based on epoxidized natural rubber (ENR). Tunicate cellulose nanocrystals (t-CNs) isolated from marine biomass with a high aspect ratio are used to improve both mechanical properties and self-healing behavior of the material. By introducing dynamic hydrogen bond supramolecular networks between oxygenous groups of ENR and hydroxyl groups on the t-CN surface, together with chain interdiffusion in permanently but slightly cross-linked rubber, self-healing and mechanical properties are facilitated significantly in the resulting materials. Macroscopic tensile healing behavior and microscopic morphology analyses are carried out to evaluate the performance of the materials. Both t-CN content and healing time have significant influence on healing behavior. The results indicate that a synergistic effect between molecular interdiffusion and dynamic hydrogen bond supramolecular networks leads to the improved self-healing behavior.

  9. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success

    PubMed Central

    Combes, S. A.; Crall, J. D.; Mukherjee, S.

    2010-01-01

    Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop–escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival. PMID:20236968

  10. A case-study in the clinical epidemiology of psoriatic arthritis: multistate models and causal arguments

    PubMed Central

    O'Keeffe, Aidan G; Tom, Brian D M; Farewell, Vernon T

    2011-01-01

    In psoriatic arthritis, permanent joint damage characterizes disease progression and represents a major debilitating aspect of the disease. Understanding the process of joint damage will assist in the treatment and disease management of patients. Multistate models provide a means to examine patterns of disease, such as symmetric joint damage. Additionally, the link between damage and the dynamic course of disease activity (represented by joint swelling and stress pain) at both the individual joint level and otherwise can be represented within a correlated multistate model framework. Correlation is reflected through the use of random effects for progressive models and robust variance estimation for non-progressive models. Such analyses, undertaken with data from a large psoriatic arthritis cohort, are discussed and the extent to which they permit causal reasoning is considered. For this, emphasis is given to the use of the Bradford Hill criteria for causation in observational studies and the concept of local (in)dependence to capture the dynamic nature of the relationships. PMID:22163372

  11. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    PubMed

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  12. Report of the panel on theoretical aerodynamics. [for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Bobbitt, P. J.; Carter, J. E.

    1977-01-01

    Requirements for flow quality in the National Transonic Facility are explored. Viscous flow effects of concern to theoreticians are discussed. Experiments outlined for theory validation in the facility include validating high aspect ratio wing-body combination; low aspect ratio moderately swept wing; low aspect ratio highly swept wing; high lift systems on high aspect ration wings; Reynolds number scaling; dynamic shock- boundary layer interaction; and the effect of R and M on dynamic stall.

  13. Connecting kinematic and dynamic reference frames by D-VLBI

    NASA Astrophysics Data System (ADS)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  14. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  15. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

  16. Superdomain dynamics in ferroelectric-ferroelastic films: Switching, jamming, and relaxation

    NASA Astrophysics Data System (ADS)

    Scott, J. F.; Hershkovitz, A.; Ivry, Y.; Lu, H.; Gruverman, A.; Gregg, J. M.

    2017-12-01

    Recent experimental work shows that ferroelectric switching can occur in large jumps in which ferroelastic superdomains switch together, rather than having the numerous smaller ferroelectric domains switch within them. In this sense, the superdomains play a role analogous to that of Abrikosov vortices in thin superconducting films under the Kosterlitz-Thouless framework, which control the dynamics more than individual Cooper pairs within them do. Here, we examine the dynamics of ferroelastic superdomains in ferroelastic ferroelectrics and their role in switching devices such as memories. Jamming of ferroelectric domains in thin films has revealed an unexpected time dependence of t-1/4 at long times (hours), but it is difficult to discriminate between power-law and exponential relaxation. Other aspects of this work, including spatial period doubling of domains, led to a description of ferroelastic domains as nonlinear processes in a viscoelastic medium, which produce folding and metastable kinetically limited states. This ¼ exponent is a surprising agreement with the well-known value of ¼ for coarsening dynamics in viscoelastic media. We try to establish a link between these two processes, hitherto considered unrelated, and with superdomains and domain bundles. We note also that high-Tc superconductors share many of the ferroelastic domain properties discussed here and that several new solar cell materials and metal-insulator transition systems are ferroelastic.

  17. Specificity and timescales of cortical adaptation as inferences about natural movie statistics.

    PubMed

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-10-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.

  18. Specificity and timescales of cortical adaptation as inferences about natural movie statistics

    PubMed Central

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-01-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416

  19. Dynamical patterns of cattle trade movements.

    PubMed

    Bajardi, Paolo; Barrat, Alain; Natale, Fabrizio; Savini, Lara; Colizza, Vittoria

    2011-01-01

    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions.

  20. Dynamical Patterns of Cattle Trade Movements

    PubMed Central

    Bajardi, Paolo; Barrat, Alain; Natale, Fabrizio; Savini, Lara; Colizza, Vittoria

    2011-01-01

    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions. PMID:21625633

  1. Effect of Cell Aspect Ratio on Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Ilkanaiv, Bella; Kearns, Daniel B.; Ariel, Gil; Be'er, Avraham

    2017-04-01

    Swarming bacteria collectively migrate on surfaces using flagella, forming dynamic whirls and jets that consist of millions of individuals. Because some swarming bacteria elongate prior to actual motion, cell aspect ratio may play a significant role in the collective dynamics. Extensive research on self-propelled rodlike particles confirms that elongation promotes alignment, strongly affecting the dynamics. Here, we study experimentally the collective dynamics of variants of swarming Bacillus subtilis that differ in length. We show that the swarming statistics depends on the aspect ratio in a critical, fundamental fashion not predicted by theory. The fastest motion was obtained for the wild-type and variants that are similar in length. However, shorter and longer cells exhibit anomalous, non-Gaussian statistics and nonexponential decay of the autocorrelation function, indicating lower collective motility. These results suggest that the robust mechanisms to maintain aspect ratios may be important for efficient swarming motility. Wild-type cells are optimal in this sense.

  2. Regulation of Pollen Tube Growth by Transglutaminase

    PubMed Central

    Cai, Giampiero; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2013-01-01

    In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall. PMID:27137368

  3. A Quantative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population Dynamics

    EPA Science Inventory

    A Quantitative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population DynamicsAn adverse outcome pathway (AOP) is a qualitative description linking a molecular initiating event (MIE) with measureable key events leading to an adverse outcome (AO). ...

  4. Acquisition of the Korean Imperfective Aspect Markers "-ko iss-" and "-a iss-" by Japanese Learners: A Multiple-Factor Account

    ERIC Educational Resources Information Center

    Ryu, Ju-Yeon; Horie, Kaoru; Shirai, Yasuhiro

    2015-01-01

    Although cross-linguistic research on second language tense-aspect acquisition has uncovered universal tendencies concerning the association between verbal semantics and tense-aspect markers, it is still unclear what mechanisms underlie this link. This study investigates the acquisition of two imperfective aspect markers ("-ko iss-" and…

  5. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  6. Development of an Assessment Model for Sustainable Supply Chain Management in Batik Industry

    NASA Astrophysics Data System (ADS)

    Mubiena, G. F.; Ma’ruf, A.

    2018-03-01

    This research proposes a dynamic assessment model for sustainable supply chain management in batik industry. The proposed model identifies the dynamic relationship between economic aspect, environment aspect and social aspect. The economic aspect refers to the supply chain operation reference model. The environment aspect uses carbon emissions and liquid waste as the attribute assessment, while the social aspect focus on employee’s welfare. Lean manufacturing concept was implemented as an alternative approach to sustainability. The simulation result shows that the average of sustainability score for 5 years increased from 65,3% to 70%. Future experiments will be conducted on design improvements to reach the company target on sustainability score.

  7. Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity

    PubMed Central

    Dunne, Jennifer A.; Lafferty, Kevin D.; Dobson, Andrew P.; Hechinger, Ryan F.; Kuris, Armand M.; Martinez, Neo D.; McLaughlin, John P.; Mouritsen, Kim N.; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B.; Thieltges, David W.; Williams, Richard J.; Zander, Claus Dieter

    2013-01-01

    Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites “dominate” food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models. PMID:23776404

  8. Parasites affect food web structure primarily through increased diversity and complexity

    USGS Publications Warehouse

    Dunne, Jennifer A.; Lafferty, Kevin D.; Dobson, Andrew P.; Hechinger, Ryan F.; Kuris, Armand M.; Martinez, Neo D.; McLaughlin, John P.; Mouritsen, Kim N.; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B.; Thieltges, David W.; Williams, Richard J.; Zander, Claus Dieter

    2013-01-01

    Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites ‘‘dominate’’ food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites’ roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites’ feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.

  9. Parasites affect food web structure primarily through increased diversity and complexity.

    PubMed

    Dunne, Jennifer A; Lafferty, Kevin D; Dobson, Andrew P; Hechinger, Ryan F; Kuris, Armand M; Martinez, Neo D; McLaughlin, John P; Mouritsen, Kim N; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B; Thieltges, David W; Williams, Richard J; Zander, Claus Dieter

    2013-01-01

    Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites "dominate" food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.

  10. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.

  11. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins

    PubMed Central

    Stetz, Gabrielle; Verkhivker, Gennady M.

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280

  12. 2 Gbit/s 0.5 μm complementary metal-oxide semiconductor optical transceiver with event-driven dynamic power-on capability

    NASA Astrophysics Data System (ADS)

    Wang, Xingle; Kiamilev, Fouad; Gui, Ping; Wang, Xiaoqing; Ekman, Jeremy; Zuo, Yongrong; Blankenberg, Jason; Haney, Michael

    2006-06-01

    A 2 Gb/s0.5 μm complementary metal-oxide semiconductor optical transceiver designed for board- or backplane level power-efficient interconnections is presented. The transceiver supports optical wake-on-link (OWL), an event-driven dynamic power-on technique. Depending on external events, the transceiver resides in either the active mode or the sleep mode and switches accordingly. The active-to-sleep transition shuts off the normal, gigabit link and turns on dedicated circuits to establish a low-power (~1.8 mW), low data rate (less than 100 Mbits/s) link. In contrast the normal, gigabit link consumes over 100 mW. Similarly the sleep-to-active transition shuts off the low-power link and turns on the normal, gigabit link. The low-power link, sharing the same optical channel with the normal, gigabit link, is used to achieve transmitter/receiver pair power-on synchronization and greatly reduces the power consumption of the transceiver. A free-space optical platform was built to evaluate the transceiver performance. The experiment successfully demonstrated the event-driven dynamic power-on operation. To our knowledge, this is the first time a dynamic power-on scheme has been implemented for optical interconnects. The areas of the circuits that implement the low-power link are approximately one-tenth of the areas of the gigabit link circuits.

  13. The importance of correct specification of tribological parameters in dynamical systems modelling

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Ciornei, F. C.; Romanu, I. C.; Ciornei, M. C.

    2018-01-01

    When modelling the behaviour of dynamical systems, the friction phenomenon cannot be neglected. Dry and fluid friction may occur, but dry friction has more severe effects upon the behaviour of the systems, based on the fact that the introduced discontinuities are more important. In the modelling of dynamical systems, dry friction is the main cause of occurrence of the bifurcation phenomenon. These aspects become more complex if, in the case of dry friction, static and dynamic frictions are put forward. The behaviour of a simple dynamical system is studied, consisting in a prismatic body linked to the ground by a spring, placed on a conveyor belt. The theoretical model is described by a nonlinear differential equation which after numerical integration leads to the conclusion that the steady motion of the prism is an un-damped oscillatory motion. The system was qualitatively modelled using specialised software for dynamical analysis. It was impractical to obtain a steady uniform translational motion of a rigid, therefore the conveyor belt was replaced by a metallic disc in uniform rotation motion. The attempts to compare the CAD model to the theoretical model were unsuccessful because the efforts of selecting the tribological parameters directed to the conclusion that the motion of the prism is a damped oscillation. To decide which of the methods depicts reality, a test-rig was assembled and it indicated a sustained oscillation. The conclusion is that the model employed by the dynamical analysis software cannot describe the actual model and a more complex model is required in the description of the friction phenomenon.

  14. Molecular dynamics simulation of β₂-microglobulin in denaturing and stabilizing conditions.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Varini, Nicola; Rotter, Matteo; Gumral, Devrim; Codutti, Luca; Rennella, Enrico; Viglino, Paolo; Bellotti, Vittorio; Esposito, Gennaro

    2011-03-01

    β₂-Microglobulin has been a model system for the study of fibril formation for 20 years. The experimental study of β₂-microglobulin structure, dynamics, and thermodynamics in solution, at atomic detail, along the pathway leading to fibril formation is difficult because the onset of disorder and aggregation prevents signal resolution in Nuclear Magnetic Resonance experiments. Moreover, it is difficult to characterize conformers in exchange equilibrium. To gain insight (at atomic level) on processes for which experimental information is available at molecular or supramolecular level, molecular dynamics simulations have been widely used in the last decade. Here, we use molecular dynamics to address three key aspects of β₂-microglobulin, which are known to be relevant to amyloid formation: (1) 60 ns molecular dynamics simulations of β₂-microglobulin in trifluoroethanol and in conditions mimicking low pH are used to study the behavior of the protein in environmental conditions that are able to trigger amyloid formation; (2) adaptive biasing force molecular dynamics simulation is used to force cis-trans isomerization at Proline 32 and to calculate the relative free energy in the folded and unfolded state. The native-like trans-conformer (known as intermediate 2 and determining the slow phase of refolding), is simulated for 10 ns, detailing the possible link between cis-trans isomerization and conformational disorder; (3) molecular dynamics simulation of highly concentrated doxycycline (a molecule able to suppress fibril formation) in the presence of β₂-microglobulin provides details of the binding modes of the drug and a rationale for its effect. Copyright © 2010 Wiley-Liss, Inc.

  15. Overlapping community detection based on link graph using distance dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Jing; Cai, Li-Jun

    2018-01-01

    The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.

  16. Spatio-Temporal Patterns of the International Merger and Acquisition Network.

    PubMed

    Dueñas, Marco; Mastrandrea, Rossana; Barigozzi, Matteo; Fagiolo, Giorgio

    2017-09-07

    This paper analyses the world web of mergers and acquisitions (M&As) using a complex network approach. We use data of M&As to build a temporal sequence of binary and weighted-directed networks for the period 1995-2010 and 224 countries (nodes) connected according to their M&As flows (links). We study different geographical and temporal aspects of the international M&A network (IMAN), building sequences of filtered sub-networks whose links belong to specific intervals of distance or time. Given that M&As and trade are complementary ways of reaching foreign markets, we perform our analysis using statistics employed for the study of the international trade network (ITN), highlighting the similarities and differences between the ITN and the IMAN. In contrast to the ITN, the IMAN is a low density network characterized by a persistent giant component with many external nodes and low reciprocity. Clustering patterns are very heterogeneous and dynamic. High-income economies are the main acquirers and are characterized by high connectivity, implying that most countries are targets of a few acquirers. Like in the ITN, geographical distance strongly impacts the structure of the IMAN: link-weights and node degrees have a non-linear relation with distance, and an assortative pattern is present at short distances.

  17. Modeling the Car Crash Crisis Management System Using HiLA

    NASA Astrophysics Data System (ADS)

    Hölzl, Matthias; Knapp, Alexander; Zhang, Gefei

    An aspect-oriented modeling approach to the Car Crash Crisis Management System (CCCMS) using the High-Level Aspect (HiLA) language is described. HiLA is a language for expressing aspects for UML static structures and UML state machines. In particular, HiLA supports both a static graph transformational and a dynamic approach of applying aspects. Furthermore, it facilitates methodologically turning use case descriptions into state machines: for each main success scenario, a base state machine is developed; all extensions to this main success scenario are covered by aspects. Overall, the static structure of the CCCMS is modeled in 43 classes, the main success scenarios in 13 base machines, the use case extensions in 47 static and 31 dynamic aspects, most of which are instantiations of simple aspect templates.

  18. Psychosocial work aspects, stress and musculoskeletal pain among musicians. A systematic review in search of correlates and predictors of playing-related pain.

    PubMed

    Jacukowicz, Aleksandra

    2016-06-16

    Musicians face numerous psychosocial and physical demands at work resulting in high prevalence of musculoskeletal problems. Unlike physical risks, little is known about psychosocial work factors influencing such health problems in this particular group. The paper aimed to identify psychosocial work demands resulting in musculoskeletal problems among musicians. A systematic review was undertaken to find data linking psychosocial work demands or stress with musculoskeletal disorders among musicians. The exploration of databases resulted in nine research studies linking psychosocial aspects of work or stress with musculoskeletal problems among musicians. The analyzed studies linked psychosocial aspects with musculoskeletal problems in three ways - showing proportions of people indicating particular causes of pain, indicating correlations between these variables or performing regression analysis showing psychosocial predictors of musculoskeletal pain. Only a few studies have undertaken the issue of psychosocial risk factors for musculoskeletal problems among musicians. The results revealed that some psychosocial aspects of work, e.g. long hours at work, work content, high job demands, low control/influence, lack of social support, were related to musculoskeletal pain, however, the methods and results were inconsistent. The extant studies employed variety of definitions of psychosocial aspects that hindered the possibility for consistent conclusions. Basing on those conclusions, future directions were offered.

  19. KINETIC AND DYNAMIC ASPECTS OF ARSENIC TOXICITY

    EPA Science Inventory

    This project integrates research on aspects of the kinetic and dynamic behavior of arsenic. A PBPK model for arsenic will be developed using metabolism and disposition data from studies in mice. Retention of arsenic in the tissues following exposure to arsenic will be investigate...

  20. [Sex-linked juvenile retinoschisis].

    PubMed

    François, P; Turut, P; Soltysik, C; Hache, J C

    1976-02-01

    About 13 observations of sexe linked juvenile retinoschisis, the authors describe the ophthalmoscopic, fluorographic and functional aspects of the disease whose caracteristics are:--its sexe linked recessive heredity; --its clinical characterestics associating: a microcystic macular degeneration, peripheral retinal lesions, vitreous body alterations, --an electroretinogram of the negative type.

  1. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.

    PubMed

    Cassiani, Giorgio; Binley, Andrew; Kemna, Andreas; Wehrer, Markus; Orozco, Adrian Flores; Deiana, Rita; Boaga, Jacopo; Rossi, Matteo; Dietrich, Peter; Werban, Ulrike; Zschornack, Ludwig; Godio, Alberto; JafarGandomi, Arash; Deidda, Gian Piero

    2014-01-01

    The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.

  2. Time, frequency, and time-varying Granger-causality measures in neuroscience.

    PubMed

    Cekic, Sezen; Grandjean, Didier; Renaud, Olivier

    2018-05-20

    This article proposes a systematic methodological review and an objective criticism of existing methods enabling the derivation of time, frequency, and time-varying Granger-causality statistics in neuroscience. The capacity to describe the causal links between signals recorded at different brain locations during a neuroscience experiment is indeed of primary interest for neuroscientists, who often have very precise prior hypotheses about the relationships between recorded brain signals. The increasing interest and the huge number of publications related to this topic calls for this systematic review, which describes the very complex methodological aspects underlying the derivation of these statistics. In this article, we first present a general framework that allows us to review and compare Granger-causality statistics in the time domain, and the link with transfer entropy. Then, the spectral and the time-varying extensions are exposed and discussed together with their estimation and distributional properties. Although not the focus of this article, partial and conditional Granger causality, dynamical causal modelling, directed transfer function, directed coherence, partial directed coherence, and their variant are also mentioned. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit.

    PubMed

    Perry, Nicolas; Nelson, Edward M; Timp, Gregory

    2016-12-16

    The promise of adapting biology to information processing will not be realized until engineered gene circuits, operating in different cell populations, can be wired together to express a predictable function. Here, elementary biological integrated circuits (BICs), consisting of two sets of transmitter and receiver gene circuit modules with embedded memory placed in separate cell populations, were meticulously assembled using live cell lithography and wired together by the mass transport of quorum-sensing (QS) signal molecules to form two isolated communication links (comlinks). The comlink dynamics were tested by broadcasting "clock" pulses of inducers into the networks and measuring the responses of functionally linked fluorescent reporters, and then modeled through simulations that realistically captured the protein production and molecular transport. These results show that the comlinks were isolated and each mimicked aspects of the synchronous, sequential networks used in digital computing. The observations about the flow conditions, derived from numerical simulations, and the biofilm architectures that foster or silence cell-to-cell communications have implications for everything from decontamination of drinking water to bacterial virulence.

  4. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation.

    PubMed

    Higham, Timothy E; Rogers, Sean M; Langerhans, R Brian; Jamniczky, Heather A; Lauder, George V; Stewart, William J; Martin, Christopher H; Reznick, David N

    2016-09-14

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. © 2016 The Author(s).

  5. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation

    PubMed Central

    Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.

    2016-01-01

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033

  6. Dynamics of social balance on networks

    NASA Astrophysics Data System (ADS)

    Antal, T.; Krapivsky, P. L.; Redner, S.

    2005-09-01

    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad—a triangular loop with one or three unfriendly links—is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to “paradise”—all links are friendly—as the propensity p for friendly links in an update event passes through 1/2 . A finite network always falls into a socially balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network not increase in an update is imposed, then the network quickly reaches a balanced final state.

  7. Differences in the Nature of Body Image Disturbances between Female Obese Individuals with versus without a Comorbid Binge Eating Disorder: An Exploratory Study Including Static and Dynamic Aspects of Body Image

    ERIC Educational Resources Information Center

    Legenbauer, Tanja; Vocks, Silja; Betz, Sabrina; Puigcerver, Maria Jose Baguena; Benecke, Andrea; Troje, Nikolaus F.; Ruddel, Heinz

    2011-01-01

    Various components of body image were measured to assess body image disturbances in patients with obesity. To overcome limitations of previous studies, a photo distortion technique and a biological motion distortion device were included to assess static and dynamic aspects of body image. Questionnaires assessed cognitive-affective aspects, bodily…

  8. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Xu, Ning; Wang, W. H.; Guan, Pengfei

    2018-03-01

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  9. An adaptive actuator failure compensation scheme for two linked 2WD mobile robots

    NASA Astrophysics Data System (ADS)

    Ma, Yajie; Al-Dujaili, Ayad; Cocquempot, Vincent; El Badaoui El Najjar, Maan

    2017-01-01

    This paper develops a new adaptive compensation control scheme for two linked mobile robots with actuator failurs. A configuration with two linked two-wheel drive (2WD) mobile robots is proposed, and the modelling of its kinematics and dynamics are given. An adaptive failure compensation scheme is developed to compensate actuator failures, consisting of a kinematic controller and a multi-design integration based dynamic controller. The kinematic controller is a virtual one, and based on which, multiple adaptive dynamic control signals are designed which covers all possible failure cases. By combing these dynamic control signals, the dynamic controller is designed, which ensures system stability and asymptotic tracking properties. Simulation results verify the effectiveness of the proposed adaptive failure compensation scheme.

  10. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  11. Telecom Link--A Competitive Simulated Design Exercise.

    ERIC Educational Resources Information Center

    Freeman, J.; Allen, J.

    1982-01-01

    Telecom link is a structured design exercise concerned with building a telecommunications link between London and Amsterdam. Designed for A-level physics, the simulation requires a minimum of 10 hours. Aims of the exercise, design specifications and technical aspects, and summaries of four possible technologies used in the simulation are…

  12. Active colloids with collective mobility status and research opportunities.

    PubMed

    Zhang, Jie; Luijten, Erik; Grzybowski, Bartosz A; Granick, Steve

    2017-09-18

    The collective mobility of active matter (self-propelled objects that transduce energy into mechanical work to drive their motion, most commonly through fluids) constitutes a new frontier in science and achievable technology. This review surveys the current status of the research field, what kinds of new scientific problems can be tackled in the short term, and what long-term directions are envisioned. We focus on: (1) attempts to formulate design principles to tailor active particles; (2) attempts to design principles according to which active particles interact under circumstances where particle-particle interactions of traditional colloid science are augmented by a family of nonequilibrium effects discussed here; (3) attempts to design intended patterns of collective behavior and dynamic assembly; (4) speculative links to equilibrium thermodynamics. In each aspect, we assess achievements, limitations, and research opportunities.

  13. A loop-based neural architecture for structured behavior encoding and decoding.

    PubMed

    Gisiger, Thomas; Boukadoum, Mounir

    2018-02-01

    We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.

    PubMed

    Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J

    2014-09-30

    Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.

  15. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level.

    PubMed

    Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J

    2016-09-01

    Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.

  16. An aberrant parasympathetic response: a new perspective linking chronic stress and itch.

    PubMed

    Kim, Hei Sung; Yosipovitch, Gil

    2013-04-01

    Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch. © 2012 John Wiley & Sons A/S.

  17. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    NASA Astrophysics Data System (ADS)

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-01

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  18. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    PubMed

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning.

  19. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    NASA Astrophysics Data System (ADS)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  20. Ketone bodies as epigenetic modifiers.

    PubMed

    Ruan, Hai-Bin; Crawford, Peter A

    2018-07-01

    Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.

  1. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  2. Community resilience and health: the role of bonding, bridging, and linking aspects of social capital.

    PubMed

    Poortinga, Wouter

    2012-03-01

    The current study draws on data from the 2007 and 2009 Citizenship Survey collected in England (n=17,572) to explore the role of social capital in building community resilience and health, using the bonding, bridging, and linking social capital framework of Szreter and Woolcock (2004). The results show that the indicators of the different types of social capital are only weakly interrelated, suggesting that they capture different aspects of the social environment. In line with the expectations, most indicators of bonding, bridging, and linking social capital were significantly associated with neighbourhood deprivation and self-reported health. In particular bonding and bridging social cohesion, civic participation, heterogeneous socio-economic relationships, and political efficacy and trust appeared important for community health after controlling for neighbourhood deprivation. However, no support was found for the hypothesis that the different aspects help buffer against the detrimental influences of neighbourhood deprivation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Conjugate-Gradient Algorithms For Dynamics Of Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1993-01-01

    Algorithms for serial and parallel computation of forward dynamics of multiple-link robotic manipulators by conjugate-gradient method developed. Parallel algorithms have potential for speedup of computations on multiple linked, specialized processors implemented in very-large-scale integrated circuits. Such processors used to stimulate dynamics, possibly faster than in real time, for purposes of planning and control.

  4. Investigations Into Internal and External Aspects of Dynamic Agent-Environment Couplings

    NASA Astrophysics Data System (ADS)

    Dautenhahn, Kerstin

    This paper originates from my work on `social agents'. An issue which I consider important to this kind of research is the dynamic coupling of an agent with its social and non-social environment. I hypothesize `internal dynamics' inside an agent as a basic step towards understanding. The paper therefore focuses on the internal and external dynamics which couple an agent to its environment. The issue of embodiment in animals and artifacts and its relation to `social dynamics' is discussed first. I argue that embodiment is linked to a concept of a body and is not necessarily given when running a control program on robot hardware. I stress the individual characteristics of an embodied cognitive system, as well as its social embeddedness. I outline the framework of a physical-psychological state space which changes dynamically in a self-modifying way as a holistic approach towards embodied human and artificial cognition. This framework is meant to discuss internal and external dynamics of an embodied, natural or artificial agent. In order to stress the importance of a dynamic memory I introduce the concept of an `autobiographical agent'. The second part of the paper gives an example of the implementation of a physical agent, a robot, which is dynamically coupled to its environment by balancing on a seesaw. For the control of the robot a behavior-oriented approach using the dynamical systems metaphor is used. The problem is studied through building a complete and co-adapted robot-environment system. A seesaw which varies its orientation with one or two degrees of freedom is used as the artificial `habitat'. The problem of stabilizing the body axis by active motion on a seesaw is solved by using two inclination sensors and a parallel, behavior-oriented control architecture. Some experiments are described which demonstrate the exploitation of the dynamics of the robot-environment system.

  5. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching will also be examined.

  6. Deconstructing the “Resting” State: Exploring the Temporal Dynamics of Frontal Alpha Asymmetry as an Endophenotype for Depression

    PubMed Central

    Allen, John J. B.; Cohen, Michael X

    2010-01-01

    Asymmetry in frontal electrocortical alpha-band (8–13 Hz) activity recorded during resting situations (i.e., in absence of a specific task) has been investigated in relation to emotion and depression for over 30 years. This asymmetry reflects an aspect of endogenous cortical dynamics that is stable over repeated measurements and that may serve as an endophenotype for mood or other psychiatric disorders. In nearly all of this research, EEG activity is averaged across several minutes, obscuring transient dynamics that unfold on the scale of milliseconds to seconds. Such dynamic states may ultimately have greater value in linking brain activity to surface EEG asymmetry, thus improving its status as an endophenotype for depression. Here we introduce novel metrics for characterizing frontal alpha asymmetry that provide a more in-depth neurodynamical understanding of recurrent endogenous cortical processes during the resting-state. The metrics are based on transient “bursts” of asymmetry that occur frequently during the resting-state. In a sample of 306 young adults, 143 with a lifetime diagnosis of major depressive disorder (62 currently symptomatic), three questions were addressed: (1) How do novel peri-burst metrics of dynamic asymmetry compare to conventional fast-Fourier transform-based metrics? (2) Do peri-burst metrics adequately differentiate depressed from non-depressed participants? and, (3) what EEG dynamics surround the asymmetry bursts? Peri-burst metrics correlated with traditional measures of asymmetry, and were sensitive to both current and past episodes of major depression. Moreover, asymmetry bursts were characterized by a transient lateralized alpha suppression that is highly consistent in phase across bursts, and a concurrent contralateral transient alpha enhancement that is less tightly phase-locked across bursts. This approach opens new possibilities for investigating rapid cortical dynamics during resting-state EEG. PMID:21228910

  7. Dynamic coupling of three hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.

    2008-12-01

    The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The models comprise 2D inundation modelling, river networks with multiple structures (pumps, weirs, culverts), urban drainage networks as well as dam break modelling. The models were used to quantify the results of storm events or failures (dam break, pumping failures etc) coinciding with high discharge in river system and heavy rainfall. The detailed representation of the flow path through the city allowed a direct assessment of flood risk Thus it is found that the three-way coupled model is a practical and useful tool for integrated flood management.

  8. Quantifying Grassland-to-Woodland Transitions and the Implications for Carbon and Nitrogen Dynamics in the Southwest United States

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Archer, Steven R.; Asner, Gregory P.; Bateson, C. Ann

    2004-01-01

    Replacement of grasslands and savannas by shrublands and woodlands has been widely reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1994). These changes in vegetation structure may reflect historical shifts in climate and land use; and are likely to influence biodiversity, productivity, above- and below ground carbon and nitrogen sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our proposed research is to investigate how changes in the relative abundance of herbaceous and woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will generate explicit predictions of the C and N storage in plants and soils resulting from changes in vegetation structure. Our specific objectives will be to (1) continue development and test applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quantify temporal changes in plant and soil C and N storage and turnover for remote sensing and process model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem simulation model to observe biogeochemical dynamics under changing landscape structure and climatological forcings.

  9. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    PubMed

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  10. Discussion of the design of satellite-laser measurement stations in the eastern Mediterranean under the geological aspect. Contribution to the earthquake prediction research by the Wegener Group and to NASA's Crustal Dynamics Project

    NASA Technical Reports Server (NTRS)

    Paluska, A.; Pavoni, N.

    1983-01-01

    Research conducted for determining the location of stations for measuring crustal dynamics and predicting earthquakes is discussed. Procedural aspects, the extraregional kinematic tendencies, and regional tectonic deformation mechanisms are described.

  11. Do glucocorticoids mediate the link between environmental conditions and telomere dynamics in wild vertebrates? A review.

    PubMed

    Angelier, Frédéric; Costantini, David; Blévin, Pierre; Chastel, Olivier

    2018-01-15

    Following the discoveries of telomeres and of their implications in terms of health and ageing, there has been a growing interest into the study of telomere dynamics in wild vertebrates. Telomeres are repeated sequences of non-coding DNA located at the terminal ends of chromosomes and they play a major role in maintaining chromosome stability. Importantly, telomeres shorten over time and shorter telomeres seem to be related with lower survival in vertebrates. Because of this potential link with longevity, it is crucial to understand not only the ecological determinants of telomere dynamics but also the regulatory endocrine mechanisms that may mediate the effect of the environment on telomeres. In this paper, we review the relationships that link environmental conditions, glucocorticoids (GC, the main hormonal mediator of allostasis) and telomere length in vertebrates. First, we review current knowledge about the determinants of inter-individual variations in telomere length. We emphasize the potential strong impact of environmental stressors and predictable life-history events on telomere dynamics. Despite recent progress, we still lack crucial basic data to fully understand the costs of several life-history stages and biotic and abiotic factors on telomere length. Second, we review the link that exists between GCs, oxidative stress and telomere dynamics in vertebrates. Although circulating GC levels may be closely and functionally linked with telomere dynamics, data are still scarce and somewhat contradictory. Further laboratory and field studies are therefore needed not only to better assess the proximate link between GC levels and telomere dynamics, but also to ultimately understand to what extent GCs and telomere length could be informative to measure the fitness costs of specific life-history stages and environmental conditions. Finally, we highlight the importance of exploring the functional links that may exist between coping styles, the GC stress response, and telomere dynamics in a life-history framework. To conclude, we raise new hypotheses regarding the potential of the GC stress response to drive the trade-off between immediate survival and telomere protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The link between drinking and gambling among undergraduate university students.

    PubMed

    Hodgins, David C; Racicot, Stephanie

    2013-09-01

    The purpose of this research was to explore different aspects of the link between alcohol use and gambling among undergraduate university students (N = 121). Potential aspects of the link examined included level of involvement in each behavior, consequences, motives for involvement, and impaired control over involvement. Results confirmed that drinking and gambling among university students are associated, consistent with the expectations of a problem syndrome model. The strongest link was between general dimensions of problematic involvement for both behaviors. Students who drink to cope and have other indicators of alcohol problems are more likely to gamble to cope, gamble to win money, and have higher gambling involvement and gambling-related problems. However, the salience of drinking and gambling to cope in this relationship is an interesting finding that needs further exploration and extension to other problem behaviors. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. I. Cognitive and instructional factors relating to students' development of personal models of chemical systems in the general chemistry laboratory II. Solvation in supercritical carbon dioxide/ethanol mixtures studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Anthony, Seth

    Part I. Students' participation in inquiry-based chemistry laboratory curricula, and, in particular, engagement with key thinking processes in conjunction with these experiences, is linked with success at the difficult task of "transfer"---applying their knowledge in new contexts to solve unfamiliar types of problems. We investigate factors related to classroom experiences, student metacognition, and instructor feedback that may affect students' engagement in key aspects of the Model-Observe-Reflect-Explain (MORE) laboratory curriculum - production of written molecular-level models of chemical systems, describing changes to those models, and supporting those changes with reference to experimental evidence---and related behaviors. Participation in introductory activities that emphasize reviewing and critiquing of sample models and peers' models are associated with improvement in several of these key aspects. When students' self-assessments of the quality of aspects of their models are solicited, students are generally overconfident in the quality of their models, but these self-ratings are also sensitive to the strictness of grades assigned by their instructor. Furthermore, students who produce higher-quality models are also more accurate in their self-assessments, suggesting the importance of self-evaluation as part of the model-writing process. While the written feedback delivered by instructors did not have significant impacts on student model quality or self-assessments, students' resubmissions of models were significantly improved when students received "reflective" feedback prompting them to self-evaluate the quality of their models. Analysis of several case studies indicates that the content and extent of molecular-level ideas expressed in students' models are linked with the depth of discussion and content of discussion that occurred during the laboratory period, with ideas developed or personally committed to by students during the laboratory period being likely to appear in students' post-laboratory refined models. These discussions during the laboratory period are primarily prompted by factors external to the students or their laboratory groups such as questions posed by the instructor or laboratory materials. Part II. Solvation of polar molecules within non-polar supercritical carbon dioxide is often facilitated by the introduction of polar cosolvents as entrainers, which are believed to preferentially surround solute molecules. Molecular dynamics simulations of supercritical carbon dioxide/ethanol mixtures reveal that ethanol molecules form hydrogen-bonded aggregates of varying sizes and structures, with cyclic tetramers and pentamers being unusually prevalent. The dynamics of ethanol molecules within these mixtures at a range of thermodynamic conditions can largely be explained by differences in size and structure in these aggregates. Simulations that include solute molecules reveal enhancement of the polar cosolvent around hydrogen-bonding sites on the solute molecules, corroborating and helping to explain previously reported experimental trends in solute mobility.

  14. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George [Reno, NV

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  15. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    PubMed

    Durstewitz, Daniel

    2017-06-01

    The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.

  16. Adaptive dynamical networks

    NASA Astrophysics Data System (ADS)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  17. Dynamic and interacting complex networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w < wc) where the disease reaches a large fraction of the population from a phase (w > wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. In the fourth chapter, we study epidemic processes on interconnected network systems, and find two distinct regimes. In strongly-coupled network systems, epidemics occur simultaneously across the entire system at a critical value betac. In contrast, in weakly-coupled network systems, a mixed phase exists below betac where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  18. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2008-10-01

    In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.

  19. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.

    PubMed

    Pflieger, Delphine; Gonnet, Florence; de la Fuente van Bentem, Sergio; Hirt, Heribert; de la Fuente, Alberto

    2011-01-01

    Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks. Copyright © 2010 Wiley Periodicals, Inc.

  20. Unconscious processing of emotions and the right hemisphere.

    PubMed

    Gainotti, Guido

    2012-01-01

    This survey takes into account the unconscious aspects of emotions and the critical role played in them by the right hemisphere, considering different acceptations of the term 'unconscious'. In a preliminary step, the nature of emotions, their componential and hierarchical organization and the relationships between emotions and hemispheric specialization are shortly discussed, then different aspects of emotions are surveyed: first are reviewed studies dealing with the unconscious processing of emotional information, taking separately into account various lines of research. All these studies suggest that unconscious processing of emotional information is mainly subsumed by a right hemisphere subcortical route, through which emotional stimuli quickly reach the amygdala. We afterwards inquire if a right hemisphere dominance can also be observed in automatic emotional action schemata and if 'non-removed preverbal implicit memories' also have a preferential link with the right hemisphere. Finally, we try to evaluate if the right hemisphere may also play a critical role in dynamic unconscious phenomena, such as anosognosia/denial of hemiplegia in patients with unilateral brain lesions. In the last part of the review, the reasons that could subsume the right hemisphere dominance for unconscious emotions are shortly discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. There Is No Prime for Time: The Missing Link between Form and Concept of Progressive Aspect in L2 Production

    ERIC Educational Resources Information Center

    Gerwien, Johannes; Flecken, Monique

    2015-01-01

    The acquisition of linguistic structures that require "perspective-taking" at the level of "message generation" is challenging. We investigate use of "progressive aspect" in L2 event encoding, using a sentence priming paradigm. We focus on Dutch, in which use of progressive aspect is optional. The progressive consists…

  2. Geostationary platform systems concepts definition study. Volume 2A: Appendixes, book 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Appendixes addressing various aspects of a geostationary platform concepts definition study are given. Communication platform traffic requirements, video conferencing forecast, intersatellite link capacity requirements, link budgets, payload data, payload assignments, and platform synthesis are addressed.

  3. Education and Sociopolitical Attitudes.

    ERIC Educational Resources Information Center

    Nilsson, Ingrid; And Others

    1985-01-01

    Relationships were studied between educational direction (academic or vocational) and three aspects of the sociopolitical ideology of 532 Swedish high school students. Vocational students were consistently more conservative than academic students on factors linked to social conservatism, whereas differences linked to political-economic…

  4. [Consistency and inconsistency of psychosomatic symptoms in adolescents].

    PubMed

    Marocco Muttini, C

    1994-03-01

    The term psychosomatic is sometimes mistakenly used as a virtual synonym of "somatoform", whereas there is a structural difference between alexythymia and hysteria. In adolescent psychopathology, where the interpretation of phenomena follows a dynamic and relational pattern, it is difficult to draw a distinction between psychosomatosis and hysteria. Pathological expressivities are often transient and do not depend on the course of an illness, despite being linked to moments of juvenile crisis in which the structural and dynamic reorganisation of the personality accentuates some regressive aspects of defensive operations. The body and its changes represents a motor of development or crisis according to how stimuli and personal and relational experiences are integrated in the image of self, which is in turn an instrument of the structuring of the identity in as far as it represents real and imagined physical aspects, both conscious and unconscious. The importance of the body in the maturation process is such that from the quality of an adolescent's relationship with his or her own body it is possible to trace the modes of development and identify the severity and extent of a psychopathological condition. It follows that body-centered symptoms are among the most frequently found in adolescence. Negative counter-attitudes by the adult in relation to the insufficiently integrated sexual and aggressive impulses sometimes shown by adolescents further underline the need to search for a type of communication which is accepted and therefore compatible with the construction of an acceptable self-image; the body therefore becomes a language used in communicating with the adult to express unease.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Nonmonetary Decision-Making Indices Discriminate Between Different Behavioral Components of Gambling.

    PubMed

    Navas, Juan F; Torres, Ana; Vilar, Raquel; Verdejo-García, Antonio; Catena, Andrés; Perales, José C

    2015-12-01

    Recent research has proposed that altered reward and punishment sensitivity, heightened impulsivity, and faulty dynamic decision-making are at the core of disordered gambling. However, each of these traits and cognitive aspects dimensionally vary in the normal population, such that the link between individual differences in these dimensions and gambling use can be ultimately informative to explain disordered gambling. The main aim of the present study was to investigate the contribution of such decision-making-related indices to gambling use parameters in a community sample of college students. Assessment included punishment and reward sensitivity (as measured by the shortened Sensitivity to Punishment and Sensitivity to Reward Questionnaire), impulsivity (as measured by the UPPS-P model and a motor inhibition Go/No-go task), and dynamic decision-making [as measured by the probabilistic reversal learning task (PRLT)]. A structured interview was conducted to explore quantitative aspects of the participants gambling habits (gambling presence, gambling frequency, and average amount of money spent in gambling per unit of time). Our results showed the existence of a decision-making profile of gambling, as it naturally occurs in college students, in which sensation seeking is directly and specifically related to gambling presence (gambling, or not gambling at all), punishment sensitivity is inversely related to gambling frequency, and inflexibility in the PRLT specifically predicts the losses accrued because of gambling. These results are compatible with the idea that sensation seeking and punishment insensitivity could increase exposure to gambling activities, whereas reversal learning inflexibility, in people who already gamble, could boost the risk to accumulate losses.

  6. Linking water age and solute dynamics in streamflow at the Hubbard Brook Experimental Forest, NH, USA

    Treesearch

    Paolo Benettin; Scott W. Bailey; John L. Campbell; Mark B. Green; Andrea Rinaldo; Gene E. Likens; Kevin J. McGuire; Gianluca Botter

    2015-01-01

    We combine experimental and modeling results from a headwater catchment at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, to explore the link between stream solute dynamics and water age. A theoretical framework based on water age dynamics, which represents a general basis for characterizing solute transport at the catchment scale, is here applied to...

  7. Modeling rises and falls in money addicted social hierarchies

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej; Mitarai, Namiko; Sneppen, Kim

    2014-08-01

    The emergence of large communities is inherently associated with the creation of social structures. Connections between individuals are indispensable for cooperative action of agents building social groups. Moreover, social groups usually evolve and their structure changes over time. Consequently, an underlying network connecting individuals is not static, reflecting an ongoing adaptation to new conditions. The evolution of social connections is influenced by the relative position (hierarchy) of individuals building the system as well as by the availability of resources. We explore this aspect of human ambition by modeling the interplay of social networking and an uneven distribution of external resources. The model naturally generates social hierarchies. Remarkably, this social structure exhibits a rise-and-fall behavior. A well pronounced quasi-periodic dynamics, which is closely associated with the dissipation of resources that are needed to sustain the social links, is revealed.

  8. System Verification of MSL Skycrane Using an Integrated ADAMS Simulation

    NASA Technical Reports Server (NTRS)

    White, Christopher; Antoun, George; Brugarolas, Paul; Lih, Shyh-Shiuh; Peng, Chia-Yen; Phan, Linh; San Martin, Alejandro; Sell, Steven

    2012-01-01

    Mars Science Laboratory (MSL) will use the Skycrane architecture to execute final descent and landing maneuvers. The Skycrane phase uses closed-loop feedback control throughout the entire phase, starting with rover separation, through mobility deploy, and through touchdown, ending only when the bridles have completely slacked. The integrated ADAMS simulation described in this paper couples complex dynamical models created by the mechanical subsystem with actual GNC flight software algorithms that have been compiled and linked into ADAMS. These integrated simulations provide the project with the best means to verify key Skycrane requirements which have a tightly coupled GNC-Mechanical aspect to them. It also provides the best opportunity to validate the design of the algorithm that determines when to cut the bridles. The results of the simulations show the excellent performance of the Skycrane system.

  9. Propagation, cascades, and agreement dynamics in complex communication and social networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming

    Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.

  10. Dynamic functional connectivity of the default mode network tracks daydreaming.

    PubMed

    Kucyi, Aaron; Davis, Karen D

    2014-10-15

    Humans spend much of their time engaged in stimulus-independent thoughts, colloquially known as "daydreaming" or "mind-wandering." A fundamental question concerns how awake, spontaneous brain activity represents the ongoing cognition of daydreaming versus unconscious processes characterized as "intrinsic." Since daydreaming involves brief cognitive events that spontaneously fluctuate, we tested the hypothesis that the dynamics of brain network functional connectivity (FC) are linked with daydreaming. We determined the general tendency to daydream in healthy adults based on a daydreaming frequency scale (DDF). Subjects then underwent both resting state functional magnetic resonance imaging (rs-fMRI) and fMRI during sensory stimulation with intermittent thought probes to determine the occurrences of mind-wandering events. Brain regions within the default mode network (DMN), purported to be involved in daydreaming, were assessed for 1) static FC across the entire fMRI scans, and 2) dynamic FC based on FC variability (FCV) across 30s progressively sliding windows of 2s increments within each scan. We found that during both resting and sensory stimulation states, individual differences in DDF were negatively correlated with static FC between the posterior cingulate cortex and a ventral DMN subsystem involved in future-oriented thought. Dynamic FC analysis revealed that DDF was positively correlated with FCV within the same DMN subsystem in the resting state but not during stimulation. However, dynamic but not static FC, in this subsystem, was positively correlated with an individual's degree of self-reported mind-wandering during sensory stimulation. These findings identify temporal aspects of spontaneous DMN activity that reflect conscious and unconscious processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Genomic evidence for large, long-lived ancestors to placental mammals.

    PubMed

    Romiguier, J; Ranwez, V; Douzery, E J P; Galtier, N

    2013-01-01

    It is widely assumed that our mammalian ancestors, which lived in the Cretaceous era, were tiny animals that survived massive asteroid impacts in shelters and evolved into modern forms after dinosaurs went extinct, 65 Ma. The small size of most Mesozoic mammalian fossils essentially supports this view. Paleontology, however, is not conclusive regarding the ancestry of extant mammals, because Cretaceous and Paleocene fossils are not easily linked to modern lineages. Here, we use full-genome data to estimate the longevity and body mass of early placental mammals. Analyzing 36 fully sequenced mammalian genomes, we reconstruct two aspects of the ancestral genome dynamics, namely GC-content evolution and nonsynonymous over synonymous rate ratio. Linking these molecular evolutionary processes to life-history traits in modern species, we estimate that early placental mammals had a life span above 25 years and a body mass above 1 kg. This is similar to current primates, cetartiodactyls, or carnivores, but markedly different from mice or shrews, challenging the dominant view about mammalian origin and evolution. Our results imply that long-lived mammals existed in the Cretaceous era and were the most successful in evolution, opening new perspectives about the conditions for survival to the Cretaceous-Tertiary crisis.

  12. Measures of International Manufacturing and Trade of Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metricsmore » for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.« less

  13. How resilient are Europe's inshore fishing communities to change? Differences between the north and the south.

    PubMed

    Hadjimichael, Maria; Delaney, Alyne; Kaiser, Michel J; Edwards-Jones, Gareth

    2013-12-01

    One would hypothesize that the Common Fisheries Policy, as the umbrella framework for fisheries management in the EU would have the greatest impact on fishers' communities across Europe. There are, however, biological, economic, social, and political factors, which vary among fishing communities that can affect how these communities react to changes. This paper explores the links between institutional arrangements and ecological dynamics in two European inshore fisheries socio-ecological systems, using a resilience framework. The Mediterranean small-scale fishers do not seem to have been particularly affected by the Common Fisheries Policy regulations but appear affected by competition with the politically strong recreational fishers and the invasion of the rabbit fish population. The inshore fishers along the East coast of Scotland believe that their interests are not as sufficiently protected as the interests of their offshore counterpart. Decisions and initiatives at global, EU, and sometimes national level, tend to take into account those fisheries sectors which have a national economic importance. A socio-ecological analysis can shift the focus from biological and economic aspects to more sustainable long-term delivery of environmental benefits linked to human wellbeing.

  14. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors.

    PubMed

    Zafra Ruano, Ana; Cilia, Elisa; Couceiro, José R; Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic; Luque, Irene; Lenaerts, Tom

    2016-05-01

    Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis.

  15. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors

    PubMed Central

    Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic

    2016-01-01

    Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis. PMID:27213566

  16. The counterbend dynamics of cross-linked filament bundles and flagella

    PubMed Central

    Coy, Rachel

    2017-01-01

    Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516

  17. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks

    PubMed Central

    Kucyi, Aaron; Salomons, Tim V.; Davis, Karen D.

    2013-01-01

    Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual’s tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain–cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual’s tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG–DMN structural connectivity and more dynamic resting state PAG–DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks. PMID:24167282

  18. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks.

    PubMed

    Kucyi, Aaron; Salomons, Tim V; Davis, Karen D

    2013-11-12

    Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual's tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain-cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual's tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG-DMN structural connectivity and more dynamic resting state PAG-DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.

  19. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations

    PubMed Central

    2016-01-01

    The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane. PMID:27459426

  20. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations.

    PubMed

    Lelimousin, Mickaël; Limongelli, Vittorio; Sansom, Mark S P

    2016-08-24

    The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane.

  1. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.

  2. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.

    PubMed

    Šponer, Jiří; Bussi, Giovanni; Krepl, Miroslav; Banáš, Pavel; Bottaro, Sandro; Cunha, Richard A; Gil-Ley, Alejandro; Pinamonti, Giovanni; Poblete, Simón; Jurečka, Petr; Walter, Nils G; Otyepka, Michal

    2018-04-25

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.

  3. Traffic and related self-driven many-particle systems

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  4. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  5. Star Formation History In Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2009-01-01

    Interacting and merging galaxies are believed to play an important role in many aspects of galactic evolution. Their violent interactions can trigger starbursts, which lead to formation of young globular clusters. Therefore the ages of these young globular clusters can be interpreted to yield the timing of interaction-triggered events, and thus provide a key to reconstruct the star formation history in merging galaxies. The link between galaxy interaction and star formation is well established, but the triggers of star formation in interacting galaxies are still not understood. To date there are two competing formulas that describe the star formation mechanism--density-dependent and shock-induced rules. Numerical models implementing the two rules predict significantly different star formation histories in merging galaxies. My dissertation combines these two distinct areas of astrophysics, stellar evolution and galactic dynamics, to investigate the star formation history in galaxies at various merging stages. Begin with NGC 4676 as an example, I will briefly describe its model and illustrate the idea of using the ages of clusters to constrain the modeling. The ages of the clusters are derived from spectra that were taken with multi-object spectroscopy on Keck. Using NGC 7252 as a second example, I will present a state of the art dynamical model which predicts NGC7252's star formation history and other properties. I will then show a detailed comparison and analysis between the clusters and the modeling. In the end, I will address this important link as the key to answer the fundamental question of my thesis: what is the trigger of star formation in merging galaxies?

  6. Take the first heuristic, self-efficacy, and decision-making in sport.

    PubMed

    Hepler, Teri J; Feltz, Deborah L

    2012-06-01

    Can taking the first (TTF) option in decision-making lead to the best decisions in sports contexts? And, is one's decision-making self-efficacy in that context linked to TTF decisions? The purpose of this study was to examine the role of the TTF heuristic and self-efficacy in decision-making on a simulated sports task. Undergraduate and graduate students (N = 72) participated in the study and performed 13 trials in each of two video-based basketball decision tasks. One task required participants to verbally generate options before making a final decision on what to do next, while the other task simply asked participants to make a decision regarding the next move as quickly as possible. Decision-making self-efficacy was assessed using a 10-item questionnaire comprising various aspects of decision-making in basketball. Participants also rated their confidence in the final decision. Results supported many of the tenets of the TTF heuristic, such that people used the heuristic on a majority of the trials (70%), earlier generated options were better than later ones, first options were meaningfully generated, and final options were meaningfully selected. Results did not support differences in dynamic inconsistency or decision confidence based on the number of options. Findings also supported the link between self-efficacy and the TTF heuristic. Participants with higher self-efficacy beliefs used TTF more frequently and generated fewer options than those with low self-efficacy. Thus, not only is TTF an important heuristic when making decisions in dynamic, time-pressure situations, but self-efficacy plays an influential role in TTF.

  7. Putting the "ecology" into environmental flows: ecological dynamics and demographic modelling.

    PubMed

    Shenton, Will; Bond, Nicholas R; Yen, Jian D L; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological 'health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A 'meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  8. Putting the "Ecology" into Environmental Flows: Ecological Dynamics and Demographic Modelling

    NASA Astrophysics Data System (ADS)

    Shenton, Will; Bond, Nicholas R.; Yen, Jian D. L.; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological `health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A `meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  9. Dynamic-Active Flow Control - Phase I

    DTIC Science & Technology

    2006-10-18

    effective in controlling the flow. In altering the orifice shape to one with a lower aspect ratio , for example a circular hole, the effect of the...DYNAMIC-ACTIVE FLOW CONTROL - PHASE I By ASHLEY TUCK AND JULIO SORIA 1 Laboratory for Turbulence Research...comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

  10. Effects of adaptive dynamical linking in networked games

    NASA Astrophysics Data System (ADS)

    Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

    2013-10-01

    The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.

  11. Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling.

    PubMed

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-17

    Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.

  12. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern US

    USGS Publications Warehouse

    Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.

    2015-01-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.

  13. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States.

    PubMed

    Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C

    2015-11-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  14. Rheology of wormlike micellar fluids from Brownian and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Padding, J. T.; Boek, E. S.; Briels, W. J.

    2005-11-01

    There is a great need for understanding the link between the detailed chemistry of surfactants, forming wormlike micelles, and their macroscopic rheological properties. In this paper we show how this link may be explored through particle simulations. First we review an existing bead-spring model. We find that shear flow enhances the formation of rings at the expense of linear chains. The shear viscosity of this model is dominated by solvent contributions, however, and the link with the chemistry of the surfactants is missing. We introduce a more realistic Brownian dynamics model, the parameters of which are measured from atomistic molecular dynamics simulations.

  15. High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links.

    PubMed

    Juarez, Juan C; Young, David W; Sluz, Joseph E; Stotts, Larry B

    2011-05-23

    A high-sensitivity modem and high-dynamic range optical automatic gain controller (OAGC) have been developed to provide maximum link margin and to overcome the dynamic nature of free-space optical links. A sensitivity of -48.9 dBm (10 photons per bit) at 10 Gbps was achieved employing a return-to-zero differential phase shift keying based modem and a commercial Reed-Solomon forward error correction system. Low-noise optical gain was provided by an OAGC with a noise figure of 4.1 dB (including system required input loses) and a dynamic range of greater than 60 dB.

  16. CHALLENGES AND SUCCESSES MODELING THE INFLUENCES OF LAND USE CHANGES ON MERCURY DYNAMICS

    EPA Science Inventory

    Linked sets of atmospheric, watershed, water body, and food web models and supporting data are required to evaluate the effectiveness of proposals to regulate atmospheric mercury emissions. Simulating mercury dynamics in watersheds is a key step linking changes in atmospheric de...

  17. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Sun, Penggang; Wang, Yu

    2018-04-01

    Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T + 1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.

  18. Linking Ecosystem Services and Human Health: The Eco-Health Relationship Browser#

    EPA Science Inventory

    Ecosystems and the services they provide have been linked in the literature to multiple human health outcomes. Demonstrated and proposed mechanisms focus on hazard buffering and health-promotional aspects of ecosystems. Services such as air and water filtration, heat mitigation...

  19. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    PubMed

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  20. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  1. Assessing Land Management Changes and Population Dynamics in Central Burkina Faso in Response to Climate Change.

    NASA Astrophysics Data System (ADS)

    Kabore Bontogho, P. E.; Boubacar, I.; Afouda, A.; Joerg, H.

    2015-12-01

    Assessing landscape and population's dynamics at watershed level contribute to address anthropogenic aspect of climate change issue owing to the close link between LULC and climate changes. The objective of this study is to explore the dependencies of population to land management changes in Massili basin (2612 km²) located in central Burkina Faso. A set of three satellite scenes was acquired for the years 1990 (Landsat 7 ETM), 2002 (Landsat 7 ETM+) and 2013 (Landsat 8 OLI/TIRS) from the Global Land Cover Facility's (GLCF) website. Census data were provided by the National institute of statistics and demographic (INSD). The satellites images were classified using object-oriented classification method which was supported by historic maps and field data. Those were collected in order to allow for class definition, verification and accuracy assessments. Based on the developed land use maps, change analysis was carried out using post classification comparison in GIS. Finally, derived land use changes were compared with census data in order to explore links between population dynamics and the land use changes. It was found in 1990 that Massili watershed LULC was dominated by Tree/shrub savannah (69%, 1802.28 km2 ), Farm/Fallow was representing 22%, Gallery forest (4%), Settlement (3%), Barre soil (1%), Water bodies (1%). In 2002, the major landscape was Farm (54%). Tree/Shrub savannas were reduced to 36% while the Gallery Forest was decreased to1% of the basin area. The situation has also slightly changed in 2013 with an increase of the area devoted to farm/fallow and settlement at a rate of 3% and Gallery forest has increased to 4%. The changes in land use are in agreement with a notable increase in population. The analysis of census data showed that the number of inhabitants increased from 338 inhabitants per km2 in 1990 to 1150 inhabitants per km2 in 2013. As shown by statistical analysis (Kendall correlation tau=0.9), there is a close relation between both dynamics.

  2. Facial Shape Analysis Identifies Valid Cues to Aspects of Physiological Health in Caucasian, Asian, and African Populations.

    PubMed

    Stephen, Ian D; Hiew, Vivian; Coetzee, Vinet; Tiddeman, Bernard P; Perrett, David I

    2017-01-01

    Facial cues contribute to attractiveness, including shape cues such as symmetry, averageness, and sexual dimorphism. These cues may represent cues to objective aspects of physiological health, thereby conferring an evolutionary advantage to individuals who find them attractive. The link between facial cues and aspects of physiological health is therefore central to evolutionary explanations of attractiveness. Previously, studies linking facial cues to aspects of physiological health have been infrequent, have had mixed results, and have tended to focus on individual facial cues in isolation. Geometric morphometric methodology (GMM) allows a bottom-up approach to identifying shape correlates of aspects of physiological health. Here, we apply GMM to facial shape data, producing models that successfully predict aspects of physiological health in 272 Asian, African, and Caucasian faces - percentage body fat (21.0% of variance explained), body mass index (BMI; 31.9%) and blood pressure (BP; 21.3%). Models successfully predict percentage body fat and blood pressure even when controlling for BMI, suggesting that they are not simply measuring body size. Predicted values of BMI and BP, but not percentage body fat, correlate with health ratings. When asked to manipulate the shape of faces along the physiological health variable axes (as determined by the models), participants reduced predicted BMI, body fat and (marginally) BP, suggesting that facial shape provides a valid cue to aspects of physiological health.

  3. Facial Shape Analysis Identifies Valid Cues to Aspects of Physiological Health in Caucasian, Asian, and African Populations

    PubMed Central

    Stephen, Ian D.; Hiew, Vivian; Coetzee, Vinet; Tiddeman, Bernard P.; Perrett, David I.

    2017-01-01

    Facial cues contribute to attractiveness, including shape cues such as symmetry, averageness, and sexual dimorphism. These cues may represent cues to objective aspects of physiological health, thereby conferring an evolutionary advantage to individuals who find them attractive. The link between facial cues and aspects of physiological health is therefore central to evolutionary explanations of attractiveness. Previously, studies linking facial cues to aspects of physiological health have been infrequent, have had mixed results, and have tended to focus on individual facial cues in isolation. Geometric morphometric methodology (GMM) allows a bottom–up approach to identifying shape correlates of aspects of physiological health. Here, we apply GMM to facial shape data, producing models that successfully predict aspects of physiological health in 272 Asian, African, and Caucasian faces – percentage body fat (21.0% of variance explained), body mass index (BMI; 31.9%) and blood pressure (BP; 21.3%). Models successfully predict percentage body fat and blood pressure even when controlling for BMI, suggesting that they are not simply measuring body size. Predicted values of BMI and BP, but not percentage body fat, correlate with health ratings. When asked to manipulate the shape of faces along the physiological health variable axes (as determined by the models), participants reduced predicted BMI, body fat and (marginally) BP, suggesting that facial shape provides a valid cue to aspects of physiological health. PMID:29163270

  4. Behavioral Dynamics in the Cooperative Control of Mixed Human/Robotic Teams

    DTIC Science & Technology

    2015-01-05

    models of cognitive and social psychology play a major role in the work. A particular objective is to develop a fundamental understanding of how...dynamics. In addition to exploring cognitive and social psychological aspects of decision making, research is focused on formal approaches to...SUBJECT TERMS human-machine interactions, two-alternative-forced-choice (TAFC), cognitive and social psychological aspects of decision making, action

  5. Post-Colonialism Perspectives on Educational Competition

    ERIC Educational Resources Information Center

    Yeh, Chuan-Rong

    2016-01-01

    Educational competition has always been the puzzle issue of educational researches. In this article, I analyze several aspects of educational competition within the perspective of post-colonialism discourse. In the political aspect, Taiwanese education is linked with political power, to present the post-colonial spirit by continuing dynastic…

  6. Legal Aspects of the Web.

    ERIC Educational Resources Information Center

    Borrull, Alexandre Lopez; Oppenheim, Charles

    2004-01-01

    Presents a literature review that covers the following topics related to legal aspects of the Web: copyright; domain names and trademarks; linking, framing, caching, and spamdexing; patents; pornography and censorship on the Internet; defamation; liability; conflict of laws and jurisdiction; legal deposit; and spam, i.e., unsolicited mails.…

  7. General Theory and Algorithms for the Non-Casual Inversion, Slewing and Control of Space-Based Articulated Structures

    DTIC Science & Technology

    1993-10-01

    Structures: Simultaneous Trajectory Tracking and Vibration Reduction ... 10 3 . Buckling Control of a Flexible Beam Using Piezoelectric Actuators...bounded solution for the inverse dynamic torque has to be non-causal. Bayo, et. al. [ 3 ], extended the inverse dynamics to planar, multiple-link systems...presented by &ayo and Moulin [4] for the single link system, with provisions for 3 extension to multiple link systems. An equivalent time domain approach for

  8. Internet traffic load balancing using dynamic hashing with flow volume

    NASA Astrophysics Data System (ADS)

    Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.

    2002-07-01

    Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.

  9. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  10. Comparing Happiness and Hypomania Risk: A Study of Extraversion and Neuroticism Aspects

    PubMed Central

    Kirkland, Tabitha; Gruber, June; Cunningham, William A.

    2015-01-01

    Positive affect has long been considered a hallmark of subjective happiness. Yet, high levels of positive affect have also been linked with hypomania risk: a set of cognitive, affective, and behavioral characteristics that constitute a dispositional risk for future episodes of hypomania and mania. At a personality level, two powerful predictors of affective experience are extraversion and neuroticism: extraversion has been linked to positive affect, and neuroticism to negative affect. As such, a single personality trait – extraversion – has been linked to both beneficial and harmful outcomes associated with positivity. It is clear that positive affect, in different forms, has divergent consequences for well-being, but previous research has struggled to articulate the nature of these differences. We suggest that the relationship between affect and well-being needs to be situated within the psychological context of the individual – both in terms of more specific forms of extraversion and neuroticism, but also in terms of interactions among personality aspects. Consistent with this idea, we found that two aspects of extraversion (enthusiasm and assertiveness) differentially predicted subjective happiness from hypomania risk and two aspects of neuroticism (volatility and withdrawal) interacted to predict hypomania risk: the highest levels of hypomania risk were associated with the combination of high volatility and low withdrawal. These findings underscore the importance of examining personality at the right level of resolution to understand well-being and dysfunction. PMID:26161562

  11. Food webs in the human body: linking ecological theory to viral dynamics.

    PubMed

    Murall, Carmen Lía; McCann, Kevin S; Bauch, Chris T

    2012-01-01

    The dynamics of in-host infections are central to predicting the progression of natural infections and the effectiveness of drugs or vaccines, however, they are not well understood. Here, we apply food web theory to in-host disease networks of the human body that are structured similarly to food web models that treat both predation and competition simultaneously. We show that in-host trade-offs, an under-studied aspect of disease ecology, are fundamental to understanding the outcomes of competing viral strains under differential immune responses. Further, and importantly, our analysis shows that the outcome of competition between virulent and non-virulent strains can be highly contingent on the abiotic conditions prevailing in the human body. These results suggest the alarming idea that even subtle behavioral changes that alter the human body (e.g. weight gain, smoking) may switch the environmental conditions in a manner that suddenly allows a virulent strain to dominate and replace less virulent strains. These ecological results therefore cast new light on the control of disease in the human body, and highlight the importance of longitudinal empirical studies across host variation gradients, as well as, of studies focused on delineating life history trade-offs within hosts.

  12. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart

    PubMed Central

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H.

    2009-01-01

    Background Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. Methods We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and paediatric cardiology. This has permitted the preparation of three-dimensional (3-D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. Results We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. Conclusion We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  13. Brain-controlled applications using dynamic P300 speller matrices.

    PubMed

    Halder, Sebastian; Pinegger, Andreas; Käthner, Ivo; Wriessnegger, Selina C; Faller, Josef; Pires Antunes, João B; Müller-Putz, Gernot R; Kübler, Andrea

    2015-01-01

    Access to the world wide web and multimedia content is an important aspect of life. We present a web browser and a multimedia user interface adapted for control with a brain-computer interface (BCI) which can be used by severely motor impaired persons. The web browser dynamically determines the most efficient P300 BCI matrix size to select the links on the current website. This enables control of the web browser with fewer commands and smaller matrices. The multimedia player was based on an existing software. Both applications were evaluated with a sample of ten healthy participants and three end-users. All participants used a visual P300 BCI with face-stimuli for control. The healthy participants completed the multimedia player task with 90% accuracy and the web browsing task with 85% accuracy. The end-users completed the tasks with 62% and 58% accuracy. All healthy participants and two out of three end-users reported that they felt to be in control of the system. In this study we presented a multimedia application and an efficient web browser implemented for control with a BCI. Both applications provide access to important areas of modern information retrieval and entertainment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larina, Irina V.

    2018-02-01

    Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.

  15. Emotional Valence and the Free-Energy Principle

    PubMed Central

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world. PMID:23785269

  16. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  17. Food Webs in the Human Body: Linking Ecological Theory to Viral Dynamics

    PubMed Central

    Murall, Carmen Lía; McCann, Kevin S.; Bauch, Chris T.

    2012-01-01

    The dynamics of in-host infections are central to predicting the progression of natural infections and the effectiveness of drugs or vaccines, however, they are not well understood. Here, we apply food web theory to in-host disease networks of the human body that are structured similarly to food web models that treat both predation and competition simultaneously. We show that in-host trade-offs, an under-studied aspect of disease ecology, are fundamental to understanding the outcomes of competing viral strains under differential immune responses. Further, and importantly, our analysis shows that the outcome of competition between virulent and non-virulent strains can be highly contingent on the abiotic conditions prevailing in the human body. These results suggest the alarming idea that even subtle behavioral changes that alter the human body (e.g. weight gain, smoking) may switch the environmental conditions in a manner that suddenly allows a virulent strain to dominate and replace less virulent strains. These ecological results therefore cast new light on the control of disease in the human body, and highlight the importance of longitudinal empirical studies across host variation gradients, as well as, of studies focused on delineating life history trade-offs within hosts. PMID:23155409

  18. Emotional valence and the free-energy principle.

    PubMed

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  19. A Framework of Multi Objectives Negotiation for Dynamic Supply Chain Model

    NASA Astrophysics Data System (ADS)

    Chai, Jia Yee; Sakaguchi, Tatsuhiko; Shirase, Keiichi

    Trends of globalization and advances in Information Technology (IT) have created opportunity in collaborative manufacturing across national borders. A dynamic supply chain utilizes these advances to enable more flexibility in business cooperation. This research proposes a concurrent decision making framework for a three echelons dynamic supply chain model. The dynamic supply chain is formed by autonomous negotiation among agents based on multi agents approach. Instead of generating negotiation aspects (such as amount, price and due date) arbitrary, this framework proposes to utilize the information available at operational level of an organization in order to generate realistic negotiation aspect. The effectiveness of the proposed model is demonstrated by various case studies.

  20. Computational Modeling And Analysis Of Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Mittal, Rajat; Cattafesta, Lou

    2005-01-01

    In the last report we focused on the study of 3D synthetic jets of moderate jet aspect-ratio. Jets in quiescent and cross-flow cases were investigated. Since most of the synthetic jets in practical applications are found to be of large aspect ratio, the focus was shifted to studying synthetic jets of large aspect ratio. In the current year, further progress has been made by studying jets of aspect ratio 8 and infinity. Some other aspects of the jet, like the vorticity flux is looked into apart from analyzing the vortex dynamics, velocity profiles and the other dynamical characteristics of the jet which allows us to extract some insight into the effect of these modifications on the jet performance. Also, efforts were made to qualitatively validate the simulated results with the NASA Langley test cases at higher jet Reynolds number for the quiescent jet case.

  1. Teaching about Psychosocial Aspects of Disability: Emphasizing Person-Environment Relations

    ERIC Educational Resources Information Center

    Dunn, Dana S.

    2016-01-01

    This article presents some psychosocial aspects of disability linked to the person--environment relation that teachers should share in the psychology classroom. Disability is an often-overlooked form of diversity, one that teachers should discuss alongside race, gender, sexual orientation, social class/socioeconomic status (SES), religiosity, and…

  2. Education for All Aspects of the Industry.

    ERIC Educational Resources Information Center

    Bailey, Thomas; And Others

    1995-01-01

    Education for all aspects of the industry (AAI) is a strategy that is being advocated by education reformers to combine learning and experience, integrate vocational and academic education, develop more interdisciplinary instruction, and forge more links between schools, business, and the community. A study examined AAI from the perspective of the…

  3. Multi-Body Analysis of the 1/5 Scale Wind Tunnel Model of the V-22 Tiltrotor

    NASA Technical Reports Server (NTRS)

    Ghiringhelli, G. L.; Masarati, P.; Mantegazza, P.; Nixon, M. W.

    1999-01-01

    The paper presents a multi-body analysis of the 1/5 scale wind tunnel model of the V-22 tiltrotor, the Wing and Rotor Aeroelastic Testing System (WRATS), currently tested at NASA Langley Research Center. An original multi-body formulation has been developed at the Dipartimento di Ingegneria Aerospaziale of the Politecnico di Milano, Italy. It is based on the direct writing of the equilibrium equations of independent rigid bodies, connected by kinematic constraints that result in the addition of algebraic constraint equations, and by dynamic constraints, that directly contribute to the equilibrium equations. The formulation has been extended to the simultaneous solution of interdisciplinary problems by modeling electric and hydraulic networks, for aeroservoelastic problems. The code has been tailored to the modeling of rotorcrafts while preserving a complete generality. A family of aerodynamic elements has been introduced to model high aspect aerodynamic surfaces, based on the strip theory, with quasi-steady aerodynamic coefficients, compressibility, post-stall interpolation of experimental data, dynamic stall modeling, and radial flow drag. Different models for the induced velocity of the rotor can be used, from uniform velocity to dynamic in flow. A complete dynamic and aeroelastic analysis of the model of the V-22 tiltrotor has been performed, to assess the validity of the formulation and to exploit the unique features of multi-body analysis with respect to conventional comprehensive rotorcraft codes; These are the ability to model the exact kinematics of mechanical systems, and the possibility to simulate unusual maneuvers and unusual flight conditions, that are particular to the tiltrotor, e.g. the conversion maneuver. A complete modal validation of the analytical model has been performed, to assess the ability to reproduce the correct dynamics of the system with a relatively coarse beam model of the semispan wing, pylon and rotor. Particular care has been used to model the kinematics of the gimbal joint, that characterizes the rotor hub, and of the control system, consisting in the entire swashplate mechanism. The kinematics of the fixed and the rotating plates have been modeled, with variable length control links used to input the controls, the rotating flexible links, the pitch horns and the pitch bearings. The investigations took advantage of concurring wind tunnel test runs, that were performed in August 1998, and allowed the acquisition of data specific to the multi-body analysis.

  4. Complex Phenomena Understanding in Electricity through Dynamically Linked Concrete and Abstract Representations

    ERIC Educational Resources Information Center

    Taramopoulos, A.; Psillos, D.

    2017-01-01

    The present study investigates the impact of utilizing virtual laboratory environments combining dynamically linked concrete and abstract representations in investigative activities on the ability of students to comprehend simple and complex phenomena in the field of electric circuits. Forty-two 16- to 17-year-old high school students participated…

  5. Exploring Classroom Interaction with Dynamic Social Network Analysis

    ERIC Educational Resources Information Center

    Bokhove, Christian

    2018-01-01

    This article reports on an exploratory project in which technology and dynamic social network analysis (SNA) are used for modelling classroom interaction. SNA focuses on the links between social actors, draws on graphic imagery to reveal and display the patterning of those links, and develops mathematical and computational models to describe and…

  6. Sound Links: Exploring the Social, Cultural and Educational Dynamics of Musical Communities in Australia

    ERIC Educational Resources Information Center

    Bartleet, Brydie-Leigh

    2009-01-01

    "Sound Links" examines the dynamics of community music in Australia, and the models it represents for informal music learning and teaching. This involves researching a selection of vibrant musical communities across the country, exploring their potential for complementarity and synergy with music in schools. This article focuses on the…

  7. On-board B-ISDN fast packet switching architectures. Phase 1: Study

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Lee, Fred; Paul, Dilip; Shyy, Dong-Jye

    1993-01-01

    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs.

  8. Tracker implementation for the orbiter Ku-band communications antenna

    NASA Technical Reports Server (NTRS)

    Rudnicki, J. F.; Lindsey, J. F.

    1976-01-01

    Possible implementations and recommendations for the Space Shuttle Ku-Band integrated communications/radar antenna tracking system were evaluated. Communication aspects involving the Tracking Data Relay Satellite (TDRS)/Orbiter Ku-Band link are emphasized. Detailed analysis of antenna sizes, gains and signal-to-noise ratios shows the desirability of using maximum size 36-inch diameter dish and a triple channel monopulse. The use of the original baselined 20 inch dish is found to result in excessive acquisition time since the despread signal would be used in the tracking loop. An evaluation of scan procedures which includes vehicle dynamics, designation error, time for acquisition and probability of acquisition shows that the conical scan is preferred since the time for lock-on for relatively slow look angle rates will be significantly shorter than the raster scan. Significant improvement in spherical coverage may be obtained by reorienting the antenna gimbal to obtain maximum blockage overlap.

  9. [The SIAARTI consensus document on the management of patients with end-stage chronic organ failure. From evidence-based medicine to knowledge-based medicine].

    PubMed

    Bertolini, Guido

    2014-01-01

    The management of patients with end-stage chronic organ failure is an increasingly important topic, since the extraordinary medical and technological advances have significantly reduced mortality and improved quality of life with prolonged survival of end-stage diseases. What should be the plan of care for these patients? Who should bear the responsibility for care? With what targets? These are crucial questions, to which modern medicine should provide convincing answers. The authors of the document explicitly resisted the temptation to draw up guidelines, showing that it is possible to customize medical intervention on the individual patient, keeping it tightly linked to the available knowledge. This is the most relevant aspect of the document: it goes beyond the classical concept of evidence-based medicine choosing to refer to the most dynamic knowledge-based medicine approach.

  10. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    NASA Astrophysics Data System (ADS)

    Samuelsen, Simone V.; Solov'Yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-10-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies.

  11. The Rotator Interval – A Link Between Anatomy and Ultrasound

    PubMed Central

    Tamborrini, Giorgio; Möller, Ingrid; Bong, David; Miguel, Maribel; Marx, Christian; Müller, Andreas Marc; Müller-Gerbl, Magdalena

    2017-01-01

    Shoulder pathologies of the rotator cuff of the shoulder are common in clinical practice. The focus of this pictorial essay is to discuss the anatomical details of the rotator interval of the shoulder, correlate the anatomy with normal ultrasound images and present selected pathologies. We focus on the imaging of the rotator interval that is actually the anterosuperior aspect of the glenohumeral joint capsule that is reinforced externally by the coracohumeral ligament, internally by the superior glenohumeral ligament and capsular fibers which blend together and insert medially and laterally to the bicipital groove. In this article we demonstrate the capability of high-resolution musculoskeletal ultrasound to visualize the detailed anatomy of the rotator interval. MSUS has a higher spatial resolution than other imaging techniques and the ability to examine these structures dynamically and to utilize the probe for precise anatomic localization of the patient’s pain by sono-palpation. PMID:28845477

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA Gly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunitmore » fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).« less

  13. The Rotator Interval - A Link Between Anatomy and Ultrasound.

    PubMed

    Tamborrini, Giorgio; Möller, Ingrid; Bong, David; Miguel, Maribel; Marx, Christian; Müller, Andreas Marc; Müller-Gerbl, Magdalena

    2017-06-01

    Shoulder pathologies of the rotator cuff of the shoulder are common in clinical practice. The focus of this pictorial essay is to discuss the anatomical details of the rotator interval of the shoulder, correlate the anatomy with normal ultrasound images and present selected pathologies. We focus on the imaging of the rotator interval that is actually the anterosuperior aspect of the glenohumeral joint capsule that is reinforced externally by the coracohumeral ligament, internally by the superior glenohumeral ligament and capsular fibers which blend together and insert medially and laterally to the bicipital groove. In this article we demonstrate the capability of high-resolution musculoskeletal ultrasound to visualize the detailed anatomy of the rotator interval. MSUS has a higher spatial resolution than other imaging techniques and the ability to examine these structures dynamically and to utilize the probe for precise anatomic localization of the patient's pain by sono-palpation.

  14. [Medicine at the "edge of chaos". Life, entropy and complexity].

    PubMed

    De Vito, Eduardo L

    2016-01-01

    The aim of this paper is to help physicians and health professionals, who constantly seek to improve their knowledge for the benefit of the ill, to incorporate new conceptual and methodological tools to understand the complexity inherent to the field of medicine. This article contains notions that are unfamiliar to these professionals and are intended to foster reflection and learning. It poses the need to define life from a thermodynamic point of view, linking it closely to complex systems, nonlinear dynamics and chaotic behavior, as well as to redefine conventional physiological control mechanisms based on the concept of homeostasis, and to travel the path that starts with the search for extraterrestrial life up to exposing medicine "near the edge of chaos". Complexity transcends the biological aspects; it includes a subjective and symbolic/social dimension. Viewing disease as a heterogeneous and multi-causal phenomenon can give rise to new approaches for the sick.

  15. Phobias of attachment-related inner states in the psychotherapy of adult survivors of childhood complex trauma.

    PubMed

    Liotti, Giovanni

    2013-11-01

    The clinical case described in this article illustrates the value of taking into account the dynamics of disorganized attachment in the assessment of attachment-related phobias (phobia of attachment and phobia of attachment loss) during the psychotherapy of chronically traumatized patients. These seemingly opposite phobias typically coexist in the same patient, appear as phobias of both inner states (affect phobias) and relational experiences, and are linked to dissociated representations of self-with-other. Theory and research on attachment disorganization provide a clinician-friendly conceptual framework for capturing both the intrapsychic (e.g., intrusive and nonintegrated mental states) and the relational (e.g., dramatic unsolvable dilemmas in interpersonal exchanges) aspects of the attachment-related phobias. The therapeutic strategy and the key interventions that logically follow from a case formulation based on this conceptual framework are examined. © 2013 Wiley Periodicals, Inc.

  16. Social Balance on Networks: The Dynamics of Friendship and Hatred

    NASA Astrophysics Data System (ADS)

    Redner, Sidney

    2006-03-01

    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad---a triangular loop with 1 or 3 unfriendly links---is reversed to make the triad balanced. Thus an imbalanced triad is analogous to a frustrated plaquette in a random magnet, while a balanced triad fulfills the adage: ``a friend of my friend is my friend; an enemy of my friend is my enemy; a friend of my enemy is my enemy; an enemy of my enemy is my friend.'' With this frustration-reducing dynamics, an infinite network undergoes a dynamic phase transition from a steady state to ``paradise''---all links are friendly---as the propensity for friendly links to be created in an update event passes through 1/2. On the other hand, a finite network always falls into a socially-balanced absorbing state where no imbalanced triads remain. A prominent example of the achievement of social balance is the evolution of pacts and treaties between various European countries during the late 1800's and early 1900's. Here social balance gave rise to the two major alliances that comprised the protagonists of World War I.

  17. Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links.

    PubMed

    Sardi, Shira; Vardi, Roni; Goldental, Amir; Sheinin, Anton; Uzan, Herut; Kanter, Ido

    2018-03-23

    Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.

  18. Propeller dynamic and aeroelastic effects

    NASA Technical Reports Server (NTRS)

    Mccormick, B. W.

    1980-01-01

    Various aspects of propeller blade dynamics are considered including those factors which are exciting the blades and the dynamic response of the blades to the excitations. Methods for treating this dynamic system are described and problems are discussed which may arise with advanced turboprop designs employing thin, swept blades.

  19. The AmP project: Comparing species on the basis of dynamic energy budget parameters.

    PubMed

    Marques, Gonçalo M; Augustine, Starrlight; Lika, Konstadia; Pecquerie, Laure; Domingos, Tiago; Kooijman, Sebastiaan A L M

    2018-05-01

    We developed new methods for parameter estimation-in-context and, with the help of 125 authors, built the AmP (Add-my-Pet) database of Dynamic Energy Budget (DEB) models, parameters and referenced underlying data for animals, where each species constitutes one database entry. The combination of DEB parameters covers all aspects of energetics throughout the full organism's life cycle, from the start of embryo development to death by aging. The species-specific parameter values capture biodiversity and can now, for the first time, be compared between animals species. An important insight brought by the AmP project is the classification of animal energetics according to a family of related DEB models that is structured on the basis of the mode of metabolic acceleration, which links up with the development of larval stages. We discuss the evolution of metabolism in this context, among animals in general, and ray-finned fish, mollusks and crustaceans in particular. New DEBtool code for estimating DEB parameters from data has been written. AmPtool code for analyzing patterns in parameter values has also been created. A new web-interface supports multiple ways to visualize data, parameters, and implied properties from the entire collection as well as on an entry by entry basis. The DEB models proved to fit data well, the median relative error is only 0.07, for the 1035 animal species at 2018/03/12, including some extinct ones, from all large phyla and all chordate orders, spanning a range of body masses of 16 orders of magnitude. This study is a first step to include evolutionary aspects into parameter estimation, allowing to infer properties of species for which very little is known.

  20. The AmP project: Comparing species on the basis of dynamic energy budget parameters

    PubMed Central

    Lika, Konstadia; Pecquerie, Laure; Kooijman, Sebastiaan A. L. M.

    2018-01-01

    We developed new methods for parameter estimation-in-context and, with the help of 125 authors, built the AmP (Add-my-Pet) database of Dynamic Energy Budget (DEB) models, parameters and referenced underlying data for animals, where each species constitutes one database entry. The combination of DEB parameters covers all aspects of energetics throughout the full organism’s life cycle, from the start of embryo development to death by aging. The species-specific parameter values capture biodiversity and can now, for the first time, be compared between animals species. An important insight brought by the AmP project is the classification of animal energetics according to a family of related DEB models that is structured on the basis of the mode of metabolic acceleration, which links up with the development of larval stages. We discuss the evolution of metabolism in this context, among animals in general, and ray-finned fish, mollusks and crustaceans in particular. New DEBtool code for estimating DEB parameters from data has been written. AmPtool code for analyzing patterns in parameter values has also been created. A new web-interface supports multiple ways to visualize data, parameters, and implied properties from the entire collection as well as on an entry by entry basis. The DEB models proved to fit data well, the median relative error is only 0.07, for the 1035 animal species at 2018/03/12, including some extinct ones, from all large phyla and all chordate orders, spanning a range of body masses of 16 orders of magnitude. This study is a first step to include evolutionary aspects into parameter estimation, allowing to infer properties of species for which very little is known. PMID:29742099

  1. Audio-Enhanced Computer Assisted Learning and Computer Controlled Audio-Instruction.

    ERIC Educational Resources Information Center

    Miller, K.; And Others

    1983-01-01

    Describes aspects of use of a microcomputer linked with a cassette recorder as a peripheral to enhance computer-assisted learning (CAL) and a microcomputer-controlled tape recorder linked with a microfiche reader in a commercially available teaching system. References and a listing of control programs are appended. (EJS)

  2. Disrupting the Dissertation: Linked Data, Enhanced Publication and Algorithmic Culture

    ERIC Educational Resources Information Center

    Tracy, Frances; Carmichael, Patrick

    2017-01-01

    This article explores how the three aspects of Striphas' notion of algorithmic culture (information, crowds and algorithms) might influence and potentially disrupt established educational practices. We draw on our experience of introducing semantic web and linked data technologies into higher education settings, focussing on extended student…

  3. Examining Functioning and Contextual Factors in Individuals with Joint Contractures from the Health Professional Perspective Using the ICF: An International Internet-Based Qualitative Expert Survey.

    PubMed

    Fischer, Uli; Müller, Martin; Strobl, Ralf; Bartoszek, Gabriele; Meyer, Gabriele; Grill, Eva

    2016-01-01

    The aim of this study was to identify disease-related aspects of functioning and disability in people with joint contractures from a health professionals' perspective and to describe the findings, using categories of the International Classification of Functioning, Disability, and Health (ICF). An Internet-based expert survey. We asked international health professionals for typical problems in functioning and important contextual factors of individuals with joint contractures using an Internet-based open-ended questionnaire. All answers were linked to the ICF according to established rules. Absolute and relative frequencies of the linked ICF categories were reported. Eighty experts named 1785 meaning units which could be linked to 256 ICF categories. Among the categories, 24.2% belonged to the component Body Functions, 20.7% to Body Structures, 36.3% to Activities and Participation, and 18.8% to Environmental Factors. Health professionals addressed a large variety of functional problems and multifaceted aspects due to the symptom joint contractures. International health professionals reported a large variety of aspects of functioning and health, which are related to joint contractures. © 2014 Association of Rehabilitation Nurses.

  4. Reconstructing networks from dynamics with correlated noise

    NASA Astrophysics Data System (ADS)

    Tam, H. C.; Ching, Emily S. C.; Lai, Pik-Yin

    2018-07-01

    Reconstructing the structure of complex networks from measurements of the nodes is a challenge in many branches of science. External influences are always present and act as a noise to the networks of interest. In this paper, we present a method for reconstructing networks from measured dynamics of the nodes subjected to correlated noise that cannot be approximated by a white noise. This method can reconstruct the links of both bidirectional and directed networks, the correlation time and strength of the noise, and also the relative coupling strength of the links when the coupling functions have certain properties. Our method is built upon theoretical relations between network structure and measurable quantities from the dynamics that we have derived for systems that have fixed point dynamics in the noise-free limit. Using these theoretical results, we can further explain the shortcomings of two common practices of inferring links for bidirectional networks using the Pearson correlation coefficient and the partial correlation coefficient.

  5. The properties of water in swollen cross-linked polystyrene sulfo acids

    NASA Astrophysics Data System (ADS)

    Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.

    2008-11-01

    The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.

  6. Dynamics of history-dependent epidemics in temporal networks

    NASA Astrophysics Data System (ADS)

    Sunny, Albert; Kotnis, Bhushan; Kuri, Joy

    2015-08-01

    The structural properties of temporal networks often influence the dynamical processes that occur on these networks, e.g., bursty interaction patterns have been shown to slow down epidemics. In this paper, we investigate the effect of link lifetimes on the spread of history-dependent epidemics. We formulate an analytically tractable activity-driven temporal network model that explicitly incorporates link lifetimes. For Markovian link lifetimes, we use mean-field analysis for computing the epidemic threshold, while the effect of non-Markovian link lifetimes is studied using simulations. Furthermore, we also study the effect of negative correlation between the number of links spawned by an individual and the lifetimes of those links. Such negative correlations may arise due to the finite cognitive capacity of the individuals. Our investigations reveal that heavy-tailed link lifetimes slow down the epidemic, while negative correlations can reduce epidemic prevalence. We believe that our results help shed light on the role of link lifetimes in modulating diffusion processes on temporal networks.

  7. LESS: Link Estimation with Sparse Sampling in Intertidal WSNs

    PubMed Central

    Ji, Xiaoyu; Chen, Yi-chao; Li, Xiaopeng; Xu, Wenyuan

    2018-01-01

    Deploying wireless sensor networks (WSN) in the intertidal area is an effective approach for environmental monitoring. To sustain reliable data delivery in such a dynamic environment, a link quality estimation mechanism is crucial. However, our observations in two real WSN systems deployed in the intertidal areas reveal that link update in routing protocols often suffers from energy and bandwidth waste due to the frequent link quality measurement and updates. In this paper, we carefully investigate the network dynamics using real-world sensor network data and find it feasible to achieve accurate estimation of link quality using sparse sampling. We design and implement a compressive-sensing-based link quality estimation protocol, LESS, which incorporates both spatial and temporal characteristics of the system to aid the link update in routing protocols. We evaluate LESS in both real WSN systems and a large-scale simulation, and the results show that LESS can reduce energy and bandwidth consumption by up to 50% while still achieving more than 90% link quality estimation accuracy. PMID:29494557

  8. Modelling sociocognitive aspects of students' learning

    NASA Astrophysics Data System (ADS)

    Koponen, I. T.; Kokkonen, T.; Nousiainen, M.

    2017-03-01

    We present a computational model of sociocognitive aspects of learning. The model takes into account a student's individual cognition and sociodynamics of learning. We describe cognitive aspects of learning as foraging for explanations in the epistemic landscape, the structure (set by instructional design) of which guides the cognitive development through success or failure in foraging. We describe sociodynamic aspects as an agent-based model, where agents (learners) compare and adjust their conceptions of their own proficiency (self-proficiency) and that of their peers (peer-proficiency) in using explanatory schemes of different levels. We apply the model here in a case involving a three-tiered system of explanatory schemes, which can serve as a generic description of some well-known cases studied in empirical research on learning. The cognitive dynamics lead to the formation of dynamically robust outcomes of learning, seen as a strong preference for a certain explanatory schemes. The effects of social learning, however, can account for half of one's success in adopting higher-level schemes and greater proficiency. The model also predicts a correlation of dynamically emergent interaction patterns between agents and the learning outcomes.

  9. Cross-generational influences on childhood anxiety disorders: pathways and mechanisms

    PubMed Central

    Leckman, James F.; Silverman, Wendy K.; Feldman, Ruth

    2016-01-01

    Anxiety disorders are common across the lifespan, cause severe distress and impairment, and usually have their onset in childhood. Substantial clinical and epidemiological research has demonstrated the existence of links between anxiety and its disorders in children and parents. Research on the pathways and mechanisms underlying these links has pointed to both behavioral and biological systems. This review synthesizes and summarizes several major aspects of this research. Behavioral systems include vicarious learning, social referencing, and modeling of parental anxiety; overly protective or critical parenting styles; and aspects of parental responses to child anxiety including family accommodation of the child’s symptoms. Biological systems include aspects of the prenatal environment affected by maternal anxiety, development and functioning of the oxytocinergic system, and genetic and epigenetic transmission. Implications for the prevention and treatment of child anxiety disorders are discussed, including the potential to enhance child anxiety treatment outcomes through biologically informed parent-based interventions. PMID:27145763

  10. Cross-generational influences on childhood anxiety disorders: pathways and mechanisms.

    PubMed

    Lebowitz, Eli R; Leckman, James F; Silverman, Wendy K; Feldman, Ruth

    2016-09-01

    Anxiety disorders are common across the lifespan, cause severe distress and impairment, and usually have their onset in childhood. Substantial clinical and epidemiological research has demonstrated the existence of links between anxiety and its disorders in children and parents. Research on the pathways and mechanisms underlying these links has pointed to both behavioral and biological systems. This review synthesizes and summarizes several major aspects of this research. Behavioral systems include vicarious learning, social referencing, and modeling of parental anxiety; overly protective or critical parenting styles; and aspects of parental responses to child anxiety including family accommodation of the child's symptoms. Biological systems include aspects of the prenatal environment affected by maternal anxiety, development and functioning of the oxytocinergic system, and genetic and epigenetic transmission. Implications for the prevention and treatment of child anxiety disorders are discussed, including the potential to enhance child anxiety treatment outcomes through biologically informed parent-based interventions.

  11. Identifying and analyzing the construction and effectiveness of offensive plays in basketball by using systematic observation.

    PubMed

    Fernandez, Jordi; Camerino, Oleguer; Anguera, M Teresa; Jonsson, Gudberg K

    2009-08-01

    In the field of sports research, there is a growing need for the rigorous collection of data that provide empirical evidence about the complex reality they refer to. Although sports psychology research has advanced considerably in recent years, in both extent and quality, one area of research that remains relatively unexplored is the dynamics of the sports group and the influence of the group on its members (George & Feltz, 1995; Widmeyer, Brawley, & Carron, 1992). Key aspects in this regard include the presence of regularities that are not detectable through visual inference or traditional methods of data analysis, the lack of standard observation instruments, and, assuming priority, the need to develop powerful, computerized coding systems, all of which must form part of an approach that is suitable for natural and habitual contexts. The present study is part of a broader research project concerning ACB teams (first Spanish basketball division) and considers the interaction context before teams try to score (where this is understood as how teams create scoring opportunities) as the core aspect that links team play. This investigation proposes a new model of analysis for studying the effectiveness and construction of offensive basketball plays in order to identify their outcomes, thus providing coaches with an important device for improving or consolidating them.

  12. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  13. The interplay of occupational motivation and well-being during the transition from university to work.

    PubMed

    Haase, Claudia M; Heckhausen, Jutta; Silbereisen, Rainer K

    2012-11-01

    A successful entry into work is one of the key developmental tasks in young adulthood. The present 4-wave longitudinal study examined the interplay between occupational motivation (i.e., goal engagement and goal disengagement) and well-being (i.e., satisfaction with life, satisfaction with work, satisfaction with partnership, positive affect, depressive symptoms, autonomy, purpose in life, positive relations with others) during the transition from university to work. The sample consisted of 498 university graduates from 4 majors with favorable or unfavorable employment opportunities. Data were analyzed using latent growth curve modeling. The results showed that increases in goal engagement were associated with increases in numerous aspects of well-being. Increases in goal disengagement were associated with decreases in numerous aspects of well-being. However, this dynamic was not without exception. Goal engagement at graduation was associated with a decrease in autonomy and, for individuals with unfavorable employment opportunities, an increase in depressive symptoms. Goal disengagement at graduation was associated with an increase in satisfaction with work. These findings elucidate why some individuals may opt for overall maladaptive motivational strategies during the transition into the workforce: They provide selective well-being benefits. In sum, how young adults deal with their occupational goals is closely linked to changes in their well-being.

  14. Western Radicalization: Rethinking the Psychology of Terrorism

    DTIC Science & Technology

    2017-03-01

    individual is susceptible to radicalization. As Clark McCauley describes, “The psychology behind terrorist violence is normal psychology , abnormal ...behind terrorist violence is normal psychology , abnormal only in the intensity of the group dynamics that link cause with comrades.”65 Nevertheless... psychology , abnormal only in the intensity of the group dynamics that link 249 Anne Manne, The Life

  15. Simulating Ice-Flow and Calving on Store Glacier, West Greenland, with a 3D Full Stokes Model

    NASA Astrophysics Data System (ADS)

    Todd, J.; Christoffersen, P.; Zwinger, T.; Luckman, A. J.; Benn, D.

    2015-12-01

    The mass balance and long-term stability of the ice sheets in Greenland and Antarctica depend heavily on the dynamics of their ice-ocean margins. Iceberg calving accounts for the majority of the net annual loss of ice in Antarctica and around half of that from Greenland. Furthermore, climate driven changes to dynamics at these calving margins can be transmitted far inland. Thus, predicting future sea level contribution from the cryosphere requires an improved understanding of calving, and the processes which link it to climate and ice-sheet flow. We present results from a new 3D calving model coupled to a full-Stokes, time evolving glacier dynamic model, implemented for Store Glacier, a 5-km-wide calving glacier in the Uummannaq region of West Greenland, which flows at a rate of 20 m/day at its terminus. The model is developed using the open source finite element package Elmer/Ice, with the criterion that calving occurs when surface and basal crevasses meet. Crevasses open in response to tensile stresses near the terminus and water pressure at the bed. When the model was applied in 2D for the central flowline of Store Glacier, we found that basal topography exerts overarching control on the long term position of the calving front, while ice mélange buttressing allows the seasonal extension of a floating tongue, which collapses in early summer. New results emerging from implementation of calving in a 3D model indicate significant spatial heterogeneity in calving dynamics because the northern half of the terminus is grounded whereas the southern half is floating. This contrasting setting affects calving dynamics, further underlining the importance of geometry and basal topography, and suggesting that lower dimensional calving models may miss important aspects of calving dynamics. Our results also suggest that implementing grounding line dynamics is important for modelling calving, even for glaciers which are, for the most part, firmly grounded.

  16. Density of states and dynamical crossover in a dense fluid revealed by exponential mode analysis of the velocity autocorrelation function

    NASA Astrophysics Data System (ADS)

    Bellissima, S.; Neumann, M.; Guarini, E.; Bafile, U.; Barocchi, F.

    2017-01-01

    Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015), 10.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and the excitation wave vectors.

  17. Training for Women's Basketball: A Biomechanical Emphasis for Preventing Anterior Cruciate Ligament Injury.

    ERIC Educational Resources Information Center

    Pettitt, Robert W.; Bryson, Erin R.

    2002-01-01

    Summarizes proposed variables linked with higher incidences of anterior cruciate ligament tears in females and the biomechanical aspects of the lower extremity during the performance of common basketball skills, focusing on gender differences in knee joint stability and neuromuscular control, biomechanical aspects of lower extremity skills in…

  18. The Salience of Adolescent Romantic Experiences for Romantic Relationship Qualities in Young Adulthood

    ERIC Educational Resources Information Center

    Madsen, Stephanie D.; Collins, W. Andrew

    2011-01-01

    Conceptual links between aspects of adolescents' dating experiences (i.e., involvement and quality; ages 15-17.5) and qualities of their romantic relationships in young adulthood (ages 20-21) were examined in a prospective longitudinal design. Even after accounting for earlier relationship experiences with parents and peers, aspects of adolescent…

  19. Using Mindful Movement in Cooperative Learning while Learning about Angles

    ERIC Educational Resources Information Center

    Shoval, Ella

    2011-01-01

    Unlike studies on cooperative learning that have focused on the verbal communication aspect of learning, this study focuses on the non-verbal aspect--mindful movement, which is the use of body movement to aid academic learning. Our research examined the link between five learning activities occurring within a cooperative group of children using…

  20. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  1. Mitochondrial Dynamics in Diabetes

    PubMed Central

    Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Abstract Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emerging evidence suggests that mitochondrial dynamics plays an important role in metabolism–secretion coupling in pancreatic β-cells as well as complications of diabetes. This review describes an overview of mechanistic and functional aspects of mitochondrial fission and fusion, and comments on the recent advances connecting mitochondrial dynamics with diabetes and diabetic complications. Antioxid. Redox Signal. 14, 439–457. PMID:20518704

  2. Dynamin-Related Protein 1 and Mitochondrial Fragmentation in Neurodegenerative Diseases

    PubMed Central

    Reddy, P. Hemachandra; Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Shirendeb, Ulziibat; Mao, Peizhong

    2010-01-01

    The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of X in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others’, we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage. PMID:21145355

  3. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    PubMed Central

    2018-01-01

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679

  4. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    PubMed

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  5. Temporal dynamics of the HPA axis linked to exploratory behavior in a wild European songbird (Parus major).

    PubMed

    Baugh, Alexander T; Davidson, Sarah C; Hau, Michaela; van Oers, Kees

    2017-09-01

    Variation in the reactivity of the endocrine stress axis is thought to underlie aspects of persistent individual differences in behavior (i.e. animal personality). Previous studies, however, have focused largely on estimating baseline or peak levels of glucocorticoids (CORT), often in captive animals. In contrast, the temporal dynamics of the HPA axis-how quickly it turns on and off, for example-may better indicate how an individual copes with stressors. Moreover, these HPA components might be correlated, thereby representing endocrine suites. Using wild-caught great tits (Parus major) we tested birds for exploratory behavior using a standardized novel environment assay that serves as a validated proxy for personality. We then re-captured a subset of these birds (n=85) and characterized four components of HPA physiology: baseline, endogenous stress response, a dexamethasone (DEX) challenge to estimate the strength of negative feedback, and an adrenocorticotropic hormone (ACTH) challenge to estimate adrenal capacity. We predicted that these four HPA responses would be positively correlated and that less exploratory birds would have a more rapid onset of the stress response (a CORT elevation during the baseline bleed) and weaker negative feedback (higher CORT after DEX). We found support for the first two predictions but not the third. All four components were positively correlated with each other and less exploratory birds exhibited an elevation in CORT during the baseline bleed (<3min from capture). Less exploratory birds, however, did not exhibit weaker negative feedback following the DEX challenge, but did exhibit weaker adrenal capacity. Together, our findings provide partial support for the hypothesis that the temporal reactivity of the HPA axis is linked with consistent individual differences in behavior, with more cautious (slower exploring) individuals exhibiting a faster CORT response. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Effects Of Physical And Biological Cohesion On Bedforms

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield improved predictions of morphological and habitat adjustment.

  7. The MNESIS model: Memory systems and processes, identity and future thinking.

    PubMed

    Eustache, Francis; Viard, Armelle; Desgranges, Béatrice

    2016-07-01

    The Memory NEo-Structural Inter-Systemic model (MNESIS; Eustache and Desgranges, Neuropsychology Review, 2008) is a macromodel based on neuropsychological data which presents an interactive construction of memory systems and processes. Largely inspired by Tulving's SPI model, MNESIS puts the emphasis on the existence of different memory systems in humans and their reciprocal relations, adding new aspects, such as the episodic buffer proposed by Baddeley. The more integrative comprehension of brain dynamics offered by neuroimaging has contributed to rethinking the existence of memory systems. In the present article, we will argue that understanding the concept of memory by dividing it into systems at the functional level is still valid, but needs to be considered in the light of brain imaging. Here, we reinstate the importance of this division in different memory systems and illustrate, with neuroimaging findings, the links that operate between memory systems in response to task demands that constrain the brain dynamics. During a cognitive task, these memory systems interact transiently to rapidly assemble representations and mobilize functions to propose a flexible and adaptative response. We will concentrate on two memory systems, episodic and semantic memory, and their links with autobiographical memory. More precisely, we will focus on interactions between episodic and semantic memory systems in support of 1) self-identity in healthy aging and in brain pathologies and 2) the concept of the prospective brain during future projection. In conclusion, this MNESIS global framework may help to get a general representation of human memory and its brain implementation with its specific components which are in constant interaction during cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.

    PubMed

    Müller, Achim; Gouzerh, Pierre

    2012-11-21

    Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry. The present review presents the first comprehensive report of current knowledge (including synthesis aspects not discussed before) regarding the related giant metal-oxide clusters mainly of the type {Mo(57)M'(6)} (M' = Fe(III), V(IV)) (torus structure), {M(72)M'(30)} (M = Mo, M' = V(IV), Cr(III), Fe(III), Mo(V)), {M(72)Mo(60)} (M = Mo, W) (Keplerates), {Mo(154)}, {Mo(176)}, {Mo(248)} ("big wheels"), and {Mo(368)} ("blue lemon") - all having the important transferable pentagonal {(M)M(5)} groups in common. These discoveries expanded the frontiers of inorganic chemistry to the mesoscopic world, while there is probably no collection of discrete inorganic compounds which offers such a versatile chemistry and the option to study new phenomena of interdisciplinary interest. The variety of different properties of the sphere- and wheel-type metal-oxide-based clusters can directly be related to their unique architectures: The spherical Keplerate-type capsules having 20 crown-ether-type pores and tunable internal functionalities allow the investigation of confined matter as well as that of sphere-surface-supramolecular and encapsulation chemistry - including related new aspects of the biologically important hydrophobic effects - but also of nanoscale ion transport and separation. The wheel-type molybdenum-oxide clusters exhibiting complex landscapes do not only have well-defined reaction sites but also show unprecedented adaptability regarding the integration of various kinds of matter. Applications in different fields, e.g. in materials science and catalysis including those in small spaces, investigated by several groups, are discussed while possible directions for future work are outlined.

  9. Proactive schema based link lifetime estimation and connectivity ratio.

    PubMed

    Bachir, Bouamoud; Ali, Ouacha; Ahmed, Habbani; Mohamed, Elkoutbi

    2014-01-01

    The radio link between a pair of wireless nodes is affected by a set of random factors such as transmission range, node mobility, and environment conditions. The properties of such radio links are continually experienced when nodes status balances between being reachable and being unreachable; thereby on completion of each experience the statistical distribution of link lifetime is updated. This aspect is emphasized in mobile ad hoc network especially when it is deployed in some fields that require intelligent processing of data information such as aerospace domain.

  10. Emergence of bursts and communities in evolving weighted networks.

    PubMed

    Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo

    2011-01-01

    Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.

  11. Mitochondrial dynamics in Parkinson's disease

    PubMed Central

    Van Laar, Victor S.; Berman, Sarah B.

    2009-01-01

    The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events. PMID:19332061

  12. Technological requirements of teleneuropathological systems.

    PubMed

    Szymaś, J

    2000-01-01

    Teleneuropathology is the practice of conducting remote neuropathological examinations with the use of telecommunication links. Because of a limited number of expert neuropathologists, some, especially smaller departments have the equipment to conduct the examination but do not have a specialist who would be able to evaluate material from the central nervous system. In case of teleneuropathology, a neuropathologist examines tissue fragments taken during an operation by means of a telemicroscope connected with the computer through a telecommunications network. It enables the neuropathologist to operate the microscope and camera remotely. Two basic systems exist for performing remote neuropathological examination: static and dynamic. Both have different needs in medical, computing and telecommunication aspect. Depending on the type of service the public telephone network, the integrated services digital network, or optical fibre should be used. Conditionally Internet can be used as a link for teleneuropathological system. However, for the newest developments in teleneuropathology such as teleconference and remote operation on robotized microscope only transmission over the integrated service digital network, which guarantees high speed of transmission gives a possibility to communicate. Because images are basic information element in teleneuropathological systems the high capacity of acquisition, processing, storing, transmission, and visualization equipment is necessary. The farther development of telecommunication as well as standardization of recording and transmission procedures of pictorial data is necessary.

  13. Clinical implications of somatic mutations in aplastic anemia and myelodysplastic syndrome in genomic age.

    PubMed

    Maciejewski, Jaroslaw P; Balasubramanian, Suresh K

    2017-12-08

    Recent technological advances in genomics have led to the discovery of new somatic mutations and have brought deeper insights into clonal diversity. This discovery has changed not only the understanding of disease mechanisms but also the diagnostics and clinical management of bone marrow failure. The clinical applications of genomics include enhancement of current prognostic schemas, prediction of sensitivity or refractoriness to treatments, and conceptualization and selective application of targeted therapies. However, beyond these traditional clinical aspects, complex hierarchical clonal architecture has been uncovered and linked to the current concepts of leukemogenesis and stem cell biology. Detection of clonal mutations, otherwise typical of myelodysplastic syndrome, in the course of aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria has led to new pathogenic concepts in these conditions and created a new link between AA and its clonal complications, such as post-AA and paroxysmal nocturnal hemoglobinuria. Distinctions among founder vs subclonal mutations, types of clonal evolution (linear or branching), and biological features of individual mutations (sweeping, persistent, or vanishing) will allow for better predictions of the biologic impact they impart in individual cases. As clonal markers, mutations can be used for monitoring clonal dynamics of the stem cell compartment during physiologic aging, disease processes, and leukemic evolution. © 2016 by The American Society of Hematology. All rights reserved.

  14. Prospective Links between Social Anxiety and Adolescent Peer Relations

    ERIC Educational Resources Information Center

    Tillfors, Maria; Persson, Stefan; Willen, Maria; Burk, William J.

    2012-01-01

    This study examines bi-directional links between social anxiety and multiple aspects of peer relations (peer acceptance, peer victimization, and relationship quality) in a longitudinal sample of 1528 adolescents assessed twice with one year between (754 females and 774 males; M = 14.7 years of age). Lower levels of peer acceptance predicted…

  15. Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells

    PubMed Central

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z.

    2010-01-01

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation. PMID:20424595

  16. Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.

    PubMed

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z

    2010-04-27

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.

  17. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    PubMed

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Application of wave mechanics theory to fluid dynamics problems: Fundamentals

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.

  19. An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers

    Treesearch

    Robert J. Warren

    2010-01-01

    • The ubiquitous transition of plant communities across slope aspects is a welldescribed, but rarely tested, ecological dynamic. Aspect position is often used as a proxy for microclimate changes in moisture, light and temperature, but these abiotic drivers are seldom decoupled and very rarely manipulated across slope aspects. • To investigate the mechanisms...

  20. Alternative descriptions of wave and particle aspects of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Schuch, Dieter

    1993-01-01

    The dynamical properties of the wave and particle aspects of the harmonic oscillator can be studied with the help of the time-dependent Schroedinger equation (SE). Especially the time-dependence of maximum and width of Gaussian wave packet solutions allow to show the evolution and connections of those two complementary aspects. The investigation of the relations between the equations describing wave and particle aspects leads to an alternative description of the considered systems. This can be achieved by means of a Newtonian equation for a complex variable in connection with a conservation law for a nonclassical angular momentum-type quantity. With the help of this complex variable, it is also possible to develop a Hamiltonian formalism for the wave aspect contained in the SE, which allows to describe the dynamics of the position and momentum uncertainties. In this case the Hamiltonian function is equivalent to the difference between the mean value of the Hamiltonian operator and the classical Hamiltonian function.

  1. In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level.

    PubMed

    de Jong, Luitzen; de Koning, Edward A; Roseboom, Winfried; Buncherd, Hansuk; Wanner, Martin J; Dapic, Irena; Jansen, Petra J; van Maarseveen, Jan H; Corthals, Garry L; Lewis, Peter J; Hamoen, Leendert W; de Koster, Chris G

    2017-07-07

    Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with <1% false discovery rate by mass spectrometry and genome-wide database searching. Nearly 60% of the interprotein cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and β' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.

  2. Extended model of restricted beam for FSO links

    NASA Astrophysics Data System (ADS)

    Poliak, Juraj; Wilfert, Otakar

    2012-10-01

    Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.

  3. Human-Computer Interaction: A Review of the Research on Its Affective and Social Aspects.

    ERIC Educational Resources Information Center

    Deaudelin, Colette; Dussault, Marc; Brodeur, Monique

    2003-01-01

    Discusses a review of 34 qualitative and non-qualitative studies related to affective and social aspects of student-computer interactions. Highlights include the nature of the human-computer interaction (HCI); the interface, comparing graphic and text types; and the relation between variables linked to HCI, mainly trust, locus of control,…

  4. Lost Boys: A Qualitative Study of Disengaged First-Year Men at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Herring, April L.

    2013-01-01

    The virtue of student engagement in all aspects of college life has been studied extensively throughout higher education. Research demonstrates that engagement in academics and the social aspects of college lead to retention and persistence. Beyond persistence, engagement has been linked to numerous other desirable effects of college. This…

  5. Implementing e-Learning in the Jordanian Higher Education System: Factors Affecting Impact

    ERIC Educational Resources Information Center

    Al-adwan, Ahmad; Smedley, Jo

    2012-01-01

    The increased involvement of technology in all aspects of our lives places educational institutions under pressure to include these aspects at the heart of their learning. This ensures that they continue to be competitive in a constantly changing market with international and cultural links. This study explores the factors that influenced the…

  6. Intersatellite link application to commercial communications satellites

    NASA Technical Reports Server (NTRS)

    Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.

    1988-01-01

    The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.

  7. Dynamic Connectivity Patterns in Conscious and Unconscious Brain

    PubMed Central

    Ma, Yuncong; Hamilton, Christina

    2017-01-01

    Abstract Brain functional connectivity undergoes dynamic changes from the awake to unconscious states. However, how the dynamics of functional connectivity patterns are linked to consciousness at the behavioral level remains elusive. In this study, we acquired resting-state functional magnetic resonance imaging data during wakefulness and graded levels of consciousness in rats. Data were analyzed using a dynamic approach combining the sliding window method and k-means clustering. Our results demonstrate that whole-brain networks contained several quasi-stable patterns that dynamically recurred from the awake state into anesthetized states. Remarkably, two brain connectivity states with distinct spatial similarity to the structure of anatomical connectivity were strongly biased toward high and low consciousness levels, respectively. These results provide compelling neuroimaging evidence linking the dynamics of whole-brain functional connectivity patterns and states of consciousness at the behavioral level. PMID:27846731

  8. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.

  9. Dynamic properties of molecular motors in burnt-bridge models

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim N.; Morozov, Alexander Yu; Pronina, Ekaterina; Kolomeisky, Anatoly B.

    2007-08-01

    Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic 'burnt-bridge' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed ('burned') with probability p, providing a bias in the motion of the molecular motor. We present a theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, under general conditions. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links or for very low burning probabilities which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.

  10. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

    Treesearch

    Shanlei Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter V. Caldwell; Kai Duan; Yang Zhang

    2016-01-01

    Quantifying the potential impacts of climatechange on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, andecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and StressIndex, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled...

  11. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  12. Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM.

    PubMed

    Phan, Stephanie; Hawley, Adrian; Mulet, Xavier; Waddington, Lynne; Prestidge, Clive A; Boyd, Ben J

    2013-12-01

    The purpose of this study was to investigate the colloidal structures formed on digestion of medium chain triglyceride (MCT) with a specific objective of identifying and characterizing a previously reported vesicular phase, which has been linked to supersaturation and anomalous digestion kinetics, and to evaluate the influence of lipid mass and enzyme inhibition on self assembled structure. MCT was digested in vitro and nanostructure was monitored in real time using synchrotron small angle X-ray scattering (sSAXS), and morphology was studied using cryogenic transmission electron microscopy (cryo-TEM). Formation of the putative vesicular phase formed on digestion of MCT was confirmed and its structural attributes were determined. Vesicle formation was dependent on lipid mass and bile salt concentration. The use of enzyme inhibitor for offline analysis of lipolysis samples did influence structural aspects of the digestion medium when compared to real time evaluation. The formation of a vesicular phase was directly linked to the kinetics of lipid digestion. Vesicle formation is linked to lipid mass, or more specifically the ratio of lipid to bile salts present in the digestion mixture. Inhibition of lipase to halt digestion during sampling for offline analysis must be done with caution as structural aspects were shown to differ for the MCT digests with and without inhibitor present.

  13. Personality and prosocial behavior: linking basic traits and social value orientations.

    PubMed

    Hilbig, Benjamin E; Glöckner, Andreas; Zettler, Ingo

    2014-09-01

    Concerning the dispositional determinants of prosocial behavior and cooperation, work based on the classic 5 personality factors, and especially Agreeableness, has turned out somewhat inconsistent. A clearer picture has emerged from consideration of the HEXACO model of personality--though supported entirely by hypothetical behavior as criterion, so far. Thus, in 2 studies and a reanalysis, we investigated "actual behavior" in the form of individually and socially consequential distribution decisions. As expected, HEXACO Honesty-Humility consistently predicted prosocial behavior, including a theory-consistent pattern on the facet level. Importantly, this pattern might explain why five-factor Agreeableness has only sometimes been found to account for prosocial behavior. Indeed, further results indicate that five-factor Agreeableness comprises some aspects that are predictive of prosocial behavior--aspects well covered by HEXACO Honesty-Humility--but also others that play no role for this criterion. As such, the links between five-factor Agreeableness and prosocial behavior are well-covered by HEXACO Honesty-Humility, but not vice versa. Taken together, these findings hint that especially HEXACO Honesty-Humility (and certain aspects of five-factor Agreeableness) account for prosocial behavior--thus explaining previous inconsistencies and providing a more nuanced understanding of the links between basic personality and prosocial or cooperative behavior. 2014 APA, all rights reserved

  14. Regulation and innovation dynamics for nanoresponsible development: The case of the French code de l'environnement L 523-1 to L 523-5

    NASA Astrophysics Data System (ADS)

    Auplat, C.; Ben Slimane, S.

    2015-05-01

    This paper examines one aspect of innovation dynamics for nanoresponsible development: the links between regulation and innovation dynamics. It focuses on the case of the French Code de l'environnement, Articles L. 523-1 to L. 523-3. Articles L. 523-1 to L. 523-3 of the French environment code provide for the obligation to declare the quantities and uses of substances at nanoscale produced, distributed or imported in France. This procedure is intended to improve knowledge of these substances and their uses as well as of their markets and volumes sold, to ensure traceability and to collect available information on their toxicological and ecotoxicological properties. The paper builds on recent work on the emergence of a regulatory framework for nanotechnologies to take stock of the current situation in France, in the EU and globally and to explore how this specific law package may influence innovation and the shaping of new markets for nanobased materials. The study shows that nano-regulation does have an impact on innovation. However, the impact is not the same with EU regulation and with French regulation, and while EU regulation seems to create a favourable context for innovation, French regulation seems to do the opposite. With this study we hope to bring new perspectives to the field of the strategic management of innovation, and also to shed some light on the roles and challenges of institutions to facilitate nanoresponsible development.

  15. Strategies for Linking School Finance and Students' Opportunity To Learn.

    ERIC Educational Resources Information Center

    Brown, Patricia

    This report answers questions that the Governors' Task Force on Education raised in their 1993 report "The Debate on Opportunity-to-Learn Standards." To assist states as they contemplate how to link school finance with the goals of education reform, the National Governors' Association invited six experts on various aspects of school finance and…

  16. From strings to coils: Rotational dynamics of DNA-linked colloidal chains

    NASA Astrophysics Data System (ADS)

    Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa

    2017-10-01

    We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.

  17. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    PubMed

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Structural Basis of G Protein-coupled Receptor-Gi Protein Interaction

    PubMed Central

    Mnpotra, Jagjeet S.; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L.; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P.; Pitman, Michael C.; Song, Zhao-Hui; Reggio, Patricia H.

    2014-01-01

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)- Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. PMID:24855641

  19. Integrated Decision Tools for Sustainable Watershed/Ground Water and Crop Health using Predictive Weather, Remote Sensing, and Irrigation Decision Tools

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Andales, A.; McGovern, C.; Smith, G. E. B.; David, O.; Fletcher, S. J.

    2017-12-01

    US agricultural and Govt. lands have a unique co-dependent relationship, particularly in the Western US. More than 30% of all irrigated US agricultural output comes from lands sustained by the Ogallala Aquifer in the western Great Plains. Six US Forest Service National Grasslands reside within the aquifer region, consisting of over 375,000 ha (3,759 km2) of USFS managed lands. Likewise, National Forest lands are the headwaters to many intensive agricultural regions. Our Ogallala Aquifer team is enhancing crop irrigation decision tools with predictive weather and remote sensing data to better manage water for irrigated crops within these regions. An integrated multi-model software framework is used to link irrigation decision tools, resulting in positive management benefits on natural water resources. Teams and teams-of-teams can build upon these multi-disciplinary multi-faceted modeling capabilities. For example, the CSU Catalyst for Innovative Partnerships program has formed a new multidisciplinary team that will address "Rural Wealth Creation" focusing on the many integrated links between economic, agricultural production and management, natural resource availabilities, and key social aspects of govt. policy recommendations. By enhancing tools like these with predictive weather and other related data (like in situ measurements, hydrologic models, remotely sensed data sets, and (in the near future) linking to agro-economic and life cycle assessment models) this work demonstrates an integrated data-driven future vision of inter-meshed dynamic systems that can address challenging multi-system problems. We will present the present state of the work and opportunities for future involvement.

  20. O-Linked β-N-Acetylglucosaminylation (O-GlcNAcylation) in Primary and Metastatic Colorectal Cancer Clones and Effect of N-Acetyl-β-d-glucosaminidase Silencing on Cell Phenotype and Transcriptome*

    PubMed Central

    Yehezkel, Galit; Cohen, Liz; Kliger, Adi; Manor, Esther; Khalaila, Isam

    2012-01-01

    O-Linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is a regulatory post-translational modification occurring on the serine or threonine residues of nucleocytoplasmic proteins. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), which are responsible for O-GlcNAc addition and removal, respectively. Although O-GlcNAcylation was found to play a significant role in several pathologies such as type II diabetes and neurodegenerative diseases, the role of O-GlcNAcylation in the etiology and progression of cancer remains vague. Here, we followed O-GlcNAcylation and its catalytic machinery in metastatic clones of human colorectal cancer and the effect of OGA knockdown on cellular phenotype and on the transcriptome. The colorectal cancer SW620 metastatic clone exhibited increased O-GlcNAcylation and decreased OGA expression compared with its primary clone, SW480. O-GlcNAcylation elevation in SW620 cells, through RNA interference of OGA, resulted in phenotypic alterations that included acquisition of a fibroblast-like morphology, which coincides with epithelial metastatic progression and growth retardation. Microarray analysis revealed that OGA silencing altered the expression of about 1300 genes, mostly involved in cell movement and growth, and specifically affected metabolic pathways of lipids and carbohydrates. These findings support the involvement of O-GlcNAcylation in various aspects of tumor cell physiology and suggest that this modification may serve as a link between metabolic changes and cancer. PMID:22730328

  1. Design of Broadband High Dynamic-Range Fiber Optic Links

    NASA Astrophysics Data System (ADS)

    Monsurrò, P.; Tommasino, P.; Trifiletti, A.; Vannucci, A.

    2018-04-01

    An analytic design-oriented model of microwave optical links has been developed. The core of the model is the non-linear and noise model of a Mach-Zehnder LiNbO3 interferometer. Both a 100 MHz-20 GHz link and a linearized microwave link, comprising an auxiliary modulator, have been designed and prototyped by using the model.

  2. Proceedings of the Fourth Social Aspects and Recreation Research Symposium: February 4-6, 2004, San Francisco, California

    Treesearch

    Patrick T. Tierney; Deborah J. (Tech. coords.) Chavez

    2004-01-01

    The Fourth Social Aspects and Recreation Research (SARR) Symposium was held February 4-6, 2004 in San Francisco, California at the Presidio of San Francisco, a component of Golden Gate National Recreation Area and at San Francisco State University. The theme was: Linking People to the Outdoors: Connections for Healthy Lands, People and Communities.

  3. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2016-04-12

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  4. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  5. Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis

    PubMed Central

    Espagne, Eric; Vasnier, Christelle; Storlazzi, Aurora; Kleckner, Nancy E.; Silar, Philippe; Zickler, Denise; Malagnac, Fabienne

    2011-01-01

    We identify a large coiled-coil protein, Sme4/PaMe4, that is highly conserved among the large group of Sordariales and plays central roles in two temporally and functionally distinct aspects of the fungal sexual cycle: first as a component of the meiotic synaptonemal complex (SC) and then, after disappearing and reappearing, as a component of the spindle pole body (SPB). In both cases, the protein mediates spatial juxtaposition of two major structures: linkage of homolog axes through the SC and a change in the SPB from a planar to a bent conformation. Corresponding mutants exhibit defects, respectively, in SC and SPB morphogenesis, with downstream consequences for recombination and astral-microtubule nucleation plus postmeiotic nuclear migration. Sme4 is also required for reorganization of recombination complexes in which Rad51, Mer3, and Msh4 foci relocalize from an on-axis position to a between-axis (on-SC) position concomitant with SC installation. Because involved recombinosome foci represent total recombinational interactions, these dynamics are irrespective of their designation for maturation into cross-overs or noncross-overs. The defined dual roles for Sme4 in two different structures that function at distinct phases of the sexual cycle also provide more functional links and evolutionary dynamics among the nuclear envelope, SPB, and SC. PMID:21666097

  6. Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis.

    PubMed

    Espagne, Eric; Vasnier, Christelle; Storlazzi, Aurora; Kleckner, Nancy E; Silar, Philippe; Zickler, Denise; Malagnac, Fabienne

    2011-06-28

    We identify a large coiled-coil protein, Sme4/PaMe4, that is highly conserved among the large group of Sordariales and plays central roles in two temporally and functionally distinct aspects of the fungal sexual cycle: first as a component of the meiotic synaptonemal complex (SC) and then, after disappearing and reappearing, as a component of the spindle pole body (SPB). In both cases, the protein mediates spatial juxtaposition of two major structures: linkage of homolog axes through the SC and a change in the SPB from a planar to a bent conformation. Corresponding mutants exhibit defects, respectively, in SC and SPB morphogenesis, with downstream consequences for recombination and astral-microtubule nucleation plus postmeiotic nuclear migration. Sme4 is also required for reorganization of recombination complexes in which Rad51, Mer3, and Msh4 foci relocalize from an on-axis position to a between-axis (on-SC) position concomitant with SC installation. Because involved recombinosome foci represent total recombinational interactions, these dynamics are irrespective of their designation for maturation into cross-overs or noncross-overs. The defined dual roles for Sme4 in two different structures that function at distinct phases of the sexual cycle also provide more functional links and evolutionary dynamics among the nuclear envelope, SPB, and SC.

  7. SporeWeb: an interactive journey through the complete sporulation cycle of Bacillus subtilis.

    PubMed

    Eijlander, Robyn T; de Jong, Anne; Krawczyk, Antonina O; Holsappel, Siger; Kuipers, Oscar P

    2014-01-01

    Bacterial spores are a continuous problem for both food-based and health-related industries. Decades of scientific research dedicated towards understanding molecular and gene regulatory aspects of sporulation, spore germination and spore properties have resulted in a wealth of data and information. To facilitate obtaining a complete overview as well as new insights concerning this complex and tightly regulated process, we have developed a database-driven knowledge platform called SporeWeb (http://sporeweb.molgenrug.nl) that focuses on gene regulatory networks during sporulation in the Gram-positive bacterium Bacillus subtilis. Dynamic features allow the user to navigate through all stages of sporulation with review-like descriptions, schematic overviews on transcriptional regulation and detailed information on all regulators and the genes under their control. The Web site supports data acquisition on sporulation genes and their expression, regulon network interactions and direct links to other knowledge platforms or relevant literature. The information found on SporeWeb (including figures and tables) can and will be updated as new information becomes available in the literature. In this way, SporeWeb offers a novel, convenient and timely reference, an information source and a data acquisition tool that will aid in the general understanding of the dynamics of the complete sporulation cycle.

  8. Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology

    NASA Astrophysics Data System (ADS)

    Olsen, Kirk N.

    Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.

  9. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  10. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues.

    PubMed

    Urdy, S; Goudemand, N; Pantalacci, S

    2016-01-01

    The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas. © 2016 Elsevier Inc. All rights reserved.

  11. Estimation by capture-recapture of recruitment and dispersal over several sites

    USGS Publications Warehouse

    Lebreton, J.D.; Hines, J.E.; Pradel, R.; Nichols, J.D.; Spendelow, J.A.

    2003-01-01

    Dispersal in animal populations is intimately linked with accession to reproduction, i.e. recruitment, and population regulation. Dispersal processes are thus a key component of population dynamics to the same extent as reproduction or mortality processes. Despite the growing interest in spatial aspects of population dynamics, the methodology for estimating dispersal, in particular in relation with recruitment, is limited. In many animal populations, in particular vertebrates, the impossibility of following individuals over space and time in an exhaustive way leads to the need to frame the estimation of dispersal in the context of capture-recapture methodology. We present here a class of age-dependent multistate capture-recapture models for the simultaneous estimation of natal dispersal, breeding dispersal, and age-dependent recruitment. These models are suitable for populations in which individuals are marked at birth and then recaptured over several sites. Under simple constraints, they can be used in populations where non-breeders are not observed, as is often the case with colonial waterbirds monitored on their breeding grounds. Biological questions can be addressed by comparing models differing in structure, according to the generalized linear model philosophy broadly used in capture-recapture methodology. We illustrate the potential of this approach by an analysis of recruitment and dispersal in the roseate tern Sterna dougallii.

  12. A Bir1p–Sli15p Kinetochore Passenger Complex Regulates Septin Organization during Anaphase

    PubMed Central

    Thomas, Scott

    2007-01-01

    Kinetochore–passenger complexes in metazoans have been proposed to coordinate the segregation of chromosomes in anaphase with the induction of cytokinesis. Passenger protein homologues in the budding yeast Saccharomyces cerevisiae play a critical role early in mitosis, ensuring proper biorientation of kinetochore–microtubule attachments. Our recent work has implicated the passenger protein Bir1p (Survivin) and the inner kinetochore complex centromere binding factor 3 (CBF3) in the regulation of septin dynamics during anaphase. Here, we present data that is consistent with there being multiple passenger protein complexes. Our data show that Bir1p links together a large passenger complex containing Ndc10p, Sli15p (INCENP), and Ipl1p (Aurora B) and that the interaction between Bir1p and Sli15p is specifically involved in regulating septin dynamics during anaphase. Neither conditional alleles nor mutants of BIR1 that disrupt the interaction between Bir1p and Sli15p resulted in mono-attached kinetochores, suggesting that the Bir1p–Sli15p complex functions in anaphase and independently from Sli15p–Ipl1p complexes. We present a model for how discrete passenger complexes coordinate distinct aspects of mitosis. PMID:17652458

  13. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  14. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-11-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  15. A microcosm of musical expression. III. Contributions of timing and dynamics to the aesthetic impression of pianists' performances of the initial measures of Chopin's Etude in E major.

    PubMed

    Repp, B H

    1999-07-01

    Four judges repeatedly assessed the overall aesthetic quality of more than 100 recorded performances of the opening of Chopin's Etude in E major on a 10-point scale. The judgments, which exhibited reasonable reliability and modest intercorrelations, were entered into regression analyses with 16 independent variables derived from earlier objective analyses of the expressive timing and dynamics of the performances [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998); 105, 1972-1988 (1999)]. Only between 9% and 18% of the variance in the judges' ratings was accounted for. By contrast, timing variables accounted for 53% of the variance in one judge's ratings of synthesized performances that varied in timing only and mimicked the timing patterns of the original performances. These results indicate, first, that the aesthetic impression of the original recordings rested primarily on aspects other than those measured (such as texture, tone, or aspects of timing and dynamics that eluded the earlier analyses) and, second, that very different patterns of timing and dynamics are aesthetically acceptable for the same music, provided that other, aesthetically more crucial performance aspects are present.

  16. Self-organization of complex networks as a dynamical system

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  17. Self-organization of complex networks as a dynamical system.

    PubMed

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  18. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation.

    PubMed

    Shokuhfar, Ali; Arab, Behrouz

    2013-09-01

    Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

  19. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 2, Part 2: Appendixes B, C, D and E

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented.

  20. Treeline dynamics in response to climate change in the Min Mountains, southwestern China.

    PubMed

    Zhao, Zhi-Jiang; Shen, Guo-Zhen; Tan, Liu-Yi; Kang, Dong-Wei; Wang, Meng-Jun; Kang, Wen; Guo, Wen-Xia; Zeppel, Melanie Jb; Yu, Qiang; Li, Jun-Qing

    2013-12-01

    Abies faxoniana is the dominant plant species of the forest ecosystem on the eastern edge of Qinghai-Tibet Plateau, where the treeline is strongly defined by climate. The tree-ring chronologies and age structure of Abies faxoniana were developed in the treeline ecotones on the northwestern and southeastern aspects of the Min Mountains in the Wanglang Nature Reserve to examine the treeline dynamics of recent decades in response to climate change. On the northwestern aspect, correlation analysis showed that the radial growth was significantly and positively correlated with precipitation in current January and monthly mean temperature in current April, but significantly and negatively correlated with monthly mean temperature in previous August. On the southeastern aspect, the radial growth was significantly negatively correlated with monthly mean temperature in previous July and August. The different responses of radial growth to climatic variability on both the aspects might be mainly due to the micro-environmental conditions. The recruitment benefited from the warm temperature in current April, July and September on the northwestern aspect. The responses of radial growth and recruitment to climatic variability were similar on the northwestern slope. Recruitment was greatly restricted by competition with dense bamboos on the southeastern aspect.

  1. The Importance of Dynamic Systems Approaches for Understanding Development

    ERIC Educational Resources Information Center

    Howe, Mark L.; Lewis, Marc D.

    2005-01-01

    We outline the nature of dynamic systems, both linear and nonlinear, and we review dynamic systems principles that apply well to various aspects of human development, including the emergence of new forms, phases of stability and instability, continuous and discontinuous change, and differentiation among individual trajectories. We then document…

  2. Dynamic Architecture. New Style Forming Aspects

    NASA Astrophysics Data System (ADS)

    Belyaeva, T. V.

    2017-11-01

    The article deals with the methods of buildings and structures transformation in the light of modern solutions in dynamic architecture. The mechanism for the formation of a modern object is proposed. Such design methods are becoming rather relevant in view of today’s trends while the priority of dynamic architecture directions keeps increasing.

  3. Civil (French/US) certification of the Coast Guard's HH-65A Dauphin

    NASA Technical Reports Server (NTRS)

    Hart, J. C.; Besse, J. M.; Mcelreath, K. W.

    1982-01-01

    Certification programs with particular emphasis on handling qualities requirements are described. A dynamic simulator was designed and constructed to support and verify the dynamic aspects of the avionics system, particularly the Automatic Flight Control System (AFCS). The role of the Dynamic Simulator is discussed.

  4. How Temporal and Spatial Aspects of Presenting Visualizations Affect Learning about Locomotion Patterns

    ERIC Educational Resources Information Center

    Imhof, Birgit; Scheiter, Katharina; Edelmann, Jorg; Gerjets, Peter

    2012-01-01

    Two studies investigated the effectiveness of dynamic and static visualizations for a perceptual learning task (locomotion pattern classification). In Study 1, seventy-five students viewed either dynamic, static-sequential, or static-simultaneous visualizations. For tasks of intermediate difficulty, dynamic visualizations led to better…

  5. Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model

    NASA Astrophysics Data System (ADS)

    Hu, Shanshan; Ma, Jianyong; Shugart, Herman H.; Yan, Xiaodong

    2018-03-01

    Mountain forests provide the main water resources and lumber for Northwest China. The understanding of the differences in forests growing among individual slope aspects in mountainous regions is of great significance to the wise management and planning of these natural systems. The aim of this study was to investigate the impacts of slope aspect on forest dynamic succession in Northwest China by using the dynamic forest succession model (FAREAST). First, the simulated forest composition and vertical forest zonation produced by the model were compared against recorded data in three sub-regions of the Altai Mountains. The FAREAST model accurately reproduced the vertical zonation, forest composition, growth curves of the dominant species (Larix sibirica), and forest biomass in the Altai Mountains. Transitions along the forest zones of the Altai Mountains averaged about a 400 m difference between the northern and southern sites. Biomass for forests on north-facing slopes were 11.0, 15.3 and 55.9 t C ha-1 higher than for south-facing slopes in the Northeast, Central and Southeast sub-regions, respectively. Second, our analyses showed that the FAREAST model can be used to predict dynamic forest succession in Northwest China under the influence of slope and aspect. In the Altai Mountains, the north-facing slopes supported the best forest growth, followed by the west- and east-facing slopes. South-facing slopes consistently exhibited the lowest growth, biomass storage and forest diversity.

  6. Physical Modeling of Microtubules Network

    NASA Astrophysics Data System (ADS)

    Allain, Pierre; Kervrann, Charles

    2014-10-01

    Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.

  7. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and run the Sustainable Systems Analysis Algorithm (SSAA) and the multi-criteria decision analysis (MCDA) decision models. The following alternative energy sources for electricity (kilo- and megawatt output) will be assessed in this paper: solar, biomass and biofuels, hydro, geothermal, onshore wind, offshore wind, tidal, and natural gas. The SSAA methodology, in conjunction with the MCDA model techniques, will be used to obtain sustainable, alternative energy source system options; the system will attempt to balance its three linked aspects (environmental, economic, and technical). The results, based on the Sustainability Directive three-dimensional vector calculations from each alternative energy source option, are presented in this paper. Moving towards sustainability is a dynamically changing process, and the SSAA methodology is a synergist for system modifications that strives for continuous improvement toward the Ideal Sustainability Directive.

  8. Link-state-estimation-based transmission power control in wireless body area networks.

    PubMed

    Kim, Seungku; Eom, Doo-Seop

    2014-07-01

    This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.

  9. Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs.

    PubMed

    Alvarez, Carlos F; Palafox, Luis E; Aguilar, Leocundo; Sanchez, Mauricio A; Martinez, Luis G

    2016-01-01

    Mobile ad-hoc networks (MANETs) are dynamic by nature; this dynamism comes from node mobility, traffic congestion, and other transmission conditions. Metrics to evaluate the effects of those conditions shine a light on node's behavior in an ad-hoc network, helping to identify the node or nodes with better conditions of connection. In this paper, we propose a relative index to evaluate a single node reliability, based on the link disconnection entropy disorder using neighboring nodes as reference. Link disconnection entropy disorder is best used to identify fast moving nodes or nodes with unstable communications, this without the need of specialized sensors such as GPS. Several scenarios were studied to verify the index, measuring the effects of Speed and traffic density on the link disconnection entropy disorder. Packet delivery ratio is associated to the metric detecting a strong relationship, enabling the use of the link disconnection entropy disorder to evaluate the stability of a node to communicate with other nodes. To expand the utilization of the link entropy disorder, we identified nodes with higher speeds in network simulations just by using the link entropy disorder.

  10. False Beliefs in Unreliable Knowledge Networks

    NASA Astrophysics Data System (ADS)

    Ioannidis, Evangelos; Varsakelis, Nikos; Antoniou, Ioannis

    2017-03-01

    The aims of this work are: (1) to extend knowledge dynamics analysis in order to assess the influence of false beliefs and unreliable communication channels, (2) to investigate the impact of selection rule-policy for knowledge acquisition, (3) to investigate the impact of targeted link attacks ("breaks" or "infections") of certain "healthy" communication channels. We examine the knowledge dynamics analytically, as well as by simulations on both artificial and real organizational knowledge networks. The main findings are: (1) False beliefs have no significant influence on knowledge dynamics, while unreliable communication channels result in non-monotonic knowledge updates ("wild" knowledge fluctuations may appear) and in significant elongation of knowledge attainment. Moreover, false beliefs may emerge during knowledge evolution, due to the presence of unreliable communication channels, even if they were not present initially, (2) Changing the selection rule-policy, by raising the awareness of agents to avoid the selection of unreliable communication channels, results in monotonic knowledge upgrade and in faster knowledge attainment, (3) "Infecting" links is more harmful than "breaking" links, due to "wild" knowledge fluctuations and due to the elongation of knowledge attainment. Moreover, attacking even a "small" percentage of links (≤5%) with high knowledge transfer, may result in dramatic elongation of knowledge attainment (over 100%), as well as in delays of the onset of knowledge attainment. Hence, links of high knowledge transfer should be protected, because in Information Warfare and Disinformation, these links are the "best targets".

  11. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion.

    PubMed

    Miller, Ann L; Wang, Yinxiang; Mooseker, Mark S; Koleske, Anthony J

    2004-05-10

    Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg-/- fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin-rich cell protrusions. Arg requires both its F-actin-binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg-/- fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts. Copyright the Rockefeller University Press

  12. Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture.

    PubMed

    Jothi, Raja; Balaji, S; Wuster, Arthur; Grochow, Joshua A; Gsponer, Jörg; Przytycka, Teresa M; Aravind, L; Babu, M Madan

    2009-01-01

    Although several studies have provided important insights into the general principles of biological networks, the link between network organization and the genome-scale dynamics of the underlying entities (genes, mRNAs, and proteins) and its role in systems behavior remain unclear. Here we show that transcription factor (TF) dynamics and regulatory network organization are tightly linked. By classifying TFs in the yeast regulatory network into three hierarchical layers (top, core, and bottom) and integrating diverse genome-scale datasets, we find that the TFs have static and dynamic properties that are similar within a layer and different across layers. At the protein level, the top-layer TFs are relatively abundant, long-lived, and noisy compared with the core- and bottom-layer TFs. Although variability in expression of top-layer TFs might confer a selective advantage, as this permits at least some members in a clonal cell population to initiate a response to changing conditions, tight regulation of the core- and bottom-layer TFs may minimize noise propagation and ensure fidelity in regulation. We propose that the interplay between network organization and TF dynamics could permit differential utilization of the same underlying network by distinct members of a clonal cell population.

  13. Dynamic social networks promote cooperation in experiments with humans

    PubMed Central

    Rand, David G.; Arbesman, Samuel; Christakis, Nicholas A.

    2011-01-01

    Human populations are both highly cooperative and highly organized. Human interactions are not random but rather are structured in social networks. Importantly, ties in these networks often are dynamic, changing in response to the behavior of one's social partners. This dynamic structure permits an important form of conditional action that has been explored theoretically but has received little empirical attention: People can respond to the cooperation and defection of those around them by making or breaking network links. Here, we present experimental evidence of the power of using strategic link formation and dissolution, and the network modification it entails, to stabilize cooperation in sizable groups. Our experiments explore large-scale cooperation, where subjects’ cooperative actions are equally beneficial to all those with whom they interact. Consistent with previous research, we find that cooperation decays over time when social networks are shuffled randomly every round or are fixed across all rounds. We also find that, when networks are dynamic but are updated only infrequently, cooperation again fails. However, when subjects can update their network connections frequently, we see a qualitatively different outcome: Cooperation is maintained at a high level through network rewiring. Subjects preferentially break links with defectors and form new links with cooperators, creating an incentive to cooperate and leading to substantial changes in network structure. Our experiments confirm the predictions of a set of evolutionary game theoretic models and demonstrate the important role that dynamic social networks can play in supporting large-scale human cooperation. PMID:22084103

  14. Enhanced model of gear transmission dynamics for condition monitoring applications: Effects of torque, friction and bearing clearance

    NASA Astrophysics Data System (ADS)

    Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.

    2017-02-01

    Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.

  15. Large scale motions of multiple limit-cycle high Reynolds number annular and toroidal rotor/stator cavities

    NASA Astrophysics Data System (ADS)

    Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.

    2017-06-01

    Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.

  16. Towards a cognitive robotics methodology for reward-based decision-making: dynamical systems modelling of the Iowa Gambling Task

    NASA Astrophysics Data System (ADS)

    Lowe, Robert; Ziemke, Tom

    2010-09-01

    The somatic marker hypothesis (SMH) posits that the role of emotions and mental states in decision-making manifests through bodily responses to stimuli of import to the organism's welfare. The Iowa Gambling Task (IGT), proposed by Bechara and Damasio in the mid-1990s, has provided the major source of empirical validation to the role of somatic markers in the service of flexible and cost-effective decision-making in humans. In recent years the IGT has been the subject of much criticism concerning: (1) whether measures of somatic markers reveal that they are important for decision-making as opposed to behaviour preparation; (2) the underlying neural substrate posited as critical to decision-making of the type relevant to the task; and (3) aspects of the methodological approach used, particularly on the canonical version of the task. In this paper, a cognitive robotics methodology is proposed to explore a dynamical systems approach as it applies to the neural computation of reward-based learning and issues concerning embodiment. This approach is particularly relevant in light of a strongly emerging alternative hypothesis to the SMH, the reversal learning hypothesis, which links, behaviourally and neurocomputationally, a number of more or less complex reward-based decision-making tasks, including the 'A-not-B' task - already subject to dynamical systems investigations with a focus on neural activation dynamics. It is also suggested that the cognitive robotics methodology may be used to extend systematically the IGT benchmark to more naturalised, but nevertheless controlled, settings that might better explore the extent to which the SMH, and somatic states per se, impact on complex decision-making.

  17. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

    Treesearch

    Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

    2005-01-01

    Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...

  18. The coupling effects of kinematics and flexibility on the Lagrangian dynamic formulation of open chain deformable links

    NASA Technical Reports Server (NTRS)

    Changizi, Koorosh

    1989-01-01

    A nonlinear Lagrangian formulation for the spatial kinematic and dynamic analysis of open chain deformable links consisting of cylindrical joints that connect pairs of flexible links is developed. The special cases of revolute or prismatic joint can also be obtained from the kinematic equations. The kinematic equations are described using a 4x4 matrix method. The configuration of each deformable link in the open loop kinematic chain is identified using a coupled set of relative joint variables, constant geometric parameters, and elastic coordinates. The elastic coordinates define the link deformation with respect to a selected joint coordinate system that is consistent with the kinematic constraints on the boundary of the deformable link. These coordinates can be introduced using approximation techniques such as Rayleigh-Ritz method, finite element technique or any other desired approach. The large relative motion between two neighboring links are defined by a set of joint coordinates which describes the large relative translational and rotational motion between two neighboring joint coordinate systems. The origin of these coordinate systems are rigidly attached to the neighboring links at the joint definition points along the axis of motion.

  19. Social Dynamics Management and Functional Behavioral Assessment

    ERIC Educational Resources Information Center

    Lee, David L.

    2018-01-01

    Managing social dynamics is a critical aspect of creating a positive learning environment in classrooms. In this paper three key interrelated ideas, reinforcement, function, and motivating operations, are discussed with relation to managing social behavior.

  20. 47 CFR 3.2 - Terms and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... forum for dealing with all aspects of international telecommunications, including radio, telecom services and telecom facilities. (m) Linking Coefficient. The ITU mandated conversion factor used to...

  1. 47 CFR 3.2 - Terms and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... forum for dealing with all aspects of international telecommunications, including radio, telecom services and telecom facilities. (m) Linking Coefficient. The ITU mandated conversion factor used to...

  2. 47 CFR 3.2 - Terms and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... forum for dealing with all aspects of international telecommunications, including radio, telecom services and telecom facilities. (m) Linking Coefficient. The ITU mandated conversion factor used to...

  3. 47 CFR 3.2 - Terms and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... forum for dealing with all aspects of international telecommunications, including radio, telecom services and telecom facilities. (m) Linking Coefficient. The ITU mandated conversion factor used to...

  4. Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation.

    PubMed

    Zhang, Ying; Yang, Xinjian; Wang, Yang; Liu, Jian; Li, Chuanhui; Jing, Linkai; Wang, Shengzhang; Li, Haiyun

    2014-12-31

    The authors evaluated the impact of morphological and hemodynamic factors on the rupture of matched-pairs of ruptured-unruptured intracranial aneurysms on one patient's ipsilateral anterior circulation with 3D reconstruction model and computational fluid dynamic method simulation. 20 patients with intracranial aneurysms pairs on the same-side of anterior circulation but with different rupture status were retrospectively collected. Each pair was divided into ruptured-unruptured group. Patient-specific models based on their 3D-DSA images were constructed and analyzed. The relative locations, morphologic and hemodynamic factors of these two groups were compared. There was no significant difference in the relative bleeding location. The morphological factors analysis found that the ruptured aneurysms more often had irregular shape and had significantly higher maximum height and aspect ratio. The hemodynamic factors analysis found lower minimum wall shear stress (WSSmin) and more low-wall shear stress-area (LSA) in the ruptured aneurysms than that of the unruptured ones. The ruptured aneurysms more often had WSSmin on the dome. Intracranial aneurysms pairs with different rupture status on unilateral side of anterior circulation may be a good disease model to investigate possible characteristics linked to rupture independent of patient characteristics. Irregular shape, larger size, higher aspect ratio, lower WSSmin and more LSA may indicate a higher risk for their rupture.

  5. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue

    PubMed Central

    Boengler, Kerstin; Kosiol, Maik; Mayr, Manuel; Schulz, Rainer

    2017-01-01

    Abstract Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best‐known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high‐energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed. PMID:28432755

  6. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links.

    PubMed

    Ding, Yue-He; Gong, Zhou; Dong, Xu; Liu, Kan; Liu, Zhu; Liu, Chao; He, Si-Min; Dong, Meng-Qiu; Tang, Chun

    2017-01-27

    Chemical cross-linking coupled with mass spectroscopy (CXMS) provides proximity information for the cross-linked residues and is used increasingly for modeling protein structures. However, experimentally identified cross-links are sometimes incompatible with the known structure of a protein, as the distance calculated between the cross-linked residues far exceeds the maximum length of the cross-linker. The discrepancies may persist even after eliminating potentially false cross-links and excluding intermolecular ones. Thus the "over-length" cross-links may arise from alternative excited-state conformation of the protein. Here we present a method and associated software DynaXL for visualizing the ensemble structures of multidomain proteins based on intramolecular cross-links identified by mass spectrometry with high confidence. Representing the cross-linkers and cross-linking reactions explicitly, we show that the protein excited-state structure can be modeled with as few as two over-length cross-links. We demonstrate the generality of our method with three systems: calmodulin, enzyme I, and glutamine-binding protein, and we show that these proteins alternate between different conformations for interacting with other proteins and ligands. Taken together, the over-length chemical cross-links contain valuable information about protein dynamics, and our findings here illustrate the relationship between dynamic domain movement and protein function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Effects of slope aspect and site elevation on seasonal soil carbon dynamics in a forest catchment in the Austrian Limestone Alps

    NASA Astrophysics Data System (ADS)

    Kobler, Johannes; Zehetgruber, Bernhard; Jandl, Robert; Dirnböck, Thomas; Schindlbacher, Andreas

    2017-04-01

    Own to the complexity of landscape morphology, mountainous landscapes are characterized by substantial changes of site parameters (i.e. elevation, slope, aspect) within short distances. As these site parameters affect the spatial-temporal dynamics of landscape climate and therefore the spatial patterns of forest carbon (C) distribution, they pose a substantial impact on landscape-related soil C dynamics. Aspect and elevation form natural temperature gradients and thereby can be used as a surrogate to infer to potential climate change effects on forest C. We aimed at studying how slope aspect affected soil respiration, soil C stocks, tree increment and litter production along two elevation gradients in the Zöbelboden catchment, northern limestone Alps, Austria during 2015 and 2016. A preliminary assessment showed that soil respiration was significantly higher at the west facing slope across all elevations. Soil temperature was only slightly higher at the west facing slope, and warmer soil only partly explained the large difference in soil respiration between east and west facing slopes. Aspect had no clear effect on soil moisture, which seemed to be strongly affected by stocking density at the different forest sites. The dense grassy ground vegetation at some of the sites further seems to play a key role in determining soil respiration rates and litter input. A detailed analysis and C-budgets along the elevation gradients will be presented at the conference.

  8. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  9. Modelling and simulation techniques for membrane biology.

    PubMed

    Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V

    2007-07-01

    One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.

  10. The effect of cross-linking on the molecular dynamics of the segmental and β Johari-Goldstein processes in polyvinylpyrrolidone-based copolymers.

    PubMed

    Redondo-Foj, Belén; Sanchis, María Jesús; Ortiz-Serna, Pilar; Carsí, Marta; García, José Miguel; García, Félix Clemente

    2015-09-28

    The effect of the cross-link density on the molecular dynamics of copolymers composed of vinylpyrrolidone (VP) and butyl acrylate (BA) was studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). A single glass transition was detected by DSC measurements. The dielectric spectra exhibit conductive processes and three dipolar relaxations labeled as α, β and γ in the decreasing order of temperatures. The cross-linker content affects both α and β processes, but the fastest γ process is relatively unaffected. An increase of cross-linking produces a typical effect on the α process dynamics: (i) the glass transition temperature is increased, (ii) the dispersion is broadened, (iii) its strength is decreased and (iv) the relaxation times are increased. However, the β process, which possesses typical features of a pure Johari-Goldstein relaxation, unexpectedly loses the intermolecular character for the highest cross-linker content.

  11. Dynamic Reconfiguration and Link Fault Tolerance in a Transputer Network

    DTIC Science & Technology

    1989-06-01

    linkO and link3 are connected to the C004s. LinkI and link2 are routed to the P2 edge connector, labelled ConfigUp and ConfiDown for access to...various commands recieved PROC handle.screen (VAL BYTE link.byte, SEQ -place the first byte on screen (source) I F1 linki < 16 -- a link 0 SEQ line.num l...determine characters used on screen for -- display of source & dest IF ((INT(bytel)) < 32) linki : to.slot[INT(bytel)] otherwise linki : 10 IF ((INT(byte2

  12. Landscape dynamics of mountain pine beetles

    Treesearch

    John E. Lundquist; Robin M. Reich

    2014-01-01

    The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...

  13. Evidence for Effective Uses of Dynamic Visualisations in Science Curriculum Materials

    ERIC Educational Resources Information Center

    McElhaney, Kevin W.; Chang, Hsin-Yi; Chiu, Jennifer L.; Linn, Marcia C.

    2015-01-01

    Dynamic visualisations capture aspects of scientific phenomena that are difficult to communicate in static materials and benefit from well-designed scaffolds to succeed in classrooms. We review research to clarify the impacts of dynamic visualisations and to identify instructional scaffolds that mediate their success. We use meta-analysis to…

  14. Does CTCF mediate between nuclear organization and gene expression?

    PubMed

    Ohlsson, Rolf; Lobanenkov, Victor; Klenova, Elena

    2010-01-01

    The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.

  15. Nuclear lamina remodelling and its implications for human disease.

    PubMed

    Chojnowski, Alexandre; Ong, Peh Fern; Dreesen, Oliver

    2015-06-01

    The intermediate filament A- and B-type lamins are key architectural components of the nuclear lamina, a proteinaceous meshwork that lies underneath the inner nuclear membrane. In the past decade, many different monogenic human diseases have been linked to mutations in various components of the nuclear lamina. Mutations in LMNA (encoding lamin A and C) cause a variety of human diseases, collectively called laminopathies. These include cardiomyopathies, muscular dystrophies, lipodystrophies and progeroid syndromes. In addition, elevated levels of lamin B1, attributable to genomic duplications of the LMNB1 locus, cause adult-onset autosomal dominant leukodystrophy. The molecular mechanism(s) enabling the mutations and perturbations of the nuclear lamina to give rise to such a wide variety of diseases that affect various tissues remains unclear. The composition of the nuclear lamina changes dynamically during development, between cell types and even within the same cell during differentiation and ageing. Here, we discuss the functional and cellular aspects of lamina remodelling and their implications for the tissue-specific nature of laminopathies.

  16. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis

    DOE PAGES

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei; ...

    2016-01-21

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA Gly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunitmore » fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).« less

  17. Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP)

    PubMed Central

    Kutas, Marta; Federmeier, Kara D.

    2014-01-01

    We overview the discovery, characterization, and evolving use of the N400, an event-related brain potential response linked to meaning processing. We describe the elicitation of N400s by an impressive range of stimulus types -- including written, spoken, and signed (pseudo)words, drawings, photos, and videos of faces, objects and actions, sounds, and mathematical symbols -- and outline the sensitivity of N400 amplitude (as its latency is remarkably constant) to linguistic and nonlinguistic manipulations. We emphasize the effectiveness of the N400 as a dependent variable for examining almost every aspect of language processing, and highlight its expanding use to probe semantic memory and to determine how the neurocognitive system dynamically and flexibly uses bottom-up and top-down information to make sense of the world. We conclude with different theories of the N400’s functional significance and offer an N400-inspired re-conceptualization of how meaning processing might unfold. PMID:20809790

  18. A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing.

    PubMed

    Vagnoni, Alessio; Bullock, Simon L

    2016-09-01

    There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. The study of axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, noninvasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the life span of an animal and thus for characterization of the relationship between cargo dynamics, neuronal aging and disease. Preparation of a sample for imaging takes ∼5 min, with transport typically filmed for 2-3 min per wing. We also document procedures for the quantification of transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in aging neurons.

  19. Authorship attribution based on Life-Like Network Automata.

    PubMed

    Machicao, Jeaneth; Corrêa, Edilson A; Miranda, Gisele H B; Amancio, Diego R; Bruno, Odemir M

    2018-01-01

    The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, texts have been successfully modeled as networks, where words are represented by nodes linked according to textual similarity measurements. Such models are useful to identify informative topological patterns for the authorship recognition task. However, there is no consensus on which measurements should be used. Thus, we proposed a novel method to characterize text networks, by considering both topological and dynamical aspects of networks. Using concepts and methods from cellular automata theory, we devised a strategy to grasp informative spatio-temporal patterns from this model. Our experiments revealed an outperformance over structural analysis relying only on topological measurements, such as clustering coefficient, betweenness and shortest paths. The optimized results obtained here pave the way for a better characterization of textual networks.

  20. Towards the map of quantum gravity

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2018-06-01

    In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Hořava-Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.

  1. Parental autonomy support and discrepancies between implicit and explicit sexual identities: dynamics of self-acceptance and defense.

    PubMed

    Weinstein, Netta; Ryan, William S; Dehaan, Cody R; Przybylski, Andrew K; Legate, Nicole; Ryan, Richard M

    2012-04-01

    When individuals grow up with autonomy-thwarting parents, they may be prevented from exploring internally endorsed values and identities and as a result shut out aspects of the self perceived to be unacceptable. Given the stigmatization of homosexuality, individuals perceiving low autonomy support from parents may be especially motivated to conceal same-sex sexual attraction, leading to defensive processes such as reaction formation. Four studies tested a model wherein perceived parental autonomy support is associated with lower discrepancies between self-reported sexual orientation and implicit sexual orientation (assessed with a reaction time task). These indices interacted to predict anti-gay responding indicative of reaction formation. Studies 2-4 showed that an implicit/explicit discrepancy was particularly pronounced in participants who experienced their fathers as both low in autonomy support and homophobic, though results were inconsistent for mothers. Findings of Study 3 suggested contingent self-esteem as a link between parenting styles and discrepancies in sexual orientation measures. (c) 2012 APA, all rights reserved.

  2. Inverse Jacobi multiplier as a link between conservative systems and Poisson structures

    NASA Astrophysics Data System (ADS)

    García, Isaac A.; Hernández-Bermejo, Benito

    2017-08-01

    Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka-Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided.

  3. The Global Distribution of Precipitation and Clouds. Chapter 2.4

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Adler, Robert; Huffman, George; Rossow, William; Ritter, Michael; Curtis, Scott

    2004-01-01

    The water cycle is the key circuit moving water through the Earth's system. This large system, powered by energy from the sun, is a continuous exchange of moisture between the oceans, the atmosphere, and the land. Precipitation (including rain, snow, sleet, freezing rain, and hail), is the primary mechanism for transporting water from the atmosphere back to the Earth's surface and is the key physical process that links aspects of climate, weather, and the global water cycle. Global precipitation and associate cloud processes are critical for understanding the water cycle balance on a global scale and interactions with the Earth's climate system. However, unlike measurement of less dynamic and more homogenous meteorological fields such as pressure or even temperature, accurate assessment of global precipitation is particularly challenging due to its highly stochastic and rapidly changing nature. It is not uncommon to observe a broad spectrum of precipitation rates and distributions over very localized time scales. Furthermore, precipitating systems generally exhibit nonhomogeneous spatial distributions of rain rates over local to global domains.

  4. Diabetic Erythrocytes Test by Correlation Coefficient

    PubMed Central

    Korol, A.M; Foresto, P; Darrigo, M; Rosso, O.A

    2008-01-01

    Even when a healthy individual is studied, his/her erythrocytes in capillaries continually change their shape in a synchronized erratic fashion. In this work, the problem of characterizing the cell behavior is studied from the perspective of bounded correlated random walk, based on the assumption that diffractometric data involves both deterministic and stochastic components. The photometric readings are obtained by ektacytometry over several millions of shear elongated cells, using a home-made device called Erythrodeformeter. We have only a scalar signal and no governing equations; therefore the complete behavior has to be reconstructed in an artificial phase space. To analyze dynamics we used the technique of time delay coordinates suggested by Takens, May algorithm, and Fourier transform. The results suggest that on random-walk approach the samples from healthy controls exhibit significant differences from those from diabetic patients and these could allow us to claim that we have linked mathematical nonlinear tools with clinical aspects of diabetic erythrocytes’ rheological properties. PMID:19415139

  5. Ubiquitin Utilizes an Acidic Surface Patch to Alter Chromatin Structure

    PubMed Central

    Debelouchina, Galia T.; Gerecht, Karola; Muir, Tom W.

    2016-01-01

    Ubiquitylation of histone H2B, associated with gene activation, leads to chromatin decompaction through an unknown mechanism. We used a hydrogen-deuterium exchange strategy coupled with nuclear magnetic resonance spectroscopy to map the ubiquitin surface responsible for its structural effects on chromatin. Our studies revealed that a previously uncharacterized acidic patch on ubiquitin comprising residues Glu16 and Glu18 is essential for decompaction. These residues mediate promiscuous electrostatic interactions with the basic histone proteins, potentially positioning the ubiquitin moiety as a dynamic “wedge” that prevents the intimate association of neighboring nucleosomes. Using two independent cross-linking strategies and an oligomerization assay, we also showed that ubiquitin-ubiquitin contacts occur in the chromatin environment and are important for the solubilization of the chromatin polymers. Our work highlights a novel, chromatin-related aspect of the “ubiquitin code”, and sheds light on how the information rich ubiquitin modification can orchestrate different biochemical outcomes using different surface features. PMID:27870837

  6. Stylized facts in social networks: Community-based static modeling

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Murase, Yohsuke; Török, János; Kertész, János; Kaski, Kimmo

    2018-06-01

    The past analyses of datasets of social networks have enabled us to make empirical findings of a number of aspects of human society, which are commonly featured as stylized facts of social networks, such as broad distributions of network quantities, existence of communities, assortative mixing, and intensity-topology correlations. Since the understanding of the structure of these complex social networks is far from complete, for deeper insight into human society more comprehensive datasets and modeling of the stylized facts are needed. Although the existing dynamical and static models can generate some stylized facts, here we take an alternative approach by devising a community-based static model with heterogeneous community sizes and larger communities having smaller link density and weight. With these few assumptions we are able to generate realistic social networks that show most stylized facts for a wide range of parameters, as demonstrated numerically and analytically. Since our community-based static model is simple to implement and easily scalable, it can be used as a reference system, benchmark, or testbed for further applications.

  7. Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination.

    PubMed

    Martins, Sara; Dohmann, Esther M N; Cayrel, Anne; Johnson, Alexander; Fischer, Wolfgang; Pojer, Florence; Satiat-Jeunemaître, Béatrice; Jaillais, Yvon; Chory, Joanne; Geldner, Niko; Vert, Grégory

    2015-01-21

    Brassinosteroids are plant steroid hormones that control many aspects of plant growth and development, and are perceived at the cell surface by the plasma membrane-localized receptor kinase BRI1. Here we show that BRI1 is post-translationally modified by K63 polyubiquitin chains in vivo. Using both artificial ubiquitination of BRI1 and generation of an ubiquitination-defective BRI1 mutant form, we demonstrate that ubiquitination promotes BRI1 internalization from the cell surface and is essential for its recognition at the trans-Golgi network/early endosomes (TGN/EE) for vacuolar targeting. Finally, we demonstrate that the control of BRI1 protein dynamics by ubiquitination is an important control mechanism for brassinosteroid responses in plants. Altogether, our results identify ubiquitination and K63-linked polyubiquitin chain formation as a dual targeting signal for BRI1 internalization and sorting along the endocytic pathway, and highlight its role in hormonally controlled plant development.

  8. Florida Bay: A history of recent ecological changes

    USGS Publications Warehouse

    Fourqurean, J.W.; Robblee, M.B.

    1999-01-01

    Florida Bay is a unique subtropical estuary at the southern tip of the Florida peninsula. Recent ecological changes (seagrass die-off, algal blooms, increased turbidity) to the Florida Bay ecosystem have focused the attention of the public, commercial interests, scientists, and resource managers on the factors influencing the structure and function of Florida Bay. Restoring Florida Bay to some historic condition is the goal of resource managers, but what is not clear is what an anthropogenically-unaltered Florida Bay would look like. While there is general consensus that human activities have contributed to the changes occurring in the Florida Bay ecosystem, a high degree of natural system variability has made elucidation of the links between human activity and Florida Bay dynamics difficult. Paleoecological analyses, examination of long-term datasets, and directed measurements of aspects of the ecology of Florida Bay all contribute to our understanding of the behavior of the bay, and allow quantification of the magnitude of the recent ecological changes with respect to historical variability of the system.

  9. Some aspects of control of a large-scale dynamic system

    NASA Technical Reports Server (NTRS)

    Aoki, M.

    1975-01-01

    Techniques of predicting and/or controlling the dynamic behavior of large scale systems are discussed in terms of decentralized decision making. Topics discussed include: (1) control of large scale systems by dynamic team with delayed information sharing; (2) dynamic resource allocation problems by a team (hierarchical structure with a coordinator); and (3) some problems related to the construction of a model of reduced dimension.

  10. DAWN: Dynamic Ad-hoc Wireless Network

    DTIC Science & Technology

    2016-06-19

    DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or

  11. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  12. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    PubMed

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Origin and Evolution of the Self-Organizing Cytoskeleton in the Network of Eukaryotic Organelles

    PubMed Central

    Jékely, Gáspár

    2014-01-01

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. PMID:25183829

  14. Dynamic Assessment: A Case of Unfulfilled Potential?

    ERIC Educational Resources Information Center

    Elliott, Julian G.; Resing, Wilma C. M.; Beckmann, Jens F.

    2018-01-01

    This paper updates a review of dynamic assessment in education by the first author, published in this journal in 2003. It notes that the original review failed to examine the important conceptual distinction between dynamic testing (DT) and dynamic assessment (DA). While both approaches seek to link assessment and intervention, the former is of…

  15. Nonlinear dynamics and damage induced properties of soft matter with application in oncology

    NASA Astrophysics Data System (ADS)

    Naimark, O.

    2017-09-01

    Molecular-morphological signs of oncogenesis could be linked to multiscale collective effects in molecular, cell and tissue related to defects (damage) dynamics. It was shown that nonlinear behavior of biological systems can be linked to the existence of characteristic collective open state modes providing the coherent expression dynamics. New type of criticality in nonequilibrium systems with defects—structural-scaling transition allows the definition of the `driving force' for a biological soft matter related to consolidated open states. The set of collective open states (breathers, autosolitons and blow-up modes) in the molecular ensembles provides the collective expression dynamics to attract the entire system (cell, tissue) toward a few preferred global states. The co-existence of three types of collective modes determines the multifractal scenario of biological soft matter dynamics. The appearance of `globally convergent' dynamics corresponding to the coherent behavior of multiscale blow-up open states (blow-up gene expression) leads to anomalous localized softening (blow-up localized damage) and the subjection of the cells (or tissue) to monofractal dynamics. This dynamics can be associated with cancer progression.

  16. On the study of the dynamical aspects of parasitemia in the blood cycle of malaria

    NASA Astrophysics Data System (ADS)

    Zorzenon Dos Santos, R. M.; Pinho, S. T. R.; Ferreira, C. P.; da Silva, P. C. A.

    2007-04-01

    Malaria is an important cause of morbidity and mortality worldwide. One striking aspect regarding malaria is the fact that individuals living in endemic areas do not develop immunity against the parasite, falling ill whenever they are exposed to the parasite. The understanding of why immunity is not developed in the usual way against Plasmodium is crucial to the improvement of treatment and prevention. In this work, we study some aspects of the dynamics of the blood cycle of malaria using both modelling and data analysis of observed case-histories described by parasitemia time series. By comparing our simulations with experimental results we have shown that the different behaviour observed among patients may be associated to differences in the efficiency of the immune system to control the infection.

  17. Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Cheryl; Nisbet, Roger; Antczak, Philipp

    Ecological risk assessment quantifies the likelihood of undesirable impacts of stressors, primarily at high levels of biological organization. Data used to inform ecological risk assessments come primarily from tests on individual organisms or from suborganismal studies, indicating a disconnect between primary data and protection goals. We know how to relate individual responses to population dynamics using individual-based models, and there are emerging ideas on how to make connections to ecosystem services. However, there is no established methodology to connect effects seen at higher levels of biological organization with suborganismal dynamics, despite progress made in identifying Adverse Outcome Pathways (AOPs) thatmore » link molecular initiating events to ecologically relevant key events. This chapter is a product of a working group at the National Center for Mathematical and Biological Synthesis (NIMBioS) that assessed the feasibility of using dynamic energy budget (DEB) models of individual organisms as a “pivot” connecting suborganismal processes to higher level ecological processes. AOP models quantify explicit molecular, cellular or organ-level processes, but do not offer a route to linking sub-organismal damage to adverse effects on individual growth, reproduction, and survival, which can be propagated to the population level through individual-based models. DEB models describe these processes, but use abstract variables with undetermined connections to suborganismal biology. We propose linking DEB and quantitative AOP models by interpreting AOP key events as measures of damage-inducing processes in a DEB model. Here, we present a conceptual model for linking AOPs to DEB models and review existing modeling tools available for both AOP and DEB.« less

  18. Perspectives of Community Co-Researchers About Group Dynamics and Equitable Partnership Within a Community-Academic Research Team.

    PubMed

    Vaughn, Lisa M; Jacquez, Farrah; Zhen-Duan, Jenny

    2018-04-01

    Equitable partnership processes and group dynamics, including individual, relational, and structural factors, have been identified as key ingredients to successful community-based participatory research partnerships. The purpose of this qualitative study was to investigate the key aspects of group dynamics and partnership from the perspectives of community members serving as co-researchers. Semistructured, in-depth interviews were conducted with 15 Latino immigrant co-researchers from an intervention project with Latinos Unidos por la Salud (LU-Salud), a community research team composed of Latino immigrant community members and academic investigators working in a health research partnership. A deductive framework approach guided the interview process and qualitative data analysis. The LU-Salud co-researchers described relationships, personal growth, beliefs/identity motivation (individual dynamics), coexistence (relational dynamics), diversity, and power/resource sharing (structural dynamics) as key foundational aspects of the community-academic partnership. Building on existing CBPR and team science frameworks, these findings demonstrate that group dynamics and partnership processes are fundamental drivers of individual-level motivation and meaning making, which ultimately sustain efforts of community partners to engage with the research team and also contribute to the achievement of intended research outcomes.

  19. Report on the Workshop Herbig Ae/Be Stars: The Missing Link in Star Formation

    NASA Astrophysics Data System (ADS)

    de Wit, W.-J.; Oudmaijer, R. D.; van den Ancker, M. E.; Calvet, N.

    2014-09-01

    The workshop highlighted the many recent advances within the field of Herbig Ae/Be stars and the close links to star and planet formation. Topics such as magnetospheric accretion and the evolution of dust in discs, the structure of circumstellar discs and the role of walls and gaps and their links to planet formation from many observational aspects were covered. The workshop was dedicated to the life and works of George H. Herbig, who sadly passed away at the end of last year.

  20. Network dynamics: The World Wide Web

    NASA Astrophysics Data System (ADS)

    Adamic, Lada Ariana

    Despite its rapidly growing and dynamic nature, the Web displays a number of strong regularities which can be understood by drawing on methods of statistical physics. This thesis finds power-law distributions in website sizes, traffic, and links, and more importantly, develops a stochastic theory which explains them. Power-law link distributions are shown to lead to network characteristics which are especially suitable for scalable localized search. It is also demonstrated that the Web is a "small world": to reach one site from any other takes an average of only 4 hops, while most related sites cluster together. Additional dynamical properties of the Web graph are extracted from diffusion processes.

  1. Droplet-Free Digital Enzyme-Linked Immunosorbent Assay Based on a Tyramide Signal Amplification System.

    PubMed

    Akama, Kenji; Shirai, Kentaro; Suzuki, Seigo

    2016-07-19

    Digital enzyme-linked immunosorbent assay (ELISA) is a single molecule counting technology and is one of the most sensitive immunoassay methods. The key aspect of this technology is to concentrate enzyme reaction products from a single target molecule in femtoliter droplets. This study presents a novel Digital ELISA that does not require droplets; instead, enzyme reaction products are concentrated using a tyramide signal amplification system. In our method, tyramide substrate reacts with horseradish peroxidase (HRP) labeled with an immunocomplex on beads, and the substrate is converted into short-lived radical intermediates. By adjusting the bead concentration in the HRP-tyramide reaction and conducting the reaction using freely moving beads, tyramide radicals are deposited only on beads labeled with HRP and there is no diffusion to other beads. Consequently, the fluorescence signal is localized on a portion of the beads, making it possible to count the number of labeled beads digitally. The performance of our method was demonstrated by detecting hepatitis B surface antigen with a limit of detection of 0.09 mIU/mL (139 aM) and a dynamic range of over 4 orders of magnitude. The obtained limit of detection represents a >20-fold higher sensitivity than conventional ELISA. Our method has potential applications in simple in vitro diagnostic systems for detecting ultralow concentrations of protein biomarkers.

  2. The Work-Family Interface and Sleep Quality.

    PubMed

    Magee, Christopher A; Robinson, Laura D; McGregor, Alisha

    2017-01-18

    This article investigated whether work-to-family conflict (WFC) and work-to-family enrichment (WFE) were associated with employee sleep quality. WFC and WFE reflect the potential for experiences at work to negatively and positively influence nonworking life respectively, and may have implications for sleep quality. In this article, we examined whether WFC and WFE were linked with sleep quality via hedonic balance (i.e., positive affect relative to negative affect). The sample included 3,170 employed Australian parents involved in the Household Income and Labour Dynamics in Australia (HILDA) Survey. Information on WFC, WFE, hedonic balance, sleep quality, and relevant covariates was collected through a structured interview and self-completion questionnaire. WFC was associated with poorer sleep quality (β = .27, p < .001), and this relationship was stronger in males than females and in dual parent-single income families. WFC was also found to be indirectly associated with poor sleep quality via a lower hedonic balance (β = .17, 99% confidence interval [.14, .20]). WFE was not directly associated with sleep quality, but was indirectly associated with better sleep quality via a higher hedonic balance (β = -.04 [-.07, -.02]). These results indicate that aspects of the work-family interface are associated with employee sleep quality. Furthermore, affective experiences were found to link WFC and WFE with sleep quality. Workplace interventions that target WFC and WFE may have implications for employee sleep.

  3. SMILE: A new approach to exploring solar-terrestrial relationships

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Wang, Chi; Steven, Sembay; Dai, Lei; Li, Lei; Donovan, Eric; Sun, Tianran; Kataria, Dhiren; Yang, Huigen; Read, Andrew; Whittaker, Ian; Spanswick, Emma; Sibeck, David; Kuntz, Kip; Escoubet, Philippe; Agnolon, David; Raab, Walfried; Zheng, Janhua

    2017-04-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) aims to investigate the coupling of the solar wind with the Earth's magnetosphere, and the geospace dynamics that ensue, in a novel and global manner never tried so far. From a highly elliptical and highly inclined polar orbit, SMILE will simultaneously image the soft X-rays produced by solar wind charge exchange to delineate the Earth's magnetic boundaries and polar cusps, image the northern auroral oval in ultraviolet emissions, and measure the solar wind/magnetosheath plasma and magnetic field input. SMILE measurements will inform the science underpinning our still limited understanding of solar-terrestrial relationships and of their fundamental drivers, and will validate both global empirical and first-principle models. For the first time we will be able to trace and link the processes governing magnetopause interactions to those causing charged particle precipitation into the cusps and the remainder of the auroral oval, mapping aspects of the global interaction including the evolution of energy and mass transport. SMILE is a joint space mission between the European Space Agency and the Chinese Academy of Sciences due for launch at the end of 2021. This presentation will cover the science that will be delivered by SMILE and will provide an overview of SMILE's payload and mission development, demonstrating the scientific potential of SMILE through simulations of the data that it will return.

  4. Highly Resolved Studies of Vacuum Ultraviolet Photoionization Dynamics

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep

    We use measurements of dispersed fluorescence from electronically excited photoions to study fundamental aspects of intramolecular dynamics. Our experimental innovations make it possible to obtain highly resolved photoionization data that offer qualitative insights into molecular scattering. In particular, we obtain vibrationally resolved data to probe coupling between the electronic and nuclear degrees of freedom by studying the distribution of vibrational energy among photoions. Vibrationally resolved branching ratios are measured over a broad spectral range of excitation energy and their non-Franck-Condon behavior is used as a tool to investigate two diverse aspects of shape resonant photoionization. First, vibrational branching ratios are obtained for the SiF_4 5a _1^{-1} and CS_2 5sigma_{rm u} ^{-1} photoionization channels to help elucidate the microscopic aspects of shape resonant wavefunction for polyatomic molecules. It is shown that in such molecules the shape resonant wavefunction is not necessarily attributable to a specific bond in the molecule. Second, the multichannel aspect of shape resonant photoionization dynamics, reflected in continuum channel coupling, is investigated by obtaining vibrational branching ratios for the 2 sigma_{rm u}^{ -1} and 4sigma^{ -1} photoionization of the isoelectronic molecules N_2 and CO, respectively. These data indicate that effects of continuum coupling may be widespread. We also present the first set of rotationally resolved data over a wide energy range for the 2 sigma_{rm u}^{ -1} photoionization of N_2. These data probe the partitioning of the angular momentum between the photoelectron and photoion, and highlight the multicenter nature of the molecular potential. These case studies illustrate the utility of dispersed fluorescence measurements as a complement to photoelectron spectroscopy for obtaining highly resolved data for molecular photoionization. These measurements makes it possible to probe intrinsically molecular aspects, such as the vibration and rotation, of photoionization dynamics over an extended spectral range when used in conjunction with synchrotron radiation as the exciting source. Furthermore, the high resolution made possible by this technique provides high selectivity for accessing weaker ionization channels which are the ones strongly affected by resonant activity, and the present study repeatedly stresses the importance of this capability in discovering and deciphering new trends in resonant molecular ionization dynamics.

  5. Ensuring quality in studies linking cancer registries and biobanks.

    PubMed

    Langseth, Hilde; Luostarinen, Tapio; Bray, Freddie; Dillner, Joakim

    2010-04-01

    The Nordic countries have a long tradition of providing comparable and high quality cancer data through the national population-based cancer registries and the capability to link the diverse large-scale biobanks currently in operation. The joining of these two infrastructural resources can provide a study base for large-scale studies of etiology, treatment and early detection of cancer. Research projects based on combined data from cancer registries and biobanks provides great opportunities, but also presents major challenges. Biorepositories have become an important resource in molecular epidemiology, and the increased interest in performing etiological, clinical and gene-environment-interaction studies, involving information from biological samples linked to population-based cancer registries, warrants a joint evaluation of the quality aspects of the two resources, as well as an assessment of whether the resources can be successfully combined into a high quality study. While the quality of biospecimen handling and analysis is commonly considered in different studies, the logistics of data handling including the linkage of the biobank with the cancer registry is an overlooked aspect of a biobank-based study. It is thus the aim of this paper to describe recommendations on data handling, in particular the linkage of biobank material to cancer registry data and the quality aspects thereof, based on the experience of Nordic collaborative projects combining data from cancer registries and biobanks. We propose a standard documentation with respect to the following topics: the quality control aspects of cancer registration, the identification of cases and controls, the identification and use of data confounders, the stability of serum components, historical storage conditions, aliquoting history, the number of freeze/thaw cycles and available volumes.

  6. Control of a flexible bracing manipulator: Integration of current research work to realize the bracing manipulator

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo

    1991-01-01

    All research results about flexible manipulator control were integrated to show a control scenario of a bracing manipulator. First, dynamic analysis of a flexible manipulator was done for modeling. Second, from the dynamic model, the inverse dynamic equation was derived, and the time domain inverse dynamic method was proposed for the calculation of the feedforward torque and the desired flexible coordinate trajectories. Third, a tracking controller was designed by combining the inverse dynamic feedforward control with the joint feedback control. The control scheme was applied to the tip position control of a single link flexible manipulator for zero and non-zero initial condition cases. Finally, the contact control scheme was added to the position tracking control. A control scenario of a bracing manipulator is provided and evaluated through simulation and experiment on a single link flexible manipulator.

  7. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  8. Hydrologic control on redox and nitrogen dynamics in a peatland soil.

    PubMed

    Rubol, Simonetta; Silver, Whendee L; Bellin, Alberto

    2012-08-15

    Soils are a dominant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, the complexity of the drivers of N(2)O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N(2)O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O(2)) supply, which feeds back on N(2)O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O(2) and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O(2) concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N(2)O, dissolved nitrate (NO(3)(-)) and ammonium (NH(4)(+)) changed considerably along the soil column profile following trends in soil O(2) and redox potential. Hot spots of N(2)O concentrations corresponded to high variability in soil O(2) in the upper and lower parts of the column. Results from chamber experiments confirmed high NO(3)(-) reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O(2) and N(2)O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential and N cycling, and suggest that models working at a daily scale need to consider soil O(2) dynamics in addition to soil moisture dynamics to accurately predict patterns in N(2)O fluxes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effects of cross-linking on partitioning of nanoparticles into a polymer brush: Coarse-grained simulations test simple approximate theories

    NASA Astrophysics Data System (ADS)

    Ozmaian, Masoumeh; Jasnow, David; Eskandari Nasrabad, Afshin; Zilman, Anton; Coalson, Rob D.

    2018-01-01

    The effect of cohesive contacts or, equivalently, dynamical cross-linking on the equilibrium morphology of a polymer brush infiltrated by nanoparticles that are attracted to the polymer strands is studied for plane-grafted brushes using coarse-grained molecular dynamics and approximate statistical mechanical models. In particular, the Alexander-de Gennes (AdG) and Strong Stretching Theory (SST) mean-field theory (MFT) models are considered. It is found that for values of the MFT cross-link strength interaction parameter beyond a certain threshold, both AdG and SST models predict that the polymer brush will be in a compact state of nearly uniform density packed next to the grafting surface over a wide range of solution phase nanoparticle concentrations. Coarse grained molecular dynamics simulations confirm this prediction, for both small nanoparticles (nanoparticle volume = monomer volume) and large nanoparticles (nanoparticle volume = 27 × monomer volume). Simulation results for these cross-linked systems are compared with analogous results for systems with no cross-linking. At the same solution phase nanoparticle concentration, strong cross-linking results in additional compression of the brush relative to the non-crosslinked analog and, at all but the lowest concentrations, to a lesser degree of infiltration by nanoparticles. For large nanoparticles, the monomer density profiles show clear oscillations moving outwards from the grafting surface, corresponding to a degree of layering of the absorbed nanoparticles in the brush as they pack against the grafting surface.

  10. Mitochondrial dynamics and the cell cycle

    USDA-ARS?s Scientific Manuscript database

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  11. Ball Rolling on a Turntable: Analog for Charged Particle Dynamics.

    ERIC Educational Resources Information Center

    Burns, Joseph A.

    1981-01-01

    Describes how a ball's motion duplicates that of a charged particle moving through a magnetic field and thereby allows students to visualize directly many aspects of charged particle dynamics otherwise not accessible to them. (Author/JN)

  12. Study of a chemically amplified resist for X-ray lithography by Fourier transform infrared spectroscopy.

    PubMed

    Tan, T L; Wong, D; Lee, P; Rawat, R S; Patran, A

    2004-11-01

    Future applications of microelectromechanical systems (MEMS) require lithographic performance of very high aspect ratio. Chemically amplified resists (CARs) such as the negative tone commercial SU-8 provide critical advantages in sensitivity, resolution, and process efficiency in deep ultraviolet, electron-beam, and X-ray lithographies (XRLs), which result in a very high aspect ratio. In this investigation, an SU-8 resist was characterized and optimized for X-ray lithographic applications by studying the cross-linking process of the resist under different conditions of resist thickness and X-ray exposure dose. The exposure dose of soft X-ray (SXR) irradiation at the average weighted wavelength of 1.20 nm from a plasma focus device ranges from 100 to 1600 mJ/cm(2) on the resist surface. Resist thickness varies from 3.5 to 15 mum. The cross-linking process of the resist during post-exposure bake (PEB) was accurately monitored using Fourier transform infrared (FT-IR) spectroscopy. The infrared absorption peaks at 862, 914, 972, and 1128 cm(-1) in the spectrum of the SU-8 resist were found to be useful indicators for the completion of cross-linking in the resist. Results of the experiments showed that the cross-linking of SU-8 was optimized at the exposure dose of 800 mJ/cm(2) for resist thicknesses of 3.5, 9.5, and 15 microm. PEB temperature was set at 95 degrees C and time at 3 min. The resist thickness was measured using interference patterns in the FT-IR spectra of the resist. Test structures with an aspect ratio 3:1 on 10 microm thick SU-8 resist film were obtained using scanning electron microscopy (SEM).

  13. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  14. Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems

    EPA Science Inventory

    Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...

  15. Dynamic modeling approaches to characterize the functioning of health systems: A systematic review of the literature.

    PubMed

    Chang, Angela Y; Ogbuoji, Osondu; Atun, Rifat; Verguet, Stéphane

    2017-12-01

    Universal Health Coverage (UHC) is one of the targets for the United Nations Sustainable Development Goal 3. The impetus for UHC has led to an increased demand for time-sensitive tools to enhance our knowledge of how health systems function and to evaluate impact of system interventions. We define the field of "health system modeling" (HSM) as an area of research where dynamic mathematical models can be designed in order to describe, predict, and quantitatively capture the functioning of health systems. HSM can be used to explore the dynamic relationships among different system components, including organizational design, financing and other resources (such as investments in resources and supply chain management systems) - what we call "inputs" - on access, coverage, and quality of care - what we call "outputs", toward improved health system "outcomes", namely increased levels and fairer distributions of population health and financial risk protection. We undertook a systematic review to identify the existing approaches used in HSM. We identified "systems thinking" - a conceptual and qualitative description of the critical interactions within a health system - as an important underlying precursor to HSM, and collated a critical collection of such articles. We then reviewed and categorized articles from two schools of thoughts: "system dynamics" (SD)" and "susceptible-infected-recovered-plus" (SIR+). SD emphasizes the notion of accumulations of stocks in the system, inflows and outflows, and causal feedback structure to predict intended and unintended consequences of policy interventions. The SIR + models link a typical disease transmission model with another that captures certain aspects of the system that impact the outcomes of the main model. These existing methods provide critical insights in informing the design of HSM, and provide a departure point to extend this research agenda. We highlight the opportunity to advance modeling methods to further understand the dynamics between health system inputs and outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of Compartmentalization on HiF-1α Degradation Dynamics during Changing Oxygen Conditions: A Computational Approach

    PubMed Central

    Bedessem, Baptiste; Stéphanou, Angélique

    2014-01-01

    HiF-1α is the central protein driving the cellular response to hypoxia. Its accumulation in cancer cells is linked to the appearance of chemoresistant and aggressive tumor phenotypes. As a consequence, understanding the regulation of HiF-1α dynamics is a major issue to design new anti-cancer therapies. In this paper, we propose a model of the hypoxia pathway, involving HiF-1α and its inhibitor pVHL. Based on data from the literature, we made the hypothesis that the regulation of HiF-1α involves two compartments (nucleus and cytoplasm) and a constitutive shuttle of the pVHL protein between them. We first show that this model captures correctly the main features of HiF-1α dynamics, including the bi-exponential degradation profile in normoxia, the kinetics of induction in hypoxia, and the switch-like accumulation. Second, we simulated the effects of a hypoxia/reoxygenation event, and show that it generates a strong instability of HiF-1α. The protein concentration rapidly increases 3 hours after the reoxygenation, and exhibits an oscillating pattern. This effect vanishes if we do not consider compartmentalization of HiF-1α. This result can explain various counter-intuitive observations about the specific molecular and cellular response to the reoxygenation process. Third, we simulated the HiF-1α dynamics in the tumor case. We considered different types of mutations associated with tumorigenesis, and we compared their consequences on HiF-1α dynamics. Then, we tested different therapeutics strategies. We show that a therapeutic decrease of HiF-1α nuclear level is not always correlated with an attenuation of reoxygenation-induced instabilities. Thus, it appears that the design of anti-HiF-1α therapies have to take into account these two aspects to maximize their efficiency. PMID:25338163

  17. Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.

    PubMed

    Narayanan, Chitra; Bernard, David N; Bafna, Khushboo; Gagné, Donald; Chennubhotla, Chakra S; Doucet, Nicolas; Agarwal, Pratul K

    2018-03-06

    Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 10 5 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. What do we perceive from motion pictures? A computational account.

    PubMed

    Cheong, Loong-Fah; Xiang, Xu

    2007-06-01

    Cinema viewed from a location other than a canonical viewing point (CVP) presents distortions to the viewer in both its static and its dynamic aspects. Past works have investigated mainly the static aspect of this problem and attempted to explain why viewers still seem to perceive the scene very well. The dynamic aspect of depth perception, which is known as structure from motion, and its possible distortion, have not been well investigated. We derive the dynamic depth cues perceived by the viewer and use the so-called isodistortion framework to understand its distortion. The result is that viewers seated at a reasonably central position experience a shift in the intrinsic parameters of their visual systems. Despite this shift, the key properties of the perceived depths remain largely the same, being determined in the main by the accuracy to which extrinsic motion parameters can be recovered. For a viewer seated at a noncentral position and watching the movie screen at a slant angle, the view is related to the view at the CVP by a homography, resulting in various aberrations such as noncentral projection.

  19. Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs

    PubMed Central

    Palafox, Luis E.; Aguilar, Leocundo; Sanchez, Mauricio A.; Martinez, Luis G.

    2016-01-01

    Mobile ad-hoc networks (MANETs) are dynamic by nature; this dynamism comes from node mobility, traffic congestion, and other transmission conditions. Metrics to evaluate the effects of those conditions shine a light on node’s behavior in an ad-hoc network, helping to identify the node or nodes with better conditions of connection. In this paper, we propose a relative index to evaluate a single node reliability, based on the link disconnection entropy disorder using neighboring nodes as reference. Link disconnection entropy disorder is best used to identify fast moving nodes or nodes with unstable communications, this without the need of specialized sensors such as GPS. Several scenarios were studied to verify the index, measuring the effects of Speed and traffic density on the link disconnection entropy disorder. Packet delivery ratio is associated to the metric detecting a strong relationship, enabling the use of the link disconnection entropy disorder to evaluate the stability of a node to communicate with other nodes. To expand the utilization of the link entropy disorder, we identified nodes with higher speeds in network simulations just by using the link entropy disorder. PMID:27219671

  20. Asteroid Secular Dynamics: Ceres’ Fingerprint Identified

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Maurel, Clara; Tsirvoulis, Georgios; Knežević, Zoran

    2015-07-01

    Here we report on the significant role of a so far overlooked dynamical aspect, namely, a secular resonance between the dwarf planet Ceres and other asteroids. We demonstrate that this type of secular resonance can be the dominant dynamical factor in certain regions of the main asteroid belt. Specifically, we performed a dynamical analysis of the asteroids belonging to the (1726) Hoffmeister family. To identify which dynamical mechanisms are actually at work in this part of the main asteroid belt, i.e., to isolate the main perturber(s), we study the evolution of this family in time. The study is accomplished using numerical integrations of test particles performed within different dynamical models. The obtained results reveal that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres. This leads us to the conclusion that similar effects must exist in other parts of the asteroid belt. In this respect, the obtained results shed light on an important and entirely new aspect of the long-term dynamics of small bodies. Ceres’ fingerprint in asteroid dynamics, expressed through the discovered secular resonance effect, completely changes our understanding of the way in which perturbations by Ceres-like objects affect the orbits of nearby bodies.

  1. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations

    PubMed Central

    Brodie, Nicholas I.; Popov, Konstantin I.; Petrotchenko, Evgeniy V.; Dokholyan, Nikolay V.; Borchers, Christoph H.

    2017-01-01

    We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein—models for α helix–rich and β sheet–rich proteins, respectively—and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures. PMID:28695211

  2. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations.

    PubMed

    Brodie, Nicholas I; Popov, Konstantin I; Petrotchenko, Evgeniy V; Dokholyan, Nikolay V; Borchers, Christoph H

    2017-07-01

    We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein-models for α helix-rich and β sheet-rich proteins, respectively-and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures.

  3. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  4. Psychology in India

    ERIC Educational Resources Information Center

    Sushma, B.; Padmaja, G.

    2011-01-01

    Psychology forms the basis of every human activity. The scope of psychology is increasingly widening in various economic, political, social, cultural and technological aspects. Though the application of psychology is extending to various aspects of life, it needs to be indigenised to address the dynamic needs in the various socio-economic contexts…

  5. Dynamics of Phonological Cognition

    ERIC Educational Resources Information Center

    Gafos, Adamantios I.; Benus, Stefan

    2006-01-01

    A fundamental problem in spoken language is the duality between the continuous aspects of phonetic performance and the discrete aspects of phonological competence. We study 2 instances of this problem from the phenomenon of voicing neutralization and vowel harmony. In each case, we present a model where the experimentally observed continuous…

  6. MEMS-based beam-steerable free-space optical communication link for reconfigurable wireless data center

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Kavehrad, Mohsen; Lou, Yan

    2017-01-01

    Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.

  7. Seasonal dynamics, geographical range size, hosts, genetic diversity and phylogeography of Amblyomma sculptum in Argentina.

    PubMed

    Tarragona, Evelina L; Sebastian, Patrick S; Saracho Bottero, María N; Martinez, Emilia I; Debárbora, Valeria N; Mangold, Atilio J; Guglielmone, Alberto A; Nava, Santiago

    2018-04-27

    The aim of this work was to generate knowledge on ecological aspects of Amblyomma sculptum in Argentina, such as seasonal dynamics, geographical range size, hosts, genetic diversity and phylogeography. Adult and immature A. sculptum ticks were collected in different localities of Argentina to know the geographical range size and hosts. The genetic diversity of this tick was studied through analyses of 16S rDNA sequences. To describe the seasonal dynamics, free-living ticks were monthly collected from October 2013 to October 2015. A. sculptum shows a marked ecological preference for Chaco Húmedo eco-region and "Albardones" forest of the great rivers in the wetlands in the Chaco Biogeographical Province, and for Selvas Pedemontanas and Selva Montana in the Yungas Biogeographical Province. This species has low host specificity, and it has large wild and domestic mammals as principal hosts to both immature and adult stages. Amblyomma sculptum is characterized by a one-year life cycle. Larvae peak in early winter, nymphs peaked during mid-spring, and adults during late summer and mid-summer. The genetic divergence was low and the total genetic variability was attributable to differences among populations. This fact could be associated to stochastics process linked to micro-habitat variations that could produce a partial restriction to gene flow among populations. The geographic regions do not contribute much to explain the A. sculptum population genetic structure, with an ancestral haplotype present in most populations, which gives rise to the rest of the haplotypes denoting a rapid population expansion. Copyright © 2018. Published by Elsevier GmbH.

  8. Temporal dynamics of connectivity and epidemic properties of growing networks

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Shirkoohi, Mehrdad Khani

    2016-01-01

    Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: Online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown, mainly due to the predominant focus of the network growth literature on the so-called steady state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary network that is subject to growth. We use the theoretical findings to predict the epidemic properties of the network as a function of time. We observe that the introduction of new individuals into the network can enhance or diminish its resilience against endemic outbreaks and investigate how this regime shift depends upon the connectivity of newcomers and on how they establish connections to existing nodes. Throughout, theoretical findings are corroborated with Monte Carlo simulations over synthetic and real networks. The results shed light on the effects of network growth on the future epidemic properties of networks and offers insights for devising a priori immunization strategies.

  9. Controlling under-actuated robot arms using a high speed dynamics process

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)

    1994-01-01

    The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.

  10. Network analyses reveal novel aspects of ALS pathogenesis.

    PubMed

    Sanhueza, Mario; Chai, Andrea; Smith, Colin; McCray, Brett A; Simpson, T Ian; Taylor, J Paul; Pennetta, Giuseppa

    2015-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention.

  11. Trends of the World Input and Output Network of Global Trade

    PubMed Central

    del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik

    2017-01-01

    The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution. PMID:28125656

  12. Ecosystem services of soil biota: In what context is a focus on soil biota meaningful?

    NASA Astrophysics Data System (ADS)

    Baveye, Philippe C.

    2016-04-01

    Over the last few years, the topic of the ecosystem services of soils has attracted considerable attention, in particular among researchers working on soil biota. A direct link is established explicitly in numerous articles between soil biota and specific ecosystem services, or between soil biodiversity and ecosystem services. A careful review of the literature indicates however that these links are, more often than not, strictly axiomatic, rather than based on actual observations. In fact, there are still at the moment virtually no measurements of ecosystem services of soils at any scale, measurements that would be required to establish such links. Furthermore, at a conceptual level, it is not clear to what extent the effect of soil biota in the delivery of ecosystem services can be separated from the contribution of other components of soil systems. Soil microorganisms, in particular, proliferate and are metabolically active in a pore space whose characteristics and dynamics could in principle have a profound effect on their activity. So also could the composition and spatial distribution of soil organic matter, or the spatial pattern of plant root propagation. By emphasizing the role of soil biota, at the exclusion of other aspects of soil systems, there is a risk that important features of the provision of ecosystem services by soils will be missed. In this talk (based in part on a workshop organized recently in France, and of a follow-up review article), an analysis of this general problem will be presented, as well as suggestions of how to avoid it by promoting truly interdisciplinary research involving not only soil ecologists but also physicists, hydrologists, and chemists.

  13. Trends of the World Input and Output Network of Global Trade.

    PubMed

    Del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik

    2017-01-01

    The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution.

  14. Respiratory complaints in Chinese: cultural and diagnostic specificities.

    PubMed

    Han, Jiangna; Zhu, Yuanjue; Li, Shunwei; Chen, Xiansheng; Put, Claudia; Van de Woestijne, Karel P; Van den Bergh, Omer

    2005-06-01

    We investigated the qualitative components of a wide range of Chinese descriptors of dyspnea and associated symptoms, and their relevance for clinical diagnosis. Sixty-one spontaneously reported descriptors were elicited in Chinese patients to make a symptom checklist, which was administered to new groups of patients with different cardiopulmonary diseases, to patients with medically unexplained dyspnea and to healthy subjects. Test-retest reliability was satisfactory for most of the descriptors. A principal component analysis on 61 descriptors yielded the following eight factors: dyspnea-effort of breathing; dyspnea-affective aspect; wheezing; anxiety; tingling; palpitation; coughing and sputum; and dying experience. Although the descriptors of dyspnea-effort of breathing resembled Western wordings and were shared by patients with a variety of diseases, the descriptors of dyspnea-affective aspect appeared to be more culturally specific and were primarily linked to the diagnosis of medically unexplained dyspnea, whereas wheezing was specifically linked to asthma. Three factors of breathlessness were found in Chinese. The descriptors of dyspnea-effort of breathing and wheezing appear to be similar to Western descriptors, whereas the dyspnea-affective aspect seems to bear cultural specificity.

  15. Is social engagement linked to body image and depression among aging women?

    PubMed

    Sabik, Natalie J

    2017-01-01

    Maintaining an active and engaged social life is a critical component of aging well, and women are generally more socially active than men. However, as women age their self-perceptions of their bodies may reduce social behaviors and consequently, increase depressive symptoms. Because little is known about how body image is associated with social engagement and depressive symptoms among aging women, four aspects of body image: satisfaction with cosmetic features, body function, physical appearance, and weight were assessed among women aged 65 and older (n = 123). Regression analyses indicated that cosmetic appearance, body function, and physical appearance were associated with depressive symptoms, whereas satisfaction with weight was unrelated. Further, both greater satisfaction with cosmetic features and body function were associated with higher levels of social engagement, and social engagement mediated the association between these aspects of body satisfaction and depressive symptoms. The findings indicate that specific age-relevant aspects of body satisfaction are linked to social behavior and depression among aging women, and reduced body satisfaction may lead to lower social engagement, and consequently aging women's health and well-being may be diminished.

  16. Placing ecosystem sustainability within the context of dynamic earth systems

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.

    2013-12-01

    Because the concept of ecosystem sustainability and the practice of sustainable land management both have long-term foci, it is necessary to view these from the perspective of dynamic rather than static systems. In addition to the typical static system approach for assessing ecosystem sustainability, three additional perspectives are presented. These are resilient systems, systems where tipping points occur, and systems subject to episodic geophysical resetting. Ecosystem resilience accommodates both natural and anthropogenic stressors and should be considered to properly frame many ecosystem assessments. A more complex problem emerges when stressors push systems to tipping points, causing a regime shift. Both chronic anthropogenic activities (e.g., over-grazing, forest conversion, poor irrigation practices) and natural changes (e.g., climate anomalies, geochemical weathering, tectonic uplift, vegetative succession) can exhaust ecosystem resilience leading to a rapid change in state. Anthropogenic perturbations can also lower the initiation threshold and increase the magnitude and frequency of certain natural disasters, increasing the likelihood of ecosystem change. Furthermore, when major episodic geophysical events (e.g., large earthquakes, tsunami, and floods; widespread volcanic activity and landslides) exceed thresholds of ecosystem resilience they may reset the attributes of entire systems or landscapes. Large disasters can initiate a cascade of linked events, as in the 2011 Great East Japan Earthquake, where tsunami, fires, landslides, artificial fillslope collapses, radioactive releases, and associated health effects occurred. Understanding the potential for natural change (both chronic and episodic) in ecosystems is essential not only to the environmental aspect of sustainability but also to economic and social aspects. Examples are presented for: (1) ecosystems vulnerable to tipping points (Yunnan, China) and (2) ecosystems reset by earthquakes and tsunami (Papua New Guinea and eastern Japan). While these geophysical perturbations and shifts in ecosystems are individually recognized, they are not fully embraced by contemporary sustainability thinking or decision management.

  17. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  18. Ab initio studies of ultrafast x-ray scattering of the photodissociation of iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnarova, Andrea; Techert, Simone; Schmatz, Stefan

    2010-09-28

    We computationally examine various aspects of the reaction dynamics of the photodissociation and recombination of molecular iodine. We use our recently proposed formalism to calculate time-dependent x-ray scattering signal changes from first principles. Different aspects of the dynamics of this prototypical reaction are studied, such as coherent and noncoherent processes, features of structural relaxation that are periodic in time versus nonperiodic dissociative processes, as well as small electron density changes caused by electronic excitation, all with respect to x-ray scattering. We can demonstrate that wide-angle x-ray scattering offers a possibility to study the changes in electron densities in nonperiodic systems,more » which render it a suitable technique for the investigation of chemical reactions from a structural dynamics point of view.« less

  19. Bottom-up linking of carbon markets under far-sighted cap coordination and reversibility

    NASA Astrophysics Data System (ADS)

    Heitzig, Jobst; Kornek, Ulrike

    2018-03-01

    The Paris Agreement relies on nationally determined contributions to reach its targets and asks countries to increase ambitions over time, leaving open the details of this process. Although overcoming countries' myopic `free-riding' incentives requires cooperation, the global public good character of mitigation makes forming coalitions difficult. To cooperate, countries may link their carbon markets1, but is this option beneficial2? Some countries might not participate, not agree to lower caps, or not comply to agreements. While non-compliance might be deterred3, countries can hope that if they don't participate, others might still form a coalition. When considering only one coalition whose members can leave freely, the literature following the publication of refs 4,5 finds meagre prospects for effective collaboration6. Countries also face incentives to increase emissions when linking their markets without a cap agreement7,8. Here, we analyse the dynamics of market linkage using a game-theoretic model of far-sighted coalition formation. In contrast to non-dynamic models and dynamic models without far-sightedness9,10, in our model an efficient global coalition always forms eventually if players are sufficiently far-sighted or caps are coordinated immediately when markets are linked.

  20. Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks

    NASA Astrophysics Data System (ADS)

    Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas

    2008-03-01

    Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.

  1. A Linked-Cell Domain Decomposition Method for Molecular Dynamics Simulation on a Scalable Multiprocessor

    DOE PAGES

    Yang, L. H.; Brooks III, E. D.; Belak, J.

    1992-01-01

    A molecular dynamics algorithm for performing large-scale simulations using the Parallel C Preprocessor (PCP) programming paradigm on the BBN TC2000, a massively parallel computer, is discussed. The algorithm uses a linked-cell data structure to obtain the near neighbors of each atom as time evoles. Each processor is assigned to a geometric domain containing many subcells and the storage for that domain is private to the processor. Within this scheme, the interdomain (i.e., interprocessor) communication is minimized.

  2. Modeling and tachometer feedback in the control of an experimental single link flexible structure

    NASA Technical Reports Server (NTRS)

    Garcia, Ephrahim; Inman, Daniel J.

    1990-01-01

    In this work a formulation for the modeling of a single link flexible structure will be introduced that includes the effects of dynamic interaction between the actuator and structure. These effects are the rotational modal participation factors for the structure's vibratory motion that occurs at the slewing axis. It will be shown, both theoretically and experimentally, that this dynamic interaction can be advantageous for vibration suppression of the flexible modes of the system during slewing positioning maneuvers.

  3. Damage Instability and Transition From Quasi-Static to Dynamic Fracture

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2015-01-01

    In a typical mechanical test, the loading phase is intended to be a quasi-static process, while the failure and collapse is usually a dynamic event. The structural strength and modes of damage can seldom be predicted without accounting for these two aspects of the response. For a proper prediction, it is therefore essential to use tools and methodologies that are capable of addressing both aspects of responses. In some cases, implicit quasi-static models have been shown to be able to predict the entire response of a structure, including the unstable path that leads to fracture. However, is it acceptable to ignore the effect of inertial forces in the formation of damage? In this presentation we examine aspects of the damage processes that must be simulated for an accurate prediction of structural strength and modes of failure.

  4. Resilience thinking: integrating resilience, adaptability and transformability

    Treesearch

    Carl Folke; Stephen R. Carpenter; Brian Walker; Marten Scheffer; Terry Chapin; Johan Rockstrom

    2010-01-01

    Resilience thinking addresses the dynamics and development of complex social-ecological systems (SES). Three aspects are central: resilience, adaptability and transformability. These aspects interrelate across multiple scales. Resilience in this context is the capacity of a SES to continually change and adapt yet remain within critical thresholds. Adaptability is part...

  5. Reaction-diffusion processes and metapopulation models on duplex networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong

    2013-03-01

    Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.

  6. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    PubMed

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  7. Associations of multiple domains of self-esteem with four dimensions of stigma in schizophrenia

    PubMed Central

    Lysaker, Paul H.; Tsai, Jack; Yanos, Philip; Roe, David

    2011-01-01

    Research suggests global self-esteem among persons with schizophrenia may be negatively affected by stigma or stereotyped beliefs about persons with severe mental illness. Less clear however, is whether particular dimensions of self-esteem are linked to particular domains of stigma. To examine this we surveyed a range of self-esteem dimensions including lovability, personal power, competence and moral self-approval and four domains of stigma: Stereotype endorsement, Discrimination experience, Social withdrawal and Stigma rejection. Participants were 133 adults with diagnoses of schizophrenia or schizoaffective disorder. Stepwise multiple regressions controlling for a possible defensive response bias suggested that aspects of self-esteem related to lovability by others were more closely linked with lesser feelings of being alienated from others due to mental illness. Aspects of self-esteem related to the ability to manage one’s own affairs were more closely associated with the rejection of stereotypes of mental illness. A sense of being able to influence others was linked to both the absence of discrimination experiences and the ability to ward off stigma. Implications for treatment are discussed. PMID:18029145

  8. Masculine men articulate less clearly.

    PubMed

    Kempe, Vera; Puts, David A; Cárdenas, Rodrigo A

    2013-12-01

    In previous research, acoustic characteristics of the male voice have been shown to signal various aspects of mate quality and threat potential. But the human voice is also a medium of linguistic communication. The present study explores whether physical and vocal indicators of male mate quality and threat potential are linked to effective communicative behaviors such as vowel differentiation and use of more salient phonetic variants of consonants. We show that physical and vocal indicators of male threat potential, height and formant position, are negatively linked to vowel space size, and that height and levels of circulating testosterone are negatively linked to the use of the aspirated variant of the alveolar stop consonant /t/. Thus, taller, more masculine men display less clarity in their speech and prefer phonetic variants that may be associated with masculine attributes such as toughness. These findings suggest that vocal signals of men's mate quality and/or dominance are not confined to the realm of voice acoustics but extend to other aspects of communicative behavior, even if this means a trade-off with speech patterns that are considered communicatively advantageous, such as clarity and indexical cues to higher social class.

  9. Markov State Models Provide Insights into Dynamic Modulation of Protein Function

    PubMed Central

    2015-01-01

    Conspectus Protein function is inextricably linked to protein dynamics. As we move from a static structural picture to a dynamic ensemble view of protein structure and function, novel computational paradigms are required for observing and understanding conformational dynamics of proteins and its functional implications. In principle, molecular dynamics simulations can provide the time evolution of atomistic models of proteins, but the long time scales associated with functional dynamics make it difficult to observe rare dynamical transitions. The issue of extracting essential functional components of protein dynamics from noisy simulation data presents another set of challenges in obtaining an unbiased understanding of protein motions. Therefore, a methodology that provides a statistical framework for efficient sampling and a human-readable view of the key aspects of functional dynamics from data analysis is required. The Markov state model (MSM), which has recently become popular worldwide for studying protein dynamics, is an example of such a framework. In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural changes in key structural motifs or “molecular switches” within the protein, the transitions between functionally active and inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these pathways. Finally, MSMs also provide a theoretical toolbox for studying the effect of nonequilibrium perturbations on conformational dynamics. Considering that protein dynamics in vivo occur under nonequilibrium conditions, MSMs coupled with nonequilibrium statistical mechanics provide a way to connect cellular components to their functional environments. Nonequilibrium perturbations of protein folding MSMs reveal the presence of dynamically frozen glass-like states in their conformational landscape. These frozen states are also observed to be rich in β-sheets, which indicates their possible role in the nucleation of β-sheet rich aggregates such as those observed in amyloid-fibril formation. Finally, we describe how MSMs have been used to understand the dynamical behavior of intrinsically disordered proteins such as amyloid-β, human islet amyloid polypeptide, and p53. While certainly not a panacea for studying functional dynamics, MSMs provide a rigorous theoretical foundation for understanding complex entropically dominated processes and a convenient lens for viewing protein motions. PMID:25625937

  10. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    NASA Astrophysics Data System (ADS)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  11. Triadic Relations in a Game of Pachisi

    ERIC Educational Resources Information Center

    Wu, Zhaohui; Choi, Thomas Y.

    2013-01-01

    A triad is the smallest network form where one can study how a link affects a link or a node affects a link indirectly connected. Through triads, one can glimpse the more complex relational dynamics in larger networks. Studies of various triadic relationships have gained growing interest among OM scholars in recent years as both researchers and…

  12. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    PubMed

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  13. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    PubMed Central

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  14. Manipulators with flexible links: A simple model and experiments

    NASA Technical Reports Server (NTRS)

    Shimoyama, Isao; Oppenheim, Irving J.

    1989-01-01

    A simple dynamic model proposed for flexible links is briefly reviewed and experimental control results are presented for different flexible systems. A simple dynamic model is useful for rapid prototyping of manipulators and their control systems, for possible application to manipulator design decisions, and for real time computation as might be applied in model based or feedforward control. Such a model is proposed, with the further advantage that clear physical arguments and explanations can be associated with its simplifying features and with its resulting analytical properties. The model is mathematically equivalent to Rayleigh's method. Taking the example of planar bending, the approach originates in its choice of two amplitude variables, typically chosen as the link end rotations referenced to the chord (or the tangent) motion of the link. This particular choice is key in establishing the advantageous features of the model, and it was used to support the series of experiments reported.

  15. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    ERIC Educational Resources Information Center

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  16. Bulimia: A Review of the Literature with an Emphasis on Treatment and the Dynamic Perspective.

    ERIC Educational Resources Information Center

    Coull, Charles Edward

    This paper presents a dynamic perspective of some of the major issues surrounding the eating disorder of bulimia. The focus is specifically on the relationship of the bulimia nervosa syndrome to the historical dynamics of the developmental process of the individual. Three major aspects of bulimia are discussed. First, there is a discussion of…

  17. Spatiotemporal properties of microsaccades: Model predictions and experimental tests

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao

    2016-10-01

    Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.

  18. Secondary science teachers' use of laboratory activities: Linking epistemological beliefs, goals, and practices

    NASA Astrophysics Data System (ADS)

    Kang, Nam-Hwa; Wallace, Carolyn S.

    2005-01-01

    The purpose of this study was to explore how science teachers' epistemological beliefs and teaching goals are related to their use of lab activities. Research questions include (a) What are the teachers' epistemological beliefs pertaining to lab activities? (b) Why do the science teachers use lab activities? (c) How are the teachers' epistemological beliefs and instructional goals related to teaching actions? Two major aspects of epistemologies guided this study: ontological aspect (certainty/diversity of truth) and relational aspect (relationship between the knower and the known). The ontological aspect addresses whether one views knowledge as one certain truth or as tentative multiple truths. The relational aspect addresses whether one views him/herself as a receiver of prescribed knowledge separating self from knowledge construction or as an active meaning maker connecting self to the knowledge construction processes. More sophisticated epistemological beliefs include the acknowledgement of multiple interpretations of the same phenomena and active role of the knower in knowledge construction. Three experienced secondary science teachers were interviewed and observed throughout an academic course. The findings illustrate that a teacher's naïve epistemological beliefs are clearly reflected in the teacher's teaching practices. However, a teacher's sophisticated epistemological beliefs are not always clearly connected to the practice. This seems to be related to the necessary negotiation among their epistemological beliefs, teaching contexts, and instructional goals. Ontological and relational beliefs seem to be connected to different facets of teaching practices. Findings indicate that various syntheses of different aspects of epistemological beliefs and instructional goals are linked to teachers' diverse ways of using lab activities. Implications for research and teacher education are discussed.

  19. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects.

    PubMed

    Zou, Longfang; Cryan, Martin; Klemm, Maciej

    2014-10-06

    The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.

  20. Controllability of flow-conservation networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu

    2017-07-01

    The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.

  1. Dynamic segment shared protection for multicast traffic in meshed wavelength-division-multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Liao, Luhua; Li, Lemin; Wang, Sheng

    2006-12-01

    We investigate the protection approach for dynamic multicast traffic under shared risk link group (SRLG) constraints in meshed wavelength-division-multiplexing optical networks. We present a shared protection algorithm called dynamic segment shared protection for multicast traffic (DSSPM), which can dynamically adjust the link cost according to the current network state and can establish a primary light-tree as well as corresponding SRLG-disjoint backup segments for a dependable multicast connection. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. The simulation results show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but can make better use of the wavelength resources and also lower the network blocking probability.

  2. Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altanbyek, Volodya; Cha, Sun-Joo; Kang, Ga-Un

    Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease, characterized by progressive and selective loss of motor neurons in the brain and spinal cord. DNA/RNA-binding proteins such as TDP-43, FUS, and TAF15 have been linked with the sporadic and familial forms of ALS. However, the exact pathogenic mechanism of ALS is still unknown. Recently, we found that ALS-causing genes such as TDP-43, FUS, and TAF15 genetically interact with mitochondrial dynamics regulatory genes. In this study, we show that mitochondrial fission was highly enhanced in muscles and motor neurons of TDP-43, FUS, and TAF15-induced fly models of ALS. Furthermore, themore » mitochondrial fission defects were rescued by co-expression of mitochondrial dynamics regulatory genes such as Marf, Opa1, and the dominant negative mutant form of Drp1. Moreover, we found that the expression level of Marf was decreased in ALS-induced flies. These results indicate that the imbalance of mitochondrial dynamics caused by instability of Marf is linked to the pathogenesis of TDP-43, FUS, and TAF15-associated ALS. - Highlights: • Mitochondrial fission is highly enhanced in TDP-43, FUS, and TAF15-induced fly models of ALS. • Excessive mitochondrial fragmentation in fly models of ALS is restored by mitochondrial dynamics regulatory genes. • Level of Marf protein is decreased in TDP-43, FUS, and TAF15-mediated ALS. • Imbalance of mitochondrial dynamics caused by Marf instability is linked to the pathogenesis of ALS.« less

  3. Linking Individual and Collective Behavior in Adaptive Social Networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.

    2016-03-01

    Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.

  4. Solid-state NMR characterization of cross-linking in EPDM/PP blends from 1H-13C polarization transfer dynamics.

    PubMed

    Aluas, Mihaela; Filip, Claudiu

    2005-05-01

    A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.

  5. OSI Network-layer Abstraction: Analysis of Simulation Dynamics and Performance Indicators

    NASA Astrophysics Data System (ADS)

    Lawniczak, Anna T.; Gerisch, Alf; Di Stefano, Bruno

    2005-06-01

    The Open Systems Interconnection (OSI) reference model provides a conceptual framework for communication among computers in a data communication network. The Network Layer of this model is responsible for the routing and forwarding of packets of data. We investigate the OSI Network Layer and develop an abstraction suitable for the study of various network performance indicators, e.g. throughput, average packet delay, average packet speed, average packet path-length, etc. We investigate how the network dynamics and the network performance indicators are affected by various routing algorithms and by the addition of randomly generated links into a regular network connection topology of fixed size. We observe that the network dynamics is not simply the sum of effects resulting from adding individual links to the connection topology but rather is governed nonlinearly by the complex interactions caused by the existence of all randomly added and already existing links in the network. Data for our study was gathered using Netzwerk-1, a C++ simulation tool that we developed for our abstraction.

  6. Mitochondrial function, ornamentation, and immunocompetence.

    PubMed

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2017-08-01

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.

  7. MERCATOR: Methods and Realization for Control of the Attitude and the Orbit of spacecraft

    NASA Technical Reports Server (NTRS)

    Tavernier, Gilles; Campan, Genevieve

    1993-01-01

    Since 1974, CNES has been involved in geostationary positioning. Among different entities participating in operations and their preparation, the Flight Dynamics Center (FDC) is in charge of performing the following tasks: orbit determination; attitude determination; computation, monitoring, and calibration of orbit maneuvers; computation, monitoring, and calibration of attitude maneuvers; and operational predictions. In order to fulfill this mission, the FDC receives telemetry from the satellite and localization measurements from ground stations (e.g., CNES, NASA, INTELSAT). These data are processed by space dynamics programs integrated in the MERCATOR system which is run on SUN workstations (UNIX O.S.). The main features of MERCATOR are redundancy, modularity, and flexibility: efficient, flexible, and user friendly man-machine interface; and four identical SUN stations redundantly linked in an Ethernet network. Each workstation can perform all the tasks from data acquisition to computation results dissemination through a video network. A team of four engineers can handle the space mechanics aspects of a complete geostationary positioning from the injection into a transfer orbit to the final maneuvers in the station-keeping window. MERCATOR has been or is to be used for operations related to more than ten geostationary positionings. Initially developed for geostationary satellites, MERCATOR's methodology was also used for satellite control centers and can be applied to a wide range of satellites and to future manned missions.

  8. Soil-water dynamics and unsaturated storage during snowmelt following wildfire

    USGS Publications Warehouse

    Ebel, Brian A.; Hinckley, E.S.; Martin, Deborah

    2012-01-01

    Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ∼1–2 °C warmer on average than north-facing burned soils and ∼1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that the amount of snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.

  9. Topology control algorithm for wireless sensor networks based on Link forwarding

    NASA Astrophysics Data System (ADS)

    Pucuo, Cairen; Qi, Ai-qin

    2018-03-01

    The research of topology control could effectively save energy and increase the service life of network based on wireless sensor. In this paper, a arithmetic called LTHC (link transmit hybrid clustering) based on link transmit is proposed. It decreases expenditure of energy by changing the way of cluster-node’s communication. The idea is to establish a link between cluster and SINK node when the cluster is formed, and link-node must be non-cluster. Through the link, cluster sends information to SINK nodes. For the sake of achieving the uniform distribution of energy on the network, prolongate the network survival time, and improve the purpose of communication, the communication will cut down much more expenditure of energy for cluster which away from SINK node. In the two aspects of improving the traffic and network survival time, we find that the LTCH is far superior to the traditional LEACH by experiments.

  10. The strength of friendship ties in proximity sensor data.

    PubMed

    Sekara, Vedran; Lehmann, Sune

    2014-01-01

    Understanding how people interact and socialize is important in many contexts from disease control to urban planning. Datasets that capture this specific aspect of human life have increased in size and availability over the last few years. We have yet to understand, however, to what extent such electronic datasets may serve as a valid proxy for real life social interactions. For an observational dataset, gathered using mobile phones, we analyze the problem of identifying transient and non-important links, as well as how to highlight important social interactions. Applying the Bluetooth signal strength parameter to distinguish between observations, we demonstrate that weak links, compared to strong links, have a lower probability of being observed at later times, while such links-on average-also have lower link-weights and probability of sharing an online friendship. Further, the role of link-strength is investigated in relation to social network properties.

  11. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  12. Relational Dynamics in Teacher Professional Development

    ERIC Educational Resources Information Center

    Finkelstein, Carla

    2013-01-01

    Teacher professional development (PD) is considered essential to improving student achievement toward high standards. I argue that while current notions of high quality PD foreground cognitive aspects of learning, they undertheorize the influence of relational dynamics in teacher learning interactions. That is, current conceptions of high quality…

  13. USING FISHER INFORMATION TO ASSESS THE RISK OF DYNAMIC REGIME CHANGES IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    The sustainable nature of particular dynamic regimes of ecosystems is an increasingly integral aspect of many ecological, economic, and social decisions. As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neig...

  14. Tribute to the contribution of Gerard Lallenment to structural dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Los Alamos National Laboratory

    The Society for Experimental Mechanics and the International Modal Analysis Conference recognize the remarkable contribution to experimental mechanics, mechanical engineering and structural dynamics of Professor Gerard Lallement, from the University of Franche-Comte, France. A special session is organized during the IMAC-XX to outline the many achievements of Gerard Lallement in the fields of modal analysis, structural system identification, the theory and practice of structural modification, component mode synthesis and finite element model updating. The purpose of this publication is not to provide an exhaustive account of Gerard Lallement's contribution to structural dynamics. Numerous references are provided that should help themore » interested reader learn more about the many aspects of his work. Instead, the significance of this work is illustrated by discussing the role of structural dynamics in industrial applications and its future challenges. The technical aspects of Gerard Lallement's work are illustrated with a discussion of structural modification, modeling error localization and model updating.« less

  15. Working memory dynamics bias the generation of beliefs: the influence of data presentation rate on hypothesis generation.

    PubMed

    Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Illingworth, David A; Davelaar, Eddy J

    2013-02-01

    Although temporal dynamics are inherent aspects of diagnostic tasks, few studies have investigated how various aspects of time course influence hypothesis generation. An experiment is reported that demonstrates that working memory dynamics operating during serial data acquisition bias hypothesis generation. The presentation rate (and order) of a sequence of serially presented symptoms was manipulated to be either fast (180 ms per symptom) or slow (1,500 ms per symptom) in a simulated medical diagnosis task. When the presentation rate was slow, participants chose the disease hypothesis consistent with the symptoms appearing later in the sequence. When the presentation rate was fast, however, participants chose the disease hypothesis consistent with the symptoms appearing earlier in the sequence, therefore representing a novel primacy effect. We predicted and account for this effect through competitive working memory dynamics governing information acquisition and the contribution of maintained information to the retrieval of hypotheses from long-term memory.

  16. Study of in-plane dynamics of tires

    NASA Astrophysics Data System (ADS)

    Gong, S.

    1993-12-01

    The in-plane dynamics of tires deals with the forces and motion in the plane of rotation of the wheel. Three aspects of tire in-plane dynamics can be identified: the rolling contact between the tire and the road surface; the transmission of forces and motion from the contact patch to the wheel axle; and the vibration of the tire treadband. The main objective of the investigation reported in this thesis is to develop a tire model which is suitable to study all three aspects of the in-plane dynamics of tires in both low and high frequency ranges. The tire model is finally validated by experimental modal analysis of a test tire. Laboratory tests are conducted to establish the modal shapes and natural frequencies of the test tire. The tests are carried out for two different configurations of the tire: one with the wheel rim fixed in space and one with the tire-wheel system suspended freely in the air. Good agreement is found between the experimental and theoretical results.

  17. Decoding Task and Stimulus Representations in Face-responsive Cortex

    PubMed Central

    Kliemann, Dorit; Jacoby, Nir; Anzellotti, Stefano; Saxe, Rebecca R.

    2017-01-01

    Faces provide rich social information about others’ stable traits (e.g., age) and fleeting states of mind (e.g., emotional expression). While some of these facial aspects may be processed automatically, observers can also deliberately attend to some features while ignoring others. It remains unclear how internal goals (e.g., task context) influence the representational geometry of variable and stable facial aspects in face-responsive cortex. We investigated neural response patterns related to decoding i) the intention to attend to a facial aspect before its perception, ii) the attended aspect of a face and iii) stimulus properties. We measured neural responses while subjects watched videos of dynamic positive and negative expressions, and judged the age or the expression’s valence. Split-half multivoxel pattern analyses (MVPA) showed that (i) the intention to attend to a specific aspect of a face can be decoded from left fronto-lateral, but not face-responsive regions; (ii) during face perception, the attend aspect (age vs emotion) could be robustly decoded from almost all face-responsive regions; and (iii) a stimulus property (valence), was represented in right posterior superior temporal sulcus and medial prefrontal cortices. The effect of deliberately shifting the focus of attention on representations suggest a powerful influence of top-down signals on cortical representation of social information, varying across cortical regions, likely reflecting neural flexibility to optimally integrate internal goals and dynamic perceptual input. PMID:27978778

  18. Vortex dynamics of very low aspect ratio rectangular orifice synthetic jets

    NASA Astrophysics Data System (ADS)

    Straccia, Joseph; Farnsworth, John; Experimental Aerodynamics Laboratory Team

    2017-11-01

    The vast majority of prior synthetic jet research has focused on actuators with either circular orifices or rectangular orifices with high aspect ratios (AR), i.e. AR >=25. The results reported in these studies have also been biased towards bulk and time averaged statistics of the jet, viewing them in a steady sense as a source of momentum addition. Recent work has revealed that the unsteady vortex dynamics in a synthetic jet can be very relevant to how the jet interacts with and influences the base flow. In this study the synthetic jet issued into a quiescent fluid by an actuator with low orifice aspect ratios (i.e. AR =2-18) was studied using Stereoscopic Particle Image Velocimetry (SPIV) with a special focus on the vortex dynamics. The progression of vortex ring axis switching is presented and a distinct difference between the axis switching dynamics of very low AR (AR <=6) and moderate AR (AR =6-24) vortex rings is discussed. The high resolution SPIV vector fields are also used to extract details of the vortex core structure which are compared to theoretical vortex models. Furthermore, the influence of axis switching on the circulation magnitude around the vortex ring is reported in addition to how circulation varies with time as the ring advects. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE 1144083).

  19. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  20. Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui

    2017-12-01

    This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.

  1. Communication Dynamics of Blog Networks

    NASA Astrophysics Data System (ADS)

    Goldberg, Mark; Kelley, Stephen; Magdon-Ismail, Malik; Mertsalov, Konstantin; Wallace, William (Al)

    We study the communication dynamics of Blog networks, focusing on the Russian section of LiveJournal as a case study. Communication (blogger-to-blogger links) in such online communication networks is very dynamic: over 60% of the links in the network are new from one week to the next, though the set of bloggers remains approximately constant. Two fundamental questions are: (i) what models adequately describe such dynamic communication behavior; and (ii) how does one detect the phase transitions, i.e. the changes that go beyond the standard high-level dynamics? We approach these questions through the notion of stable statistics. We give strong experimental evidence to the fact that, despite the extreme amount of communication dynamics, several aggregate statistics are remarkably stable. We use stable statistics to test our models of communication dynamics postulating that any good model should produce values for these statistics which are both stable and close to the observed ones. Stable statistics can also be used to identify phase transitions, since any change in a normally stable statistic indicates a substantial change in the nature of the communication dynamics. We describe models of the communication dynamics in large social networks based on the principle of locality of communication: a node's communication energy is spent mostly within its own "social area," the locality of the node.

  2. Developing a Multiplexed Quantitative Cross-Linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes.

    PubMed

    Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan

    2016-10-18

    Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.

  3. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  4. Systematic Study of Three-Nucleon Systems Dynamics in the Cross Section of the Deuteron-Proton Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Kłos, B.; Ciepał, I.; Jamróz, B.; Khatri, G.; Kistryn, S.; Kozela, A.; Magiera, A.; Parol, W.; Skwira-Chalot, I.; Stephan, E.

    2014-08-01

    An experiment to investigate the 1H( d, pp) n breakup reaction using a deuteron beam of 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. The main goal was the detailed study of various aspects of few-nucleon dynamics in the medium energy region, with particular emphasis on relativistic effects and their interplay with three nucleon forces. These effects become more important with increasing available energy in the three nucleon system. Therefore the investigations at high energies are crucial to understand their nature. The almost 4 π geometry of the WASA detector gives an unique possibility to study various aspects of dynamics of processes in the three-nucleon reaction. Preliminary results obtained using the WASA detector are presented.

  5. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.

    PubMed

    Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin

    2012-10-08

    The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

  6. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  7. Inertial focusing dynamics in spiral microchannels

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2012-01-01

    This report details a comprehensive study of inertial focusing dynamics and particle behavior in low aspect ratio (h/w ∼ 1/1 to 1/8) spiral microchannels. A continuum of particle streak behavior is shown with longitudinal, cross-sectional, and velocity resolution, yielding a large analyzed parameter space. The dataset is then summarized and compared to prior results from both straight microchannels and other low aspect ratio spiral microchannel designs. Breakdown of focusing into a primary and secondary fluorescent streak is observed in the lowest aspect ratio channels at high average downstream velocities. Streak movement away from the theoretically predicted near inner wall equilibrium position towards the center of the channel at high average downstream velocities is also detailed as a precursor to breakdown. State diagrams detail the overall performance of each device including values of the required channel lengths and the range of velocities over which quality focusing can be achieved. PMID:22454556

  8. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  9. Opinion diversity and community formation in adaptive networks

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.

    2017-10-01

    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.

  10. Molecular Dynamics Simulation Of Novel Elastomer Nanocomposites: Structure Design And Property Prediction

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Zhang, Liqun

    In this talk, by employing molecular dynamics simulation, we aim to provide the structure design and property prediction of novel elastomer nanocomposites(ENCs), by considering three typical systems such as physical compounding, self-assembly and end-linked systems. We examine the dispersion, interfacial interaction and the resulting static and dynamic mechanical properties of each system. Emphasis is placed on how to tune the visco-elasticity and decrease the dynamic hysteresis loss of ENCs, by considering to introduce the flexible nanoparticles(NPs) with reversible mechanical deformation such as carbon nanosprings and graphene nanoribbon, or by achieving a homogeneous distribution of NPs in the elastomeric polymer matrix together with decreasing the mobility of the end-groups of polymer chains. In particular, the end-linked system exhibits both excellent static and dynamic mechanical properties, independent of the temperature. This novel ENCs could provide some useful guidances for the fabrication of high performance ENCs tailored for tire tread of green tires by cutting the fuel consumption.

  11. Active influence in dynamical models of structural balance in social networks

    NASA Astrophysics Data System (ADS)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  12. A Review of Dynamic Characteristics of Magnetically Levitated Vehicle Systems.

    DTIC Science & Technology

    1995-11-01

    The dynamic response of magnetically levitated ( maglev ) ground transportation systems has important consequences for safety and ride quality...smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the...other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which

  13. Digestion of starch in a dynamic small intestinal model.

    PubMed

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  14. The Rewarding Aspects of Music Listening Are Related to Degree of Emotional Arousal

    PubMed Central

    Salimpoor, Valorie N.; Benovoy, Mitchel; Longo, Gregory; Cooperstock, Jeremy R.; Zatorre, Robert J.

    2009-01-01

    Background Listening to music is amongst the most rewarding experiences for humans. Music has no functional resemblance to other rewarding stimuli, and has no demonstrated biological value, yet individuals continue listening to music for pleasure. It has been suggested that the pleasurable aspects of music listening are related to a change in emotional arousal, although this link has not been directly investigated. In this study, using methods of high temporal sensitivity we investigated whether there is a systematic relationship between dynamic increases in pleasure states and physiological indicators of emotional arousal, including changes in heart rate, respiration, electrodermal activity, body temperature, and blood volume pulse. Methodology Twenty-six participants listened to self-selected intensely pleasurable music and “neutral” music that was individually selected for them based on low pleasure ratings they provided on other participants' music. The “chills” phenomenon was used to index intensely pleasurable responses to music. During music listening, continuous real-time recordings of subjective pleasure states and simultaneous recordings of sympathetic nervous system activity, an objective measure of emotional arousal, were obtained. Principal Findings Results revealed a strong positive correlation between ratings of pleasure and emotional arousal. Importantly, a dissociation was revealed as individuals who did not experience pleasure also showed no significant increases in emotional arousal. Conclusions/Significance These results have broader implications by demonstrating that strongly felt emotions could be rewarding in themselves in the absence of a physically tangible reward or a specific functional goal. PMID:19834599

  15. The processing of facial identity and expression is interactive, but dependent on task and experience

    PubMed Central

    Yankouskaya, Alla; Humphreys, Glyn W.; Rotshtein, Pia

    2014-01-01

    Facial identity and emotional expression are two important sources of information for daily social interaction. However the link between these two aspects of face processing has been the focus of an unresolved debate for the past three decades. Three views have been advocated: (1) separate and parallel processing of identity and emotional expression signals derived from faces; (2) asymmetric processing with the computation of emotion in faces depending on facial identity coding but not vice versa; and (3) integrated processing of facial identity and emotion. We present studies with healthy participants that primarily apply methods from mathematical psychology, formally testing the relations between the processing of facial identity and emotion. Specifically, we focused on the “Garner” paradigm, the composite face effect and the divided attention tasks. We further ask whether the architecture of face-related processes is fixed or flexible and whether (and how) it can be shaped by experience. We conclude that formal methods of testing the relations between processes show that the processing of facial identity and expressions interact, and hence are not fully independent. We further demonstrate that the architecture of the relations depends on experience; where experience leads to higher degree of inter-dependence in the processing of identity and expressions. We propose that this change occurs as integrative processes are more efficient than parallel. Finally, we argue that the dynamic aspects of face processing need to be incorporated into theories in this field. PMID:25452722

  16. Self-assembly of a constitutional dynamic library of Cu(II) coordination polygons and reversible sorting by crystallization.

    PubMed

    Rancan, Marzio; Tessarolo, Jacopo; Zanonato, Pier Luigi; Seraglia, Roberta; Quici, Silvio; Armelao, Lidia

    2013-06-07

    A small coordination constitutional dynamic library (CDL) is self-assembled from Cu(2+) ions and the ortho bis-(3-acetylacetone)benzene ligand. Two coordination polygons, a rhomboid and a triangle, establish a dynamic equilibrium. Quantitative sorting of the rhomboidal polygon is reversibly obtained by crystallization. Thermodynamic and kinetic aspects ruling the CDL system have been elucidated.

  17. Dynamics and controls working group summary

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1984-01-01

    The technology status of the dynamics and controls discipline as it applies to energy storage wheel systems was evaluated. No problems were identified for which an adequate solution could not be proposed. Design issues that influence control were addressed. The dynamics and control aspects associated with the energy storage system concept and its various constituent parts, and the control tasks attendant to large, manned spacecraft are discussed.

  18. Psychosocial Factors Versus Single Predictors: A Factor Analytic Approach to Cardiovascular Outcomes in The Women’s Ischemia Syndrome Evaluation (WISE) Study

    DTIC Science & Technology

    2010-02-18

    later than men (Bello & Mosca, 2004). Also, for women 6 taking oral contraceptives , smoking significantly increases their risk of developing CVD...to include both the physiological processes involved in stress and the stress response as well as the emotional and psychological aspects of stress...and stressors (Mason, 1975). The emotional and psychological aspects of stress are critical components in the link between psychosocial factors and

  19. Verb Aspect and the Activation of Event Knowledge

    PubMed Central

    Ferretti, Todd R.; Kutas, Marta; McRae, Ken

    2011-01-01

    The authors show that verb aspect influences the activation of event knowledge with 4 novel results. First, common locations of events (e.g., arena) are primed following verbs with imperfective aspect (e.g., was skating) but not verbs with perfect aspect (e.g., had skated). Second, people generate more locative prepositional phrases as completions to sentence fragments with imperfective than those with perfect aspect. Third, the amplitude of the N400 component to location nouns varies as a function of aspect and typicality, being smallest for imperfective sentences with highly expected locations and largest for imperfective sentences with less expected locations. Fourth, the amplitude of a sustained frontal negativity spanning prepositional phrases is larger following perfect than following imperfective aspect. Taken together, these findings suggest a dynamic interplay between event knowledge and the linguistic stream. PMID:17201561

  20. Curriculum Development as Continuing Teacher Education.

    ERIC Educational Resources Information Center

    Laurenze, Andreas

    1979-01-01

    Reports on the curriculum development process used as part of teacher education, identifying problems of teacher time and effort, relationship to the practical demands of classroom teaching, and links with other aspects of teacher's work. (Author/CK)

  1. Probability, geometry, and dynamics in the toss of a thick coin

    NASA Astrophysics Data System (ADS)

    Yong, Ee Hou; Mahadevan, L.

    2011-12-01

    When a thick cylindrical coin is tossed in the air and lands without bouncing on an inelastic substrate, it ends up on its face or its side. We account for the rigid body dynamics of spin and precession and calculate the probability distribution of heads, tails, and sides for a thick coin as a function of its dimensions and the distribution of its initial conditions. Our theory yields a simple expression for the aspect ratio of homogeneous coins with a prescribed frequency of heads or tails compared to sides, which we validate using data from the results of tossing coins of different aspect ratios.

  2. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  3. Models for the modern power grid

    NASA Astrophysics Data System (ADS)

    Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti

    2014-10-01

    This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.

  4. Ultrafast studies of gold, nickel, and palladium nanorods

    NASA Astrophysics Data System (ADS)

    Sando, Gerald M.; Berry, Alan D.; Owrutsky, Jeffrey C.

    2007-08-01

    Steady state and ultrafast transient absorption studies have been carried out for gold, nickel, and palladium high aspect ratio nanorods. For each metal, nanorods were fabricated by electrochemical deposition into ˜6μm thick polycarbonate templates. Two nominal pore diameters(10 and 30nm, resulting in nanorod diameters of about 40 and 60nm, respectively) were used, yielding nanorods with high aspect ratios (>25). Static spectra of nanorods of all three metals reveal both a longitudinal surface plasmon resonance (SPRL) band in the mid-infrared as well as a transverse band in the visible for the gold and larger diameter nickel and palladium nanorods. The appearance of SPRL bands in the infrared for high aspect ratio metal nanorods and the trends in their maxima for the different aspect ratios and metals are consistent with calculations based on the Gans theory. For the gold and nickel samples, time resolved studies were performed with a subpicosecond resolution using 400nm excitation and a wide range of probe wavelengths from the visible to the mid-IR as well as for infrared excitation (near 2000cm-1) probed at 800nm. The dynamics observed for nanorods of both metals and both diameters include transients due to electron-phonon coupling and impulsively excited coherent acoustic breathing mode oscillations, which are similar to those previously reported for spherical and smaller rod-shaped gold nanoparticles. The dynamics we observe are the same within the experimental uncertainty for 400nm and infrared (5μm) excitation probed at 800nm. The transient absorption using 400nm excitation and 800nm probe pulses of the palladium nanorods also reveal coherent acoustic oscillations. The results demonstrate that the dynamics for high aspect ratio metal nanorods are similar to those for smaller nanoparticles.

  5. Automatic segmentation of trees in dynamic outdoor environments

    USDA-ARS?s Scientific Manuscript database

    Segmentation in dynamic outdoor environments can be difficult when the illumination levels and other aspects of the scene cannot be controlled. Specifically in agricultural contexts, a background material is often used to shield a camera's field of view from other rows of crops. In this paper, we ...

  6. Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function

    ERIC Educational Resources Information Center

    Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.

    2011-01-01

    In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.

  7. Factors Affecting Lateral Stability and Controllability

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Toll, Thomas A

    1948-01-01

    The effects on dynamic lateral stability and controllability of some of the important aerodynamic and mass characteristics are discussed and methods are presented for estimating the various stability parameters to be used in the calculation of the dynamic lateral stability of airplanes with swept and low-aspect-ratio wings.

  8. Some Aspects of Nonlinear Dynamics and CFD

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  9. Structural dynamics technology research in NASA: Perspective on future needs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.

  10. The self as a mediator between personality and adjustment.

    PubMed

    Graziano, W G; Jensen-Campbell, L A; Finch, J F

    1997-08-01

    The self can be conceptualized as a mediating agent that translates personality into situated goal-directed activities and adaptation. This research used a level-of-analysis approach to link personality dimensions (Level I) to self-systems (Level II) and to teacher ratings of adjustment in African American, Mexican American, and European American students (N = 317). The authors hypothesized that links among aspects of self-esteem and teacher ratings of adjustment would be domain specific, and those links to dimensions of the 5-factor model would reflects the domain specificity. Structural equation modeling corroborated hypotheses about domain specificity in links between adjustment and 5-factor dimensions. Results were discussed in terms of levels of analysis for personality structure, personality development, and age-related adaptations to social contexts.

  11. Linking brain, mind and behavior.

    PubMed

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  12. Dynamic constitutional frameworks for DNA biomimetic recognition.

    PubMed

    Catana, Romina; Barboiu, Mihail; Moleavin, Ioana; Clima, Lilia; Rotaru, Alexandru; Ursu, Elena-Laura; Pinteala, Mariana

    2015-02-07

    Linear and cross-linked dynamic constitutional frameworks generated from reversibly interacting linear PEG/core constituents and cationic sites shed light on the dominant coiling versus linear DNA binding behaviours, closer to the histone DNA binding wrapping mechanism.

  13. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE PAGES

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    2018-02-02

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  14. Multiscale polar theory of microtubule and motor-protein assemblies

    DOE PAGES

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; ...

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specificmore » sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.« less

  15. Solutions of burnt-bridge models for molecular motor transport.

    PubMed

    Morozov, Alexander Yu; Pronina, Ekaterina; Kolomeisky, Anatoly B; Artyomov, Maxim N

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called "bridges"), is investigated theoretically by analyzing discrete-state stochastic "burnt-bridge" models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed ("burned") with a probability p , creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into a one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For the general case of p<1 a theoretical method is developed and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics for periodic distribution of bridges and different burning dynamics are analyzed and compared. Analytical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  16. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  17. Modeling Day-to-day Flow Dynamics on Degradable Transport Network

    PubMed Central

    Gao, Bo; Zhang, Ronghui; Lou, Xiaoming

    2016-01-01

    Stochastic link capacity degradations are common phenomena in transport network which can cause travel time variations and further can affect travelers’ daily route choice behaviors. This paper formulates a deterministic dynamic model, to capture the day-to-day (DTD) flow evolution process in the presence of degraded link capacity degradations. The aggregated network flow dynamics are driven by travelers’ study of uncertain travel time and their choice of risky routes. This paper applies the exponential-smoothing filter to describe travelers’ study of travel time variations, and meanwhile formulates risk attitude parameter updating equation to reflect travelers’ endogenous risk attitude evolution schema. In addition, this paper conducts theoretical analyses to investigate several significant mathematical characteristics implied in the proposed DTD model, including fixed point existence, uniqueness, stability and irreversibility. Numerical experiments are used to demonstrate the effectiveness of the DTD model and verify some important dynamic system properties. PMID:27959903

  18. Exact Solutions of Burnt-Bridge Models for Molecular Motor Transport

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander; Pronina, Ekaterina; Kolomeisky, Anatoly; Artyomov, Maxim

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called ``bridges''), is investigated theoretically by analyzing discrete-state stochastic ``burnt-bridge'' models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed (``burned'') with a probability p, creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For general case of p<1 a new theoretical method is developed, and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics, periodic and random distribution of bridges and different burning dynamics are analyzed and compared. Theoretical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  19. Solutions of burnt-bridge models for molecular motor transport

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander Yu.; Pronina, Ekaterina; Kolomeisky, Anatoly B.; Artyomov, Maxim N.

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called “bridges”), is investigated theoretically by analyzing discrete-state stochastic “burnt-bridge” models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed (“burned”) with a probability p , creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into a one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For the general case of p<1 a theoretical method is developed and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics for periodic distribution of bridges and different burning dynamics are analyzed and compared. Analytical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  20. Current Trends in Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Appleby, G. M.; Kirchner, G.; McGarry, J.; Murphy, T.; Noll, C. E.; Pavlis, E. C.; Pierron, F.

    2010-01-01

    Satellite Laser Ranging (SLR) techniques are used to accurately measure the distance from ground stations to retroreflectors on satellites and the moon. SLR is one of the fundamental techniques that define the international Terrestrial Reference Frame (iTRF), which is the basis upon which we measure many aspects of global change over space, time, and evolving technology. It is one of the fundamental techniques that define at a level of precision of a few mm the origin and scale of the ITRF. Laser Ranging provides precision orbit determination and instrument calibration/validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice budget, and terrestrial topography. Laser ranging is also a tool to study the dynamics of the Moon and fundamental constants. Many of the GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation. The GNSS Constellations will be the means of making the reference frame available to worldwide users. Data and products from these measurements support key aspects of the GEOSS 10-Year implementation Plan adopted on February 16, 2005, The ITRF has been identified as a key contribution of the JAG to GEOSS and the ILRS makes a major contribution for its development since its foundation. The ILRS delivers weekly additional realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter (EOP) series with a daily resolution. Additional products are currently under development such as precise orbits of satellites, EOP with daily availability, low-degree gravitational harmonics for studies of Earth dynamics and kinematics, etc. SLR technology continues to evolve toward the next generation laser ranging systems as programmatic requirements become more stringent. Ranging accuracy is improving as higher repetition rate, narrower pulse lasers and faster detectors are implemented. Automation and pass interleaving at some stations is already expanding temporal coverage. Web-based safety keys are allowing the SLR network stations to range to optically vulnerable satellites. Some stations are experimenting with two-wavelength operation as a means of better understanding the atmospheric refraction and with very low power laser to improve eye-safety conditions. New retroreflector designs are improving the signal link and enable daylight ranging. Dramatic improvements have also been made with lunar ranging with the new APOLLO Site in New ?Mexico, USA and the upgraded lunar station "MEO" in Grasse,

Top