Sample records for dynamics previous work

  1. Quantum nuclear effects in water using centroid molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kondratyuk, N. D.; Norman, G. E.; Stegailov, V. V.

    2018-01-01

    The quantum nuclear effects are studied in water using the method of centroid molecular dynamics (CMD). The aim is the calibration of CMD implementation in LAMMPS. The calculated intramolecular energy, atoms gyration radii and radial distribution functions are shown in comparison with previous works. The work is assumed to be the step toward to solution of the discrepancy between the simulation results and the experimental data of liquid n-alkane properties in our previous works.

  2. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  3. Rotor-Bearing Dynamics Technology Design Guide. Part 8. A computerized Data Retrieval System for Fluid Film Bearings

    DTIC Science & Technology

    1980-10-01

    AFAPL-TR-78-6 ’: Part Vill (U ROTOR -BEARING DYNAMICS - TECHNOLOGY DESIGN GUIDE ¢ Part Vil A Comput eri eval Syteftor Fluid Film Bearings SHAKER...Protection," Task 304806, "Aerospace Lubrication," Work Unit 30480685, " Rotor -Bearing Dynamics Design." The work reported herein was performed during the...the previous issue of the Rotor -Bearing Dynamics Technology Design Guide, - one volume dealt with the calculation of performance parameters and pertur

  4. Molecular dynamics study of the conformational properties of cyclohexadecane

    NASA Astrophysics Data System (ADS)

    Zhang, Renshi; Mattice, Wayne L.

    1993-06-01

    Molecular dynamics has been used for the first time for the study of the conformational properties of cyclohexadecane, c-C16H32. By analyzing a long molecular dynamics trajectory (14.5 ns) at 450 K, equilibrium statistics such as the relative populations of different isomeric conformers and the probability ratios, p(gt)/p(tt), p(gg)/p(tt), and p(gg)/p(gtg), of different conformational segments, have been studied. The dynamic properties including the transition modes of gauche migration and gauche-pair creation, which have been reported before in n-alkanes, and the auto- and cross-correlations of the bond dihedral angles, have also been obtained. It was possible to make direct comparisons on some of the statistics with theory and experiment. Most of the results extracted from the molecular dynamics trajectory lie in between previously reported experimental and theoretical values. Many previously predicted conformers have been confirmed by our simulations. The results of the population probability of the most populated conformer seems to suggest that an earlier discrepancy between the theoretical works and an experimental work originates from insufficient samplings in earlier theoretical works, rather than from their inaccurate force field.

  5. Temporal Dynamic Controllability Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul H.; Muscettola, Nicola

    2005-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. We revisit the question of how to determine whether a given set of temporal requirements are feasible in the light of uncertain durations of some processes. In particular, we consider how best to determine whether a network is Dynamically Controllable, i.e., whether a dynamic strategy exists for executing the network that is guaranteed to satisfy the requirements. Previous work has shown the existence of a pseudo-polynomial algorithm for testing Dynamic Controllability. Here, we greatly simplify the previous framework, and present a true polynomial algorithm with a cutoff based only on the number of nodes.

  6. IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS

    EPA Science Inventory

    The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...

  7. Safety of railroad passenger vehicle dynamics : OMNISIM simulation and test correlations for passenger rail cars

    DOT National Transportation Integrated Search

    2002-07-01

    The purpose of the work is to validate the safety assessment methodology previously developed for passenger rail vehicle dynamics, which requires the application of simulation tools as well as testing of vehicles under different track scenarios. This...

  8. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.

    PubMed

    Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai

    2008-06-01

    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.

  9. Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks

    PubMed Central

    Abello, Manuel Blanco

    2014-01-01

    In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature. PMID:24883398

  10. Symmetries in vakonomic dynamics: applications to optimal control

    NASA Astrophysics Data System (ADS)

    Martínez, Sonia; Cortés, Jorge; de León, Manuel

    2001-06-01

    Symmetries in vakonomic dynamics are discussed. Appropriate notions are introduced and their relationship with previous work on symmetries of singular Lagrangian systems is shown. Some Noether-type theorems are obtained. The results are applied to a class of general optimal control problems and to kinematic locomotion systems.

  11. Reasoning by Contradiction in Dynamic Geometry

    ERIC Educational Resources Information Center

    Baccaglini-Frank, Anna; Antonini, Samuele; Leung, Allen; Mariotti, Maria Alessandra

    2013-01-01

    This paper addresses contributions that dynamic geometry systems (DGSs) may give in reasoning by contradiction in geometry. We present analyses of three excerpts of students' work and use the notion of pseudo object, elaborated from previous research, to show some specificities of DGS in constructing proof by contradiction. In particular, we…

  12. Cultural propagation on social networks

    NASA Astrophysics Data System (ADS)

    Kuperman, M. N.

    2006-04-01

    In this work we present a model for the propagation of culture on networks of different topology and by considering different underlying dynamics. We extend a previous model proposed by Axelrod by letting a majority govern the dynamics of changes. This in turn allows us to define a Lyapunov functional for the system.

  13. A century of transitions in New York City's measles dynamics.

    PubMed

    Hempel, Karsten; Earn, David J D

    2015-05-06

    Infectious diseases spreading in a human population occasionally exhibit sudden transitions in their qualitative dynamics. Previous work has successfully predicted such transitions in New York City's historical measles incidence using the seasonally forced susceptible-infectious-recovered (SIR) model. This work relied on a dataset spanning 45 years (1928-1973), which we have extended to 93 years (1891-1984). We identify additional dynamical transitions in the longer dataset and successfully explain them by analysing attractors and transients of the same mechanistic epidemiological model. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Is a Partner's Competence Threatening during Dyadic Cooperative Work? It Depends on Resource Interdependence

    ERIC Educational Resources Information Center

    Buchs, Celine; Butera, Fabrizio

    2009-01-01

    Previous studies with university students have shown that resource interdependence during cooperative dyadic work on texts produces two different dynamics in student interaction and learning. Working on complementary information produces positive interactions, but a good quality of information transmission is needed to foster student learning.…

  15. Agent-based model for rural-urban migration: A dynamic consideration

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid

    2015-10-01

    This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.

  16. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian

    2018-04-01

    We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.

  17. Refinement of horizontal resolution in dynamical downscaling of climate information using WRF: Costs, benefits, and lessons learned

    EPA Science Inventory

    Dynamical downscaling techniques have previously been developed by the U.S. Environmental Protection Agency (EPA) using a nested WRF at 108- and 36-km. Subsequent work extended one-way nesting down to 12-km resolution. Recently, the EPA Office of Research and Development used com...

  18. Regulatory Fit and Systematic Exploration in a Dynamic Decision-Making Environment

    ERIC Educational Resources Information Center

    Otto, A. Ross; Markman, Arthur B.; Gureckis, Todd M.; Love, Bradley C.

    2010-01-01

    This work explores the influence of motivation on choice behavior in a dynamic decision-making environment, where the payoffs from each choice depend on one's recent choice history. Previous research reveals that participants in a regulatory fit exhibit increased levels of exploratory choice and flexible use of multiple strategies over the course…

  19. A Spoken Dialogue System for Command and Control

    DTIC Science & Technology

    2012-10-01

    Previous work in this domain focused on the formal representation of linguistic concepts in ontologies for data integration. His doctoral...20 2.8 Ongoing and Future Work .................................................................................... 20 2.8.1 Dynamic... work , we developed grammars with broader coverage for the domain of Livespace room-control. The goal was to provide commands and queries to be

  20. Improved Temperature Dynamic Model of Turbine Subcomponents for Facilitation of Generalized Tip Clearance Control

    NASA Technical Reports Server (NTRS)

    Kypuros, Javier A.; Colson, Rodrigo; Munoz, Afredo

    2004-01-01

    This paper describes efforts conducted to improve dynamic temperature estimations of a turbine tip clearance system to facilitate design of a generalized tip clearance controller. This work builds upon research previously conducted and presented in and focuses primarily on improving dynamic temperature estimations of the primary components affecting tip clearance (i.e. the rotor, blades, and casing/shroud). The temperature profiles estimated by the previous model iteration, specifically for the rotor and blades, were found to be inaccurate and, more importantly, insufficient to facilitate controller design. Some assumptions made to facilitate the previous results were not valid, and thus improvements are presented here to better match the physical reality. As will be shown, the improved temperature sub- models, match a commercially validated model and are sufficiently simplified to aid in controller design.

  1. Dynamic Accuracy of Inertial Magnetic Sensor Modules

    DTIC Science & Technology

    2016-12-01

    and the cost of the YEI 3-space data-logging sensor was justified. C. PREVIOUS WORK In [7], Jeremy Cookson built a low-cost pendulum with an optical...encoder to test the dynamic accuracy of MARG sensor modules. The pendulum was designed in order to execute dynamic, repeatable tests in a single...3DM-GX1 and 3DM-GX3-25 sensors. In [8], Leslie Landry developed similar repeatable tests and utilized the pendulum to test the dynamic accuracy of

  2. A Theory of Electrical Conductivity of Pseudo-Binary Equivalent Molten Salt

    NASA Astrophysics Data System (ADS)

    Matsunaga, Shigeki; Koishi, Takahiro; Tamaki, Shigeru

    2008-02-01

    Many years ago, Sundheim proposed the "universal golden rule" by experiments, i.e. the ratio of the partial ionic conductivities in molten binary salt is equal to the inverse mass ratio of each ions, σ+/σ- = m-/m-. In the previous works, we have proved this relation by the theory using Langevin equation, and by molecular dynamics simulations (MD). In this study, the pseudo binary molten salt NaCl-KCl system is investigated in the same theoretical framework as previous works as the serial work in molten salts. The MD results are also reported in connection with the theoretical analysis.

  3. Femtosecond Polarization Phase Selective (PPS) High Magnetic Field Studies of Electron-Spin-Hole (ESH) Dynamics: New Tools for Ultrafast Imaging Fe-centered ESH Transfer Mechanisms Steps

    NASA Astrophysics Data System (ADS)

    Rupnik, Kresimir; Cooper, Benjamin; Dunne, Taylor; Gerosa, Katherine; Mercer, Kaitlyn; McGill, Stephen

    In previous work, new Nanoparticle-enzyme Based Hybrids (NEBH) synthesis methods were investigated for nanoparticles of different shapes and electron energies. These hybrids can provide electromagnetic-field-driven ESH separations and transfers to desired molecular locations. Of paramount biomedical interest are the activity centers (including Fe-clusters) in proteins that perform their intended function and help synthesize other molecules. In this work we discuss results of our recent in situ ESH dynamics measurements: we use <15fs (Vitara) PPS broad band pulses and ultrahigh, 25T, magnetic fields from Split-helix magnet at NHMFL. Work included multi-spectral domain PPS harmonic generations and PPS sum frequency generations. Model compounds, including cytochromes, were used for testing and calibrations and previously studied Fe-S enzymes were prepared for measurements. While PPS opto-magnetic methods are known for their insight into electronic structure, our femtosecond measurements can provide ultrafast dynamic imaging of ESH mechanisms decision making steps. UF-PPS Project, performed in part at NHMFL, supported by NSF CA No. DMR-1157490, and 0654118 and U.S. DOE.

  4. Teaching Complex Dynamic Systems to Young Students with StarLogo

    ERIC Educational Resources Information Center

    Klopfer, Eric; Yoon, Susan; Um, Tricia

    2005-01-01

    In this paper, we report on a program of study called Adventures in Modeling that challenges the traditional scientific method approach in science classrooms using StarLogo modeling software. Drawing upon previous successful efforts with older students, and the related work of other projects working with younger students, we explore: (a) What can…

  5. An experimental study of nonlinear dynamic system identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1990-01-01

    A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  6. Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans

    PubMed Central

    Dai, Shu; Schaeffer, David G.

    2010-01-01

    Instabilities in cardiac dynamics have been widely investigated in recent years. One facet of this work has studied chaotic behavior, especially possible correlations with fatal arrhythmias. Previously chaotic behavior was observed in various models, specifically in the breakup of spiral and scroll waves. In this paper we study cardiac dynamics and find spatiotemporal chaotic behavior through the Echebarria–Karma modulation equation for alternans in one dimension. Although extreme parameter values are required to produce chaos in this model, it seems significant mathematically that chaos may occur by a different mechanism from previous observations. PMID:20590327

  7. On the hydration of subnanometric antifouling organosilane adlayers: a molecular dynamics simulation.

    PubMed

    Sheikh, Sonia; Blaszykowski, Christophe; Nolan, Robert; Thompson, Damien; Thompson, Michael

    2015-01-01

    The connection between antifouling and surface hydration is a fascinating but daunting question to answer. Herein, we use molecular dynamics (MD) computer simulations to gain further insight into the role of surface functionalities in the molecular-level structuration of water (surface kosmotropicity)--within and atop subnanometric organosilane adlayers that were shown in previous experimental work to display varied antifouling behavior. Our simulations support the hypothesized intimate link between surface hydration and antifouling, in particular the importance of both internal and interfacial hydrophilicity and kosmotropicity. The antifouling mechanism is also discussed in terms of surface dehydration energy and water dynamicity (lability and mobility), notably the crucial requirement for clustered water molecules to remain tightly bound for extensive periods of time--i.e. exhibit slow exchange dynamics. A substrate effect on surface hydration, which would also participate in endowing antifouling adlayers with hydrogel-like characteristics, is also proposed. In contrast, the role of adlayer flexibility, if any, is assigned a secondary role in these ultrathin structures made of short building blocks. The conclusions from this work are well in line with those previously drawn in the literature. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Sinking bubbles in stout beers

    NASA Astrophysics Data System (ADS)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  9. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics

    PubMed Central

    Krylova, Olga; Earn, David J. D.

    2013-01-01

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced ‘susceptible–exposed–infectious–removed’ (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible–infectious–removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions. PMID:23676892

  10. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.

    PubMed

    Krylova, Olga; Earn, David J D

    2013-07-06

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced 'susceptible-exposed-infectious-removed' (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible-infectious-removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions.

  11. How quantizable matter gravitates: A practitioner's guide

    NASA Astrophysics Data System (ADS)

    Schuller, Frederic P.; Witte, Christof

    2014-05-01

    We present the practical step-by-step procedure for constructing canonical gravitational dynamics and kinematics directly from any previously specified quantizable classical matter dynamics, and then illustrate the application of this recipe by way of two completely worked case studies. Following the same procedure, any phenomenological proposal for fundamental matter dynamics must be supplemented with a suitable gravity theory providing the coefficients and kinematical interpretation of the matter theory, before any of the two theories can be meaningfully compared to experimental data.

  12. Learning about Friction: Group Dynamics in Engineering Students' Work with Free Body Diagrams

    ERIC Educational Resources Information Center

    Berge, Maria; Weilenmann, Alexandra

    2014-01-01

    In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body…

  13. Quasispecies dynamics on a network of interacting genotypes and idiotypes: formulation of the model

    NASA Astrophysics Data System (ADS)

    Barbosa, Valmir C.; Donangelo, Raul; Souza, Sergio R.

    2015-01-01

    A quasispecies is the stationary state of a set of interrelated genotypes that evolve according to the usual principles of selection and mutation. Quasispecies studies have for the most part concentrated on the possibility of errors during genotype replication and their role in promoting either the survival or the demise of the quasispecies. In a previous work, we introduced a network model of quasispecies dynamics, based on a single probability parameter (p) and capable of addressing several plausibility issues of previous models. Here we extend that model by pairing its network with another one aimed at modeling the dynamics of the immune system when confronted with the quasispecies. The new network is based on the idiotypic-network model of immunity and, together with the previous one, constitutes a network model of interacting genotypes and idiotypes. The resulting model requires further parameters and as a consequence leads to a vast phase space. We have focused on a particular niche in which it is possible to observe the trade-offs involved in the quasispecies' survival or destruction. Within this niche, we give simulation results that highlight some key preconditions for quasispecies survival. These include a minimum initial abundance of genotypes relative to that of the idiotypes and a minimum value of p. The latter, in particular, is to be contrasted with the stand-alone quasispecies network of our previous work, in which arbitrarily low values of p constitute a guarantee of quasispecies survival.

  14. Influence of light-induced conical intersection on the photodissociation dynamics of D2(+) starting from individual vibrational levels.

    PubMed

    Halász, Gábor J; Csehi, András; Vibók, Ágnes; Cederbaum, Lorenz S

    2014-12-26

    Previous works have shown that dressing of diatomic molecules by standing or by running laser waves gives rise to the appearance of so-called light-induced conical intersections (LICIs). Because of the strong nonadiabatic couplings, the existence of such LICIs may significantly change the dynamical properties of a molecular system. In our former paper (J. Phys. Chem. A 2013, 117, 8528), the photodissociation dynamics of the D(2)(+) molecule were studied in the LICI framework starting the initial vibrational nuclear wave packet from the superposition of all the vibrational states initially produced by ionizing D(2). The present work complements our previous investigation by letting the initial nuclear wave packets start from different individual vibrational levels of D(2)(+), in particular, above the energy of the LICI. The kinetic energy release spectra, the total dissociation probabilities, and the angular distributions of the photofragments are calculated and discussed. An interesting phenomenon has been found in the spectra of the photofragments. Applying the light-induced adiabatic picture supported by LICI, explanations are given for the unexpected structure of the spectra.

  15. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling,more » the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.« less

  16. Elastic constants and dynamics in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Humpert, Anja; Allen, Michael P.

    2015-09-01

    In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.

  17. A Kalman Filtering Perspective for Multiatlas Segmentation*

    PubMed Central

    Gao, Yi; Zhu, Liangjia; Cates, Joshua; MacLeod, Rob S.; Bouix, Sylvain; Tannenbaum, Allen

    2016-01-01

    In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity—neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy. PMID:26807162

  18. Implementing Molecular Dynamics on Hybrid High Performance Computers - Particle-Particle Particle-Mesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J

    The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less

  19. Dynamical transitions associated with turbulence in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam D.; Tian, Li; Chakraborty Thakur, Saikat; Tynan, George R.

    2017-10-01

    Diagnostic capabilities are often cited as a limiting factor in our understanding of transport in fusion devices. Increasingly advanced multichannel diagnostics are being applied to classify transport regimes and to search for ``trigger'' features that signal an oncoming dynamical event, such as an ELM or an L-H transition. In this work, we explore a technique that yields information about global properties of plasma dynamics from a single time series of a relevant plasma quantity. Electrostatic probe data from the Controlled Shear Decorrelation eXperiment (CSDX) is analyzed using recurrence quantification analysis (RQA) in the context of previous work on the transition to weak drift-wave turbulence. The recurrence characteristics of a phase space trajectory provide a quantitative means to classify dynamics and identify transitions in a complex system. We present and quantify dynamical variations in the plasma variables as a function of the background magnetic field strength. A dynamical transition corresponding to the emergence of broadband fluctuations is identified using RQA measures.

  20. Parents' work patterns and adolescent mental health.

    PubMed

    Dockery, Alfred; Li, Jianghong; Kendall, Garth

    2009-02-01

    Previous research demonstrates that non-standard work schedules undermine the stability of marriage and reduce family cohesiveness. Limited research has investigated the effects of parents working non-standard schedules on children's health and wellbeing and no published Australian studies have addressed this important issue. This paper contributes to bridging this knowledge gap by focusing on adolescents aged 15-20 years and by including sole parent families which have been omitted in previous research, using panel data from the Household, Income and Labour Dynamics in Australia Survey. Multilevel linear regression models are estimated to analyse the association between parental work schedules and hours of work and measures of adolescents' mental health derived from the SF-36 Health Survey. Evidence of negative impacts of parents working non-standard hours upon adolescent wellbeing is found to exist primarily within sole parent families.

  1. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis.

    PubMed

    Spain, Seth M; Miner, Andrew G; Kroonenberg, Pieter M; Drasgow, Fritz

    2010-08-06

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of analyzing momentary work behavior using experience sampling methods. The article also examines a previously unused set of methods for analyzing data produced by experience sampling. These methods are known collectively as multiway component analysis. Two archetypal techniques of multimode factor analysis, the Parallel factor analysis and the Tucker3 models, are used to analyze data from Miner, Glomb, and Hulin's (2010) experience sampling study of work behavior. The efficacy of these techniques for analyzing experience sampling data is discussed as are the substantive multimode component models obtained.

  2. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.

    PubMed

    Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D

    2017-06-01

    A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.

  3. Infraslow Electroencephalographic and Dynamic Resting State Network Activity

    PubMed Central

    Grooms, Joshua K.; Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H.; Epstein, Charles M.

    2017-01-01

    Abstract A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies. PMID:28462586

  4. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential

    PubMed Central

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-01-01

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983

  5. Generating functionals and Gaussian approximations for interruptible delay reactions

    NASA Astrophysics Data System (ADS)

    Brett, Tobias; Galla, Tobias

    2015-10-01

    We develop a generating functional description of the dynamics of non-Markovian individual-based systems in which delay reactions can be terminated before completion. This generalizes previous work in which a path-integral approach was applied to dynamics in which delay reactions complete with certainty. We construct a more widely applicable theory, and from it we derive Gaussian approximations of the dynamics, valid in the limit of large, but finite, population sizes. As an application of our theory we study predator-prey models with delay dynamics due to gestation or lag periods to reach the reproductive age. In particular, we focus on the effects of delay on noise-induced cycles.

  6. Demonstrating ultrafast polarization dynamics in spin-VCSELs

    NASA Astrophysics Data System (ADS)

    Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.

    2018-02-01

    Vertical-cavity surface-emitting lasers (VCSELs) are used for short-haul optical data transmission with increasing bit rates. The optimization involves both enhanced device designs and the use of higher-order modulation formats. In order to improve the modulation bandwidth substantially, the presented work employs spin-pumped VCSELs (spin-VCSELs) and their polarization dynamics instead of relying on intensity-modulated devices. In spin-VCSELs, the polarization state of the emitted light is controllable via spin injection. By optical spin pumping a single-mode VCSEL is forced to emit light composed of both orthogonal linearly polarized fundamental modes. The frequencies of these two modes differ slightly by a value determined by the cavity birefringence. As a result, the circular polarization degree oscillates with their beat frequency, i.e., with the birefringence-induced mode splitting. We used this phenomenon to show so-called polarization oscillations, which are generated by pulsed spin injection. Their frequency represents the polarization dynamics resonance frequency and can be tuned over a wide range via the birefringence, nearly independent from any other laser parameter. In previous work we demonstrated a maximum birefringence-induced mode splitting of more than 250 GHz. In this work, compared to previous publications, we show an almost doubled polarization oscillation frequency of more than 80 GHz. Furthermore, we discuss concepts to achieve even higher values far above 100 GHz.

  7. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection.

    PubMed

    Jafaruddin; Indratno, Sapto W; Nuraini, Nuning; Supriatna, Asep K; Soewono, Edy

    2015-01-01

    Estimating the basic reproductive ratio ℛ 0 of dengue fever has continued to be an ever-increasing challenge among epidemiologists. In this paper we propose two different constructions to estimate ℛ 0 which is derived from a dynamical system of host-vector dengue transmission model. The construction is based on the original assumption that in the early states of an epidemic the infected human compartment increases exponentially at the same rate as the infected mosquito compartment (previous work). In the first proposed construction, we modify previous works by assuming that the rates of infection for mosquito and human compartments might be different. In the second construction, we add an improvement by including more realistic conditions in which the dynamics of an infected human compartments are intervened by the dynamics of an infected mosquito compartment, and vice versa. We apply our construction to the real dengue epidemic data from SB Hospital, Bandung, Indonesia, during the period of outbreak Nov. 25, 2008-Dec. 2012. We also propose two scenarios to determine the take-off rate of infection at the beginning of a dengue epidemic for construction of the estimates of ℛ 0: scenario I from equation of new cases of dengue with respect to time (daily) and scenario II from equation of new cases of dengue with respect to cumulative number of new cases of dengue. The results show that our first construction of ℛ 0 accommodates the take-off rate differences between mosquitoes and humans. Our second construction of the ℛ 0 estimation takes into account the presence of infective mosquitoes in the early growth rate of infective humans and vice versa. We conclude that the second approach is more realistic, compared with our first approach and the previous work.

  8. Neural basis for dynamic updating of object representation in visual working memory.

    PubMed

    Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun

    2010-02-15

    In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.

  9. A contemporary look at Hermann Hankel's 1861 pioneering work on Lagrangian fluid dynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel; Grimberg, Gérard; Villone, Barbara

    2017-12-01

    The present paper is a companion to the paper by Villone and Rampf (2017), titled "Hermann Hankel's On the general theory of motion of fluids, an essay including an English translation of the complete Preisschrift from 1861" together with connected documents [Eur. Phys. J. H 42, 557-609 (2017)]. Here we give a critical assessment of Hankel's work, which covers many important aspects of fluid dynamics considered from a Lagrangian-coordinates point of view: variational formulation in the spirit of Hamilton for elastic (barotropic) fluids, transport (we would now say Lie transport) of vorticity, the Lagrangian significance of Clebsch variables, etc. Hankel's work is also put in the perspective of previous and future work. Hence, the action spans about two centuries: from Lagrange's 1760-1761 Turin paper on variational approaches to mechanics and fluid mechanics problems to Arnold's 1966 founding paper on the geometrical/variational formulation of incompressible flow. The 22-year-old Hankel - who was to die 12 years later — emerges as a highly innovative master of mathematical fluid dynamics, fully deserving Riemann's assessment that his Preisschrift contains "all manner of good things."

  10. Variational dynamic background model for keyword spotting in handwritten documents

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Wshah, Safwan; Govindaraju, Venu

    2013-12-01

    We propose a bayesian framework for keyword spotting in handwritten documents. This work is an extension to our previous work where we proposed dynamic background model, DBM for keyword spotting that takes into account the local character level scores and global word level scores to learn a logistic regression classifier to separate keywords from non-keywords. In this work, we add a bayesian layer on top of the DBM called the variational dynamic background model, VDBM. The logistic regression classifier uses the sigmoid function to separate keywords from non-keywords. The sigmoid function being neither convex nor concave, exact inference of VDBM becomes intractable. An expectation maximization step is proposed to do approximate inference. The advantage of VDBM over the DBM is multi-fold. Firstly, being bayesian, it prevents over-fitting of data. Secondly, it provides better modeling of data and an improved prediction of unseen data. VDBM is evaluated on the IAM dataset and the results prove that it outperforms our prior work and other state of the art line based word spotting system.

  11. Globular cluster formation - The fossil record

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Lin, Douglas N. C.

    1992-01-01

    Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.

  12. Transient Mobility on Submonolayer Island Growth: An Exploration of Asymptotic Effects in Modeling

    NASA Astrophysics Data System (ADS)

    Morales-Cifuentes, Josue; Einstein, Theodore L.; Pimpinelli, Alberto

    In studies of epitaxial growth, modeling of the smallest stable cluster (i+1 monomers, with i the critical nucleus size), is paramount in understanding growth dynamics. Our previous work has tackled submonolayer growth by modeling the effect of ballistic monomers, hot-precursors, on diffusive dynamics. Different scaling regimes and energies were predicted, with initial confirmation by applying to para-hexaphenyl submonolayer studies. Lingering questions about the applicability and behavior of the model are addressed. First, we show how an asymptotic approximation based on the growth exponent, α (N Fα) allows for robustness of modeling to experimental data; second, we answer questions about non-monotonicity by exploring the behavior of the growth exponent across realizable parameter spaces; third, we revisit our previous para-hexaphenyl work and examine relevant physical parameters, namely the speed of the hot-monomers. We conclude with an exploration of how the new asymptotic approximation can be used to strengthen the application of our model to other physical systems.

  13. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE PAGES

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    2018-01-09

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  14. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics.

    PubMed

    Schmidt, Steven R; Katti, Dinesh R; Ghosh, Pijush; Katti, Kalpana S

    2005-08-16

    The mechanical response of the interlayer of hydrated montmorillonite was evaluated using steered molecular dynamics. An atomic model of the sodium montmorillonite was previously constructed. In the current study, the interlayer of the model was hydrated with multiple layers of water. Using steered molecular dynamics, external forces were applied to individual atoms of the clay surface, and the response of the model was studied. The displacement versus applied stress and stress versus strain relationships of various parts of the interlayer were studied. The paper describes the construction of the model, the simulation procedure, and results of the simulations. Some results of the previous work are further interpreted in the light of the current research. The simulations provide quantitative stress deformation relationships as well as an insight into the molecular interactions taking place between the clay surface and interlayer water and cations.

  15. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    PubMed

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  16. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  17. A dynamic data source selection system for smartwatch platform.

    PubMed

    Nemati, Ebrahim; Sideris, Konstantinos; Kalantarian, Haik; Sarrafzadeh, Majid

    2016-08-01

    A novel data source selection algorithm is proposed for ambulatory activity tracking of elderly people. The algorithm introduces the concept of dynamic switching between the data collection modules (a smartwatch and a smartphone) to improve accuracy and battery life using contextual information. We show that by making offloading decisions as a function of activity, the proposed algorithm improves power consumption and accuracy of the previous work by 7 hours and 5% respectively compared to the baseline.

  18. A Structural Characterization of Temporal Dynamic Controllability

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2006-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. Previous work has presented an O(N5) algorithm for testing this property. Here, we introduce a new analysis of temporal cycles that leads to an O(N4) algorithm.

  19. A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion

    PubMed Central

    Charles, James P.; Cappellari, Ornella; Hutchinson, John R.

    2018-01-01

    Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations. PMID:29868576

  20. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    NASA Astrophysics Data System (ADS)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  1. On Teaching Adaptively

    ERIC Educational Resources Information Center

    Corno, Lyn

    2008-01-01

    New theory on adaptive teaching reflects the social dynamics of classrooms to explain what practicing teachers do to address student differences related to learning. In teaching adaptively, teachers respond to learners as they work. Teachers read student signals to diagnose needs on the fly and tap previous experience with similar learners to…

  2. Earthquake fracture energy inferred from kinematic rupture models on extended faults

    USGS Publications Warehouse

    Tinti, E.; Spudich, P.; Cocco, M.

    2005-01-01

    We estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4 ?? 105 and 2 ?? 107 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production. Copyright 2005 by the American Geophysical Union.

  3. Learning about friction: group dynamics in engineering students' work with free body diagrams

    NASA Astrophysics Data System (ADS)

    Berge, Maria; Weilenmann, Alexandra

    2014-11-01

    In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body diagrams in interaction. By looking at details in interaction among a group of three engineering students, we illustrate how they collectively construct a free body diagram together when learning introductory mechanics. In doing so, we have focused on both learning possibilities and the dynamic processes that take place in the learning activity. These findings have a number of implications for educational practice.

  4. Dynamic Control of Plans with Temporal Uncertainty

    NASA Technical Reports Server (NTRS)

    Morris, Paul; Muscettola, Nicola; Vidal, Thierry

    2001-01-01

    Certain planning systems that deal with quantitative time constraints have used an underlying Simple Temporal Problem solver to ensure temporal consistency of plans. However, many applications involve processes of uncertain duration whose timing cannot be controlled by the execution agent. These cases require more complex notions of temporal feasibility. In previous work, various "controllability" properties such as Weak, Strong, and Dynamic Controllability have been defined. The most interesting and useful Controllability property, the Dynamic one, has ironically proved to be the most difficult to analyze. In this paper, we resolve the complexity issue for Dynamic Controllability. Unexpectedly, the problem turns out to be tractable. We also show how to efficiently execute networks whose status has been verified.

  5. Bio-inspired network optimization in soft materials — Insights from the plant cell wall

    NASA Astrophysics Data System (ADS)

    Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.

    2009-01-01

    The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.

  6. Computational Fluid Dynamics at ICMA (Institute for Computational Mathematics and Applications)

    DTIC Science & Technology

    1988-10-18

    PERSONAL. AUTHOR(S) Charles A. Hall and Thomas A. Porsching 13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (YearMOth, De ) 1. PAGE COUNT...of ten ICtA (Institute for Computational Mathe- matics and Applications) personnel, relating to the general area of computational fluid mechanics...questions raised in the previous subsection. Our previous work in this area concentrated on a study of the differential geometric aspects of the prob- lem

  7. The default mode network and the working memory network are not anti-correlated during all phases of a working memory task.

    PubMed

    Piccoli, Tommaso; Valente, Giancarlo; Linden, David E J; Re, Marta; Esposito, Fabrizio; Sack, Alexander T; Di Salle, Francesco

    2015-01-01

    The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between "task-positive" and "task-negative" brain networks. Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.

  8. The Default Mode Network and the Working Memory Network Are Not Anti-Correlated during All Phases of a Working Memory Task

    PubMed Central

    Piccoli, Tommaso; Valente, Giancarlo; Linden, David E. J.; Re, Marta; Esposito, Fabrizio; Sack, Alexander T.; Salle, Francesco Di

    2015-01-01

    Introduction The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. Methods To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. Results We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between “task-positive” and “task-negative” brain networks. Conclusions Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network. PMID:25848951

  9. Dynamic feature analysis of vector-based images for neuropsychological testing

    NASA Astrophysics Data System (ADS)

    Smith, Stephen L.; Cervantes, Basilio R.

    1998-07-01

    The dynamic properties of human motor activities, such as those observed in the course of drawing simple geometric shapes, are considerably more complex and often more informative than the goal to be achieved; in this case a static line drawing. This paper demonstrates how these dynamic properties may be used to provide a means of assessing a patient's visuo-spatial ability -- an important component of neuropsychological testing. The work described here provides a quantitative assessment of visuo-spatial ability, whilst preserving the conventional test environment. Results will be presented for a clinical population of long-term haemodialysis patients and test population comprises three groups of children (1) 7-8 years, (2) 9-10 years and (3) 11-12 years, all of which have no known neurological dysfunction. Ten new dynamic measurements extracted from patient responses in conjunction with one static feature deduced from earlier work describe a patient's visuo-spatial ability in a quantitative manner with sensitivity not previously attainable. The dynamic feature measurements in isolation provide a unique means of tracking a patient's approach to motor activities and could prove useful in monitoring a child' visuo-motor development.

  10. Sonification Design for Complex Work Domains: Dimensions and Distractors

    ERIC Educational Resources Information Center

    Anderson, Janet E.; Sanderson, Penelope

    2009-01-01

    Sonification--representing data in sound--is a potential method for supporting human operators who have to monitor dynamic processes. Previous research has investigated a limited number of sound dimensions and has not systematically investigated the impact of dimensional interactions on sonification effectiveness. In three experiments the authors…

  11. What Motivates the Motivators? An Examination of Sports Coaches

    ERIC Educational Resources Information Center

    McLean, Kristy N.; Mallett, Clifford J.

    2012-01-01

    Background: Motivation is central to successful performance. In the case of sports coaches, drive is a prerequisite to sustained successful engagement in a complex, dynamic, and turbulent work environment. What fuels these coaches' drive to pursue this vocational activity? Coach motivation has been underrepresented in previous research which has…

  12. Dynamic Cognitive Tracing: Towards Unified Discovery of Student and Cognitive Models

    ERIC Educational Resources Information Center

    Gonzalez-Brenes, Jose P.; Mostow, Jack

    2012-01-01

    This work describes a unified approach to two problems previously addressed separately in Intelligent Tutoring Systems: (i) Cognitive Modeling, which factorizes problem solving steps into the latent set of skills required to perform them; and (ii) Student Modeling, which infers students' learning by observing student performance. The practical…

  13. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  14. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  15. The effects of spatial dynamics on a wormhole throat

    NASA Astrophysics Data System (ADS)

    Alias, Anuar; Wan Abdullah, Wan Ahmad Tajuddin

    2018-02-01

    Previous studies on dynamic wormholes were focused on the dynamics of the wormhole itself, be it either rotating or evolutionary in character and also in various frameworks from classical to braneworld cosmological models. In this work, we modeled a dynamic factor that represents the spatial dynamics in terms of spacetime expansion and contraction surrounding the wormhole itself. Using an RS2-based braneworld cosmological model, we modified the spacetime metric of Wong and subsequently employed the method of Bronnikov, where it is observed that a traversable wormhole is easier to exist in an expanding brane universe, however it is difficult to exist in a contracting brane universe due to stress-energy tensors requirement. This model of spatial dynamic factor affecting the wormhole throat can also be applied on the cyclic or the bounce universe model.

  16. Dynamic Stall Patterns

    NASA Astrophysics Data System (ADS)

    Davidson, Phillip; Babbitt, Ashli; Magstadt, Andrew; Nikoueeyan, Pourya; Naughton, Jonathan; Jonathan Naughton Team

    2014-11-01

    The performance of helicopter and wind turbine blades is affected by dynamic stall. Dynamic stall has received considerable attention, but it is still difficult to simulate and not fully understood. Over the past seven years, many airfoils for helicopter and wind turbine use ranging from 9.5 to 30% thick have been experimentally tested and simulated while dynamically pitching to further characterize dynamic stall. Tests have been run at chord Reynolds number between 225,000-440,000 for various reduced frequencies, mean angles of attack, and oscillation amplitudes. Characterization of stall has been accomplished using data from previous studies as well as the unsteady pressure and flow-field data available from our own work. Where available, combined surface and flow-field data allow for clear identification of the types of stall observed and the flow structure associated with them. The results indicate that thin airfoil stall, leading edge stall, and trailing edge stall are observed in the oscillating airfoil experiments and simulations. These three main stall types are further divided into subcategories. By improving our understanding of the features of dynamic stall, it is expected that physics-based simulations can be improved. Work supported by DOE and a gift from BP.

  17. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.

  18. Dynamical simulations of the HR8799 planetary system

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Horner, J.; Carter, A.

    2010-10-01

    HR8799 is a young (20-160 Myr) A-dwarf main sequence star with a debris disc detected by IRAS (InfraRed Astronomical Satellite). In 2008, it was one of two stars around which exoplanets were directly imaged for the first time. The presence of three Jupiter-mass planets around HR8799 provoked much interest in modelling the dynamical stability of the system. Initial simulations indicated that the observed planetary architecture was unstable on timescales much shorter than the lifetime of the star (~105 yr). Subsequent models suggested that the system could be stable if the planets were locked in a 1:2:4 mutual mean motion resonance (MMR). In this work, we have examined the influence of varying orbital eccentricity and the semi-major axis on the stability of the three-planet system, through dynamical simulations using the MERCURY n-body integrator. We find that, in agreement with previous work on this system, the 1:2:4 MMR is the most stable planetary configuration, and that the system stability is dominated by the interaction between the inner pair of planets. In contrast to previous results, we find that with small eccentricities, the three-planet system can be stable for timescales comparable to the system lifetime and, potentially, much longer.

  19. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  20. Water transport, free volume, and polymer dynamics in crosslinked polymer networks

    NASA Astrophysics Data System (ADS)

    Frieberg, Bradley; Soles, Christopher

    Many technologies rely on amorphous polymer membranes that selectively transport small molecules or ions, which has led to a significant scientific interest in elucidating the mechanisms of transport. A recurring theme among several different materials systems is that free volume and polymer chain dynamics facilitate transport. In order to understand the interplay between free volume, transport and polymer dynamics we quantify these properties for a model epoxy network. The epoxy chemistry allows for systematically varying both the structural rigidity of the network as well as the cross-link density. We performed positron annihilation lifetime spectroscopy measurements to characterize the unoccupied volume and correlated the unoccupied volume to the equilibrium moisture uptake and effective diffusion coefficient. We have recently extended this work to include polymer dynamics measured by quasi-elastic neutron scattering on the NIST High Flux Backscatter Spectrometer. These measurements reveal a strong correlation between the MSD and the transport kinetics, which was even stronger than the correlation previously observed between free volume and water diffusion. These observations challenge previous theories that suggest free volume governs transport.

  1. Quantum dynamical simulation of photoinduced electron transfer processes in dye-semiconductor systems: theory and application to coumarin 343 at TiO₂.

    PubMed

    Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael

    2015-04-10

    A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.

  2. Ion conduction in high ion content PEO-based ionomers

    NASA Astrophysics Data System (ADS)

    Caldwell, David, II; Maranas, Janna

    Solid Polymer Electrolytes (SPEs) can enable the design of batteries that are safer and have higher capacity than batteries with traditional volatile organic electrolytes. The current limitation for SPEs is their low conductivity, resulting from a conduction mechanism strongly coupled to the dynamics of the polymer host matrix. Our previous work indicated the possibility of a conduction mechanism through the use of ion aggregates. In order to investigate this mechanism, we performed a series of molecular dynamics simulations of PEO-based ionomers at high ion content. Our results indicate that conduction through ion aggregates are partially decoupled from polymer dynamics and could enable the development of higher conductive SPEs.

  3. Effects of resource quality on the population dynamics of the Indian meal moth Plodia interpunctella and its granulovirus.

    PubMed

    McVean, Ross I; Sait, Steve M; Thompson, David J; Begon, Mike

    2002-03-01

    Although the Plodia interpunctella-granulovirus system is one of the most studied models for insect-pathogen interactions, there are relatively few precise data on the dynamics of the virus in coexisting populations of these two organisms. Previous work has suggested that resource quality, in terms of the diet supplied to P. interpunctella, has a strong effect on the population dynamics of host and pathogen. Here we investigate the impact of resource-dependent host patterns of abundance on pathogen dynamics and prevalence. In the laboratory, three populations of P. interpunctella feeding on a good quality food and infected with a granulovirus were compared with three populations also infected with a granulovirus but feeding on poor quality food. Populations feeding on good quality food produced larger adult moths, and had greater numbers of adult moths, healthy larvae, and virus-infected larvae. A higher proportion of larvae in these good quality populations were infected with virus, and adult moths exhibited cyclic fluctuations in abundance, unlike those on poor quality food. This cyclic behaviour was shown to be associated with cycles in the age structure of the larval population. Previous theoretical work suggests that these cycles may result from asymmetric competition between young and old larvae. Cyclic fluctuations in the proportion of infected larvae, that occurred on good, but not on poor quality food, were also shown to be related to cycles in the age structure of the larval population.

  4. Numerical Simulation of Protoplanetary Vortices

    NASA Technical Reports Server (NTRS)

    Lin, H.; Barranco, J. A.; Marcus, P. S.

    2003-01-01

    The fluid dynamics within a protoplanetary disk has been attracting the attention of many researchers for a few decades. Previous works include, to list only a few among many others, the well-known prescription of Shakura & Sunyaev, the convective and instability study of Stone & Balbus and Hawley et al., the Rossby wave approach of Lovelace et al., as well as a recent work by Klahr & Bodenheimer, which attempted to identify turbulent flow within the disk. The disk is commonly understood to be a thin gas disk rotating around a central star with differential rotation (the Keplerian velocity), and the central quest remains as how the flow behavior deviates (albeit by a small amount) from a strong balance established between gravitational and centrifugal forces, transfers mass and momentum inward, and eventually forms planetesimals and planets. In earlier works we have briefly described the possible physical processes involved in the disk; we have proposed the existence of long-lasting, coherent vortices as an efficient agent for mass and momentum transport. In particular, Barranco et al. provided a general mathematical framework that is suitable for the asymptotic regime of the disk; Barranco & Marcus (2000) addressed a proposed vortex-dust interaction mechanism which might lead to planetesimal formation; and Lin et al. (2002), as inspired by general geophysical vortex dynamics, proposed basic mechanisms by which vortices can transport mass and angular momentum. The current work follows up on our previous effort. We shall focus on the detailed numerical implementation of our problem. We have developed a parallel, pseudo-spectral code to simulate the full three-dimensional vortex dynamics in a stably-stratified, differentially rotating frame, which represents the environment of the disk. Our simulation is validated with full diagnostics and comparisons, and we present our results on a family of three-dimensional, coherent equilibrium vortices.

  5. Targeted Approach to Overcoming Treatment Resistance in Advanced Prostate Cancer

    DTIC Science & Technology

    2013-07-01

    molecular   dynamics  as  in  our  previous  works  (Vasilyeva,  A  et  al,  2009;  Vasilyeva,  A   et...results  and  pitfalls.     Molecular  docking  experiments  were  performed  as   follows:   The   molecular  docking  was...al,  2010;Salsbury.  2010).  However,  for  this  work  more  extensive   simulations

  6. Development of interatomic potential of Ge(1- x - y )Si x Sn y ternary alloy semiconductors for classical lattice dynamics simulation

    NASA Astrophysics Data System (ADS)

    Tomita, Motohiro; Ogasawara, Masataka; Terada, Takuya; Watanabe, Takanobu

    2018-04-01

    We provide the parameters of Stillinger-Weber potentials for GeSiSn ternary mixed systems. These parameters can be used in molecular dynamics (MD) simulations to reproduce phonon properties and thermal conductivities. The phonon dispersion relation is derived from the dynamical structure factor, which is calculated by the space-time Fourier transform of atomic trajectories in an MD simulation. The phonon properties and thermal conductivities of GeSiSn ternary crystals calculated using these parameters mostly reproduced both the findings of previous experiments and earlier calculations made using MD simulations. The atomic composition dependence of these properties in GeSiSn ternary crystals obtained by previous studies (both experimental and theoretical) and the calculated data were almost exactly reproduced by our proposed parameters. Moreover, the results of the MD simulation agree with the previous calculations made using a time-independent phonon Boltzmann transport equation with complicated scattering mechanisms. These scattering mechanisms are very important in complicated nanostructures, as they allow the heat-transfer properties to be more accurately calculated by MD simulations. This work enables us to predict the phonon- and heat-related properties of bulk group IV alloys, especially ternary alloys.

  7. Laboring to Relate: Neoliberalism, Embodied Policy, and Network Dynamics

    ERIC Educational Resources Information Center

    Ball, Stephen J.

    2017-01-01

    This paper builds on previous research (Ball, 2012, Ball & Junemann, 2012) to explore some aspects of the embodiment of policy. The author draws on Larner and Laurie's (2010) work on technocratic expertise and how, as she puts it, "privatisation ideas and practices are transferred in embodied forms," and in particular her argument…

  8. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    PubMed

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  9. Efficient reinforcement learning of a reservoir network model of parametric working memory achieved with a cluster population winner-take-all readout mechanism.

    PubMed

    Cheng, Zhenbo; Deng, Zhidong; Hu, Xiaolin; Zhang, Bo; Yang, Tianming

    2015-12-01

    The brain often has to make decisions based on information stored in working memory, but the neural circuitry underlying working memory is not fully understood. Many theoretical efforts have been focused on modeling the persistent delay period activity in the prefrontal areas that is believed to represent working memory. Recent experiments reveal that the delay period activity in the prefrontal cortex is neither static nor homogeneous as previously assumed. Models based on reservoir networks have been proposed to model such a dynamical activity pattern. The connections between neurons within a reservoir are random and do not require explicit tuning. Information storage does not depend on the stable states of the network. However, it is not clear how the encoded information can be retrieved for decision making with a biologically realistic algorithm. We therefore built a reservoir-based neural network to model the neuronal responses of the prefrontal cortex in a somatosensory delayed discrimination task. We first illustrate that the neurons in the reservoir exhibit a heterogeneous and dynamical delay period activity observed in previous experiments. Then we show that a cluster population circuit decodes the information from the reservoir with a winner-take-all mechanism and contributes to the decision making. Finally, we show that the model achieves a good performance rapidly by shaping only the readout with reinforcement learning. Our model reproduces important features of previous behavior and neurophysiology data. We illustrate for the first time how task-specific information stored in a reservoir network can be retrieved with a biologically plausible reinforcement learning training scheme. Copyright © 2015 the American Physiological Society.

  10. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    DOE PAGES

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; ...

    2017-12-15

    This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less

  11. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine

    This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less

  12. The dynamic spillover of satisfaction between work and marriage: the role of time and mood.

    PubMed

    Heller, Daniel; Watson, David

    2005-11-01

    Previous research has indicated important linkages between work and family domains and roles. However, the nature of the dynamic spillover between job and marital satisfaction remains poorly understood. The current study tests both the concurrent and lagged associations between job and marital satisfaction at a within-individual level of analysis using a diary study of 76 fully employed, married adults. The authors further examine the mediating role of mood in this spillover process. Consistent with their hypotheses, findings indicate both a concurrent and a lagged (job to marital and marital to job) job satisfaction-marital satisfaction association at the within-subject level of analysis and lend some support for the mediating role of mood (most notably positive affect) in these associations. The authors hope these findings stimulate new research that uses more complex designs and comprehensive theoretical models to investigate work-family links. ((c) 2005 APA, all rights reserved).

  13. Body measurements of Chinese males in dynamic postures and application.

    PubMed

    Wang, Y J; Mok, P Y; Li, Y; Kwok, Y L

    2011-11-01

    It is generally accepted that there is a relationship between body dimensions, body movement and clothing wearing ease design, and yet previous research in this area has been neither sufficient nor systematic. This paper proposes a method to measure the human body in the static state and in 17 dynamic postures, so as to understand dimensional changes of different body parts during dynamic movements. Experimental work is carried out to collect 30 measurements of 10 male Chinese subjects in both static and dynamic states. Factor analysis is used to analyse body measurement data in a static state, and such key measurements describe the characteristics of different body figures. Moreover, one-way ANOVA is used to analyse how dynamic postures affect these key body measurements. Finally, an application of the research results is suggested: a dynamic block patternmaking method for high-performance clothing design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.

    2011-02-01

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  15. Exploiting molecular dynamics in Nested Sampling simulations of small peptides

    NASA Astrophysics Data System (ADS)

    Burkoff, Nikolas S.; Baldock, Robert J. N.; Várnai, Csilla; Wild, David L.; Csányi, Gábor

    2016-04-01

    Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.

  16. Fine golden rings: Tunable surface plasmon resonance from assembled nanorods in topological defects of liquid crystals

    DOE PAGES

    Lee, Elaine; Xia, Yu; Ferrier, Jr., Robert C.; ...

    2016-02-08

    Unprecedented, reversible, and dynamic control over an assembly of gold nanorods dispersed in liquid crystals (LC) is demonstrated. The LC director field is dynamically tuned at the nanoscale using microscale ring confinement through the interplay of elastic energy at different temperatures, thus fine-tuning its core replacement energy to reversibly sequester nanoscale inclusions at the microscale. As a result, this leads to shifts of 100 nm or more in the surface plasmon resonance peak, an order of magnitude greater than any previous work with AuNR composites.

  17. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  18. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    NASA Astrophysics Data System (ADS)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  19. Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element

    NASA Astrophysics Data System (ADS)

    Doolittle, Charles; Goldstein, David

    2009-11-01

    Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.

  20. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotationalmore » relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.« less

  1. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  2. A quantum dynamics study of the benzopyran ring opening guided by laser pulses

    NASA Astrophysics Data System (ADS)

    Saab, Mohamad; Doriol, Loïc Joubert; Lasorne, Benjamin; Guérin, Stéphane; Gatti, Fabien

    2014-10-01

    The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump-dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.

  3. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction.

    PubMed

    Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M

    2012-09-01

    The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.

  4. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  5. Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.

    1993-01-01

    Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.

  6. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  7. Lifetime of Major Histocompatibility Complex Class-I Membrane Clusters Is Controlled by the Actin Cytoskeleton

    PubMed Central

    Lavi, Yael; Gov, Nir; Edidin, Michael; Gheber, Levi A.

    2012-01-01

    Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters. PMID:22500754

  8. Switching among graphic patterns is governed by oscillatory coordination dynamics: implications for understanding handwriting

    PubMed Central

    Zanone, Pier-Giorgio; Athènes, Sylvie

    2013-01-01

    Revisiting an original idea by Hollerbach (1981), previous work has established that the production of graphic shapes, assumed to be the blueprint for handwriting, is governed by the dynamics of orthogonal non-linear coupled oscillators. Such dynamics determines few stable coordination patterns, giving rise to a limited set of preferred graphic shapes, namely, four lines and four ellipsoids independent of orientation. The present study investigates the rules of switching among such graphic coordination patterns. Seven participants were required to voluntarily switch within twelve pairs of shapes presented on a graphic tablet. In line with previous theoretical and experimental work on bimanual coordination, results corroborated our hypothesis that the relative stability of the produced coordination patterns determines the time needed for switching: the transition to a more stable pattern was shorter, and inversely. Moreover, switching between patterns with the same orientation but different eccentricities was faster than with a change in orientation. Nonetheless, the switching time covaried strictly with the change in relative phase effected by the transition between two shapes, whether this implied a change in eccentricity or in orientation. These findings suggest a new operational definition of what the (motor) units or strokes of handwriting are and shed a novel light on how coarticulation and recruitment of degrees of freedom may occur in graphic skills. They also yield some leads for understanding the acquisition and the neural underpinnings of handwriting. PMID:24069014

  9. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach

    PubMed Central

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.

    2015-01-01

    Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881

  10. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach.

    PubMed

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R

    2015-09-15

    Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.

  11. Measuring mountain river discharge using seismographs emplaced within the hyporheic zone

    Treesearch

    R. E. Anthony; R. C. Aster; S. Ryan; S. Rathburn; M. G. Baker

    2018-01-01

    Flow and sediment transport dynamics in fluvial systems play critical roles in shaping river morphology, in the design and use of riverine infrastructure, and in the broader management of watersheds. However, these properties are often difficult to measure comprehensively. Previous work has suggested the use of proximal seismic signals resulting from flow and bed load...

  12. From Incarceration to Community College to Work: Racial Microaggressions and Reintegration in the Prison-to-School Pipeline

    ERIC Educational Resources Information Center

    Giraldo, Luis Gustavo

    2016-01-01

    As student diversity in higher education continues to encompass myriad groups that include numerous intersecting combinations of backgrounds, higher education actors must be aware of the changing dynamics of the 21st century student. These changes include growing numbers of previously incarcerated and formerly gang-involved students seeking higher…

  13. Understanding original antigenic sin in influenza with a dynamical system.

    PubMed

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  14. Vowel selection and its effects on perturbation and nonlinear dynamic measures.

    PubMed

    Maccallum, Julia K; Zhang, Yu; Jiang, Jack J

    2011-01-01

    Acoustic analysis of voice is typically conducted on recordings of sustained vowel phonation. This study applied perturbation and nonlinear dynamic analyses to the vowels /a/, /i/, and /u/ in order to determine vowel selection effects on analysis. Forty subjects (20 males and 20 females) with normal voices participated in recording. Traditional parameters of fundamental frequency, signal-to-noise ratio, percent jitter, and percent shimmer were calculated for the signals using CSpeech. Nonlinear dynamic parameters of correlation dimension and second-order entropy were also calculated. Perturbation analysis results were largely incongruous in this study and in previous research. Fundamental frequency results corroborated previous work, indicating higher fundamental frequency for /i/ and /u/ and lower fundamental frequency for /a/. Signal-to-noise ratio results showed that /i/ and /u/ have greater harmonic levels than /a/. Results of nonlinear dynamic analysis suggested that more complex activity may be evident in /a/ than in /i/ or /u/. Percent jitter and percent shimmer may not be useful for description of acoustic differences between vowels. Fundamental frequency, signal-to-noise ratio, and nonlinear dynamic parameters may be applied to characterize /a/ as having lower frequency, higher noise, and greater nonlinear components than /i/ and /u/. Copyright © 2010 S. Karger AG, Basel.

  15. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less

  16. A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse

    DOE PAGES

    Shi, E. L.; Hakim, A. H.; Hammett, G. W.

    2015-02-03

    An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less

  17. Simple neural substrate predicts complex rhythmic structure in duetting birds

    NASA Astrophysics Data System (ADS)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  18. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  19. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  20. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  1. Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.

    PubMed

    Majumdar, Angshul

    2013-06-01

    In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank penalties should be represented by the l(0)-norm and the rank of a matrix; however both are NP hard penalties. The previous studies used the convex l(1)-norm as a surrogate for the l(0)-norm and the non-convex Schatten-q norm (0

  2. Perceiving while producing: Modeling the dynamics of phonological planning

    PubMed Central

    Roon, Kevin D.; Gafos, Adamantios I.

    2016-01-01

    We offer a dynamical model of phonological planning that provides a formal instantiation of how the speech production and perception systems interact during online processing. The model is developed on the basis of evidence from an experimental task that requires concurrent use of both systems, the so-called response-distractor task in which speakers hear distractor syllables while they are preparing to produce required responses. The model formalizes how ongoing response planning is affected by perception and accounts for a range of results reported across previous studies. It does so by explicitly addressing the setting of parameter values in representations. The key unit of the model is that of the dynamic field, a distribution of activation over the range of values associated with each representational parameter. The setting of parameter values takes place by the attainment of a stable distribution of activation over the entire field, stable in the sense that it persists even after the response cue in the above experiments has been removed. This and other properties of representations that have been taken as axiomatic in previous work are derived by the dynamics of the proposed model. PMID:27440947

  3. How good strong union men line it out: explorations of the structure and dynamics of coal-miners' class consciousness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarrow, M.N.

    1982-01-01

    This study explores how working-class people apprehend and analyze the class dynamics of their social world. As an exploratory empirical study of the structure and dynamics of working-class consciousness, it seeks to develop the theory of actual class consciousness by bringing previous theories into dialogue with the articulated analyses of coal miners in central Appalachia. Although changing conditions are shown to have a powerful effect on class consciousness, the respondents were found to respond differently to the changing context and to remain loyal to important elements of their earlier perspectives. Suggestions are made for how the theory could be developedmore » further. The data for the study are flexibly structured interviews which were conducted with active, retired, and disabled miners in southern West Virginia and western Virginia. A dozen miners were interviewed during the 1978 strike and again the following summer; during the summer of 1978, nineteen additional miners were interviewed.« less

  4. Mechanical model development of rolling bearing-rotor systems: A review

    NASA Astrophysics Data System (ADS)

    Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng

    2018-03-01

    The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.

  5. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics

    NASA Astrophysics Data System (ADS)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  6. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics.

    PubMed

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  7. A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fung, Richard Y. K.

    2018-02-01

    This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.

  8. Detecting and disentangling nonlinear structure from solar flux time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.

    1992-01-01

    Interest in solar activity has grown in the past two decades for many reasons. Most importantly for flight dynamics, solar activity changes the atmospheric density, which has important implications for spacecraft trajectory and lifetime prediction. Building upon the previously developed Rayleigh-Benard nonlinear dynamic solar model, which exhibits many dynamic behaviors observed in the Sun, this work introduces new chaotic solar forecasting techniques. Our attempt to use recently developed nonlinear chaotic techniques to model and forecast solar activity has uncovered highly entangled dynamics. Numerical techniques for decoupling additive and multiplicative white noise from deterministic dynamics and examines falloff of the power spectra at high frequencies as a possible means of distinguishing deterministic chaos from noise than spectrally white or colored are presented. The power spectral techniques presented are less cumbersome than current methods for identifying deterministic chaos, which require more computationally intensive calculations, such as those involving Lyapunov exponents and attractor dimension.

  9. Simulating market dynamics: interactions between consumer psychology and social networks.

    PubMed

    Janssen, Marco A; Jager, Wander

    2003-01-01

    Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).

  10. Position-based dynamic of a particle system: a configurable algorithm to describe complex behaviour of continuum material starting from swarm robotics

    NASA Astrophysics Data System (ADS)

    dell'Erba, Ramiro

    2018-04-01

    In a previous work, we considered a two-dimensional lattice of particles and calculated its time evolution by using an interaction law based on the spatial position of the particles themselves. The model reproduced the behaviour of deformable bodies both according to the standard Cauchy model and second gradient theory; this success led us to use this method in more complex cases. This work is intended as the natural evolution of the previous one in which we shall consider both energy aspects, coherence with the principle of Saint Venant and we start to manage a more general tool that can be adapted to different physical phenomena, supporting complex effects like lateral contraction, anisotropy or elastoplasticity.

  11. Dynamics and Instabilities of the Shastry-Sutherland Model

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Batista, Cristian D.

    2018-06-01

    We study the excitation spectrum in the dimer phase of the Shastry-Sutherland model by using an unbiased variational method that works in the thermodynamic limit. The method outputs dynamical correlation functions in all possible channels. This output is exploited to identify the order parameters with the highest susceptibility (single or multitriplon condensation in a specific channel) upon approaching a quantum phase transition in the magnetic field versus the J'/J phase diagram. We find four different instabilities: antiferro spin nematic, plaquette spin nematic, stripe magnetic order, and plaquette order, two of which have been reported in previous studies.

  12. Toward a generalized theory of epidemic awareness in social networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Zhu, Wenfang

    We discuss the dynamics of a susceptible-infected-susceptible (SIS) model with local awareness in networks. Individual awareness to the infectious disease is characterized by a general function of epidemic information in its neighborhood. We build a high-accuracy approximate equation governing the spreading dynamics and derive an approximate epidemic threshold above which the epidemic spreads over the whole network. Our results extend the previous work and show that the epidemic threshold is dependent on the awareness function in terms of one infectious neighbor. Interestingly, when a pow-law awareness function is chosen, the epidemic threshold can emerge in infinite networks.

  13. Using Social Network Graphs as Visualization Tools to Influence Peer Selection Decision-Making Strategies to Access Information about Complex Socioscientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan A.

    2011-01-01

    This study extends previous research that explores how visualization affordances that computational tools provide and social network analyses that account for individual- and group-level dynamic processes can work in conjunction to improve learning outcomes. The study's main hypothesis is that when social network graphs are used in instruction,…

  14. Brief Report: Diminished Gaze Preference for Dynamic Social Interaction Scenes in Youth with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Shaffer, Rebecca C.; Pedapati, Ernest V.; Shic, Frederick; Gaietto, Kristina; Bowers, Katherine; Wink, Logan K.; Erickson, Craig A.

    2017-01-01

    In this study, we present an eye-tracking paradigm, adapted from previous work with toddlers, for assessing social-interaction looking preferences in youth ages 5-17 with ASD and typically-developing controls (TDC). Videos of children playing together (Social Scenes, SS) were presented side-by-side with animated geometric shapes (GS). Participants…

  15. Encouraging Survey Participation among Individuals Seeking HIV Prevention Services: Does a Community Identity Match Help or Hurt?

    ERIC Educational Resources Information Center

    Crowley, Jocelyn Elise; Roff, Brian H.; Lynch, Jeneve

    2007-01-01

    Understanding the behaviors and attitudes of at-risk populations is fundamental to controlling the spread of HIV, the virus that causes AIDS. The problem of nonresponse among these populations, however, plagues survey research designed to address these issues. Previous work undertaken to map out the dynamics of nonresponse--both noncontacts and…

  16. Reducing dietary protein in pond production of hybrid striped bass (Morone chrysops x M. saxatilis): Effects on fish performance and water quality dynamics

    USDA-ARS?s Scientific Manuscript database

    In previous work, we demonstrated that diets containing 40% digestible protein (DP) (45% crude protein) and 18 %lipid supplemented with Met and Lys resulted in superior performance and nutrient retentions in hybrid striped bass compared to less energy-dense diets when rearing hybrid striped bass at ...

  17. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  18. Model of chromosomal loci dynamics in bacteria as fractional diffusion with intermittent transport

    NASA Astrophysics Data System (ADS)

    Gherardi, Marco; Calabrese, Ludovico; Tamm, Mikhail; Cosentino Lagomarsino, Marco

    2017-10-01

    The short-time dynamics of bacterial chromosomal loci is a mixture of subdiffusive and active motion, in the form of rapid relocations with near-ballistic dynamics. While previous work has shown that such rapid motions are ubiquitous, we still have little grasp on their physical nature, and no positive model is available that describes them. Here, we propose a minimal theoretical model for loci movements as a fractional Brownian motion subject to a constant but intermittent driving force, and compare simulations and analytical calculations to data from high-resolution dynamic tracking in E. coli. This analysis yields the characteristic time scales for intermittency. Finally, we discuss the possible shortcomings of this model, and show that an increase in the effective local noise felt by the chromosome associates to the active relocations.

  19. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  20. Fluid Fe(1 - x)Hx under extreme conditions

    NASA Astrophysics Data System (ADS)

    Seclaman, Alexandra; Wilson, Hugh F.; Cohen, Ronald E.

    We study the fluid Fe-H binary system using first principles molecular dynamics (FPMD) and a new FPMD-based method, CATS, in order to compute efficiently and accurately the equation of state of Fe-H fluids up to 5 TPa and 30,000K. We constructed GRBV-type LDA pseudopotentials for Fe and H with small rcuts in order to avoid pseudo-core overlap. In the liquid Fe regime we find good agreement with previous works, up to the pressures where data is available. In the high density regime of pure H we also find good agreement with previous results. Previous work has been focused on low Fe concentrations in metallic liquid H. We extend previous studies by investigating several intermediate Fe(1 - x)Hx liquid compositions, as well as metallic liquid H and Fe. Preliminary results indicate extreme compositional pressure effects under isothermic and isochoric conditions, 3.9 TPa difference between Fe and H at 20,000K. Thermal pressure effects are comparatively small, 0.12-0.15 TPa per 10,000K for H and Fe, respectively. Equations of state will be presented and fluid immiscibility will be discussed. This work has been supported by the ERC Advanced Grant ToMCaT and NSF and the Carnegie Institution.

  1. Dynamic thermal expansivity of liquids near the glass transition.

    PubMed

    Niss, Kristine; Gundermann, Ditte; Christensen, Tage; Dyre, Jeppe C

    2012-04-01

    Based on previous works on polymers by Bauer et al. [Phys. Rev. E 61, 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ultraviscous regime. Compared to the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by making very small and fast temperature steps. The modeling of the experiment presented in this paper includes the situation in which the capacitor is not full because the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer.

  2. Vortex dynamics in ruptured and unruptured intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Trylesinski, Gabriel; Varble, Nicole; Xiang, Jianping; Meng, Hui

    2013-11-01

    Intracranial aneurysms (IAs) are potentially devastating pathological dilations of arterial walls that affect 2-5% of the population. In our previous CFD study of 119 IAs, we found that ruptured aneurysms were correlated with complex flow pattern and statistically predictable by low wall shear stress and high oscillatory shear index. To understand flow mechanisms that drive the pathophysiology of aneurysm wall leading to either stabilization or growth and rupture, we aim at exploring vortex dynamics of aneurysmal flow and provide insight into the correlation between the previous predictive morphological parameters and wall hemodynamic metrics. We adopt the Q-criterion definition of coherent structures (CS) and analyze the CS dynamics in aneurysmal flows for both ruptured and unruptured IA cases. For the first time, we draw relevant biological conclusions concerning aneurysm flow mechanisms and pathophysiological outcome. In pulsatile simulations, the coherent structures are analyzed in these 119 patient-specific geometries obtained using 3D angiograms. The images were reconstructed and CFD were performed. Upon conclusion of this work, better understanding of flow patterns of unstable aneurysms may lead to improved clinical outcome.

  3. Band structure dynamics in indium wires

    NASA Astrophysics Data System (ADS)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  4. Quantum molecular dynamics of warm dense iron and a five-phase equation of state

    NASA Astrophysics Data System (ADS)

    Sjostrom, Travis; Crockett, Scott

    2018-05-01

    Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and orbital-free density functional theory, we calculate the equation of state of warm dense iron in the density range 7 -30 g/cm 3 and temperatures from 1 to 100 eV. A critical examination of the iron pseudopotential is made, from which we find a significant improvement at high pressure to the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014), 10.1103/PhysRevE.89.023101]. Our results also significantly extend the ranges of density and temperature that were attempted in that prior work. We calculate the shock Hugoniot and find very good agreement with experimental results to pressures over 20 TPa. These results are then incorporated with previous studies to generate a five-phase equation of state for iron.

  5. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  6. Excitation spectra of liquid iron up to superhigh temperatures

    NASA Astrophysics Data System (ADS)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Brazhkin, V. V.

    2017-08-01

    Investigation of excitation spectra of liquids is one of the hot test topics nowadays. In particular, recent experimental works showed that liquid metals can demonstrate transverse excitations and positive sound dispersion. However, the theoretical description of these experimental observations is still missing. Here we report a molecular dynamics study of excitation spectra of liquid iron. We compare the results with available experimental data to justify the method. After that we perform calculations for high temperatures to find the location of the Frenkel line introduced in our previous works.

  7. Revisiting Higgs inflation in the context of collapse theories

    NASA Astrophysics Data System (ADS)

    Rodriguez, Saul; Sudarsky, Daniel

    2018-03-01

    In this work we consider the Higgs inflation scenario, but in contrast with past works, the present analysis is done in the context of a spontaneous collapse theory for the quantum state of the inflaton field. In particular, we will rely on a previously studied adaptation of the Continuous Spontaneous Localization model for the treatment of inflationary cosmology. We will show that with the introduction of the dynamical collapse hypothesis, some of the most serious problems of the Higgs inflation proposal can be resolved in a natural way.

  8. Evolutionary dynamics under interactive diversity

    NASA Astrophysics Data System (ADS)

    Su, Qi; Li, Aming; Wang, Long

    2017-10-01

    As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.

  9. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    PubMed Central

    Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D.

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in “real-time”) and forecasting (predicting the future) ILI dynamics in the 2011 – 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets. PMID:29244814

  10. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    PubMed

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets.

  11. Mechanism of work hardening in Hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Dastur, Y. N.; Leslie, W. C.

    1981-05-01

    When Hadfield manganese steel in the single-phase austenitic condition was strained in tension, in the temperature range - 25 to 300 °C, it exhibited jerky (serrated) flow, a negative (inverse) strain-rate dependence of flow stress and high work hardening, characteristic of dynamic strain aging. The strain rate-temperature regime of jerky flow was determined and the apparent activation energies for the appearance and disappearance of serrations were found to be 104 kJ/mol and 146 kJ/mol, respectively. The high work hardening cannot be a result of mechanical twinning because at -50 °C numerous twins were produced, but the work hardening was low and no twins were formed above 225 °C even though work hardening was high. The work hardening decreased above 300 °C because of the cessation of dynamic strain aging and increased again above 400 °C because of precipitation of carbides. An apparent activation energy of 138 kJ/mol was measured for static strain aging between 300 and 400 °C, corresponding closely to the activation energies for the disapperance of serrations and for the volume diffusion of carbon in Hadfield steel. Evidence from the present study, together with the known effect of manganese on the activity of carbon in austenite and previous internal friction studies of high-manganese steels, lead to the conclusion that dynamic strain aging, brought about by the reorientation of carbon members of C-Mn couples in the cores of dislocations, is the principal cause of rapid work hardening in Hadfield steel.

  12. Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD

    NASA Astrophysics Data System (ADS)

    Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël

    2016-11-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.

  13. Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy

    PubMed Central

    Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas E.

    2014-01-01

    Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression. PMID:25232010

  14. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  15. Machine Learning-based discovery of closures for reduced models of dynamical systems

    NASA Astrophysics Data System (ADS)

    Pan, Shaowu; Duraisamy, Karthik

    2017-11-01

    Despite the successful application of machine learning (ML) in fields such as image processing and speech recognition, only a few attempts has been made toward employing ML to represent the dynamics of complex physical systems. Previous attempts mostly focus on parameter calibration or data-driven augmentation of existing models. In this work we present a ML framework to discover closure terms in reduced models of dynamical systems and provide insights into potential problems associated with data-driven modeling. Based on exact closure models for linear system, we propose a general linear closure framework from viewpoint of optimization. The framework is based on trapezoidal approximation of convolution term. Hyperparameters that need to be determined include temporal length of memory effect, number of sampling points, and dimensions of hidden states. To circumvent the explicit specification of memory effect, a general framework inspired from neural networks is also proposed. We conduct both a priori and posteriori evaluations of the resulting model on a number of non-linear dynamical systems. This work was supported in part by AFOSR under the project ``LES Modeling of Non-local effects using Statistical Coarse-graining'' with Dr. Jean-Luc Cambier as the technical monitor.

  16. A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolin; Yang, Wei; Hu, Xiaosong; Zhang, Dejiu

    2017-02-01

    In this study, based on our previous work, a novel simplified torsional vibration dynamic model is established to study the torsional vibration characteristics of a compound planetary hybrid propulsion system. The main frequencies of the hybrid driveline are determined. In contrast to vibration characteristics of the previous 16-degree of freedom model, the simplified model can be used to accurately describe the low-frequency vibration property of this hybrid powertrain. This study provides a basis for further vibration control of the hybrid powertrain during the process of engine start/stop.

  17. Validity of thermally-driven small-scale ventilated filling box models

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  18. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Coupled potential energy surface for the F(2P)+CH4→HF+CH3 entrance channel and quantum dynamics of the CH4·F- photodetachment.

    PubMed

    Westermann, Till; Eisfeld, Wolfgang; Manthe, Uwe

    2013-07-07

    An approach to construct vibronically and spin-orbit coupled diabatic potential energy surfaces (PESs) which describe all three relevant electronic states in the entrance channels of the X(P) + CH4 →HX + CH3 reactions (with X=F((2)P), Cl((2)P), or O((3)P)) is introduced. The diabatization relies on the permutational symmetry present in the methane molecule and results in diabatic states which transform as the three p orbitals of the X atom. Spin-orbit coupling is easily and accurately included using the atomic spin-orbit coupling matrix of the isolated X atom. The method is applied to the F + CH4 system obtaining an accurate PES for the entrance channel based on ab initio multi-reference configuration interaction (MRCI) calculations. Comparing the resulting PESs with spin-orbit MRCI calculations, excellent agreement is found for the excited electronic states at all relevant geometries. The photodetachment spectrum of CH4·F(-) is investigated via full-dimensional (12D) quantum dynamics calculations on the coupled PESs using the multi-layer multi-configurational time-dependent Hartree approach. Extending previous work [J. Palma and U. Manthe, J. Chem. Phys. 137, 044306 (2012)], which was restricted to the dynamics on a single adiabatic PES, the contributions of the electronically excited states to the photodetachment spectrum are calculated and compared to experiment. Considering different experimental setups, good agreement between experiment and theory is found. Addressing questions raised in the previous work, the present dynamical calculations show that the main contribution to the second peak in the photodetachment spectrum results from electron detachment into the electronically excited states of the CH4F complex.

  20. A generalized procedure for analyzing sustained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms.

    PubMed

    Unger, Jakob; Schuster, Maria; Hecker, Dietmar J; Schick, Bernhard; Lohscheller, Jörg

    2016-01-01

    This work presents a computer-based approach to analyze the two-dimensional vocal fold dynamics of endoscopic high-speed videos, and constitutes an extension and generalization of a previously proposed wavelet-based procedure. While most approaches aim for analyzing sustained phonation conditions, the proposed method allows for a clinically adequate analysis of both dynamic as well as sustained phonation paradigms. The analysis procedure is based on a spatio-temporal visualization technique, the phonovibrogram, that facilitates the documentation of the visible laryngeal dynamics. From the phonovibrogram, a low-dimensional set of features is computed using a principle component analysis strategy that quantifies the type of vibration patterns, irregularity, lateral symmetry and synchronicity, as a function of time. Two different test bench data sets are used to validate the approach: (I) 150 healthy and pathologic subjects examined during sustained phonation. (II) 20 healthy and pathologic subjects that were examined twice: during sustained phonation and a glissando from a low to a higher fundamental frequency. In order to assess the discriminative power of the extracted features, a Support Vector Machine is trained to distinguish between physiologic and pathologic vibrations. The results for sustained phonation sequences are compared to the previous approach. Finally, the classification performance of the stationary analyzing procedure is compared to the transient analysis of the glissando maneuver. For the first test bench the proposed procedure outperformed the previous approach (proposed feature set: accuracy: 91.3%, sensitivity: 80%, specificity: 97%, previous approach: accuracy: 89.3%, sensitivity: 76%, specificity: 96%). Comparing the classification performance of the second test bench further corroborates that analyzing transient paradigms provides clear additional diagnostic value (glissando maneuver: accuracy: 90%, sensitivity: 100%, specificity: 80%, sustained phonation: accuracy: 75%, sensitivity: 80%, specificity: 70%). The incorporation of parameters describing the temporal evolvement of vocal fold vibration clearly improves the automatic identification of pathologic vibration patterns. Furthermore, incorporating a dynamic phonation paradigm provides additional valuable information about the underlying laryngeal dynamics that cannot be derived from sustained conditions. The proposed generalized approach provides a better overall classification performance than the previous approach, and hence constitutes a new advantageous tool for an improved clinical diagnosis of voice disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Identification of drivers of (dis)liking based on dynamic sensory profiles: Comparison of Temporal Dominance of Sensations and Temporal Check-all-that-apply.

    PubMed

    Ares, Gastón; Alcaire, Florencia; Antúnez, Lucía; Vidal, Leticia; Giménez, Ana; Castura, John C

    2017-02-01

    Temporal Dominance of Sensations (TDS) and Temporal Check-all-that-apply (TCATA) are two multi-attribute methods for dynamic sensory characterization. Previous research has shown that both methodologies provide complementary information. However, it remains an open question which of the two approaches better explains consumers' hedonic perception of products. In this context, the aim of the present work was to compare TDS and TCATA in terms of their ability to identify the influence of the dynamic sensory profile of food products on consumer overall liking scores. Two consumer studies were conducted using two different product categories (French bread and vanilla milk desserts). In each study, a between-subjects design was used to obtain dynamic sensory profiles using TDS and TCATA. After the dynamic sensory characterization tasks consumers rated their liking using a 9-point hedonic scale. Across the two studies, both methodologies provided similar information on the main drivers of liking and disliking, particularly when samples showed clear differences in liking. However, in one of the studies attribute applicability from TCATA provided additional insights on the influence of the dynamics of the sensory characteristics of products on consumers' liking. Results of the present work stress the complementarity between TCATA and TDS and highlight the potentiality of TCATA to provide a more detailed description of the dynamics of sensory perception during consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dynamic working memory performance in individuals with single-domain amnestic mild cognitive impairment.

    PubMed

    Guild, Emma B; Vasquez, Brandon P; Maione, Andrea M; Mah, Linda; Ween, Jon; Anderson, Nicole D

    2014-01-01

    Previous studies have observed poorer working memory performance in individuals with amnestic mild cognitive impairment than in healthy older adults. It is unclear, however, whether these difficulties are true only of the multiple-domain clinical subtype in whom poorer executive functioning is common. The current study examined working memory, as measured by the self-ordered pointing task (SOPT) and an n-back task, in healthy older adults and adults with single-domain amnestic mild cognitive impairment (aMCI). Individuals with single-domain aMCI committed more errors and required longer to develop an organizational strategy on the SOPT. The single-domain aMCI group did not differ from healthy older adults on the 1-back or 2-back, but had poorer discrimination on the 3-back task. This is, to our knowledge, the first characterization of dynamic working memory performance in a single-domain aMCI group. These results lend support for the idea that clinical amnestic MCI subtypes may reflect different stages on a continuum of progression to dementia and question whether standardized measures of working memory (span tasks) are sensitive enough to capture subtle changes in performance.

  3. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  4. Beyond harmonic sounds in a simple model for birdsong production.

    PubMed

    Amador, Ana; Mindlin, Gabriel B

    2008-12-01

    In this work we present an analysis of the dynamics displayed by a simple bidimensional model of labial oscillations during birdsong production. We show that the same model capable of generating tonal sounds can present, for a wide range of parameters, solutions which are spectrally rich. The role of physiologically sensible parameters is discussed in each oscillatory regime, allowing us to interpret previously reported data.

  5. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

  6. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.

  7. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    PubMed

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  8. Musical emotions: predicting second-by-second subjective feelings of emotion from low-level psychoacoustic features and physiological measurements.

    PubMed

    Coutinho, Eduardo; Cangelosi, Angelo

    2011-08-01

    We sustain that the structure of affect elicited by music is largely dependent on dynamic temporal patterns in low-level music structural parameters. In support of this claim, we have previously provided evidence that spatiotemporal dynamics in psychoacoustic features resonate with two psychological dimensions of affect underlying judgments of subjective feelings: arousal and valence. In this article we extend our previous investigations in two aspects. First, we focus on the emotions experienced rather than perceived while listening to music. Second, we evaluate the extent to which peripheral feedback in music can account for the predicted emotional responses, that is, the role of physiological arousal in determining the intensity and valence of musical emotions. Akin to our previous findings, we will show that a significant part of the listeners' reported emotions can be predicted from a set of six psychoacoustic features--loudness, pitch level, pitch contour, tempo, texture, and sharpness. Furthermore, the accuracy of those predictions is improved with the inclusion of physiological cues--skin conductance and heart rate. The interdisciplinary work presented here provides a new methodology to the field of music and emotion research based on the combination of computational and experimental work, which aid the analysis of the emotional responses to music, while offering a platform for the abstract representation of those complex relationships. Future developments may aid specific areas, such as, psychology and music therapy, by providing coherent descriptions of the emotional effects of specific music stimuli. 2011 APA, all rights reserved

  9. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    PubMed

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  10. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    NASA Astrophysics Data System (ADS)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  11. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  12. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  13. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE PAGES

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.; ...

    2017-10-18

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  14. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.

  15. Dynamical analysis of uterine cell electrical activity model.

    PubMed

    Rihana, S; Santos, J; Mondie, S; Marque, C

    2006-01-01

    The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.

  16. Pattern Analysis in Social Networks with Dynamic Connections

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Yu

    In this paper, we explore how decentralized local interactions of autonomous agents in a network relate to collective behaviors. Most existing work in this area models social network in which agent relations are fixed; instead, we focus on dynamic social networks where agents can rationally adjust their neighborhoods based on their individual interests. We propose a new connection evaluation rule called the Highest Weighted Reward (HWR) rule, with which agents dynamically choose their neighbors in order to maximize their own utilities based on the rewards from previous interactions. Our experiments show that in the 2-action pure coordination game, our system will stabilize to a clustering state where all relationships in the network are rewarded with the optimal payoff. Our experiments also reveal additional interesting patterns in the network.

  17. Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series

    NASA Astrophysics Data System (ADS)

    Marchi, Susanna; Guidotti, Diego; Ricciolini, Massimo; Petacchi, Ruggero

    2016-11-01

    Insect dynamics depend on temperature patterns, and therefore, global warming may lead to increasing frequencies and intensities of insect outbreaks. The aim of this work was to analyze the dynamics of the olive fruit fly, Bactrocera oleae (Rossi), in Tuscany (Italy). We profited from long-term records of insect infestation and weather data available from the regional database and agrometeorological network. We tested whether the analysis of 13 years of monitoring campaigns can be used as basis for prediction models of B. oleae infestation. We related the percentage of infestation observed in the first part of the host-pest interaction and throughout the whole year to agrometeorological indices formulated for different time periods. A two-step approach was adopted to inspect the effect of weather on infestation: generalized linear model with a binomial error distribution and principal component regression to reduce the number of the agrometeorological factors and remove their collinearity. We found a consistent relationship between the degree of infestation and the temperature-based indices calculated for the previous period. The relationship was stronger with the minimum temperature of winter season. Higher infestation was observed in years following warmer winters. The temperature of the previous winter and spring explained 66 % of variance of early-season infestation. The temperature of previous winter and spring, and current summer, explained 72 % of variance of total annual infestation. These results highlight the importance of multiannual monitoring activity to fully understand the dynamics of B. oleae populations at a regional scale.

  18. Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series.

    PubMed

    Marchi, Susanna; Guidotti, Diego; Ricciolini, Massimo; Petacchi, Ruggero

    2016-11-01

    Insect dynamics depend on temperature patterns, and therefore, global warming may lead to increasing frequencies and intensities of insect outbreaks. The aim of this work was to analyze the dynamics of the olive fruit fly, Bactrocera oleae (Rossi), in Tuscany (Italy). We profited from long-term records of insect infestation and weather data available from the regional database and agrometeorological network. We tested whether the analysis of 13 years of monitoring campaigns can be used as basis for prediction models of B. oleae infestation. We related the percentage of infestation observed in the first part of the host-pest interaction and throughout the whole year to agrometeorological indices formulated for different time periods. A two-step approach was adopted to inspect the effect of weather on infestation: generalized linear model with a binomial error distribution and principal component regression to reduce the number of the agrometeorological factors and remove their collinearity. We found a consistent relationship between the degree of infestation and the temperature-based indices calculated for the previous period. The relationship was stronger with the minimum temperature of winter season. Higher infestation was observed in years following warmer winters. The temperature of the previous winter and spring explained 66 % of variance of early-season infestation. The temperature of previous winter and spring, and current summer, explained 72 % of variance of total annual infestation. These results highlight the importance of multiannual monitoring activity to fully understand the dynamics of B. oleae populations at a regional scale.

  19. Dealing with uncertainty in modeling intermittent water supply

    NASA Astrophysics Data System (ADS)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  20. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  1. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches tomore » important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed Neutron Source facility of the Argonne National Lab, and Dr. A. Faraone at the NIST Center for Neutron Research. A manuscript reporting the first results of these experiments, which are highly complimentary to our previous NMR, X-ray, and infra-red results for these phases, is currently in preparation. In total, in 2006-2007 our work has resulted in the publication of 14 peer-reviewed research papers. We also devoted considerable effort to making our work known to a wide range of researchers, as indicated by the 24 contributed abstracts and 14 invited presentations.« less

  2. Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior

    NASA Astrophysics Data System (ADS)

    Nijland, Linda; Arentze, Theo; Timmermans, Harry

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individuals indicate the importance of incorporating those pre-planned activities in the new generation of dynamic travel demand models. Elaborating and combining previous work on event-driven activity generation, the aim of this paper is to develop and illustrate an extension of a need-based model of activity generation that takes into account possible influences of pre-planned activities and events. This paper describes the theory and shows the results of simulations of the extension. The simulation was conducted for six different activities, and the parameter values used were consistent with an earlier estimation study. The results show that the model works well and that the influences of the parameters are consistent, logical, and have clear interpretations. These findings offer further evidence of face and construct validity to the suggested modeling approach.

  3. A low dimensional dynamical system for the wall layer

    NASA Technical Reports Server (NTRS)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  4. Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glorioso, Paolo; Crossley, Michael; Liu, Hong

    2017-09-20

    Here in this paper we further develop the fluctuating hydrodynamics proposed in a number of ways. We first work out in detail the classical limit of the hydrodynamical action, which exhibits many simplifications. In particular, this enables a transparent formulation of the action in physical spacetime in the presence of arbitrary external fields. It also helps to clarify issues related to field redefinitions and frame choices. We then propose that the action is invariant under a Z2 symmetry to which we refer as the dynamical KMS symmetry. The dynamical KMS symmetry is physically equivalent to the previously proposed local KMSmore » condition in the classical limit, but is more convenient to implement and more general. It is applicable to any states in local equilibrium rather than just thermal density matrix perturbed by external background fields. Finally we elaborate the formulation for a conformal fluid, which contains some new features, and work out the explicit form of the entropy current to second order in derivatives for a neutral conformal fluid.« less

  5. How Life History Can Sway the Fixation Probability of Mutants

    PubMed Central

    Li, Xiang-Yi; Kurokawa, Shun; Giaimo, Stefano; Traulsen, Arne

    2016-01-01

    In this work, we study the effects of demographic structure on evolutionary dynamics when selection acts on reproduction, survival, or both. In contrast to the previously discovered pattern that the fixation probability of a neutral mutant decreases while the population becomes younger, we show that a mutant with a constant selective advantage may have a maximum or a minimum of the fixation probability in populations with an intermediate fraction of young individuals. This highlights the importance of life history and demographic structure in studying evolutionary dynamics. We also illustrate the fundamental differences between selection on reproduction and selection on survival when age structure is present. In addition, we evaluate the relative importance of size and structure of the population in determining the fixation probability of the mutant. Our work lays the foundation for also studying density- and frequency-dependent effects in populations when demographic structures cannot be neglected. PMID:27129737

  6. Breast cancer screening services: trade-offs in quality, capacity, outreach, and centralization.

    PubMed

    Güneş, Evrim D; Chick, Stephen E; Akşin, O Zeynep

    2004-11-01

    This work combines and extends previous work on breast cancer screening models by explicitly incorporating, for the first time, aspects of the dynamics of health care states, program outreach, and the screening volume-quality relationship in a service system model to examine the effect of public health policy and service capacity decisions on public health outcomes. We consider the impact of increasing standards for minimum reading volume to improve quality, expanding outreach with or without decentralization of service facilities, and the potential of queueing due to stochastic effects and limited capacity. The results indicate a strong relation between screening quality and the cost of screening and treatment, and emphasize the importance of accounting for service dynamics when assessing the performance of health care interventions. For breast cancer screening, increasing outreach without improving quality and maintaining capacity results in less benefit than predicted by standard models.

  7. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    NASA Astrophysics Data System (ADS)

    Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret

    2003-12-01

    A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  8. Dynamic heterogeneities and non-Gaussian behavior in two-dimensional randomly confined colloidal fluids

    NASA Astrophysics Data System (ADS)

    Schnyder, Simon K.; Skinner, Thomas O. E.; Thorneywork, Alice L.; Aarts, Dirk G. A. L.; Horbach, Jürgen; Dullens, Roel P. A.

    2017-03-01

    A binary mixture of superparamagnetic colloidal particles is confined between glass plates such that the large particles become fixed and provide a two-dimensional disordered matrix for the still mobile small particles, which form a fluid. By varying fluid and matrix area fractions and tuning the interactions between the superparamagnetic particles via an external magnetic field, different regions of the state diagram are explored. The mobile particles exhibit delocalized dynamics at small matrix area fractions and localized motion at high matrix area fractions, and the localization transition is rounded by the soft interactions [T. O. E. Skinner et al., Phys. Rev. Lett. 111, 128301 (2013), 10.1103/PhysRevLett.111.128301]. Expanding on previous work, we find the dynamics of the tracers to be strongly heterogeneous and show that molecular dynamics simulations of an ideal gas confined in a fixed matrix exhibit similar behavior. The simulations show how these soft interactions make the dynamics more heterogeneous compared to the disordered Lorentz gas and lead to strong non-Gaussian fluctuations.

  9. Live dynamic analysis of the developing cardiovascular system in mice

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Larina, Irina V.

    2017-02-01

    The study of the developing cardiovascular system in mice is important for understanding human cardiogenesis and congenital heart defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development under the regulation of dynamic factors like contractile force and blood flow using optical coherence tomography (OCT). We have previously developed an OCT based approach that combines static embryo culture and advanced image processing with computational modeling to live-image mouse embryos and obtain 4D (3D+time) cardiodynamic datasets. Here we present live 4D dynamic blood flow imaging of the early embryonic mouse heart in correlation with heart wall movement. We are using this approach to understand how specific mutations impact heart wall dynamics, and how this influences flow patterns and cardiogenesis. We perform studies in mutant embryos with cardiac phenotypes such as myosin regulatory light chain 2, atrial isoform (Mlc2a). This work is brings us closer to understanding the connections between dynamic mechanical factors and gene programs responsible for early cardiovascular development.

  10. Effects of thermal noise on the transitional dynamics of an inextensible elastic filament in stagnation flow.

    PubMed

    Deng, Mingge; Grinberg, Leopold; Caswell, Bruce; Karniadakis, George Em

    2015-06-28

    We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method. Unlike previous works, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance.

  11. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison between Jet- A fuel and a hydrotreated biofuel is made to determine viability of the technology for use with alternative fuels. Finally, the operability of the array and associated nozzles proved to be very stable without requiring additional active or passive control systems. A number of publications have been publish

  12. Equivalence of the Floquet-Magnus and Fer Expansions to Investigate the Dynamics of a Spin System in the Three-Level System.

    PubMed

    Mananga, Eugene Stephane

    2017-08-17

    In this work, we investigated the orders to which the Floquet-Magnus expansion (FME) and Fer expansion (FE) are equivalent or different for the three-level system. Specifically, we performed the third-order calculations of both approaches based on elegant integrations formalism. We present an important close relationship between the Floquet-Magnus and Fer expansions. As the propagator from the FME takes the form of the evolution operator, which removes the constraint of a stroboscopic observation, we appreciated the effects of time-evolution under Hamiltonians with different orders separately. Our work unifies and generalizes existing results of Floquet-Magnus and Fer approaches and delivers illustrations of novel springs that boost previous applications that are based on the classical information. Due to the lack of an unequivocal relationship between the FME and FE, some disagreements between the results produced by these theories will be found, especially in NMR experiments. Our results can find applications in the optimization of NMR spectroscopy, quantum computation, quantum optical control, and coherence in optics and might bear new awareness in fundamental perusals of quantum spin dynamics. This work is an important theoretical and numerical contribution in the general field of spin dynamics.

  13. Influence of impulsivity-reflexivity when testing dynamic spatial ability: sex and g differences.

    PubMed

    Quiroga, M Angeles; Hernández, José Manuel; Rubio, Victor; Shih, Pei Chun; Santacreu, José

    2007-11-01

    This work analyzes the possibility that the differences in the performance of men and women in dynamic spatial tasks such as the Spatial Orientation Dynamic Test-Revised (SODT-R; Santacreu & Rubio, 1998), obtained in previous works, are due to cognitive style (Reflexivity-Impulsivity) or to the speed-accuracy tradeoff (SATO) that the participants implement. If these differences are due to cognitive style, they would be independent of intelligence, whereas if they are due to SATO, they may be associated with intelligence. In this work, 1652 participants, 984 men and 668 women, ages between 18 and 55 years, were assessed. In addition to the SODT-R, the "Test de Razonamiento Analitico, Secuencial e Inductivo" (TRASI [Analytical, Sequential, and Inductive Reasoning Test]; Rubio & Santacreu, 2003) was administered as a measure of general intelligence. Impulsivity scores (Zi) of Salkind and Wright (1977) were used to analyze reflexivity-impulsivity and SATO. The results obtained indicate that (a) four performance groups can be identified: Fast-accurate, Slow-inaccurate, Impulsive, and Reflexive. The first two groups solve the task as a function of a competence variable and the last two as a function of a personality variable; (b) performance differences should be attributed to SATO; (c) SATO differs depending on sex and intelligence level.

  14. Optimal management of non-Markovian biological populations

    USGS Publications Warehouse

    Williams, B.K.

    2007-01-01

    Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.

  15. Detecting population-environmental interactions with mismatched time series data.

    PubMed

    Ferguson, Jake M; Reichert, Brian E; Fletcher, Robert J; Jager, Henriëtte I

    2017-11-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida's southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population-environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. © 2017 by the Ecological Society of America.

  16. Detecting population–environmental interactions with mismatched time series data

    PubMed Central

    Ferguson, Jake M.; Reichert, Brian E.; Fletcher, Robert J.; Jager, Henriëtte I.

    2017-01-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida’s southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population–environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. PMID:28759123

  17. Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-05-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  18. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  19. Molecular Dynamics Investigation of Each Bubble Behavior in Coarsening of Cavitation Bubbles in a Finite Space

    NASA Astrophysics Data System (ADS)

    Tsuda, Shin-Ichi; Nakano, Yuta; Watanabe, Satoshi

    2017-11-01

    Recently, several studies using Molecular Dynamics (MD) simulation have been conducted for investigation of Ostwald ripening of cavitation bubbles in a finite space. The previous studies focused a characteristic length of bubbles as one of the spatially-averaged quantities, but each bubble behavior was not been investigated in detail. The objective of this study is clarification of the characteristics of each bubble behavior in Ostwald ripening, and we conducted MD simulation of a Lennard-Jones fluid in a semi-confined space. As a result, the time dependency of the characteristic length of bubbles as a spatially-averaged quantity suggested that the driving force of the Ostwald ripening is Evaporation/Condensation (EC) across liquid-vapor surface, which is the same result as the previous works. The radius change of the relatively larger bubbles also showed the same tendency to a classical EC model. However, the sufficiently smaller bubbles than the critical size, e.g., the bubbles just before collapsing, showed a different characteristic from the classical EC model. Those smaller bubbles has a tendency to be limited by mechanical non-equilibrium in which viscosity of liquid is dominant rather than by EC across liquid-vapor surface. This work was supported by JSPS KAKENHI Grant Number JP16K06085.

  20. The Dynamic Multiprocess Framework: Evidence from Prospective Memory with Contextual Variability

    PubMed Central

    Scullin, Michael K.; McDaniel, Mark A.; Shelton, Jill Talley

    2013-01-01

    The ability to remember to execute delayed intentions is referred to as prospective memory. Previous theoretical and empirical work has focused on isolating whether a particular prospective memory task is supported either by effortful monitoring processes or by cue-driven spontaneous processes. In the present work, we advance the Dynamic Multiprocess Framework, which contends that both monitoring and spontaneous retrieval may be utilized dynamically to support prospective remembering. To capture the dynamic interplay between monitoring and spontaneous retrieval we had participants perform many ongoing tasks and told them that their prospective memory cue may occur in any context. Following either a 20-min or a 12-hr retention interval, the prospective memory cues were presented infrequently across three separate ongoing tasks. The monitoring patterns (measured as ongoing task cost relative to a between-subjects control condition) were consistent and robust across the three contexts. There was no evidence for monitoring prior to the initial prospective memory cue; however, individuals who successfully spontaneously retrieved the prospective memory intention, thereby realizing that prospective memory cues could be expected within that context, subsequently monitored. These data support the Dynamic Multiprocess Framework, which contends that individuals will engage monitoring when prospective memory cues are expected, disengage monitoring when cues are not expected, and that when monitoring is disengaged, a probabilistic spontaneous retrieval mechanism can support prospective remembering. PMID:23916951

  1. Dynamical Tests in a Linear Superconducting Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Sass, F.; Motta, E. S.; , R. de Andrade, Jr.; Stephan, R. M.

    The unique properties of high critical temperature superconductors (HTS) make possible the development of an effective and self-stable magnetic levitation (MagLev) transportation system. In this context, a full scale MagLev vehicle, named MagLev-Cobra, has been developed at the Laboratory for Applied Superconductivity (LASUP/UFRJ). The vehicle is borne by a linear superconducting magnetic bearing (LSMB). The most important design constraint of the levitation system is the force that appears due to the interaction between the HTS and the permanent magnetic (PM) rail, which composes the LSMB. Static and dynamic characteristics of this force must be studied. The static behavior was already reported in previous work. The dynamic operation of this kind of vehicle, which considers the entry and exit of passengers and vibration movements, may result in the decrease of the gap between the superconductor and the PM rail in LSMB. In order to emulate the vehicle operation and to study the gap variation with time, the superconductors are submitted to a series of vertical displacements performed with the help of an experimental test rig. These movements are controlled by a time-variant reference force that reproduces the vehicle dynamic. In the present work, the results obtained for the dynamic gap behavior are presented. These measurements are essential to the commissioning process of a superconducting MagLev full scale vehicle.

  2. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  3. Dynamics of temporal variations in phonatory flow.

    PubMed

    Krane, Michael H; Barry, Michael; Wei, Timothy

    2010-07-01

    This paper addresses the dynamic relevance of time variations of phonatory airflow, commonly neglected under the quasisteady phonatory flow assumption. In contrast to previous efforts, which relied on direct measurement of glottal impedance, this work uses spatially and temporally resolved measurements of the velocity field to estimate the unsteady and convective acceleration terms in the unsteady Bernoulli equation. Theoretical considerations suggest that phonatory flow is inherently unsteady when two related conditions apply: (1) that the unsteady and convective accelerations are commensurate, and (2) that the inertia of the glottal jet is non-negligible. Acceleration waveforms, computed from experimental data, show that unsteady and convective accelerations to be the same order of magnitude, throughout the cycle, and that the jet flow contributes significantly to the unsteady acceleration. In the middle of the cycle, however, jet inertia is negligible because the convective and unsteady accelerations nearly offset one another in the jet region. These results, consistent with previous findings treating quasisteady phonatory flow, emphasize that unsteady acceleration cannot be neglected during the final stages of the phonation cycle, during which voice sound power and spectral content are largely determined. Furthermore, glottal jet dynamics must be included in any model of phonatory airflow.

  4. Dynamics of temporal variations in phonatory flow1

    PubMed Central

    Krane, Michael H.; Barry, Michael; Wei, Timothy

    2010-01-01

    This paper addresses the dynamic relevance of time variations of phonatory airflow, commonly neglected under the quasisteady phonatory flow assumption. In contrast to previous efforts, which relied on direct measurement of glottal impedance, this work uses spatially and temporally resolved measurements of the velocity field to estimate the unsteady and convective acceleration terms in the unsteady Bernoulli equation. Theoretical considerations suggest that phonatory flow is inherently unsteady when two related conditions apply: (1) that the unsteady and convective accelerations are commensurate, and (2) that the inertia of the glottal jet is non-negligible. Acceleration waveforms, computed from experimental data, show that unsteady and convective accelerations to be the same order of magnitude, throughout the cycle, and that the jet flow contributes significantly to the unsteady acceleration. In the middle of the cycle, however, jet inertia is negligible because the convective and unsteady accelerations nearly offset one another in the jet region. These results, consistent with previous findings treating quasisteady phonatory flow, emphasize that unsteady acceleration cannot be neglected during the final stages of the phonation cycle, during which voice sound power and spectral content are largely determined. Furthermore, glottal jet dynamics must be included in any model of phonatory airflow. PMID:20649231

  5. Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant

    NASA Astrophysics Data System (ADS)

    Meyer, Sven; Bartelmann, Matthias

    2017-12-01

    We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.

  6. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    NASA Astrophysics Data System (ADS)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  7. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  8. The Role of the Beetle Hypocryphalus mangiferae (Coleoptera: Curculionidae) in the Spatiotemporal Dynamics of Mango Wilt.

    PubMed

    Galdino, Tarcísio Visintin da Silva; Ferreira, Dalton de Oliveira; Santana Júnior, Paulo Antônio; Arcanjo, Lucas de Paulo; Queiroz, Elenir Aparecida; Sarmento, Renato Almeida; Picanço, Marcelo Coutinho

    2017-06-01

    The knowledge of the spatiotemporal dynamics of pathogens and their vectors is an important step in determining the pathogen dispersion pattern and the role of vectors in disease dynamics. However, in the case of mango wilt little is known about its spatiotemporal dynamics and the relationship of its vector [the beetle Hypocryphalus mangiferae (Stebbing 1914)] to these dynamics. The aim of this work was to determine the spatial-seasonal dynamic of H. mangiferae attacks and mango wilt in mango orchards and to verify the importance of H. mangiferae in the spatiotemporal dynamics of the disease. Two mango orchards were monitored during a period of 3 yr. The plants in these orchards were georeferenced and inspected monthly to quantify the number of plants attacked by beetles and the fungus. In these orchards, the percentage of mango trees attacked by beetles was always higher than the percentage infected by the fungus. The colonization of mango trees by beetles and the fungus occurred by colonization of trees both distant and proximal to previously attacked trees. The new plants attacked by the fungus emerged in places where the beetles had previously begun their attack. This phenomenon led to a large overlap in sites of beetle and fungal occurrence, indicating that establishment by the beetle was followed by establishment by the fungus. This information can be used by farmers to predict disease infection, and to control bark beetle infestation in mango orchards. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Facilitating preemptive hardware system design using partial reconfiguration techniques.

    PubMed

    Dondo Gazzano, Julio; Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos

    2014-01-01

    In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration.

  10. Facilitating Preemptive Hardware System Design Using Partial Reconfiguration Techniques

    PubMed Central

    Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos

    2014-01-01

    In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration. PMID:24672292

  11. Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nuñez-Moraleda, Bernardo; Pizarro, Joaquin; Guerrero, Elisa; Guerrero-Lebrero, Maria P.; Yáñez, Andres; Molina, Sergio Ignacio; Galindo, Pedro Luis

    2014-11-01

    In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.

  12. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  13. Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers

    NASA Astrophysics Data System (ADS)

    Chen, Liping; Zheng, Renhui; Shi, Qiang; Yan, YiJing

    2010-01-01

    We extend our previous study of absorption line shapes of molecular aggregates using the Liouville space hierarchical equations of motion (HEOM) method [L. P. Chen, R. H. Zheng, Q. Shi, and Y. J. Yan, J. Chem. Phys. 131, 094502 (2009)] to calculate third order optical response functions and two-dimensional electronic spectra of model dimers. As in our previous work, we have focused on the applicability of several approximate methods related to the HEOM method. We show that while the second order perturbative quantum master equations are generally inaccurate in describing the peak shapes and solvation dynamics, they can give reasonable peak amplitude evolution even in the intermediate coupling regime. The stochastic Liouville equation results in good peak shapes, but does not properly describe the excited state dynamics due to the lack of detailed balance. A modified version of the high temperature approximation to the HEOM gives the best agreement with the exact result.

  14. Testing the Use of Implicit Solvent in the Molecular Dynamics Modelling of DNA Flexibility

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Harris, S.

    DNA flexibility controls packaging, looping and in some cases sequence specific protein binding. Molecular dynamics simulations carried out with a computationally efficient implicit solvent model are potentially a powerful tool for studying larger DNA molecules than can be currently simulated when water and counterions are represented explicitly. In this work we compare DNA flexibility at the base pair step level modelled using an implicit solvent model to that previously determined from explicit solvent simulations and database analysis. Although much of the sequence dependent behaviour is preserved in implicit solvent, the DNA is considerably more flexible when the approximate model is used. In addition we test the ability of the implicit solvent to model stress induced DNA disruptions by simulating a series of DNA minicircle topoisomers which vary in size and superhelical density. When compared with previously run explicit solvent simulations, we find that while the levels of DNA denaturation are similar using both computational methodologies, the specific structural form of the disruptions is different.

  15. Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelc, D.; Grafe, H. -J.; Gu, G. D.

    In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less

  16. Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4

    DOE PAGES

    Pelc, D.; Grafe, H. -J.; Gu, G. D.; ...

    2017-02-15

    In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less

  17. When high working memory capacity is and is not beneficial for predicting nonlinear processes.

    PubMed

    Fischer, Helen; Holt, Daniel V

    2017-04-01

    Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.

  18. High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lai, Puxiang; Ma, Cheng; Xu, Xiao; Suzuki, Yuta; Grabar, Alexander A.; Wang, Lihong V.

    2014-03-01

    Time-reversed ultrasonically encoded (TRUE) optical focusing is an emerging technique that focuses light deep into scattering media by phase-conjugating ultrasonically encoded diffuse light. In previous work, the speed of TRUE focusing was limited to no faster than 1 Hz by the response time of the photorefractive phase conjugate mirror, or the data acquisition and streaming speed of the digital camera; photorefractive-crystal-based TRUE focusing was also limited to the visible spectral range. These time-consuming schemes prevent this technique from being applied in vivo, since living biological tissue has a speckle decorrelation time on the order of a millisecond. In this work, using a Tedoped Sn2P2S6 photorefractive crystal at a near-infrared wavelength of 793 nm, we achieved TRUE focusing inside dynamic scattering media having a speckle decorrelation time as short as 7.7 ms. As the achieved speed approaches the tissue decorrelation rate, this work is an important step forward toward in vivo applications of TRUE focusing in deep tissue imaging, photodynamic therapy, and optical manipulation.

  19. Re-evaluation of rhodopsin's relaxation kinetics determined from femtosecond stimulated Raman lineshapes.

    PubMed

    McCamant, David W

    2011-07-28

    This work presents a theoretical treatment of the vibrational line shape generated in a femtosecond stimulated Raman spectroscopy (FSRS) experiment under conditions in which the probed vibration undergoes a significant frequency shift during its free induction decay. This theory is applied to simulate the FSRS lineshapes previously observed in rhodopsin (Kukura et al. Science 2005, 310, 1006). The previously determined relaxation times for formation of the trans-photoproduct of rhodopsin were calculated using an incorrect equation for the time dependence of the observed frequency shifts. Here the data are reanalyzed by calculation of the corrected frequency sweep occurring during the vibrational free induction decay. It is shown that the calculated frequency shifts and general conclusions of the original work are sound but that the coherent vibrational frequency shifts of the C(10), C(11), and C(12) hydrogen-out-of-plane vibrations occur with a 140 fs time constant rather than the previously reported 325 fs time constant. This time constant provides an important constraint for models of the dynamics of the cis to trans isomerization process. © 2011 American Chemical Society

  20. Thermal form-factor approach to dynamical correlation functions of integrable lattice models

    NASA Astrophysics Data System (ADS)

    Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Kozlowski, Karol K.; Suzuki, Junji

    2017-11-01

    We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.

  1. Statistical mechanics of self-driven Carnot cycles.

    PubMed

    Smith, E

    1999-10-01

    The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called "onset," has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification.

  2. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-11-01

    The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations.

  3. Analytical and Computational Modeling of Mechanical Waves in Microscale Granular Crystals: Nonlinearity and Rotational Dynamics

    NASA Astrophysics Data System (ADS)

    Wallen, Samuel P.

    Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing, shock and vibration mitigation, and powder processing.

  4. Wavelet-based clustering of resting state MRI data in the rat.

    PubMed

    Medda, Alessio; Hoffmann, Lukas; Magnuson, Matthew; Thompson, Garth; Pan, Wen-Ju; Keilholz, Shella

    2016-01-01

    While functional connectivity has typically been calculated over the entire length of the scan (5-10min), interest has been growing in dynamic analysis methods that can detect changes in connectivity on the order of cognitive processes (seconds). Previous work with sliding window correlation has shown that changes in functional connectivity can be observed on these time scales in the awake human and in anesthetized animals. This exciting advance creates a need for improved approaches to characterize dynamic functional networks in the brain. Previous studies were performed using sliding window analysis on regions of interest defined based on anatomy or obtained from traditional steady-state analysis methods. The parcellation of the brain may therefore be suboptimal, and the characteristics of the time-varying connectivity between regions are dependent upon the length of the sliding window chosen. This manuscript describes an algorithm based on wavelet decomposition that allows data-driven clustering of voxels into functional regions based on temporal and spectral properties. Previous work has shown that different networks have characteristic frequency fingerprints, and the use of wavelets ensures that both the frequency and the timing of the BOLD fluctuations are considered during the clustering process. The method was applied to resting state data acquired from anesthetized rats, and the resulting clusters agreed well with known anatomical areas. Clusters were highly reproducible across subjects. Wavelet cross-correlation values between clusters from a single scan were significantly higher than the values from randomly matched clusters that shared no temporal information, indicating that wavelet-based analysis is sensitive to the relationship between areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cholera and shigellosis in Bangladesh: similarities and differences in population dynamics under climate forcing

    NASA Astrophysics Data System (ADS)

    Pascual, M.; Cash, B.; Reiner, R.; King, A.; Emch, M.; Yunus, M.; Faruque, A. S.

    2012-12-01

    The influence of climate variability on the population dynamics of infectious diseases is considered a large scale, regional, phenomenon, and as such, has been previously addressed for cholera with temporal models that do not incorporate fine-scale spatial structure. In our previous work, evidence for a role of ENSO (El Niño Southern Oscillation) on cholera in Bangladesh was elucidated, and shown to influence the regional climate through precipitation. With a probabilistic spatial model for cholera dynamics in the megacity of Dhaka, we found that the action of climate variability (ENSO and flooding) is localized: there is a climate-sensitive urban core that acts to propagate risk to the rest of the city. Here, we consider long-term surveillance data for shigellosis, another diarrheal disease that coexists with cholera in Bangladesh. We compare the patterns of association with climate variables for these two diseases in a rural setting, as well as the spatial structure in their spatio-temporal dynamics in an urban one. Evidence for similar patterns is presented, and discussed in the context of the differences in the routes of transmission of the two diseases and the proposed role of an environmental reservoir in cholera. The similarities provide evidence for a more general influence of hydrology and of socio-economic factors underlying human susceptibility and sanitary conditions.

  6. On thermal conditions and properties of thallium bromide single crystals grown by the Electro Dynamic Gradient method

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiping; Yu, Yongtao; Gong, Shuping; Fu, Qiuyun; Zhou, Dongxiang

    2013-05-01

    The Electro Dynamic Gradient (EDG) method has been proved to be a feasible way to grow TlBr crystals in our previous work. In this research, the influence of thermal conditions such as cooling rate during growth process on the crystal performance was investigated. Crystals of approximately 12 mm diameter were obtained by the EDG method at different cooling rates during the growth process, and the quality of the crystals was routinely evaluated by X-ray diffraction (XRD), infrared (IR) and ultraviolet (UV) transmission, I-V measurement and energy response spectrum. The results proved that thermal conditions during growth had a profound influence on the characteristics of the crystals.

  7. Symmetrical and overloaded effect of diffusion in information filtering

    NASA Astrophysics Data System (ADS)

    Zhu, Xuzhen; Tian, Hui; Chen, Guilin; Cai, Shimin

    2017-10-01

    In physical dynamics, mass diffusion theory has been applied to design effective information filtering models on bipartite network. In previous works, researchers unilaterally believe objects' similarities are determined by single directional mass diffusion from the collected object to the uncollected, meanwhile, inadvertently ignore adverse influence of diffusion overload. It in some extent veils the essence of diffusion in physical dynamics and hurts the recommendation accuracy and diversity. After delicate investigation, we argue that symmetrical diffusion effectively discloses essence of mass diffusion, and high diffusion overload should be published. Accordingly, in this paper, we propose an symmetrical and overload penalized diffusion based model (SOPD), which shows excellent performances in extensive experiments on benchmark datasets Movielens and Netflix.

  8. Novel foamy origin for singlet fermion masses

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.

    2017-10-01

    We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.

  9. A curved piezo-structure model: implications on active structural acoustic control.

    PubMed

    Henry, J K; Clark, R L

    1999-09-01

    Current research in Active Structural Acoustic Control (ASAC) relies heavily upon accurately capturing the application physics associated with the structure being controlled. The application of ASAC to aircraft interior noise requires a greater understanding of the dynamics of the curved panels which compose the skin of an aircraft fuselage. This paper presents a model of a simply supported curved panel with attached piezoelectric transducers. The model is validated by comparison to previous work. Further, experimental results for a simply supported curved panel test structure are presented in support of the model. The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control.

  10. The role of invariant manifolds in lowthrust trajectory design (part III)

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Anderson, Rodney L.; Lam, Try; Whiffen, Greg

    2006-01-01

    This paper is the third in a series to explore the role of invariant manifolds in the design of low thrust trajectories. In previous papers, we analyzed an impulsive thrust resonant gravity assist flyby trajectory to capture into Europa orbit using the invariant manifolds of unstable resonant periodic orbits and libration orbits. The energy savings provided by the gravity assist may be interpreted dynamically as the result of a finite number of intersecting invariant manifolds. In this paper we demonstrate that the same dynamics is at work for low thrust trajectories with resonant flybys and low energy capture. However, in this case, the flybys and capture are effected by continuous families of intersecting invariant manifolds.

  11. Priority and Negotiation Based Dynamic Spectrum Allocation Scheme for Multiple Radio Access Network Operators

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Hyon, Taein; Lee, Yeonwoo

    Most of previous works have presented the dynamic spectrum allocation (DSA) gain achieved by utilizing the time or regional variations in traffic demand between multi-network operators (NOs). In this paper, we introduce the functionalities required for the entities related with the spectrum sharing and allocation and propose a spectrum allocation algorithm while considering the long-term priority between NOs, the priority between multiple class services, and the urgent bandwidth request. To take into account the priorities among the NOs and the priorities of multiple class services, a spectrum sharing metric (SSM) is proposed, while a negotiation procedure is proposed to treat the urgent bandwidth request.

  12. Identification of open quantum systems from observable time traces

    DOE PAGES

    Zhang, Jun; Sarovar, Mohan

    2015-05-27

    Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.

  13. Dynamic bin packing problem

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In a previous work we have defined a general architecture model for autonomous systems, which can be mapped easily to describe the functions of any automated system (SDAG-86-01). In this note, we use the model to describe the problem of thermal management in space stations. First we briefly review the architecture, then we present the environment of our application, and finally we detail the specific function for each functional block of the architecture for that environment.

  14. Adler-Kostant-Symes scheme for face and Calogero-Moser-Sutherland-type models

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter

    1998-07-01

    We give the construction of quantum Lax equations for IRF models and the difference version of the Calogero-Moser-Sutherland model introduced by Ruijsenaars. We solve the equations using factorization properties of the underlying face Hopf algebras/elliptic quantum groups. This construction is in the spirit of the Adler-Kostant-Symes method and generalizes our previous work to the case of face Hopf algebras/elliptic quantum groups with dynamical R matrices.

  15. Impact of material absorption on supercontinuum generation in liquid core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Raja, Vasantha Jayakantha; Uthayakumar, T.; Porsezian, K.

    2013-06-01

    The impact of material absorption on supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) is presented. While PCFs with cores made from different glasses are well studied in previous works with saturable nonlinear response (SNL), in this paper, it is planned to investigate the dynamics of nonlinear processes of supercontinuum generation in high-index fiber with material absorption to understand the physical phenomena of pulse propagation.

  16. Ho’ oponopono: A Radar Calibration CubeSat

    DTIC Science & Technology

    2011-10-13

    100 photodiodes that act as sun sensors. Much of the development of the Kalman filter used to carry out these measurements is based on previous work...Deter- mination via Kalman Filtering of Magnetometer Data,” Journal of Guidance, Control and Dynam- ics, vol. 13, May-June 1990. 21. Flatley, T.W...participant in the AFOSR University Nanosatellite Program (UNP), Ho‘oponopono’s design is also con- strained to program requirements that include14

  17. A garden of orchids: a generalized Harper equation at quadratic irrational frequencies

    NASA Astrophysics Data System (ADS)

    Mestel, B. D.; Osbaldestin, A. H.

    2004-10-01

    We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case.

  18. [Approximation to the dynamics of meningococcal meningitis through dynamic systems and time series].

    PubMed

    Canals, M

    1996-02-01

    Meningococcal meningitis is subjected to epidemiological surveillance due to its severity and the occasional presentation of epidemic outbreaks. This work analyses previous disease models, generate new ones and analyses monthly cases using ARIMA time series models. The results show that disease dynamics for closed populations is epidemic and the epidemic size is related to the proportion of carriers and the transmissiveness of the agent. In open populations, disease dynamics depends on the admission rate of susceptible and the relative admission of infected individuals. Our model considers a logistic populational growth and carrier admission proportional to populational size, generating an endemic dynamics. Considering a non-instantaneous system response, a greater realism is obtained establishing that the endemic situation may present a dynamics highly sensitive to initial conditions, depending on the transmissiveness and proportion of susceptible individuals in the population. Time series model showed an adequate predictive capacity in terms no longer than 10 months. The lack of long term predictability was attributed to local changes in the proportion of carriers or on transmissiveness that lead to chaotic dynamics over a seasonal pattern. Predictions for 1995 and 1996 were obtained.

  19. Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Abbot, D. S.

    2012-12-01

    The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO2 and a critical sea-ice cover (SI), both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO2, SI)*, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO2, SI)* in the atmosphere-ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma) continents and solar insolation (94% of modern). In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO2, SI)* ≈ (500 ppm, 55%). Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO2, SI)* ≈ (204 ppm, 70%). This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO2: (CO2, SI)* ≈ (2 ppm, 85%). Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO2 for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO2. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true Jormungand state. Overall, our results demonstrate that differences in sea-ice dynamics schemes can be at least as important as differences in sea-ice albedo for causing the spread in climate models' estimates of the Snowball Earth bifurcation. A detailed understanding of Snowball Earth initiation therefore requires future research on sea-ice dynamics to determine which model's simulation is most realistic.

  20. Methodology for dynamic biaxial tension testing of pregnant uterine tissue.

    PubMed

    Manoogian, Sarah; Mcnally, Craig; Calloway, Britt; Duma, Stefan

    2007-01-01

    Placental abruption accounts for 50% to 70% of fetal losses in motor vehicle crashes. Since automobile crashes are the leading cause of traumatic fetal injury mortality in the United States, research of this injury mechanism is important. Before research can adequately evaluate current and future restraint designs, a detailed model of the pregnant uterine tissues is necessary. The purpose of this study is to develop a methodology for testing the pregnant uterus in biaxial tension at a rate normally seen in a motor vehicle crash. Since the majority of previous biaxial work has established methods for quasi-static testing, this paper combines previous research and new methods to develop a custom designed system to strain the tissue at a dynamic rate. Load cells and optical markers are used for calculating stress strain curves of the perpendicular loading axes. Results for this methodology show images of a tissue specimen loaded and a finite verification of the optical strain measurement. The biaxial test system dynamically pulls the tissue to failure with synchronous motion of four tissue grips that are rigidly coupled to the tissue specimen. The test device models in situ loading conditions of the pregnant uterus and overcomes previous limitations of biaxial testing. A non-contact method of measuring strains combined with data reduction to resolve the stresses in two directions provides the information necessary to develop a three dimensional constitutive model of the material. Moreover, future research can apply this method to other soft tissues with similar in situ loading conditions.

  1. Detection and Analysis of Complex Patterns of Ice Dynamics in Antarctica from ICESat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, Gregory Scott

    There remains much uncertainty in estimating the amount of Antarctic ice mass change, its dynamic component, and its spatial and temporal patterns. This work remedies the limitations of previous studies by generating the first detailed reconstruction of total and dynamic ice thickness and mass changes across Antarctica, from ICESat satellite altimetry observations in 2003-2009 using the Surface Elevation Reconstruction and Change Detection (SERAC) method. Ice sheet thickness changes are calculated with quantified error estimates for each time when ICESat flew over a ground-track crossover region, at approximately 110,000 locations across the Antarctic Ice Sheet. The time series are partitioned into changes due to surficial processes and ice dynamics. The new results markedly improve the spatial and temporal resolution of surface elevation, volume, and mass change rates for the AIS, and can be sampled at annual temporal resolutions. The results indicate a complex spatiotemporal pattern of dynamic mass loss in Antarctica, especially along individual outlet glaciers, and allow for the quantification of the annual contribution of Antarctic ice loss to sea level rise. Over 5000 individual locations exhibit either strong dynamic ice thickness change patterns, accounting for approximately 500 unique spatial clusters that identify regions likely influenced by subglacial hydrology. The spatial distribution and temporal behavior of these regions reveal the complexity and short-time scale variability in the subglacial hydrological system. From the 500 unique spatial clusters, over 370 represent newly identified, and not previously published, potential subglacial water bodies indicating an active subglacial hydrological system over a much larger region than previously observed. These numerous new observations of dynamic changes provide more than simply a larger set of data. Examination of both regional and local scale dynamic change patterns across Antarctica shows newly discovered connections between the geology and ice sheet dynamics of Antarctica, particularly along the boundary between East and West Antarctica in the Pagano Shear Zone. Additionally, increased dynamic activity is shown to concentrate in regions of Antarctica most likely to experience catastrophic failure and collapse in the future. Further quantification of mass and volume changes demonstrates that the methods described within allow for a true reconciliation between different satellite methods of measuring ice sheet mass and volume balance, and show that Antarctica is losing enough mass between 2003 and 2009 to raise global sea levels 0.1 mm/yr during that time. Additionally, analysis of local patterns of dynamic ice thickness changes shows that there is continued or increased ice loss, since before the ICESat mission period, in many of the coastal sectors of Antarctica.

  2. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis.

    PubMed

    Varela, J A; Vázquez, S A; Martínez-Núñez, E

    2017-05-01

    A novel computational method is proposed in this work for use in discovering reaction mechanisms and solving the kinetics of transition metal-catalyzed reactions. The method does not rely on either chemical intuition or assumed a priori mechanisms, and it works in a fully automated fashion. Its core is a procedure, recently developed by one of the authors, that combines accelerated direct dynamics with an efficient geometry-based post-processing algorithm to find transition states (Martinez-Nunez, E., J. Comput. Chem. 2015 , 36 , 222-234). In the present work, several auxiliary tools have been added to deal with the specific features of transition metal catalytic reactions. As a test case, we chose the cobalt-catalyzed hydroformylation of ethylene because of its well-established mechanism, and the fact that it has already been used in previous automated computational studies. Besides the generally accepted mechanism of Heck and Breslow, several side reactions, such as hydrogenation of the alkene, emerged from our calculations. Additionally, the calculated rate law for the hydroformylation reaction agrees reasonably well with those obtained in previous experimental and theoretical studies.

  3. Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.

    PubMed

    Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K

    2018-04-06

    Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.

  4. Managing health care organizations in an age of rapid change.

    PubMed

    Benjamin, S; al-Alaiwat, S

    1998-03-01

    Health care managers find their work increasingly difficult, due in part to rapid environmental change that plagues organizational life. Management practices and attitudes that may have been appropriate in previous eras are ineffective today. A study was conducted among managers in the Ministry of Health, State of Bahrain, seeking information about current trends in the macro or external environment that affect the Ministry of Health, as well as internal environmental pressures that may be similar or different. This article provides a clear picture of the context in which managers perform their work and offers recommendations for coping with change in dynamic, complex organizations.

  5. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    NASA Technical Reports Server (NTRS)

    Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2001-01-01

    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.

  6. Ensuring critical event sequences in high consequence computer based systems as inspired by path expressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidd, M.E.C.

    1997-02-01

    The goal of our work is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. The methodology employed here is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.

  7. Security in MANETs using reputation-adjusted routing

    NASA Astrophysics Data System (ADS)

    Ondi, Attila; Hoffman, Katherine; Perez, Carlos; Ford, Richard; Carvalho, Marco; Allen, William

    2009-04-01

    Mobile Ad-Hoc Networks enable communication in various dynamic environments, including military combat operations. Their open and shared communication medium enables new forms of attack that are not applicable for traditional wired networks. Traditional security mechanisms and defense techniques are not prepared to cope with the new attacks and the lack of central authorities make identity verifications difficult. This work extends our previous work in the Biologically Inspired Tactical Security Infrastructure to provide a reputation-based weighing mechanism for linkstate routing protocols to protect the network from attackers that are corrupting legitimate network traffic. Our results indicate that the approach is successful in routing network traffic around compromised computers.

  8. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches.

    PubMed

    Linel, Patrice; Wu, Shuang; Deng, Nan; Wu, Hulin

    2014-10-01

    Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.

  9. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  10. Modelling the influence of sensory dynamics on linear and nonlinear driver steering control

    NASA Astrophysics Data System (ADS)

    Nash, C. J.; Cole, D. J.

    2018-05-01

    A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.

  11. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability.

    PubMed

    Deng, Xian; Fink, Gero; Bharat, Tanmay A M; He, Shaoda; Kureisaite-Ciziene, Danguole; Löwe, Jan

    2017-07-18

    Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.

  12. Building a kinetic Monte Carlo model with a chosen accuracy.

    PubMed

    Bhute, Vijesh J; Chatterjee, Abhijit

    2013-06-28

    The kinetic Monte Carlo (KMC) method is a popular modeling approach for reaching large materials length and time scales. The KMC dynamics is erroneous when atomic processes that are relevant to the dynamics are missing from the KMC model. Recently, we had developed for the first time an error measure for KMC in Bhute and Chatterjee [J. Chem. Phys. 138, 084103 (2013)]. The error measure, which is given in terms of the probability that a missing process will be selected in the correct dynamics, requires estimation of the missing rate. In this work, we present an improved procedure for estimating the missing rate. The estimate found using the new procedure is within an order of magnitude of the correct missing rate, unlike our previous approach where the estimate was larger by orders of magnitude. This enables one to find the error in the KMC model more accurately. In addition, we find the time for which the KMC model can be used before a maximum error in the dynamics has been reached.

  13. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Emre; Demiralp, Metin

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, thismore » limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.« less

  14. Combining pressure and temperature control in dynamics on energy landscapes

    NASA Astrophysics Data System (ADS)

    Hoffmann, Karl Heinz; Christian Schön, J.

    2017-05-01

    Complex systems from science, technology or mathematics usually appear to be very different in their specific dynamical evolution. However, the concept of an energy landscape with its basins corresponding to locally ergodic regions separated by energy barriers provides a unifying approach to the description of complex systems dynamics. In such systems one is often confronted with the task to control the dynamics such that a certain basin is reached with the highest possible probability. Typically one aims for the global minimum, e.g. when dealing with global optimization problems, but frequently other local minima such as the metastable compounds in materials science are of primary interest. Here we show how this task can be solved by applying control theory using magnesium fluoride as an example system, where different modifications of MgF2 are considered as targets. In particular, we generalize previous work restricted to temperature controls only and present controls which simultaneously adjust temperature and pressure in an optimal fashion.

  15. Psychophysiological whole-brain network clustering based on connectivity dynamics analysis in naturalistic conditions.

    PubMed

    Raz, Gal; Shpigelman, Lavi; Jacob, Yael; Gonen, Tal; Benjamini, Yoav; Hendler, Talma

    2016-12-01

    We introduce a novel method for delineating context-dependent functional brain networks whose connectivity dynamics are synchronized with the occurrence of a specific psychophysiological process of interest. In this method of context-related network dynamics analysis (CRNDA), a continuous psychophysiological index serves as a reference for clustering the whole-brain into functional networks. We applied CRNDA to fMRI data recorded during the viewing of a sadness-inducing film clip. The method reliably demarcated networks in which temporal patterns of connectivity related to the time series of reported emotional intensity. Our work successfully replicated the link between network connectivity and emotion rating in an independent sample group for seven of the networks. The demarcated networks have clear common functional denominators. Three of these networks overlap with distinct empathy-related networks, previously identified in distinct sets of studies. The other networks are related to sensorimotor processing, language, attention, and working memory. The results indicate that CRNDA, a data-driven method for network clustering that is sensitive to transient connectivity patterns, can productively and reliably demarcate networks that follow psychologically meaningful processes. Hum Brain Mapp 37:4654-4672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Local interactions lead to pathogen-driven change to host population dynamics.

    PubMed

    Boots, Michael; Childs, Dylan; Reuman, Daniel C; Mealor, Michael

    2009-10-13

    Individuals tend to interact more strongly with nearby individuals or within particular social groups. Recent theoretical advances have demonstrated that these within-population relationships can have fundamental implications for ecological and evolutionary dynamics. In particular, contact networks are crucial to the spread and evolution of disease. However, the theory remains largely untested experimentally. Here, we manipulate habitat viscosity and thereby the frequency of local interactions in an insect-pathogen model system in which the virus had previously been shown to have little effect on host population dynamics. At high viscosity, the pathogen caused the collapse of dominant and otherwise stable host generation cycles. Modeling shows that this collapse can be explained by an increase in the frequency of intracohort interactions relative to intercohort interactions, leading to more disease transmission. Our work emphasizes that spatial structure can subtly mediate intraspecific competition and the effects of natural enemies. A decrease in dispersal in a population may actually (sometimes rather counterintuitively) intensify the effects of parasites. Broadly, because anthropological and environmental change often cause changes in population mixing, our work highlights the potential for dramatic changes in the effects of parasites on host populations.

  17. Extremely pulsatile flow around a surface-mounted hemisphere: synergistic experiments and simulations

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Beratlis, Nikolaos; Balaras, Elias; Plesniak, Michael W.

    2017-11-01

    Extremely pulsatile flow (where the amplitude of oscillation pulsation is of the same order as the mean flow) over a three-dimensional, surface-mounted bluff body gives rise a wealth of fluid dynamics phenomena. In this study, we extend our previous experimental work on extremely pulsatile flow around a surface-mounted hemisphere by performing a complementary direct numerical simulation. Results from the experiment and simulation will be presented and compared. After establishing the agreement between experiment and simulation, we will examine the morphology and dynamics of the vortex structures in the wake of the hemisphere, and the effects of extreme pulsatility. The dynamics of the arch-type recirculation vortex is of primary interest, in particular its upstream propagation due to self-induced velocity in the direction opposite to the freestream during deceleration. In addition to the velocity field, the surface pressure field throughout the pulsatile cycle will be presented. These synergistic experiments and simulations provide a detailed view into the complex flow fields associated with pulsatile flow over a surface-mounted hemisphere. This material is based upon work supported by the National Science Foundation under Grant Number CBET-1236351 and the GW Center for Biomimetics and Bioinspired Engineering.

  18. Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking

    NASA Astrophysics Data System (ADS)

    Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2017-11-01

    Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.

  19. Frequency Dependent Non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study

    PubMed Central

    Floros, Stelios; Liakopoulou-Kyriakides, Maria; Karatasos, Kostas

    2017-01-01

    The use of microwaves in every day’s applications raises issues regarding the non thermal biological effects of microwaves. In this work we employ molecular dynamics simulations to advance further the dielectric studies of protein solutions in the case of lysozyme, taking into consideration possible frequency dependent changes in the structural and dynamic properties of the system upon application of electric field in the microwave region. The obtained dielectric spectra are identical with those derived in our previous work using the Fröhlich-Kirkwood approach in the framework of the linear response theory. Noticeable structural changes in the protein have been observed only at frequencies near its absorption maximum. Concerning Cα position fluctuations, different frequencies affected different regions of the protein sequence. Furthermore, the influence of the field on the kinetics of protein-water as well as on the water-water hydrogen bonds in the first hydration shell has been studied; an extension of the Luzar-Chandler kinetic model was deemed necessary for a better fit of the applied field results and for the estimation of more accurate hydrogen bond lifetime values. PMID:28129348

  20. Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Eldredge, Jeff D.

    2014-11-01

    A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  1. 3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model

    NASA Astrophysics Data System (ADS)

    Hoi, Cory; Raessi, Mehdi

    2017-11-01

    Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.

  2. Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task.

    PubMed

    Xue, Linyan; Huang, Dan; Wang, Tong; Hu, Qiyi; Chai, Xinyu; Li, Liming; Chen, Yao

    2017-11-28

    Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.

  3. Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions

    PubMed Central

    Adamczyk, Andrew J.; Cao, Jie; Kamerlin, Shina C. L.; Warshel, Arieh

    2011-01-01

    The proposal that enzymatic catalysis is due to conformational fluctuations has been previously promoted by means of indirect considerations. However, recent works have focused on cases where the relevant motions have components toward distinct conformational regions, whose population could be manipulated by mutations. In particular, a recent work has claimed to provide direct experimental evidence for a dynamical contribution to catalysis in dihydrofolate reductase, where blocking a relevant conformational coordinate was related to the suppression of the motion toward the occluded conformation. The present work utilizes computer simulations to elucidate the true molecular basis for the experimentally observed effect. We start by reproducing the trend in the measured change in catalysis upon mutations (which was assumed to arise as a result of a “dynamical knockout” caused by the mutations). This analysis is performed by calculating the change in the corresponding activation barriers without the need to invoke dynamical effects. We then generate the catalytic landscape of the enzyme and demonstrate that motions in the conformational space do not help drive catalysis. We also discuss the role of flexibility and conformational dynamics in catalysis, once again demonstrating that their role is negligible and that the largest contribution to catalysis arises from electrostatic preorganization. Finally, we point out that the changes in the reaction potential surface modify the reorganization free energy (which includes entropic effects), and such changes in the surface also alter the corresponding motion. However, this motion is never the reason for catalysis, but rather simply a reflection of the shape of the reaction potential surface. PMID:21831831

  4. Ab initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Symonds, Christopher; Fernandez-Alberti, Sebastian; Shalashilin, Dmitrii V.

    2017-08-01

    The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous ;on the fly; ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined.

  5. Application of a New Ensemble Conserving Quantum Dynamics Simulation Algorithm to Liquid para-Hydrogen and ortho-Deuterium

    DOE PAGES

    Smith, Kyle K.G.; Poulsen, Jens Aage; Nyman, Gunnar; ...

    2015-06-30

    Here, we apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm -3) and (T = 23.0 K, n = 24.61 nm -3), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. Moreover, this showsmore » that FK-QCW provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.« less

  6. Effects of Thermal Noise on the Transitional Dynamics of an Inextensible Elastic Filament in Stagnation Flow

    PubMed Central

    Deng, Mingge; Grinberg, Leopold; Caswell, Bruce

    2015-01-01

    We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a Dissipative Particle Dynamics (DPD) method. Unlike previous works1, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance. PMID:26023834

  7. Application of a New Ensemble Conserving Quantum Dynamics Simulation Algorithm to Liquid para-Hydrogen and ortho-Deuterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kyle K.G.; Poulsen, Jens Aage; Nyman, Gunnar

    Here, we apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm -3) and (T = 23.0 K, n = 24.61 nm -3), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. Moreover, this showsmore » that FK-QCW provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.« less

  8. Application of a new ensemble conserving quantum dynamics simulation algorithm to liquid para-hydrogen and ortho-deuterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kyle K. G., E-mail: kylesmith@utexas.edu; Poulsen, Jens Aage, E-mail: jens72@chem.gu.se; Nyman, Gunnar, E-mail: nyman@chem.gu.se

    We apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm{sup −3}) and (T = 23.0 K, n = 24.61 nm{sup −3}), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. This shows that FK-QCWmore » provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.« less

  9. Molecular dynamics studies of a hexameric purine nucleoside phosphorylase.

    PubMed

    Zanchi, Fernando Berton; Caceres, Rafael Andrade; Stabeli, Rodrigo Guerino; de Azevedo, Walter Filgueira

    2010-03-01

    Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed.

  10. Dynamical Energy Gap Engineering in Graphene via Oscillating Out-of-Plane Deformations

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Zhai, Dawei

    The close relation between electronic properties and mechanical deformations in graphene has been the topic of active research in recent years. Interestingly, the effect of deformations on electronic properties can be understood in terms of pseudo-magnetic fields, whose spatial distribution and intensity are controllable via the deformation geometry. Previous results showed that electromagnetic fields (light) have the potential to induce dynamical gaps in graphene's energy bands, transforming graphene from a semimetal to a semiconductor. However, laser frequencies required to achieve these regimes are in the THz regime, which imposes challenges for practical purposes. In this talk we report a novel method to create dynamical gaps using oscillating mechanical deformations, i.e., via time-dependent pseudo-magnetic fields. Using the Floquet formalism we show the existence of a dynamical gap in the band structure at energies set by the frequency of the oscillation, and with a magnitude tuned by the geometry of the deformation. This dynamical-mechanical manipulation strategy appears as a promising venue to engineer electronic properties of suspended graphene devices. Work supported by NSF-DMR 1508325.

  11. Application of a new ensemble conserving quantum dynamics simulation algorithm to liquid para-hydrogen and ortho-deuterium.

    PubMed

    Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Cunsolo, Alessandro; Rossky, Peter J

    2015-06-28

    We apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm(-3)) and (T = 23.0 K, n = 24.61 nm(-3)), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. This shows that FK-QCW provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.

  12. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  13. Towards a physics of evolution: Critical diversity dynamics at the edges of collapse and bursts of diversification

    NASA Astrophysics Data System (ADS)

    Hanel, Rudolf; Kauffman, Stuart A.; Thurner, Stefan

    2007-09-01

    Systems governed by the standard mechanisms of biological or technological evolution are often described by catalytic evolution equations. We study the structure of these equations and find an analogy with classical thermodynamic systems. In particular, we can demonstrate the existence of several distinct phases of evolutionary dynamics: a phase of fast growing diversity, one of stationary, finite diversity, and one of rapidly decaying diversity. While the first two phases have been subject to previous work, here we focus on the destructive aspects—in particular the phase diagram—of evolutionary dynamics. The main message is that within a critical region, massive loss of diversity can be triggered by very small external fluctuations. We further propose a dynamical model of diversity which captures spontaneous creation and destruction processes fully respecting the phase diagrams of evolutionary systems. The emergent time series show rich diversity dynamics, including power laws as observed in actual economical data, e.g., firm bankruptcy data. We believe the present model presents a possibility to cast the famous qualitative picture of Schumpeterian economic evolution, into a quantifiable and testable framework.

  14. A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks.

    PubMed

    Perisic, Ana; Bauch, Chris T

    2009-05-28

    Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. We simulate transmission of a vaccine-preventable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled.

  15. Dynamic Excitatory and Inhibitory Gain Modulation Can Produce Flexible, Robust and Optimal Decision-making

    PubMed Central

    Niyogi, Ritwik K.; Wong-Lin, KongFatt

    2013-01-01

    Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making. PMID:23825935

  16. A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks

    PubMed Central

    2009-01-01

    Background Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. Methods We simulate transmission of a vaccine-prevetable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. Results We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. Conclusion For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled. PMID:19476616

  17. Stochastic lattice model of synaptic membrane protein domains.

    PubMed

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  18. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions

    PubMed Central

    Dzierlenga, M.W.; Varga, M.J.

    2016-01-01

    The mechanisms of enzymatic reactions are studied via a host of computational techniques. While previous methods have been used successfully, many fail to incorporate the full dynamical properties of enzymatic systems. This can lead to misleading results in cases where enzyme motion plays a significant role in the reaction coordinate, which is especially relevant in particle transfer reactions where nuclear tunneling may occur. In this chapter, we outline previous methods, as well as discuss newly developed dynamical methods to interrogate mechanisms of enzymatic particle transfer reactions. These new methods allow for the calculation of free energy barriers and kinetic isotope effects (KIEs) with the incorporation of quantum effects through centroid molecular dynamics (CMD) and the full complement of enzyme dynamics through transition path sampling (TPS). Recent work, summarized in this chapter, applied the method for calculation of free energy barriers to reaction in lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase (YADH). It was found that tunneling plays an insignificant role in YADH but plays a more significant role in LDH, though not dominant over classical transfer. Additionally, we summarize the application of a TPS algorithm for the calculation of reaction rates in tandem with CMD to calculate the primary H/D KIE of YADH from first principles. It was found that the computationally obtained KIE is within the margin of error of experimentally determined KIEs, and corresponds to the KIE of particle transfer in the enzyme. These methods provide new ways to investigate enzyme mechanism with the inclusion of protein and quantum dynamics. PMID:27497161

  19. Planar Laser Imaging of Scattering and Fluorescence of Zooplankton Feeding in Layers of Phytoplankton in situ

    DTIC Science & Technology

    2010-09-30

    planktonic ecosystems. OBJECTIVES Our objectives in this work are to 1) visualize and quantify herbivorous copepod feeding in the laboratory...and 2) to apply these methods in the field to observe the dynamics of copepod feeding in situ. In particular we intend to test the “feeding sorties...hypothesis vs. the “in situ feeding” hypothesis regarding the location and timing of copepod feeding and vertical migration. APPROACH Previous

  20. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    PubMed

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  1. Measurement of fracture properties of concrete at high strain rates

    PubMed Central

    Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.

    2017-01-01

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956510

  2. Effect of smoothing on robust chaos.

    PubMed

    Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae

    2010-08-01

    In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.

  3. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE PAGES

    Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...

    2016-09-26

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  4. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  5. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  6. Microscopic mechanism for the effect of adding salt on electrospinning by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Bing-Bing; Wang, Xiao-Dong; Wang, Tian-Hu

    2014-09-01

    Adding salts into polymer solution has been found to modulate the fiber structure and significantly improve the solution spinnability in electrospinning. However, the mechanisms have not been fully understood. This work adopted molecular dynamics method to investigate the dynamic behavior of poly(ethylene oxide) (PEO)/water droplet with or without dissolved NaCl salt under high-voltage electric field. Our simulation results agreed with the previous experimental reports well. We observed that some daughter droplets detach from the mother droplet due to the ions evaporation and hydration effect, which significantly accelerates the water evaporation and hence improves the solution spinnability. We also observed that some sodium ions are always coordinated with the ether oxygen group in the PEO chain. When these ions are accelerated by the electric field, the PEO chain segments follow the motion of the ions, inevitably stretching the chain and improving the fiber morphology.

  7. Market mechanism based on the endogenous changing of game types such as Minority-Majority games

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghyun; Lim, Gyuchang; Kim, Sooyong; Kim, Kyungsik

    2010-03-01

    In many social and biological systems agents simultaneously and adaptively compete for limited resources, thereby altering their environment. We propose a evolution function extending Minority-Majority Games that captures the competition between agents to make money. The dynamics changes the ratio of two types of boundedly rational traders, fundamentalists and chartists with the payoff function endogenously. In the previous game theories, the best strategies are not always targeting the minority but are shifting opportunistically between the minority and the majority. And using a mixture of local bifurcation theory and numerical methods, there are possible bifurcation routes to complicated asset price dynamics, chaotic attractors. Hereby we improve the thinking logic of the atoms for attaching the dynamics to the market. This working shows that removing unrealistic features of the game theories leads to models which reproduce a behavior close to what is observed in real markets.

  8. Dynamic evolution of the oscillatory Belousov--Zhabotinsky reaction upon addition of a non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Sciascia, Luciana; Lombardo, Renato; Turco Liveri, Maria Liria

    2006-10-01

    The dynamic evolution of the oscillatory Belousov-Zhabotinsky reaction upon addition of increasing amount of the non-ionic polymer polypropylene glycol with molecular weight 425 g mol -1 (PPG-425) was investigated in a stirred-batch reactor by monitoring the Ce(IV) absorbance changes. The oscillatory parameters are significantly altered by the presence of the polymer. The findings obtained in the present work revealed that the PPG-425 is not only more effective, than other polymer previously [R. Lombardo, C. Sbriziolo, M.L. Turco Liveri, K. Pelle, M. Wittmann, Z. Noszticzius, in: J.A. Pojman, Q. Tran-Cong-Miyata (Eds.), Nonlinear Dynamics in Polymeric Systems, American Chemical Society, Washington, DC, 869 (2004) 292] studied, in perturbing the BZ systems but also more capable of producing key radical species, which in turn can be exploited for the preparation of new polymeric materials.

  9. Quantum transition state dynamics of the cyclooctatetraene unimolecular reaction on ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Tokizaki, Chihiro; Yoshida, Takahiko; Takayanagi, Toshiyuki

    2016-05-01

    The cyclooctatetraene (COT) anion has a stable D4h structure that is similar to the transition state configurations of the neutral C-C bond-alternation (D4h ↔ D8h ↔ D4h) and ring-inversion (D2d ↔ D4h ↔ D2d) unimolecular reactions. The previously measured photodetachment spectrum of COT- revealed the reaction dynamics in the vicinity of the two transition states on the neutral potential energy surface. In this work, the photodetachment spectrum is calculated quantum mechanically on ab initio-level potential energy surfaces within a three degree-of-freedom reduced-dimensionality model. Very good agreement has been obtained between theory and experiment, providing reliable interpretations for the experimental spectrum. A detailed picture of the reactive molecular dynamics of the COT unimolecular reaction in the transition state region is also discussed.

  10. Random walks on activity-driven networks with attractiveness

    NASA Astrophysics Data System (ADS)

    Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2017-05-01

    Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.

  11. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, P.; Trugman, S. A.; Bowlan, J.

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  12. [Pathological hobbies and interests in schizophrenia].

    PubMed

    Sergeev, I I; Malinochka, S A

    2008-01-01

    Pathological hobbies have been studied in 82 inpatients with schizophrenia, 48 men and 34 women, aged 18-65 years. Inclusion criteria of pathology were (1) overvalued character of a hobby, (2) insufficient criticism towards this hobby, (3) fringe, singularity interests and methods of their realization; (4) inconsistency between the hobby and previous life experience, (5) low efficiency, (6) strong linkage with other psychopathological presentations, (7) chronological coincidence between the onset of pathological hobbies and schizophrenia manifestation or exacerbation, (8) susceptibility to progressive dynamics, (9) distinct social-maladaptive influence. Regarding the content, pathological hobbies are presented by creative art, scientific work, collecting, gambling, sport and health activities, "spiritual" development. Three clinical variants - obsessive-compulsive, overvalued and paranoic can be singled out by clinical presentations. The overvalued variant appears to be more favorable due to the predominantly adaptive social influence and weak relation to the dynamics of schizophrenia. Other variants are less productive exerting mostly decompensation effect with less favorable dynamics.

  13. A Modernized Approach to Meet Diversified Earth Observing System (EOS) AM-1 Mission Requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, "lights out" operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(trademark) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result. In addition, the fuzzy logic engine .enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  14. A modernized approach to meet diversified earth observing system (EOS) AM-1 mission requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, 'lights out' operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(TM) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result In addition, the fuzzy logic engine enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  15. Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics*

    PubMed Central

    Kuang, Yi; Long, Marcus J. C.; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-01-01

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition PMID:25157102

  16. Online Recorded Data-Based Composite Neural Control of Strict-Feedback Systems With Application to Hypersonic Flight Dynamics.

    PubMed

    Xu, Bin; Yang, Daipeng; Shi, Zhongke; Pan, Yongping; Chen, Badong; Sun, Fuchun

    2017-09-25

    This paper investigates the online recorded data-based composite neural control of uncertain strict-feedback systems using the backstepping framework. In each step of the virtual control design, neural network (NN) is employed for uncertainty approximation. In previous works, most designs are directly toward system stability ignoring the fact how the NN is working as an approximator. In this paper, to enhance the learning ability, a novel prediction error signal is constructed to provide additional correction information for NN weight update using online recorded data. In this way, the neural approximation precision is highly improved, and the convergence speed can be faster. Furthermore, the sliding mode differentiator is employed to approximate the derivative of the virtual control signal, and thus, the complex analysis of the backstepping design can be avoided. The closed-loop stability is rigorously established, and the boundedness of the tracking error can be guaranteed. Through simulation of hypersonic flight dynamics, the proposed approach exhibits better tracking performance.

  17. Selective epidemic vaccination under the performant routing algorithms

    NASA Astrophysics Data System (ADS)

    Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.

    2018-04-01

    Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.

  18. On the Processing of Spalling Experiments. Part II: Identification of Concrete Fracture Energy in Dynamic Tension

    NASA Astrophysics Data System (ADS)

    Lukić, Bratislav B.; Saletti, Dominique; Forquin, Pascal

    2017-12-01

    This paper presents a second part of the study aimed at investigating the fracture behavior of concrete under high strain rate tensile loading. The experimental method together with the identified stress-strain response of three tests conducted on ordinary concrete have been presented in the paper entitled Part I (Forquin and Lukić in Journal of Dynamic Behavior of Materials, 2017. https://doi.org/10.1007/s40870-017-0135-1). In the present paper, Part II, the investigation is extended towards directly determining the specific fracture energy of each observed fracture zone by visualizing the dynamic cracking process with a temporal resolution of 1 µs. Having access to temporal displacement fields of the sample surface, it is possible to identify the fracture opening displacement (FOD) and the fracture opening velocity of any principle (open) and secondary (closed) fracture at each measurement instance, that may or may not lead to complete physical failure of the sample. Finally, the local Stress-FOD curves were obtained for each observed fracture zone, opposed to previous works where indirect measurements were used. The obtained results indicated a much lower specific fracture energy compared to the results often found in the literature. Furthermore, numerical simulations were performed with a damage law to evaluate the validity of the proposed experimental data processing and compare it to the most often used one in the previous works. The results showed that the present method can reliably predict the specific fracture energy needed to open one macro-fracture and suggested that indirect measurement techniques can lead to an overestimate of specific fracture energy due to the stringent assumption of linear elasticity up-to the peak and the inability of having access to the real post-peak change of axial stress.

  19. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion.

  20. Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.

    PubMed

    Valdés-Tresanco, Mario E; Valdés-Tresanco, Mario S; Valiente, Pedro A; Cocho, Germinal; Mansilla, Ricardo; Nieto-Villar, J M

    2018-01-01

    The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R 2  = 0.76; <|error|> =0.55 kcal/mol; SD error  = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Supervisor Support Buffers Daily Psychological and Physiological Reactivity to Work-to-Family Conflict

    PubMed Central

    Almeida, David M.; Davis, Kelly D.; Lee, Soomi; Lawson, Katie M.; Walter, Kim; Moen, Phyllis

    2015-01-01

    Using a daily diary design, the current study assessed within-person associations of work-to-family conflict with negative affect and salivary cortisol. Furthermore, we investigated whether supervisor support moderated these associations. Over eight consecutive days, 131 working parents employed by an information technology company answered telephone interviews about stressors and mood that occurred in the previous 24 hours. On Days 2–4 of the study protocol, they also provided five saliva samples throughout the day that were assayed for cortisol. Results indicated a high degree of day-to-day fluctuation in work-to-family conflict, with employed parents having greater negative affect and poorer cortisol regulation on days with higher work-to-family conflict compared to days when they experience lower work-to-family conflict. These associations were buffered, however, when individuals had supervisors who offered support. Discussion centers on the use of dynamic assessments of work-to-family conflict and employee well-being. PMID:26778857

  2. Supervisor Support Buffers Daily Psychological and Physiological Reactivity to Work-to-Family Conflict.

    PubMed

    Almeida, David M; Davis, Kelly D; Lee, Soomi; Lawson, Katie M; Walter, Kim; Moen, Phyllis

    2016-02-01

    Using a daily diary design, the current study assessed within-person associations of work-to-family conflict with negative affect and salivary cortisol. Furthermore, we investigated whether supervisor support moderated these associations. Over eight consecutive days, 131 working parents employed by an information technology company answered telephone interviews about stressors and mood that occurred in the previous 24 hours. On Days 2-4 of the study protocol, they also provided five saliva samples throughout the day that were assayed for cortisol. Results indicated a high degree of day-to-day fluctuation in work-to-family conflict, with employed parents having greater negative affect and poorer cortisol regulation on days with higher work-to-family conflict compared to days when they experience lower work-to-family conflict. These associations were buffered, however, when individuals had supervisors who offered support. Discussion centers on the use of dynamic assessments of work-to-family conflict and employee well-being.

  3. Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.

    PubMed

    Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K

    2013-10-01

    Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.

  4. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre

    2018-05-01

    Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.

  5. SU-G-IeP1-13: Sub-Nyquist Dynamic MRI Via Prior Rank, Intensity and Sparsity Model (PRISM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, B; Gao, H

    Purpose: Accelerated dynamic MRI is important for MRI guided radiotherapy. Inspired by compressive sensing (CS), sub-Nyquist dynamic MRI has been an active research area, i.e., sparse sampling in k-t space for accelerated dynamic MRI. This work is to investigate sub-Nyquist dynamic MRI via a previously developed CS model, namely Prior Rank, Intensity and Sparsity Model (PRISM). Methods: The proposed method utilizes PRISM with rank minimization and incoherent sampling patterns for sub-Nyquist reconstruction. In PRISM, the low-rank background image, which is automatically calculated by rank minimization, is excluded from the L1 minimization step of the CS reconstruction to further sparsify themore » residual image, thus allowing for higher acceleration rates. Furthermore, the sampling pattern in k-t space is made more incoherent by sampling a different set of k-space points at different temporal frames. Results: Reconstruction results from L1-sparsity method and PRISM method with 30% undersampled data and 15% undersampled data are compared to demonstrate the power of PRISM for dynamic MRI. Conclusion: A sub- Nyquist MRI reconstruction method based on PRISM is developed with improved image quality from the L1-sparsity method.« less

  6. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G. V.

    2017-03-01

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator. This article is part of the themed issue 'Wind energy in complex terrains'.

  7. Temporal and spectral characteristics of dynamic functional connectivity between resting-state networks reveal information beyond static connectivity

    PubMed Central

    Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.

    2018-01-01

    Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work illuminates many previously unexplored facets of the dynamic properties of functional connectivity between resting-state networks, and provides a platform for dynamic functional connectivity analysis that facilitates its usage as an investigative measure for healthy as well as abnormal brain function. PMID:29320526

  8. On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.

    1992-01-01

    We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.

  9. Structure and Dynamics of Polymers in Cylindrical Nanoconfinement: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Pressly, James; Riggleman, Robert; Winey, Karen

    The structure and dynamics of polymers under nanoconfinement is critical for understanding how polymers behave in applications from hydraulic fracking to fabricating integrated circuits. We previously used simulations to explore the effect of the diameter of cylindrical pores (d = 10-40 σ, where σ is the unit length in reduced units) on polymer end-to-end distance (Ree,perp, Ree,par) , entanglement density, melt diffusion coefficient (D), and local relaxation time (τperp, τpar) at fixed polymer chain length (N = 350). These studies found D, Ree,par, and τperp increased with increasing confinement while entanglement density, Ree,perp, and τpar decreased. Experiments also found that D increased but to a lesser extent. Here, we examine the molecular weight dependence of these properties using N = 25, 50, 100, 200, 350, and 500 confined to pores of diameter 14 σ to examine a range of confinements. Our preliminary results show that as N increases D and Ree,par, increase as well, relative to the unconfined state, while entanglement density and Ree,perp decrease, consistent with our previous work. Interestingly, τ is shown to be independent of chain length indicating the impact of confinement imposed by reducing pore diameter is distinct from that imposed by increasing chain length.

  10. Different developmental trajectories across feature types support a dynamic field model of visual working memory development

    PubMed Central

    Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin

    2015-01-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253

  11. Different developmental trajectories across feature types support a dynamic field model of visual working memory development.

    PubMed

    Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin

    2015-05-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.

  12. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-01-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  13. Dynamics of Conflicts in Wikipedia

    PubMed Central

    Yasseri, Taha; Sumi, Robert; Rung, András; Kornai, András; Kertész, János

    2012-01-01

    In this work we study the dynamical features of editorial wars in Wikipedia (WP). Based on our previously established algorithm, we build up samples of controversial and peaceful articles and analyze the temporal characteristics of the activity in these samples. On short time scales, we show that there is a clear correspondence between conflict and burstiness of activity patterns, and that memory effects play an important role in controversies. On long time scales, we identify three distinct developmental patterns for the overall behavior of the articles. We are able to distinguish cases eventually leading to consensus from those cases where a compromise is far from achievable. Finally, we analyze discussion networks and conclude that edit wars are mainly fought by few editors only. PMID:22745683

  14. Numerical tests of local scale invariance in ageing q-state Potts models

    NASA Astrophysics Data System (ADS)

    Lorenz, E.; Janke, W.

    2007-01-01

    Much effort has been spent over the last years to achieve a coherent theoretical description of ageing as a non-linear dynamics process. Long supposed to be a consequence of the slow dynamics of glassy systems only, ageing phenomena could also be identified in the phase-ordering kinetics of simple ferromagnets. As a phenomenological approach Henkel et al. developed a group of local scale transformations under which two-time autocorrelation and response functions should transform covariantly. This work is to extend previous numerical tests of the predicted scaling functions for the Ising model by Monte Carlo simulations of two-dimensional q-state Potts models with q=3 and 8, which, in equilibrium, undergo temperature-driven phase transitions of second and first order, respectively.

  15. Black Hole Formation in Randall-Sundrum II Braneworlds.

    PubMed

    Wang, Daoyan; Choptuik, Matthew W

    2016-07-01

    We present the first numerical study of the full dynamics of a braneworld scenario, working within the framework of the single brane model of Randall and Sundrum. In particular, we study the process of gravitational collapse driven by a massless scalar field which is confined to the brane. Imposing spherical symmetry on the brane, we show that the evolutions of sufficiently strong initial configurations of the scalar field result in black holes that have finite extension into the bulk. Furthermore, we find preliminary evidence that the black holes generated form a unique sequence, irrespective of the details of the initial data. The black hole solutions we obtain from dynamical evolutions are consistent with those previously computed from a static vacuum ansatz.

  16. The role of the CN vibration in the activated dynamics of LiNC<−>LiCN isomerization in an argon solvent at high temperatures.

    PubMed

    Garcia-Muller, Pablo L; Hernandez, Rigoberto; Benito, R M; Borondo, F

    2014-08-21

    The isomerization between CN-Li and Li-CN in an argon bath provides a paradigmatic example of a reaction in a solvent with tunable coupling. In previous work, we found that the rates exhibited a turnover with the density of the argon bath in the limit that the CN bond was held fixed [P. L. Garcia-Muller, R. Hernandez, R. M. Benito, and F. Borondo, J. Chem. Phys. 137, 204301 (2012)]. Here, we report the effect of the CN bond vibration on the dynamics and the persistence of the turnover. As hypothesized earlier, the CN bond is indeed weakly coupled with the reaction path despite the presence of the argon cage.

  17. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    PubMed

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  18. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking.

    PubMed

    Zelik, Karl E; Takahashi, Kota Z; Sawicki, Gregory S

    2015-03-01

    Measuring biomechanical work performed by humans and other animals is critical for understanding muscle-tendon function, joint-specific contributions and energy-saving mechanisms during locomotion. Inverse dynamics is often employed to estimate joint-level contributions, and deformable body estimates can be used to study work performed by the foot. We recently discovered that these commonly used experimental estimates fail to explain whole-body energy changes observed during human walking. By re-analyzing previously published data, we found that about 25% (8 J) of total positive energy changes of/about the body's center-of-mass and >30% of the energy changes during the Push-off phase of walking were not explained by conventional joint- and segment-level work estimates, exposing a gap in our fundamental understanding of work production during gait. Here, we present a novel Energy-Accounting analysis that integrates various empirical measures of work and energy to elucidate the source of unexplained biomechanical work. We discovered that by extending conventional 3 degree-of-freedom (DOF) inverse dynamics (estimating rotational work about joints) to 6DOF (rotational and translational) analysis of the hip, knee, ankle and foot, we could fully explain the missing positive work. This revealed that Push-off work performed about the hip may be >50% greater than conventionally estimated (9.3 versus 6.0 J, P=0.0002, at 1.4 m s(-1)). Our findings demonstrate that 6DOF analysis (of hip-knee-ankle-foot) better captures energy changes of the body than more conventional 3DOF estimates. These findings refine our fundamental understanding of how work is distributed within the body, which has implications for assistive technology, biomechanical simulations and potentially clinical treatment. © 2015. Published by The Company of Biologists Ltd.

  19. Quantifying Factors That Impact Riverbed Dynamic Permeability at a Riverbank Filtration Facility

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Hubbard, S. S.; Florsheim, J. L.; Rosenberry, D. O.; Borglin, S. E.; Zhang, Y.; Seymour, D.; Trotta, M.

    2012-12-01

    Previous modeling studies of the Wohler riverbank filtration system on the Russian River, California suggested that riverbed and aquifer permeability both influence the development of a pumping-induced unsaturated zone below the riverbed, which affects water produced through large radial water-supply collector wells that extend beneath and adjacent to the river. In particular, previous work suggests that riverbed permeability is influenced by interaction between pumping and river stage that is controlled by a downstream temporary inflatable dam during the summer low flow period. We hypothesize that raising the dam may instead lead to deposition of fine-grained sediment and/or accumulation of biota, both of which decrease riverbed permeability in the vicinity of the collector wells. To test this hypothesis, we are monitoring streambed permeability and seepage as a function of river stage and dam operation. We are using multiple methods to monitor the hydrological, sedimentological and geomorphic dynamics, including: seepage meters, sediment traps, cryogenic coring, ground penetrating radar, electrical resistance tomography, riverbed topography, piezometers, and thermistors. Here we discuss the use of this novel suite of methods to quantify dynamic riverbed permeability, how it relates to dam operation, and determine the key controls on permeability (i.e., biotic or abiotic). These results are expected to improve the overall understanding of riverbed permeability dynamics associated with Riverbank filtration. The results are also expected to be transferable to the project sponsors, the Sonoma County Water Agency, toward the development of an optimal pumping and dam operation schedule.

  20. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  1. Model of the best-of-N nest-site selection process in honeybees.

    PubMed

    Reina, Andreagiovanni; Marshall, James A R; Trianni, Vito; Bose, Thomas

    2017-05-01

    The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N-1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.

  2. Model of the best-of-N nest-site selection process in honeybees

    NASA Astrophysics Data System (ADS)

    Reina, Andreagiovanni; Marshall, James A. R.; Trianni, Vito; Bose, Thomas

    2017-05-01

    The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N -1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.

  3. Revised age estimates of the Euphrosyne family

    NASA Astrophysics Data System (ADS)

    Carruba, Valerio; Masiero, Joseph R.; Cibulková, Helena; Aljbaae, Safwan; Espinoza Huaman, Mariela

    2015-08-01

    The Euphrosyne family, a high inclination asteroid family in the outer main belt, is considered one of the most peculiar groups of asteroids. It is characterized by the steepest size frequency distribution (SFD) among families in the main belt, and it is the only family crossed near its center by the ν6 secular resonance. Previous studies have shown that the steep size frequency distribution may be the result of the dynamical evolution of the family.In this work we further explore the unique dynamical configuration of the Euphrosyne family by refining the previous age values, considering the effects of changes in shapes of the asteroids during YORP cycle (``stochastic YORP''), the long-term effect of close encounters of family members with (31) Euphrosyne itself, and the effect that changing key parameters of the Yarkovsky force (such as density and thermal conductivity) has on the estimate of the family age obtained using Monte Carlo methods. Numerical simulations accounting for the interaction with the local web of secular and mean-motion resonances allow us to refine previous estimates of the family age. The cratering event that formed the Euphrosyne family most likely occurred between 560 and 1160 Myr ago, and no earlier than 1400 Myr ago when we allow for larger uncertainties in the key parameters of the Yarkovsky force.

  4. Direct dynamics simulations of the unimolecular dissociation of dioxetane: Probing the non-RRKM dynamics

    NASA Astrophysics Data System (ADS)

    Malpathak, Shreyas; Ma, Xinyou; Hase, William L.

    2018-04-01

    In a previous UB3LYP/6-31G* direct dynamics simulation, non-Rice-Ramsperger-Kassel-Marcus (RRKM) unimolecular dynamics was found for vibrationally excited 1,2-dioxetane (DO); [R. Sun et al., J. Chem. Phys. 137, 044305 (2012)]. In the work reported here, these dynamics are studied in more detail using the same direct dynamics method. Vibrational modes of DO were divided into 4 groups, based on their characteristic motions, and each group excited with the same energy. To compare with the dynamics of these groups, an additional group of trajectories comprising a microcanonical ensemble was also simulated. The results of these simulations are consistent with the previous study. The dissociation probability, N(t)/N(0), for these excitation groups were all different. Groups A, B, and C, without initial excitation in the O-O stretch reaction coordinate, had a time lag to of 0.25-1.0 ps for the first dissociation to occur. Somewhat surprisingly, the C-H stretch Group A and out-of-plane motion Group C excitations had exponential dissociation probabilities after to, with a rate constant ˜2 times smaller than the anharmonic RRKM value. Groups B and D, with excitation of the H-C-H bend and wag, and ring bend and stretch modes, respectively, had bi-exponential dissociation probabilities. For Group D, with excitation localized in the reaction coordinate, the initial rate constant is ˜7 times larger than the anharmonic RRKM value, substantial apparent non-RRKM dynamics. N(t)/N(0) for the random excitation trajectories was non-exponential, indicating intrinsic non-RRKM dynamics. For the trajectory integration time of 13.5 ps, 9% of these trajectories did not dissociate in comparison to the RRKM prediction of 0.3%. Classical power spectra for these trajectories indicate they have regular intramolecular dynamics. The N(t)/N(0) for the excitation groups are well described by a two-state coupled phase space model. From the intercept of N(t)/N(0) with random excitation, the anharmonic correction to the RRKM rate constant is approximately a factor of 1.5.

  5. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haj, Tahar M.; Meot, F.

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on themore » scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.« less

  6. The dual-basin landscape in GFP folding

    PubMed Central

    Andrews, Benjamin T.; Gosavi, Shachi; Finke, John M.; Onuchic, José N.; Jennings, Patricia A.

    2008-01-01

    Recent experimental studies suggest that the mature GFP has an unconventional landscape composed of an early folding event with a typical funneled landscape, followed by a very slow search and rearrangement step into the locked, active chromophore-containing structure. As we have shown previously, the substantial difference in time scales is what generates the observed hysteresis in thermodynamic folding. The interconversion between locked and the soft folding structures at intermediate denaturant concentrations is so slow that it is not observed under the typical experimental observation time. Simulations of a coarse-grained model were used to describe the fast folding event as well as identify native-like intermediates on energy landscapes enroute to the fluorescent native fold. Interestingly, these simulations reveal structural features of the slow dynamic transition to chromophore activation. Experimental evidence presented here shows that the trapped, native-like intermediate has structural heterogeneity in residues previously linked to chromophore formation. We propose that the final step of GFP folding is a “locking” mechanism leading to chromophore formation and high stability. The combination of previous experimental work and current simulation work is explained in the context of a dual-basin folding mechanism described above. PMID:18713871

  7. Simulating Self-Assembly with Simple Models

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    Results from recent molecular dynamics simulations of virus capsid self-assembly are described. The model is based on rigid trapezoidal particles designed to form polyhedral shells of size 60, together with an atomistic solvent. The underlying bonding process is fully reversible. More extensive computations are required than in previous work on icosahedral shells built from triangular particles, but the outcome is a high yield of closed shells. Intermediate clusters have a variety of forms, and bond counts provide a useful classification scheme

  8. Epidemics on adaptive networks with geometric constraints

    NASA Astrophysics Data System (ADS)

    Shaw, Leah; Schwartz, Ira

    2008-03-01

    When a population is faced with an epidemic outbreak, individuals may modify their social behavior to avoid exposure to the disease. Recent work has considered models in which the contact network is rewired dynamically so that susceptibles avoid contact with infectives. We consider extensions in which the rewiring is subject to constraints that preserve key properties of the social network structure. Constraining to a fixed degree distribution destroys previously observed bistable behavior. The most effective rewiring strategy is found to depend on the spreading rate.

  9. North Korean Leadership Dynamics and Decision-making under Kim Jong-un: A First Year Assessment

    DTIC Science & Technology

    2013-09-01

    regarding policy and its calculus regard- ing provocation versus engagement will be considered both for what they say about stability within the...briefing the policy when Ri pushed back, saying , "The policy is an ill-advised idea that denies the socialist principles that our previous supreme...leadership. Kim Jong-un then stood up and stripped Ri of his title and rank on the spot and had him arrested, saying , "I can- not work for revolution with

  10. North Korean Leadership Dynamics and Decision-making under Kim Jong-un: A Second Year Assessment

    DTIC Science & Technology

    2014-03-01

    engagement will be considered both for what they say about stability within the regime and for any insights that could inform the United States...briefing the policy when Ri pushed back, saying , "The policy is an ill-advised idea that denies the socialist principles that our previous supreme...leadership. Kim Jong-un then stood up and stripped Ri of his title and rank on the spot and had him arrested, saying , "I can- not work for revolution with

  11. Finite-temperature Gutzwiller approximation from the time-dependent variational principle

    NASA Astrophysics Data System (ADS)

    Lanatà, Nicola; Deng, Xiaoyu; Kotliar, Gabriel

    2015-08-01

    We develop an extension of the Gutzwiller approximation to finite temperatures based on the Dirac-Frenkel variational principle. Our method does not rely on any entropy inequality, and is substantially more accurate than the approaches proposed in previous works. We apply our theory to the single-band Hubbard model at different fillings, and show that our results compare quantitatively well with dynamical mean field theory in the metallic phase. We discuss potential applications of our technique within the framework of first-principle calculations.

  12. Utilizing Dynamically Coupled Cores to Form a Resilient Chip Multiprocessor

    DTIC Science & Technology

    2007-06-01

    requires a significant deviation from previous work. For instance, we find that using the relaxed input replication model from Reunion incurs a...Circuit Width Delay Count CRC-16 16 6.65 754 CRC- SDLC -16 16 6.10 888 CRC-32 16 7.28 2260 CRC-32 32 8.60 4240 Table 1. FO4 delay and transistor count for...the operation of our proposed system is the same in all other respects. 4.4 Compatibility Across Memory Consis- tency Models The memory consistency

  13. Using chaotic artificial neural networks to model memory in the brain

    NASA Astrophysics Data System (ADS)

    Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh

    2017-03-01

    In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.

  14. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  15. Analysis of Hepatic Blood Flow Using Chaotic Models

    PubMed Central

    Cohen, M. E.; Moazamipour, H.; Hudson, D. L.; Anderson, M. F.

    1990-01-01

    The study of chaos in physical systems is an important new theoretical development in modeling which has emerged in the last fifteen years. It is particularly useful in explaining phenomena which arise in nonlinear dynamic systems, for which previous mathematical models produced results with intractable solutions. Analysis of blood flow is such an application. In the work described here, chaotic models are used to analyze hepatic artery and portal vein blood flow obtained from a pulsed Doppler ultrasonic flowmeter implanted in dogs. ImagesFigure 3

  16. Quantifying Environmental Effects on the Decay of Hole Transfer Couplings in Biosystems.

    PubMed

    Ramos, Pablo; Pavanello, Michele

    2014-06-10

    In the past two decades, many research groups worldwide have tried to understand and categorize simple regimes in the charge transfer of such biological systems as DNA. Theoretically speaking, the lack of exact theories for electron-nuclear dynamics on one side and poor quality of the parameters needed by model Hamiltonians and nonadiabatic dynamics alike (such as couplings and site energies) on the other are the two main difficulties for an appropriate description of the charge transfer phenomena. In this work, we present an application of a previously benchmarked and linear-scaling subsystem density functional theory (DFT) method for the calculation of couplings, site energies, and superexchange decay factors (β) of several biological donor-acceptor dyads, as well as double stranded DNA oligomers composed of up to five base pairs. The calculations are all-electron and provide a clear view of the role of the environment on superexchange couplings in DNA-they follow experimental trends and confirm previous semiempirical calculations. The subsystem DFT method is proven to be an excellent tool for long-range, bridge-mediated coupling and site energy calculations of embedded molecular systems.

  17. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean.

    PubMed

    Díaz, J I; Hidalgo, A; Tello, L

    2014-10-08

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge-Kutta total variation diminishing for time integration.

  18. Non-destructive monitoring of Bloch oscillations in an optical cavity

    NASA Astrophysics Data System (ADS)

    Klinder, Jens; Kessler, Hans; Venkatesh, B. Prasanna; Georges, Christoph; Vargas, Jose; Hemmerich, Andreas

    2017-04-01

    Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. We show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly improve the precision of Bloch oscillation measurements for metrological purposes. This work was partially supported by DFG-SFB925 and the Hamburg centre of ultrafast imaging (CUI).

  19. Nonstationary magnetosonic wave dynamics in plasmas exhibiting collapse.

    PubMed

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2013-08-01

    In a Lagrangian fluid approach, an explicit method has been presented previously to obtain an exact nonstationary magnetosonic-type wave solution in compressible magnetized plasmas of arbitrary resistivity showing competition among hydrodynamic convection, magnetic field diffusion, and dispersion [Chakrabarti et al., Phys. Rev. Lett. 106, 145003 (2011)]. The purpose of the present work is twofold: it serves (i) to describe the physical and mathematical background of the involved magnetosonic wave dynamics in more detail, as proposed by our original Letter, and (ii) to present an alternative approach, which utilizes the Lagrangian mass variable as a new spatial coordinate [Schamel, Phys. Rep. 392, 279 (2004)]. The obtained exact nonlinear wave solutions confirm the correctness of our previous results, indicating a collapse of the magnetic field irrespective of the presence of dispersion and resistivity. The mean plasma density, on the other hand, is less singular, showing collapse only when dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas, and they are expected to be of special importance in the astrophysical context of magnetic star formation.

  20. A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.

    2008-08-01

    Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.

  1. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean

    PubMed Central

    Díaz, J. I.; Hidalgo, A.; Tello, L.

    2014-01-01

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration. PMID:25294969

  2. Dynamical density functional theory for arbitrary-shape colloidal fluids including inertia and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim

    2015-11-01

    Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  3. VALIDITY OF HYDROSTATIC EQUILIBRIUM IN GALAXY CLUSTERS FROM COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suto, Daichi; Suto, Yasushi; Kawahara, Hajime

    2013-04-10

    We examine the validity of the hydrostatic equilibrium (HSE) assumption for galaxy clusters using one of the highest-resolution cosmological hydrodynamical simulations. We define and evaluate several effective mass terms corresponding to the Euler equations of gas dynamics, and quantify the degree of the validity of HSE in terms of the mass estimate. We find that the mass estimated under the HSE assumption (the HSE mass) deviates from the true mass by up to {approx}30%. This level of departure from HSE is consistent with the previous claims, but our physical interpretation is rather different. We demonstrate that the inertial term inmore » the Euler equations makes a negligible contribution to the total mass, and the overall gravity of the cluster is balanced by the thermal gas pressure gradient and the gas acceleration term. Indeed, the deviation from the HSE mass is well explained by the acceleration term at almost all radii. We also clarify the confusion of previous work due to the inappropriate application of the Jeans equations in considering the validity of HSE from the gas dynamics extracted from cosmological hydrodynamical simulations.« less

  4. Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling

    PubMed Central

    Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard

    2011-01-01

    Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. PMID:21692148

  5. Elasto-dynamic analysis of a gear pump-Part IV: Improvement in the pressure distribution modelling

    NASA Astrophysics Data System (ADS)

    Mucchi, E.; Dalpiaz, G.; Fernàndez del Rincòn, A.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out by comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory global, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure distribution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the aim at improving the calculation of pressure forces and torques. The improved pressure formulation includes several phenomena not considered in the previous one, such as the variable pressure evolution at input and output ports, as well as an accurate description of the trapped volume and its connections with high and low pressure chambers. The importance of these improvements are highlighted by comparison with experimental results, showing satisfactory matching.

  6. Elasto-dynamic analysis of a gear pump-Part III: Experimental validation procedure and model extension to helical gears

    NASA Astrophysics Data System (ADS)

    Mucchi, E.; Dalpiaz, G.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model's experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory globally, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure evolution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the aim at improving the calculation of pressure forces and torques. The improved pressure formulation includes several phenomena not considered in the previous one, such as the variable pressure evolution at input and output ports, as well as an accurate description of the trapped volume and its connections with high and low pressure chambers. The importance of these improvements are highlighted by comparison with experimental results, showing satisfactory matching.

  7. Improved Spectral Calculations for Discrete Schrődinger Operators

    NASA Astrophysics Data System (ADS)

    Puelz, Charles

    This work details an O(n2) algorithm for computing spectra of discrete Schrődinger operators with periodic potentials. Spectra of these objects enhance our understanding of fundamental aperiodic physical systems and contain rich theoretical structure of interest to the mathematical community. Previous work on the Harper model led to an O(n2) algorithm relying on properties not satisfied by other aperiodic operators. Physicists working with the Fibonacci Hamiltonian, a popular quasicrystal model, have instead used a problematic dynamical map approach or a sluggish O(n3) procedure for their calculations. The algorithm presented in this work, a blend of well-established eigenvalue/vector algorithms, provides researchers with a more robust computational tool of general utility. Application to the Fibonacci Hamiltonian in the sparsely studied intermediate coupling regime reveals structure in canonical coverings of the spectrum that will prove useful in motivating conjectures regarding band combinatorics and fractal dimensions.

  8. Prediction of new ground-state crystal structure of T a2O5

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Kawazoe, Yoshiyuki

    2018-03-01

    Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.

  9. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    PubMed

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over the previous work through increased PIV image resolution, use of robust image processing algorithms for near-wall velocity measurements and wall shear stress calculations, and uncertainty analyses for both velocity and wall shear stress measurements. The velocity and shear stress analysis, with spatially distributed uncertainty estimates, highlights the challenges of flow quantification in medical devices and provides potential methods to overcome such challenges.

  10. Second order nonlinear equations of motion for spinning highly flexible line-elements. [for spacecraft solar sail

    NASA Technical Reports Server (NTRS)

    Salama, M.; Trubert, M.

    1979-01-01

    A formulation is given for the second order nonlinear equations of motion for spinning line-elements having little or no intrinsic structural stiffness. Such elements have been employed in recent studies of structural concepts for future large space structures such as the Heliogyro solar sailer. The derivation is based on Hamilton's variational principle and includes the effect of initial geometric imperfections (axial, curvature, and twist) on the line-element dynamics. For comparison with previous work, the nonlinear equations are reduced to a linearized form frequently found in the literature. The comparison has revealed several new spin-stiffening terms that have not been previously identified and/or retained. They combine geometric imperfections, rotary inertia, Coriolis, and gyroscopic terms.

  11. Size-dependent penetrant diffusion in polymer glasses.

    PubMed

    Meng, Dong; Zhang, Kai; Kumar, Sanat K

    2018-05-18

    Molecular Dynamics simulations are used to understand the underpinning basis of the transport of gas-like solutes in deeply quenched polymeric glasses. As found in previous work, small solutes, with sizes smaller than 0.15 times the chain monomer size, move as might be expected in a medium with large pores. In contrast, the motion of larger solutes is activated and is strongly facilitated by matrix motion. In particular, solute motion is coupled to the local elastic fluctuations of the matrix as characterized by the Debye-Waller factor. While similar ideas have been previously proposed for the viscosity of supercooled liquids above their glass transition, to our knowledge, this is the first illustration of this concept in the context of solute mass transport in deeply quenched polymer glasses.

  12. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  13. Dynamics of Work Disability and Pain

    PubMed Central

    Kapteyn, Arie; Smith, James P.; van Soest, Arthur

    2013-01-01

    This paper investigates the role of pain in affecting self-reported work disability and employment of elderly workers in the US. We investigate pain and its relationship to work disability and work in a dynamic panel data model, using six biennial waves from the Health and Retirement Study. We find the dynamics of the presence of pain is central to understanding the dynamics of self-reported work disability. By affecting work disability pain also has important implications for the dynamic patterns of employment. PMID:18180063

  14. A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Long, Jason M.; Lane, John E.; Metzger, Philip T.

    2008-01-01

    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.

  15. Data-driven Inference and Investigation of Thermosphere Dynamics and Variations

    NASA Astrophysics Data System (ADS)

    Mehta, P. M.; Linares, R.

    2017-12-01

    This paper presents a methodology for data-driven inference and investigation of thermosphere dynamics and variations. The approach uses data-driven modal analysis to extract the most energetic modes of variations for neutral thermospheric species using proper orthogonal decomposition, where the time-independent modes or basis represent the dynamics and the time-depedent coefficients or amplitudes represent the model parameters. The data-driven modal analysis approach combined with sparse, discrete observations is used to infer amplitues for the dynamic modes and to calibrate the energy content of the system. In this work, two different data-types, namely the number density measurements from TIMED/GUVI and the mass density measurements from CHAMP/GRACE are simultaneously ingested for an accurate and self-consistent specification of the thermosphere. The assimilation process is achieved with a non-linear least squares solver and allows estimation/tuning of the model parameters or amplitudes rather than the driver. In this work, we use the Naval Research Lab's MSIS model to derive the most energetic modes for six different species, He, O, N2, O2, H, and N. We examine the dominant drivers of variations for helium in MSIS and observe that seasonal latitudinal variation accounts for about 80% of the dynamic energy with a strong preference of helium for the winter hemisphere. We also observe enhanced helium presence near the poles at GRACE altitudes during periods of low solar activity (Feb 2007) as previously deduced. We will also examine the storm-time response of helium derived from observations. The results are expected to be useful in tuning/calibration of the physics-based models.

  16. Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ho, I.-Chen

    Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms, electron intervalley scattering and impact ionization of InAs crystals, are observed under the excitation of intense THz field on a sub-picosecond time scale. These two competing mechanisms are demonstrated by changing the impurity doping type of the semiconductors and varying the strength of the THz field. Another investigation of nonlinear carrier dynamics is the observation of coherent polaron oscillation in n-doped semiconductors excited by intense THz pulses. Through modulations of surface reflection with a THz pump/THz probe technique, this work experimentally verifies the interaction between energetic electrons and a phonon field, which has been theoretically predicted by previous publications, and shows that this interaction applies for the acoustic phonon modes. Usually, two transverse acoustic (2TA) phonon responses are inactive in infrared measurement, while they are detectable in second-order Raman spectroscopy. The study of polaron dynamics, with nonlinear THz spectroscopy (in the far-infrared range), provides a unique method to diagnose the overtones of 2TA phonon responses of semiconductors, and therefore incorporates the abilities of both infrared and Raman spectroscopy. This work presents a new milestone in wave-matter interaction and seeks to benefit the industrial applications in high power, small scale devices.

  17. Global dynamic optimization approach to predict activation in metabolic pathways.

    PubMed

    de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R

    2014-01-06

    During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.

  18. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    NASA Astrophysics Data System (ADS)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  19. Laboratory Observations of Sand Ripple Evolution in a Small Oscillatory Flow Tunnel

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Chu, J.; Landry, B. J.; Penko, A.

    2014-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Six different monochromatic oscillatory forcings, three with velocity asymmetry and three without, were used to investigate sand ripple dynamics using a unimodal grain size distribution with D50=0.65 mm. The experiments represent an extension of previous work using bimodal grain size distributions. A DSLR camera with a 180-degree fisheye lens collected images of the sediment bed profile every 2 seconds to resolve changes in ripple geometries and migration rates resulting from the different flow conditions for over 127 hours (229,388 images). Matlab © algorithms undistorted the fisheye images and quantified the ripple geometries, wavelengths, heights, and migration rates as a function of flow forcing. The mobility number was kept nearly constant by increasing and decreasing the semi-excursion amplitude and the wave frequency, respectively. We observed distinct changes in ripple geometry and migration rate for the pair of oscillatory forcings having nearly identical mobility numbers. The results suggested that the commonly used mobility number might not be appropriate to characterize ripple geometry or migration rates.

  20. Optimization of Simplex Atomizer Inlet Port Configuration through Computational Fluid Dynamics and Experimental Study for Aero-Gas Turbine Applications

    NASA Astrophysics Data System (ADS)

    Marudhappan, Raja; Chandrasekhar, Udayagiri; Hemachandra Reddy, Koni

    2017-10-01

    The design of plain orifice simplex atomizer for use in the annular combustion system of 1100 kW turbo shaft engine is optimized. The discrete flow field of jet fuel inside the swirl chamber of the atomizer and up to 1.0 mm downstream of the atomizer exit are simulated using commercial Computational Fluid Dynamics (CFD) software. The Euler-Euler multiphase model is used to solve two sets of momentum equations for liquid and gaseous phases and the volume fraction of each phase is tracked throughout the computational domain. The atomizer design is optimized after performing several 2D axis symmetric analyses with swirl and the optimized inlet port design parameters are used for 3D simulation. The Volume Of Fluid (VOF) multiphase model is used in the simulation. The orifice exit diameter is 0.6 mm. The atomizer is fabricated with the optimized geometric parameters. The performance of the atomizer is tested in the laboratory. The experimental observations are compared with the results obtained from 2D and 3D CFD simulations. The simulated velocity components, pressure field, streamlines and air core dynamics along the atomizer axis are compared to previous research works and found satisfactory. The work has led to a novel approach in the design of pressure swirl atomizer.

  1. On the mechanism of non-radiative decay of blue fluorescent protein chromophore: New insight from the excited-state molecular dynamics simulations and potential energy calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang

    2017-11-01

    A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.

  2. Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings.

    PubMed

    Rosso, O A; Figliola, A; Creso, J; Serrano, E

    2004-07-01

    EEG signals obtained during tonic-clonic epileptic seizures can be severely contaminated by muscle and physiological noise. Heavily contaminated EEG signals are hard to analyse quantitatively and also are usually rejected for visual inspection by physicians, resulting in a considerable loss of collected information. The aim of this work was to develop a computer-based method of time series analysis for such EEGs. A method is presented for filtering those frequencies associated with muscle activity using a wavelet transform. One of the advantages of this method over traditional filtering is that wavelet filtering of some frequency bands does not modify the pattern of the remaining ones. In consequence, the dynamics associated with them do not change. After generation of a 'noise free' signal by removal of the muscle artifacts using wavelets, a dynamic analysis was performed using non-linear dynamics metric tools. The characteristic parameters evaluated (correlation dimension D2 and largest Lyapunov exponent lambda1) were compatible with those obtained in previous works. The average values obtained were: D2=4.25 and lambda1=3.27 for the pre-ictal stage; D2=4.03 and lambda1=2.68 for the tonic seizure stage; D2=4.11 and lambda1=2.46 for the clonic seizure stage.

  3. Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models

    PubMed Central

    Schwab, Joshua; Gruber, Susan; Blaser, Nello; Schomaker, Michael; van der Laan, Mark

    2015-01-01

    This paper describes a targeted maximum likelihood estimator (TMLE) for the parameters of longitudinal static and dynamic marginal structural models. We consider a longitudinal data structure consisting of baseline covariates, time-dependent intervention nodes, intermediate time-dependent covariates, and a possibly time-dependent outcome. The intervention nodes at each time point can include a binary treatment as well as a right-censoring indicator. Given a class of dynamic or static interventions, a marginal structural model is used to model the mean of the intervention-specific counterfactual outcome as a function of the intervention, time point, and possibly a subset of baseline covariates. Because the true shape of this function is rarely known, the marginal structural model is used as a working model. The causal quantity of interest is defined as the projection of the true function onto this working model. Iterated conditional expectation double robust estimators for marginal structural model parameters were previously proposed by Robins (2000, 2002) and Bang and Robins (2005). Here we build on this work and present a pooled TMLE for the parameters of marginal structural working models. We compare this pooled estimator to a stratified TMLE (Schnitzer et al. 2014) that is based on estimating the intervention-specific mean separately for each intervention of interest. The performance of the pooled TMLE is compared to the performance of the stratified TMLE and the performance of inverse probability weighted (IPW) estimators using simulations. Concepts are illustrated using an example in which the aim is to estimate the causal effect of delayed switch following immunological failure of first line antiretroviral therapy among HIV-infected patients. Data from the International Epidemiological Databases to Evaluate AIDS, Southern Africa are analyzed to investigate this question using both TML and IPW estimators. Our results demonstrate practical advantages of the pooled TMLE over an IPW estimator for working marginal structural models for survival, as well as cases in which the pooled TMLE is superior to its stratified counterpart. PMID:25909047

  4. A mixed-methods study of interprofessional learning of resuscitation skills.

    PubMed

    Bradley, Paul; Cooper, Simon; Duncan, Fiona

    2009-09-01

    This study aimed to identify the effects of interprofessional resuscitation skills teaching on medical and nursing students' attitudes, leadership, team-working and performance skills. Year 2 medical and nursing students learned resuscitation skills in uniprofessional or interprofessional settings, prior to undergoing observational ratings of video-recorded leadership, teamwork and skills performance and subsequent focus group interviews. The Readiness for Interprofessional Learning Scale (RIPLS) was administered pre- and post-intervention and again 3-4 months later. There was no significant difference between interprofessional and uniprofessional teams for leadership, team dynamics or resuscitation tasks performance. Gender, previous interprofessional learning experience, professional background and previous leadership experience had no significant effect. Interview analysis showed broad support for interprofessional education (IPE) matched to clinical reality with perceived benefits for teamwork, communication and improved understanding of roles and perspectives. Concerns included inappropriate role adoption, hierarchy issues, professional identity and the timing of IPE episodes. The RIPLS subscales for professional identity and team-working increased significantly post-intervention for interprofessional groups but returned to pre-test levels by 3-4 months. However, interviews showed interprofessional groups retained a 'residual positivity' towards IPE, more so than uniprofessional groups. An intervention based on common, relevant, shared learning outcomes set in a realistic educational context can work with students who have differing levels of previous IPE and skills training experience. Qualitatively, positive attitudes outlast quantitative changes measured using the RIPLS. Further quantitative and qualitative work is required to examine other domains of learning, the timing of interventions and impact on attitudes towards IPE.

  5. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    NASA Astrophysics Data System (ADS)

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo

    2015-10-01

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.

  6. Structure, viscoelasticity, and interfacial dynamics of a model polymeric bicontinuous microemulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.

    2016-01-01

    We have systematically studied the equilibrium structure and dynamics of a polymeric bicontinuous microemulsion (BμE) composed of poly(cyclohexylethylene) (PCHE), poly(ethylene) (PE), and a volumetrically symmetric PCHE–PE diblock copolymer, using dynamic mechanical spectroscopy, small angle X-ray and neutron scattering, and transmission electron microscopy. The BμE was investigated over an 80 °C temperature range, revealing a structural evolution and a rheological response not previously recognized in such systems. As the temperature is reduced below the point associated with the lamellar-disorder transition at compositions adjacent to the microemulsion channel, the interfacial area per chain of the BμE approaches that of the neat (undiluted)more » lamellar diblock copolymer. With increasing temperature, the diblock-rich interface swells through homopolymer infiltration. Time–temperature-superposed linear dynamic data obtained as a function of frequency show that the viscoelastic response of the BμE is strikingly similar to that of the fluctuating pure diblock copolymer in the disordered state, which we associate with membrane undulations and the breaking and reforming of interfaces. This work provides new insights into the structure and dynamics that characterize thermodynamically stable BμEs in the limits of relatively weak and strong segregation.« less

  7. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems.

    PubMed

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo

    2015-10-14

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 'basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.

  8. Single-molecule dynamics in nanofabricated traps

    NASA Astrophysics Data System (ADS)

    Cohen, Adam

    2009-03-01

    The Anti-Brownian Electrokinetic trap (ABEL trap) provides a means to immobilize a single fluorescent molecule in solution, without surface attachment chemistry. The ABEL trap works by tracking the Brownian motion of a single molecule, and applying feedback electric fields to induce an electrokinetic motion that approximately cancels the Brownian motion. We present a new design for the ABEL trap that allows smaller molecules to be trapped and more information to be extracted from the dynamics of a single molecule than was previously possible. In particular, we present strategies for extracting dynamically fluctuating mobilities and diffusion coefficients, as a means to probe dynamic changes in molecular charge and shape. If one trapped molecule is good, many trapped molecules are better. An array of single molecules in solution, each immobilized without surface attachment chemistry, provides an ideal test-bed for single-molecule analyses of intramolecular dynamics and intermolecular interactions. We present a technology for creating such an array, using a fused silica plate with nanofabricated dimples and a removable cover for sealing single molecules within the dimples. With this device one can watch the shape fluctuations of single molecules of DNA or study cooperative interactions in weakly associating protein complexes.

  9. Modeling of silicon in femtosecond laser-induced modification regimes: accounting for ambipolar diffusion

    NASA Astrophysics Data System (ADS)

    Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.

    2017-05-01

    During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.

  10. Slip-spring model of entangled rod-coil block copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Muzhou; Likhtman, Alexei E.; Olsen, Bradley D.

    2015-03-01

    Understanding the dynamics of rod-coil block copolymers is important for optimal design of functional nanostructured materials for organic electronics and biomaterials. Recently, we proposed a reptation theory of entangled rod-coil block copolymers, predicting the relaxation mechanisms of activated reptation and arm retraction that slow rod-coil dynamics relative to coil and rod homopolymers, respectively. In this work, we introduce a coarse-grained slip-spring model of rod-coil block copolymers to further explore these mechanisms. First, parameters of the coarse-grained model are tuned to match previous molecular dynamics simulation results for coils, rods, and block copolymers. For activated reptation, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the entanglement tube of randomly varying curvature created by the coil ends. The effect of these barriers on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential. Finally, we analyze the crossover between the two mechanisms. The resulting dynamics from both mechanisms acting in combination is faster than from each one individually.

  11. YOUNG ADULT DATING RELATIONSHIPS AND THE MANAGEMENT OF SEXUAL RISK

    PubMed Central

    Manning, Wendy D.; Giordano, Peggy C.; Longmore, Monica A.; Flanigan, Christine M.

    2012-01-01

    Young adult involvement in sexual behavior typically occurs within a relationship context, but we know little about the ways in which specific features of romantic relationships influence sexual decision-making. Prior work on sexual risk taking focuses attention on health issues rather than relationship dynamics. We draw on data from the Toledo Adolescent Relationships Study (TARS) (n = 475) to examine the association between qualities and dynamics of current/most recent romantic relationships such as communication and emotional processes, conflict, demographic asymmetries, and duration and the management of sexual risk. We conceptualize ‘risk management’ as encompassing multiple domains, including (1) questioning the partner about previous sexual behaviors/risks, (2) using condoms consistently, and (3) maintaining sexual exclusivity within the relationship. We identify distinct patterns of risk management among dating young adults and find that specific qualities and dynamics of these relationships are linked to variations in risk management. Results from this paper suggest the need to consider relational dynamics in efforts to target and influence young adult sexual risk-taking and reduce STIs, including HIV. PMID:23805015

  12. SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Zhang, Yumei; Man, Jiayu; Zhou, Yun; Wu, Xiaojun

    2017-02-01

    Cooperative learning is one of the most effective teaching methods, which has been widely used. Students' mutual contact forms a cooperative learning network in this process. Our previous research demonstrated that the cooperative learning network has complex characteristics. This study aims to investigating the dynamic spreading process of the knowledge in the cooperative learning network and the inspiration of leaders in this process. To this end, complex network transmission dynamics theory is utilized to construct the knowledge dissemination model of a cooperative learning network. Based on the existing epidemic models, we propose a new susceptible-infected-susceptible-leader (SISL) model that considers both students' forgetting and leaders' inspiration, and a susceptible-infected-removed-leader (SIRL) model that considers students' interest in spreading and leaders' inspiration. The spreading threshold λcand its impact factors are analyzed. Then, numerical simulation and analysis are delivered to reveal the dynamic transmission mechanism of knowledge and leaders' role. This work is of great significance to cooperative learning theory and teaching practice. It also enriches the theory of complex network transmission dynamics.

  13. Exploratory Study of RNA Polymerase II Using Dynamic Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Rhodin, Thor; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzanne; Ishikawa, Mitsuru; Fu, Jianhua

    2002-03-01

    An exploratory study of the microtopological dimensions and shape features of yeast RNA polymerase II (y-poly II) on freshly cleaved mica was made in phosphate aqueous buffer solution at room temperature following previous work by Hansma and others. The molecules were imaged by stabilization on freshly cleaved mica at a limiting resolution of 10 Å and scanned using dynamical atomic force microscopy with a 10 nm multi-wall carbon nanotube in the resonance frequency modulation mode. They indicated microtopological shape and dimensional features similar to those predicted by electron density plots derived from the X-ray crystallographic model. It is concluded that this is considered primarily a feasibility study with definitive conclusions subject to more detailed systematic measurements of the 3D microtopology. These measurements appear to establish validity of the noncontact atomic force microscopy (nc-AFM) approach into defining the primary microtopology and biochemical functionality of RNA polymerase II. Further nc-AFM studies at higher resolution using dynamical nc-AFM will be required to clearly define the detailed 3D microtopology of RNA polymerase II in anaerobic aqueous environments for both static and dynamic conditions.

  14. Gloss discrimination and eye movements

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan B.; Ferwerda, James A.; Nunziata, Ann

    2010-02-01

    Human observers are able to make fine discriminations of surface gloss. What cues are they using to perform this task? In previous studies, we identified two reflection-related cues-the contrast of the reflected image (c, contrast gloss) and the sharpness of reflected image (d, distinctness-of-image gloss)--but these were for objects rendered in standard dynamic range (SDR) images with compressed highlights. In ongoing work, we are studying the effects of image dynamic range on perceived gloss, comparing high dynamic range (HDR) images with accurate reflections and SDR images with compressed reflections. In this paper, we first present the basic findings of this gloss discrimination study then present an analysis of eye movement recordings that show where observers were looking during the gloss discrimination task. The results indicate that: 1) image dynamic range has significant influence on perceived gloss, with surfaces presented in HDR images being seen as glossier and more discriminable than their SDR counterparts; 2) observers look at both light source highlights and environmental interreflections when judging gloss; and 3) both of these results are modulated by surface geometry and scene illumination.

  15. Classification of motor activities through derivative dynamic time warping applied on accelerometer data.

    PubMed

    Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso

    2007-01-01

    In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).

  16. YOUNG ADULT DATING RELATIONSHIPS AND THE MANAGEMENT OF SEXUAL RISK.

    PubMed

    Manning, Wendy D; Giordano, Peggy C; Longmore, Monica A; Flanigan, Christine M

    2012-04-01

    Young adult involvement in sexual behavior typically occurs within a relationship context, but we know little about the ways in which specific features of romantic relationships influence sexual decision-making. Prior work on sexual risk taking focuses attention on health issues rather than relationship dynamics. We draw on data from the Toledo Adolescent Relationships Study (TARS) (n = 475) to examine the association between qualities and dynamics of current/most recent romantic relationships such as communication and emotional processes, conflict, demographic asymmetries, and duration and the management of sexual risk. We conceptualize 'risk management' as encompassing multiple domains, including (1) questioning the partner about previous sexual behaviors/risks, (2) using condoms consistently, and (3) maintaining sexual exclusivity within the relationship. We identify distinct patterns of risk management among dating young adults and find that specific qualities and dynamics of these relationships are linked to variations in risk management. Results from this paper suggest the need to consider relational dynamics in efforts to target and influence young adult sexual risk-taking and reduce STIs, including HIV.

  17. Dynamics of the Triple-Star System Alpha Centauri and its Impact on Habitable Planets

    NASA Astrophysics Data System (ADS)

    Jayla Jones, Ayanna; Fabrycky, Daniel

    2018-01-01

    The Alpha Centauri system, our solar system's closest neighbor, has become a target in the search for habitable planets. The system is composed of three stars: Alpha Centauri A and Alpha Centauri B, stars forming an inner binary, and Proxima Centauri, an outer star that orbits around the inner binary. We computed 3-body models to follow the dynamics for the main-sequence lifetimes of the stars that are based on 100 realizations of the observed orbits. In the majority of cases, Proxima only modestly torques the A-B binary orbit, and so previous studies of planet formation and dynamics, which find the habitable zones to be stable, are somewhat justified in ignoring this effect. On the other hand, in ~16% of the observationally allowed orbits, fluctuations in the orbital eccentricity of the A-B orbit destabilize the middle of the habitable zone of both stars. This result calls for further theoretical work to quantify the effect of galactic tides, passing stars, and massive planets in the triple-system dynamics.

  18. Dynamics of Cooperation in a Task Completion Social Dilemma

    PubMed Central

    Passino, Kevin M.

    2017-01-01

    We study the situation where the members of a community have the choice to participate in the completion of a common task. The process of completing the task involves only costs and no benefits to the individuals that participate in this process. However, completing the task results in changes that significantly benefit the community and that exceed the participation efforts. A task completion social dilemma arises when the short-term participation costs dissipate any interest in the community members to contribute to the task completion process and therefore to obtain the benefits that result from completing the task. In this work, we model the task completion problem using a dynamical system that characterizes the participation dynamics in the community and the task completion process. We show how this model naturally allows for the incorporation of several mechanisms that facilitate the emergence of cooperation and that have been studied in previous research on social dilemmas, including communication across a network, and indirect reciprocity through relative reputation. We provide mathematical analyses and computer simulations to study the qualitative properties of the participation dynamics in the community for different scenarios. PMID:28125721

  19. Simulations of Global Flows in Io’s Rarefied Atmosphere

    NASA Astrophysics Data System (ADS)

    Hoey, William A.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Walker, A. C.

    2013-10-01

    The sulfur-rich Ionian atmosphere is populated through a number of mechanisms, the most notable of which include sublimation from insolated surface frost deposits, material sputtering due to the impact of energetic ions from the Jovian plasma torus, and plume emission related to volcanic activity. While local flows are collisional at low altitudes on portions of the moon’s dayside, densities rapidly tend toward the free-molecular limit with altitude, necessitating non-continuum (rarefied gas dynamic) modeling and analysis. While recent work has modestly constrained the relative contributions of sputtering, sublimation, and volcanism to Io’s atmosphere, dynamic wind patterns driven by dayside sublimation and nightside condensation remain poorly understood. This work moves toward the explanation of mid-infrared observations that indicate an apparent super-rotating wind in Io’s atmosphere. In the present work, the Direct Simulation Monte Carlo method is employed in the modeling of Io’s rarefied atmosphere; simulations are computed in parallel, on a three-dimensional domain that spans the moon’s entire surface and extends hundreds of kilometers vertically, into the exobase. A wide range of physical phenomena have been incorporated into the atmospheric model, including: [1] the effects of planetary rotation; [2] surface temperature, surface frost inhomogeneity, and thermal inertia; [3] plasma heating and sputtering; [4] gas plumes from superimposed volcanic hot spots; and [5] multi-species chemistry. Furthermore, this work improves upon previous efforts by correcting for non-inertial effects in a moon-fixed reference frame. The influence of such effects on the development of global flow patterns and cyclonic wind is analyzed. The case in which Io transits Jupiter is considered, with the anti-Jovian hemisphere as the dayside. We predict that a circumlunar flow develops that is asymmetric about the subsolar point, and drives atmosphere from the warmer, dayside hemisphere toward the colder nightside. The resultant flow patterns, column densities, species concentrations, and temperatures are discussed in relation to previous simulations of Io in a pre-eclipse configuration. This research is supported via NASA-PATM.

  20. Motion-compensated compressed sensing for dynamic imaging

    NASA Astrophysics Data System (ADS)

    Sundaresan, Rajagopalan; Kim, Yookyung; Nadar, Mariappan S.; Bilgin, Ali

    2010-08-01

    The recently introduced Compressed Sensing (CS) theory explains how sparse or compressible signals can be reconstructed from far fewer samples than what was previously believed possible. The CS theory has attracted significant attention for applications such as Magnetic Resonance Imaging (MRI) where long acquisition times have been problematic. This is especially true for dynamic MRI applications where high spatio-temporal resolution is needed. For example, in cardiac cine MRI, it is desirable to acquire the whole cardiac volume within a single breath-hold in order to avoid artifacts due to respiratory motion. Conventional MRI techniques do not allow reconstruction of high resolution image sequences from such limited amount of data. Vaswani et al. recently proposed an extension of the CS framework to problems with partially known support (i.e. sparsity pattern). In their work, the problem of recursive reconstruction of time sequences of sparse signals was considered. Under the assumption that the support of the signal changes slowly over time, they proposed using the support of the previous frame as the "known" part of the support for the current frame. While this approach works well for image sequences with little or no motion, motion causes significant change in support between adjacent frames. In this paper, we illustrate how motion estimation and compensation techniques can be used to reconstruct more accurate estimates of support for image sequences with substantial motion (such as cardiac MRI). Experimental results using phantoms as well as real MRI data sets illustrate the improved performance of the proposed technique.

  1. Poster — Thur Eve — 02: Measurement of CT radiation profile width using Fuji CR imaging plate raw data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjarnason, T A; Department of Radiology, University of British Columbia, Vancouver; Yang, C J

    2014-08-15

    Measuring the CT collimation width and assessing the shape of the overall profile is a relatively straightforward quality control (QC) measure that impacts both image quality and patient dose, and is often required at acceptance and routine testing. Most CT facilities have access to computed radiography (CR) systems, so performing CT collimation profile assessments using CR plates requires no additional equipment. Previous studies have shown how to effectively use CR plates to measure the radiation profile width. However, a major limitation of the previous work is that the full dynamic range of CR detector plates are not used, since themore » CR processing technology reduces the dynamic range of the DICOM output to 2{sup 10}, requiring the sensitivity and latitude settings of CR reader to be adjusted to prevent clipping of the CT profile data. Such adjustments to CR readers unnecessarily complicate the QC procedure. These clipping artefacts hinder the ability to accurately assess CT collimation width because the full-width at half maximum value of the penumbras are not properly determined if the maximum dose of the profile is not available. Furthermore, any inconsistencies in the radiation profile shape are lost if the profile plateau is clipped off. In this work we developed an opensource Matlab script for straightforward CT profile width measurements using raw CR data that also allows assessment of the profile shape without clipping, and applied this approach during CT QC.« less

  2. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.

    PubMed

    Salomon-Ferrer, Romelia; Götz, Andreas W; Poole, Duncan; Le Grand, Scott; Walker, Ross C

    2013-09-10

    We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Götz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package.

  3. Dendronized fullerene-porphyrin conjugates in ortho, meta, and para positions: a charge-transfer assay.

    PubMed

    Krokos, Evangelos; Schubert, Christina; Spänig, Fabian; Ruppert, Michaela; Hirsch, Andreas; Guldi, Dirk M

    2012-06-01

    The physicochemical characterization, that is, ground and excited state, of a new series of dendronized porphyrin/fullerene electron donor-acceptor conjugates in nonaqueous and aqueous environments is reported. In contrast to previous work, we detail the charge-separation and charge-recombination dynamics in zinc and copper metalloporphyrins as a function of first- and second-generation dendrons as well as a function of ortho, meta, and para substitution. Both have an appreciable impact on the microenvironments of the redox-active constituents, namely the porphyrins and the fullerenes. As a matter of fact, the resulting charge-transfer dynamics were considerably impacted by the interplay between the associated forces that reach from dendron-induced shielding to dipole-charge interactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Packaging stiff polymers in small containers: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    2016-09-01

    The question of how stiff polymers are able to pack into small containers is particularly relevant to the study of DNA packaging in viruses. A reduced version of the problem based on coarse-grained representations of the main components of the system—the DNA polymer and the spherical viral capsid—has been studied by molecular dynamics simulation. The results, involving longer polymers than in earlier work, show that as polymers become more rigid there is an increasing tendency to self-organize as spools that wrap from the inside out, rather than the inverse direction seen previously. In the final state, a substantial part of the polymer is packed into one or more coaxial spools, concentrically layered with different orientations, a form of packaging achievable without twisting the polymer.

  5. Dynamic kinematic responses of female volunteers in rear impacts and comparison to previous male volunteer tests.

    PubMed

    Carlsson, Anna; Linder, Astrid; Davidsson, Johan; Hell, Wolfram; Schick, Sylvia; Svensson, Mats

    2011-08-01

    The objective was to quantify dynamic responses of 50th percentile females in rear impacts and compare to those from similar tests with males. The results will serve as a basis for future work with models, criteria, and safety systems. A rear impact sled test series with 8 female volunteers was performed at velocity changes of 5 and 7 km/h. The following dynamic response corridors were generated for the head, T1 (first thoracic vertebra) and head relative to T1: (1) accelerations in posterior-anterior direction, (2) horizontal and vertical displacements, (3) angular displacements for 6 females close to the 50th percentile in size. Additionally, the head-to-head restraint distance and contact time and neck injury criterion (NIC) were extracted from the data set. These data were compared to results from previously performed male volunteer tests, representing the 50th percentile male, in equivalent test conditions. T-tests were performed with the statistical significance level of .05 to quantify the significance of the parameter value differences for the males and females. At 7 km/h, the females showed 29 percent earlier head-to-head restraint contact time (p = .0072); 27 percent shorter horizontal rearward head displacement (p = .0017); 36 percent narrower head extension angle (p = .0281); and 52 percent lower NIC value (p = .0239) than the males in previous tests. This was mainly due to 35 percent shorter initial head-to-head restraint distance for the females (p = .0125). The peak head acceleration in the posterior-anterior direction was higher and occurred earlier for the females. The overall result indicated differences in the dynamic response for the female and male volunteers. The results could be used in developing and evaluating a mechanical and/or mathematical average-sized female dummy model for rear impact safety assessment. These models can be used as a tool in the design of protective systems and for further development and evaluation of injury criteria.

  6. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes.

    PubMed

    Debnath, M; Santoni, C; Leonardi, S; Iungo, G V

    2017-04-13

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  7. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.

    PubMed

    Milenkovic, J; Alexopoulos, A H; Kiparissides, C

    2014-01-30

    In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai

    2006-10-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  9. Distinguishing Error from Chaos in Ecological Time Series

    NASA Astrophysics Data System (ADS)

    Sugihara, George; Grenfell, Bryan; May, Robert M.

    1990-11-01

    Over the years, there has been much discussion about the relative importance of environmental and biological factors in regulating natural populations. Often it is thought that environmental factors are associated with stochastic fluctuations in population density, and biological ones with deterministic regulation. We revisit these ideas in the light of recent work on chaos and nonlinear systems. We show that completely deterministic regulatory factors can lead to apparently random fluctuations in population density, and we then develop a new method (that can be applied to limited data sets) to make practical distinctions between apparently noisy dynamics produced by low-dimensional chaos and population variation that in fact derives from random (high-dimensional)noise, such as environmental stochasticity or sampling error. To show its practical use, the method is first applied to models where the dynamics are known. We then apply the method to several sets of real data, including newly analysed data on the incidence of measles in the United Kingdom. Here the additional problems of secular trends and spatial effects are explored. In particular, we find that on a city-by-city scale measles exhibits low-dimensional chaos (as has previously been found for measles in New York City), whereas on a larger, country-wide scale the dynamics appear as a noisy two-year cycle. In addition to shedding light on the basic dynamics of some nonlinear biological systems, this work dramatizes how the scale on which data is collected and analysed can affect the conclusions drawn.

  10. Adaptive time-sequential binary sensing for high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chenhui; Lu, Yue M.

    2012-06-01

    We present a novel image sensor for high dynamic range imaging. The sensor performs an adaptive one-bit quantization at each pixel, with the pixel output switched from 0 to 1 only if the number of photons reaching that pixel is greater than or equal to a quantization threshold. With an oracle knowledge of the incident light intensity, one can pick an optimal threshold (for that light intensity) and the corresponding Fisher information contained in the output sequence follows closely that of an ideal unquantized sensor over a wide range of intensity values. This observation suggests the potential gains one may achieve by adaptively updating the quantization thresholds. As the main contribution of this work, we propose a time-sequential threshold-updating rule that asymptotically approaches the performance of the oracle scheme. With every threshold mapped to a number of ordered states, the dynamics of the proposed scheme can be modeled as a parametric Markov chain. We show that the frequencies of different thresholds converge to a steady-state distribution that is concentrated around the optimal choice. Moreover, numerical experiments show that the theoretical performance measures (Fisher information and Craḿer-Rao bounds) can be achieved by a maximum likelihood estimator, which is guaranteed to find globally optimal solution due to the concavity of the log-likelihood functions. Compared with conventional image sensors and the strategy that utilizes a constant single-photon threshold considered in previous work, the proposed scheme attains orders of magnitude improvement in terms of sensor dynamic ranges.

  11. Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory - Part II: Results of Numerical and Experimental Tests

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Ding, Pin-bo; Ba, Jing

    2018-03-01

    In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.

  12. Propagating waves can explain irregular neural dynamics.

    PubMed

    Keane, Adam; Gong, Pulin

    2015-01-28

    Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level. Copyright © 2015 the authors 0270-6474/15/351591-15$15.00/0.

  13. Eye tracking a self-moved target with complex hand-target dynamics

    PubMed Central

    Landelle, Caroline; Montagnini, Anna; Madelain, Laurent

    2016-01-01

    Previous work has shown that the ability to track with the eye a moving target is substantially improved when the target is self-moved by the subject's hand compared with when being externally moved. Here, we explored a situation in which the mapping between hand movement and target motion was perturbed by simulating an elastic relationship between the hand and target. Our objective was to determine whether the predictive mechanisms driving eye-hand coordination could be updated to accommodate this complex hand-target dynamics. To fully appreciate the behavioral effects of this perturbation, we compared eye tracking performance when self-moving a target with a rigid mapping (simple) and a spring mapping as well as when the subject tracked target trajectories that he/she had previously generated when using the rigid or spring mapping. Concerning the rigid mapping, our results confirmed that smooth pursuit was more accurate when the target was self-moved than externally moved. In contrast, with the spring mapping, eye tracking had initially similar low spatial accuracy (though shorter temporal lag) in the self versus externally moved conditions. However, within ∼5 min of practice, smooth pursuit improved in the self-moved spring condition, up to a level similar to the self-moved rigid condition. Subsequently, when the mapping unexpectedly switched from spring to rigid, the eye initially followed the expected target trajectory and not the real one, thereby suggesting that subjects used an internal representation of the new hand-target dynamics. Overall, these results emphasize the stunning adaptability of smooth pursuit when self-maneuvering objects with complex dynamics. PMID:27466129

  14. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations.

    PubMed

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.

  15. Movement dynamics reflect a functional role for weak coupling and role structure in dyadic problem solving.

    PubMed

    Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T

    2015-11-01

    Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.

  16. Coupling Detonation Shock Dynamics in a Consistent Manner to Equations of State

    NASA Astrophysics Data System (ADS)

    Belfield, William

    2017-06-01

    In hydrocode simulations, detonating high explosives (HE) are often modelled using programmed burn. Each HE cell is assigned a ``burn time'' at which it should begin to behave as HE products in the subsequent simulation. Traditionally, these burn times were calculated using a Huygens construction to propagate the detonation wave at a constant speed corresponding to the planar Chapman-Jouguet (CJ) velocity. The Detonation Shock Dynamics (DSD) model improves upon this approach by treating the local detonation velocity as a function of wave curvature, reflecting that the detonation speed is not constant in reality. However, without alterations being made, this variable detonation velocity is inconsistent with the CJ velocity associated with the HE products equation of state (EOS). Previous work has shown that the inconsistency can be resolved by modifying the HE product EOS, but this treatment is empirical in nature and has only been applied to the JWL EOS. This work investigates different methods to resolve the inconsistency that are applicable both to JWL and to tabular HE product EOS, and their impact on hydrocode simulations.

  17. Understanding the Effect of Grain Boundary Character on Dynamic Recrystallization in Stainless Steel 316L

    NASA Astrophysics Data System (ADS)

    Beck, Megan; Morse, Michael; Corolewski, Caleb; Fritchman, Koyuki; Stifter, Chris; Poole, Callum; Hurley, Michael; Frary, Megan

    2017-08-01

    Dynamic recrystallization (DRX) occurs during high-temperature deformation in metals and alloys with low to medium stacking fault energies. Previous simulations and experimental research have shown the effect of temperature and grain size on DRX behavior, but not the effect of the grain boundary character distribution. To investigate the effects of the distribution of grain boundary types, experimental testing was performed on stainless steel 316L specimens with different initial special boundary fractions (SBF). This work was completed in conjunction with computer simulations that used a modified Monte Carlo method which allowed for the addition of anisotropic grain boundary energies using orientation data from electron backscatter diffraction (EBSD). The correlation of the experimental and simulation work allows for a better understanding of how the input parameters in the simulations correspond to what occurs experimentally. Results from both simulations and experiments showed that a higher fraction of so-called "special" boundaries ( e.g., Σ3 twin boundaries) delayed the onset of recrystallization to larger strains and that it is energetically favorable for nuclei to form on triple junctions without these so-called "special" boundaries.

  18. Elucidating nitric oxide synthase domain interactions by molecular dynamics.

    PubMed

    Hollingsworth, Scott A; Holden, Jeffrey K; Li, Huiying; Poulos, Thomas L

    2016-02-01

    Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis. © 2015 The Protein Society.

  19. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics.

    PubMed

    Kuang, Yi; Long, Marcus J C; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-10-17

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Entrainment dominates the interaction of microalgae with micron-sized objects

    NASA Astrophysics Data System (ADS)

    Jeanneret, Raphaël; Kantsler, Vasily; Polin, Marco

    Swimming microorganisms usually navigate through fluids containing a variety of microparticles, with which they inevitably interact with important biological and ecological implications. Regarding the prokaryotic realm, it has been shown that the colloidal dynamics within bacterial suspensions is well described by a persistent random walk. As to the other major class of microorganisms, the eukaryotes, much less is known. By directly tracking polystyrene colloids in baths of the model puller-type alga Chlamydomonas reinhardtii, a pioneering work has shown that they still behave diffusively asymptotically with diffusivities linearly increasing with the concentration. The values reported as well as the distribution of displacements having exponential tails are well explained theoretically when considering the hydrodynamic far-field contribution of the algae. However nothing has yet been described regarding the short range interactions that inevitably exist. In this work we show, by means of 3 different experiments, that the coarse-grained dynamics of the colloids is in fact dominated by very rare but large jumps due to entrainment by the algae leading to a total effective diffusion an order of magnitude higher than previously reported.

  1. Reactive strategies in indirect reciprocity.

    PubMed

    Ohtsuki, Hisashi

    2004-04-07

    Evolution of reactive strategy of indirect reciprocity is discussed, where individuals interact with others through the one-shot Prisoner's Dilemma game, changing their partners in every round. We investigate all of the reactive strategies that are stochastic, including deterministic ones as special cases. First we study adaptive dynamics of reactive strategies by assuming monomorphic population. Results are very similar to the corresponding evolutionary dynamics of direct reciprocity. The discriminating strategy, which prescribes cooperation only with those who cooperated in the previous round, cannot be an outcome of the evolution. Next we examine the case where the population includes a diversity of strategies. We find that only the mean 'discriminatoriness' in the population is the parameter that affects the evolutionary dynamics. The discriminating strategy works as a promoter of cooperation there. However, it is again not the end point of the evolution. This is because retaliatory defection, which was prescribed by the discriminating strategy, is regarded as another defection toward the society. These results caution that we have to reconsider the role of retaliatory defection much more carefully.

  2. How input fluctuations reshape the dynamics of a biological switching system

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Kessler, David A.; Rappel, Wouter-Jan; Levine, Herbert

    2012-12-01

    An important task in quantitative biology is to understand the role of stochasticity in biochemical regulation. Here, as an extension of our recent work [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.148101 107, 148101 (2011)], we study how input fluctuations affect the stochastic dynamics of a simple biological switch. In our model, the on transition rate of the switch is directly regulated by a noisy input signal, which is described as a non-negative mean-reverting diffusion process. This continuous process can be a good approximation of the discrete birth-death process and is much more analytically tractable. Within this setup, we apply the Feynman-Kac theorem to investigate the statistical features of the output switching dynamics. Consistent with our previous findings, the input noise is found to effectively suppress the input-dependent transitions. We show analytically that this effect becomes significant when the input signal fluctuates greatly in amplitude and reverts slowly to its mean.

  3. Lunar and planetary studies

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Goldreich, P.; Ingersoll, A. P.; Westphal, J. A.

    1988-01-01

    This grant supports the core program in planetary astronomy at Caltech. The research includes observations in the IR, sub-mm, mm and cm wavelengths at national and Caltech observatories with a strong emphasis on integrating the observations with spacecraft data and with models of atmospheric structure, dynamics and chemistry. Muhleman's group made extensive observations of Saturn, Uranus and Neptune which are being interpreted in terms of deep atmospheric structures which are obvious in the 2 and 6 cm maps of Saturn and Uranus. The microwave measurements are one of the few sources of information below the 2 bar level. Goldreich is investigating the dynamics of narrow rings with postdoctoral fellow, Pierre-Yves Longaretti. Their work has focused on the role of collisional stresses on the precession of the rings, since the Voyager radio science results imply that the previous model based on the ring's self-gravity is not the entire story. In addition Borderies, Goldreich and Tremaine have completed an investigation of the dynamics of the Encke division in Saturn's A ring.

  4. A limited host immune range facilitates the creation and maintenance of diversity in parasite virulence

    PubMed Central

    Best, Alex; Hoyle, Andy

    2013-01-01

    A vast theoretical literature has explored the evolutionary dynamics of parasite virulence. The classic result from this modelling work is that, assuming a saturating transmission–virulence trade-off, there is a single evolutionary optimum where the parasite optimizes the epidemiological R0. However, there are an increasing number of models that have shown how ecological and epidemiological feedbacks to evolution can instead result in the creation and maintenance of multiple parasite strains. Here, we fully explore one such example, where recovered hosts have a limited ‘immune range’ resulting in partial cross-immunity to parasite strains that they have not previously encountered. Taking an adaptive dynamics approach, we show that, provided this immune range is not too wide, high levels of diversity can evolve and be maintained through multiple branching events. We argue that our model provides a more realistic picture of disease dynamics in vertebrate host populations and may be a key explanatory factor in the high levels of parasite diversity seen in natural systems. PMID:24516712

  5. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  6. Phases and Dynamics of Self-Assembled DNA Programmed Nanocubes

    NASA Astrophysics Data System (ADS)

    Knorowski, Christopher; Travesset, Alex

    2013-03-01

    Systems of Nanoparticles grafted with complementary DNA strands have been shown to self-assemble into an array of superlattices. In this talk, we extend our previous model, which successfully predicted equilibrium phases and dynamics of assembly for spherical Nanoparticles without fitting parameters, to the case of nanocubes. We show that the phase diagram consists of bcc and sc lattices, depending on DNA length. The bcc lattices are either rotator and orientational glass or cubatic. For temperatures above the DNA melting temperature, the system is equivalent to f-star polymer systems, and consist of bcc, also with rotator, orientational glass or cubatic orientational order as well as sc. We also provide a characterization of the dynamics, including the role of topological defects in crystal nucleation and growth. This work is funded by DOE through the Ames Lab under Contract DE-AC02-07CH11358. Most simulations are performed on the Exalted GPU cluster, which is funded by a grant from Iowa State University and Nvidia Corp.

  7. Dynamic node immunization for restraint of harmful information diffusion in social networks

    NASA Astrophysics Data System (ADS)

    Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong

    2018-08-01

    To restrain the spread of harmful information is crucial for the healthy and sustainable development of social networks. We address the problem of restraining the spread of harmful information by immunizing nodes in the networks. Previous works have developed methods based on the network topology or studied how to immunize nodes in the presence of initial infected nodes. These static methods, in which nodes are immunized at once, may have poor performance in the certain situation due to the dynamics of diffusion. To tackle this problem, we introduce a new dynamic immunization problem of immunizing nodes during the process of the diffusion in this paper. We formulate the problem and propose a novel heuristic algorithm by dealing with two sub-problems: (1) how to select a node to achieve the best immunization effect at the present time? (2) whether the selected node should be immunized right now? Finally, we demonstrate the effectiveness of our algorithm through extensive experiments on various real datasets.

  8. Magnetic stray-field studies of a single Cobalt nanoelement as a component of the building blocks of artificial square spin ice

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2016-02-01

    We use Focused Electron Beam Deposition (FEBID) to directly write Cobalt magnetic nanoelements onto a micro-Hall magnetometer, which allows for high-sensitivity measurements of the magnetic stray field emanating from the samples. In a previous study [M. Pohlit et al., J. Appl. Phys. 117 (2015) 17C746] [21] we investigated thermal dynamics of an individual building block (nanocluster) of artificial square spin ice. In this work, we compare the results of this structure with interacting elements to the switching of a single nanoisland. By analyzing the survival function of the repeatedly prepared state in a given temperature range, we find thermally activated switching dynamics. A detailed analysis of the hysteresis loop reveals a metastable microstate preceding the overall magnetization reversal of the single nanoelement, also found in micromagnetic simulations. Such internal degrees of freedom may need to be considered, when analyzing the thermal dynamics of larger spin ice configurations on different lattice types.

  9. Geometric stiffening in multibody dynamics formulations

    NASA Technical Reports Server (NTRS)

    Sharf, Inna

    1993-01-01

    In this paper we discuss the issue of geometric stiffening as it arises in the context of multibody dynamics. This topic has been treated in a number of previous publications in this journal and appears to be a debated subject. The controversy revolves primarily around the 'correct' methodology for incorporating the stiffening effect into dynamics formulations. The main goal of this work is to present the different approaches that have been developed for this problem through an in-depth review of several publications dealing with this subject. This is done with the goal of contributing to a precise understanding of the existing methodologies for modelling the stiffening effects in multibody systems. Thus, in presenting the material we attempt to illuminate the key characteristics of the various methods as well as show how they relate to each other. In addition, we offer a number of novel insights and clarifying interpretations of these schemes. The paper is completed with a general classification and comparison of the different approaches.

  10. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huan; Baker, Nathan A.; Wu, Lei

    2016-08-05

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less

  11. Spatial and temporal dynamics of root exudation: how important is heterogeneity in allelopathic interactions?

    PubMed

    Weidenhamer, Jeffrey D; Mohney, Brian K; Shihada, Nader; Rupasinghe, Maduka

    2014-08-01

    Understanding allelopathy has been hindered by the lack of methods available to monitor the dynamics of allelochemicals in the soil. Previous work has demonstrated the feasibility of using polydimethylsiloxane (PDMS) microtubing (silicone tubing microextraction, or STME) to construct sampling devices to monitor the release of lipophilic allelochemicals from plant roots. The objective of this study was to use such sampling devices to intensively monitor thiophene fluxes beneath marigolds over several weeks to gain insight into the magnitude of temporal and spatial heterogeneity in these fluxes. Marigolds were grown in rhizoboxes (20.5 x 20.5 x 3.0 cm) with 16 individual STME samplers per box. Thiophene sampling and HPLC analysis began 45 days after planting. At the end of the study, roots around each sampler were analyzed by HPLC. Results confirmed the tremendous spatial and temporal heterogeneity in thiophene production seen in our previous studies. STME probes show that thiophene concentrations generally increase over time; however, these effects were sampling-port specific. When sampling ports were monitored at 12 h intervals, fluxes at each port ranged from 0 to 2,510 ng day(-1). Fluxes measured over daylight hr averaged 29 % higher than those measured overnight. Fluxes were less than 1 % on average of the total thiophene content of surrounding roots. While the importance of such heterogeneity, or "patchiness", in the root zone has been recognized for soil nutrients, the potential importance in allelopathic interactions has seldom been considered. The reasons for this variability are unclear, but are being investigated. Our results demonstrate that STME can be used as a tool to provide a more finely-resolved picture of allelochemical dynamics in the root zone than has previously been available.

  12. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    PubMed

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  13. Interannual variability of mass transport in the Canary region from LADCP data

    NASA Astrophysics Data System (ADS)

    Comas-Rodríguez, Isis; Hernández-Guerra, Alonso; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2010-05-01

    The variability of the Canary Current is a widely studied topic regarding its role as eastern boundary of the North Atlantic Subtropical Gyre. The Canary region provides indeed an interesting study area in terms of estimating variability scales of the Subtropical Gyre as well as the water masses dynamics. RAPROCAN (RAdial PROfunda de CANarias - Canary deep hydrographic section) is a project based on the reaching of these goals through the obtaining of hydrographic measures during cruises taking place approximately along 29°N, to the North of the Canary Archipelago, twice a year since 2006. The full depth sampling carried out allows the study of temperature and salinity distribution and the calculation of mass transports across the section. The transport estimates are compared to those obtained from previous measurements and estimates in the region. Therefore, transports and their variability through the last decade are quantified. The most significant advance made to previous works is the use of LADCP (Lowered Acoustic Doppler Current Profiler) data informing the initial geostrophic calculations. Thus, corrections are applied to each geostrophic profile considering the reference velocity obtained from LADCP data. ADCP-referenced transport estimates are obtained, providing a successful comparison between the velocity fields obtained from the hydrographic measures. While this work shows the interannual variability observed in winter since 1997, preliminary results confirm previous hypotheses about the magnitude of the Canary Current. Those results including LADCP data also provide new aspects in the circulation distribution across the Canary Archipelago. Also moored current meter data were taken into account in the up close study of the Current through the Lanzarote Passage. Interesting conclusions were drawn that certify the usefulness of LADCP data in referencing geostrophic calculations, while corroborating the results obtained through this methodology. Hence, this work permits the quantification of mass fluxes across the section as well as the study of the water masses located in the Canary Basin and the further analysis of the Subtropical Gyre variability with regards to its significance in the circulation and dynamics concerning the North Atlantic Ocean.

  14. A point of application study to determine the accuracy, precision and reliability of a low-cost balance plate for center of pressure measurement.

    PubMed

    Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M

    2018-04-11

    Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy (<1% average percent error) and precision (<0.1 cm average standard deviation of residuals). The ICC between BBP devices was exceptionally high (ICC > 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Specificity and timescales of cortical adaptation as inferences about natural movie statistics.

    PubMed

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-10-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.

  16. Specificity and timescales of cortical adaptation as inferences about natural movie statistics

    PubMed Central

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-01-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416

  17. Are fixed grain size ratios useful proxies for loess sedimentation dynamics? Experiences from Remizovka, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Schulte, Philipp; Sprafke, Tobias; Rodrigues, Leonor; Fitzsimmons, Kathryn E.

    2018-04-01

    Loess-paleosol sequences (LPS) are sensitive terrestrial archives of past aeolian dynamics and paleoclimatic changes within the Quaternary. Grain size (GS) analysis is commonly used to interpret aeolian dynamics and climate influences on LPS, based on granulometric parameters such as specific GS classes, ratios of GS classes and statistical manipulation of GS data. However, the GS distribution of a loess sample is not solely a function of aeolian dynamics; rather complex polygenetic depositional and post-depositional processes must be taken into account. This study assesses the reliability of fixed GS ratios as proxies for past sedimentation dynamics using the case study of Remizovka in southeast Kazakhstan. Continuous sampling of the upper 8 m of the profile, which shows extremely weak pedogenic alteration and is therefore dominated by primary aeolian activity, indicates that fixed GS ratios do not adequately serve as proxies for loess sedimentation dynamics. We find through the calculation of single value parameters, that "true" variations within sensitive GS classes are masked by relative changes of the more frequent classes. Heatmap signatures provide the visualization of GS variability within LPS without significant data loss within the measured classes of a sample, or across all measured samples. We also examine the effect of two different commonly used laser diffraction devices on GS ratio calculation by duplicate measurements, the Beckman Coulter (LS13320) and a Malvern Mastersizer Hydro (MM2000), as well as the applicability and significance of the so-called "twin peak ratio" previously developed on samples from the same section. The LS13320 provides higher resolution results than the MM2000, nevertheless the GS ratios related to variations in the silt-sized fraction were comparable. However, we could not detect a twin peak within the coarse silt as detected in the original study using the same device. Our GS measurements differ from previous works at Remizovka in several instances, calling into question the interpretation of paleoclimatic implications using GS data alone.

  18. Origin of the asteroid belt

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1989-01-01

    Earlier and current concepts relevant to the origin of the asteroid belt are discussed and are considered in the framework of the solar system origin. Numerical and analytical solutions of the dynamical theory of planetesimal accumulation are characterized by bifurcations into runaway and nonrunaway solutions, and it is emphasized that the differences in time scales resulting from runaway and nonrunaway growth can be more important than conventional time scale differences determined by heliocentric distances. It is concluded that, in principle, it is possible to combine new calculations with previous work to formulate a theory of the asteroidal accumulation consistent with the meteoritic record and with work on the formation of terrestrial planets. Problems remaining to be addressed before a mature theory can be formulated are discussed.

  19. Competing 1πσ* mediated dynamics in mequinol: O-H versus O-CH3 photodissociation pathways.

    PubMed

    Hadden, David J; Roberts, Gareth M; Karsili, Tolga N V; Ashfold, Michael N R; Stavros, Vasilios G

    2012-10-14

    Deactivation of excited electronic states through coupling to dissociative (1)πσ* states in heteroaromatic systems has received considerable attention in recent years, particularly as a mechanism that contributes to the ultraviolet (UV) photostability of numerous aromatic biomolecules and their chromophores. Recent studies have expanded upon this work to look at more complex species, which involves understanding competing dynamics on two different (1)πσ* potential energy surfaces (PESs) localized on different heteroatom hydride coordinates (O-H and N-H bonds) within the same molecule. In a similar spirit, the work presented here utilizes ultrafast time-resolved velocity map ion imaging to study competing dissociation pathways along (1)πσ* PESs in mequinol (p-methoxyphenol), localized at O-H and O-CH(3) bonds yielding H atoms or CH(3) radicals, respectively, over an excitation wavelength range of 298-238 nm and at 200 nm. H atom elimination is found to be operative via either tunneling under a conical intersection (CI) (298 ≥ λ ≥ 280 nm) or ultrafast internal conversion through appropriate CIs (λ ≤ 245 nm), both of which provide mechanisms for coupling onto the dissociative state associated with the O-H bond. In the intermediate wavelength range of 280 ≥ λ ≥ 245 nm, mediated H atom elimination is not observed. In contrast, we find that state driven CH(3) radical elimination is only observed in the excitation range 264 ≥ λ ≥ 238 nm. Interpretation of these experimental results is guided by: (i) high level complete active space with second order perturbation theory (CASPT2) calculations, which provide 1-D potential energy cuts of the ground and low lying singlet excited electronic states along the O-H and O-CH(3) bond coordinates; and (ii) calculated excitation energies using CASPT2 and the equation-of-motion coupled cluster with singles and doubles excitations (EOM-CCSD) formalism. From these comprehensive studies, we find that the dynamics along the O-H coordinate generally mimic H atom elimination previously observed in phenol, whereas O-CH(3) bond fission in mequinol appears to present notably different behavior to the CH(3) elimination dynamics previously observed in anisole (methoxybenzene).

  20. The Lithospheric Geoid as a Constraint on Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2015-12-01

    100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite element analysis (~35,000 elements for a spatial resolution of approximately 50 km) for the North American plate, where previous lower resolution modeling has shown the importance of the lithospheric cooling (ridge push) force to model the broad scale stress patterns observed from the middle of the continent to the Mid-Atlantic ridge.

  1. Pattern Formation in Active Nematics

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant

    This thesis presents analytical and numerical studies of the nonequilibrium dynamics of active nematic liquid crystals. Active nematics are a new class of liquid crystals consisting of elongated rod-like units that convert energy into motion and spontaneously organize in large-scale structures with orientational order and self-sustained flows. Examples include suspensions of cytoskeletal filaments and associated motor proteins, monolayers of epithelial cells plated on a substrate, and bacteria swimming in a nematic liquid crystal. In these systems activity drives the continuous generation and annihilation of topological defects and streaming flows, resulting in spatio-temporal chaotic dynamics akin to fluid turbulence, but that occurs in a regime of flow of vanishing Reynolds number, where inertia is negligible. Quantifying the origin of this nonequilibrium dynamics has implications for understanding phenomena ranging from bacterial swarming to cytoplasmic flows in living cells. After a brief review (Chapter 2) of the properties of equilibrium or passive nematic liquid crystals, in Chapter 3 we discuss how the hydrodynamic equations of nematic liquid crystals can be modified to account for the effect of activity. We then use these equations of active nemato-hydrodynamics to characterize analytically the nonequilibrium steady states of the system and their stability. We supplement the analytical work with numerical solution of the full nonlinear equations for the active suspension and construct a phase diagram that identifies the various emergent patterns as a function of activity and nematic stiffness. In Chapter 4 we compare results obtained with two distinct hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses. This work provides a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model. Finally, in Chapter 5 we examine the dynamics of a compressible active nematic on a substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal model with renormalized elastic constants driven negative by activity. We show that spatially inhomogeneous patterns are selected via a mechanism analogous to that responsible for modulated phases at an equilibrium Lifshitz point.

  2. An Inquiry: Effectiveness of the Complex Empirical Mode Decomposition Method, the Hilbert-Huang Transform, and the Fast-Fourier Transform for Analysis of Dynamic Objects

    DTIC Science & Technology

    2012-03-01

    graphical user interface (GUI) called ALPINE© [18]. Then, it will be converted into a 10 MAT-file that can be read into MATLAB®. At this point...breathing [3]. For comparison purposes, Balocchi et al. recorded the respiratory signal simultaneously with the tachogram (or EKG ) signal. As previously...primary authors, worked to create his own code for implementing the method proposed by Rilling et al. Through reading the BEMD paper and proceeding to

  3. Nonlinear Wavelength Selection in Surface Faceting under Electromigration

    NASA Astrophysics Data System (ADS)

    Barakat, Fatima; Martens, Kirsten; Pierre-Louis, Olivier

    2012-08-01

    We report on the control of the faceting of crystal surfaces by means of surface electromigration. When electromigration reinforces the faceting instability, we find perpetual coarsening with a wavelength increasing as t1/2. For strongly stabilizing electromigration, the surface is stable. For weakly stabilizing electromigration, a cellular pattern is obtained, with a nonlinearly selected wavelength. The selection mechanism is not caused by an instability of steady states, as suggested by previous works in the literature. Instead, the dynamics is found to exhibit coarsening before reaching a continuous family of stable nonequilibrium steady states.

  4. Composite multi-qubit gates dynamically corrected against charge noise and magnetic field noise for singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Kestner, Jason; Barnes, Edwin; Wang, Xin; Bishop, Lev; Das Sarma, Sankar

    2013-03-01

    We use previously described single-qubit SUPCODE pulses on both intra-qubit and inter-qubit exchange couplings, integrated with existing strategies such as BB1, to theoretically construct a CNOT gate that is robust against both charge noise and magnetic field gradient fluctuations. We show how this allows scalable, high-fidelity implementation of arbitrary multi-qubit operations using singlet-triplet spin qubits in the presence of experimentally realistic noise. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  5. Complexity reduction of rate-equations models for two-choice decision-making.

    PubMed

    Carrillo, José Antonio; Cordier, Stéphane; Deco, Gustavo; Mancini, Simona

    2013-01-01

    We are concerned with the complexity reduction of a stochastic system of differential equations governing the dynamics of a neuronal circuit describing a decision-making task. This reduction is based on the slow-fast behavior of the problem and holds on the whole phase space and not only locally around the spontaneous state. Macroscopic quantities, such as performance and reaction times, computed applying this reduction are in agreement with previous works in which the complexity reduction is locally performed at the spontaneous point by means of a Taylor expansion.

  6. Coarse graining of atactic polystyrene and its derivatives

    NASA Astrophysics Data System (ADS)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2014-03-01

    Capturing large length scales in polymers and soft matter while retaining atomistic properties is imperative to computational studies of dynamic systems. Here we present a new methodology developing coarse-grain model based on atomistic simulation of atactic polystyrene (PS). Similar to previous work by Fritz et al., each monomer is described by two coarse grained beads. In contrast to this earlier work where intramolecular potentials were based on Monte Carlo simulation of both isotactic and syndiotactic single PS molecule to capture stereochemistry, we obtained intramolecular interactions from a single molecular dynamics simulation of an all-atom atactic PS melts. The non-bonded interactions are obtained using the iterative Boltzmann inversion (IBI) scheme. This methodology has been extended to coarse graining of poly-(t-butyl-styrene) (PtBS). An additional coarse-grained bead is used to describe the t-butyl group. Similar to the process for PS, the intramolecular interactions are obtained from a single all atom atactic melt simulation. Starting from the non-bonded interactions for PS, we show that the IBI method for the non-bonded interactions of PtBS converges relatively fast. A generalized scheme for substituted PS is currently in development. We would like to acknowledge Prof. Kurt Kremer for helpful discussions during this work.

  7. Turbulent structures in cylindrical density currents in a rotating frame of reference

    NASA Astrophysics Data System (ADS)

    Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas

    2018-06-01

    Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.

  8. Observations and implications of large-amplitude longitudinal oscillations in a solar filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luna, M.; Knizhnik, K.; Muglach, K.

    On 2010 August 20, an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work, we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we usedmore » the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We estimate the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and discuss the implications of our study for filament structure and heating.« less

  9. Identification of atomic-level mechanisms for gas-phase X- + CH3Y SN2 reactions by combined experiments and simulations.

    PubMed

    Xie, Jing; Otto, Rico; Mikosch, Jochen; Zhang, Jiaxu; Wester, Roland; Hase, William L

    2014-10-21

    For the traditional model of gas-phase X(-) + CH3Y SN2 reactions, C3v ion-dipole pre- and postreaction complexes X(-)---CH3Y and XCH3---Y(-), separated by a central barrier, are formed. Statistical intramolecular dynamics are assumed for these complexes, so that their unimolecular rate constants are given by RRKM theory. Both previous simulations and experiments have shown that the dynamics of these complexes are not statistical and of interest is how these nonstatistical dynamics affect the SN2 rate constant. This work also found there was a transition from an indirect, nonstatistical, complex forming mechanism, to a direct mechanism, as either the vibrational and/or relative translational energy of the reactants was increased. The current Account reviews recent collaborative studies involving molecular beam ion-imaging experiments and direct (on-the-fly) dynamics simulations of the SN2 reactions for which Cl(-), F(-), and OH(-) react with CH3I. Also considered are reactions of the microsolvated anions OH(-)(H2O) and OH(-)(H2O)2 with CH3I. These studies have provided a detailed understanding of the atomistic mechanisms for these SN2 reactions. Overall, the atomistic dynamics for the Cl(-) + CH3I SN2 reaction follows those found in previous studies. The reaction is indirect, complex forming at low reactant collision energies, and then there is a transition to direct reaction between 0.2 and 0.4 eV. The direct reaction may occur by rebound mechanism, in which the ClCH3 product rebounds backward from the I(-) product or a stripping mechanism in which Cl(-) strips CH3 from the I atom and scatters in the forward direction. A similar indirect to direct mechanistic transition was observed in previous work for the Cl(-) + CH3Cl and Cl(-) + CH3Br SN2 reactions. At the high collision energy of 1.9 eV, a new indirect mechanism, called the roundabout, was discovered. For the F(-) + CH3I reaction, there is not a transition from indirect to direct reaction as Erel is increased. The indirect mechanism, with prereaction complex formation, is important at all the Erel investigated, contributing up ∼60% of the reaction. The remaining direct reaction occurs by the rebound and stripping mechanisms. Though the potential energy curve for the OH(-) + CH3I reaction is similar to that for F(-) + CH3I, the two reactions have different dynamics. They are akin, in that for both there is not a transition from an indirect to direct reaction. However, for F(-) + CH3I indirect reaction dominates at all Erel, but it is less important for OH(-) + CH3I and becomes negligible as Erel is increased. Stripping is a minor channel for F(-) + CH3I, but accounts for more than 60% of the OH(-) + CH3I reaction at high Erel. Adding one or two H2O molecules to OH(-) alters the reaction dynamics from that for unsolvated OH(-). Adding one H2O molecule enhances indirect reaction at low Erel, and changes the reaction mechanism from primarily stripping to rebound at high Erel. With two H2O molecules the dynamics is indirect and isotropic at all collision energies.

  10. Theory and computation of non-RRKM lifetime distributions and rates in chemical systems with three or more degrees of freedom

    NASA Astrophysics Data System (ADS)

    Gabern, Frederic; Koon, Wang S.; Marsden, Jerrold E.; Ross, Shane D.

    2005-11-01

    The computation, starting from basic principles, of chemical reaction rates in realistic systems (with three or more degrees of freedom) has been a longstanding goal of the chemistry community. Our current work, which merges tube dynamics with Monte Carlo methods provides some key theoretical and computational tools for achieving this goal. We use basic tools of dynamical systems theory, merging the ideas of Koon et al. [W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos 10 (2000) 427-469.] and De Leon et al. [N. De Leon, M.A. Mehta, R.Q. Topper, Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory, J. Chem. Phys. 94 (1991) 8310-8328.], particularly the use of invariant manifold tubes that mediate the reaction, into a tool for the computation of lifetime distributions and rates of chemical reactions and scattering phenomena, even in systems that exhibit non-statistical behavior. Previously, the main problem with the application of tube dynamics has been with the computation of volumes in phase spaces of high dimension. The present work provides a starting point for overcoming this hurdle with some new ideas and implements them numerically. Specifically, an algorithm that uses tube dynamics to provide the initial bounding box for a Monte Carlo volume determination is used. The combination of a fine scale method for determining the phase space structure (invariant manifold theory) with statistical methods for volume computations (Monte Carlo) is the main contribution of this paper. The methodology is applied here to a three degree of freedom model problem and may be useful for higher degree of freedom systems as well.

  11. Verrucomicrobia and their role in soil methanol consumption

    NASA Astrophysics Data System (ADS)

    Fierer, N.

    2015-12-01

    Bacteria belonging to the phylum Verrucomicrobia are far more ubiquitous and abundant in soil than previous work would suggest. In many soils, a relatively small number of verrucomicrobial phylotypes or 'species' can represent more than 25% of the bacterial cells in soil. Since these phylotypes are not closely related to any known cultured isolates or any strains for which we have whole-genome data, we have limited information on what these bacteria are actually doing in soil, their metabolic capabilities, or the niches they inhabit. We have recently assembled the genomes of these dominant Verrucomicrobia from soil metagenomic data and found that these taxa appear to be oligotrophs that specialize in methanol oxidation. This is important because we have found in previous work that methanol likely represents an important source of labile organic carbon to soil microbes in many ecosystems with methanol fluxes likely representing an important, but under-studied, mechanism by which organic carbon is transferred from surface litter layers to mineral soils. Ongoing work has focused on using high-throughput cultivation methods to study soil Verrucomicrobia in vitro and better understand their controls on soil carbon dynamics. Together this work demonstrates how we can leverage recent methodological advances in metagenomics, high-throughput cultivation, and soil trace gas analyses to understand the biogeochemical relevance of an abundant, but mysterious, group of soil microorganisms.

  12. Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ9-tetrahydrocannabinol administration

    PubMed Central

    Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L.; Deadwyler, Sam A.; Hampson, Robert E.; Kraft, Robert A.

    2014-01-01

    Background Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. New method Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain–computer interfaces and nonlinear neuronal models. Results Neurons involved in memory processing (“Functional Cell Types” or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid-type 1 receptor partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. Comparison with existing methods WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. Conclusion z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain–computer interfaces. PMID:25086297

  13. I. WORKING MEMORY CAPACITY IN CONTEXT: MODELING DYNAMIC PROCESSES OF BEHAVIOR, MEMORY, AND DEVELOPMENT.

    PubMed

    Simmering, Vanessa R

    2016-09-01

    Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.

  14. Acoustic-tactile rendering of visual information

    NASA Astrophysics Data System (ADS)

    Silva, Pubudu Madhawa; Pappas, Thrasyvoulos N.; Atkins, Joshua; West, James E.; Hartmann, William M.

    2012-03-01

    In previous work, we have proposed a dynamic, interactive system for conveying visual information via hearing and touch. The system is implemented with a touch screen that allows the user to interrogate a two-dimensional (2-D) object layout by active finger scanning while listening to spatialized auditory feedback. Sound is used as the primary source of information for object localization and identification, while touch is used both for pointing and for kinesthetic feedback. Our previous work considered shape and size perception of simple objects via hearing and touch. The focus of this paper is on the perception of a 2-D layout of simple objects with identical size and shape. We consider the selection and rendition of sounds for object identification and localization. We rely on the head-related transfer function for rendering sound directionality, and consider variations of sound intensity and tempo as two alternative approaches for rendering proximity. Subjective experiments with visually-blocked subjects are used to evaluate the effectiveness of the proposed approaches. Our results indicate that intensity outperforms tempo as a proximity cue, and that the overall system for conveying a 2-D layout is quite promising.

  15. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2016-01-01

    Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.

  16. Atmospheric Transport and Mixing linked to Rossby Wave Breaking in GFDL Dynamical Core

    NASA Astrophysics Data System (ADS)

    Liu, C.; Barnes, E. A.

    2015-12-01

    Atmospheric transport and mixing plays an important role in the global energy balance and the distribution of health-related chemical constituents. Previous studies suggest a close linkage between large-scale transport and Rossby wave breaking (RWB). In this work, we use the GFDL spectral dynamical core to investigate this relationship and study the response of RWB-related transport in different climate scenarios. In a standard control run, we quantify the contribution of RWB to the total transport and mixing of an idealized tracer. In addition, we divide the contribution further into the two types of RWB - anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB) -- and contrast their efficiency at transport and mixing. Our results are compared to a previous study in which the transport ability of the two types of RWB is studied for individual baroclinic wave life-cycles. In a series of sensitivity runs, we study the response of RWB-related transport and mixing to various states of the jet streams. The responses of the mean strength, frequency, and the efficiency of RWB-related transport are documented and the implications for the transport and mixing in a warmer climate are discussed.

  17. Irish Ice Sheet dynamics during deglaciation of the central Irish Midlands: Evidence of ice streaming and surging from airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Delaney, Catherine A.; McCarron, Stephen; Davis, Stephen

    2018-04-01

    High resolution digital terrain models (DTMs) generated from airborne LiDAR data and supplemented by field evidence are used to map glacial landform assemblages dating from the last glaciation (Midlandian glaciation; OI stages 2-3) in the central Irish Midlands. The DTMs reveal previously unrecognised low-amplitude landforms, including crevasse-squeeze ridges and mega-scale glacial lineations overprinted by conduit fills leading to ice-marginal subaqueous deposits. We interpret this landform assemblage as evidence for surging behaviour during ice recession. The data indicate that two separate phases of accelerated ice flow were followed by ice sheet stagnation during overall deglaciation. The second surge event was followed by a subglacial outburst flood, forming an intricate esker and crevasse-fill network. The data provide the first clear evidence that ice flow direction was eastward along the eastern watershed of the Shannon River basin, at odds with previous models, and raise the possibility that an ice stream existed in this area. Our work demonstrates the potential for airborne LiDAR surveys to produce detailed paleoglaciological reconstructions and to enhance our understanding of complex palaeo-ice sheet dynamics.

  18. Molecular engineering to improve carrier lifetimes for organic photovoltaic devices with thick active layers

    DOE PAGES

    Oosterhout, Stefan D.; Braunecker, Wade A.; Owczarczyk, Zbyslaw R.; ...

    2017-04-27

    The morphology of the bulk heterojunction absorber layer in an organic photovoltaic (OPV) device has a profound effect on the electrical properties and efficiency of the device. Previous work has consistently demonstrated that the solubilizing side-chains of the donor material affect these properties and device performance in a non-trivial way. Here, using Time-Resolved Microwave Conductivity (TRMC), we show by direct measurements of carrier lifetimes that the choice of side chains can also make a substantial difference in photocarrier dynamics. We have previously demonstrated a correlation between peak photoconductance measured by TRMC and device efficiencies; here, we demonstrate that TRMC photocarriermore » dynamics have an important bearing on device performance in a case study of devices made from donor materials with linear vs. branched side-chains and with variable active layer thicknesses. We use Grazing-Incidence Wide Angle X-ray Scattering to elucidate the cause of the different carrier lifetimes as a function of different aggregation behavior in the polymers. Consequently, the results help establish TRMC as a technique for screening OPV donor materials whose devices maintain performance in thick active layers (>250 nm) designed to improve light harvesting, film reproducibility, and ease of processing.« less

  19. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    PubMed

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-03

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.

  20. Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Yang, Zhong-Zhi; Li, Xin

    2005-09-01

    Intermolecular potential for alkaline-earth metal (Be(2+), Mg(2+), and Ca(2+)) cations in water has been derived using the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM), and it is consistent with what was previously applied to the hydration study of the monovalent cations. Parameters for the effective interaction between a cation and a water molecule were determined, reproducing the ab initio results. The static, dynamic, and thermodynamic properties of Be(2+)(aq), Mg(2+)(aq), and Ca(2+)(aq) were studied using these potential parameters. Be(2+) requires a more complicated form of the potential function than Mg(2+) and Ca(2+) in order to obtain better fits. Strong influences of the twofold charged cations on the structures of the hydration shells and some other properties of aqueous ionic solutions are discussed and compared with the results of a previous study of monovalent cations in water. At the same time, comparative study of the hydration properties of each cation is also discussed. This work demonstrates that ABEEM/MM provides a useful tool in the exploration of the hydration of double-charged cations in water.

  1. A minimal model of self-sustaining turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Vaughan L.; Gayme, Dennice F.; Farrell, Brian F.

    2015-10-15

    In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL{sub ∞} model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL{sub ∞} dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that aremore » consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems.« less

  2. Dielectric Study of Alcohols Using Broadband Terahertz Time Domain Spectroscopy (THz-TDS).

    NASA Astrophysics Data System (ADS)

    Sarkar, Sohini; Saha, Debasis; Banerjee, Sneha; Mukherjee, Arnab; Mandal, Pankaj

    2016-06-01

    Broadband Terahertz-Time Domain Spectroscopy (THz-TDS) (1-10 THz) has been utilized to study the complex dielectric properties of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-octanol. Previous reports on dielectric study of alcohols were limited to 5 THz. At THz (1 THz = 33.33 wn = 4 meV) frequency range (0.1 to 15 THz), the molecular reorientation and several intermolecular vibrations (local oscillation of dipoles) may coexist and contribute to the overall liquid dynamics. We find that the Debye type relaxations barely contribute beyond 1 THz, rather three harmonic oscillators dominate the entire spectral range. To get insights on the modes responsible for the observed absorption in THz frequency range, we performed all atom molecular dynamics (MD) using OPLS force field and ab initio quantum calculations. Combined experimental and theoretical study reveal that the complex dielectric functions of alcohols have contribution from a) alkyl group oscillation within H-bonded network ( 1 THz), b) intermolecular H-bond stretching ( 5 THz) , and c) librational motions in alcohols. The present work, therefore, complements all previous studies on alcohols at lower frequencies and provides a clear picture on them in a broad spectral range from microwave to 10 THz.

  3. Estimating biogas production of biologically treated municipal solid waste.

    PubMed

    Scaglia, Barbara; Confalonieri, Roberto; D'Imporzano, Giuliana; Adani, Fabrizio

    2010-02-01

    In this work, a respirometric approach, i.e., Dynamic Respiration Index (DRI), was used to predict the anaerobic biogas potential (ABP), studying 46 waste samples coming directly from MBT full-scale plants. A significant linear regression model was obtained by a jackknife approach: ABP=(34.4+/-2.5)+(0.109+/-0.003).DRI. The comparison of the model of this work with those of the previous works using a different respirometric approach (Sapromat-AT(4)), allowed obtaining similar results and carrying out direct comparison of different limits to accept treated waste in landfill, proposed in the literature. The results indicated that on an average, MBT treatment allowed 56% of ABP reduction after 4weeks of treatment, and 79% reduction after 12weeks of treatment. The obtainment of another regression model allowed transforming Sapromat-AT(4) limit in DRI units, and achieving a description of the kinetics of DRI and the corresponding ABP reductions vs. MBT treatment-time.

  4. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  5. Chemical Dynamics of nano-Aluminum and Iodine Based Oxidizers

    NASA Astrophysics Data System (ADS)

    Little, Brian; Ridge, Claron; Overdeep, Kyle; Slizewski, Dylan; Lindsay, Michael

    2017-06-01

    As observed in previous studies of nanoenergetic powder composites, micro/nano-structural features such as particle morphology and/or reactant spatial distance are expected to strongly influence properties that govern the combustion behavior of energetic materials (EM). In this study, highly reactive composites containing crystalline iodine (V) oxide or iodate salts with nano-sized aluminum (nAl) were blended by two different processing techniques and then collected as a powder for characterization. Physiochemical techniques such as thermal gravimetric analysis, calorimetry, X-ray diffraction, electron microscopy, high speed photography, pressure profile analysis, temperature programmed reactions, and spectroscopy were employed to characterize these EM with emphasis on correlating the chemical reactivity with inherent structural features and variations in stoichiometry. This work is a continuation of efforts to probe the chemical dynamics of nAl-iodine based composites.

  6. Magnetohydrodynamic and gasdynamic theories for planetary bow waves

    NASA Technical Reports Server (NTRS)

    Spreiter, John R.; Stahara, Stephen S.

    1985-01-01

    A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.

  7. Prethermalized states of quenched spinor condensates

    NASA Astrophysics Data System (ADS)

    Chakram, Srivatsan; Patil, Yogesh Sharad; Vengalattore, Mukund

    2015-05-01

    Due to the interplay between spin and charge degrees of freedom, spinor Bose condensates exhibit a rich tapestry of magnetically ordered phases and topological defects. The non-equilibrium properties of these fluids have been the topic of recent interest. We have previously shown that quenched spinor condensates exhibit robust prethermalized states characterized by asymptotic correlations that differ from thermodynamic predictions. These non-equilibrium states arise due to the disparate energy scales between the phonon and magnon excitations. The identification of a microscopic origin of prethermalization makes this system a promising platform for studies of prethermalization and possible universal scaling relations that characterize these nonequilibrium many-body states. We elaborate on our studies of prethermalized spinor condensates and the prospects of observing a dynamical Kosterlitz-Thouless transition in this system. This work is supported by the ARO MURI on non-equilibrium dynamics.

  8. Magnetohydrodynamic and gasdynamic theories for planetary bow waves

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.; Stahara, S. S.

    1983-01-01

    A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.

  9. Dynamic test input generation for multiple-fault isolation

    NASA Technical Reports Server (NTRS)

    Schaefer, Phil

    1990-01-01

    Recent work is Causal Reasoning has provided practical techniques for multiple fault diagnosis. These techniques provide a hypothesis/measurement diagnosis cycle. Using probabilistic methods, they choose the best measurements to make, then update fault hypotheses in response. For many applications such as computers and spacecraft, few measurement points may be accessible, or values may change quickly as the system under diagnosis operates. In these cases, a hypothesis/measurement cycle is insufficient. A technique is presented for a hypothesis/test-input/measurement diagnosis cycle. In contrast to generating tests a priori for determining device functionality, it dynamically generates tests in response to current knowledge about fault probabilities. It is shown how the mathematics previously used for measurement specification can be applied to the test input generation process. An example from an efficient implementation called Multi-Purpose Causal (MPC) is presented.

  10. Isospin decomposition of γ N → N * transitions within a dynamical coupled-channels model

    DOE PAGES

    Kamano, Hiroyuki; Nakamura, S. X.; Lee, T. -S. H.; ...

    2016-07-07

    Here, by extending the dynamical coupled-channels analysis performed in our previous work to include the available data of photoproduction of pi mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γn → N*, at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γp → N* transition amplitudes. Our results allow an isospin decomposition of the γN → N* transition amplitudes for the isospin I = 1/2 N* resonances, which is necessary for testing hadronmore » structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.« less

  11. Qualitative validation of the reduction from two reciprocally coupled neurons to one self-coupled neuron in a respiratory network model.

    PubMed

    Dunmyre, Justin R

    2011-06-01

    The pre-Bötzinger complex of the mammalian brainstem is a heterogeneous neuronal network, and individual neurons within the network have varying strengths of the persistent sodium and calcium-activated nonspecific cationic currents. Individually, these currents have been the focus of modeling efforts. Previously, Dunmyre et al. (J Comput Neurosci 1-24, 2011) proposed a model and studied the interactions of these currents within one self-coupled neuron. In this work, I consider two identical, reciprocally coupled model neurons and validate the reduction to the self-coupled case. I find that all of the dynamics of the two model neuron network and the regions of parameter space where these distinct dynamics are found are qualitatively preserved in the reduction to the self-coupled case.

  12. Method of simulation and visualization of FDG metabolism based on VHP image

    NASA Astrophysics Data System (ADS)

    Cui, Yunfeng; Bai, Jing

    2005-04-01

    FDG ([18F] 2-fluoro-2-deoxy-D-glucose) is the typical tracer used in clinical PET (positron emission tomography) studies. The FDG-PET is an important imaging tool for early diagnosis and treatment of malignant tumor and functional disease. The main purpose of this work is to propose a method that represents FDG metabolism in human body through the simulation and visualization of 18F distribution process dynamically based on the segmented VHP (Visible Human Project) image dataset. First, the plasma time-activity curve (PTAC) and the tissues time-activity curves (TTAC) are obtained from the previous studies and the literatures. According to the obtained PTAC and TTACs, a set of corresponding values are assigned to the segmented VHP image, Thus a set of dynamic images are derived to show the 18F distribution in the concerned tissues for the predetermined sampling schedule. Finally, the simulated FDG distribution images are visualized in 3D and 2D formats, respectively, incorporated with principal interaction functions. As compared with original PET image, our visualization result presents higher resolution because of the high resolution of VHP image data, and show the distribution process of 18F dynamically. The results of our work can be used in education and related research as well as a tool for the PET operator to design their PET experiment program.

  13. On the modified grain-size-distribution method to evaluate the dynamic recrystallisation fraction in AISI 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Hong, D. H.; Park, J. K.

    2018-04-01

    The purpose of the present work was to verify the grain size distribution (GSD) method, which was recently proposed by one of the present authors as a method for evaluating the fraction of dynamic recrystallisation (DRX) in a microalloyed medium carbon steel. To verify the GSD-method, we have selected a 304 stainless steel as a model system and have measured the evolution of the overall grain size distribution (including both the recrystallised and unrecrystallised grains) during hot compression at 1,000 °C in a Gleeble machine; the DRX fraction estimated using the GSD method is compared with the experimentally measured value via EBSD. The results show that the previous GSD method tends to overestimate the DRX fraction due to the utilisation of a plain lognormal distribution function (LDF). To overcome this shortcoming, we propose a modified GSD-method wherein an area-weighted LDF, in place of a plain LDF, is employed to model the evolution of GSD during hot deformation. Direct measurement of the DRX fraction using EBSD confirms that the modified GSD-method provides a reliable method for evaluating the DRX fraction from the experimentally measured GSDs. Reasonable agreement between the DRX fraction and softening fraction suggests that the Kocks-Mecking method utilising the Voce equation can be satisfactorily used to model the work hardening and dynamic recovery behaviour of steels during hot deformation.

  14. Sudden transitions in coupled opinion and epidemic dynamics with vaccination

    NASA Astrophysics Data System (ADS)

    Pires, Marcelo A.; Oestereich, André L.; Crokidakis, Nuno

    2018-05-01

    This work consists of an epidemic model with vaccination coupled with an opinion dynamics. Our objective was to study how disease risk perception can influence opinions about vaccination and therefore the spreading of the disease. Differently from previous works we have considered continuous opinions. The epidemic spreading is governed by an SIS-like model with an extra vaccinated state. In our model individuals vaccinate with a probability proportional to their opinions. The opinions change due to peer influence in pairwise interactions. The epidemic feedback to the opinion dynamics acts as an external field increasing the vaccination probability. We performed Monte Carlo simulations in fully-connected populations. Interestingly we observed the emergence of a first-order phase transition, besides the usual active-absorbing phase transition presented in the SIS model. Our simulations also show that with a certain combination of parameters, an increment in the initial fraction of the population that is pro-vaccine has a twofold effect: it can lead to smaller epidemic outbreaks in the short term, but it also contributes to the survival of the chain of infections in the long term. Our results also suggest that it is possible that more effective vaccines can decrease the long-term vaccine coverage. This is a counterintuitive outcome, but it is in line with empirical observations that vaccines can become a victim of their own success.

  15. Tracking dynamic team activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesismore » underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.« less

  16. Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Kistenev, Yury V.; Larin, Kirill V.

    2016-03-01

    Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.

  17. [Indicators of dynamic work tolerability in healthy subjects].

    PubMed

    Capodaglio, E M; Capodaglio, P

    1997-01-01

    This paper reports a study on the dynamics of tolerability in performing dynamic cycling in healthy subjects. Data on individually tolerable levels (power x duration) was obtained from 9 subjects by means of three submaximal tests on an ergometric bicycle lasting < or = 40 minutes, with constant load (50%, 65% and 80% of maximum VO2 reached during a previous test of increasing difficulty within the limits of the symptoms). During performance of the test we monitored heart rate and subjective perception of fatigue (Borg's 10-point scale). We then defined the individual functions of "isoperception", which expressed the individual trend of the product "power x duration" at identical subjective perception score. On the basis of the metabolic parameters monitored, the individual isoperceptive functions at a "moderate" level of fatigue (3 on the Borg scale) were defined as "tolerability) threshold" for prolonged dynamic cycling. The product "power x duration" defined by the isoperceptive curves at a "moderate" level of fatigue does in fact reflect the individual aerobic capacity that can be sustained for prolonged dynamic activity (under 60 minutes). In order to validate the hypothesis of tolerability of the functions identified, three further short tests were performed (duration < or = 8.5 minutes) on an ergometric bicycle, with measurement of ventilatory and metabolic parameters.

  18. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    PubMed Central

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo

    2015-01-01

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases. PMID:26463272

  19. Use of statecharts in the modelling of dynamic behaviour in the ATLAS DAQ prototype-1

    NASA Astrophysics Data System (ADS)

    Croll, P.; Duval, P.-Y.; Jones, R.; Kolos, S.; Sari, R. F.; Wheeler, S.

    1998-08-01

    Many applications within the ATLAS DAQ prototype-1 system have complicated dynamic behaviour which can be successfully modelled in terms of states and transitions between states. Previously, state diagrams implemented as finite-state machines have been used. Although effective, they become ungainly as system size increases. Harel statecharts address this problem by implementing additional features such as hierarchy and concurrency. The CHSM object-oriented language system is freeware which implements Harel statecharts as concurrent, hierarchical, finite-state machines (CHSMs). An evaluation of this language system by the ATLAS DAQ group has shown it to be suitable for describing the dynamic behaviour of typical DAQ applications. The language is currently being used to model the dynamic behaviour of the prototype-1 run-control system. The design is specified by means of a CHSM description file, and C++ code is obtained by running the CHSM compiler on the file. In parallel with the modelling work, a code generator has been developed which translates statecharts, drawn using the StP CASE tool, into the CHSM language. C++ code, describing the dynamic behaviour of the run-control system, has been successfully generated directly from StP statecharts using the CHSM generator and compiler. The validity of the design was tested using the simulation features of the Statemate CASE tool.

  20. Dynamics of glass-forming liquids. XV. Dynamical features of molecular liquids that form ultra-stable glasses by vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Richert, Ranko

    2011-09-01

    The dielectric relaxation behavior of ethylbenzene (EBZ) in its viscous regime is measured, and the glass transition temperature (Tg = 116 K) as well as fragility (m = 98) are determined. While the Tg of EBZ from this work is consistent with earlier results, the fragility is found much higher than what has been assumed previously. Literature data is supplemented by the present results on EBZ to compile the dynamic behavior of those glass formers that are known to form ultra-stable glasses by vapor deposition. These dynamics are contrasted with those of ethylcyclohexane, a glass former for which a comparable vapor deposition failed to produce an equally stable glassy state. In a graph that linearizes Vogel-Fulcher-Tammann behavior, i.e., the derivative of -logτ with respect to T/Tg raised to the power of -1/2 versus T/Tg, all ultra-stable glass formers fall onto one master curve in a wide temperature range, while ethylcyclohexane deviates for T ≫ Tg. This result suggests that ultra-stable glass formers share common behavior regarding the dynamics of their supercooled liquid state if scaled to their respective Tg values, and that fragility and related features are linked to the ability to form ultra-stable materials.

  1. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  2. A new theoretical model for transmembrane potential and ion currents induced in a spherical cell under low frequency electromagnetic field.

    PubMed

    Zheng, Yu; Gao, Yang; Chen, Ruijuan; Wang, Huiquan; Dong, Lei; Dou, Junrong

    2016-10-01

    Time-varying electromagnetic fields (EMF) can induce some physiological effects in neuronal tissues, which have been explored in many applications such as transcranial magnetic stimulation. Although transmembrane potentials and induced currents have already been the subjects of many theoretical studies, most previous works about this topic are mainly completed by utilizing Maxwell's equations, often by solving a Laplace equation. In previous studies, cells were often considered to be three-compartment models with different electroconductivities in different regions (three compartments are often intracellular regions, membrane, and extracellular regions). However, models like that did not take dynamic ion channels into consideration. Therefore, one cannot obtain concrete ionic current changes such as potassium current change or sodium current change by these models. The aim of the present work is to present a new and more detailed model for calculating transmembrane potentials and ionic currents induced by time-varying EMF. Equations used in the present paper originate from Nernst-Plank equations, which are ionic current-related equations. The main work is to calculate ionic current changes induced by EMF exposure, and then transmembrane potential changes are calculated with Hodgkin-Huxley model. Bioelectromagnetics. 37:481-492, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    PubMed

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.

  4. Segmental front line dynamics of randomly pinned ferroelastic domain walls

    NASA Astrophysics Data System (ADS)

    Puchberger, S.; Soprunyuk, V.; Schranz, W.; Carpenter, M. A.

    2018-01-01

    Dynamic mechanical analysis (DMA) measurements as a function of temperature, frequency, and dynamic force amplitude are used to perform a detailed study of the domain wall motion in LaAlO3. In previous DMA measurements Harrison et al. [Phys. Rev. B 69, 144101 (2004), 10.1103/PhysRevB.69.144101] found evidence for dynamic phase transitions of ferroelastic domain walls in LaAlO3. In the present work we focus on the creep-to-relaxation region of domain wall motion using two complementary methods. We determine, in addition to dynamic susceptibility data, waiting time distributions of strain jerks during slowly increasing stress. These strain jerks, which result from self-similar avalanches close to the depinning threshold, follow a power-law behavior with an energy exponent ɛ =1.7 ±0.1 . Also, the distribution of waiting times between events follows a power law N (tw) ∝tw-(n +1 ) with an exponent n =0.9 , which transforms to a power law of susceptibility S (ω ) ∝ω-n . The present dynamic susceptibility data can be well fitted with a power law, with the same exponent (n =0.9 ) up to a characteristic frequency ω ≈ω* , where a crossover from stochastic DW motion to the pinned regime is well described using the scaling function of Fedorenko et al. [Phys. Rev. B 70, 224104 (2004), 10.1103/PhysRevB.70.224104].

  5. Dynamic primitives in the control of locomotion.

    PubMed

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  6. Investigating multiphoton phenomena using nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Shu

    Many seemingly simple systems can display extraordinarily complex dynamics which has been studied and uncovered through nonlinear dynamical theory. The leitmotif of this thesis is changing phase-space structures and their (linear or non-linear) stabilities by adding control functions (which act on the system as external perturbations) to the relevant Hamiltonians. These phase-space structures may be periodic orbits, invariant tori or their stable and unstable manifolds. One-electron systems and diatomic molecules are fundamental and important staging ground for new discoveries in nonlinear dynamics. In past years, increasing emphasis and effort has been put on the control or manipulation of these systems. Recent developments of nonlinear dynamical tools can provide efficient ways of doing so. In the first subtopic of the thesis, we are adding a control function to restore tori at prescribed locations in phase space. In the remainder of the thesis, a control function with parameters is used to change the linear stability of the periodic orbits which govern the processes in question. In this thesis, we report our theoretical analyses on multiphoton ionization of Rydberg atoms exposed to strong microwave fields and the dissociation of diatomic molecules exposed to bichromatic lasers using nonlinear dynamical tools. This thesis is composed of three subtopics. In the first subtopic, we employ local control theory to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding a relatively small control term to the original Hamiltonian. In the second subtopic, we perform periodic orbit analysis to investigate multiphoton ionization driven by a bichromatic microwave field. Our results show quantitative and qualitative agreement with previous studies, and hence identify the mechanism through which short periodic orbits organize the dynamics in multiphoton ionization. In addition, we achieve substantial time savings with this approach. In the third subtopic we extend our periodic orbit analysis to the dissociation of diatomic molecules driven by a bichromatic laser. In this problem, our results based on periodic orbit analysis again show good agreement with previous work, and hence promise more potential applications of this approach in molecular physics.

  7. Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells

    PubMed Central

    Fino, Cinzia; Sørensen, Michael A.; Semsey, Szabolcs

    2017-01-01

    ABSTRACT Bacterial persisters are phenotypic variants that survive antibiotic treatment in a dormant state and can be formed by multiple pathways. We recently proposed that the second messenger (p)ppGpp drives Escherichia coli persister formation through protease Lon and activation of toxin-antitoxin (TA) modules. This model found considerable support among researchers studying persisters but also generated controversy as part of recent debates in the field. In this study, we therefore used our previous work as a model to critically examine common experimental procedures to understand and overcome the inconsistencies often observed between results of different laboratories. Our results show that seemingly simple antibiotic killing assays are very sensitive to variations in culture conditions and bacterial growth phase. Additionally, we found that some assay conditions cause the killing of antibiotic-tolerant persisters via induction of cryptic prophages. Similarly, the inadvertent infection of mutant strains with bacteriophage ϕ80, a notorious laboratory contaminant, apparently caused several of the phenotypes that we reported in our previous studies. We therefore reconstructed all infected mutants and probed the validity of our model of persister formation in a refined assay setup that uses robust culture conditions and unravels the dynamics of persister cells through all bacterial growth stages. Our results confirm the importance of (p)ppGpp and Lon but no longer support a role of TA modules in E. coli persister formation under unstressed conditions. We anticipate that the results and approaches reported in our study will lay the ground for future work in the field. PMID:29233898

  8. Detection of different reconnection regions from kinetic simulations during island coalescence after asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Cazzola, Emanuele; Berchem, Jean; Innocenti, Maria Elena; Goldman, Martin V.; Newman, David L.; Zhou, Meng; Lapenta, Giovanni

    2017-04-01

    In this work we present new results from fully kinetic simulations of the magnetic islands coalescence dynamics after asymmetric magnetic reconnection. In a previous work, we have shown that three different reconnection regions can be identified when a new frame of reference based on the local magnetic field is set. These regions were marked as X, D and M whether they describe, respectively, a traditional X-line event, an event between two diverging islands or an event between two merging islands [1, 2]. The results shown here extend the previous analysis to a more realistic regime, including a remarkable temperature transition across the current sheet. In particular, regions X, D, and M are also observed within this new regime, featuring yet new interesting characteristics. Special attention is given to the particles agyrotropic and anisotropic behavior as fundamental signatures for the detection of these regions with satellites. These results are timely for the ongoing MMS mission, whose data from the magnetopause crossing are presently being analyzed. In fact, data revealed that an intense flux-ropes activity takes place in this region of the magnetosphere, which makes the presence of this set of reconnection regions highly expected. [1] Cazzola, E., et al. "On the electron dynamics during island coalescence in asymmetric magnetic reconnection." Physics of Plasmas (1994-present) 22.9 (2015): 092901. [2] Cazzola, E., et al. "On the electron agyrotropy during rapid asymmetric magnetic island coalescence in presence of a guide field." Geophysical Research Letters 43.15 (2016): 7840-7849.

  9. The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model

    NASA Astrophysics Data System (ADS)

    Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi

    2015-04-01

    Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.

  10. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    NASA Astrophysics Data System (ADS)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is discussed.

  11. Tree-ring based reconstruction of spring hydroclimate variability in the Caucasus

    NASA Astrophysics Data System (ADS)

    Martin-Benito, Dario; Köse, Nesibe; Güner, Tuncay; Pederson, Neil

    2015-04-01

    The Caucasus region has been identified as one of the most prominent biodiversity hotspots in the world. The region experiences recurrent droughts that not only affect natural vegetation but also the agriculturally-based economies in the Caucasus. Across northeastern Turkey and the Caucasus region, instrumental records providing information on climate variability are generally scarce. Thus the magnitude and frequency of past droughts in this biologically important region are less known. Additionally, despite the increase of climate reconstructions in the past decades for many parts of Europe and Asia, relatively little work has been done to understand hydroclimate variability in the Caucasus region. Nearly all efforts in the region have focused on the Mediterranean part of Turkey and the Middle East region. We developed new tree-ring width chronologies from different elevation sites in northeastern Turkey with the goal to reconstruct annually-resolved estimates of temperature and hydroclimate across the region. We developed the first reconstruction of spring hydroclimate variability for the Caucasus and the southeastern Black Sea Region since 1750 CE using a nested procedure. Despite the high mean annual precipitation in the region, our reconstruction accounted for over 45% of May-June precipitation variability from 1925 to 2006. We observed no evidence of a decrease in spring precipitation during the recent decades. However, we do see a decrease in precipitation variability over the last 75 years with respect to previous periods that, at this time, does not appear to be related to sample replication. Although our reconstructed precipitation shows important similarities with previous work from Mediterranean and northern Turkey, we find distinct drought periods are also evident suggesting a wider range of climate dynamics in the broader Black Sea region than what has been previously identified. Distinct episodes of drought at the larger scales could have important implications for the dynamics of ecosystems prior to and after the 20th century.

  12. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    PubMed

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    PubMed Central

    Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel

    2016-01-01

    This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027

  14. A structure adapted multipole method for electrostatic interactions in protein dynamics

    NASA Astrophysics Data System (ADS)

    Niedermeier, Christoph; Tavan, Paul

    1994-07-01

    We present an algorithm for rapid approximate evaluation of electrostatic interactions in molecular dynamics simulations of proteins. Traditional algorithms require computational work of the order O(N2) for a system of N particles. Truncation methods which try to avoid that effort entail untolerably large errors in forces, energies and other observables. Hierarchical multipole expansion algorithms, which can account for the electrostatics to numerical accuracy, scale with O(N log N) or even with O(N) if they become augmented by a sophisticated scheme for summing up forces. To further reduce the computational effort we propose an algorithm that also uses a hierarchical multipole scheme but considers only the first two multipole moments (i.e., charges and dipoles). Our strategy is based on the consideration that numerical accuracy may not be necessary to reproduce protein dynamics with sufficient correctness. As opposed to previous methods, our scheme for hierarchical decomposition is adjusted to structural and dynamical features of the particular protein considered rather than chosen rigidly as a cubic grid. As compared to truncation methods we manage to reduce errors in the computation of electrostatic forces by a factor of 10 with only marginal additional effort.

  15. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  16. Fuzzy CMAC With incremental Bayesian Ying-Yang learning and dynamic rule construction.

    PubMed

    Nguyen, M N

    2010-04-01

    Inspired by the philosophy of ancient Chinese Taoism, Xu's Bayesian ying-yang (BYY) learning technique performs clustering by harmonizing the training data (yang) with the solution (ying). In our previous work, the BYY learning technique was applied to a fuzzy cerebellar model articulation controller (FCMAC) to find the optimal fuzzy sets; however, this is not suitable for time series data analysis. To address this problem, we propose an incremental BYY learning technique in this paper, with the idea of sliding window and rule structure dynamic algorithms. Three contributions are made as a result of this research. First, an online expectation-maximization algorithm incorporated with the sliding window is proposed for the fuzzification phase. Second, the memory requirement is greatly reduced since the entire data set no longer needs to be obtained during the prediction process. Third, the rule structure dynamic algorithm with dynamically initializing, recruiting, and pruning rules relieves the "curse of dimensionality" problem that is inherent in the FCMAC. Because of these features, the experimental results of the benchmark data sets of currency exchange rates and Mackey-Glass show that the proposed model is more suitable for real-time streaming data analysis.

  17. The allosteric communication pathways in KIX domain of CBP.

    PubMed

    Palazzesi, Ferruccio; Barducci, Alessandro; Tollinger, Martin; Parrinello, Michele

    2013-08-27

    Allosteric regulation plays an important role in a myriad of biomacromolecular processes. Specifically, in a protein, the process of allostery refers to the transmission of a local perturbation, such as ligand binding, to a distant site. Decades after the discovery of this phenomenon, models built on static images of proteins are being reconsidered with the knowledge that protein dynamics plays an important role in its function. Molecular dynamics simulations are a valuable tool for studying complex biomolecular systems, providing an atomistic description of their structure and dynamics. Unfortunately, their predictive power has been limited by the complexity of the biomolecule free-energy surface and by the length of the allosteric timescale (in the order of milliseconds). In this work, we are able to probe the origins of the allosteric changes that transcription factor mixed lineage leukemia (MLL) causes to the interactions of KIX domain of CREB-binding protein (CBP) with phosphorylated kinase inducible domain (pKID), by combing all-atom molecular dynamics with enhanced sampling methods recently developed in our group. We discuss our results in relation to previous NMR studies. We also develop a general simulations protocol to study allosteric phenomena and many other biological processes that occur in the micro/milliseconds timescale.

  18. Loop conformation and dynamics of the Escherichia coli HPPK apo-enzyme and its binary complex with MgATP.

    PubMed

    Yang, Rong; Lee, Matthew C; Yan, Honggao; Duan, Yong

    2005-07-01

    Comparison of the crystallographic and NMR structures of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) suggests that the enzyme may undergo significant conformational change upon binding to its first substrate, ATP. Two of the three surface loops (loop 2 and loop 3) accounting for most of the conformational differences appear to be confined by crystal contacts, raising questions about the putative large-scale induced-fit conformational change of HPPK and the functional roles of the conserved side-chain residues on the loops. To investigate the loop dynamics in crystal-free environment, we carried out molecular dynamics and locally enhanced sampling simulations of the apo-enzyme and the HPPK.MgATP complex. Our simulations showed that the crystallographic B-factors underestimated the loop dynamics considerably. We found that the open-conformation of loop 3 in the binary complex is accessible to the apo-enzyme and is the favored conformation in solution phase. These results revise our previous view of HPPK-substrate interactions and the associated functional mechanism of conformational change. The lessons learned here offer valuable structural insights into the workings of HPPK and should be useful for structure-based drug design.

  19. Dynamic mode decomposition of Fontan hemodynamics in an idealized total cavopulmonary connection

    NASA Astrophysics Data System (ADS)

    Delorme, Yann T.; Kerlo, Anna-Elodie M.; Anupindi, Kameswararao; Rodefeld, Mark D.; Frankel, Steven H.

    2014-08-01

    Univentricular heart disease is the leading cause of death from any birth defect in the first year of life. Typically, patients have to undergo three open heart surgical procedures within the first few years of their lives to eventually directly connect the superior and inferior vena cavae to the left and right pulmonary arteries forming the total cavopulmonary connection (TCPC). The end result is a weak circulation where the single working ventricle pumps oxygenated blood to the body and de-oxygenated blood flows passively through the TCPC into the lungs. The fluid dynamics of the TCPC junction involve confined impinging jets resulting in a highly unstable flow, significant mechanical energy dissipation and undesirable pressure loss. Understanding and predicting such flows is important for improving the surgical procedure and for the design of mechanical cavopulmonary assist devices. In this study, dynamic mode decomposition (DMD) is used to analyze previously obtained stereoscopic particle imaging velocimetry (SPIV) data and large eddy simulation (LES) results for an idealized TCPC. Analysis of the DMD modes from the SPIV and LES serves to both highlight the unsteady vortical dynamics and the qualitative agreement between measurements and simulations.

  20. Attitude Dynamics, Stability, and Control of a Heliogyro Solar Sail

    NASA Astrophysics Data System (ADS)

    Pimienta-Penalver, Adonis Reinier

    A heliogyro solar sail concept, dubbed `HELIOS', is proposed as an alternative to deep space missions without the need for on-board propellant. Although this type of solar sail has existed in concept for several decades, and some previous studies have investigated certain aspects of its operation, a significant amount of research is still needed to analyze the dynamic and control characteristics of the structure under the projected range of orbital conditions. This work presents an improvement upon the existing discrete-mass models of the heliogyro blade, and the extension of its application from a single membrane blade to a fully-coupled approximation of the dynamics of the HELIOS system with multiple spinning membrane blades around a central hub. The incorporation of structural stiffness and external forcing effects into the model is demonstrated to add a further degree of fidelity in simulating the stability properties of the system. Additionally, the approximated dynamics of multiple-blade heliogyro structures are examined under the effect of solar radiation pressure. Lastly, this study evaluates a control algorithm at each blade root to impose structural integrity and attitude control by coordinating well-known helicopter blade pitching profiles.

  1. β-Cell Ca(2+) dynamics and function are compromised in aging.

    PubMed

    Barker, Christopher J; Li, Luosheng; Köhler, Martin; Berggren, Per-Olof

    2015-01-01

    Defects in pancreatic β-cell function and survival are key components in type 2 diabetes (T2D). An age-dependent deterioration in β-cell function has also been observed, but little is known about the molecular mechanisms behind this phenomenon. Our previous studies indicate that the regulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) may be critical and that this is dependent on the proper function of the mitochondria. The [Ca(2+)]i dynamics of the pancreatic β-cell are driven by an interplay between glucose-induced influx of extracellular Ca(2+) via voltage-dependent Ca(2+) channels and the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-mediated liberation of Ca(2+) from intracellular stores. Our previous work has indicated a direct relationship between disruption of Ins(1,4,5)P3-mediated Ca(2+) regulation and loss of β-cell function, including disturbed [Ca(2+)]i dynamics and compromised insulin secretion. To investigate these processes in aging we used three mouse models, a premature aging mitochondrial mutator mouse, a mature aging phenotype (C57BL/6) and an aging-resistant phenotype (129). Our data suggest that age-dependent impairment in mitochondrial function leads to modest changes in [Ca(2+)]i dynamics in mouse β-cells, particularly in the pattern of [Ca(2+)]i oscillations. These changes are driven by modifications in both PLC/Ins(1,4,5)P3-mediated Ca(2+) mobilization from intracellular stores and decreased β-cell Ca(2+) influx over the plasma membrane. Our findings underscore an important concept, namely that even relatively small, time-dependent changes in β-cell signal-transduction result in compromised insulin release and in a diabetic phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Conformational dynamics of minimal elastin-like polypeptides: the role of proline revealed by molecular dynamics and nuclear magnetic resonance.

    PubMed

    Glaves, Rachel; Baer, Marcel; Schreiner, Eduard; Stoll, Raphael; Marx, Dominik

    2008-12-22

    Previous molecular dynamics studies of the elastin-like peptide (ELP) GVG(VPGVG) predict that this ELP undergoes a conformational transition from an open to a more compact closed state upon an increase in temperature. These structural changes occurring in this minimal elastin model at the so-called inverse temperature transition (ITT), which takes place when elastin is heated to temperatures of about 20-40 (omicron)C, are investigated further in this work by means of a combined theoretical and experimental approach. To do this, additional extensive classical molecular dynamics (MD) simulations of the capped octapeptide are carried out, analyzed, and compared to data obtained from homonuclear magnetic resonance (NMR) spectroscopy of the same octapeptide. Moreover, in the previous simulations, the proline residue in the ELP is found to act as a hinge, thereby allowing for the large-amplitude opening and closing conformational motion of the ITT. To explore the role of proline in such elastin repeating units, a point mutant (P5I), which replaces the proline residue with an isoleucine residue, is also investigated using the aforementioned theoretical and experimental techniques. The results show that the site-directed mutation completely alters the properties of this ELP, thus confirming the importance of the highly conserved proline residue in the ITT. Furthermore, a correlation between the two different methods employed is seen. Both methods predict the mutant ELP to be present in an unstructured form and the wild type ELP to have a beta-turn-like structure. Finally, the role of the peptidyl cis to trans isomerization of the proline hinge is assessed in detail.

  3. Quadrupedal rodent gait compensations in a low dose monoiodoacetate model of osteoarthritis.

    PubMed

    Lakes, Emily H; Allen, Kyle D

    2018-06-01

    Rodent gait analysis provides robust, quantitative results for preclinical musculoskeletal and neurological models. In prior work, surgical models of osteoarthritis have been found to result in a hind limb shuffle-stepping gait compensation, while a high dose monoiodoacetate (MIA, 3 mg) model resulted in a hind limb antalgic gait. However, it is unknown whether the antalgic gait caused by MIA is associated with severity of degeneration from the high dosage or the whole-joint degeneration associated with glycolysis inhibition. This study evaluates rodent gait changes resulting from a low dose, 1 mg unilateral intra-articular injection of MIA compared to saline injected and naïve rats. Spatiotemporal and dynamic gait parameters were collected from a total of 42 male Lewis rats spread across 3 time points: 1, 2, and 4 weeks post-injection. To provide a detailed analysis of this low dose MIA model, gait analysis was used to uniquely quantify both fore and hind limb gait parameters. Our data indicate that 1 mg of MIA caused relatively minor degeneration and a shuffle-step gait compensation, similar to the compensation observed in prior surgical models. These data from a 1 mg MIA model show a different gait compensation compared to a previously studied 3 mg model. This 1 mg MIA model resulted in gait compensations more similar to a previously studied surgical model of osteoarthritis. Additionally, this study provides detailed 4 limb analysis of rodent gait that includes spatiotemporal and dynamic data from the same gait trial. These data highlight the importance of measuring dynamic data in combination with spatiotemporal data, since compensatory gait patterns may not be captured by spatial, temporal, or dynamic characterizations alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Chenciner bubbles and torus break-up in a periodically forced delay differential equation

    NASA Astrophysics Data System (ADS)

    Keane, A.; Krauskopf, B.

    2018-06-01

    We study a generic model for the interaction of negative delayed feedback and periodic forcing that was first introduced by Ghil et al (2008 Nonlinear Process. Geophys. 15 417–33) in the context of the El Niño Southern Oscillation climate system. This model takes the form of a delay differential equation and has been shown in previous work to be capable of producing complicated dynamics, which is organised by resonances between the external forcing and dynamics induced by feedback. For certain parameter values, we observe in simulations the sudden disappearance of (two-frequency dynamics on) tori. This can be explained by the folding of invariant tori and their associated resonance tongues. It is known that two smooth tori cannot simply meet and merge; they must actually break up in complicated bifurcation scenarios that are organised within so-called resonance bubbles first studied by Chenciner. We identify and analyse such a Chenciner bubble in order to understand the dynamics at folds of tori. We conduct a bifurcation analysis of the Chenciner bubble by means of continuation software and dedicated simulations, whereby some bifurcations involve tori and are detected in appropriate two-dimensional projections associated with Poincaré sections. We find close agreement between the observed bifurcation structure in the Chenciner bubble and a previously suggested theoretical picture. As far as we are aware, this is the first time the bifurcation structure associated with a Chenciner bubble has been analysed in a delay differential equation and, in fact, for a flow rather than an explicit map. Following our analysis, we briefly discuss the possible role of folding tori and Chenciner bubbles in the context of tipping.

  5. Dissipative dark matter and the rotation curves of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foot, R., E-mail: rfoot@unimelb.edu.au

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless 'dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interactionmore » facilitates halo heating by enabling ordinary supernovae to be a source of these 'dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or 'equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and H α fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.« less

  6. Income distribution patterns from a complete social security database

    NASA Astrophysics Data System (ADS)

    Derzsy, N.; Néda, Z.; Santos, M. A.

    2012-11-01

    We analyze the income distribution of employees for 9 consecutive years (2001-2009) using a complete social security database for an economically important district of Romania. The database contains detailed information on more than half million taxpayers, including their monthly salaries from all employers where they worked. Besides studying the characteristic distribution functions in the high and low/medium income limits, the database allows us a detailed dynamical study by following the time-evolution of the taxpayers income. To our knowledge, this is the first extensive study of this kind (a previous Japanese taxpayers survey was limited to two years). In the high income limit we prove once again the validity of Pareto’s law, obtaining a perfect scaling on four orders of magnitude in the rank for all the studied years. The obtained Pareto exponents are quite stable with values around α≈2.5, in spite of the fact that during this period the economy developed rapidly and also a financial-economic crisis hit Romania in 2007-2008. For the low and medium income category we confirmed the exponential-type income distribution. Following the income of employees in time, we have found that the top limit of the income distribution is a highly dynamical region with strong fluctuations in the rank. In this region, the observed dynamics is consistent with a multiplicative random growth hypothesis. Contrarily with previous results obtained for the Japanese employees, we find that the logarithmic growth-rate is not independent of the income.

  7. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.

  8. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.

  9. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  10. Meson properties in asymmetric matter

    NASA Astrophysics Data System (ADS)

    Mammarella, Andrea; Mannarelli, Massimo

    2018-03-01

    In this work we study dynamic and thermodynamic (at T = 0) properties of mesons in asymmetric matter in the framework of Chiral Perturbation Theory. We consider a system at vanishing temperature with nonzero isospin chemical potential and strangeness chemical potential; meson masses and mixing in the normal phase, the pion condensation phase and the kaon condensation phase are described. We find differences with previous works, but the results presented here are supported by both theory group analysis and by direct calculations. Some pion decay channels in the normal and the pion condensation phases are studied, finding a nonmonotonic behavior of the decay width as a function of µ I . Furthermore, pressure, density and equation of state of the system at T = 0 are studied, finding remarkable agreement with analogue studies performed by lattice calculations.

  11. Use of non-alpine anthropogenic habitats by American pikas (Ochotona princeps) in western Oregon, USA

    USGS Publications Warehouse

    Manning, Tom; Hagar, Joan C.

    2011-01-01

    The American pika (Ochotona princeps Richardson) has long been characterized in field guides and popular literature as an obligate inhabitant of alpine talus and as having relatively low dispersal capability. However, recent work reveals pikas to have broader habitat associations than previously reported. Over a large portion of the western slope of the Cascade Range in Oregon, pikas inhabit relatively low-elevation sites far from alpine areas and frequently occur in rocky man-made habitats such as roadcuts or rock quarries. We present observations of pikas in these previously overlooked habitats and discuss implications for (1) the proposed listing of the American pika as an endangered or threatened species; (2) furthering our understanding of pika population dynamics, habitat associations, and dispersal capabilites; and (3) management of federal, state, and private forest lands.

  12. Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Derlaga, Joseph M.; Morrison, Joseph H.

    2017-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  13. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  14. Mutation rate evolution in replicator dynamics.

    PubMed

    Allen, Benjamin; Rosenbloom, Daniel I Scholes

    2012-11-01

    The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.

  15. An Alternate Method for Estimating Dynamic Height from XBT Profiles Using Empirical Vertical Modes

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.

    1994-01-01

    A technique is presented that applies modal decomposition to estimate dynamic height (0-450 db) from Expendable BathyThermograph (XBT) temperature profiles. Salinity-Temperature-Depth (STD) data are used to establish empirical relationships between vertically integrated temperature profiles and empirical dynamic height modes. These are then applied to XBT data to estimate dynamic height. A standard error of 0.028 dynamic meters is obtained for the waters of the Gulf of Alaska- an ocean region subject to substantial freshwater buoyancy forcing and with a T-S relationship that has considerable scatter. The residual error is a substantial improvement relative to the conventional T-S correlation technique when applied to this region. Systematic errors between estimated and true dynamic height were evaluated. The 20-year-long time series at Ocean Station P (50 deg N, 145 deg W) indicated weak variations in the error interannually, but not seasonally. There were no evident systematic alongshore variations in the error in the ocean boundary current regime near the perimeter of the Alaska gyre. The results prove satisfactory for the purpose of this work, which is to generate dynamic height from XBT data for coanalysis with satellite altimeter data, given that the altimeter height precision is likewise on the order of 2-3 cm. While the technique has not been applied to other ocean regions where the T-S relation has less scatter, it is suggested that it could provide some improvement over previously applied methods, as well.

  16. Reciprocal relationship between proactive personality and work characteristics: a latent change score approach.

    PubMed

    Li, Wen-Dong; Fay, Doris; Frese, Michael; Harms, Peter D; Gao, Xiang Yu

    2014-09-01

    Previous proactivity research has predominantly assumed that proactive personality generates positive environmental changes in the workplace. Grounded in recent research on personality development from a broad interactionist theoretical approach, the present article investigates whether work characteristics, including job demands, job control, social support from supervisors and coworkers, and organizational constraints, change proactive personality over time and, more important, reciprocal relationships between proactive personality and work characteristics. Latent change score analyses based on longitudinal data collected in 3 waves across 3 years show that job demands and job control have positive lagged effects on increases in proactive personality. In addition, proactive personality exerts beneficial lagged effects on increases in job demands, job control, and supervisory support, and on decreases in organizational constraints. Dynamic reciprocal relationships are observed between proactive personality with job demands and job control. The revealed corresponsive change relationships between proactive personality and work characteristics contribute to the proactive personality literature by illuminating more nuanced interplays between the agentic person and work characteristics, and also have important practical implications for organizations and employees. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Real-time, ultrasound-based control of a virtual hand by a trans-radial amputee.

    PubMed

    Baker, Clayton A; Akhlaghi, Nima; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha

    2016-08-01

    Advancements in multiarticulate upper-limb prosthetics have outpaced the development of intuitive, non-invasive control mechanisms for implementing them. Surface electromyography is currently the most popular non-invasive control method, but presents a number of drawbacks including poor deep-muscle specificity. Previous research established the viability of ultrasound imaging as an alternative means of decoding movement intent, and demonstrated the ability to distinguish between complex grasps in able-bodied subjects via imaging of the anterior forearm musculature. In order to translate this work to clinical viability, able-bodied testing is insufficient. Amputation-induced changes in muscular geometry, dynamics, and imaging characteristics are all likely to influence the effectiveness of our existing techniques. In this work, we conducted preliminary trials with a transradial amputee participant to assess these effects, and potentially elucidate necessary refinements to our approach. Two trials were performed, the first using a set of three motion types, and the second using four. After a brief training period in each trial, the participant was able to control a virtual prosthetic hand in real-time; attempted grasps were successfully classified with a rate of 77% in trial 1, and 71% in trial 2. While the results are sub-optimal compared to our previous able-bodied testing, they are a promising step forward. More importantly, the data collected during these trials can provide valuable information for refining our image processing methods, especially via comparison to previously acquired data from able-bodied individuals. Ultimately, further work with amputees is a necessity for translation towards clinical application.

  18. Effect of retinal defocus on basketball free throw shooting performance.

    PubMed

    Bulson, Ryan C; Ciuffreda, Kenneth J; Hayes, John; Ludlam, Diana P

    2015-07-01

    Vision plays a critical role in athletic performance; however, previous studies have demonstrated that a variety of simulated athletic sensorimotor tasks can be surprisingly resilient to retinal defocus (blurred vision). The purpose of the present study was to extend this work to determine the effect of retinal defocus on overall basketball free throw performance, as well as for the factors gender, refractive error and experience. Forty-four young adult participants of both genders were recruited. They had a range of refractive errors and basketball experience. Each performed 20 standard basketball free throws under five lens defocus conditions in a randomised manner: plano, +1.50 D, +3.00 D, +4.50 D and +10.00 D. Overall, free throw performance was significantly reduced under the +10.00 D lens defocus condition only. Previous experience, but neither refractive error nor gender, yielded a statistically significant difference in performance. Consistent with previous studies of complex sensorimotor tasks, basketball free throw performance was resilient to low and moderate levels of retinal defocus. Thus, for a relatively non-dynamic motor task at a fixed far distance, such as the basketball free throw, precise visual clarity was not critical. Other factors such as motor memory may be important. However, in the dynamic athletic competitive environment it is likely that visual clarity plays a more critical role in one's performance level, at least for specific task demands. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  19. North Atlantic observations sharpen meridional overturning projections

    NASA Astrophysics Data System (ADS)

    Olson, R.; An, S.-I.; Fan, Y.; Evans, J. P.; Caesar, L.

    2018-06-01

    Atlantic Meridional Overturning Circulation (AMOC) projections are uncertain due to both model errors, as well as internal climate variability. An AMOC slowdown projected by many climate models is likely to have considerable effects on many aspects of global and North Atlantic climate. Previous studies to make probabilistic AMOC projections have broken new ground. However, they do not drift-correct or cross-validate the projections, and do not fully account for internal variability. Furthermore, they consider a limited subset of models, and ignore the skill of models at representing the temporal North Atlantic dynamics. We improve on previous work by applying Bayesian Model Averaging to weight 13 Coupled Model Intercomparison Project phase 5 models by their skill at modeling the AMOC strength, and its temporal dynamics, as approximated by the northern North-Atlantic temperature-based AMOC Index. We make drift-corrected projections accounting for structural model errors, and for the internal variability. Cross-validation experiments give approximately correct empirical coverage probabilities, which validates our method. Our results present more evidence that AMOC likely already started slowing down. While weighting considerably moderates and sharpens our projections, our results are at low end of previously published estimates. We project mean AMOC changes between periods 1960-1999 and 2060-2099 of -4.0 Sv and -6.8 Sv for RCP4.5 and RCP8.5 emissions scenarios respectively. The corresponding average 90% credible intervals for our weighted experiments are [-7.2, -1.2] and [-10.5, -3.7] Sv respectively for the two scenarios.

  20. Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements

    NASA Astrophysics Data System (ADS)

    Zander, C.; Plastino, A. R.; Díaz-Alonso, J.

    2015-11-01

    We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.

Top