Science.gov

Sample records for dynamics reflect influences

  1. Activity in the superior colliculus reflects dynamic interactions between voluntary and involuntary influences on orienting behaviour.

    PubMed

    Bell, Andrew H; Munoz, Douglas P

    2008-10-01

    Performance in a behavioural task can be influenced by both bottom-up and top-down processes such as stimulus modality and prior probability. Here, we exploited differences in behavioural strategy to explore the role of the intermediate and deep layers of the superior colliculus (dSC) in covert orienting. Two monkeys were trained on a predictive cued-saccade task in which the cue predicted the target's upcoming location with 80% validity. When the delay between cue and target onset was 250 ms, both monkeys showed faster responses to the uncued (Invalid) location. This was associated with a reduced target-aligned response in the dSC on Valid trials for both monkeys and is consistent with a bottom-up (i.e. involuntary) bias. When the delay was increased to 650 ms, one monkey continued to show faster responses to the Invalid location whereas the other monkey showed faster responses to the Valid location, consistent with a top-down (i.e. voluntary) bias. This latter behaviour was correlated with an increase in activity in dSC neurons preceding target onset that was absent in the other monkey. Thus, using the information provided by the cue shifted the emphasis towards top-down processing, while ignoring this information allowed bottom-up processing to continue to dominate. Regardless of the selected strategy, however, neurons in the dSC consistently reflected the current bias between the two processes, emphasizing its role in both the bottom-up and top-down control of orienting behaviour.

  2. Seasonal Dynamics of Hyperspectral Reflectance Patterns Influencing Detection of Imported Fire Ant (Hymenoptera: Formicidae) Mound Features in Turfgrass

    USDA-ARS?s Scientific Manuscript database

    Invasive mound-building imported fire ants impact soil quality and turfgrass nutrient management affecting an estimated 8.1 million hectares in sod production, recreational, and residential settings in the southeastern U.S. Reflectance characteristics of imported fire ant mound features (i.e., ant m...

  3. Influence of pollution on cloud reflectance

    NASA Astrophysics Data System (ADS)

    Krüger, Olaf; Marks, Roman; GraßL, Hartmut

    2004-12-01

    After the collapse of the East Bloc in 1989, the political and economic changes resulted in significant reductions of industrial activities and thus atmospheric pollution that modified cloud reflectance over and in the lee of the main European emission sources. This impact during a two-decade transition (1981-1999) of atmospheric pollution in Europe, in particular in East Germany and Poland, was studied on the basis of emission data, measured aerosol concentrations, and satellite observations of cloud reflectance. In these main European emission areas the high degree of air pollution generally enhanced variability of cloud reflectance during the 1980s. The variability was strongest for the early 1980s. A distinct influence of increased particle number density and increased black carbon content as well as secondary aerosol formation is detected. Toward the late 1990s, both the radius effect and the absorption effect, as the two components of the so-called first indirect aerosol effect, have declined because of reduced particulate matter and sulphur dioxide emissions. The results indicate a pronounced influence of stability on the indirect aerosol effect over Central Europe. The analyzed frequency distributions of cloud reflectance show characteristics that are in line with the theory of radiative transfer.

  4. Optical reflectance as a dynamic temperature diagnostic

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Seagle, Christopher; Ao, Tom

    2013-06-01

    Reliable temperature measurements of materials under dynamic compression remain elusive, especially in quasi-isentropic experiments. Optical pyrometry with nanosecond time resolution is essentially impossible for samples below 1000 K--not enough photons are emitted to make satisfactory measurements. Rather than relying on light emission from the sample, one can also infer temperature by the light reflected by the sample. Thermoreflectance measurements are a proven technique in static systems and can readily be applied to dynamic compression experiments. Gold is an ideal candidate for dynamic thermoreflectance measurements. Gold coatings rapidly equilibriate with their surroundings, acting as an embedded gauge that can be probed optically. The optical properties of gold vary in the visible spectrum, and these variations are known to change with temperature, so in principle one can infer temperature from time-resolved reflectivity measurements. Calibration is the largest barrier for using embedded gold gauges because both temperature and pressure contribute to the measurement. This presentation will discuss static and dynamic calibration efforts to establish gold as a dynamic thermoreflectance standard. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  5. Ultrafast reflectivity dynamics in the honeycomb iridates

    NASA Astrophysics Data System (ADS)

    Hinton, James; Patankar, Shreyas; Thewalt, Eric; Koralek, Jake; Ruiz, Alejandro; Lopez, Gilbert; Breznay, Nicholas; Analytis, James; Orenstein, Joseph

    2015-03-01

    The combination of strong spin orbit coupling and Mott physics in the iridium oxides produces a variety of interesting phenomena. In the A2IrO3 compounds, this is thought to give rise to spin-anisotropic magnetic interactions described by the Kitaev model. While Na2IrO3 displays simple zigzag antiferromagnetism, the complex, incommensurate spiral magnetic order observed in γ-Li2IrO3 suggests that Kitaev exchange is the dominant spin interaction in this system. In this work, we performed ultrafast pump-probe reflectivity measurements on single crystals of Na2IrO3 and γ-Li2IrO3 using nJ pulses at 1.5 eV photon energy. At high temperatures, we observe a reflectivity transient corresponding to electronic heating and excitation across the Mott gap which is isotropic with respect to probe polarization. In γ-Li2IrO3 , a small anisotropy emerges upon cooling close to the Neél transition at 38 K, followed by an abrupt onset of a long lived, highly anisotropic photo-induced increase in the reflectivity at TN. The temperature dependent dynamics of this signal indicate that it corresponds to non-thermal destruction of the magnetic order. Although similar reflectivity dynamics are observed at low temperature in Na2IrO3, there are no clear features related to the Neél transition at 16 K.

  6. A New Dynamical Reflection Algebra and Related Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Avan, Jean; Ragoucy, Eric

    2012-07-01

    We propose a new dynamical reflection algebra, distinct from the previous dynamical boundary algebra and semi-dynamical reflection algebra. The associated Yang-Baxter equations, coactions, fusions, and commuting traces are derived. Explicit examples are given and quantum integrable Hamiltonians are constructed. They exhibit features similar to the Ruijsenaars-Schneider Hamiltonians.

  7. Do writing and storytelling skill influence assessment of reflective ability in medical students' written reflections?

    PubMed

    Aronson, Louise; Niehaus, Brian; DeVries, Charlie D; Siegel, Jennifer R; O'Sullivan, Patricia S

    2010-10-01

    Increasingly, students are asked to write reflections as part of their medical education, but some question the influence of other factors on the evaluation of these reflections. In this pilot study, the investigators determined whether scores from a validated rubric to measure reflective ability were affected by irrelevant variance resulting from writing or storytelling ability. Students in clerkships wrote reflections on professionalism. All were given identical prompts, with half receiving additional structured guidelines on reflection. Sixty reflections, 30 from each group, were randomly chosen and scored for reflection, writing, and storytelling by trained raters using validated rubrics. There was no correlation between reflection and either writing (r = 0.049, P = .35) or storytelling (r = 0.14, P = .13). The guidelines increased reflection, but not writing or storytelling scores. Reflection is a distinct construct unaffected by learners' writing or storytelling skills. These findings support reflective ability as a distinct skill.

  8. Learning to Coach through Experience: Conditions that Influence Reflection

    ERIC Educational Resources Information Center

    Gilbert, Wade D.; Trudel, Pierre

    2005-01-01

    The goal of the present article is to describe conditions that influence coach reflection, and to provide suggestions for nurturing coach reflection. Coach reflection varies based on the interaction of four conditions: (a) peer access, (b) stage of learning, (c) issue characteristics, and (d) environment. Data are presented to support the four…

  9. Dynamic data driven bidirectional reflectance distribution function measurement system

    NASA Astrophysics Data System (ADS)

    Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.

    2014-09-01

    The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.

  10. Self-Reflections on Group Dynamics

    ERIC Educational Resources Information Center

    Torosyan, Roben

    2008-01-01

    This article provides a first-person account of a training program in group dynamics. It is deliberately written in the first-person to capture the highly personal nature of group dynamic analysis. Proceeding through an intensive account of six days of T-groups, module facilitation, and facilitator feedback sessions, the author examines painful…

  11. Reflections on fertility dynamics in Romania.

    PubMed

    Bratu, Eugenia Claudia; Minca, Dana Galieta

    2012-01-01

    Aims to highlight the changes occurred in the evolution of the fertility phenomenon in Romania, focusing on developments in the general fertility rate, total fertility rate, number of live births, and on the construction of specific indicators to reveal the source of demographic change. Several theories on the factors that may cause fertility decline it were outlined, underlining the presence of these factors during fertility dynamics in our country. After 1990, population decline may be explained by a close inter-relationship between economic theories (worsening economic conditions lead to decreased fertility) and the second demographic transition (postponement of births, fertility change model).

  12. Using reflection to influence practice: student perceptions of daily reflection in clinical education.

    PubMed

    Larsen, Douglas P; London, Daniel A; Emke, Amanda R

    2016-10-01

    Reflection is a key element in learning from experience, but the impact of most programmes of reflection on daily practice remains unclear. We investigated students' perceptions of adding a daily written reflection assignment to a clinical rotation. Third-year medical students on a single two-week rotation completed daily reflections analyzing their performance. Programme evaluation used a 33-question anonymized survey. Quantitative data were summarized and qualitative responses coded for recurring themes. Twenty-six students completed the survey (90 % response rate). Eighty-five percent of students felt that the daily reflections had a positive impact on their learning from clinical experience. Seventy-seven percent of students reported that the programme changed their awareness of their thoughts and actions, and 80 % felt that it improved their recall of experiences. A greater sense of mindfulness and focus on self-improvement were major themes that emerge from students' descriptions of the role of daily reflections in their learning. Overall, daily reflections demonstrated a positive learning influence. This exploratory study suggests students may benefit from more frequent, short reflections as opposed to more typically spaced reflective assignments.

  13. The Influence of Particle Size on Infrared Reflectance Spectra

    SciTech Connect

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Johnson, Timothy J.; Richardson, Robert L.

    2014-06-13

    Reflectance spectra of solids are influenced by the absorption coefficient as well as the particle size and morphology. In the infrared, spectral features may be observed as either maxima or minima: in general, the upward-going peaks in the reflectance spectrum result from surface scattering, which are rays that have reflected from the surface without penetration, whereas downward-going peaks result from either absorption or volume scattering, i.e. rays that have penetrated into the sample or refracted into the sample interior and are not reflected. The light signal reflected from solids usually encompasses all these effects which include dependencies on particle size, morphology and sample density. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. The bulk materials were ground with a mortar and pestle and then sieved to separate the samples into various size fractions: 0-45, 45-90, 90-180, 180-250, 250-500, and >500 microns. The directional-hemispherical spectra were recorded using a Fourier transform infrared spectrometer equipped with an integrating sphere to measure the reflectance for all of the particle-size fractions. We have studied both organic and inorganic materials, but this paper focuses on inorganic salts, NaNO3 in particular. Our studies clearly show that particle size has an enormous influence on the measured reflectance spectra for bulk materials and that successful identification requires sufficient representative reflectance data so as to include the particle size(s) of interest. Origins of the effects are discussed.

  14. Influencing and Facilitating Conditions for Developing Reflective Assessment Practice

    ERIC Educational Resources Information Center

    Rønsen, Anne Kristin; Smith, Kari

    2014-01-01

    By following a professional development project focusing on enhancing assessment competence amongst teachers, the current study examines how teachers use reflective writing and systematic discussions as tools for developing competence in assessment. More specifically, the article aims at identifying conditions that influence and facilitate…

  15. Influencing and Facilitating Conditions for Developing Reflective Assessment Practice

    ERIC Educational Resources Information Center

    Rønsen, Anne Kristin; Smith, Kari

    2014-01-01

    By following a professional development project focusing on enhancing assessment competence amongst teachers, the current study examines how teachers use reflective writing and systematic discussions as tools for developing competence in assessment. More specifically, the article aims at identifying conditions that influence and facilitate…

  16. Postmodern Influence in Family Therapy Research: Reflections of Graduate Students

    ERIC Educational Resources Information Center

    Hertlein, Katherine M.; Lambert-Shute, Jennifer; Benson, Kristen

    2004-01-01

    Postmodernism has influenced family therapy in significant ways, from clinical work to family therapy research. Little has been written, however, on how to conduct postmodern research in a manner reflecting marriage and family therapy inquiries. The present study seeks to investigate doctoral students understanding of postmodern family therapy…

  17. Postmodern Influence in Family Therapy Research: Reflections of Graduate Students

    ERIC Educational Resources Information Center

    Hertlein, Katherine M.; Lambert-Shute, Jennifer; Benson, Kristen

    2004-01-01

    Postmodernism has influenced family therapy in significant ways, from clinical work to family therapy research. Little has been written, however, on how to conduct postmodern research in a manner reflecting marriage and family therapy inquiries. The present study seeks to investigate doctoral students understanding of postmodern family therapy…

  18. Using Dynamic Software in Mathematics: The Case of Reflection Symmetry

    ERIC Educational Resources Information Center

    Tatar, Enver; Akkaya, Adnan; Kagizmanli, Türkan Berrin

    2014-01-01

    This study was carried out to examine the effects of computer-assisted instruction (CAI) using dynamic software on the achievement of students in mathematics in the topic of reflection symmetry. The study also aimed to ascertain the pre-service mathematics teachers' opinions on the use of CAI in mathematics lessons. In the study, a mixed research…

  19. Using Dynamic Software in Mathematics: The Case of Reflection Symmetry

    ERIC Educational Resources Information Center

    Tatar, Enver; Akkaya, Adnan; Kagizmanli, Türkan Berrin

    2014-01-01

    This study was carried out to examine the effects of computer-assisted instruction (CAI) using dynamic software on the achievement of students in mathematics in the topic of reflection symmetry. The study also aimed to ascertain the pre-service mathematics teachers' opinions on the use of CAI in mathematics lessons. In the study, a mixed research…

  20. Modeling ion channel dynamics through reflected stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Dangerfield, Ciara E.; Kay, David; Burrage, Kevin

    2012-05-01

    Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the “gold standard,” but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.

  1. Concert halls with strong lateral reflections enhance musical dynamics

    PubMed Central

    Pätynen, Jukka; Tervo, Sakari; Robinson, Philip W.; Lokki, Tapio

    2014-01-01

    One of the most thrilling cultural experiences is to hear live symphony-orchestra music build up from a whispering passage to a monumental fortissimo. The impact of such a crescendo has been thought to depend only on the musicians’ skill, but here we show that interactions between the concert-hall acoustics and listeners’ hearing also play a major role in musical dynamics. These interactions contribute to the shoebox-type concert hall’s established success, but little prior research has been devoted to dynamic expression in this three-part transmission chain as a complete system. More forceful orchestral playing disproportionately excites high frequency harmonics more than those near the note’s fundamental. This effect results in not only more sound energy, but also a different tone color. The concert hall transmits this sound, and the room geometry defines from which directions acoustic reflections arrive at the listener. Binaural directional hearing emphasizes high frequencies more when sound arrives from the sides of the head rather than from the median plane. Simultaneously, these same frequencies are emphasized by higher orchestral-playing dynamics. When the room geometry provides reflections from these directions, the perceived dynamic range is enhanced. Current room-acoustic evaluation methods assume linear behavior and thus neglect this effect. The hypothesis presented here is that the auditory excitation by reflections is emphasized with an orchestra forte most in concert halls with strong lateral reflections. The enhanced dynamic range provides an explanation for the success of rectangularly shaped concert-hall geometry. PMID:24591584

  2. Decision making in practice: influences, management and reflection.

    PubMed

    Ellis, Neil

    2017-01-26

    During placements, student nurses encounter a multitude of scenarios where decisions are made that influence patient outcomes. Many factors help support these decisions and this article will use a number of theories and models to analyse a clinical decision. It will critically discuss what influences health professionals' decision making and how they present treatment options to patients. The importance of reflection in decision making and its role in broadening students' knowledge on key nursing skills and best practice techniques in preparation for registered practice are also discussed.

  3. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    NASA Astrophysics Data System (ADS)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  4. Dynamical Outcomes of Quenching: Reflections on a Conical Intersection

    NASA Astrophysics Data System (ADS)

    Lehman, Julia H.; Lester, Marsha I.

    2014-04-01

    This review focuses on experimental studies of the dynamical outcomes following collisional quenching of electronically excited OH A2Σ+ radicals by molecular partners. The experimental observables include the branching between reactive and nonreactive decay channels, kinetic energy release, and quantum state distributions of the products. Complementary theoretical investigations reveal regions of strong nonadiabatic coupling, known as conical intersections, which facilitate the quenching process. The dynamical outcomes observed experimentally are connected to the local forces and geometric properties of the nuclei in the conical intersection region. Dynamical calculations for the benchmark OH-H2 system are in good accord with experimental observations, demonstrating that the outcomes reflect the strong coupling in the conical intersection region as the system evolves from the excited electronic state to quenched products.

  5. Dynamics of directional reflectance factor distributions for vegetation canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1983-01-01

    Directional reflectance factors that span the entire exitance hemisphere are collected on the ground for a variety of homogeneous vegetation canopies and bare soils. NOAA 6/7 AVHRR bands 1 (0.58-0.68 micron) and 2 (0.73-1.1 microns) are used. When possible, geometric measurements of leaf orientation distributions are taken simultaneously with each spectral measurement. Other supporting structural and optical measurements are made. These data sets are taken at various times of the day for each cover type. These unique sets, together with pertinent data in the literature, are used to investigate the dynamics of the directional reflectance factor distribution as a function of the geometric structure of the scene, solar zenith angle, and optical properties of the scene components (leaves and soil). For complete homogeneous vegetation canopies, the principal trend observed at all sun angles and spectral bands is a minimum reflectance near nadir and increasing reflectance with increasing off-nadir view angle for all azimuth directions.

  6. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    PubMed

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  7. Using dynamic software in mathematics: the case of reflection symmetry

    NASA Astrophysics Data System (ADS)

    Tatar, Enver; Akkaya, Adnan; Berrin Kağizmanli, Türkan

    2014-10-01

    This study was carried out to examine the effects of computer-assisted instruction (CAI) using dynamic software on the achievement of students in mathematics in the topic of reflection symmetry. The study also aimed to ascertain the pre-service mathematics teachers' opinions on the use of CAI in mathematics lessons. In the study, a mixed research method was used. The study group of this research consists of 30 pre-service mathematics teachers. The data collection tools used include a reflection knowledge test, a survey and observations. Based on the analysis of the data obtained from the study, the use of CAI had a positive effect on achievement in the topic of reflection symmetry of the pre-service mathematics teachers. The pre-service mathematics teachers were found to largely consider that a mathematics education which is carried out utilizing CAI will be more beneficial in terms of 'visualization', 'saving of time' and 'increasing interest/attention in the lesson'. In addition, it was found that the vast majority of them considered using computers in their teaching on the condition that the learning environment in which they would be operating has the appropriate technological equipment.

  8. Impact of inner-wall reflection on UV reactor performance as evaluated by using computational fluid dynamics: The role of diffuse reflection.

    PubMed

    Li, Wentao; Li, Mengkai; Bolton, James R; Qu, Jiuhui; Qiang, Zhimin

    2017-02-01

    Making use of the reflected ultraviolet (UV) radiation with a reflective inner wall is a promising way to improve UV reactor performance. In this study, the impact of inner-wall reflection on UV reactor performance was evaluated in annular single-lamp UV reactors by using computational fluid dynamics, with an emphasis on the role of diffuse reflection. The UV radiation inside the reactor chamber was simulated using a calibrated discrete ordinates radiation model, which has been proven to be a reliable tool for modeling fluence rate (FR) distributions in UV reactors with a reflective inner wall. The results show that UV reactors with a highly reflective inner wall (Reflectivity = 0.80) had obviously higher FRs and reduction equivalent fluences (REFs) than those with an ordinary inner wall (Reflectivity = 0.26). The inner-wall diffuse reflection further increased the reactor REF, as a result of the elevated volume-averaged FR. The FR distribution uniformity had conditioned contributions to UV reactor performance. Specifically, in UV reactors with a plug-like flow the FR distribution uniformity contributed to the REF to some extent, while in UV reactors with a mixed flow it had little influence on the REF. This study has evaluated, for the first time, the impact of inner-wall diffuse reflection on UV reactor performance and has renewed the understanding about the contribution of FR distribution uniformity to UV reactor performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dynamical simulation of sputtering and reflection from a ternary alloy

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Yamaguchi, Y.; Yoshinaga, H.; Yamamura, Y.

    The sputtering and the reflection from a Tb0.2Fe0.7Co0.1 alloy due to Ar+ ion bombardment have been investigated by the Monte Carlo simulation code ACAT-DIFFUSE which include the compositional change induced by ion influence. In the Tb-Fe-Co system, Fe atoms are preferentially sputtered. The atomic size of a Tb atom is the largest of these three atoms, and so Tb atoms trap preferentially in vacancies. The steady-state concentration of Tb atoms at the topmost layer is larger than the bulk concentration for the low energy ions due to radiation-induced segregation and preferential sputtering of Fe atoms. As the ion fluence increases, the atomic fractions of sputtered atoms calculated by the ACAT-DIFFUSE code become those of the bulk concentration. The depth profiles of each element at the steady state depend on the incident energy. The total sputtering yield and the reflection coefficient from a Tb-Fe-Co alloy calculated by the ACAT-DIFFUSE code are larger than those by the ACAT code at near-threshold energies, where the ACAT code does not include the ion-influence effect. The energy spectra of back-scattered Ar atoms from the present ternary alloy have very similar profiles to those from a monoatomic Tb target, especially for low-energy Ar+ ions.

  10. Influence Diagrams: Automated Analysis with Dynamic Programming

    DTIC Science & Technology

    1988-12-01

    demonstrating both the efficiency of the dynamic programming features and the limitations of influence diagrams in modeling problems with significant...Introduction 1.1 General Background Influence diagrams are a -eccntly developed graphical modeling tool for repre- senting both the conceptual elements and the...the model [9:10]. The types of node included in basic influence diagrams are (see Figure 1): Chance Node The chance node represents a random variable

  11. Using Network Dynamical Influence to Drive Consensus

    PubMed Central

    Punzo, Giuliano; Young, George F.; Macdonald, Malcolm; Leonard, Naomi E.

    2016-01-01

    Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks. PMID:27210291

  12. Using Network Dynamical Influence to Drive Consensus

    NASA Astrophysics Data System (ADS)

    Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.

    2016-05-01

    Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.

  13. Influence of Interlocutor/Reader on Utterance in Reflective Writing and Interview

    ERIC Educational Resources Information Center

    Collyer, Vivian M.

    2010-01-01

    The influence of the Other on utterance is foundational to language study. This analysis contrasts this influence within two modes of communication: reflective writing and interview. The data source is derived from the reflective writings and interview transcripts of a twelfth-grade physics student. In this student's case, reflective writing…

  14. Influence of Interlocutor/Reader on Utterance in Reflective Writing and Interview

    ERIC Educational Resources Information Center

    Collyer, Vivian M.

    2010-01-01

    The influence of the Other on utterance is foundational to language study. This analysis contrasts this influence within two modes of communication: reflective writing and interview. The data source is derived from the reflective writings and interview transcripts of a twelfth-grade physics student. In this student's case, reflective writing…

  15. Total internal reflection and dynamic light scattering microscopy of gels

    NASA Astrophysics Data System (ADS)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  16. Cenozoic climate change influences mammalian evolutionary dynamics

    PubMed Central

    Figueirido, Borja; Janis, Christine M.; Pérez-Claros, Juan A.; De Renzi, Miquel; Palmqvist, Paul

    2012-01-01

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ18O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic. PMID:22203974

  17. Cenozoic climate change influences mammalian evolutionary dynamics.

    PubMed

    Figueirido, Borja; Janis, Christine M; Pérez-Claros, Juan A; De Renzi, Miquel; Palmqvist, Paul

    2012-01-17

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ(18)O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic.

  18. Reflecting boundary conditions for classical molecular dynamics simulations of nonideal plasmas

    NASA Astrophysics Data System (ADS)

    Lavrinenko, Ya S.; Morozov, I. V.; Valuev, I. A.

    2016-11-01

    The influence of boundary conditions on results of the classical molecular dynamics simulations of nonideal electron-ion plasma is analyzed. A comprehensive study is performed for the convergence of per-particle potential energy and pressure with the number of particles using both the nearest image method (periodic boundaries) and harmonic reflective boundaries. As a result an error caused by finiteness of the simulation box is estimated. Moreover the electron oscillations given by the spectra of the current autocorrelation function are analyzed for both types of the boundary conditions. Nonideal plasmas with the nonideality parameter in range 0.26-2.6 is considered. To speed up the classical molecular dynamics simulations the graphics accelerators code is used.

  19. Pallidal spiking activity reflects learning dynamics and predicts performance

    PubMed Central

    Noblejas, Maria Imelda; Mizrahi, Aviv D.; Dauber, Omer; Bergman, Hagai

    2016-01-01

    The basal ganglia (BG) network has been divided into interacting actor and critic components, modulating the probabilities of different state–action combinations through learning. Most models of learning and decision making in the BG focus on the roles of the striatum and its dopaminergic inputs, commonly overlooking the complexities and interactions of BG downstream nuclei. In this study, we aimed to reveal the learning-related activity of the external segment of the globus pallidus (GPe), a downstream structure whose computational role has remained relatively unexplored. Recording from monkeys engaged in a deterministic three-choice reversal learning task, we found that changes in GPe discharge rates predicted subsequent behavioral shifts on a trial-by-trial basis. Furthermore, the activity following the shift encoded whether it resulted in reward or not. The frequent changes in stimulus–outcome contingencies (i.e., reversals) allowed us to examine the learning-related neural activity and show that GPe discharge rates closely matched across-trial learning dynamics. Additionally, firing rates exhibited a linear decrease in sequences of correct responses, possibly reflecting a gradual shift from goal-directed execution to automaticity. Thus, modulations in GPe spiking activity are highest for attention-demanding aspects of behavior (i.e., switching choices) and decrease as attentional demands decline (i.e., as performance becomes automatic). These findings are contrasted with results from striatal tonically active neurons, which show none of these task-related modulations. Our results demonstrate that GPe, commonly studied in motor contexts, takes part in cognitive functions, in which movement plays a marginal role. PMID:27671661

  20. Influence of refractive index matching on the photon diffuse reflectance.

    PubMed

    Churmakov, D Y; Meglinski, I V; Greenhalgh, D A

    2002-12-07

    Photon migration in a randomly inhomogeneous, highly scattering and absorbing semi-infinite medium with a plane boundary is considered by a Monte Carlo (MC) technique. The employed MC technique combines the statistical weight scheme and real photon paths simulation, allowing the exclusion of the energy conservation problem. The internal reflection of the scattered radiation on the medium interface is taken into account by allowing the trajectories of photon packets to be split into reflected and transmitted parts. The spatial photon sensitivity profile (SPSP), spatially resolved diffuse reflectance and angular and spatial photon detector weight distributions are considered in terms of Fresnel's reflection/refraction on the boundary of the medium. The effect of the refractive index match is predicted correctly by the MC method and by the diffusion approximation. The results demonstrate that matching of the refractive index of the medium significantly improves the contrast and spatial resolution of the spatial photon sensitivity profile (SPSP). The results of simulation of the spatially resolved diffuse reflectance agree well with the results predicted by the diffusion approximation and the experimental results reported earlier.

  1. The Mirror Reflects both Ways: Action Influences Perception of Others

    ERIC Educational Resources Information Center

    Blaesi, Sabine; Wilson, Margaret

    2010-01-01

    Substantial evidence links perception of others' bodies and mental representation of the observer's own body; however, the overwhelming majority of this evidence is unidirectional, showing influence from perception to action. It has been proposed that the influence also runs from action to perception, but to date the evidence is scant. Here we…

  2. The Mirror Reflects both Ways: Action Influences Perception of Others

    ERIC Educational Resources Information Center

    Blaesi, Sabine; Wilson, Margaret

    2010-01-01

    Substantial evidence links perception of others' bodies and mental representation of the observer's own body; however, the overwhelming majority of this evidence is unidirectional, showing influence from perception to action. It has been proposed that the influence also runs from action to perception, but to date the evidence is scant. Here we…

  3. Repecharge, Reflection, and Brain Processing: Personality Influence in the Classroom.

    ERIC Educational Resources Information Center

    Alcock, Martha Wilson

    1998-01-01

    Everyone appreciates a second chance. Effective teachers realize the value of a second chance when initial strategies fail to elicit optimal learning. Repecharge has a special effect on extroverted students, who frequently blurt out inappropriate responses. Reflective, introvertive students also appreciate the opportunity for later comments. Links…

  4. Fostering an Action-Reflection Dynamic amongst Student Practitioners

    ERIC Educational Resources Information Center

    Francis, Helen; Cowan, John

    2008-01-01

    Purpose: This paper seeks to explore changes taking place in a curriculum design for postgraduate teaching in personnel and development, aimed at enhancing lifelong learning. A scheme is described which aims to improve the alignment for professional development of students, in ways that facilitate critically reflective practice.…

  5. Fostering an Action-Reflection Dynamic amongst Student Practitioners

    ERIC Educational Resources Information Center

    Francis, Helen; Cowan, John

    2008-01-01

    Purpose: This paper seeks to explore changes taking place in a curriculum design for postgraduate teaching in personnel and development, aimed at enhancing lifelong learning. A scheme is described which aims to improve the alignment for professional development of students, in ways that facilitate critically reflective practice.…

  6. Counterfactual and Factual Reflection: The Influence of Past Misdeeds on Future Immoral Behavior.

    PubMed

    Gaspar, Joseph P; Seabright, Mark A; Reynolds, Scott J; Yam, Kai Chi

    2015-01-01

    Though the decision to behave immorally is situated within the context of prior immoral behavior, research has provided contradictory insights into this process. In a series of experiments, we demonstrate that the effects of prior immoral behavior depend on how individuals think about, or reflect on, their immoral behavior. In Experiment 1, participants who reflected counterfactually on their prior moral lapses morally disengaged (i.e., rationalized) less than participants who reflected factually. In Experiment 2, participants who reflected counterfactually on their prior moral lapses experienced more guilt than those who reflected factually. Finally, in Experiments 3 and 4, participants who reflected counterfactually lied less on unrelated tasks with real monetary stakes than those who reflected factually. Our studies provide important insights into moral rationalization and moral compensation processes and demonstrate the profound influence of reflection in everyday moral life.

  7. Trophic dynamics influence climate at high latitudes

    NASA Astrophysics Data System (ADS)

    Oksanen, L.; Tuomi, M.; Hoset, K.; Oksanen, T.; Olofsson, J.; Dahlgren, J.; Nordic Center of Excellence-Tundra

    2011-12-01

    Abundance relationships between tall woody plants and low herbaceous plants influence ground albedo. Increasing abundance of erect woody plants on the tundra increase the amount of solar energy converted to heat, thus speeding up global warming. By transplanting vegetation blocks from an island with predatory mammals and gray-sided voles (Myodes rufocanus) to similar habitats on islands with gray-sided voles but no resident predators and to islands with neither voles nor predators, we show that changing trophic dynamics radically change the abundance relationships between woody and herbaceous plants. Impacts of food limited gray-sided voles result to devastation of all erect woody plants, regardless of their palatability, thus differing both quantitatively and qualitatively from the selective impacts of the same species in the presence of predators. The shift from vegetation dominated by erect woody plants to vegetation dominated by herbs or trailing dwarf shrubs also increases ground albedo. The relationship between climate and trophic dynamics is thus no one way street. Rather than responding passively to changes in climate, food webs can also influence climate via their impacts on ground albedo.

  8. Soybean canopy reflectance as influenced by cultural practices. [West Lafayette, Indiana

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Kollenkark, J. C.; Daughtry, C. S. T.

    1981-01-01

    Experiments were conducted at West Lafayette, Indiana in 1978 and 1979 to study the reflectance factor of soybean canopies as affected by differences in row width, population, planting date, cultivar and soil type. Reflectance factor data were acquired throughout the growing season with a LANDSAT-band radiometer. Agronomic data included plant height, leaf area index, development stage, total fresh and dry biomass, percent soil cover, and grain yield. The results indicate that row width, planting date, and cultivar influence the percent soil cover, leaf area index, and biomass present, which are in turn related to the multispectral reflectance. Additionally, the reflectance data were quite sensitive to the onset of senescence. Soil color and moisture were found to be important factors influencing the reflectance in single LANDSAT bands, but the near infrared/red reflectance ratio and the greeness transformation were less sensitive than the single bands to the soil background present.

  9. Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors.

    PubMed

    Serdyukov, V I; Sinitsa, L N; Lugovskoi, A A

    2016-06-10

    The influence of water vapor on the reflection coefficient of multilayer mirrors was studied using a gas cell with multiple reflections from the mirrors. A strong change in the reflection coefficient of the mirrors (up to 0.9%) was found when water vapor under a pressure of 23 mbar was injected into the cell, which was interpreted as a change in the refraction index of the layers of multilayer coatings when water vapor penetrated into the porous coating structure.

  10. Teacher Reflection in a Hall of Mirrors: Historical Influences and Political Reverberations.

    ERIC Educational Resources Information Center

    Fendler, Lynn

    2003-01-01

    Traces the history of reflection in teacher education, focusing on its emergence through the influences of Descartes, Dewey, Schon, and feminism. Uses the critical lenses of Foucaultian genealogy and the sociology of scientific knowledge to investigate how the complicated meanings of reflection play out in complex ways through research practice.…

  11. Teacher Reflection in a Hall of Mirrors: Historical Influences and Political Reverberations.

    ERIC Educational Resources Information Center

    Fendler, Lynn

    2003-01-01

    Traces the history of reflection in teacher education, focusing on its emergence through the influences of Descartes, Dewey, Schon, and feminism. Uses the critical lenses of Foucaultian genealogy and the sociology of scientific knowledge to investigate how the complicated meanings of reflection play out in complex ways through research practice.…

  12. A study on the influence of reflected arc light on vision sensors for welding automation

    SciTech Connect

    Lee, C.W.; Na, S.J.

    1996-12-01

    Vision sensors using optical triangulation have been widely sued for automatic welding systems in various ways. Their reliability is, however, seriously influenced by the arc light reflected from the base metal surface. In this study, the reliability of vision sensors was analyzed for the variation of the arc noise by considering the reflectance of the base metal surface. The property of the surface reflection of the base metal was modeled using the bidirectional reflectance-distribution function (BRDF), and then the intensity variation of the reflected arc was formulated for various configurations of the torch, base metal and sensor. The experimental data of the arc light reflection were obtained for two materials, mild steel and stainless steel, each having different surface reflection characteristics. It was found that the results calculated from the proposed model were in good agreement with the experimental data.

  13. [Measurement and analysis of reflected information from crops canopy suffering from wind disaster influence].

    PubMed

    Bao, Yu-Long; Zhang, Ji-Quan; Liu, Xiao-Jing; Wang, Yong-Fang; Ma, Dong-Lai; Sun, Zhong-Qiu

    2013-04-01

    The corn in the grain filling stage fell over in the central region of Jilin province by the Typhoon Bolaven influence. In order to determine the impact of falling over corn canopy on the reflected information, the hyperspectral reflectance was detected at different viewing zenith angles, at the same time, the polarized reflection was also measured. The results from the analysis by combining the reflection and polarization from corn canopy showed that the reflection of falling over corn is low in visible, while increases in the near infrared wavelength. The reflection from falling over corn canopy was more anisotropic than stand-up corn canopy. The reflected light was highly polarized, the polarization of corn canopy provided the probability for distinguishing between falling over corn and stand-up corn. This research provides a basis for estimating the disaster area and lost units.

  14. Dynamic updating of hippocampal object representations reflects new conceptual knowledge.

    PubMed

    Mack, Michael L; Love, Bradley C; Preston, Alison R

    2016-11-15

    Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal.

  15. Dynamic updating of hippocampal object representations reflects new conceptual knowledge

    PubMed Central

    Mack, Michael L.; Love, Bradley C.; Preston, Alison R.

    2016-01-01

    Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal. PMID:27803320

  16. Influence of interlocutor/reader on utterance in reflective writing and interview

    NASA Astrophysics Data System (ADS)

    Collyer, Vivian M.

    2010-03-01

    The influence of the Other on utterance is foundational to language study. This analysis contrasts this influence within two modes of communication: reflective writing and interview. The data source is derived from the reflective writings and interview transcripts of a twelfth-grade physics student. In this student's case, reflective writing includes extensive utterances, utilizing rhetorical devices to persuade and reconcile with his reader. In the interview, on-going back-and-forth utterances allow the two participants to negotiate a co-constructed meaning for religion. Implications for the classroom are briefly discussed.

  17. Molecular Dynamics Simulation of Reflected Gas Molecules on Water Adsorbed Surface

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideki; Yamamoto, Kyoji; Hyakutake, Toru

    2008-12-01

    The Couette flow of a rarefied argon gas between two platinum walls is considered to investigate the characteristics of the reflected gas molecule at a physically adsorbed surface by H2O molecules. The analysis is based on the molecular dynamics (MD) method for the interaction of gas molecules with the wall surface together with the direct simulation Monte-Carlo (DSMC) method for the motion of gas molecule. The accommodation coefficients are obtained. The flow velocity distribution between two walls and the velocity distribution function of the reflected molecule are also obtained. It is found that the Maxwell type reflection condition describes the distribution function of the reflected molecules well.

  18. The influence of early reflections on the identification and lateralization of vowels.

    PubMed

    Watkins, A J

    1999-11-01

    Sound coming directly from a source is often accompanied by reflections arriving from different directions. However, the "precedence effect" occurs when listeners judge such a source's direction: information in the direct, first-arriving sound tends to govern the direction heard for the overall sound. This paper asks whether the spectral envelope of the direct sound has a similar, dominant influence on the spectral envelope perceived for the whole sound. A continuum between two vowels was produced and then a "two-part" filter distorted each step. The beginning of this filter's unit-sample response simulated a direct sound with no distortion of the spectral envelope. The second part simulated a reflection pattern that distorted the spectral envelope. The reflections' frequency response was designed to give the spectral envelope of one of the continuum's end-points to the other end-point. Listeners' identifications showed that the reflections in two-part filters had a substantial influence because sounds tended to be identified as the positive vowel of the reflection pattern. This effect was not reduced when the interaural delays of the reflections and the direct sound were substantially different. Also, when the reflections were caused to precede the direct sound, the effects were much the same. By contrast, in measurements of lateralization the precedence effect was obtained. Here, the lateral position of the whole sound was largely governed by the interaural delay of the direct sound, and was hardly affected by the interaural delay of the reflections.

  19. Analysis of the Thermo-Reflectivity Coefficient Influence Using Photothermal Pump-Probe Techniques.

    PubMed

    Zanuto, Vitor S; Capeloto, Otávio A; Sandrini, Marcelo; Malacarne, Luis C; Astrath, Nelson G C; Bialkowski, Stephen E

    2016-11-18

    Recent improvements in the modeling of photo-induced thermo-optical-mechanical effects have broadened the application of photothermal techniques to a large class of solids and fluids. During laser excitation, changes in optical reflectivity due to temperature variation may affect the photothermal signal. In this study, the influence of the reflectivity change due to heating is analyzed for two pump-probe photothermal techniques, thermal lens and thermal mirror. A linear equation for the temperature dependence of the reflectivity is derived, and the solution is tested using optical properties of semi-transparent and opaque materials. For semi-transparent materials, the influence of the reflectivity change in photothermal signals is less than 0.01%, while for opaque materials it is lower than 3%.

  20. Influence of ionization on reflection of solitary waves in a magnetized plasma

    SciTech Connect

    Jyoti,; Malik, Hitendra K.; Kumar, Ravinder; Dahiya, Raj P.

    2013-09-15

    The reflection of nonlinear solitary waves is studied in a nonuniform, magnetized plasma diffusing from an ionization source along the magnetic field lines. Contribution of the ionization term is included in the continuity equation. The behavior of solitary waves is governed by modified form of Korteweg–de Vries equation (called mKdV equation). In order to investigate the reflection of solitary waves, the mKdV equations for the right and left going waves are derived, and solved by finding new transformations coupled at the point of reflection, for obtaining the expression of reflection coefficient. Contrary to the case of usual inhomogeneous plasma, the present analysis shows that a combination of usual sech{sup 2} structure and tanh structure (called the tail of soliton) arises due to the influence of ionization term. Interestingly, this tailing structure disappears after the reflection of the soliton and hence, the soliton is downshifted prominently.

  1. Texture profile and aspect ratio influence on the front reflectance of solar cells

    NASA Astrophysics Data System (ADS)

    Llopis, Francisco; Tobías, Ignacio

    2006-12-01

    Diffraction gratings and reactive ion etching textures have been proposed as a way to enhance the optical performance of solar cells. Extensive calculations have been carried out to investigate the influence of depth-to-period ratio of triangular and rectangular gratings on front reflectance. Losses are quantified by means of the reduction of short-circuit current due to reflection. It is concluded that gratings with triangular profile can feature very low reflectance when the depth-to-period ratio is very large. If periods are very small compared to light wavelength, however, light does not become tilted and other means to confine it in the cell must be additionally engineered.

  2. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  3. Probing carrier dynamics of individual layers in a heterostructure using transient reflectivity

    SciTech Connect

    Khan, Salahuddin; Jayabalan, J. Singh, Asha; Yogi, Rachana; Chari, Rama

    2015-09-21

    We report the wavelength dependent transient reflectivity measurements in AlGaAs-GaAs heterostructures having two-dimensional electron (or hole) gas near the interface. Using a multilayer model for transient reflectivity, we show that the magnitude and sign of contributions from the carriers in two-dimensional electron (or hole) gas and GaAs to the total signal depends on the wavelength. Further, it has been shown that it is possible to study the carrier dynamics in a given layer of a heterostructure by performing transient reflectivity at specific wavelengths.

  4. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    PubMed

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed.

  5. Directed dynamical influence is more detectable with noise

    NASA Astrophysics Data System (ADS)

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-04-01

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

  6. Directed dynamical influence is more detectable with noise

    PubMed Central

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-01-01

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence. PMID:27066763

  7. Influence of Cultural Norms and Collaborative Discussions on Children's Reflective Essays

    ERIC Educational Resources Information Center

    Kim, Il-Hee; Anderson, Richard C.; Miller, Brian; Jeong, Jongseong; Swim, Terri

    2011-01-01

    This study investigated the influence of culture and discussion participation on rhetorical patterns in the reflective essays of 238 Korean and 196 American 4th-graders. Results showed significant differences between Korean children's essays and American children's essays in types of reasons, uses of argument elements, and uses of rhetorical…

  8. An Evaluation of the Influence of Case Method Instruction on the Reflective Thinking of MSW Students

    ERIC Educational Resources Information Center

    Milner, Marleen

    2009-01-01

    Social work practice requires that graduates be prepared to deal with complex, multifaceted problems which cannot be defined completely, do not have absolute, correct answers and can be approached from multiple perspectives. This study evaluated the influence of case-based instruction on MSW students' reflective judgment, an aspect of critical…

  9. Influence of Cultural Norms and Collaborative Discussions on Children's Reflective Essays

    ERIC Educational Resources Information Center

    Kim, Il-Hee; Anderson, Richard C.; Miller, Brian; Jeong, Jongseong; Swim, Terri

    2011-01-01

    This study investigated the influence of culture and discussion participation on rhetorical patterns in the reflective essays of 238 Korean and 196 American 4th-graders. Results showed significant differences between Korean children's essays and American children's essays in types of reasons, uses of argument elements, and uses of rhetorical…

  10. The influence of inhomogeneity of the reflectivity distribution on the accuracy of its measurement

    NASA Technical Reports Server (NTRS)

    Salman, Y. M.

    1975-01-01

    The influence of pulse volume dimensions on the accuracy of reflectivity from various clouds is considered. It is shown that due to the spatial averaging and the inhomogeneities of the clouds, the dependence frequently breaks down, which is a cause of lower values of the spatial distribution estimate. Values of the corrections calculated for various conditions are presented.

  11. The Influence of Reflection on Employee Psychological Empowerment: Report of an Exploratory Workplace Field Study

    ERIC Educational Resources Information Center

    Cyboran, Vincent L.

    2005-01-01

    The study examined the influences of reflection on the self-perception of empowerment in the workplace. The convenience sample consisted of non-management knowledge workers at a software company headquartered in the United States. A pretest, posttest control group design was used. The experimental group kept guided journals of their learning…

  12. Dynamic reflectance of tin shocked from its beta to BCT phase

    NASA Astrophysics Data System (ADS)

    Stevens, Gerald D.; Lone, Brandon M. La; Turley, W. Dale; Veeser, Lynn R.

    2017-01-01

    Shock-induced phase transitions have historically been inferred by features in loading/unloading velocity wave profiles, which arise due to volume or sound speed differences between phases. In 2010, we used a flash-lamp-illuminated multiband reflectometer to demonstrate that iron, tin, cerium, and gallium have measureable reflectance changes at phase boundaries. We have improved upon our prior technique, utilizing an integrating sphere with an internal xenon flash lamp to illuminate a shocked metal beneath a LiF window. The new reflectance system is insensitive to motion, tilt, or curvature and measures the absolute reflectance within five bands centered at 500, 700, 850, 1064, 1300, and 1550 nm. We have made dynamic reflectance measurements of tin samples shocked to pressures above and below the β-BCT phase transition using a light gas gun. Below the transition, the visible reflectance decreases with pressure. At and above the transition, the visible reflectance increases to values higher than the ambient values. Reflectance can therefore be used to locate the β-BCT phase transition boundary for tin, independent of the velocity wave profile. Using the reflectance data, we also present experimental estimates of the phase fraction as a function of shock stress.

  13. The Influence of Collaborative Reflection and Think-Aloud Protocols on Pre-Service Teachers' Reflection: A Mixed Methods Approach

    ERIC Educational Resources Information Center

    Epler, Cory M.; Drape, Tiffany A.; Broyles, Thomas W.; Rudd, Rick D.

    2013-01-01

    The purpose of this mixed methods study was to determine if there are differences in pre-service teachers' depth of reflection when using a written self-reflection form, a written self-reflection form and a think-aloud protocol, and collaborative reflection. Twenty-six pre-service teachers were randomly assigned to fourteen teaching teams. The…

  14. Opinion dynamics model with weighted influence: Exit probability and dynamics

    NASA Astrophysics Data System (ADS)

    Biswas, Soham; Sinha, Suman; Sen, Parongama

    2013-08-01

    We introduce a stochastic model of binary opinion dynamics in which the opinions are determined by the size of the neighboring domains. The exit probability here shows a step function behavior, indicating the existence of a separatrix distinguishing two different regions of basin of attraction. This behavior, in one dimension, is in contrast to other well known opinion dynamics models where no such behavior has been observed so far. The coarsening study of the model also yields novel exponent values. A lower value of persistence exponent is obtained in the present model, which involves stochastic dynamics, when compared to that in a similar type of model with deterministic dynamics. This apparently counterintuitive result is justified using further analysis. Based on these results, it is concluded that the proposed model belongs to a unique dynamical class.

  15. Ion Dynamics at Shocks: Ion Reflection and Beam Formation at Quasi-perpendicular Shocks

    SciTech Connect

    Kucharek, Harald; Moebius, Eberhard

    2005-08-01

    The physics of collisionless shocks is controlled by the ion dynamics. The generation of gyrating ions by reflection as well as the formation of field-aligned ion beams are essential parts of this dynamic. On the one hand reflection is most likely the first interaction of ions with the shock before they undergo the downstream thermalization process. On the other hand field-aligned ion beams, predominately found at the quasi-perpendicular bow shock, propagate into the distant foreshock region and may create wave activity. We revisit ion reflection, the source and basic production mechanism of field-aligned ion beams, by using multi-spacecraft measurements and contrast these observations with existing theories. Finally, we propose an alternative production mechanism.

  16. A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Wei, Jing; Wang, Jian; Mi, Xueting; Guo, Yamin; Lv, Yang; Yang, Yikun; Gan, Ping; Zhou, Xueying; Jia, Chen; Tian, Xinpeng

    2016-06-01

    Conventional cloud detection methods are easily affected by mixed pixels, complex surface structures, and atmospheric factors, resulting in poor cloud detection results. To minimize these problems, a new Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a priori surface reflectance database is proposed in this paper. A monthly surface reflectance database is constructed using long-time-sequenced MODerate resolution Imaging Spectroradiometer surface reflectance product (MOD09A1) to provide the surface reflectance of the underlying surfaces. The relationships between the apparent reflectance changes and the surface reflectance are simulated under different observation and atmospheric conditions with the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) model, and the dynamic threshold cloud detection models are developed. Two typical remote sensing data with important application significance and different sensor parameters, MODIS and Landsat 8, are selected for cloud detection experiments. The results were validated against the visual interpretation of clouds and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation cloud measurements. The results showed that the UDTCDA can obtain a high precision in cloud detection, correctly identifying cloudy pixels and clear-sky pixels at rates greater than 80% with error rate and missing rate of less than 20%. The UDTCDA cloud product overall shows less estimation uncertainty than the current MODIS cloud mask products. Moreover, the UDTCDA can effectively reduce the effects of atmospheric factors and mixed pixels and can be applied to different satellite sensors to realize long-term, large-scale cloud detection operations.

  17. Dynamics and control of flexible spinning solar sails under reflectivity modulation

    NASA Astrophysics Data System (ADS)

    Mu, Junshan; Gong, Shengping; Ma, Pengbin; Li, Junfeng

    2015-10-01

    Electrochromic devices have been used for the attitude control of a spinning solar sail in a deep space mission by modulating the reflectivity of the sail membrane. As a flexible spinning solar sail has no rigid structure to support its membrane, the distributed load due to solar radiation will lead to the deformation of the sail membrane, and the control torque generated by reflectivity modulation can introduce oscillatory motion to the membrane. By contrast, the deformation and oscillatory motion of the sail membrane have an impact on the performance of the reflectivity control. This paper investigates the dynamics and control of flexible spinning solar sails under reflectivity modulation. The static deformation of a spinning sail membrane subjected to solar radiation pressure in an equilibrium state is analyzed. The von Karman theory is used to obtain the displacements and the stress distribution in the equilibrium states. A simplified analytical first-order mode is chosen to model the membrane oscillation. The coupled membrane oscillation-attitude-orbit dynamics are considered for a GeoSail formation flying mission. The relative attitude and orbit control of flexible spinning solar sails under reflectivity modulation are numerically tested. The simulations indicate that the membrane deformation and oscillation have a lower impact on the control of the reflectivity modulated sails than the increase of the spinning rate.

  18. The influence of technology on reflective learning in dental hygiene education.

    PubMed

    Hanson, Kami; Alexander, Susan

    2010-06-01

    The role of reflection in the learning process is essential to drive a meaningful experience for the student. Educators have recognized this concept and continue to research the impact of reflection on learning. The purpose of this research project was to investigate the level of reflection that takes place when students use two different types of media for reflective journaling: hard copy vs. electronic. Journal data, both hard copy and electronic, were gathered from groups of university dental hygiene students. As part of regular course requirements, students were assigned to maintain a reflective journal regarding their clinical experiences. Written data were evaluated using a rubric and coding scheme to determine the levels of reflective thinking evidenced in student journals for both media. Researchers applied qualitative methods to analyze the textual content and/or discourse using a constant comparative, "counting and coding" approach. Results were analyzed and presented as comparisons of descriptive statistics between student group and with qualitative discourse. The evidence suggests that the electronic format of journaling influenced the students' ability to engage in reflective thinking and action, as well as develop higher levels of critical thinking skills.

  19. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.

    PubMed

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor

    2014-03-25

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.

  20. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum

    PubMed Central

    Zhang, Yuqi; Fu, Qianqian; Ge, Jianping

    2015-01-01

    Traditional photonic sensing based on the change of balanced reflection of photonic structures can hardly distinguish chemical species with similar refractive indices. Here a sensing method based on the dynamic reflection spectra (DRS) of photonic crystal gel has been developed to distinguish even homologues, isomers and solvents with similar structures and physical properties. There are inherent relationships between solvent properties, diffusion behaviour and evolution of reflection signals, so that the geometric characteristics of DRS pattern including ascending/descending, colour changes, splitting/merging and curvature of reflection band can be utilized to recognize different organic solvents. With adequate solvents being tested, a database of DRS patterns can be established, which provide a standard to identify an unknown solvent. PMID:26082186

  1. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B

    PubMed Central

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor

    2014-01-01

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872

  2. The Influence of Dynamic Contact Angle on Wetting Dynamics

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  3. MISCONCEPTIONS ABOUT COERCION AND UNDUE INFLUENCE: REFLECTIONS ON THE VIEWS OF IRB MEMBERS

    PubMed Central

    LARGENT, EMILY; GRADY, CHRISTINE; MILLER, FRANKLIN G.; WERTHEIMER, ALAN

    2016-01-01

    Payment to recruit research subjects is a common practice but raises ethical concerns relating to the potential for coercion or undue influence. We conducted the first national study of IRB members and human subjects protection professionals to explore attitudes as to whether and why payment of research participants constitutes coercion or undue influence. Upon critical evaluation of the cogency of ethical concerns regarding payment, as reflected in our survey results, we found expansive or inconsistent views about coercion and undue influence that may interfere with valuable research. In particular, respondents appear to believe that coercion and undue influence lie on a continuum; by contrast, we argue that they are wholly distinct: whereas undue influence is a cognitive distortion relating to assessment of risks and benefits, coercion is a threat of harm. Because payment is an offer, rather than a threat, payment is never coercive. PMID:22493972

  4. Misconceptions about coercion and undue influence: reflections on the views of IRB members.

    PubMed

    Largent, Emily; Grady, Christine; Miller, Franklin G; Wertheimer, Alan

    2013-11-01

    Payment to recruit research subjects is a common practice but raises ethical concerns relating to the potential for coercion or undue influence. We conducted the first national study of IRB members and human subjects protection professionals to explore attitudes as to whether and why payment of research participants constitutes coercion or undue influence. Upon critical evaluation of the cogency of ethical concerns regarding payment, as reflected in our survey results, we found expansive or inconsistent views about coercion and undue influence that may interfere with valuable research. In particular, respondents appear to believe that coercion and undue influence lie on a continuum; by contrast, we argue that they are wholly distinct: whereas undue influence is a cognitive distortion relating to assessment of risks and benefits, coercion is a threat of harm. Because payment is an offer, rather than a threat, payment is never coercive. © 2012 John Wiley & Sons Ltd.

  5. Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity

    SciTech Connect

    Kumada, Takayuki Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Yokoyama, Atsushi

    2014-03-14

    Femtosecond laser ablation dynamics of fused silica is examined via time-resolved reflectivity measurements. After optical breakdown was caused by irradiation of a pump pulse with fluence F{sub pump} = 3.3–14.9 J/cm{sup 2}, the reflectivity oscillated with a period of 63 ± 2 ps for a wavelength λ = 795 nm. The period was reduced by half for λ = 398 nm. We ascribe the oscillation to the interference between the probe pulses reflected from the front and rear surfaces of the photo-excited molten fused silica layer. The time-resolved reflectivity agrees closely with a model comprising a photo-excited layer which expands due to the formation of voids, and then separates into two parts, one of which is left on the sample surface and the other separated as a molten thin layer from the surface by the spallation mechanism. Such oscillations were not observed in the reflectivity of soda-lime glass. Whether the reflectivity oscillates or not probably depends on the layer viscosity while in a molten state. Since viscosity of the molten fused silica is several orders of magnitude higher than that of the soda-lime glass at the same temperature, fused silica forms a molten thin layer that reflects the probe pulse, whereas the soda-lime glass is fragmented into clusters.

  6. Cultural influences on the process of conducting psychotherapy: personal reflections of an ethnic minority psychologist.

    PubMed

    Nezu, Arthur M

    2010-06-01

    I was asked to reflect how being a member of an ethnically diverse minority group, that is, Japanese American, may have influenced my clinical practice as a psychologist and psychotherapist. I first define the various facets of my "diversity status," followed by an offering of reflections on how being a member of this group impacted both myself as a therapist and my clients. I conclude with several general recommendations geared to enhance a positive therapeutic alliance and client outcome. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  7. A functional-dynamic reflection on participatory processes in modeling projects.

    PubMed

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.

  8. Release Path Temperatures of Shock-Compressed Tin from Dynamic Reflectance and Radiance Measurements

    SciTech Connect

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Holtkamp, D. B.; Iverson, A. J.; Hixson, R. S.; Veeser, L. R.

    2013-08-01

    Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R0 are < 2%, and uncertainties in absolute reflectance are < 5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of < 2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.

  9. Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements

    SciTech Connect

    La Lone, B. M. Stevens, G. D.; Turley, W. D.; Holtkamp, D. B.; Iverson, A. J.; Hixson, R. S.; Veeser, L. R.

    2013-08-14

    Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R{sub 0} are <2%, and uncertainties in absolute reflectance are <5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of <2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.

  10. Bidirectional Spectral Reflectance of Earth Resources: Influence of Scene Complexity and Atmospheric Effects on Remote Sensing

    NASA Technical Reports Server (NTRS)

    Diner, D. J.

    1984-01-01

    Practical methods for remote sensing when scene complexity and atmospheric effects modify intrinsic reflective properties are developed. The radiation history from ground to space of light reflected from individual leaves is initially multiply scattered within the crop canopy, whose geometry provides a controlling influence, then scattered and attenuated as a result of transmission through the Earth's atmosphere. The experimental and theoretical tools for studying these effects quantitatively are under development. A new radiative transfer code which uses Fourier transforms to solve the 3-D equation of transfer was developed. The initial version permits inhomogeneous non-Lambertian surfaces but assumes horizontal uniformity for the atmosphere. The computational results are in excellent agreement with Monte Carlo calculations. Laboratory apparatus to study the variation of spectral reflectance of individual leaves as a function of illumination incidence angle and reflection angle was used. These data can then be used in models to determine canopy scattering effects. Stress tests by observing leaf reflectance at 0.9 microns as a function of time following clipping from the stem was performed. A reflectance increase due to loss of water has been observed.

  11. Bidirectional Spectral Reflectance of Earth Resources: Influence of Scene Complexity and Atmospheric Effects on Remote Sensing

    NASA Technical Reports Server (NTRS)

    Diner, D. J.

    1984-01-01

    Practical methods for remote sensing when scene complexity and atmospheric effects modify intrinsic reflective properties are developed. The radiation history from ground to space of light reflected from individual leaves is initially multiply scattered within the crop canopy, whose geometry provides a controlling influence, then scattered and attenuated as a result of transmission through the Earth's atmosphere. The experimental and theoretical tools for studying these effects quantitatively are under development. A new radiative transfer code which uses Fourier transforms to solve the 3-D equation of transfer was developed. The initial version permits inhomogeneous non-Lambertian surfaces but assumes horizontal uniformity for the atmosphere. The computational results are in excellent agreement with Monte Carlo calculations. Laboratory apparatus to study the variation of spectral reflectance of individual leaves as a function of illumination incidence angle and reflection angle was used. These data can then be used in models to determine canopy scattering effects. Stress tests by observing leaf reflectance at 0.9 microns as a function of time following clipping from the stem was performed. A reflectance increase due to loss of water has been observed.

  12. Influence of community experiences on first-year medical students' reflective writing.

    PubMed

    Beylefeld, Adriana A; Nena, Kali D; Prinsloo, Engela A M

    2005-03-01

    The purpose of this research was to investigate the usefulness of providing students with community-located experiences as a basis for reflection by observing the degree to which community-located experiences influenced the quality of a reflective writing exercise. Students were prepared for reflection by means of a lecture and a handout on the meaning, function and process of reflection. One hundred and twenty-eight students (66 Afrikaans-speaking, and 62 English-speaking) took part in the study. Initially, most students (71%) who revealed affect prior to the visit reported negative emotional states. For 54% of the students who revealed emotions upon arrival, positive emotional states replaced the negative and this increased to 67% as the visit continued. This represented the most important stage of the personal growth continuum, signifying awareness of perspective 'distortions'. The majority (94.3%) regarded the visit as being important prior to immersing themselves in the theory of primary healthcare. In the questionnaire survey, students were asked for their opinions on the value of reflective writing as a tool for promoting deep learning, as students' attitudes were considered an important determinant of increased uptake of this kind of activity. Reflective writing can be promoted through using a real-world experience as stimulus, and a framework for guiding students' thoughts.

  13. Gaussian beam reflection characteristics on 2D randomly rough sea surface influenced by incident laser parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhang, Xiaohui; Sun, Chunsheng

    2014-12-01

    Laser reflection characteristics from the two-dimensional randomly rough sea surface are affected by the sea state, weather conditions, the incident laser parameters and other factors. All of the factors could not be artificially changed except the incident laser parameters. Therefore, the research of the relationship between laser reflection characteristics from 2-D randomly rough sea surface and incident laser parameters will give support to laser detection on the sea surface. This paper deals with the simulated calculation of the Gaussian beam reflection characteristics from the 2-D randomly rough sea surface with different incident laser parameters. In this paper, the 2-D rough sea surface is simulated with fractal method, after which the sea surface is divided into a lot of small planes, the width or length of which is much greater than the wavelength of the incident laser. Then the geometrical optics method is used to calculate the Gaussian beam reflection from 2-D randomly and rough sea surface. After that, the Gaussian beam reflection characteristics varies different incident laser parameters are numerical calculated. Finally, the detailed discussion of some factors including the divergence angle and the incident angle of the Gaussian beam which have influences on reflection properties is given.

  14. Influence of optical non-uniformity on the reflectance of dense plasmas

    NASA Astrophysics Data System (ADS)

    Norman, G. E.; Saitov, I. M.

    2016-11-01

    We provide theoretical analysis of the reflectance of shock compressed plasmas and warm dense matter for normal incidence of laser radiation as well as for the dependence of s- and p-polarized reflectivity on incidence angle. We use density functional theory approach for the calculation of the dielectric function and reflectivity. The Kohn-Sham set of equations with the projector augmented wave (PAW) potential is solved for valent electrons. Due to the nonlocality of the PAW potentials, the longitudinal expression for the imaginary dielectric function is used. The real part is obtained by the Kramers-Kronig transformation. Quantum molecular dynamics simulation and VASP is used. Comparison with the experimental data for shock compressed xenon is performed. Three wavelengths are considered.

  15. Reflective SOA fiber cavity adaptive laser source for measuring dynamic strains

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Smart sensors based on Optical fiber Bragg gratings (FBGs) are suitable for structural health monitoring of dynamic strains in civil, aerospace, and mechanical structures. In these structures, dynamic strains with high frequencies reveal acoustic emissions cracking or impact loading. It is necessary to find a practical tool for monitoring such structural damages. In this work, we explore an intelligent system based on a reflective semiconductor optical amplifier (RSOA)- FBG composed as a fiber cavity for measuring dynamic strain in intelligent structures. The ASE light emitted from a RSOA laser and reflected by a FBG is amplified in the fiber cavity and coupled out by a 90:10 coupler, which is demodulated by a low frequency compensated Michelson interferometer using a proportional-integral-derivative (PID) controller and is monitored via a photodetector. As the wavelength of the FBG shifts due to dynamic strain, the wavelength of the optical output from the laser cavity shifts accordingly, which is demodulated by the Michelson Interferometer. Because the RSOA has a quick transition time, the RSOA- FBG fiber cavity shows an ability of high frequency response to the FBG reflective spectrum shift, with frequency response extending to megahertz.

  16. Geophysical flows as dynamical systems: the influence of Hide's experiments

    NASA Astrophysics Data System (ADS)

    Ghil, Michael; Read, Peter; Smith, Leonard

    2010-08-01

    Michael Ghil, Peter L Read and Leonard A Smith recount the many and various ways that Raymond Hide has influenced their life and work in geophysical fluid dynamics, meteorology, climatology and planetary sciences, as well as in developing the study of dynamical systems in general.

  17. The Influence of Group Dynamics on Collaborative Scientific Argumentation

    ERIC Educational Resources Information Center

    Ryu, Suna; Sandoval, William A.

    2015-01-01

    Research has addressed what instructional conditions may inhibit or promote scientific argumentation. Little research, however, has paid attention to interpersonal factors that influence collaborative argumentation. The present study examines the ways interpersonal factors affected group dynamics, which influence the features of collaborative…

  18. The Influence of Group Dynamics on Collaborative Scientific Argumentation

    ERIC Educational Resources Information Center

    Ryu, Suna; Sandoval, William A.

    2015-01-01

    Research has addressed what instructional conditions may inhibit or promote scientific argumentation. Little research, however, has paid attention to interpersonal factors that influence collaborative argumentation. The present study examines the ways interpersonal factors affected group dynamics, which influence the features of collaborative…

  19. Cognitive Control: Dynamic, Sustained, and Voluntary Influences

    ERIC Educational Resources Information Center

    Fernandez-Duque, Diego; Knight, MaryBeth

    2008-01-01

    The cost of incongruent stimuli is reduced when conflict is expected. This series of experiments tested whether this improved performance is due to repetition priming or to enhanced cognitive control. Using a paradigm in which Word and Number Stroop alternated every trial, Experiment 1 assessed dynamic trial-to-trial changes. Incongruent trials…

  20. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  1. Influence of human behavior on cholera dynamics.

    PubMed

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-09-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number).

  2. Influence of human behavior on cholera dynamics

    PubMed Central

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-01-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number). PMID:26119824

  3. Flash Lamp Integrating Sphere Technique for Measuring the Dynamic Reflectance of Shocked Materials

    SciTech Connect

    Stevens, Gerald; La Lone, Brandon; Veeser, Lynn; Hixson, Rob; Holtkamp, David

    2013-07-08

    Accurate reflectance (R) measurements of metals undergoing shock wave compression can benefit high pressure research in several ways. For example, pressure dependent reflectance measurements can be used to deduce electronic band structure, and discrete changes with pressure or temperature may indicate the occurrence of a phase boundary. Additionally, knowledge of the wavelength dependent emissivity (1 -R, for opaque samples) of the metal surface is essential for accurate pyrometric temperature measurement because the radiance is a function of both the temperature and emissivity. We have developed a method for measuring dynamic reflectance in the visible and near IR spectral regions with nanosecond response time and less than 1.5% uncertainty. The method utilizes an integrating sphere fitted with a xenon flash-lamp illumination source. Because of the integrating sphere, the measurements are insensitive to changes in surface curvature or tilt. The in-situ high brightness of the flash-lamp exceeds the sample’s thermal radiance and also enables the use of solid state detectors for recording the reflectance signals with minimal noise. Using the method, we have examined the dynamic reflectance of gallium and tin subjected to shock compression from high explosives. The results suggest significant reflectance changes across phase boundaries for both metals. We have also used the method to determine the spectral emissivity of shock compressed tin at the interface between tin and a LiF window. The results were used to perform emissivity corrections to previous pyrometry data and obtain shock temperatures of the tin/LiF interface with uncertainties of less than 2%.

  4. Influence of surfactants in forced dynamic dewetting.

    PubMed

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  5. Dynamics of influence on hierarchical structures

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2013-08-01

    Dichotomous spin dynamics on a pyramidal hierarchical structure (the Bethe lattice) are studied. The system embodies a number of classes, where a class comprises nodes that are equidistant from the root (head node). Weighted links exist between nodes from the same and different classes. The spin (hereafter state) of the head node is fixed. We solve for the dynamics of the system for different boundary conditions. We find necessary conditions so that the classes eventually repudiate or acquiesce in the state imposed by the head node. The results indicate that to reach unanimity across the hierarchy, it suffices that the bottommost class adopts the same state as the head node. Then the rest of the hierarchy will inevitably comply. This also sheds light on the importance of mass media as a means of synchronization between the topmost and bottommost classes. Surprisingly, in the case of discord between the head node and the bottommost classes, the average state over all nodes inclines towards that of the bottommost class regardless of the link weights and intraclass configurations. Hence the role of the bottommost class is signified.

  6. Dynamics of influence on hierarchical structures.

    PubMed

    Fotouhi, Babak; Rabbat, Michael G

    2013-08-01

    Dichotomous spin dynamics on a pyramidal hierarchical structure (the Bethe lattice) are studied. The system embodies a number of classes, where a class comprises nodes that are equidistant from the root (head node). Weighted links exist between nodes from the same and different classes. The spin (hereafter state) of the head node is fixed. We solve for the dynamics of the system for different boundary conditions. We find necessary conditions so that the classes eventually repudiate or acquiesce in the state imposed by the head node. The results indicate that to reach unanimity across the hierarchy, it suffices that the bottommost class adopts the same state as the head node. Then the rest of the hierarchy will inevitably comply. This also sheds light on the importance of mass media as a means of synchronization between the topmost and bottommost classes. Surprisingly, in the case of discord between the head node and the bottommost classes, the average state over all nodes inclines towards that of the bottommost class regardless of the link weights and intraclass configurations. Hence the role of the bottommost class is signified.

  7. Blast wave dynamics: The influence of the shape of the explosive.

    PubMed

    Artero-Guerrero, J; Pernas-Sánchez, J; Teixeira-Dias, F

    2017-06-05

    A numerical model is developed to analyse the influence of the shape of a high-explosive on the dynamics of the generated pressure wave. A Multi-Material Arbitrary Lagrangian Eulerian (MM-ALE) technique is used as the CONWEP approach is not adequate to model such situations. Validation and verification of the proposed numerical model is achieved based on experimental data obtained from the bibliography. The numerical model provides relevant information that cannot be obtained from the experimental results. The influence of the mass and shape of the high-explosive is studied and correlated to the dynamics of the generated blast wave through the analysis of peak pressures, time of arrival and impulse. Tests are done with constant mass hemispherical, cylindrical and flat-shaped Formex F4HV samples. A detailed analysis of the generated blast wave is done, along with a thorough comparison between incident and reflected waves. It is concluded that the dynamic effects of the reflected pressure pulses should always be considered in structural design, most relevantly when analysing closed structures where the number of reflections can be significant. The model is proved reliable, concluding that the frontal area of the high-explosive is a determinant driving parameter for the impulse generated by the blast.

  8. Familial influences on conduct disorder reflect 2 genetic factors and 1 shared environmental factor.

    PubMed

    Kendler, Kenneth S; Aggen, Steven H; Patrick, Christopher J

    2013-01-01

    Prior studies suggest that antisocial behavior in childhood and adolescence reflects multiple symptomatic dimensions. However, to our knowledge, no prior study has evaluated the underlying nature of the etiologic influences contributing to conduct disorder (CD) symptoms as defined in the DSM. To determine the structure of genetic and environmental risk factors for CD. Population-based twin registry. Virginia. Two thousand seven hundred sixty-nine members of male-male twin pairs from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders. Retrospective self-reported symptoms of CD. The best-fitting multivariate twin model included 2 genetic factors, 1 shared environmental common factor, and 1 nonshared environmental common factor, along with criterion-specific genetic and nonshared environmental effects. The CD criteria with the strongest loadings on the 2 genetic factors were, respectively, those reflecting rule breaking (eg, playing hooky) and overt aggressive acts (eg, hurting people). The shared environmental common factor had salient loadings on a distinct set of criteria reflecting covert delinquent acts (eg, stealing and hurting animals). Loadings on the single nonshared environmental common factor were more uniform and less selective. Scores on the 3 familial CD factors were differentially associated with a range of personality, psychopathology, and demographic factors. From a genetic perspective, the DSM criteria for CD do not reflect a single dimension of liability. The familial risk to CD is composed of 2 discrete dimensions of genetic risk, reflecting rule breaking and overt aggression, and 1 dimension of shared environmental risk, reflecting covert delinquency. These 3 familial factors differ meaningfully in their association with a range of relevant validators.

  9. Temperature influence on Hadley cell dynamics

    NASA Astrophysics Data System (ADS)

    Molnos, S.

    2016-12-01

    Over the last decades, satellite observations indicate that the Hadley cells have widened and possibly also intensified [1,2]. This might lead to a shift of fertile habitats with implications for biodiversity and agriculture [3]. Causes for these observed changes are uncertain and the possible role of global warming is debated. To better understand the key dynamical forcings involved, we investigate Hadley cell dynamics with an idealized atmosphere model [4,5] and compare its results with reanalysis data. This statistical-dynamical atmosphere model (SDAM) is based on time-averaged equations, and therefore much faster than the more widely used Atmospheric general circulations models (AGCMs).With SDAMS it is possible to perform climate simulations up to multi-millennia timescales. Here, we employ it to study the dominant processes related to the observed strengthening and widening of the Hadley cell using a very large ensemble sensitivity experiment testing the following possible underlying drivers: meridional temperature gradient, temperature anomaly and global mean temperature GMT. Interestingly, whereas the width of the Hadley cell depends nonlinearly on the temperature gradient, while its Intensification is nearly independent on temperature gradient. In contrast, a larger GMT always leads to an intensified Hadley cell. References: [1] Mitas, C. M.: Has the Hadley cell been strengthening in recent decades?, Geophys. Res. Lett., 32(3), 2005. [2] Seidel, D., Fu, Q., Randel, W. and Reichler, T.: Widening of the tropical belt in a changing climate, Nat. Geosci., 1(1), 21-248, 2008. [3] Heffernan, O.: The Mystery of Expanding Tropics, Nature, 530, 20-22, 2016. [4] Coumou, D., Petoukhov, V. and Eliseev, A. V.: Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere, Nonlinear Process. Geophys., 18(6), 807-827, 2011. [5] Eliseev, A. V., Coumou, D., Chernokulsky, A. V., Petoukhov, V. and Petri, S.: Scheme for

  10. [Influence of foliar dust on crop reflectance spectrum and nitrogen monitoring].

    PubMed

    Wang, Tao; Liu, Yang; Wu, Hai-Yun; Zuo, Yue-Ming

    2012-07-01

    More researches were carried out to investigate the application of spectral technology on crop nutrition diagnosis. However, the complex conditions in the field results in the uncertainty of spectrum. In this paper, the influence of foliar dust on spectral of the crop beside the nation road was studied, the differences of the raw spectral reflectance and first derivative spectral reflectance between the foliar with dust and the foliar washed with deionised water were analyzed, nitrogen prediction models were built on the disturbance of foliar dust. Result showed that the dust foliar spectral reflectance increased in the visible light (350-720 nm) and shortwave infrared (SWIR) (1 360-2 500 nm) regions whereas the spectral reflectance in the near infrared (NIR) (720-1 360 nm) wavelength regions decreased. There were no change rules for blue edge position, yellow edge position, red edge position, blue edge slope and yellow edge slope on the effect of foliar dust, but red edge slope, blue edge area, yellow edge area, red edge area decreased. Determinate coefficient (R2) of nitrogen prediction models reduced in the condition of foliar dust. The primary research work about the condition of foliar dust was studied which helps to provide foundation for evaluating effect of foliar dust and proposing foliar dust modification model in the future.

  11. Environmental influence on population dynamics of the bivalve Anomalocardia brasiliana

    NASA Astrophysics Data System (ADS)

    Corte, Guilherme Nascimento; Coleman, Ross A.; Amaral, A. Cecília Z.

    2017-03-01

    Understanding how species respond to the environment in terms of population attributes (e.g. abundance, growth, mortality, fecundity, and productivity) is essential to protect ecologically and economically important species. Nevertheless, responses of macrobenthic populations to environmental features are overlooked due to the need of consecutive samplings and time-consuming measurements. We examined the population dynamics of the filter-feeding bivalve Anomalocardia brasiliana on a tidal flat over the course of one year to investigate the hypothesis that, as accepted for macrobenthic communities, populations inhabiting environments with low hydrodynamic conditions such as tidal flat should have higher attributes than populations inhabiting more energetic habitats (i.e. areas more influenced by wave energy such as reflective and intermediate beaches). This would be expected because the harsh conditions of more energetic habitats force organisms to divert more energy towards maintenance, resulting in lower population attributes. We found that A. brasiliana showed moderate growth and secondary production at the study area. Moreover the recruitment period was restricted to a few months. A comparison with previous studies showed that, contrary to expected, A. brasiliana populations from areas with low hydrodynamic conditions have lower abundance, growth, recruitment and turnover rate. It is likely that morphodynamic characteristics recorded in these environments, such as larger periods of air exposure and lower water circulation, may affect food conditions for filter-feeding species and increase competition. In addition, these characteristics may negatively affect macrobenthic species by enhancing eutrophication processes and anoxia. Overall, our results suggest that models accepted and applied at the macrobenthic community level might not be directly extended to A. brasiliana populations.

  12. Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer

    NASA Astrophysics Data System (ADS)

    Fuentes, Rosa; Fernández, Elena; García, Celia; Beléndez, Augusto; Pascual, Inmaculada

    2010-05-01

    The performance of a holographic data storage system depends to a great extent on the quality and the physical properties of the recording medium. The storage capabilities of photopolymer materials are under constant study and for some applications a high spatial frequency material is necessary. In this work, we focus on the study of the influence of 4,4´-Azobis(4-cyanopentanoic acid) ACPA on holographic reflection gratings recorded in a polyvinyl alcohol/acrylamide-based photopolymer with the aim of recording reflection gratings with a spatial frequency of up to 5000 lines/mm. The experimental procedure used to examine the high spatial frequency response of this material is explained and the experimental results presented.

  13. Detection and Purging of Specular Reflective and Transparent Object Influences in 3d Range Measurements

    NASA Astrophysics Data System (ADS)

    Koch, R.; May, S.; Nüchter, A.

    2017-02-01

    3D laser scanners are favoured sensors for mapping in mobile service robotics at indoor and outdoor applications, since they deliver precise measurements at a wide scanning range. The resulting maps are detailed since they have a high resolution. Based on these maps robots navigate through rough terrain, fulfil advanced manipulation, and inspection tasks. In case of specular reflective and transparent objects, e.g., mirrors, windows, shiny metals, the laser measurements get corrupted. Based on the type of object and the incident angle of the incoming laser beam there are three results possible: a measurement point on the object plane, a measurement behind the object plane, and a measurement of a reflected object. It is important to detect such situations to be able to handle these corrupted points. This paper describes why it is difficult to distinguish between specular reflective and transparent surfaces. It presents a 3DReflection- Pre-Filter Approach to identify specular reflective and transparent objects in point clouds of a multi-echo laser scanner. Furthermore, it filters point clouds from influences of such objects and extract the object properties for further investigations. Based on an Iterative-Closest-Point-algorithm reflective objects are identified. Object surfaces and points behind surfaces are masked according to their location. Finally, the processed point cloud is forwarded to a mapping module. Furthermore, the object surface corners and the type of the surface is broadcasted. Four experiments demonstrate the usability of the 3D-Reflection-Pre-Filter. The first experiment was made in a empty room containing a mirror, the second experiment was made in a stairway containing a glass door, the third experiment was made in a empty room containing two mirrors, the fourth experiment was made in an office room containing a mirror. This paper demonstrate that for single scans the detection of specular reflective and transparent objects in 3D is possible. It

  14. Simple Topological Features Reflect Dynamics and Modularity in Protein Interaction Networks

    PubMed Central

    Pritykin, Yuri; Singh, Mona

    2013-01-01

    The availability of large-scale protein-protein interaction networks for numerous organisms provides an opportunity to comprehensively analyze whether simple properties of proteins are predictive of the roles they play in the functional organization of the cell. We begin by re-examining an influential but controversial characterization of the dynamic modularity of the S. cerevisiae interactome that incorporated gene expression data into network analysis. We analyse the protein-protein interaction networks of five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, and confirm significant and consistent functional and structural differences between hub proteins that are co-expressed with their interacting partners and those that are not, and support the view that the former tend to be intramodular whereas the latter tend to be intermodular. However, we also demonstrate that in each of these organisms, simple topological measures are significantly correlated with the average co-expression of a hub with its partners, independent of any classification, and therefore also reflect protein intra- and inter- modularity. Further, cross-interactomic analysis demonstrates that these simple topological characteristics of hub proteins tend to be conserved across organisms. Overall, we give evidence that purely topological features of static interaction networks reflect aspects of the dynamics and modularity of interactomes as well as previous measures incorporating expression data, and are a powerful means for understanding the dynamic roles of hubs in interactomes. PMID:24130468

  15. 3D shape measurement of objects with high dynamic range of surface reflectivity

    NASA Astrophysics Data System (ADS)

    Liu, Gui-Hua; Liu, Xian-Yong; Feng, Quan-Yuan

    2011-08-01

    This paper presents a method that allows a conventional dual-camera structured light system to directly acquire the three-dimensional shape of the whole surface of an object with high dynamic range of surface reflectivity. To reduce the degradation in area-based correlation caused by specular highlights and diffused darkness, we first disregard these highly specular and dark pixels. Then, to solve this problem and further obtain unmatched area data, this binocular vision system was also used as two camera-projector monocular systems operated from different viewing angles at the same time to fill in missing data of the binocular reconstruction. This method involves producing measurable images by integrating such techniques as multiple exposures and high dynamic range imaging to ensure the capture of high-quality phase of each point. An image-segmentation technique was also introduced to distinguish which monocular system is suitable to reconstruct a certain lost point accurately. Our experiments demonstrate that these techniques extended the measurable areas on the high dynamic range of surface reflectivity such as specular objects or scenes with high contrast to the whole projector-illuminated field.

  16. Wideband dynamic behavioral modeling of reflective semiconductor optical amplifiers using a tapped-delay multilayer perceptron.

    PubMed

    Liu, Zhansheng; Violas, Manuel Alberto; Carvalho, Nuno Borges

    2013-02-11

    In this paper, we propose a wideband dynamic behavioral model for a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in colorless radio over fiber (RoF) systems using a tapped-delay multilayer perceptron (TDMLP). 64 quadrature amplitude modulation (QAM) signals with 20 Msymbol/s were used to train, validate and test the model. Nonlinear distortion and dynamic effects induced by the RSOA modulator are demonstrated. The parameters of the model such as the number of nodes in the hidden layer and memory depth were optimized to ensure the generality and accuracy. The normalized mean square error (NMSE) is used as a figure of merit. The NMSE was up to -44.33 dB when the number of nodes in the hidden layer and memory depth were set to 20 and 3, respectively. The TDMLP model can accurately approximate to the dynamic characteristics of the RSOA modulator. The dynamic AM-AM and dynamic AM-PM distortions of the RSOA modulator are drawn. The results show that the single hidden layer TDMLP can provide accurate approximation for behaviors of the RSOA modulator.

  17. Influence of thin alien layers on hydrogen reflection and trapping by PFM

    NASA Astrophysics Data System (ADS)

    Golubeva, A. V.; Kurnaev, V. A.; Levchuk, D. V.; Trifonov, N. N.

    2003-03-01

    Investigations of the influence of carbon and hydrocarbon layers on the trapping and reflection of hydrogen isotopes by tungsten were carried out with BCA based computer code SCATTER. It is shown that for small layer thickness the trapping efficiency depends on the hydrocarbon film composition. At layer thickness of a few nanometers energy dependence of the trapping efficiency has a non-monotonous character with a minimum at primary energies about 100-1000 eV and continuous increment with energy at higher energies. The possible reason of this effect is briefly discussed. Comparison between the trapping efficiencies of different hydrogen isotopes in a C-W target is also presented.

  18. Influence of electronic—nuclear coupling on dynamics

    NASA Astrophysics Data System (ADS)

    Longo, Ricardo; Diz, Agustín; Deumens, Erik; Öhrn, Yngve

    1994-04-01

    Electronic nuclear dynamics (END), a recently developed explicitly time-dependent theory treats fully the electronic—nuclear coupling. The END theory at the level of a model that employs a single complex spin-unrestricted determinantal wavefunction for the electrons and classical nuclei has been implemented in the computer code ENDyne. It permits comparisons of the full dynamics at this level of treatment with one where the electronic—nuclear coupling is neglected. The neglect of coupling terms is shown to have quite drastic influence on the detailed dynamics of ion—atom and ion—molecule collisions.

  19. Concentration of Elements in Food: How Can It Reflect Impact of Environmental and Other Influencing Factors?

    NASA Astrophysics Data System (ADS)

    Vincevica-Gaile, Zane; Klavins, Maris

    2013-12-01

    Element content of food is variable and can be influenced by different factors. The aim of the present study was to discover the linkage between macro- and microelement concentrations in food produced in Latvia, and possible impacts of environmental factors. More than 300 fresh food samples such as eggs, cottage cheese, honey, root vegetables, apple juice, apple wine were collected in the time period from 2009 to 2011. Samples were mineralised or analysed directly by appropriate method of quantitative analysis: atomic absorption spectrometry, inductively coupled plasma mass spectrometry or total reflection X-ray fluorescence spectrometry. Statistical analysis of data revealed that food elemental content can be influenced by sitespecific factors such as geographical origin, seasonality, environmental pollution.

  20. Switch programming of reflectivity control devices for the coupled dynamics of a solar sail

    NASA Astrophysics Data System (ADS)

    Hu, Tianjian; Gong, Shengping; Mu, Junshan; Li, Junfeng; Wang, Tianshu; Qian, Weiping

    2016-03-01

    As demonstrated in the Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS), reflectivity control devices (RCDs) are switched on or off independently with each other, which has nevertheless been ignored by many previous researches. This paper emphasizes the discrete property of RCDs, and aims to obtain an appropriate switch law of RCDs for a rigid spinning solar sail. First, the coupled attitude-orbit dynamics is derived from the basic solar force and torque model into an underdetermined linear system with a binary set constraint. Subsequently, the coupled dynamics is reformulated into a constrained quadratic programming and a basic gradient projection method is designed to search for the optimal solution. Finally, a circular sail flying in the Venus rendezvous mission demonstrates the model and method numerically, which illustrates approximately 103 km terminal position error and 0.5 m/s terminal velocity error as 80 independent RCDs are switched on or off appropriately.

  1. External Dynamics Influencing Tattooing among College Students: A Qualitative Analysis

    ERIC Educational Resources Information Center

    Firmin, Michael; Tse, Luke; Foster, Janna; Angelini, Tammy

    2012-01-01

    The study utilized qualitative research methodology to assess external dynamics and their influences on tattooing practices among college students. Twenty-four undergraduates supplied in-depth interviews regarding the external variables related to college students' decisions to tattoo. The present research follows (Tse, Firmin, Angelini, &…

  2. External Dynamics Influencing Tattooing among College Students: A Qualitative Analysis

    ERIC Educational Resources Information Center

    Firmin, Michael; Tse, Luke; Foster, Janna; Angelini, Tammy

    2012-01-01

    The study utilized qualitative research methodology to assess external dynamics and their influences on tattooing practices among college students. Twenty-four undergraduates supplied in-depth interviews regarding the external variables related to college students' decisions to tattoo. The present research follows (Tse, Firmin, Angelini, &…

  3. Popularity and Adolescent Friendship Networks: Selection and Influence Dynamics

    ERIC Educational Resources Information Center

    Dijkstra, Jan Kornelis; Cillessen, Antonius H. N.; Borch, Casey

    2013-01-01

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to enhance their status through befriending higher…

  4. Popularity and Adolescent Friendship Networks: Selection and Influence Dynamics

    ERIC Educational Resources Information Center

    Dijkstra, Jan Kornelis; Cillessen, Antonius H. N.; Borch, Casey

    2013-01-01

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to enhance their status through befriending higher…

  5. Use of a Remote Sensing Method to Estimate the Influence of Anthropogenic Factors on the Spectral Reflectance of Plant Species

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora D.; Yanev, Tony K.

    2007-04-01

    Results from a remote sensing study of the influence of stress factors on the leaf spectral reflectance of wheat and tomato plants contaminated by viruses and pea plants treated with herbicides are presented and discussed. The changes arising in the spectral reflectance characteristics of control and treated plants are estimated through statistical methods as well as through derivative analysis to determine specific reflectance features in the red edge region.

  6. Influence of ground reflectivity and topography on erythemal UV radiation on inclined planes.

    PubMed

    Weihs, P

    2002-05-01

    Erythemal UV irradiance incident on a horizontal surface is not always the best way of estimating the real dose received by humans or animals. For this purpose knowledge of the irradiance incident on inclined planes is required. This study presents a physically accurate model for the calculation of erythemal UV on inclined planes. The influence of ground reflectivity and topography on erythemal UV on inclined planes is investigated as a function of solar zenith and azimuth angle. It is shown that including directional reflectivity does not substantially change the incident dose on inclined planes, the maximum deviation being 10%. The incident erythemal UV may, however, be much more influenced by the surrounding topography and by the direct/diffuse partitioning of the irradiance (which is a function of altitude). Maximum increases in erythemal UV of +57%, compared with the incident erythemal UV on a horizontal plane, were found when the sensor faced the sun with a mountain slope to the left and right of it and for very high altitudes.

  7. Bacterioplankton assemblages in coastal ponds reflect the influence of hydrology and geomorphological setting.

    PubMed

    Huggett, Megan J; Kavazos, Christopher R J; Bernasconi, Rachele; Czarnik, Robert; Horwitz, Pierre

    2017-06-01

    The factors that shape microbial community assembly in aquatic ecosystems have been widely studied; yet it is still unclear how distinct communities within a connected landscape influence one another. Coastal lakes are recipients of, and thus are connected to, both marine and terrestrial environments. Thus, they may host microbial assemblages that reflect the relative degree of influence by, and connectivity to, either system. In order to address this idea, we interrogated microbial community diversity at 49 sites in seven ponds in two seasons in the Lake MacLeod basin, a system fed by seawater flowing inland through underground karst. Environmental and spatial variation within ponds explain <9% of the community structure, while identity of the pond that samples were taken from explains 50% of community variation. That is, ponds each host distinct assemblages despite similarities in size, environment and position in the landscape, indicating a dominant role for local species sorting. The ponds contain a substantial amount of previously unknown microbial taxa, reflecting the unusual nature of this inland system. Rare marine taxa, possibly dispersed from seawater assemblages via the underground karst connection, are abundant within the inland system, suggesting an important role for regional dispersal within the metacommunities. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Reflective Redo within a Three-Dimensional Simulation and Its Influence on Student Metacognition, Reflection, and Learning

    ERIC Educational Resources Information Center

    Scoresby, Jon M.

    2011-01-01

    The objective of this study was to investigate the effects on a student's metacognition, reflection, and learning in a specifically designed educational simulation supported by unique technology. The simulation allows players' actions to be recorded for the purpose of review to identify mistakes. The simulation also allows students to start at and…

  9. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria

  10. Influence of credit scoring on the dynamics of Markov chain

    NASA Astrophysics Data System (ADS)

    Galina, Timofeeva

    2015-11-01

    Markov processes are widely used to model the dynamics of a credit portfolio and forecast the portfolio risk and profitability. In the Markov chain model the loan portfolio is divided into several groups with different quality, which determined by presence of indebtedness and its terms. It is proposed that dynamics of portfolio shares is described by a multistage controlled system. The article outlines mathematical formalization of controls which reflect the actions of the bank's management in order to improve the loan portfolio quality. The most important control is the organization of approval procedure of loan applications. The credit scoring is studied as a control affecting to the dynamic system. Different formalizations of "good" and "bad" consumers are proposed in connection with the Markov chain model.

  11. Popularity and adolescent friendship networks: selection and influence dynamics.

    PubMed

    Dijkstra, Jan Kornelis; Cillessen, Antonius H N; Borch, Casey

    2013-07-01

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to enhance their status through befriending higher status adolescents, whereas higher status adolescents strive to maintain their status by keeping lower status adolescents at a distance. The results largely supported these expectations. Selection partially accounted for similarity in popularity among friends; adolescents preferred to affiliate with similar-status or higher status peers, reinforcing the attractiveness of popular adolescents and explaining stability of popularity at the individual level. Influence processes also accounted for similarity in popularity over time, showing that peers increase in popularity and become more similar to their friends. The results showed how selection and influence processes account for popularity dynamics in adolescent networks over time.

  12. Simulating Food Web Dynamics along a Gradient: Quantifying Human Influence

    PubMed Central

    Jordán, Ferenc; Gjata, Nerta; Mei, Shu; Yule, Catherine M.

    2012-01-01

    Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics

  13. Simulating food web dynamics along a gradient: quantifying human influence.

    PubMed

    Jordán, Ferenc; Gjata, Nerta; Mei, Shu; Yule, Catherine M

    2012-01-01

    Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics

  14. In situ characterization of nanowire dimensions and growth dynamics by optical reflectance.

    PubMed

    Heurlin, Magnus; Anttu, Nicklas; Camus, Christian; Samuelson, Lars; Borgström, Magnus T

    2015-05-13

    Optical reflectometry is commonly used as an accurate and noninvasive characterization tool when growing planar semiconductor layers. However, thin-film analysis schemes cannot be directly applied to nanowire systems due to their complex optical response. Here, we report on reliable in situ characterization of nanowire growth with high accuracy using optical reflectance spectra for analysis. The method makes it possible to determine the nanowire length, diameter, and growth rate in situ in real time with high resolution. We demonstrate the method's versatility by using the optical reflectance data for determining nanowire dimensions on both particle-assisted and selective-area grown nanowires. To indicate the full potential of in situ characterization of nanowire synthesis we evaluate the growth dynamics of InP nanowires in the presence of the p-type dopant precursor diethylzinc. We observe that the growth rate is strongly affected by the diethylzinc. At low diethylzinc flows, the growth rate decreases monotonously while higher flows lead to an initially increasing growth rate. From these in situ characterization data, we conclude that the surface migration length of adatom species is affected strongly by the addition of diethylzinc. We believe that this characterization method will become a standard tool for in situ growth monitoring and aid in elucidating the complex growth dynamics often exhibited during nanowire growth.

  15. On the heterogeneity of human populations as reflected by mortality dynamics

    PubMed Central

    Avraam, Demetris; Arnold, Séverine; Vasieva, Olga; Vasiev, Bakhtier

    2016-01-01

    The heterogeneity of populations is used to explain the variability of mortality rates across the lifespan and their deviations from an exponential growth at young and very old ages. A mathematical model that combines the heterogeneity with the assumption that the mortality of each constituent subpopulation increases exponentially with age, has been shown to successfully reproduce the entire mortality pattern across the lifespan and its evolution over time. In this work we aim to show that the heterogeneity is not only a convenient consideration for fitting mortality data but is indeed the actual structure of the population as reflected by the mortality dynamics over age and time. In particular, we show that the model of heterogeneous population fits mortality data better than other commonly used mortality models. This was demonstrated using cohort data taken for the entire lifespan as well as for only old ages. Also, we show that the model can reproduce seemingly contradicting observations in late-life mortality dynamics. Finally, we show that the homogenisation of a population, observed by fitting the model to actual data of consecutive periods, can be associated with the evolution of allele frequencies if the heterogeneity is assumed to reflect the genetic variations within the population. PMID:27875807

  16. Neutron reflectivity as a tool to study the interdigitation of grafted polymer chains and its dynamics

    NASA Astrophysics Data System (ADS)

    Leger, Liliane; Restagno, Frédéric; Cousin, Fabrice; Boue, François; Chenneviere, Alexis

    Three series of experiments aimed at characterizing the interdigitation between a brush and a melt, and based on neutron reflectivity, are presented and discussed. The density profile of brush chains has been analysed for series of annealing times, on h-PS brushes in contact with d-PS melts, as a function of molecular weights and grafting densities. We show that the relaxation dynamics of the brush chains can be modelled taking into account the long relaxation time of end tethered chains along with the reptation of the melt chains which accelerates the arm retraction process. Using a non-grafted layer with a thickness smaller than the equilibrium size of the brush when immersed into a thick melt allows one to apply chosen degrees of confinement to the brush. We show that the interdigitation dynamics is affected by such confinements, in a way reminiscent of the change of the glass transition temperature in nanometric PS films. Finally, when the upper d-PS layer is sheared above Tg, flow with large slip at the wall has been observed and interpreted in terms of stretching and expulsion of the grafted chains from the melt. We show how neutron reflectivity directly evidence this expulsion.

  17. Influence of precipitation pulses on long-term Prosopis ferox dynamics in the Argentinean intermontane subtropics.

    PubMed

    Morales, Mariano S; Villalba, Ricardo

    2012-02-01

    Biological processes in arid communities are associated with episodic precipitation pulses. We postulate that annual to decadal-scale precipitation pulses modulate the dynamics of the intermontane Prepuna woodlands. To study this hypothesis, we have assessed the influence of precipitation pulses on the rates of growth and survival of Prosopis ferox in the Prepuna woodlands during the past century. Tree ages from several P. ferox stands were used to reconstruct the establishment patterns at each sampling site. Ring-width chronologies provided the basis to assess the influence of annual versus multiannual precipitation pulses on radial growth and establishment over time. Both the radial growth and the stand dynamics of P. ferox at the regional scale were found to be largely modulated by climate, with precipitation the dominant factor influencing interannual variations in P. ferox ring-widths. Our analysis of dendrochronological dating data on 885 individuals of P. ferox revealed a period of abundant establishment from the mid-1970s to beginning of 1990 s, which is coincident with an interval of remarkable above-average precipitation. However, tree-growth and establishment patterns at the local scale in the Prepuna also reflected land-use changes, particularly long-term variations in livestock intensity. The P. ferox dynamics documented here substantiates the hierarchical concept of "resource-pulse" in dry ecosystems, with precipitation pulses of different lengths modulating distinct dynamic processes in the P. ferox woodlands. Interannual variations in precipitation influence year-to-year patterns of P. ferox radial growth, whereas multiannual oscillations in rainfall influence episodic events of tree establishment. The long-term interval considered in this study enabled us to disentangle the roles of natural versus human controls on P. ferox dynamics in the region.

  18. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Cai, Tong; Xiao, Jun; Zhuang, Ya-Qiang

    2016-11-28

    Pancharatnam-Berry (PB) metasurfaces have intrigued a great deal of interest in recent years for anomalous reflection/refraction, vortex plate, orbital angular momentum, flat lens, photonic spin hall effect (PSHE), holograms and reflect/transmit arrays. However, almost all designs are restricted to fixed electrical performance/functionality once the design is finished. Here, we report for the first time a strategy for PB metasurface with agile working frequency by involving each meta-atom with tunable PIN diodes. For verification, a tunable PB metasurface with frequency reconfigurability is designed and numerically characterized across C and X band. By controlling the external voltages imposed on the diodes, numerical results show that the operation band with 180° phase difference between orthogonal reflection coefficients can be dynamically controlled. As such, the resulting PB metasurface composed of these orderly rotated meta-atoms exhibits a broadband PSHE with nearly 100% conversion efficiency in the "On" state while switches to dual well-separated bands in the "Off" state. Our proposal, not confined to PHSE, set a solid platform for PB phase control and can be populated to any dual-functional and/or multifunctional devices with high integrity, stability and low cost.

  19. Influence of hydration and cation binding on parvalbumin dynamics

    NASA Astrophysics Data System (ADS)

    Zanotti, J.-M.; Parello, J.; Bellissent-Funel, M.-C.

    Due to structural characteristics, parvalbumin exerts a major role in intracellular Mg2+ and Ca2+ concentration regulation during the muscular contraction-relieving cycle. This structure-function relationship being established, we are investigating the structure-dynamics-function relationship to take into account the protein dynamics. Because of the strong incoherent neutron scattering cross section of hydrogen and of the abundance of this element in proteins, incoherent inelastic neutron scattering is a unique probe to study vibrations and localised motions in biological macromolecules. We take advantage of the complementarities in energy or time resolution of various neutron spectrometers (time of flight, backscattering, spin-echo) to probe the parvalbumin dynamics from a fraction of a picosecond to a few nanoseconds. Influences of hydration and of the nature of the cation on parvalbumin dynamics are discussed.

  20. Influence of interference fringes of equal inclination on the reflection of laser beams from plane parallel plates.

    PubMed

    Hillenkamp, F

    1969-02-01

    The coefficient of reflection of plane parallel plate beam splitters is very often taken as twice that of a single surface reflection. It is shown that this introduces appreciable errors in the majority of cases, because of the interference fringes of equal inclination. Formulas are derived for the angular dependence of the coefficient of reflection as well as for its average value. The angular distance between adjacent fringes has been evaluated and represented graphically. It is finally demonstrated that the influence of incomplete interference due to the lateral displacement of the reflected beam can be neglected if the beam splitter is followed by an integrating sphere or a similar element.

  1. Correlation between Ultrasound Reflection Intensity and Tumor Ablation Ratio of Late-Stage Pancreatic Carcinoma in HIFU Therapy: Dynamic Observation on Ultrasound Reflection Intensity

    PubMed Central

    Ge, Hui-Yu; Miao, Li-Ying; Wang, Jin-Rui; Xiong, Liu-Lin; Yan, Fang; Zheng, Cui-Shan; Jia, Jian-Wen; Cui, Li-Gang; Chen, Wen

    2013-01-01

    The minimally invasive high-intensity focused ultrasound (HIFU) therapy is thermal ablation treatment for late-stage pancreatic carcinoma with widely recognized safety and effectiveness, but there are currently no instant assessment methods for its ablation effect. It is vital to find a real-time high-sensitive assessment method. This research aims to dynamically observe the variation rules of ultrasound reflection intensity, analyze the correlation between ultrasound reflection intensity and tumor ablation ratio, and find out the value of ultrasound reflection intensity in prognosis of HIFU ablation effect. HIFU intermittent therapies were retrospectively analyzed for 31 subjects with late-stage pancreatic carcinoma from March 2007 to December 2009 in the study. The variation rules of the ultrasound reflection intensity during HIFU therapy were summarized and the correlation between ultrasound reflection intensity and tumor ablation ratio was analyzed based on the tumor ablation ratio indicated by CT scanning. The conclusion is that variation of ultrasound reflection intensity can be used for initial assessment of tumor ablation in HIFU therapy and early prognosis of overall HIFU ablation, providing important clinical basis for improving safety and effectiveness of HIFU therapy. Ultrasound can work as a real-time imaging instrument for observation of HIFU ablation effect in treating late-stage pancreatic carcinoma. PMID:24453916

  2. Correlation between ultrasound reflection intensity and tumor ablation ratio of late-stage pancreatic carcinoma in HIFU therapy: dynamic observation on ultrasound reflection intensity.

    PubMed

    Ge, Hui-Yu; Miao, Li-Ying; Wang, Jin-Rui; Xiong, Liu-Lin; Yan, Fang; Zheng, Cui-Shan; Jia, Jian-Wen; Cui, Li-Gang; Chen, Wen

    2013-01-01

    The minimally invasive high-intensity focused ultrasound (HIFU) therapy is thermal ablation treatment for late-stage pancreatic carcinoma with widely recognized safety and effectiveness, but there are currently no instant assessment methods for its ablation effect. It is vital to find a real-time high-sensitive assessment method. This research aims to dynamically observe the variation rules of ultrasound reflection intensity, analyze the correlation between ultrasound reflection intensity and tumor ablation ratio, and find out the value of ultrasound reflection intensity in prognosis of HIFU ablation effect. HIFU intermittent therapies were retrospectively analyzed for 31 subjects with late-stage pancreatic carcinoma from March 2007 to December 2009 in the study. The variation rules of the ultrasound reflection intensity during HIFU therapy were summarized and the correlation between ultrasound reflection intensity and tumor ablation ratio was analyzed based on the tumor ablation ratio indicated by CT scanning. The conclusion is that variation of ultrasound reflection intensity can be used for initial assessment of tumor ablation in HIFU therapy and early prognosis of overall HIFU ablation, providing important clinical basis for improving safety and effectiveness of HIFU therapy. Ultrasound can work as a real-time imaging instrument for observation of HIFU ablation effect in treating late-stage pancreatic carcinoma.

  3. Influence of cooling on lava-flow dynamics

    NASA Astrophysics Data System (ADS)

    Stasiuk, Mark V.; Jaupart, Claude; Stephen, R.; Sparks, J.

    1993-04-01

    Experiments have been carried out to determine the effects of cooling on the flow of fluids with strongly temperature dependent viscosity. Radial viscous-gravity currents of warm glucose syrup were erupted at constant rate into a flat tank filled with a cold aqueous solution. Cold, viscous fluid accumulates at the leading edge, altering the flow shape and thickness and slowing the spreading. The flows attain constant internal temperature distributions and bulk viscosities. The value of the bulk viscosity depends on the Péclet number, which reflects the advective and diffusive heat transport properties of the flow, the flow skin viscosity, which reflects cooling, and the eruption viscosity. Our results explain why most lava flows have bulk viscosities much higher than the lava eruption viscosity. The results can be applied to understanding dynamic lava features such as flow-front thickening, front avalanches, and welded basal breccias.

  4. In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome.

    PubMed

    Secomski, Wojciech; Bilmin, Krzysztof; Kujawska, Tamara; Nowicki, Andrzej; Grieb, Paweł; Lewin, Peter A

    2017-05-01

    The purpose of this work was to determine the influence of standing waves and possible multiple reflections under the conditions often encountered in examining the effects of ultrasound exposure on the cell cultures in vitro. More specifically, the goal was to quantitatively ascertain the influence of ultrasound exposure under free field (FF) and standing waves (SW) and multiple reflections (MR) conditions (SWMR) on the biological endpoint (50% cell necrosis). Such information would help in designing the experiments, in which the geometry of the container with biological tissue may prevent FF conditions to be established and in which the ultrasound generated temperature elevation is undesirable. This goal was accomplished by performing systematic, side-by-side experiments in vitro with C6 rat glioma cancer cells using 12 well and 96 well plates. It was determined that to obtain 50% of cell viability using the 12 well plates, the spatial average, temporal average (ISATA) intensities of 0.32W/cm(2) and 5.89W/cm(2) were needed under SWMR and FF conditions, respectively. For 96 well plates the results were 0.80W/cm(2) and 2.86W/cm(2) respectively. The corresponding, hydrophone measured pRMS maximum pressure amplitude values, were 0.71MPa, 0.75MPa, 0.75MPa and 0.73MPa, respectively. These results suggest that pRMS pressure amplitude was independent of the measurement set-up geometry and hence could be used to predict the cells' mortality threshold under any in vitro experimental conditions or even as a starting point for (pre-clinical) in vivo tests. The described procedure of the hydrophone measurements of the pRMS maximum pressure amplitude at the λ/2 distance (here 0.75mm) from the cell's level at the bottom of the dish or plate provides the guideline allowing the difference between the FF and SWMR conditions to be determined in any experimental setup. The outcome of the measurements also indicates that SWMR exposure might be useful at any ultrasound assisted

  5. Dynamic Influence Networks for Rule-based Models.

    PubMed

    Forbes, Angus G; Burks, Andrew; Lee, Kristine; Li, Xing; Boutillier, Pierre; Krivine, Jean; Fontana, Walter

    2017-08-29

    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rulebased models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.

  6. Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures

    PubMed Central

    Linder, Jacob; Halterman, Klaus

    2016-01-01

    Exerting well-defined control over the reflection (R), absorption (A), and transmission (T) of electromagnetic waves is a key objective in quantum optics. To this end, one often utilizes hybrid structures comprised of elements with different optical properties in order to achieve features such as high R or high A for incident light. A desirable goal would be the possibility to tune between all three regimes of nearly perfect reflection, absorption, and transmission within the same device, thus swapping between the cases R → 1, A → 1, and T → 1 dynamically. We here show that a dielectric interfaced with a graphene layer on each side allows for precisely this: by tuning only the Fermi level of graphene, all three regimes can be reached in the THz regime and below. Moreover, we show that the inclusion of cylindrical defects in the system offers a different type of control of the scattering of electromagnetic waves by means of the graphene layers. PMID:27917886

  7. Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures.

    PubMed

    Linder, Jacob; Halterman, Klaus

    2016-12-05

    Exerting well-defined control over the reflection (R), absorption (A), and transmission (T) of electromagnetic waves is a key objective in quantum optics. To this end, one often utilizes hybrid structures comprised of elements with different optical properties in order to achieve features such as high R or high A for incident light. A desirable goal would be the possibility to tune between all three regimes of nearly perfect reflection, absorption, and transmission within the same device, thus swapping between the cases R → 1, A → 1, and T → 1 dynamically. We here show that a dielectric interfaced with a graphene layer on each side allows for precisely this: by tuning only the Fermi level of graphene, all three regimes can be reached in the THz regime and below. Moreover, we show that the inclusion of cylindrical defects in the system offers a different type of control of the scattering of electromagnetic waves by means of the graphene layers.

  8. The influence of negative emotion on the Simon effect as reflected by p300.

    PubMed

    Ma, Qingguo; Shang, Qian

    2013-01-01

    The Simon effect refers to the phenomenon that reaction time (RT) is faster when stimulus and response location are congruent than when they are not. This study used the priming-target paradigm to explore the influence of induced negative emotion on the Simon effect with event-related potential techniques (ERPs). The priming stimuli were composed of two kinds of pictures, the negative and neutral pictures, selected from the International Affective Picture System (IAPS). The target stimuli included chessboards of two color types. One was red and black the other one was green and black. Each chessboard was presented on the left or the right of the screen. The participants were asked to press the response keys according to the colors of the chessboards. It was called the congruent condition if the chessboard and the response key were on the same side, otherwise incongruent condition. In this study, the emotion-priming Simon effect was found in terms of RT and P300. Negative emotion compared with neutral emotion significantly enhanced the Simon effect in the cognitive process, reflected by a larger difference of P300 latency between the incongruent and congruent trials. The results suggest that the induced negative emotion influenced the Simon effect at the late stage of the cognitive process, and the P300 latency could be considered as the reference measure. These findings may be beneficial to researches in psychology and industrial engineering in the future.

  9. Reflectance Spectra of Regolith Analogs in the middle-IR: Influence of Grain Size

    NASA Astrophysics Data System (ADS)

    Le Bras, A.

    1999-09-01

    Reflectance spectroscopy of asteroids permits to infer the mineral composition of their surface. Since spectral mineral features are sensitive to surface parameters such as grain size, regolith compactness, temperature, maturity,... the interpretation of remote-sensing asteroids spectra is not easy nor unique. Asteroids family members show a continuous dispersion of their spectral characteristics (Doressoudiram et al., 1997) which seems to be due first to a compositional variation but also to some space weathering processes. Space weathering may contribute to the spectral dispersion of the smallest S-type asteroids too. New laboratory spectra are required in order to understand the influence of surface parameters and space weathering effects, and to interpret the recent high-spectral resolution observations from ISO. We started an experimental program at Institut d'Astrophysique Spatiale (Orsay, France), using the 2.5-120 microns interferometer spectrometer, to study the influence of surface parameters on mineral features. First, we study grain size effects with two types of terrestrial rocks: anorthosite (bright) and basalt (dark) in the 2-40 microns range. In a second part, we will extend our experiments to other samples (meteorites and asteroid-like mixtures), and to the visible and NIR range. We present the experimental setup and the preliminary results obtained for 6 different grain size ranges with basalt and anorthosite.

  10. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  11. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    PubMed

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  12. Influence of surface clinker on the crustal structures and dynamics of 'a'ā lava flows

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; James, M. R.; van Wyk de Vries, B.; Pinkerton, H.

    2010-07-01

    Surface structures on 'a'ā and blocky lavas reflect the internal flow dynamics during emplacement and also influence the dynamics of developing flows. To investigate the effects of brittle, clinkery 'a'ā flow crusts on flow dynamics and surface structures, we conducted sand and silicone laboratory experiments that simulated the advance of lava into a preexisting channelized flow with a surface crust. Experiments carried out with relatively thin crusts produced apparently ductile surface deformation structures, while thick crusts behaved dominantly in a brittle manner. Increased crustal thickness led to increased strength under compression but favored more disruption under tension, as the flow core welled up through tensile fractures, entraining crustal material. At lava flow fronts, upwelling and entrainment would increase heat losses by radiation and advection, respectively, resulting in a positive-feedback cooling loop. Fracturing caused heterogeneous crustal distribution near the flow front, which resulted in lobate flow advance, despite the absence of the viscoelastic layer that has previously been inferred as the primary control on flow advance and lobe formation. We therefore conclude that the influence of a purely brittle crust on the dynamics and surface morphologies of lava flows is more significant than often thought. All of the surface structures produced in the experiments have been observed on lavas or glaciers and many also on landslides and debris flows, suggesting the results can assist in the understanding of a range of natural flows.

  13. Retinotopic Patterns of Correlated Fluctuations in Visual Cortex Reflect the Dynamics of Spontaneous Perceptual Suppression

    PubMed Central

    Donner, Tobias H.; Sagi, Dov; Bonneh, Yoram S.; Heeger, David J.

    2013-01-01

    While viewing certain stimuli, perception changes spontaneously in the face of constant input. For example, during “motion induced blindness” (MIB), a small salient target spontaneously disappears and reappears when surrounded by a moving mask. Models of such bistable perceptual phenomena posit spontaneous fluctuations in neuronal activity throughout multiple stages of the visual cortical hierarchy. We used fMRI in humans to link correlated activity fluctuations across human visual cortical areas V1 through V4 to the dynamics (rate and duration) of MIB target disappearance. We computed the correlations between the time series of fMRI activity in multiple retinotopic sub-regions corresponding to MIB target and mask. Linear decomposition of the matrix of temporal correlations revealed spatial patterns of activity fluctuations, irrespective of whether or not these were time-locked to behavioral reports of target disappearance. The spatial pattern that dominated the activity fluctuations during MIB was spatially non-specific, shared by all sub-regions, but did not reflect the dynamics of perception. By contrast, the fluctuations associated with the rate of MIB disappearance were retinotopically-specific for the target sub-region in V4, and the fluctuations associated with the duration of MIB disappearance states were target-specific in V1. Target-specific fluctuations in V1 have not previously been identified by averaging activity time-locked to behavioral reports of MIB disappearance. Our results suggest that different levels of the visual cortical hierarchy shape the dynamics of perception via distinct mechanisms, which are evident in distinct spatial patterns of spontaneous cortical activity fluctuations. PMID:23365254

  14. Influence of process parameter variation on the reflectivity of sputter-deposited W--C multilayer diffraction gratings

    SciTech Connect

    Sager, B.; Benson, P.; Jahoda, K.; Jacobs, J.R.; Bloch, J.J.; Sanders, W.T.; Lagally, M.G.

    1986-05-01

    Multilayer W--C diffraction gratings with nominal d spacings of 35 A have been fabricated by magnetron sputter deposition. The peak and integrated reflectivities of these films have been measured with AlK/sub ..cap alpha../ x rays and compared to theoretical values. The rms surface roughness has been evaluated. The influence of several sputtering-system process parameters on the reflectivities has been investigated.

  15. In vivo skin absorption dynamics of topically applied pharmaceuticals monitored by fiber-optic diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hong; Jheon, Sanghoon; Kim, Jong-Ki

    2007-03-01

    A simple non-invasive ultra-violet/visible (UV/vis) diffusive reflectance spectroscopy combined with fiber-optics was investigated to elicit the dynamics of skin penetration in vivo of a pharmaceutical, aminolevulinic acid polyethylene glycol cream (5-ALA-PEG cream). Temporal data of the reflectance, R( λ), were measured from a bare skin region and from a skin region treated with 5-ALA cream. The difference in apparent optical density [(ΔAOD) = Δ log[1/ R( λ)

  16. Wave reflection and central aortic pressure are increased in response to static and dynamic muscle contraction at comparable workloads.

    PubMed

    Edwards, David G; Mastin, Corey R; Kenefick, Robert W

    2008-02-01

    We determined the effects of static and dynamic muscle contraction at equivalent workloads on central aortic pressure and wave reflection. At random, 14 healthy men and women (23 +/- 5 yr of age) performed a static handgrip forearm contraction [90 s at 30% of maximal voluntary contraction (MVC)], dynamic handgrip contractions (1 contraction/s for 180 s at 30% MVC), and a control trial. During static and dynamic trials, tension-time index was controlled by holding peak tension constant. Measurements of brachial artery blood pressure and the synthesis of a central aortic pressure waveform (by radial artery applanation tonometry and generalized transfer function) were conducted at baseline, during each trial, and during 1 min of postexercise ischemia (PEI). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. AI increased during both static and dynamic trials (static, 5.2 +/- 3.1 to 11.8 +/- 3.4%; dynamic, 5.8 +/- 3.0 to 13.3 +/- 3.4%; P < 0.05) and further increased during PEI (static, 18.5 +/- 3.1%; dynamic, 18.6 +/- 2.9%; P < 0.05). Peripheral and central systolic and diastolic pressures increased (P < 0.05) during both static and dynamic trials and remained elevated during PEI. AI and pressure responses did not differ between static and dynamic trials. Peripheral and central pressures increased similarly during static and dynamic contraction; however, the rise in central systolic pressure during both conditions was augmented by increased wave reflection. The present data suggest that wave reflection is an important determinant of the central blood pressure response during forearm muscle contractions.

  17. The National Board Certification Portfolio Process and Its Influence on Teacher Reflection

    ERIC Educational Resources Information Center

    Palmer, Jennifer L.

    2012-01-01

    This study examined the types of teacher reflections and the changes in reflective levels as 15 candidates for National Board Certification worked through the portfolio process. This study also examined how the portfolio requirements and mentoring from candidate support providers helped teachers deepen their levels of reflection. Study findings…

  18. Synthetic and natural plagioclases: iron variations and its influence on VNIR reflectance spectra

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Orlando, Andrea; Borini, Daniele; Giuli, Gabriele; Serventi, Giovanna; Pratesi, Giovanni; Sgavetti, Maria

    2017-04-01

    Besides being one of the most important rock-forming phases, plagioclase (pl) is a common surface mineral in several Solar System bodies. In particular, pl is present in meteorites and lunar samples, both in lunar Highland, where it is the dominant phase, and Maria samples. Moreover, pl has been detected in Martian meteorites, as well as in HEDs. In visible and near-infrared (VNIR) reflectance spectroscopy this phase is characterized by a crystal field (C.F.) absorption band in iron-bearing samples. In particular, Burns (1993) summarized the electronic absorptions due to iron, pointing out: 1) a broad absorption around 1.25 μm related to a C.F. transition due to Fe2+ replacing Ca2+ in seven-fold coordinated sites; 2) narrow absorptions around 0.4 μm related to tetrahedrally coordinated Fe3+ ions replacing Al in the tetrahedral sites. A better understanding of the spectral properties of Fe2+-pl can be an important tool to investigate the spectral influence of pl in regolith material in which it can be mixed with variable amount of other components with variable abundance. This goal can be reached working on synthetic pl with variable FeO and An contents, which must be well characterized to be sure about the attribution of absorption bands seen in reflectance spectra, as well as working on well characterized (in term of An, iron amount and Fe2+/Fe3+) terrestrial pl. Future rover mission will have onboard hyperspectral instrument working in the VNIR with relative high spatial resolution and, so, with the possibility of measured pl crystals. For this reason, working more in detail on iron bearing plagioclase can be an important task. Here, we present our results on synthetic An90 mol% pl with different iron contents (0, 0.5 and 1.0 FeO wt%) with the aim to investigate the effects of iron substitution on the VNIR spectra of pl. Reagent-grade oxides and carbonates reactants used as starting materials were thoroughly mixed to ensure homogeneity. Each experimental charge

  19. Multiparticle collision dynamics for diffusion-influenced signaling pathways

    NASA Astrophysics Data System (ADS)

    Strehl, R.; Rohlf, K.

    2016-08-01

    An efficient yet accurate simulation method for modeling diffusion-influenced reaction networks is presented. The method extends existing reactive multiparticle collision dynamics by incorporating species-dependent diffusion coefficients, and developing theoretical expressions for the reactant-dependent diffusion control. This off-lattice particle-based mesoscopic simulation tool is particularly suited for problems in which detailed descriptions of particle trajectories and local reactions are required. Numerical simulations of an intracellular signaling pathway for bacterial chemotaxis are carried out to validate our approach, and to demonstrate its efficiency.

  20. Vestibular ontogeny: Measuring the influence of the dynamic environment

    NASA Technical Reports Server (NTRS)

    Jones, Timothy A.; Devries, Sherri M.; Dubois, Linda M.; Nelson, Rick C.

    1993-01-01

    In comparison to other special senses, we are only meagerly informed about the development of vestibular function and the mechanisms that may operate to control or influence the course of vestibular ontogeny. Perhaps one contributing factor to this disparity is the difficulty of evaluating vestibular sense organs directly and noninvasively. The present report describes a recently developed direct noninvasive vestibular function test that can be used to address many basic questions about the developing vestibular system. More particularly, the test can be used to examine the effects of the dynamic environment (e.g. gravitational field and vibration) on vestibular ontogeny.

  1. [Oscillatory structures of blood flow reflect the dynamics of information processes in microvascular networks].

    PubMed

    Krupatkin, A I

    2010-01-01

    Laser Doppler flowmetry was applied at 30 healthy persons and 57 patients in glabrious skin of the II-nd and V-th fingertips: before and after median or ulnar nerve sutures (n = 29) and after hand sympathectomy (n = 28). Information processes in microvascular networks contain both stationary and oscillatory components. For the first time wavelet-analysis of blood flow oscillatory organization was used to study the dynamics of information processes in microvascular networks. Methodics approach was proposed to estimate the general quantity of information, the valuable and semantic features of different information channels and the information regime (multi-channeled or by resonance). Deficit of both general information quantity and its content (particularly of external information), the decrease of accessibility to information and of system self-organization were typical during denervation syndrome. Semantic information signs changed mainly after sympathectomy. The dynamics of information process reflect the functional significance of microcirculation in the course of nerve regeneration and skin reinnervation. Increment of information quantity with mainly trophic content occurred in the preimpulse stage of nerve regeneration; it corresponds to quantitative development of skin microvascular networks with the purpose of trophic support of reinnervation. Mainly the semantic content of information was modulated at the impulse stage in accordance with increase of homeostatic control intensity. Information peculiarities in the transitional period (from preimpulse to impulse stage) included the decrease of sporadic processes, increase of determinism in the system management, predomination of trophic content assimilation with the increment of own myogenic activity, the possibility of not only multi-channeled regime but resonance also. The anti-entropy significance of information was confirmed.

  2. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching.

    PubMed Central

    Sund, S E; Axelrod, D

    2000-01-01

    Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics. PMID:10969025

  3. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

    PubMed

    Chen, Li; Ueta, Hirokazu; Bisson, Régis; Beck, Rainer D

    2013-05-01

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  4. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    SciTech Connect

    Chen Li; Ueta, Hirokazu; Beck, Rainer D.; Bisson, Regis

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  5. Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability?

    NASA Astrophysics Data System (ADS)

    Kopp, Robert E.

    2013-08-01

    To test a hypothesized faster-than-global sea level acceleration along the mid-Atlantic United States, I construct a Gaussian process model that decomposes tide gauge data into short-term variability and longer-term trends, and into globally coherent, regionally coherent, and local components. While tide gauge records indicate a faster-than-global increase in the rate of mid-Atlantic U.S. sea level rise beginning ˜1975, this acceleration could reflect either the start of a long-term trend or ocean dynamic variability. The acceleration will need to continue for ˜2 decades before the rate of increase of the sea level difference between the mid-Atlantic and southeastern U.S. can be judged as very likely unprecedented by 20th century standards. However, the difference is correlated with the Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Gulf Stream North Wall indices, all of which are currently within the range of past variability.

  6. Influence of stent configuration on cerebral aneurysm fluid dynamics.

    PubMed

    Babiker, M Haithem; Gonzalez, L Fernando; Ryan, Justin; Albuquerque, Felipe; Collins, Daniel; Elvikis, Arius; Frakes, David H

    2012-02-02

    Embolic coiling is the most popular endovascular treatment available for cerebral aneurysms. Nevertheless, the embolic coiling of wide-neck aneurysms is challenging and, in many cases, ineffective. Use of highly porous stents to support coiling of wide-neck aneurysms has become a common procedure in recent years. Several studies have also demonstrated that high porosity stents alone can significantly alter aneurysmal hemodynamics, but differences among different stent configurations have not been fully characterized. As a result, it is usually unclear which stent configuration is optimal for treatment. In this paper, we present a flow study that elucidates the influence of stent configuration on cerebral aneurysm fluid dynamics in an idealized wide-neck basilar tip aneurysm model. Aneurysmal fluid dynamics for three different stent configurations (half-Y, Y and, cross-bar) were first quantified using particle image velocimetry and then compared. Computational fluid dynamics (CFD) simulations were also conducted for selected stent configurations to facilitate validation and provide more detailed characterizations of the fluid dynamics promoted by different stent configurations. In vitro results showed that the Y stent configuration reduced cross-neck flow most significantly, while the cross-bar configuration reduced velocity magnitudes within the aneurysmal sac most significantly. The half-Y configuration led to increased velocity magnitudes within the aneurysmal sac at high parent-vessel flow rates. Experimental results were in strong agreement with CFD simulations. Simulated results indicated that differences in fluid dynamic performance among the different stent configurations can be attributed primarily to protruding struts within the bifurcation region.

  7. Canopy structural complexity influences forest canopy reflectance: linking terrestrial lidar with Landsat observations

    NASA Astrophysics Data System (ADS)

    Hardiman, B. S.; Atkins, J.; Dahlin, K.; Fahey, R. T.; Gough, C. M.

    2016-12-01

    Canopy physical structure - leaf quantity and arrangement - strongly affects light interception and distribution. As such, canopy physical structure is a key driver of forest carbon (C) dynamics. Terrestrial lidar systems (TLS) provide spatially explicit, quantitative characterizations of canopy physical structure at scales commensurate with plot-scale C cycling processes. As an example, previous TLS-based studies established that light use efficiency is positively correlated with canopy physical structure, influencing the trajectory of net primary production throughout forest development. Linking TLS measurements of canopy structure to multispectral satellite observations of forest canopies may enable scaling of ecosystem C cycling processes from leaves to continents. We will report on our study relating a suite of canopy structural metrics to well-established remotely sensed measurements (NDVI, EVI, albedo, tasseled cap indices, etc.) which are indicative of important forest characteristics (leaf area, canopy nitrogen, light interception, etc.). We used Landsat data, which provides observations at 30m resolution, a scale comparable to that of TLS. TLS data were acquired during 2009-2016 from forest sites throughout Eastern North America, comprised primarily of NEON and Ameriflux sites. Canopy physical structure data were compared with contemporaneous growing-season Landsat data. Metrics of canopy physical structure are expected to covary with forest composition and dominant PFT, likely influencing interaction strength between TLS and Landsat canopy metrics. More structurally complex canopies (those with more heterogeneous distributions of leaf area) are expected to have lower albedo, suggesting greater canopy light absorption (higher fAPAR) than simpler canopies. We expect that vegetation indices (NDVI, EVI) will increase with TLS metrics of spatial heterogeneity, and not simply quantity, of leaves, supporting our hypothesis that canopy light absorption is

  8. Diurnal and seasonal dynamics of canopy-level solar-induced chlorophyll fluorescence and spectral reflectance indices in a cornfield

    USDA-ARS?s Scientific Manuscript database

    A collaborative field campaign was undertaken to examine the temporal dynamics of canopy-level solar-induced fluorescence (SIF) and the Photochemical Reflectance Index (PRI) in conjunction with photosynthetic light use efficiency (LUE) obtained from fluxes measured at an instrumented tower. We condu...

  9. Influence of reanalysis datasets on dynamically downscaling the recent past

    NASA Astrophysics Data System (ADS)

    Moalafhi, Ditiro B.; Evans, Jason P.; Sharma, Ashish

    2017-08-01

    Multiple reanalysis datasets currently exist that can provide boundary conditions for dynamic downscaling and simulating local hydro-climatic processes at finer spatial and temporal resolutions. Previous work has suggested that there are two reanalyses alternatives that provide the best lateral boundary conditions for downscaling over southern Africa. This study dynamically downscales these reanalyses (ERA-I and MERRA) over southern Africa to a high resolution (10 km) grid using the WRF model. Simulations cover the period 1981-2010. Multiple observation datasets were used for both surface temperature and precipitation to account for observational uncertainty when assessing results. Generally, temperature is simulated quite well, except over the Namibian coastal plain where the simulations show anomalous warm temperature related to the failure to propagate the influence of the cold Benguela current inland. Precipitation tends to be overestimated in high altitude areas, and most of southern Mozambique. This could be attributed to challenges in handling complex topography and capturing large-scale circulation patterns. While MERRA driven WRF exhibits slightly less bias in temperature especially for La Nina years, ERA-I driven simulations are on average superior in terms of RMSE. When considering multiple variables and metrics, ERA-I is found to produce the best simulation of the climate over the domain. The influence of the regional model appears to be large enough to overcome the small difference in relative errors present in the lateral boundary conditions derived from these two reanalyses.

  10. Influence of posturographic platform biofeedback training on the dynamic balance of adult stroke patients.

    PubMed

    Maciaszek, Janusz; Borawska, Sylwia; Wojcikiewicz, Jacek

    2014-07-01

    The aim of the experiment was to analyze the influence of posturographic platform biofeedback training on the dynamic balance of patients who experienced ischemic stroke. The study included 21 patients treated at the Rehabilitation Center of the District Hospital in Białogard, in the Ward of Neurological Rehabilitation with the Stroke Division. The age of the patients (11 in the experimental and 10 in the control group) ranged between 55 and 65 years. The level of dynamic balance was determined with Timed Up and Go Test. The experimental group was subjected to the biofeedback training, practicing maintenance of body balance (forced sway training) on posturographic platform for 15 consecutive days. The perception of dynamic balance in the group subjected to biofeedback training improved to a markedly greater extent (P < .05) as compared with conventionally rehabilitated group. Participation in biofeedback training exerted stronger effect on the dynamic balance of patients who experienced the stroke of the left hemisphere with right-sided hemiparesis than in those with right hemisphere stroke and left-sided hemiparesis. The utilization of feedback mechanisms during training on a posturographic platform can be reflected by enhanced stimulation and further improvement of the control of performed motor tasks.

  11. Wetland dynamics influence mid-continent duck recruitment

    USGS Publications Warehouse

    Anteau, Michael J.; Pearse, Aaron T.; Szymankski, Michael L.

    2013-01-01

    Recruitment is a key factor influencing duck population dynamics. Understanding what regulates recruitment of ducks is a prerequisite to informed habitat and harvest management. Quantity of May ponds (MP) has been linked to recruitment and population size (Kaminski and Gluesing 1987, Raveling and Heitmeyer 1989). However, wetland productivity (quality) is driven by inter-annual hydrological fluctuations. Periodic drying of wetlands due to wet-dry climate cycles releases nutrients and increases invertebrate populations when wet conditions return (Euliss et al. 1999). Wetlands may also become wet or dry within a breeding season. Accordingly, inter-annual and intra-seasonal hydrologic variation potentially influence duck recruitment. Here, we examined influences of wetland quantity, quality, and intra-seasonal dynamics on recruitment of ducks. We indexed duck recruitment by vulnerability-corrected age ratios (juveniles/adult females) for mid-continent Gadwall (Anas strepera). We chose Gadwall because the majority of the continental population breeds in the Prairie Pothole Region (PPR), where annual estimates of MP exist since 1974. We indexed wetland quality by calculating change in MP (?MP) over the past two years (?MP = 0.6[MPt – MPt-1] + 0.4[MPt – MPt-2]). We indexed intra-seasonal change in number of ponds by dividing the PPR mean standardized precipitation index for July by MP (hereafter summer index). MP and ?MP were positively correlated (r = 0.65); therefore, we calculated residual ?MP (?MPr) with a simple linear regression using MP, creating orthogonal variables. Finally, we conducted a multiple regression to examine how MP, ?MPr, and summer index explained variation in recruitment of Gadwall from 1976–2010. Our model explained 67% of the variation in mid-continent Gadwall recruitment and all three hydrologic indices were positively correlated with recruitment (Figure 1). Type II semi-partial R2 estimates indicated that MP accounted for 41%, ?MPr

  12. Influence of some development parameters on the reflection grating structure in dichromated gelatin.

    PubMed

    Keinonen, T; Salminen, O

    1988-06-15

    We made reflection gratings by using the gelatin of Kodak 649F spectroscopic plates. The concentration of ammonium dichromate sensitizer was varied, and reflection efficiencies of fully developed plates were measured in different reconstructing angles. During the development process we varied the washing time, the time interval between the washing and isopropanol baths, and the duration of the isopropanol bath. The reflection efficiencies were measured for each processing variable. Finally, the characteristics of the gratings were tested by varying the recording geometry.

  13. Chlorophyll Fluorescence and Dynamic Xanthophyll Reflectance as Methods to Estimate Photosynthesis with Remote Sensors - A Modelling Approach

    NASA Astrophysics Data System (ADS)

    Vilfan, N.; Van der Tol, C.; Verhoef, W.

    2016-12-01

    Chlorophyll fluorescence (ChlF) has been proven valuable in studying the dynamics of photosynthesis: together with the photochemical reflectance index (PRI), which reflects the changes in reflectance around 535 nm due to the xanthophyll cycle effect, it offers a powerful way to non-destructively quantify plant photosynthetic and dissipation activity from leaf to potentially global scale. We present an extended simulation model, Fluspect, for the transfer of light within the leaf as a function of its pigment contents and structure. Output of the model are reflectance and transmittance spectra of the leaf as well as ChlF spectra. From ChlF spectra, fluorescence quantum efficiency parameters (η) of photosystems I and II can be retrieved. Moreover, we extended and parameterized Fluspect by including a physically based description of the dynamic xanthophyll reflectance (XR). We introduced a new, retrievable parameter, V2Z, for the status of the XR. Finally, we combined the model Fluspect with a simple enzyme kinetics model of photosynthesis. In this study, we explore the combined model by using relations among photochemical quenching (PQ), non-photochemical quenching (NPQ), V2Z and η. We explore these relationships by using multiple available datasets, where measurements were by different combinations of the following methods: (1) hyperspectral leaf reflectance in visible to NIR region together with ChlF spectra, (2) gas exchange, and (3) Pulse Amplitude Modulated (PAM) fluorescence. The aim of the study is to explore the relationships between the two fundamentally different components, namely the transfer of light within the leaf and the enzyme kinetics of photosynthesis. Moreover, it is now possible to simulate dynamic xanthophyll reflectance and chlorophyll fluorescence quenching simultaneously, which is relevant for the remote sensing of photosynthesis.

  14. The messenger matters: Pollinator functional group influences mating system dynamics.

    PubMed

    Weber, Jennifer J

    2017-08-01

    The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross-pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self- and cross-pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross-pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen () examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self-incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self- and cross-pollination paradigm. Rhodes et al. () demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics. © 2017 John Wiley & Sons Ltd.

  15. Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics.

    PubMed

    Boughter, Christopher T; Monje-Galvan, Viviana; Im, Wonpil; Klauda, Jeffery B

    2016-11-17

    In this study, the influence of cholesterol on lipid bilayers is investigated by changing phospholipid headgroup, cholesterol concentration, chain saturation, and temperature. Molecular dynamics (MD) simulations were used to characterize bilayers containing phosphatidylcholine (PC) head groups with either fully saturated dimyristoyl (DM) or monounsaturated dioleoyl (DO) acyl chains and cholesterol concentrations ranging from 5 to 50%. To further explore the effects of cholesterol on bilayers with different head groups, we also performed MD simulations of bilayer systems having 15% cholesterol with phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS), each having DM chains and at a temperature above the solid gel phase transition. Additionally, bilayers of DMPA, DMPE, and DMPS with 15% cholesterol were simulated at temperatures below the solid gel phase transition temperatures. Compared to membranes without cholesterol, cholesterol in the model bilayers increases chain order in bilayers with the highest order in the liquid ordered and solid gel phases. Head group properties and acyl chain saturation are also found to critically impact bilayer dynamics, largely through the formation of hydrogen bonds between membrane components. These results provide a better understanding of the basic characteristics on structure and dynamics of cholesterol-containing membranes by revealing molecular details of interactions between cholesterol and phospholipids as well as add to the library of simulation data necessary for the MD community to accurately represent relevant models of atomic-scale systems.

  16. Influence of dynamic and thermodynamic features on Indian summer monsoon

    SciTech Connect

    Babu, C.A.; Leena, P.; Priya, P.

    1996-12-31

    Indian summer monsoon plays vital role in the economy of the country. Being an agricultural country, the onset phase of monsoon is important since beginning of cultivation depends on rain-fed irrigation. Summer heating of the Asian land mass and subsequent differential heating between peninsular and north India are considered to be the principal cause for the summer monsoon. An east-west synoptic scale zonal circulation is observed over the Indian region during monsoon period which is similar to the planetary scale circulation. The ascending branch of this circulation is over northwest India and the descending branch is over the northeast India. This east-west zonal circulation is closely related to the monsoon activity. During the onset phase of monsoon spectacular changes occur in the dynamical and thermodynamic structure of the atmosphere. In this paper an attempt is made to diagnose the features of the atmosphere over the Indian region employing dynamical and thermodynamical parameters to as to bring out the relationship between structure of atmosphere and strength of monsoon. Preliminary results indicate that the strength of monsoon and its various epochs are influenced by dynamic and thermodynamic features of the atmosphere.

  17. The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence.

    PubMed

    Krapohl, Eva; Rimfeld, Kaili; Shakeshaft, Nicholas G; Trzaskowski, Maciej; McMillan, Andrew; Pingault, Jean-Baptiste; Asbury, Kathryn; Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Plomin, Robert

    2014-10-21

    Because educational achievement at the end of compulsory schooling represents a major tipping point in life, understanding its causes and correlates is important for individual children, their families, and society. Here we identify the general ingredients of educational achievement using a multivariate design that goes beyond intelligence to consider a wide range of predictors, such as self-efficacy, personality, and behavior problems, to assess their independent and joint contributions to educational achievement. We use a genetically sensitive design to address the question of why educational achievement is so highly heritable. We focus on the results of a United Kingdom-wide examination, the General Certificate of Secondary Education (GCSE), which is administered at the end of compulsory education at age 16. GCSE scores were obtained for 13,306 twins at age 16, whom we also assessed contemporaneously on 83 scales that were condensed to nine broad psychological domains, including intelligence, self-efficacy, personality, well-being, and behavior problems. The mean of GCSE core subjects (English, mathematics, science) is more heritable (62%) than the nine predictor domains (35-58%). Each of the domains correlates significantly with GCSE results, and these correlations are largely mediated genetically. The main finding is that, although intelligence accounts for more of the heritability of GCSE than any other single domain, the other domains collectively account for about as much GCSE heritability as intelligence. Together with intelligence, these domains account for 75% of the heritability of GCSE. We conclude that the high heritability of educational achievement reflects many genetically influenced traits, not just intelligence.

  18. The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence

    PubMed Central

    Krapohl, Eva; Rimfeld, Kaili; Shakeshaft, Nicholas G.; Trzaskowski, Maciej; McMillan, Andrew; Pingault, Jean-Baptiste; Asbury, Kathryn; Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Because educational achievement at the end of compulsory schooling represents a major tipping point in life, understanding its causes and correlates is important for individual children, their families, and society. Here we identify the general ingredients of educational achievement using a multivariate design that goes beyond intelligence to consider a wide range of predictors, such as self-efficacy, personality, and behavior problems, to assess their independent and joint contributions to educational achievement. We use a genetically sensitive design to address the question of why educational achievement is so highly heritable. We focus on the results of a United Kingdom-wide examination, the General Certificate of Secondary Education (GCSE), which is administered at the end of compulsory education at age 16. GCSE scores were obtained for 13,306 twins at age 16, whom we also assessed contemporaneously on 83 scales that were condensed to nine broad psychological domains, including intelligence, self-efficacy, personality, well-being, and behavior problems. The mean of GCSE core subjects (English, mathematics, science) is more heritable (62%) than the nine predictor domains (35–58%). Each of the domains correlates significantly with GCSE results, and these correlations are largely mediated genetically. The main finding is that, although intelligence accounts for more of the heritability of GCSE than any other single domain, the other domains collectively account for about as much GCSE heritability as intelligence. Together with intelligence, these domains account for 75% of the heritability of GCSE. We conclude that the high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. PMID:25288728

  19. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Harriss, R. C.; Usry, J. W.; Poole, L. R.; Houghton, W. M.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    The effects of dissolved organic materials on turbid-water optical properties are assessed, by means of field measurements and laboratory simulations in which upwelled reflectance, attenuation, absorption, and backscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. The data show that dissolved organic materials decrease upwelled reflectance from turbid waters, and that the decrease in reflectance is a nonlinear function of concentration with the largest gradients at low carbon concentrations, depending on wavelength. Upwelled reflectance is found to be highly correlated with two backscatter-absorption parameters used in some optical models, which are nonlinear with dissolved organic material concentration change.

  20. The influence of roughness on reflectivity evolution of iron irradiated by 1064nm CW laser

    NASA Astrophysics Data System (ADS)

    Wu, Taotao; Zhu, Yongxiang; Wei, Chenghua; Zhou, Menlian; Wang, Lijun

    2017-05-01

    Reflectivity is an important physical quantity governing the effects of laser interaction with metal. It directly determines the energy deposition and the relevant thermal-mechanical response of metal. However, metal's reflectivity is not constant, which will be significantly affected by the surface states, such as roughness and oxidation. Industrial grade polycrystalline iron substrates with different surface roughness were prepared. Samples were ground and polished using progressively finer SiC paper and polisher. The surface morphology and roughness were determined by a 3D microscope. The surface roughness values of these samples varied from 0.08 μm to 2.65 μm. The reflectivity of samples at 1064nm were measured by an integral sphere equipped an InGaAs detector. The reflectivity values increased from 0.52 to 0.70 as the roughness decreasing. Later on, samples were irradiated by 1064nm continuous wave fiber laser in the intensity of 2 W/cm2. The real time reflectivity during laser illumination was also measured. As the samples' temperature rising, the surface oxidation reaction took place. The reflectivity evolved because of the molecular absorption and interfere effect of the oxides. The phenomena of reflectivity evolution were more obvious as samples smoother. Although the initial reflectivity of samples was different, samples show the same final reflectivity after laser irradiation.

  1. Dynamic Response of Dielectric Lenses Influenced By Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Schuster, Daniel George, Jr.

    Through analytical modeling and numerical simulations the dynamic response and stability of dielectric lenses that are influenced by radiation pressure forces and torques is investigated. Radiation pressure forces and torques are applied to the system via momentum transfer between the laser beam light and lens. The 2D response of a rolling semi-cylindrical rod that is influenced by radiation pressure is simulated using constant and modulating light intensities. Stable oscillations and regions of stability in the motion of the semi-cylindrical rod are found for both a mirrored and non-mirrored rod. The results showed that at a critical intensity of 1.72 x 106 W/m2 and 12.81 x 106 W/m2 the mirrored and non-mirrored rods motion bifurcates and begins to show neutrally stable oscillations around some higher angular orientation. Lastly, it was shown that by sinusoidally modulating the laser intensity that the motion showed stable oscillations around previously unstable equilibrium angles of attack for a constant intensity. The dynamics of a gravity-free 3D hemisphere that is influenced by radiation pressure is also considered. The motion of the system is analyzed to produce various types of gyroscopic motion. Using analytical and numerical techniques pure precessional motion along with looping, sinusoidal, and cuspsoidal nutation was shown. By first utilizing a closed loop PID controller, an open loop control algorithm was developed using an intensity time history from the closed loop system. The intensity time history was then applied to allow for angular position control of the hemisphere for a region of a 4D parameter space. The results showed that for a given parameter space approximately 25% of the initial condition parameter space allowed for the steady state angular position of the hemisphere to be within 5o of the incoming laser light direction.

  2. Influence of Meals and Glycemic Changes on QT Interval Dynamics.

    PubMed

    Cirincione, Brenda; Sager, Philip T; Mager, Donald E

    2017-08-01

    Thorough QT/QTc studies have become an integral part of early drug development programs, with major clinical and regulatory implications. This analysis expands on existing pharmacodynamic models of QT interval analysis by incorporating the influence of glycemic changes on the QT interval in a semimechanistic manner. A total of 21 healthy subjects enrolled in an open-label phase 1 pilot study and provided continuous electrocardiogram monitoring and plasma glucose and insulin concentrations associated with a 24-hour baseline assessment. The data revealed a transient decrease in QTc, with peak suppression occurring approximately 3 hours after the meal. A semimechanistic modeling approach was applied to evaluate temporal delays between meals and subsequent changes that might influence QT measurements. The food effect was incorporated into a model of heart rate dynamics, and additional delayed effects of the meal on QT were incorporated using a glucose-dependent hypothetical transit compartment. The final model helps to provide a foundation for the future design and analysis of QT studies that may be confounded by meals. This study has significant implications for QT study assessment following a meal or when a cohort is receiving a medication that influences postprandial glucose concentrations. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  3. Network dynamics of social influence in the wisdom of crowds.

    PubMed

    Becker, Joshua; Brackbill, Devon; Centola, Damon

    2017-06-27

    A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) Nature 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.

  4. Influence of Meals and Glycemic Changes on QT Interval Dynamics

    PubMed Central

    Sager, Philip T.; Mager, Donald E.

    2017-01-01

    Abstract Thorough QT/QTc studies have become an integral part of early drug development programs, with major clinical and regulatory implications. This analysis expands on existing pharmacodynamic models of QT interval analysis by incorporating the influence of glycemic changes on the QT interval in a semimechanistic manner. A total of 21 healthy subjects enrolled in an open‐label phase 1 pilot study and provided continuous electrocardiogram monitoring and plasma glucose and insulin concentrations associated with a 24‐hour baseline assessment. The data revealed a transient decrease in QTc, with peak suppression occurring approximately 3 hours after the meal. A semimechanistic modeling approach was applied to evaluate temporal delays between meals and subsequent changes that might influence QT measurements. The food effect was incorporated into a model of heart rate dynamics, and additional delayed effects of the meal on QT were incorporated using a glucose‐dependent hypothetical transit compartment. The final model helps to provide a foundation for the future design and analysis of QT studies that may be confounded by meals. This study has significant implications for QT study assessment following a meal or when a cohort is receiving a medication that influences postprandial glucose concentrations. PMID:28543601

  5. The influence of acoustic reflections from diffusive architectural surfaces on spatial auditory perception

    NASA Astrophysics Data System (ADS)

    Robinson, Philip W.

    This thesis addresses the effect of reflections from diffusive architectural surfaces on the perception of echoes and on auditory spatial resolution. Diffusive architectural surfaces play an important role in performance venue design for architectural expression and proper sound distribution. Extensive research has been devoted to the prediction and measurement of the spatial dispersion. However, previous psychoacoustic research on perception of reflections and the precedence effect has focused on specular reflections. This study compares the echo threshold of specular reflections, against those for reflections from realistic architectural surfaces, and against synthesized reflections that isolate individual qualities of reflections from diffusive surfaces, namely temporal dispersion and spectral coloration. In particular, the activation of the precedence effect, as indicated by the echo threshold is measured. Perceptual tests are conducted with direct sound, and simulated or measured reflections with varying temporal dispersion. The threshold for reflections from diffusive architectural surfaces is found to be comparable to that of a specular re ection of similar energy rather than similar amplitude. This is surprising because the amplitude of the dispersed re ection is highly attenuated, and onset cues are reduced. This effect indicates that the auditory system is integrating re ection response energy dispersed over many milliseconds into a single stream. Studies on the effect of a single diffuse reflection are then extended to a full architectural enclosure with various surface properties. This research utilizes auralizations from measured and simulated performance venues to investigate spatial discrimination of multiple acoustic sources in rooms. It is found that discriminating the lateral arrangement of two sources is possible at narrower separation angles when reflections come from at rather than diffusive surfaces. Additionally, subjective impressions are

  6. The Influence of Reflective Self-Explanations on Problem-Solving Performance

    ERIC Educational Resources Information Center

    Kwon, Kyungbin; Jonassen, David H.

    2011-01-01

    In this study, the effects of reflective self-explanations on conceptual understanding and problem solving are investigated in a domain of computer programming. After completing a multiple-choice test, 33 students were asked to reflect on and explain why their answers were correct or incorrect. Groups were divided for post hoc analysis based on…

  7. Surface-sensitive reflection-mode EXAFS from layered sample systems: the influence of surface and interface roughness.

    PubMed

    Keil, P; Lützenkirchen-Hecht, D

    2009-07-01

    The calculation of reflection-mode grazing-incidence X-ray absorption spectra from single surfaces and (multi-)layered systems is studied here. In particular, the influence of the surface and interface roughness was investigated in detail. Simulations of grazing-incidence reflection-mode EXAFS spectra using a simple Fresnel theory neglecting any effect of roughness are compared with the Névot-Croce model and the elaborated distorted-wave Born approximation which both include surface and interface roughness. Data are presented for clean gold surfaces, where the strong influence of the surface roughness on the resulting spectra is demonstrated. Furthermore, in the case of layered systems, the influence of both the outer (air or vacuum side) surface roughness and the inner interface roughness on the reflection-mode EXAFS spectra is evaluated. The practical consequences of the observed correlations are discussed, and a quantitative data analysis of a copper sample that was oxidized in ambient air for several months is shown, including the evaluation of specular reflectivity profiles at fixed energy.

  8. Suppressed vitrinite reflectance in the Ferron coalbed gas fairway, central Utah: Possible influence of overpressure

    USGS Publications Warehouse

    Quick, J.C.; Tabet, D.E.

    2003-01-01

    Chemical and thermoplastic properties of coals in the Ferron coalbed methane fairway indicate that coals in the north are of higher rank than coals in the south. Measured vitrinite reflectance does not accurately show this variation of coal rank. Although vitrinite reflectance in the southern and central part of the fairway is consistent with other measures of coal rank, suppressed vitrinite reflectance is observed in the north where methane contents are relatively high. This coincidence of suppressed reflectance and relatively high coalbed methane yields may be significant. We speculate that the suppressed reflectance values result from a burial history where overpressure developed during the early stages of coalification and persisted until recent uplift and cooling; such instances may be diagnostic of prospective coalbed methane targets elsewhere. ?? 2003 Published by Elsevier B.V.

  9. Influence of annealing on chain entanglement and molecular dynamics in weak dynamic asymmetry polymer blends.

    PubMed

    Lin, Yu; Tan, Yeqiang; Qiu, Biwei; Shangguan, Yonggang; Harkin-Jones, Eileen; Zheng, Qiang

    2013-01-17

    The influence of annealing above the glass transition temperature (T(g)) on chain entanglement and molecular dynamics of solution-cast poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) blends was investigated via a combination of dynamic rheological measurement and broadband dielectric spectroscopy. Chain entanglement density increases when the annealing temperature and/or time increases, resulting from the increased efficiency of chain packing and entanglement recovery. The results of the annealing treatment without cooling revealed that the increase of the entanglement density occurred during the annealing process instead of the subsequent cooling procedure. Annealing above T(g) exerts a profound effect on segmental motion, including the transition temperature and dynamics. Namely, T(g) shifts to higher temperatures and the relaxation time (τ(max)) increases due to the increased entanglement density and decreased molecular mobility. Either T(g) or τ(max) approaches an equilibrium value gradually, corresponding to the equilibrium entanglement density that might be obtained through the theoretical predictions. However, no obvious distribution broadening is observed due to the unchanged heterogeneous dynamics. Furthermore, side group rotational motion could be freely achieved without overcoming the chain entanglement resistance. Hence, neither the dynamics nor the distribution width of the subglass relaxation (β- and γ-relaxation) processes is affected by chain entanglement resulting from annealing, indicating that the local environment of the segments is unchanged.

  10. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  11. The influence of reflection on portfolio learning in undergraduate dental education.

    PubMed

    Koole, S; Vanobbergen, J; De Visschere, L; Aper, L; Dornan, T; Derese, A

    2013-02-01

    Disparity exists between the growing consensus about the positive effects of reflection on performance and the scarcity of empirical evidence demonstrating this effect. Portfolios are considered a useful instrument to assess and supervise competence-based education and to stimulate reflection. The present study describes the introduction of a portfolio in a social dentistry and oral health promotion course and investigates student reflection as a predictor for the acquisition of the other competences in the course. Fourth year undergraduate dental students (n = 110) in the course 'Society and Health' between 2008 and 2011 collected evidence in their portfolios, demonstrating the acquisition of five competences: the ability to (1) assess the oral health profile of a target group; (2) integrate theoretical models in health promotion; (3) search for and apply scientific evidence; (4) work trans-, multi- and/or trans-disciplinarily; (5) reflect on personal development. Linear regression analysis was used to investigate the predictive value of reflection on the other course related competences. Reflection scores proved to significantly predict other course-related competences, when analysing all students between 2008 and 2011 and for each year separately, explaining between 10.7% and 25.5% of the variance in the other competences. Undergraduate dental students' competences related to social dentistry and oral health promotion were significantly predicted by the reflection scores obtained in a portfolio-based context. In line with the growing consensus about the benefits of reflection for dental students and professionals, results suggest the value to further develop the integration of reflection in dental education and practice. © 2012 John Wiley & Sons A/S.

  12. Theoretical evaluation of Brillouin dynamic grating length localized by optical correlation domain technique through reflection spectrum simulation

    NASA Astrophysics Data System (ADS)

    Kendy Yamashita, Rodrigo; Kishi, Masato; Hotate, Kazuo

    2017-04-01

    We derive formulae based on Fourier transformation to calculate the reflection spectrum of a Brillouin dynamic grating (BDG), which is localized along an optical fiber by an optical correlation domain technique. First, we calculate the typical reflection spectra of the BDG localized by the technique and confirm the validity of the formulae by showing coincidence with previous theoretical or experimental works. Next, we evaluate theoretically the spatial resolution in the BDG distributed measurement by the technique, through simulations considering different strained fiber lengths. It is confirmed theoretically, for the first time, that the resolution in the BDG measurement is worse than that for the Brillouin gain spectrum.

  13. Communication: The influence of vibrational parity in chiral photoionization dynamics

    SciTech Connect

    Powis, Ivan

    2014-03-21

    A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H{sub 2}O{sub 2}. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

  14. Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

    NASA Astrophysics Data System (ADS)

    Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd

    2017-07-01

    Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

  15. Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

    NASA Astrophysics Data System (ADS)

    Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd

    2017-03-01

    Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

  16. Deriving seasonal dynamics in ecosystem properties of semi-arid savannas using in situ based hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Tagesson, T.; Fensholt, R.; Huber, S.; Horion, S.; Guiro, I.; Ehammer, A.; Ardö, J.

    2015-02-01

    This paper investigates how seasonal hyperspectral reflectance data (between 350 and 1800 nm) can be used to infer ecosystem properties for a semi-arid savanna ecosystem in West Africa using a unique in situ based dataset. Relationships between seasonal dynamics in hyperspectral reflectance, and ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. Reflectance data (ρ) were used to study the relationship between normalised difference spectral indices (NDSI) and the measured ecosystem properties. Finally, also the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared (biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A-band at 761 nm used for estimating chlorophyll fluorescence (GPP, and LUE), and blue wavelengths (FAPAR). The NDSI with the strongest correlation to: (i) biomass combined red edge reflectance (ρ705) with green reflectance (ρ587), (ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), (iii) the LUE combined red (ρ688) with blue reflectance (ρ436), and (iv) FAPAR combined blue (ρ399) and near infrared (ρ1295) wavelengths. NDSI combining near infrared and shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth Observation based properties of semi-arid ecosystems, as well as insights for designing spectral characteristics of future sensors for ecosystem monitoring.

  17. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    PubMed

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  18. Mcl-1 dynamics influence mitotic slippage and death in mitosis

    PubMed Central

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-01-01

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution. PMID:26769847

  19. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen.

    PubMed

    Satterfield, Dara A; Altizer, Sonia; Williams, Mary-Kate; Hall, Richard J

    2017-01-01

    Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha) that infects monarch butterflies (Danaus plexippus). We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect.

  20. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen

    PubMed Central

    Altizer, Sonia; Williams, Mary-Kate; Hall, Richard J.

    2017-01-01

    Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha) that infects monarch butterflies (Danaus plexippus). We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect. PMID:28099501

  1. Wear particles: Influence on local stress and dynamical instabilities

    NASA Astrophysics Data System (ADS)

    Nhu, Viet-Hung; Renouf, Mathieu; Massi, Francesco; Saulot, Aurélien

    2013-06-01

    When two continuous bodies are in contact and subjected to relative motion, both particle detachment and dynamic instabilities naturally occur. To properly model such interacting phenomena, it is required to take account for the discontinuity of the interfacial layer (usually modeled with Discrete Element Model) as well as the continuity of the bodies in contact (usually modeled with Finite Element Model). For that, the present paper aims at validating experimentally the coupled FEM-DEM method. The experimental set-up aims at modeling the frictional behavior between a holed disk, tied on its exterior side and made of transparent polymer with birefringence property, and an inner rotating cylinder, made of steel. This last is statically enlarged to reach the wanted contact pressure and then animated with constant angular velocity. The birefringence property of the disk is used to dynamically visualize the evolution of stresses in the disk at both contact scale and body scale. Based on the same principle with the same boundary conditions, the numerical model coupled the modeling of a deformable disk, a pseudo-rigid cylinder and wear particles by a combination of a finite element method and a discrete element method. Parametrical study has been numerically made to study the influence of particle morphology on stress evolution in the disk. A good agreement is showed between the numerical results obtained with particles artificially introduced in the contact and the experimental results obtained with wear particles naturally produced in the contact.

  2. Influence of unsteady aerodynamics on driving dynamics of passenger cars

    NASA Astrophysics Data System (ADS)

    Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.

    2014-11-01

    Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.

  3. Microphysical and Dynamical Influences on Cirrus Cloud Optical Depth Distributions

    SciTech Connect

    Kay, J.; Baker, M.; Hegg, D.

    2005-03-18

    Cirrus cloud inhomogeneity occurs at scales greater than the cirrus radiative smoothing scale ({approx}100 m), but less than typical global climate model (GCM) resolutions ({approx}300 km). Therefore, calculating cirrus radiative impacts in GCMs requires an optical depth distribution parameterization. Radiative transfer calculations are sensitive to optical depth distribution assumptions (Fu et al. 2000; Carlin et al. 2002). Using raman lidar observations, we quantify cirrus timescales and optical depth distributions at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Lamont, OK (USA). We demonstrate the sensitivity of outgoing longwave radiation (OLR) calculations to assumed optical depth distributions and to the temporal resolution of optical depth measurements. Recent work has highlighted the importance of dynamics and nucleation for cirrus evolution (Haag and Karcher 2004; Karcher and Strom 2003). We need to understand the main controls on cirrus optical depth distributions to incorporate cirrus variability into model radiative transfer calculations. With an explicit ice microphysics parcel model, we aim to understand the influence of ice nucleation mechanism and imposed dynamics on cirrus optical depth distributions.

  4. The influence of natural scene dynamics on auditory cortical activity.

    PubMed

    Chandrasekaran, Chandramouli; Turesson, Hjalmar K; Brown, Charles H; Ghazanfar, Asif A

    2010-10-20

    The efficient cortical encoding of natural scenes is essential for guiding adaptive behavior. Because natural scenes and network activity in cortical circuits share similar temporal scales, it is necessary to understand how the temporal structure of natural scenes influences network dynamics in cortical circuits and spiking output. We examined the relationship between the structure of natural acoustic scenes and its impact on network activity [as indexed by local field potentials (LFPs)] and spiking responses in macaque primary auditory cortex. Natural auditory scenes led to a change in the power of the LFP in the 2-9 and 16-30 Hz frequency ranges relative to the ongoing activity. In contrast, ongoing rhythmic activity in the 9-16 Hz range was essentially unaffected by the natural scene. Phase coherence analysis showed that scene-related changes in LFP power were at least partially attributable to the locking of the LFP and spiking activity to the temporal structure in the scene, with locking extending up to 25 Hz for some scenes and cortical sites. Consistent with distributed place and temporal coding schemes, a key predictor of phase locking and power changes was the overlap between the spectral selectivity of a cortical site and the spectral structure of the scene. Finally, during the processing of natural acoustic scenes, spikes were locked to LFP phase at frequencies up to 30 Hz. These results are consistent with an idea that the cortical representation of natural scenes emerges from an interaction between network activity and stimulus dynamics.

  5. Influence of cooling design on fixed-bed reactors dynamics

    SciTech Connect

    Buccala, V.; Borio, D.O.; Romagnoli, J.A.; Porras, J.A. )

    1992-12-01

    Tubular fixed-bed reactors of the heat-exchanger type are selected commonly in industrial plants to carry out highly exothermic reactions. Due to the important heat effects involved, these units usually exhibit the well-known problems of a pronounced maximum in the axial temperature profile (hot spot), combined with high parametric sensitivity. The authors analyzed the response of axial temperature and concentration profiles to changes in the reactant's inlet conditions for the cocurrent design. Nevertheless, more critical disturbances are changes at the inlet coolant temperature which is often used as an indirect manipulated variable for control purposes. Therefore, the influence of this variable on the reactor dynamics will be studied in this paper. Recent steady-state simulation results have shown that the behavior of this type of reactors depends strongly on the mutual direction of the reacting fluid and coolant streams. As optimal operation conditions cannot be defined only on the basis of steady-state analysis, this work complements the above-mentioned works by means of a similar development, performed under nonsteady-state conditions. The underlying idea is that to be confirmed as the best choice, the optimal design found from steady-state analysis should demonstrate also to exhibit an acceptable dynamic performance.

  6. The Influence of Ionospheric Dispersion and Tropospheric Delay on Altimetry using Reflected GPS L1/L2 Signals

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Stosius, Ralf; Beyerle, Georg; Fabra, Fran; Ribo, Serni; Cardellach, Estel; Rius, Antonio; Helm, Achim; Yudanov, Sergei; Mayer, Christoph

    2010-05-01

    GNSS signals reflected from the earth surface can be used for remote sensing. In contrast to an active system a GNSS Reflectometry receiver is a passive device using GNSS signals of opportunity. Reflection tracks from multiple GNSS satellites are distributed in the field of view. In a collaboration with ESA and IEEC we investigate GPS reflections from Sea Ice and Dry Snow (GPS-SIDS). The Sea Ice campaign was conducted in the winter period 2008/2009 in the Disko Bay at the western coast of Greenland. The experiment was running for several months. In the stationary setup, upon the steep coast, daily recurring GPS reflections from 31 satellites were recorded. The reflections covered an area of 40 km² with an outstanding spatial resolution. The objective is to develop a method for submeter altimetry using GPS carrier phase signals. Emphasis is placed on the influence of ionospheric dispersion and tropospheric delay at grazing and slant elevation angles. In collaboration with JAVAD GNSS a commercial receiver was extended for GPS Reflectometry. The receiver computes C/A correlations in the L1 band and L2C correlations in the L2 band. The carrier phase signal is recorded for both frequencies at a sampling rate of 200 Hz. The carrier phase delay of the reflected signal is usually non-coherent for most sea surface roughness conditions. The smooth sea ice surface in Disko Bay qualifies for coherent reflections. The carrier phase delay is inverted to an ellipsoidal height of the reflecting sea ice. The tropospheric bias is corrected using a ray tracing tool. The Total Electron Content (TEC) of the ionosphere is derived from GPS and GLONASS dual frequency measurements during the campaign for ionospheric reference.

  7. INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS

    PubMed Central

    Klusendorf, Anna; Kernozek, Thomas

    2016-01-01

    ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when

  8. INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.

    PubMed

    Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas

    2016-06-01

    Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group

  9. Determination of the dynamic stress intensity factors for 7075-T6 aluminum alloy using the reflected caustic method

    SciTech Connect

    Tsukagoshi, Seiji; Takahashi, Susumu; Shimamoto, Akira

    1996-12-31

    Dynamic fracture initiation and propagation in Al 7075-T6 was investigated experimentally using the optical method of reflected caustics combined with a simplified high speed photography. A crack propagation testing configuration consisting of a three point bending specimen loaded In a drop weighting was used. It was found that prior to crack initiation the stress intensity factor time record calculated using the dynamic impact load and a static formula disagrees with the actual stress Intensity factor measured by caustics. The impact fracture tests are performed. With use of Al 7075-T6 band plate test specimens with a V-notch on their one side. The dynamic stress intensity factor K{sub id} are given. With this, the authors experimentally calculated the dynamic fracture toughness K{sub ID}.

  10. Racial identity and reflected appraisals as influences on Asian Americans' racial adjustment.

    PubMed

    Alvarez, A N; Helms, J E

    2001-08-01

    J. E. Helms's (1990) racial identity psychodiagnostic model was used to examine the contribution of racial identity schemas and reflected appraisals to the development of healthy racial adjustment of Asian American university students (N = 188). Racial adjustment was operationally defined as collective self-esteem and awareness of anti-Asian racism. Multiple regression analyses suggested that racial identity schemas and reflected appraisals were significantly predictive of Asian Americans' racial adjustment. Implications for counseling and future research are discussed.

  11. Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor-liquid equilibria

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazumichi; Hori, Kazumasa; Kon, Misaki; Sasaki, Kiyofumi; Watanabe, Masao

    2016-09-01

    Using molecular dynamics simulations, the present study investigates the precise characteristics of evaporating and reflecting monatomic molecules (argon) composing a kinetic boundary condition (KBC) in a vapor-liquid equilibria. We counted the evaporating and reflecting molecules utilizing two boundaries (vapor and liquid boundaries) proposed by the previous studies (Meland et al. in Phys Fluids 16:223-243, 2004; Gu et al. in Fluid Phase Equilib 297:77-89, 2010). In the present study, we improved the method using the two boundaries incorporating the concept of the spontaneously evaporating molecular mass flux. The present method allows us to count the evaporating and reflecting molecules easily, to investigate the detail motion of the evaporating and reflecting molecules, and also to evaluate the velocity distribution function of the KBC at the vapor-liquid interface, appropriately. From the results, we confirm that the evaporating and reflecting molecules in the normal direction to the interface have slightly faster and significantly slower average velocities than that of the Maxwell distribution at the liquid temperature, respectively. Also, the stall time of the reflecting molecules at the interphase that is the region in the vicinity of the vapor-liquid interface is much shorter than those of the evaporating molecules. Furthermore, we discuss our method for constructing the KBC that incorporates condensation and evaporation coefficients. Based on these results, we suggest that the proposed method is appropriate for investigating KBC in various nonequilibrium states or multi-component systems.

  12. Fluoropolymer Microstructure and Dynamics: Influence of Molecular Orientation Induced by Uniaxial Drawing

    NASA Astrophysics Data System (ADS)

    Miranda, Daniel; Yin, Chaoqing; Runt, James

    Fluorinated semi-crystalline polymer films are attractive for dielectric film applications due to their chemical inertness, heat resistance, and high thermal stability. In the present investigation we explore the influence of orientation induced by uniaxial drawing on the crystalline microstructure and relaxation processes of poly(ethylene-tetrafluoroethylene) (ETFE), in order to ascertain how morphological control can benefit polymer dielectric design. When drawn below or near the Tg, the crystallinity of the drawn films is unchanged, and oriented amorphous structures and crystalline microfibrils form at high draw ratios. This orientation slows segmental relaxation, reflected by an increase in the dynamic Tg, and also delays the transition to the high temperature crystalline form of ETFE. When drawing above the Tg, the films undergo strain-induced crystallization at high draw ratios. For these films an increase in the dynamic Tg is also observed, in addition to a second segmental relaxation process, appearing as a shoulder on the primary process. We propose that this represents a contribution from a rigid amorphous fraction, having slowed chain dynamics. Supported by Office of Naval Research.

  13. Beryllium deposition on International Thermonuclear Experimental Reactor first mirrors: Layer morphology and influence on mirror reflectivity

    SciTech Connect

    De Temmerman, G.; Baldwin, M. J.; Doerner, R. P.; Nishijima, D.; Seraydarian, R.; Schmid, K.; Kost, F.; Linsmeier, Ch.; Marot, L.

    2007-10-15

    Metallic mirrors will be essential components of the optical diagnostic systems in the International Thermonuclear Experimental Reactor (ITER). Reliability of these systems may be affected by mirror reflectivity changes induced by erosion and/or deposition of impurities (carbon, beryllium). The present study aims to assess the effect of beryllium (Be) deposition on the reflectivity of metallic mirrors and to collect data on the optical quality of these layers in terms of morphology, roughness, etc. Mirrors from molybdenum and copper were exposed in the PISCES-B linear plasma device to collect eroded material from graphite and beryllium targets exposed to beryllium-seeded deuterium plasma. After exposure, relative reflectivity of the mirrors was measured and different surface analysis techniques were used to investigate the properties of the deposited layers. Be layers formed in PISCES-B exhibit high levels of porosity which makes the reflectivity of the Be layers much lower than the reflectivity of pure Be. It is found that if Be deposition occurs on ITER first mirrors, the reflectivity of the coated mirrors will strongly depend on the layer morphology, which in turn depends on the deposition conditions.

  14. Influence of liquid sloshing on dynamics of flexible space structures

    NASA Astrophysics Data System (ADS)

    Chiba, M.; Magata, H.

    2017-08-01

    This study involved an analysis of the influence of liquid sloshing on the dynamics of flexible space structures with liquid on-board by considering the main body of a spacecraft as a rigid tank, the flexible appendages as two elastic beams, and on-board liquid as an ideal liquid. The meniscus of the free surface of the liquid due to surface tension was considered. The Lagrangians of the main body of the spacecraft (rigid tank), liquid, and two beams (flexible appendages) were used in addition to assuming symmetric motion of the system; the frequency equations of the coupled system were obtained by applying the Rayleigh-Ritz method. The influence of sloshing motion on the motions of the main body and flexible appendages of the spacecraft was investigated. The results indicated that the vibration characteristics of the coupled system were dependent on the static contact angle of the liquid, irrespective of whether the angle was larger/smaller than θ0=90°.

  15. Dynamic measurement of reflectance/emissivity in mid-infrared band

    NASA Astrophysics Data System (ADS)

    Zhang, Tian-yu; Chen, Min-sun; Zhang, Xiang-yu; Jiang, Hou-man

    2016-11-01

    In order to measure the change of laser energy coupling coefficient with temperature in mid-infrared wave band, reflectance integrating sphere experiment system was designed and set up. 915nm CW laser was used to heat samples and the wavelength of probe laser is 3.8μm. Chopper and phase-locked amplifier were adopted in the system. Thermal imager was used to measure and record the temperature of samples during laser irradiation. The reflectance of steel and aluminum plates to 3.8μm was measured during 915nm laser irradiation. EDS analysis was done to investigate the change of elemental composition in the samples respectively. The experimental results show that, the results of reflectance and radiation temperature measured by this system are relatively accurate during laser irradiation. In the process of temperature rising from 300K to 785K, the color of 45# steel plates turns blue and black, while the color of aluminum alloy plates is basically unchanged. When temperature reaches about 700K, reflectance of 45# steel decreases obviously with the increase of temperature, while reflectance of aluminum is almost constant. The reflectance is probably determined by the oxide in the surface of samples which is consistent with the results of EDS analysis. Reflectance decreases with the increase of the content of oxygen in the surface. The reason of why the reflectance of aluminum is almost constant is that aluminum oxide is not generate massively under 750K.

  16. Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2010-11-01

    Clinical and epidemiologic studies have shown that hypertension plays a key role in development of left ventricular (LV) hypertrophy and ultimately heart failure mostly due to increased LV workload. Therefore, it is crucial to diagnose and treat abnormal high LV workload at early stages. The pumping mechanism of the heart is pulsatile, thus it sends pressure and flow wave into the compliant aorta. The wave dynamics in the aorta is dominated by interplay of heart rate (HR), aortic rigidity, and location of reflection sites. We hypothesized that for a fixed cardiac output (CO) and peripheral resistance (PR), interplay of HR and aortic compliance can create conditions that minimize LV power requirement. We used a computational approach to test our hypothesis. Finite element method with direct coupling method of fluid-structure interaction (FSI) was used. Blood was assumed to be incompressible Newtonian fluid and aortic wall was considered elastic isotropic. Simulations were performed for various heart rates and aortic rigidities while inflow wave, CO, and PR were kept constant. For any aortic compliance, LV power requirement becomes minimal at a specific heart rate. The minimum shifts to higher heart rates as aortic rigidity increases.

  17. THE INFLUENCE OF UPPER BODY FATIGUE ON DYNAMIC STANDING BALANCE

    PubMed Central

    McKinney, Hayley; Roane, Stephanie; Davenport, Mary Jo; Owens, Bea; Breese, Ute; Sokell, Geri Ann

    2014-01-01

    decreased post‐fatigue in the dominant lower extremity. No significant differences were found for the PM (ρ = 0.017) or PL (ρ = 0.021) directions. The ANT reach direction (0.64) and overall balance (0.44) also showed a moderate effect size based on the effect size index. Conclusions: ANT and overall dynamic standing balance were negatively affected after completing the upper body fatigue protocol. The findings of this research demonstrate that upper body fatigue has adverse effects on dynamic standing balance, as measured by performance on the YBT‐LQ. Significant and clinically relevant differences were noted in ANT and overall dynamic standing balance. Clinical Relevance: Physical therapists should be aware of the adverse influence distant fatigue may exhibit on neuromuscular control in muscles not actively involved in the fatiguing exercise. The balance deficits noted may indicate an increased risk of injury with muscle fatigue in muscles not directly contributing to standing balance. Level of Evidence: 3b, Case‐control study PMID:24567854

  18. Influence of incident light offset on diffuse reflectance measurement for curved object: a Monte Carlo-based study

    NASA Astrophysics Data System (ADS)

    Ding, Chizhu

    2016-10-01

    Diffuse reflectance spectroscopy in the near-infrared (NIR) spectral ranges is a widely used technique for nondestructive inspection of biological tissues. The optical properties, such as absorption and scattering coefficients, can be inversely deduced from the measured quantities and then be used to speculate on some related chemical and physical properties of the tissue. Most studies consider biological tissues as homogeneous semi-infinite turbid media or infinitelywide planar layered turbid media. However, the biological tissues have various geometries, and nearly all of them have curved surfaces. The position and direction of the incident light relative to the tissue surface affect the diffuse reflectance. In this work, we study the influence of incident light offset on the measured diffuse reflectance signals based on the Monte Carlo (MC) simulation. The MC method are regarded as golden standard for light propagation in turbid media and can be used without the limitations of complex tissue geometries. A model for diffuse reflectance spectroscopy measurement using optic fiber probe is built. The incident light is assumed to be an infinitely narrow photon beam. The tissue under detection is assumed to be spherical described by its curvature radius. A series of Monte Carlo simulation are carried out with varying incident directions. Simulation results are analyzed and discussed to assess the influence on the measurements for tissues with different curvature radii. This study may aid in achieving more accurate and effective measurement without extensive experiments.

  19. CoNSEnsX(+) Webserver for the Analysis of Protein Structural Ensembles Reflecting Experimentally Determined Internal Dynamics.

    PubMed

    Dudola, Dániel; Kovács, Bertalan; Gáspári, Zoltán

    2017-08-28

    Ensemble-based models of protein structure and dynamics reflecting experimental parameters are increasingly used to obtain deeper understanding of the role of dynamics in protein function. Such ensembles differ substantially from those routinely deposited in the PDB and, consequently, require specialized validation and analysis methodology. Here we describe our completely rewritten online validation tool, CoNSEnsX(+), that offers a standardized way to assess the correspondence of such ensembles to experimental NMR parameters. The server provides a novel selection feature allowing a user-selectable set and weights of different parameters to be considered. This also offers an approximation of potential overfitting, namely, whether the number of conformers necessary to reflect experimental parameters can be reduced in the ensemble provided. The CoNSEnsX(+) webserver is available at consensx.itk.ppke.hu . The corresponding Python source code is freely available on GitHub ( github.com/PPKE-Bioinf/consensx.itk.ppke.hu ).

  20. Reflection and transmission of laser light from the esophagus: the influence of incident angle

    SciTech Connect

    Nishioka, N.S.; Jacques, S.L.; Richter, J.M.; Anderson, R.R.

    1988-05-01

    The application of lasers in gastrointestinal endoscopy is rapidly expanding. Because of the tubular configuration of the gastrointestinal tract, endoscopists often deliver laser energy at large angles of incidence. As incident angle affects the fraction of radiation reflected from the tissue surface, we measured the transmittance and reflectance of laser light from in vitro esophagus as a function of incident angle, using integrating sphere and goniometric techniques. At a wavelength of 633 nm and angles of incidence less than 50 degrees, the total transmittance of the esophagus is approximately 25% and the total reflectance is approximately 45%; both are isotropically distributed. At larger angles of incidence, a specularly reflected component becomes evident and the total reflectance increases. The absorbed light per unit area illuminated decreases with increasing angle, because the area illuminated by the laser beam is proportional to the secant of the incident angle. The data suggest that during endoscopic laser procedures the incident laser beam should be directed within 50 degrees of normal for optimal performance and safety.

  1. Experimental study on the influence of the contact pressure to transmittance and reflectance spectra by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Li, Si; Wang, Tianpei; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near Infrared Spectroscopy (NIRS) technology has been recognized as one of the most promising non-invasive blood glucose measurement methods due to its convenience, high efficiency, noninvasiveness, and real-time monitoring. We build a system to measure transmittance and reflectance within NIR range simultaneously. And contact measuring method has been performed in order to reduce the influence of specular reflectance of the measured skin tissue. However, in this way, the optical probe could press the skin tissue and make it distorted, which might make the internal structure and the constituent distribution of tissue changed and further the tissue optical parameter changed. This could eventually change the distribution of transmittance spectra and reflectance spectra. In this talk, we collect the transmittance spectra and the diffused reflectance spectra of human earlobe within the wavelength of 900-1700nm under the different contact pressures. The results show that the diffused reflectance spectra decrease and the diffused transmittance spectra increase with the increase of the contact pressure between the probe and the earlobe. In order to improve the precision and stability of NIRS, the contact position of the deformation of 0.75mm is determined to be an optimal contact state measurement position.

  2. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Chami, Malik; McKee, David; Leymarie, Edouard; Khomenko, Gueorgui

    2006-12-01

    Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier-Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to ±20%. Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16% for pure water to a maximum of ˜94% for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.

  3. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance.

    PubMed

    Chami, Malik; McKee, David; Leymarie, Edouard; Khomenko, Gueorgui

    2006-12-20

    Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier-Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to +/-20%. Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16% for pure water to a maximum of approximately 94% for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.

  4. Oxidation-resistant reflective surfaces for solar dynamic power generation in near Earth orbit

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.; Mgf2, Sio2, Al2o3, and si3n4, we

    1986-01-01

    Reflective surfaces for space station power generation systems are required to withstand the atomic oxygen-dominated environment of near Earth orbit. Thin films of platinum and rhodium, which are corrosion resistant reflective metals, have been deposited by ion beam sputter deposition onto various substrate materials. Solar reflectances were then measured as a function of time of exposure to a RF-generated air plasma. Similarly, various protective coating materials, including MgF2, SiO2, Al2O3, and Si3N4, were deposited onto silver-coated substrates and then exposed to the plasma. Analysis of the films both before and after exposure by both ESCA and Auger spectroscopy was also performed. The results indicate that Pt and Rh do not suffer any loss in reflectance over the duration of the tests. Also, each of the coating materials survived the plasma environment. The ESCA and Auger analyses are discussed as well.

  5. Social influences in opinion dynamics: The role of conformity

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2014-11-01

    We study the effects of social influences in opinion dynamics. In particular, we define a simple model, based on the majority rule voting, in order to consider the role of conformity. Conformity is a central issue in social psychology as it represents one of people’s behaviors that emerges as a result of their interactions. The proposed model represents agents, arranged in a network and provided with an individual behavior, that change opinion in function of those of their neighbors. In particular, agents can behave as conformists or as nonconformists. In the former case, agents change opinion in accordance with the majority of their social circle (i.e., their neighbors); in the latter case, they do the opposite, i.e., they take the minority opinion. Moreover, we investigate the nonconformity both on a global and on a local perspective, i.e., in relation to the whole population and to the social circle of each nonconformist agent, respectively. We perform a computational study of the proposed model, with the aim to observe if and how the conformity affects the related outcomes. Moreover, we want to investigate whether it is possible to achieve some kind of equilibrium, or of order, during the evolution of the system. Results highlight that the amount of nonconformist agents in the population plays a central role in these dynamics. In particular, conformist agents play the role of stabilizers in fully-connected networks, whereas the opposite happens in complex networks. Furthermore, by analyzing complex topologies of the agent network, we found that in the presence of radical nonconformist agents the topology of the system has a prominent role; otherwise it does not matter since we observed that a conformist behavior is almost always more convenient. Finally, we analyze the results of the model by considering that agents can change also their behavior over time, i.e., conformists can become nonconformists and vice versa.

  6. Monitoring ecosystem dynamics in an Arctic tundra ecosystem using hyperspectral reflectance and a robotic tram system

    NASA Astrophysics Data System (ADS)

    Goswami, Santonu

    ) Is NDVI a good predictor for aboveground biomass and leaf area index (LAI) for plant species that are common in an arctic landscape? (4) How can cyberinfrastructure tools be developed to optimize ground-based remote sensing data collection, management and processing associated with a large scale experimental infrastructure? The Biocomplexity project experimentally manipulated the water table (drained, flooded, and control treatments) of a vegetated thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths (WTD) and soil volumetric water content were also collected along these transects. During 2005-2007, measurements were made without experimental treatments. Experimental treatments were run in 2008 and 2009, which involved water table being raised (+10cm) and lowered (-10cm) in flooding and draining treatments respectively. A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of land-surface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite

  7. Racial Identity and Reflected Appraisals as Influences on Asian Americans' Racial Adjustment.

    ERIC Educational Resources Information Center

    Alvarez, Alvin N.; Helms, Janet E.

    2001-01-01

    The racial adjustment of Asian American university students (N=188) was assessed to examine the importance of race in their lives. Both racial identity status and reflected appraisals were significantly related to collective self-esteem as one measure of Asian American racial adjustment. Discusses the importance of the counselor's awareness of…

  8. Influences of the Mie resonance on reflectance spectra of Si nanopillar arrays with different wetting states

    NASA Astrophysics Data System (ADS)

    Kim, Sujung; Gwon, Minji; Li, Jiaqi; Xu, Xiumei; Kim, Sun-Kyung; Lee, Eunsongyi; Kim, Dong-Wook; Chen, Chang

    The reflectance spectra of crystalline Si nanopillar (SiNP) arrays with various diameters were investigated by finite-difference time-domain (FDTD) simulations. The spectra exhibited distinct features depending on the wetting states. The FDTD-simulated reflectance dips of the 40-nm-diameter SiNP array were in good agreement with those estimated from destructive interference conditions at the top and bottom of the SiNPs: the SiNP arrays and the surrounding medium were treated as one optically homogeneous medium with an effective permittivity estimated from the effective medium approximation (EMA) model. However, the dip positions of the simulated spectra for 70-, 100-, and 130-nm-diameter SiNP arrays deviated from the results of interference calculations, particularly for short wavelengths. The optical reflectance spectra were significantly affected by the strong diameter-dependent Mie resonances in SiNPs, which were sensitive to the refractive index of the surrounding medium (i.e., the wetting state). Optical reflectance measurements provide an easy and efficient means of inspecting the wetting behavior of nano-patterned surfaces.

  9. In vitro dynamic solubility test: influence of various parameters.

    PubMed Central

    Thélohan, S; de Meringo, A

    1994-01-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964

  10. DYNAMIC SHEAR-INFLUENCED COLLAGEN SELF-ASSEMBLY

    PubMed Central

    Saeidi, Nima; Sander, Edward A.

    2011-01-01

    The ability to influence the direction of polymerization of a self-assembling biomolecular system has the potential to generate materials with extremely high anisotropy. In biological systems where highly-oriented cellular populations give rise to aligned and often load-bearing tissue such organized molecular scaffolds could aid in the contact guidance of cells for engineered tissue constructs (e.g cornea and tendon). In this investigation we examine the detailed dynamics of pepsin-extracted type I bovine collagen assembly on a glass surface under the influence of flow between two plates. Differential Interference Contrast (DIC) imaging (60x-1.4NA) with focal plane stabilization was used to resolve and track the growth of collagen aggregates on borosilicate glass for 4 different shear rates (500, 80, 20, and 9 s-1). The detailed morphology of the collagen fibrils/aggregates was examined using Quick Freeze Deep Etch electron microscopy. Nucleation of fibrils on the glass was observed to occur rapidly (~2 min) followed by continued growth of the fibrils. The growth rates were dependent on flow in a complex manner with the highest rate of axial growth (0.1 microns/sec) occurring at a shear rate of 9 s-1. The lowest growth rate occurred at the highest shear. Fibrils were observed to both branch and join during the experiments. The best alignment of fibrils was observed at intermediate shear rates of 20 and 80s-1. However, the investigation revealed that fibril directional growth was not stable. At high shear rates, fibrils would often turn downstream forming what we term “hooks” which are likely the combined result of monomer interaction with the initial collagen layer or “mat” and the high shear rate. Further, QFDE examination of fibril morphology demonstrated that the assembled fibrillar structure did not possess native D-periodicity. Instead, fibrils comprised a collection of generally aligned, monomers which were self-assembled to form a fibril

  11. Dynamical Coupling Between the Stratosphere and the Troposphere: The Influence of External Forcings

    NASA Astrophysics Data System (ADS)

    Hansen, Felicitas; Matthes, Katja

    2013-04-01

    The dynamical coupling between the stratosphere and the troposphere is dominated by planetary waves that are generated in the troposphere by orography and land-sea contrasts. These waves travel upward into the stratosphere where they either dissipate or are reflected downward to impact the troposphere again. Through the interaction with the zonal mean flow planetary waves can induce stratospheric sudden warmings (SSWs), i.e., conditions during NH winter where the stratospheric polar vortex is disturbed so that the zonal mean zonal wind in the NH stratospheric jet becomes easterly and the polar cap meridional temperature gradient reverses. Since strong major SSWs can propagate down into the troposphere and even affect surface weather, SSWs present a strong and clear manifestation of the dynamical coupling in the stratosphere-troposphere system. We will investigate the influence of some external forcings, namely sea surface temperatures (SSTs), anthropogenic greenhouse gases and the quasi-biennial oscillation (QBO), on these coupling processes. Thereby we are interested in how the distribution of SSWs in the winter months changes due to the different forcings, whether the events evolve differently, and whether they show differences in their preconditioning, e.g. a different wave geometry. We will also investigate whether and how vertical reflective surfaces in the stratosphere, which can reflect upward propagating planetary waves, influence the evolution of SSWs. To address these questions, we performed a set of model simulations with NCAR's Community Earth System Model (CESM), a coupled model system including an interactive ocean (POP2), land (CLM4), sea ice (CICE) and atmosphere (NCAR's Whole Atmosphere Community Climate Model (WACCM)) component. Our control experiment is a 140-year simulation with the fully coupled atmosphere-ocean version of CESM. A second experiment is a 55-year simulation with only CESM's atmospheric component WACCM, a fully interactive

  12. The dynamics of Bax channel formation: influence of ionic strength.

    PubMed

    Ganesan, Vidyaramanan; Walsh, Timothy; Chang, Kai-Ti; Colombini, Marco

    2012-08-08

    Mitochondrial outer membrane permeabilization (MOMP) is a complex multistep process. Studies of MOMP in vivo are limited by the stochastic variability of MOMP between cells and rapid completion of IMS protein release within single cells. In vitro models have provided useful insights into MOMP. We have investigated the dynamics of Bax-mediated MOMP in isolated mitochondria using ionic strength as a tool to control the rate of MOMP. We find that Bax can induce both transient permeabilization, detected by protein release, and more substantial long-lasting permeabilization, measured by the rate of oxidation of added cytochrome c. We found that higher ionic strength causes Bax to form small channels quickly but the expansion of these early channels is impeded. This inhibitory effect of ionic strength is independent of tBid. Channels formed under low ionic strength are not destabilized by raising the ionic strength. Increase in ionic strength also increases the ability of Bcl-xL to inhibit Bax-mediated MOMP. Ionic strength does not affect Bax insertion into mitochondria. Thus, ionic strength influences the assembly of Bax molecules already in membrane into channels. Ionic strength can be used as an effective biophysical tool to study Bax-mediated channel formation.

  13. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. P.; Childs, Dara W.

    1993-01-01

    The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  14. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, Jim P.; Childs, Dara W.

    1989-01-01

    The shrouded-impeller leakage path forces calculated by Childs (1987) have been analyzed to answer two questions. First, because of certain characteristics of the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were approximated by traditional stiffness, damping and inertia coefficients with the addition of whirl-frequency-dependent direct and cross-coupled stiffness terms. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  15. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2004-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, nonaxial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  16. Abstract spatial concept priming dynamically influences real-world actions.

    PubMed

    Tower-Richardi, Sarah M; Brunyé, Tad T; Gagnon, Stephanie A; Mahoney, Caroline R; Taylor, Holly A

    2012-01-01

    Experienced regularities in our perceptions and actions play important roles in grounding abstract concepts such as social status, time, and emotion. Might we similarly ground abstract spatial concepts in more experienced-based domains? The present experiment explores this possibility by implicitly priming abstract spatial terms (north, south, east, west) and then measuring participants' hand movement trajectories while they respond to a body-referenced spatial target (up, down, left, right) in a verbal (Exp. 1) or spatial (Exp. 2) format. Results from two experiments demonstrate temporally dynamic and prime biased movement trajectories when the primes are incongruent with the targets (e.g., north - left, west - up). That is, priming abstract coordinate directions influences subsequent actions in response to concrete target directions. These findings provide the first evidence that abstract concepts of world-centered coordinate axes are implicitly understood in the context of concrete body-referenced axes; critically, this abstract-concrete relationship manifests in motor movements, and may have implications for spatial memory organization.

  17. Microstructural influences on the dynamic response of tungsten heavy alloys

    SciTech Connect

    Ramesh, K.T.; Coates, R.S.

    1992-09-01

    The influence of tungsten content, swaging, and grain size on the dynamic behavior of commercially available tungsten-nickel-iron (W-Ni-Fe) alloys has been examined using the compression Kolsky bar. The observed flow stresses increase with increasing tungsten content and with degree of swaging but are essentially independent of grain size for these compressive deformations. Further, the flow stresses sustained by these materials have a distinct dependence on strain rate, in that the flow stress increases by at least 20 pct over a range from 10(exp {minus}4)/s to 7 x 10(exp 3)/s. The rate sensitivity itself increases with increasing tungsten content. The rate sensitivity of the alloy with the highest tungsten content (97 pct W) appears to be essentially the same as that of pure polycrystalline tungsten. In addition to showing greater strain hardening, the unswaged alloy also shows a much higher rate dependence than the swaged alloys, with the flow stress almost doubling when the rate of deformation increases from quasistatic to 5 x 1O(exp 3)/s. The rate-hardening mechanism within the composite appears to be essentially that associated with the tungsten grains; however, the matrix contribution is significant in the case of an unswaged alloy.

  18. Abstract Spatial Concept Priming Dynamically Influences Real-World Actions

    PubMed Central

    Tower-Richardi, Sarah M.; Brunyé, Tad T.; Gagnon, Stephanie A.; Mahoney, Caroline R.; Taylor, Holly A.

    2012-01-01

    Experienced regularities in our perceptions and actions play important roles in grounding abstract concepts such as social status, time, and emotion. Might we similarly ground abstract spatial concepts in more experienced-based domains? The present experiment explores this possibility by implicitly priming abstract spatial terms (north, south, east, west) and then measuring participants’ hand movement trajectories while they respond to a body-referenced spatial target (up, down, left, right) in a verbal (Exp. 1) or spatial (Exp. 2) format. Results from two experiments demonstrate temporally dynamic and prime biased movement trajectories when the primes are incongruent with the targets (e.g., north – left, west – up). That is, priming abstract coordinate directions influences subsequent actions in response to concrete target directions. These findings provide the first evidence that abstract concepts of world-centered coordinate axes are implicitly understood in the context of concrete body-referenced axes; critically, this abstract-concrete relationship manifests in motor movements, and may have implications for spatial memory organization. PMID:23060831

  19. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2005-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  20. Dynamic and reversible surface topography influences cell morphology.

    PubMed

    Kiang, Jennifer D; Wen, Jessica H; del Álamo, Juan C; Engler, Adam J

    2013-08-01

    Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ΔRRMS , ranged from 0.05 to 0.70 μm and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 μm, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness. Copyright © 2013 Wiley Periodicals, Inc.

  1. T dependence of vibrational dynamics of water in ion-exchanged zeolites A: a detailed Fourier transform infrared attenuated total reflection study.

    PubMed

    Crupi, Vincenza; Longo, Francesca; Majolino, Domenico; Venuti, Valentina

    2005-10-15

    In order to explore the influence of cation substitution on the vibrational dynamics of water molecules in zeolites, the evolution of structural properties of the O-H stretching band of water in fully hydrated Na-A and Mg-exchanged A zeolites has been studied, for different percentages of induced ion exchange, by Fourier transform infrared attenuated total reflection spectroscopy as a function of temperature. The differences revealed in the O-H stretching band shapes have been accounted by fitting the spectra as a sum of four components, corresponding to water molecules exhibiting different types of hydrogen bonding. The dependencies of the relative intensities, peak wave numbers, and bandwidths of the resolved components on temperature and Mg2+ content have been discussed. Evidence of the "structure-maker" role played by a zeolitic surface on physisorbed water, systematically enhanced by increasing the percentage of induced ion exchange, is given in the whole explored temperature range.

  2. Static and dynamic detection of axial surface defects on metallic wires by conical triple laser reflection

    NASA Astrophysics Data System (ADS)

    Siegmann, P.; Martínez-Antón, J. C.; Bernabeu, E.

    2004-08-01

    The quality of the surface of metallic wires is relevant for different applications. The reflection of a laser beam on the surface of a metallic cylindrical wire provides an efficient way to inspect the quality of its surface. Our interest is focused in the detection of axially oriented defects, which are the most relevant for the wire drawing process. We present a simple interference-geometrical model to describe the light pattern reflected from a wire with defects. This model adequately accounts for the observed results from an industrial prototype developed for the purpose. It incorporates three-laser beams incident on the wire at equidistant locations in its perimeter, which produce three reflection cones with a CCD. This configuration permits to explore the whole perimeter of the wire. Several results are presented, both in static operation and in production line, in agreement with qualitative and quantitative predictions.

  3. Religious beliefs influence neural substrates of self-reflection in Tibetans.

    PubMed

    Wu, Yanhong; Wang, Cheng; He, Xi; Mao, Lihua; Zhang, Li

    2010-06-01

    Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness' in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self.

  4. Religious beliefs influence neural substrates of self-reflection in Tibetans

    PubMed Central

    Wang, Cheng; He, Xi; Mao, Lihua

    2010-01-01

    Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness’ in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self. PMID:20197287

  5. Influence of wetting state on optical reflectance spectra of Si nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Gwon, Minji; Kim, Sujung; Li, Jiaqi; Xu, Xiumei; Kim, Sun-Kyung; Lee, Eunsongyi; Kim, Dong-Wook; Chen, Chang

    2015-12-01

    Finite-difference time-domain (FDTD) simulations showed that the reflectance spectra of crystalline Si nanopillar (NP) arrays with diameters of 40, 70, 100, and 130 nm differed depending on wetting state. The observed reflectance dips of the 40-nm-diameter NP array were in good agreement with those estimated from destructive interference conditions at the top and bottom of the NPs: the NP arrays were treated as a homogeneous medium with an effective permittivity according to the effective medium approximation model. In contrast, the dip positions of the FDTD-simulated spectra for 70-, 100-, and 130-nm-diameter NP arrays deviated from the results of interference calculations, particularly for short wavelengths. This suggested that Mie resonances in individual NPs significantly increased the absorption cross-section at the resonant wavelengths, which was sensitive to the refractive index of the surrounding medium (i.e., the wetting state). Optical reflectance measurements provide an easy and efficient means of inspecting the wetting behavior of non-flat surfaces.

  6. Reflective and impulsive influences on unhealthy snacking. The moderating effects of food related self-control.

    PubMed

    Honkanen, Pirjo; Olsen, Svein Ottar; Verplanken, Bas; Tuu, Ho Huy

    2012-04-01

    This study proposes that snacking behaviour may be either reflective and deliberate or impulsive, thus following a dual-process account. We hypothesised that chronic individual differences in food related self-control would moderate the relationships between reflective and impulsive processes. The reflective route was represented by an attitude toward unhealthy snacking, while the impulsive route was represented by the tendency to buy snack on impulse. A web survey was conducted with 207 students and employees at a Norwegian university, and a moderated hierarchical regression analysis using structural equation modelling was used to estimate the theoretical model. The findings showed that both attitudes towards unhealthy snacking and impulsive snack buying tendency were positively related to snack consumption. Food related self-control moderated the relation between attitude and behaviour, as well as the relation between impulsive snack buying tendency and behaviour. The effect of attitude on consumption was relatively strong when food related self-control was strong, while the effect of impulsive snack buying on consumption was relatively strong when food related self-control was weak. The results thus suggest that while weak self-control exposes individuals vulnerable to impulsive tendencies, strong self-control does not necessarily lead to less unhealthy snacking, but this depends on the valence of an individual's attitude.

  7. Influence of particle size distribution on reflected and transmitted light from clouds.

    PubMed

    Kattawar, G W; Plass, G N

    1968-05-01

    The light reflected and transmitted from clouds with various drop size distributions is calculated by a Monte Carlo technique. Six different models are used for the drop size distribution: isotropic, Rayleigh, haze continental, haze maritime, cumulus, and nimbostratus. The scattering function for each model is calculated from the Mie theory. In general, the reflected and transmitted radiances for the isotropic and Rayleigh models tend to be similar, as are those for the various haze and cloud models. The reflected radiance is less for the haze and cloud models than for the isotropic and Rayleigh models/except for an angle of incidence near the horizon when it is larger around the incident beam direction. The transmitted radiance is always much larger for the haze and cloud models near the incident direction; at distant angles it is less for small and moderate optical thicknesses and greater for large optical thicknesses (all comparisons to isotropic and Rayleigh models). The downward flux, cloud albedo, and ean optical path are discussed. The angular spread of the beam as a function of optical thickness is shown for the nimbostratus model.

  8. [Study on influence of source spectra on retro-reflection coefficient].

    PubMed

    Yang, Yong; Zhang, Zhi-Yong; Li, Xu; Zhu, Chuan-Zheng; Zhu, Li-Wei; Sun, Yue

    2014-01-01

    Based on emission spectra of light sources and reflectivity curve of retroreflective materials, relative relations and changing trend of retroreflection coefficient of materials in different light sources was researched through data fitting. The tests were carried on the standard A light source test system. One kind of test results are emission spectra of halogen light source, xenon light source and white LED with different color temperature. And another kind of results are reflectivity curve of retroreflective materials with five different colors such as red, yellow, white, green and blue. Then the correction factors of retroreflection coefficient in different light sources were obtained by test results and data fitting. It shows that the change inlight source spectra has no effect on retroreflection coefficient of white material, which has continuous reflectivity curve in the range of visible light, but has some effect on retroreflection coefficient of the other color materials. Compared with halogen light source, white LED and xenon light source can increase retroreflection coefficient of red and yellow materials, and the increase in the color temperature of light source will decrease retroreflection coefficient of red and yellow materials by the maximum of 47.7% and 4.9%. Conversely, retroreflection coefficient of green and blue materials will increase by the maximum of 16.5% and 28.9%.

  9. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-03-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

  10. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    PubMed Central

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-01-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity. PMID:28272471

  11. Pupil Dynamics Reflect Behavioral Choice and Learning in a Go/NoGo Tactile Decision-Making Task in Mice

    PubMed Central

    Lee, Christian R.; Margolis, David J.

    2016-01-01

    The eye’s pupil undergoes dynamic changes in diameter associated with cognitive effort, motor activity and emotional state, and can be used to index brain state across mammalian species. Recent studies in head-fixed mice have linked arousal-related pupil dynamics with global neural activity as well as the activity of specific neuronal populations. However, it has remained unclear how pupil dynamics in mice report trial-by-trial performance of behavioral tasks, and change on a longer time scale with learning. We measured pupil dynamics longitudinally as mice learned to perform a Go/NoGo tactile decision-making task. Mice learned to discriminate between two textures presented to the whiskers by licking in response to the Go texture (Hit trial) or withholding licking in response to the NoGo texture (Correct Reject trial, CR). Characteristic pupil dynamics were associated with behavioral choices: large-amplitude pupil dilation prior to and during licking accompanied Hit and False Alarm (FA) responses, while smaller amplitude dilation followed by constriction accompanied CR responses. With learning, the choice-dependent pupil dynamics became more pronounced, including larger amplitude dilations in both Hit and FA trials and earlier onset dilations in Hit and CR trials. A more pronounced constriction was also present in CR trials. Furthermore, pupil dynamics predicted behavioral choice increasingly with learning to greater than 80% accuracy. Our results indicate that pupil dynamics reflect behavioral choice and learning in head-fixed mice, and have implications for understanding decision- and learning-related neuronal activity in pupil-linked neural circuits. PMID:27847470

  12. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    NASA Astrophysics Data System (ADS)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  13. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the

  14. How influences on teenage smoking reflect gender and society in Mali, West Africa

    PubMed Central

    Kirk, Anna

    2012-01-01

    Objectives To provide further understanding and discussion on the influences on smoking in young people in Mali. Design A generic qualitative methodological approach was used following Caelli's generic principles. Six focus group discussions were conducted with a total of 31 participants followed by two semi-structured interviews. A reflexive account was kept to record development in the researcher's theoretical position Setting The setting was recreational areas of Bamako, capital city of Mali, West Africa. Participants Participants aged 13–15 years were recruited opportunistically in a recreational area of Bamako. Mainoutcome measures To develop further understanding of the influences of teenage smoking in Mali, West Africa. Results Five main categories that explained influences on youth smoking emerged: knowledge and awareness of smoking; associations with smoking; influential people; key messages in Malian society; and access to tobacco. The results showed that influences were complex and interwoven, notable gender differences were revealed, and the role of elder members of the community proved decisive in participants' smoking experiences. Participants described vague knowledge of the impact on health of smoking and reported trying smoking from an early age. Often contact with smoking was through elders and being sent to buy and sometimes light cigarettes for them. Associations with smoking were influenced by gender with smoking more desirable for boys than girls. Conclusions Any approach to preventing smoking initiation in young people requires an understanding of the social influences and pressures on young people. A tobacco control strategy is required to look at all areas of influence on smoking behaviours. Different needs should also account for the differing characteristics and perceptions of specific population groups. PMID:22299069

  15. Influence of plasma composition on reflectance anisotropy spectra for in situ III-V semiconductor dry-etch monitoring

    NASA Astrophysics Data System (ADS)

    Barzen, Lars; Kleinschmidt, Ann-Kathrin; Strassner, Johannes; Doering, Christoph; Fouckhardt, Henning; Bock, Wolfgang; Wahl, Michael; Kopnarski, Michael

    2015-12-01

    Reflectance anisotropy spectroscopy (RAS) can be used to monitor (reactive) ion etching (RIE) of semiconductor samples. We present results on the influence of the Cl2 content of the plasma gas on the RAS spectra during reactive ion etching. In a first step GaAs samples have been used and the RAS spectra are compared to results of secondary ion mass spectrometry (SIMS) on sample surfaces and depth profiles. In a second step a III-V semiconductor multilayer system has been investigated using the time-evolution of the average reflected intensity as an indication for the etch rate. In both cases usually even a high amount of Cl2 does not disturb the surface-sensitivity of the RAS signal.

  16. Rethinking the Christian Studies Classroom: Reflections on the Dynamics of Teaching Religion in Southern Public Universities

    ERIC Educational Resources Information Center

    Gravett, Sandie; Hulsether, Mark; Medine, Carolyn

    2011-01-01

    An extended set of conversations conducted by three religious studies faculty teaching at large public universities in the Southern United States spurred these reflections on how their institutional locations inflected issues such as the cultural expectations students bring to the classroom, how these expectations interact with the evolving…

  17. Reflections on Urban Science Teacher-Student Self-Efficacy Dynamics

    ERIC Educational Resources Information Center

    Hagiwara, Sumi; Maulucci, Maria S. Rivera; Ramos, S. Lizette

    2011-01-01

    This forum article consists of commentaries--authored by Sumi Hagiwara, Maria S. Rivera Maulucci and Lizette Ramos--on the feature article by Virginia Jennings Bolshakova, Carla C. Johnson, and Charlene M. Czerniak. We reflect on a series of questions that take retrospective, introspective, and prospective views of self-efficacy in science…

  18. Rethinking the Christian Studies Classroom: Reflections on the Dynamics of Teaching Religion in Southern Public Universities

    ERIC Educational Resources Information Center

    Gravett, Sandie; Hulsether, Mark; Medine, Carolyn

    2011-01-01

    An extended set of conversations conducted by three religious studies faculty teaching at large public universities in the Southern United States spurred these reflections on how their institutional locations inflected issues such as the cultural expectations students bring to the classroom, how these expectations interact with the evolving…

  19. Dynamic Tensions: Early Reflections from MDRC's Evaluation of the Innovative Professional Development Challenge

    ERIC Educational Resources Information Center

    MDRC, 2015

    2015-01-01

    In the Innovative Professional Development (iPD) Challenge, the Bill & Melinda Gates Foundation has invested in helping school districts and networks redesign their instructional support systems to better support educators in increasing student success. This Issue Focus, the second in a series, presents early reflections from MDRC's evaluation…

  20. Dynamics of interacting solitons in dual core Bragg gratings with dispersive reflectivity

    NASA Astrophysics Data System (ADS)

    Baratali, B. H.; Atai, Javid

    2013-10-01

    Interactions of in-phase and out-of-phase quiescent gap solitons in a system of two linearly-coupled Bragg gratings with dispersive reflectivity are studied. By means of systematic numerical simulations, we show that the interaction of the in-phase solitons may lead to merger, repulsion, destruction, or separation of solitons which may be symmetric or asymmetric. A key feature of the interactions is that even in the absence of dispersive reflectivity the interaction of solitons may result in the formation of two moving solitons and one quiescent one. To the best of our knowledge, such outcomes have not been observed in the standard models of gap solitons (i.e., single core Bragg gratings without dispersive reflectivity). Another interesting finding is that in the region where solitons do not have sidelobes, the outcomes of the interactions are weakly dependent on the initial separation of the solitons. On the other hand, the presence of sidelobes, which occur for larger values of dispersive reflectivity, results in more complex interactions. The π-out-of-phase solitons without sidelobes always repel each other. On the other hand, the interaction of solitons with sidelobes is affected by the initial separation. In this case, the interactions may either result in the repulsion of solitons or the formation of a temporary bound state that subsequently splits into two separating solitons.

  1. Analysis of the influence of tool dynamics in diamond turning

    SciTech Connect

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.

    1988-12-01

    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  2. Influence of aeration rate on nitrogen dynamics during composting.

    PubMed

    de Guardia, A; Petiot, C; Rogeau, D; Druilhe, C

    2008-01-01

    The paper aimed to study the influence of aeration rate on nitrogen dynamics during composting of wastewater sludge with wood chips. Wastewater sludge was sampled at a pig slaughterhouse 24h before each composting experiment, and mixtures were made at the same mass ratio. Six composting experiments were performed in a lab reactor (300 L) under forced aeration. Aeration flow was constant throughout the experiment and aeration rates applied ranged between 1.69 and 16.63 L/h/kg DM of mixture. Material temperature and oxygen consumption were monitored continuously. Nitrogen losses in leachates as organic and total ammoniacal nitrogen, nitrite and nitrate, and losses in exhaust gases as ammonia were measured daily. Concentrations of total carbon and nitrogen i.e., organic nitrogen, total ammoniacal nitrogen, and nitrite and nitrate were measured in the initial substrates and in the composted materials. The results showed that organic nitrogen, which was released as NH4+/NH3 by ammonification, was closely correlated to the ratio of carbon removed from the material to TC/N(org) of the initial substrates. The increase of aeration was responsible for the increase in ammonia emissions and for the decrease in nitrogen losses through leaching. At high aeration rates, losses of nitrogen in leachates and as ammonia in exhaust gases accounted for 90-99% of the nitrogen removed from the material. At low aeration rates, those accounted for 47-85% of the nitrogen removed from the material. The highest concentrations of total ammoniacal nitrogen in composts occurred at the lowest aeration rate. Due to the correlation of ammonification with biodegradation and to the measurements of losses in leachates and in exhaust gases, the pool NH4+/NH3 in the composting material was calculated as a function of time. The nitrification rate was found to be proportional to the mean content of NH4+/NH3 in the material, i.e., initial NH4+/NH3 plus NH4+/NH3 released by ammonification minus losses in

  3. Video rate confocal laser scanning reflection microscopy in the investigation of normal and neoplastic living cell dynamics.

    PubMed

    Vesely, P; Boyde, A

    1996-01-01

    The introduction of video rate confocal laser scanning microscopes (VRCLSM) used in reflection mode with high magnification, high aperture objective lenses and with further magnification by a zoom facility allowed the first detailed observations of the activity of living cytoplasm and offered a new tool for investigation of the structural transition from the living state to the specimen fixed for electron microscopy (EM). We used a Noran Odyssey VRCLSM in reflection (backscattered) mode. A greater degree of oversampling and more comfortable viewing of the liver or taped video image was achieved at zoom factor 5, giving a display monitor field width of 10 microns. A series of mesenchyme derived cell lines--from normal cells to sarcoma cells of different malignancy--was used to compare behaviour of the observed intracellular structures and results of fixation. We contrasted the dynamic behaviour of fine features in the cytoplasm of normal and neoplastic living cells and changes induced by various treatments. The tubulomembraneous 3D structure of cytoplasm in living cells is dynamic with motion observable at the new limits of resolution provided by VRCLSM. All organelles appear integrated into one functional compartment supporting the continuous 3D trafficking of small particles (vesicles). This integrated dynamic spatial network (IDSN) was found to be largest in neoplastic cells.

  4. Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Schaaf, Crystal; Zhang, Xiaoyang; Strahler, Alan; Roy, David; Morisette, Jeffrey; Wang, Zhuosen; Nightingale, Joanne; Nickeson, Jaime; Richardson, Andrew D.; hide

    2013-01-01

    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest.

  5. The Influence of Information Acquisition on the Complex Dynamics of Market Competition

    NASA Astrophysics Data System (ADS)

    Guo, Zhanbing; Ma, Junhai

    In this paper, we build a dynamical game model with three bounded rational players (firms) to study the influence of information on the complex dynamics of market competition, where useful information is about rival’s real decision. In this dynamical game model, one information-sharing team is composed of two firms, they acquire and share the information about their common competitor, however, they make their own decisions separately, where the amount of information acquired by this information-sharing team will determine the estimation accuracy about the rival’s real decision. Based on this dynamical game model and some creative 3D diagrams, the influence of the amount of information on the complex dynamics of market competition such as local dynamics, global dynamics and profits is studied. These results have significant theoretical and practical values to realize the influence of information.

  6. Soil porosity correlation and its influence in percolation dynamics

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alfredo; Capa-Morocho, Mirian; Ruis-Ramos, Margarita; Tarquis, Ana M.

    2016-04-01

    The prediction of percolation in natural soils is relevant for modeling root growth and optimizing infiltration of water and nutrients. Also, it would improve our understanding on how pollutants as pesticides, and virus and bacteria (Darnault et al., 2003) reach significant depths without being filtered out by the soil matrix (Beven and Germann, 2013). Random walk algorithms have been used successfully to date to characterize the dynamical characteristics of disordered media. This approach has been used here to describe how soil at different bulk densities and with different threshold values applied to the 3D gray images influences the structure of the pore network and their implications on particle flow and distribution (Ruiz-Ramos et al., 2009). In order to do so first we applied several threshold values to each image analyzed and characterized them through Hurst exponents, then we computed random walks algorithms to calculate distances reached by the particles and speed of those particles. At the same time, 3D structures with a Hurst exponent of ca 0.5 and with different porosities were constructed and the same random walks simulations were replicated over these generated structures. We have found a relationship between Hurst exponents and the speed distribution of the particles reaching percolation of the total soil depth. REFERENCES Darnault, C.J. G., P. Garnier, Y.J. Kim, K.L. Oveson, T.S. Steenhuis, J.Y. Parlange, M. Jenkins, W.C. Ghiorse, and P. Baveye (2003), Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments, Water Environ. Res., 75, 113-120. Beven, Keith and Germann, Peter. 2013. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. DOI: 10.1002/wrcr.20156. Ruiz-Ramos, M., D. del Valle, D. Grinev, and A.M. Tarquis. 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, 11, EGU2009-6234.

  7. Topographic Influence and Atmospheric Dynamics in the Indian Wells Valley

    NASA Astrophysics Data System (ADS)

    Uher, Erich J.

    Indian Wells Valley (IWV) is home to the China Lake Naval Air Weapons Station (NAWS) whose operations necessitate regional forecasting and weather analysis relevant to aviation and plume release scenarios. In order to better understand the terrain influenced mesoscale circulations in the varied complex terrain of Indian Wells Valley surrounding Ridgecrest, four seasonal WRF simulations were analyzed using linear shallow water theory and nonlinear theory for flows over two-dimensional mountains. The goal is to better understand the relationships between atmospheric dynamical processes and the wind/thermal structure of the mesoscale at Indian Wells Valley. This will involve exploring relationships linking theoretical meteorology in complex terrain and advanced high resolution atmospheric modeling in this region. The WRF simulation results show several distinct circulations which rely on the interaction between complex terrain and the background weather conditions: 1) In calm synoptic conditions, diurnal processes guide the evolution of boundary layer stability and slope flows. 2) In periods of greatest seasonal surface heating (i.e. summer), the pressure gradient across the Sierra Nevada drives near surface westerlies across IWV. 3) In conditions with strong synoptic scale increase in stability and meridional winds across the Sierra Nevada, a downslope windstorm can develop in IWV. The downslope winds and compensatory gravity wave activity over IWV will conclude once there is a significant change in conditions aloft, or an increase in convective instability at the surface of IWV which prevents air aloft from sinking towards the surface. These results provide a better understanding of the mesoscale meteorology in this region and improve forecast and analysis for plume transport and aviation needs while also laying the groundwork for future projects managing environmental concerns in this region.

  8. Influence of dynamic topography on the evolution of the Australian landscape since the Late Jurassic

    NASA Astrophysics Data System (ADS)

    Flament, N. E.; Salles, T.; Müller, D.

    2016-12-01

    Australia is an outstanding natural laboratory to study the influence of dynamic topography on landscape evolution, having been largely unaffected by tectonic deformation since the Jurassic. For instance, the sedimentary deposits of the Eromanga inland sea that covered a third of Australia between 130 and 100 Myr ago were laid down because of flow deep within the Earth. We coupled CitcomS (a finite element code for thermochemical mantle convection) to Badlands (a finite volume code for geomorphological and stratigraphic evolution) to quantify the feedbacks between mantle flow, landscape dynamics and sediment transport at continental scale. Here we apply the approach to the evolution of the Australian landscape over the last 150 Myr. The mantle flow model predicts that Australia was dynamically tilted down to the east 150 Myr ago due to long-lived subduction along the eastern border of the continent. Subduction ceased 100 Myr ago and the eastward migration of eastern Australia over sinking ancient Gondwanaland slabs caused it to rebound from being drawn down. Following a period of absolute plate motion stagnation, renewed uplift of the eastern highlands occurred during the Cenozoic, as the Australian plate migrated over the Pacific Superswell. We forced Badlands models with this predicted evolution of dynamic topography in addition to a history of varying climate and long-term sea-level. The Badlands models quantify the time dependence of erosion and deposition, as well as the evolution of catchment dynamics, drainage capture and drainage network reorganisation. They show that the motion of the Australian plate resulted in significant changes in river drainage, intercontinental erosion and sedimentation. The predicted cumulative denudation and sedimentation is compatible with thermochronology data in the eastern highlands and with the sediment thickness in the Ceduna Basin. The present-day eastern Australian river profiles and drainage are in agreement with

  9. Investigation of the influence of reflection on the attenuation of cancellous bone.

    PubMed

    Klinge, Sandra; Hackl, Klaus; Gilbert, Robert P

    2013-01-01

    The model proposed in this paper is based on the fact that the reflection might have a significant contribution to the attenuation of the acoustic waves propagating through the cancellous bone. The numerical implementation of the mentioned effect is realized by the development of a new representative volume element that includes an infinitesimally thin 'transient' layer on the contact surface of the bone and the marrow. This layer serves to model the amplitude transformation of the incident wave by the transition through media with different acoustic impedances and to take into account the energy loss due to the reflection. The proposed representative volume element together with the multiscale finite element is used to simulate the wave propagation and to evaluate the attenuation coefficient for samples with different effective densities in the dependence of the applied excitation frequency. The obtained numerical values show a very good agreement with the experimental results. Moreover, the model enables the determination of the upper and the lower bound for the attenuation coefficient.

  10. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated

  11. Structures, Organization, and Function of Reflectin Proteins in Dynamically Tunable Reflective Cells.

    PubMed

    DeMartini, Daniel G; Izumi, Michi; Weaver, Aaron T; Pandolfi, Erica; Morse, Daniel E

    2015-06-12

    The reversible assembly of reflectin proteins drives dynamic iridescence in cephalopods. Squid dynamically tune the intensity and colors of iridescence generated by constructive interference from intracellular Bragg reflectors in specialized skin cells called iridocytes. Analysis of the tissue specificity of reflectin subtypes reveals that tunability is correlated with the presence of one specific reflectin sequence. Differential phosphorylation and dephosphorylation of the reflectins in response to activation by acetylcholine, as well as differences in their tissue-specific and subcellular spatial distributions, further support the suggestion of different roles for the different reflectin subtypes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Structures, Organization, and Function of Reflectin Proteins in Dynamically Tunable Reflective Cells*

    PubMed Central

    DeMartini, Daniel G.; Izumi, Michi; Weaver, Aaron T.; Pandolfi, Erica; Morse, Daniel E.

    2015-01-01

    The reversible assembly of reflectin proteins drives dynamic iridescence in cephalopods. Squid dynamically tune the intensity and colors of iridescence generated by constructive interference from intracellular Bragg reflectors in specialized skin cells called iridocytes. Analysis of the tissue specificity of reflectin subtypes reveals that tunability is correlated with the presence of one specific reflectin sequence. Differential phosphorylation and dephosphorylation of the reflectins in response to activation by acetylcholine, as well as differences in their tissue-specific and subcellular spatial distributions, further support the suggestion of different roles for the different reflectin subtypes. PMID:25918159

  13. How reflected wave fronts dynamically establish Hooke's law in a spring

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick

    2012-03-01

    A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple mass-spring-sensor system using a simple application of the wave equation and thereby develop an intriguing picture of how a spring realizes Hooke's law approximately in this dynamic physical problem.

  14. Parental influences on the self-esteem of gay and lesbian youths: a reflected appraisals model.

    PubMed

    Savin-Williams, R C

    1989-01-01

    Based on a population of 317 gay and lesbian youths, the current investigation explores the appropriateness of a reflected appraisals perspective in predicting the degree to which parental attitudes, as perceived by youth, affects their self-esteem and comfortableness being gay. A lesbian was most comfortable with her sexual orientation if she also reported that her parents accepted her homosexuality; these variables did not, however, predict her level of self-esteem. Among the gay males, parental acceptance predicted comfortable being gay if the parents were also perceived as important components of a youth's self-worth; a male most comfortable with his sexual orientation had the highest level of self-esteem. Results are discussed in terms of: (a) sex of parent, (b) sex-role development, (c) comparisons of gays and lesbians, and (d) research on gay and lesbian youth.

  15. General theory of frequency modulated selective reflection. Influence of atom surface interactions

    NASA Astrophysics Data System (ADS)

    Ducloy, M.; Fichet, M.

    1991-12-01

    We calculate the modulation of the reflection coefficient for a frequency-modulated (FM) light beam incident on the interface between a dielectric and an atomic vapor. The vapor is described as a gas of resonant, Doppler-broadened, two-level systems, with transition frequency and linewidth arbitrarily depending on the atom-dielectric distance. The atoms are supposed to get deexcited at collisions with the surface. The transient atomic response is calculated to first order in the incident field, for both incoming and desorbed atoms. The reflection coefficient, evaluated to first order in the vapor dipole polarization, leads to a formal expression of the reflectivity modulation, valid for arbitrary atom-surface interaction potentials. One first discusses the reflection signal in absence of wall interactions, for arbitrary modulation frequencies. At large frequencies, it allows one to monitor both vapor absorption and dispersion. Second, the formal theory is applied to the case of a Van der Waals-London surface attraction exerted on the atomic vapor. Both normal and oblique beam incidences are considered. One shows how the vapor dispersion signal is red-shifted and strongly distorted by the appearance of vapor-surface long-range interactions, and how it can be used to monitor these interactions. At non-normal incidences, the lineshapes get Doppler-broadened. On calcule le coefficient de réflexion d'un faisceau lumineux, modulé en fréquence, incident sur une interface entre un milieu diélectrique et une vapeur atomique. Cette vapeur est décrite comme un ensemble de systèmes à deux niveaux, présentant un élargissement Doppler, et dont la fréquence de transition et la largeur de raie sont supposées dépendre de la distance au milieu diélectrique. On suppose par ailleurs que les atomes sont déexcités sur la paroi. La réponse transitoire des atomes est analysée au premier ordre en fonction du champ électromagnétique incident. Du coefficient de r

  16. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    PubMed

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km(2) site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  17. How Reflected Wave Fronts Dynamically Establish Hooke's Law in a Spring

    ERIC Educational Resources Information Center

    Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick

    2012-01-01

    A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple…

  18. How Reflected Wave Fronts Dynamically Establish Hooke's Law in a Spring

    ERIC Educational Resources Information Center

    Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick

    2012-01-01

    A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple…

  19. Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light

    NASA Astrophysics Data System (ADS)

    Elias, Mady; René de la Rie, E.; Delaney, John K.; Charron, Eric; Morales, Kathryn M.

    2006-10-01

    Modification of the visual appearance when a rough surface is covered by a varnish is mostly attributed to the levelling of the substrate surface, which depends on the molecular weight of the varnish. The topography of varnished surfaces, however, has never been measured directly. Surfaces of varnishes applied over glass substrates of varying roughness were studied, therefore, using mechanical profilometry. Two different varnishes made with a low and a high molecular weight resin were studied. Both varnishes lower the r.m.s. roughness of the substrates and filter the high spatial frequencies. These results are amplified for the varnish containing the low molecular weight resin. The light reflected by the varnished samples is modelled from these topographical data. Its angular distribution, calculated from the probability density of slopes is presented, taking into account separately the air/varnish and the varnish/substrate interfaces. These analyses are presented in a back-scattering configuration. They show that varnishing significantly reduces the angular width of the reflected light and that this effect is magnified for the low molecular weight resin. Modelling furthermore shows that the influence of the roughness of the varnish/substrate interface is negligible in the total reflected light.

  20. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    PubMed

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  1. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing.

    PubMed

    Wei, Heming; Krishnaswamy, Sridhar

    2017-05-01

    Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.

  2. Human Influences on Geomorphic Dynamics in Western Montana Gravel-Bed Rivers

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2016-12-01

    Management of river ecosystems, river restoration, climate-change vulnerability assessments, and other applications require understanding of how current channel conditions and processes compare to historical ranges of variability. This is particularly true with respect to evaluation of sediment balances, including of whether and how current sediment supply compares to background conditions. In western Montana, management and restoration efforts are in some cases driven by the perception that anthropogenic activities have elevated sediment yields above background levels; human-induced erosional increases have been documented in certain environments, but empirical supporting evidence is lacking for western Montana rivers. Here, human-induced changes in channel form and in sediment balances, including flow, sediment supply, and erosion rates, are evaluated for rivers in western Montana, with a particular focus on the Clark Fork and Bitterroot Rivers. These rivers are characteristic of systems in the northern Rocky Mountains with gravel beds, historically wandering channel patterns, modest bed-material loads, and land uses including logging, mining, and agriculture. The Clark Fork is influenced by legacy mining-related sediments and associated contaminants, remediation efforts, and the 2008 removal of Milltown Dam. These influences have caused temporary shifts in sediment balances, but overall, sediment fluxes are modest (e.g., suspended sediment fluxes of 6 tonnes km-2 yr-1 at the USGS Turah gage). The Bitterroot River is influenced by a mix of glaciated and unglaciated landscapes with fire-dominated erosional regimes and larger sand supply than the Clark Fork, reflecting lithologic differences; erosion rates, and the imprint of anthropogenic activities on sediment dynamics, are being investigated. This work has implications for river restoration, including whether measures are needed to impose channel stability, and for evaluating how climate-change-induced changes

  3. POST ASYMPTOTIC GIANT BRANCH BIPOLAR REFLECTION NEBULAE: RESULT OF DYNAMICAL EJECTION OR SELECTIVE ILLUMINATION?

    SciTech Connect

    Koning, N.; Kwok, Sun; Steffen, W. E-mail: sunkwok@hku.hk

    2013-03-10

    A model for post asymptotic giant branch bipolar reflection nebulae has been constructed based on a pair of evacuated cavities in a spherical dust envelope. Many of the observed features of bipolar nebulae, including filled bipolar lobes, an equatorial torus, searchlight beams, and a bright central light source, can be reproduced. The effects on orientation and dust densities are studied and comparisons with some observed examples are offered. We suggest that many observed properties of bipolar nebulae are the result of optical effects and any physical modeling of these nebulae has to take these factors into consideration.

  4. Fatiguing exercise intensity influences the relationship between parameters reflecting neuromuscular function and postural control variables.

    PubMed

    Boyas, Sébastien; Remaud, Anthony; Rivers, Erin; Bilodeau, Martin

    2013-01-01

    The purpose of this study was to investigate the influence of fatiguing exercise intensity on the nature and extent of fatigue-induced changes in neuromuscular function and postural stability in quiet standing. We also explored the contribution of selected neuromuscular mechanisms involved in force production to postural stability impairment observed following fatigue using an approach based on multivariate regressions. Eighteen young subjects performed 30-s postural trials on one leg with their eyes closed. Postural trials were performed before and after fatiguing exercises of different intensities: 25, 50 and 75% of maximal isometric plantarflexor torque. Fatiguing exercises consisted of sustaining a plantarflexor isometric contraction at the target intensity until task failure. Maximal isometric plantarflexor torque, electromyographic activity of plantarflexor and dorsiflexor muscles, activation level (twitch interpolation technique) and twitch contractile properties of plantarflexors were used to characterize neuromuscular function. The 25% exercise was associated with greater central fatigue whereas the 50 and 75% exercises involved mostly peripheral fatigue. However, all fatiguing exercises induced similar alterations in postural stability, which was unexpected considering previous literature. Stepwise multiple regression analyses showed that fatigue-related changes in selected parameters related to neuromuscular function could explain more than half (0.51≤R(2)≤0.82) of the changes in postural variables for the 25% exercise. On the other hand, regression models were less predictive (0.17≤R(2)≤0.73) for the 50 and 75% exercises. This study suggests that fatiguing exercise intensity does not influence the extent of postural stability impairment, but does influence the type of fatigue induced and the neuromuscular function predictors explaining changes in postural variables.

  5. The influence of wetting dynamics on the residual air distribution

    NASA Astrophysics Data System (ADS)

    Sacha, J.; Snehota, M.; Trtik, P.; Vontobel, P.

    2016-12-01

    The amount and distribution of the residual air during the infiltration into a porous soil system has a strong influence on the infiltration rate. Concurrently, the amount of residual air is dependent on the wetting dynamics. In the presented study, two experiments were conducted on the same sample. The first experiment was performed under the constant water level condition (CWL) and the second under the constant water flux condition (CWF) at the top of the sample. The sample that composed of coarse and medium coarse fractions of sand and fine porous ceramics was packed into the quartz glass columns of the inner diameter of 29 mm. The coarse sand represented a highly conductive region connected from the top to the bottom of the sample with the exception of three low (2-3 mm) separation layers made up of the medium coarse sand. Three discs of fine ceramic formed slow flow regions. Infiltration experiments were monitored by neutron radiography on two different beamlines to produce two-dimensional (2D) projections. The CWL experiment was monitored by NEUTRA station with an acquisition time of 16 seconds per projection and the CWF experiment was visualized at BOA station with an acquisition time of 0.25 seconds per projection. Both stations are located at the Paul Scherrer Institut, Switzerland. The acquired radiograms of the dry sample were subtracted from all subsequent radiograms to determine the water thickness in projections. From series of corrected radiograms taken at the different angles three-dimensional (3D) image was reconstructed for steady state part of the experiment CWL and for entire experiment CWF. Then the series of 3D images mapped the wetting of the porous system over the corresponding phase of infiltration process. The results showed a faster steady state infiltration rate during the CWL. In this case, the air was mostly pushed out from the sample by moving wetting front. On the contrary, during the CWF the water infiltrated into the fine ceramics

  6. Influence of dynamic immunization on epidemic spreading in networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Fu, Xinchu; Jin, Zhen; Small, Michael

    2015-02-01

    We introduce a new dynamic immunization method based on the static immunization algorithm and study the relationship between dynamic and static immunization. By nodes to be immunized according to static immunization strategies, we build a connection between dynamic and static immunization. Using theoretical arguments and computational simulation we show that dynamic immunization (from a finite vaccine reservoir) is not sufficient to prevent epidemic outbreak, nor does it significantly change the asymptotic prevalence. Nonetheless, we do find that less total vaccine is required to implement this strategy. To help understand this better, we examine the extent and distribution of dynamic immunization required to achieve this reduced vaccine demand. Our results suggest that it is not necessary to increase the immunization rate when the infection rate is relatively small.

  7. Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

  8. Upper tropospheric dynamics as reflected in Nimbus-4 THIR 6.7 micron data

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Salomonson, V. V.; Kyle, H. L.

    1973-01-01

    In order to determine if a quantifiable relationship exists between the 6.7 micron radiometric patterns observed by the Nimbus-4 temperature-humidity infrared radiometer (THIR) and tropospheric dynamics, a 10-level diagnostic model is employed. The model is used to show the spatial and temporal relationships existing between radiometrically observed water vapor patterns and conventionally derived water vapor patterns, and to examine the upper and middle tropospheric water vapor budget and associated dynamics in order to assess the causes behind the spatially- and temporally-varying water vapor radiometric patterns. A particular situation involving a confluent trough located to the lee of the Rockies over the Central United States is examined.

  9. Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses

    SciTech Connect

    Kumada, Takayuki Otobe, Tomohito; Nishikino, Masaharu; Hasegawa, Noboru; Hayashi, Terutake

    2016-01-04

    The dynamics of photomechanical spallation during femtosecond laser ablation of fused silica was studied by time-resolved reflectivity with double pump pulses. Oscillation of reflectivity was caused by interference between the probe pulses reflected at the sample surface and the spallation layer, and was enhanced when the surface was irradiated with the second pump pulse within a time interval, Δτ, of several picoseconds after the first pump pulse. However, as Δτ was increased, the oscillation amplitude decreased with an exponential decay time of 10 ps. The oscillation disappeared when Δτ exceeded 20 ps. This result suggests that the formation time of the spallation layer is approximately 10 ps. A second pump pulse with Δτ shorter than 10 ps excites the bulk sample. The spallation layer that is photo-excited by the first and second pump pulses is separated afterward. In contrast, a pulse with Δτ longer than the formation time excites and breaks up the spallation layer that has already been separated from the bulk. The formation time of the spallation layer, as determined in this experiment, is attributed to the characteristic time of the mechanical equilibration corresponding to the thickness divided by the sound velocity of the photo-excited layer.

  10. Interfacial reflection enhanced optical extinction and thermal dynamics in polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.; Forcherio, Gregory T.; Berry, Keith R.; Roper, D. Keith

    2016-09-01

    Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. A series of novel gold nanoparticle (AuNP)-polydimethylsiloxane (PDMS) films were fabricated to elucidate enhanced optical extinction from diffractive and scattering induced internal reflection. AuNPs with dramatically different scattering-to-absorption ratios were compared at variable interparticle separations to differentiate light trapping from optical diffraction and Mie scattering. Description of interfacial optical and thermal effects due to these interrelated contributions has progressed beyond Mie theory, Beer's law, effective media, and conventional heat transfer descriptions. Thermal dissipation rates in AuNP-PDMS with this interfacial optical reflection was enhanced relative to films containing heterogeneous AuNPs and a developed thermal dissipation description. This heuristic, which accounts for contributions of both internal and external thermal dissipations, has been shown to accurately predict thermal dissipation rates from AuNP-containing insulating and conductive substrates in both two and three-dimensional systems. Enhanced thermal response rates could enable design and adaptive control of thermoplasmonic materials for a variety of implementations.

  11. The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability

    PubMed Central

    Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Bordin, Diana Lilian; Prá, Daniel; Pêgas Henriques, João Antonio

    2013-01-01

    Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5–10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed. PMID:23781504

  12. The influence of micronutrients in cell culture: a reflection on viability and genomic stability.

    PubMed

    Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Machado, Miriana; Bordin, Diana Lilian; Bergter, Lothar; Prá, Daniel; Henriques, João Antonio Pêgas

    2013-01-01

    Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.

  13. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

    PubMed Central

    Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205

  14. Local disease–ecosystem–livelihood dynamics: reflections from comparative case studies in Africa

    PubMed Central

    Bett, Bernard; Said, M.; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M.; Grant, Donald S.; Koninga, James

    2017-01-01

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584171

  15. Decisions in Motion: Decision Dynamics during Intertemporal Choice reflect Subjective Evaluation of Delayed Rewards

    NASA Astrophysics Data System (ADS)

    O’Hora, Denis; Carey, Rachel; Kervick, Aoife; Crowley, David; Dabrowski, Maciej

    2016-02-01

    People tend to discount rewards or losses that occur in the future. Such delay discounting has been linked to many behavioral and health problems, since people choose smaller short-term gains over greater long-term gains. We investigated whether the effect of delays on the subjective value of rewards is expressed in how people move when they make choices. Over 600 patrons of the RISK LAB exhibition hosted by the Science Gallery DublinTM played a short computer game in which they used a computer mouse to choose between amounts of money at various delays. Typical discounting effects were observed and decision dynamics indicated that choosing smaller short-term rewards became easier (i.e., shorter response times, tighter trajectories, less vacillation) as the delays until later rewards increased. Based on a sequence of choices, subjective values of delayed outcomes were estimated and decision dynamics during initial choices predicted these values. Decision dynamics are affected by subjective values of available options and thus provide a means to estimate such values.

  16. Synaptic dynamics and neuronal network connectivity are reflected in the distribution of times in Up states.

    PubMed

    Dao Duc, Khanh; Parutto, Pierre; Chen, Xiaowei; Epsztein, Jérôme; Konnerth, Arthur; Holcman, David

    2015-01-01

    The dynamics of neuronal networks connected by synaptic dynamics can sustain long periods of depolarization that can last for hundreds of milliseconds such as Up states recorded during sleep or anesthesia. Yet the underlying mechanism driving these periods remain unclear. We show here within a mean-field model that the residence time of the neuronal membrane potential in cortical Up states does not follow a Poissonian law, but presents several peaks. Furthermore, the present modeling approach allows extracting some information about the neuronal network connectivity from the time distribution histogram. Based on a synaptic-depression model, we find that these peaks, that can be observed in histograms of patch-clamp recordings are not artifacts of electrophysiological measurements, but rather are an inherent property of the network dynamics. Analysis of the equations reveals a stable focus located close to the unstable limit cycle, delimiting a region that defines the Up state. The model further shows that the peaks observed in the Up state time distribution are due to winding around the focus before escaping from the basin of attraction. Finally, we use in vivo recordings of intracellular membrane potential and we recover from the peak distribution, some information about the network connectivity. We conclude that it is possible to recover the network connectivity from the distribution of times that the neuronal membrane voltage spends in Up states.

  17. Linguistic positivity in historical texts reflects dynamic environmental and psychological factors

    PubMed Central

    Iliev, Rumen; Hoover, Joe; Dehghani, Morteza

    2016-01-01

    People use more positive words than negative words. Referred to as “linguistic positivity bias” (LPB), this effect has been found across cultures and languages, prompting the conclusion that it is a panhuman tendency. However, although multiple competing explanations of LPB have been proposed, there is still no consensus on what mechanism(s) generate LPB or even on whether it is driven primarily by universal cognitive features or by environmental factors. In this work we propose that LPB has remained unresolved because previous research has neglected an essential dimension of language: time. In four studies conducted with two independent, time-stamped text corpora (Google books Ngrams and the New York Times), we found that LPB in American English has decreased during the last two centuries. We also observed dynamic fluctuations in LPB that were predicted by changes in objective environment, i.e., war and economic hardships, and by changes in national subjective happiness. In addition to providing evidence that LPB is a dynamic phenomenon, these results suggest that cognitive mechanisms alone cannot account for the observed dynamic fluctuations in LPB. At the least, LPB likely arises from multiple interacting mechanisms involving subjective, objective, and societal factors. In addition to having theoretical significance, our results demonstrate the value of newly available data sources in addressing long-standing scientific questions. PMID:27872286

  18. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    PubMed

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  19. Decisions in Motion: Decision Dynamics during Intertemporal Choice reflect Subjective Evaluation of Delayed Rewards

    PubMed Central

    O’Hora, Denis; Carey, Rachel; Kervick, Aoife; Crowley, David; Dabrowski, Maciej

    2016-01-01

    People tend to discount rewards or losses that occur in the future. Such delay discounting has been linked to many behavioral and health problems, since people choose smaller short-term gains over greater long-term gains. We investigated whether the effect of delays on the subjective value of rewards is expressed in how people move when they make choices. Over 600 patrons of the RISK LAB exhibition hosted by the Science Gallery DublinTM played a short computer game in which they used a computer mouse to choose between amounts of money at various delays. Typical discounting effects were observed and decision dynamics indicated that choosing smaller short-term rewards became easier (i.e., shorter response times, tighter trajectories, less vacillation) as the delays until later rewards increased. Based on a sequence of choices, subjective values of delayed outcomes were estimated and decision dynamics during initial choices predicted these values. Decision dynamics are affected by subjective values of available options and thus provide a means to estimate such values. PMID:26867497

  20. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dehai; Lu, Shicong; Han, Shuang; Sun, Xiaoyan; Quan, Cheng

    2013-01-01

    Hydrological dynamics of sedimentary basins are essential for understanding regional climatic pattern in the geological past. In previous qualitative studies lithologically depending on the occurrence of featured sedimentary rocks, the Eocene climate of China had been subdivided into three latitudinal zones, with one subtropical high-controlled arid zone throughout middle China, and two humid zones respectively in the north and south. However, recent advances on mammalian fauna distribution, plant fossil-based quantitative paleoclimatic reconstruction, and modeling experiment jointly suggest that the relatively humid monsoonal climate might have prevailed over the territory. Here we examine and compare sedimentary sequences of 10 Eocene sections across eastern China, and hence the lake level fluctuations, to discuss the nature of climate type. Our results show that, instead of the categorically zonal pattern, the hydroclimate dynamics is intensified landward. This is demonstrated by the fact that, in contrast to the wide developed coal layers around the periphery, evaporites are growingly occurred endocentrically to the central part of middle China. However, although we have had assumed that all evaporites are indicator of extreme aridity, the highly oscillated climate in the central part of middle China was humid in the majority of the Eocene, distinct from permanent arid as seen in deserts or steppe along modern horse latitude. From the upcountry distribution pattern of the Eocene hydrological dynamics, it appears that the relatively dry climate in central China was caused by the impact of continentality or rain shadow effect under monsoonal, or monsoon-like climate.

  1. The influence of different shavers on the skin quantified by non-invasive reflectance confocal microscopy.

    PubMed

    Rodijk, F M W; Zanelli, G; Geerligs, M; van Erp, P E J; Peppelman, M

    2016-08-01

    The impact of personal care devices on skin is mainly assessed using subjective tools. However, new objective, accurate non-invasive in vivo imaging techniques have been developed. The aim of this study was to evaluate the ability of reflectance confocal microscopy (RCM) in quantifying morphological impact of shavers on skin. Furthermore, tape stripping (TS) as method to study morphological impact of shavers was evaluated. In 12 healthy male subjects, for two consecutive days, a split-face test was performed in the neck; on one side a shaver was applied, while the other side was exposed to TS. The stratum corneum (SC) thickness was quantified using RCM and sensory observations were evaluated using questionnaires. Shavers with a different impact on skin, can be discriminated by RCM; shaver B removed more SC after application than the skin friendlier shaver A. Furthermore, the changes in SC thickness induced by TS corresponded well to that of the shavers. RCM is able to quantify the impact of different shavers on skin. Besides, TS appeared to be a suitable model mimicking the mechanical impact of shavers on skin. RCM in combination with the TS model appeared to be a suitable minimally invasive model to obtain morphological and cell biological data on skin-material interactions caused by different personal care devices. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Genetic data from algae sedimentary DNA reflect the influence of environment over geography.

    PubMed

    Stoof-Leichsenring, Kathleen R; Herzschuh, Ulrike; Pestryakova, Luidmila A; Klemm, Juliane; Epp, Laura S; Tiedemann, Ralph

    2015-08-11

    Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.

  3. How religion influences morbidity and health: reflections on natural history, salutogenesis and host resistance.

    PubMed

    Levin, J S

    1996-09-01

    This paper surveys the field that has come to be known as the epidemiology of religion. Epidemiologic study of the impact of religious involvement, broadly defined, has become increasingly popular in recent years, although the existence, meaning and implications of an apparently salutary religious effect on health have not yet been interpreted in an epidemiologic context. This paper attempts to remedy this situation by putting the "epidemiology" into the epidemiology of religion through discussion of existing empirical findings in terms of several substantive epidemiologic concepts. After first providing an overview of key research findings and prior reviews of this field, the summary finding of a protective religious effect on morbidity is examined in terms of three important epidemiologic concepts: the natural history of disease, salutogenesis and host resistance. In addition to describing a theoretical basis for interpreting a religion-health association, this paper provides an enumeration of common misinterpretations of epidemiologic findings for religious involvement, as well as an outline of hypothesized pathways, mediating factors, and salutogenic mechanisms for respective religious dimensions. It is hoped that these reflections will serve both to elevate the status of religion as a construct worthy of social-epidemiologic research and to reinvigorate the field of social epidemiology.

  4. Genetic data from algae sedimentary DNA reflect the influence of environment over geography

    PubMed Central

    Stoof-Leichsenring, Kathleen R.; Herzschuh, Ulrike; Pestryakova, Luidmila A.; Klemm, Juliane; Epp, Laura S.; Tiedemann, Ralph

    2015-01-01

    Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern. PMID:26261899

  5. The influence of sample area on diclofenac sodium quantification by diffuse reflectance IR spectroscopy.

    PubMed

    Szostak, Roman; Mazurek, Sylwester

    2011-04-15

    A procedure for the quantitative determination of diclofenac sodium (DS) in commercial capsules and tablets based on Partial Least Squares (PLS) treatment of diffuse reflectance FTIR spectroscopic (DRIFTS) data is described. Two DRIFTS accessories, a Collector II (Spectra-Tech) and a Seagull (Harrick Scientific), were used to collect the spectra. The spectrometer beam area on the surface of the sample was approximately sevenfold smaller for the Collector II accessory compared to the Seagull accessory. Spectra collection using the smaller beam spot resulted in significantly higher quantification errors for the single measurements. To reduce the errors associated with the Collector II accessory spectra were collected seven times while randomly changing the sample position. The mean spectra were used in the analysis. To compare the predictive ability of the constructed models, the relative standard errors of prediction (RSEP) were calculated. The RSEPs were 1.3-2.9% and 2.0-2.6% using the Collector II accessory and 1.0-1.5% and 1.1-1.7% using the Seagull accessory, for calibration and validation data sets, for the different PLS models. Three commercial preparations containing 20.5, 23.2 and 34.5% DS were successfully quantified using the developed models. The proposed procedure can be used as a fast, precise and economic method for DS quantification in tablets and capsules. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Singer, Robert B.

    1991-01-01

    As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases.

  7. Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Tagesson, T.; Fensholt, R.; Huber, S.; Horion, S.; Guiro, I.; Ehammer, A.; Ardo, J.

    2015-08-01

    This paper investigates how hyperspectral reflectance (between 350 and 1800 nm) can be used to infer ecosystem properties for a semi-arid savanna grassland in West Africa using a unique in situ-based multi-angular data set of hemispherical conical reflectance factor (HCRF) measurements. Relationships between seasonal dynamics in hyperspectral HCRF and ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. HCRF data (ρ) were used to study the relationship between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared (biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A band at 761 nm used for estimating chlorophyll fluorescence (GPP and LUE), and blue wavelengths (ρ412) (FAPAR). The NDSI with the strongest correlation to (i) biomass combined red-edge HCRF (ρ705) with green HCRF (ρ587), (ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), (iii) LUE combined red (ρ688) with blue HCRF (ρ436), and (iv) FAPAR combined blue (ρ399) and near-infrared (ρ1295) wavelengths. NDSIs combining near infrared and shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights for designing spectral characteristics of future sensors for ecosystem monitoring.

  8. Speech-evoked auditory brainstem responses reflect familial and cognitive influences.

    PubMed

    Hornickel, Jane; Lin, Deborah; Kraus, Nina

    2013-01-01

    Cortical function and related cognitive, language, and communication skills are genetically influenced. The auditory brainstem response to speech is linked to language skill, reading ability, cognitive skills, and speech-in-noise perception; however, the impact of shared genetic and environmental factors on the response has not been investigated. We assessed auditory brainstem responses to speech presented in quiet and background noise from (1) 23 pairs of same sex, same learning diagnosis siblings (Siblings), (2) 23 unrelated children matched on age, sex, IQ, and reading ability to one of the siblings (Reading-Matched), and (3) 22 pairs of unrelated children matched on age and sex but not on reading ability to the same sibling (Age/Sex-Matched). By quantifying response similarity as the intersubject response-to-response correlation for sibling pairs, reading-matched pairs, and age- and sex-matched pairs, we found that siblings had more similar responses than age- and sex-matched pairs and reading-matched pairs. Similarity of responses between siblings was as high as the similarity of responses collected from an individual over the course of the recording session. Responses from unrelated children matched on reading were more similar than responses from unrelated children matched only on age and sex, supporting previous data linking variations in auditory brainstem activity with variations in reading ability. These results suggest that auditory brainstem function can be influenced by siblingship and auditory-based communication skills such as reading, motivating the use of speech-evoked auditory brainstem responses for assessing risk of reading and communication impairments in family members. © 2012 Blackwell Publishing Ltd.

  9. Influence of rubbing on rotor dynamics, part 2

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    Rotor dynamic behavior depends considerably on how much the specific physical phenomena accompanying rotor rubbing against the stator is involved. The experimental results of rotor-to-stator rubbing contact are analyzed. The computer code is described for obtaining numerical calculations of rotor-to-stator rubbing system dynamic responses. Computer generated results are provided. The reduced dynamic data from High Pressure Fuel Turbo Pump (HPFTP) hot fire test are given. The results provide some significant conclusions. Information is provided on the electronic instrumentation used in the experimental testing.

  10. Dynamics of the equatorial mesosphere: First results with a new generation partial reflection radar

    SciTech Connect

    Vincent, R.A.; Lesicar, D. )

    1991-05-01

    The first observations of mesospheric winds made between January-August 1990 with an MF partial reflection radar located on Christmas Island (2{degree}N, 157{degree}W) in the central Pacific are described. The mean zonal winds are in general westward, but show clear evidence for a wave-driven circulation. Power spectral studies indicate that waves are present over a wide range of periods. Ultra-fast Kelvin waves are especially evident in January-March, with peak amplitudes {approximately}20 ms{sup {minus}1}, and intrinsic phase speeds of {approximately}150 ms{sup {minus}1} indicated. The Kelvin waves are estimated to contribute an eastward acceleration of up to 10 ms{sup {minus}1} day{sup {minus}1}. Gravity wave amplitudes are also found to be almost as large as those observed at mid-latitude sites, which suggests that convection is a major source of gravity wave activity.

  11. Changes in fMRI BOLD dynamics reflect anticipation to moving objects.

    PubMed

    Schellekens, W; Ramsey, N F; van Wezel, R J A; Raemaekers, M

    2016-09-09

    The human brain is thought to respond differently to novel versus predictable neural input. In human visual cortex, neural response amplitude to visual input might be determined by the degree of predictability. We investigated how fMRI BOLD responses in human early visual cortex reflect the anticipation of a single moving bar's trajectory. We found that BOLD signals decreased linearly from onset to offset of the stimulus trajectory. Moreover, decreased amplitudes of BOLD responses coincided with an increased initial dip as the stimulus moved along its trajectory. Importantly, motion anticipation effects were absent, when motion coherence was disrupted by means of stimulus contrast reversals. These results show that human early visual cortex anticipates the trajectory of a coherently moving object at the initial stages of visual motion processing. The results can be explained by suppression of predictable input, plausibly underlying the formation of stable visual percepts.

  12. Dynamics of layer-by-layer growth of a polyelectrolyte multilayer studied in situ using attenuated total reflectance infrared spectroscopy.

    PubMed

    Owusu-Nkwantabisah, Silas; Gammana, Madhira; Tripp, Carl P

    2014-10-07

    Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to study the dynamic layer-by-layer (LBL) growth of a sodium polyacrylate (NaPA)/poly(diallydimethylammonium) chloride (PDADMAC) multilayer on TiO2 particles. Molecular weights (Mw) used were 30 and 60 kDa for NaPA and 8.5 and 150 kDa for PDADMAC. IR spectra were recorded in situ as a function of time and were used to obtain the dynamic mass adsorbed and bound fraction of the polymers during each deposition step. For 30 kDa NaPA layers, the dynamics of adsorption show an initial rapid rise in mass followed by a slow increase toward a plateau value upon LBL with 150 kDa PDADMAC. In contrast, the 60 kDa NaPA layers achieve a plateau quickly and do not show a slow increase toward a plateau. In the case of LBL with 150 kDa PDADMAC, the dynamics of the bound fraction of polymer per layer suggest that polymer diffusion and conformational rearrangement occur for the layers of 30 kDa NaPA but not for the 60 kDa NaPA layers. Furthermore, PDADMAC adsorption profiles show that there is no diffusion of the PDADMAC layers and that PDADMAC flattens onto the underlying layer. A linear growth in the mass adsorbed per layer was observed for 150 kDa PDADMAC with both molecular weights of NaPA. In the case of 8.5 kDa PDADMAC, smaller growth increments and the desorption of underlying layers were observed. This work demonstrates the use of ATR-IR in obtaining the dynamics of LBL multilayer formation. Furthermore, it provides an example in which polymer diffusion during LBL film formation does not lead to exponential growth.

  13. Ultrafast Carrier Dynamics Measured by the Transient Change in the Reflectance of InP and GaAs Film

    SciTech Connect

    Klopf, John

    2005-10-31

    the dynamics of the hot carrier distributions in these materials, but also provide the basis for future development of better diagnostic instruments for the non-destructive evaluation of these important materials. A theoretical model describing the change in reflectance due to the photoexcited hot carrier distribution has also been developed. By applying this model to the experimental results, several important material parameters such as the electron-phonon scattering time and the rates for diffusion and several recombination processes are determined. These values are compared with those reported for similar materials, and the validity of the results is discussed. A complete description of the experimental technique as well as the theoretical reflectance model is presented.

  14. The influence of climatic variability on local population dynamics of Cercidium microphyllum (foothill paloverde)

    USGS Publications Warehouse

    Bowers, Janice E.; Turner, R.M.

    2002-01-01

    This study investigated correlations among climatic variability, population age structure, and seedling survival of a dominant Sonoran Desert tree, Cercidium microphyllum (foothill paloverde), at Tucson, Arizona, USA. A major goal was to determine whether wet years promote seedling establishment and thereby determine population structure. Plant age was estimated from basal circumference for a sample of 980 living and dead trees in twelve 0.5-ha plots. Ages ranged from 1 to 181 years. Age frequency distribution showed that the population is in decline. Most (51.2%) of the 814 living trees were 40-80 years old; only 6.5% were younger than 20 years. The average age of the 166 dead trees was 78 years. Fifty-nine percent of dead trees were aged 60-100 years. Survival of newly emerged seedlings was monitored for 7 years in a 557-m2 permanent plot. Mean survival in the 1st year of life was 1.7%. Only 2 of 1,008 seedlings lived longer than 1 year. Length of survival was not correlated with rainfall. Residual regeneration, an index of the difference between predicted and observed cohort size, showed that regeneration was high during the first half of the twentieth century and poor after the mid-1950s. Trends in regeneration did not reflect interannual variation in seasonal temperature or rain before 1950, that is, in the years before urban warming. Taken together, the seedling study and the regeneration analysis suggest that local population dynamics reflect biotic factors to such an extent that population age structure might not always be a reliable clue to past climatic influences.

  15. Assessing Static and Dynamic Influences on Inmate Violence Levels

    ERIC Educational Resources Information Center

    Steiner, Benjamin

    2009-01-01

    Inmate misconduct creates problems for other inmates as well as correctional staff. Most empirical assessments of the correlates of inmate misconduct have been conducted at the individual level; however, a facility's level of misconduct may be of equal importance to prison management and state officials because these numbers can reflect order, or…

  16. Assessing Static and Dynamic Influences on Inmate Violence Levels

    ERIC Educational Resources Information Center

    Steiner, Benjamin

    2009-01-01

    Inmate misconduct creates problems for other inmates as well as correctional staff. Most empirical assessments of the correlates of inmate misconduct have been conducted at the individual level; however, a facility's level of misconduct may be of equal importance to prison management and state officials because these numbers can reflect order, or…

  17. Host polymer influence on dilute polystyrene segmental dynamics

    NASA Astrophysics Data System (ADS)

    Lutz, T. R.

    2005-03-01

    We have utilized deuterium NMR to investigate the segmental dynamics of dilute (2%) d3-polystyrene (PS) chains in miscible polymer blends with polybutadiene, poly(vinyl ethylene), polyisoprene, poly(vinyl methylether) and poly(methyl methacrylate). In the dilute limit, we find qualitative differences depending upon whether the host polymer has dynamics that are faster or slower than that of pure PS. In blends where PS is the fast (low Tg) component, segmental dynamics are slowed upon blending and can be fit by the Lodge-McLeish model. When PS is the slow (high Tg) component, PS segmental dynamics speed up upon blending, but cannot be fit by the Lodge-McLeish model unless a temperature dependent self-concentration is employed. These results are qualitatively consistent with a recent suggestion by Kant, Kumar and Colby (Macromolecules, 2003, 10087), based upon data at higher concentrations. Furthermore, as the slow component, we find the segmental dynamics of PS has a temperature dependence similar to that of its host. This suggests viewing the high Tg component dynamics in a miscible blend as similar to a polymer in a low molecular weight solvent.

  18. Influences of ACTH 4-10 on event-related potentials reflecting attention in man.

    PubMed

    Born, J; Fehm-Wolfsdorf, G; Voigt, K H; Fehm, H L

    1987-01-01

    The present paper is concerned with effects of the 4-10 sequence of the endogenous ACTH on electrophysiological measures of attention in humans. It was attempted to replicate previous findings of an impaired selective attention following administration of an analog of ACTH 4-9. The effect of this analog had been found to dominate in the beginning of the blocks of an attention task, but to fade away with time on task. In the present study, fourteen male students were tested in a dichotic listening paradigm, 40 min after intranasal application of either 0.4 mg ACTH 4-10, or placebo. Averaged auditory evoked potentials (AEPs) to attended and inattended tone pips, EEG power spectra, heart rate and blood pressure, and behavioral performance were measured during task performance. ACTH 4-10 appeared to slightly impair selective attention as indicated by AEP responses. In particular, the positive shift of the AEP waveforms to inattended stimuli was reduced at the beginning of each block of tone pips under ACTH 4-10. The pattern of actions resembled the effects observed after administration of the more potent synthetic analog of ACTH 4-9 in the previous experiment. Effects of ACTH 4-10 on the AEPs to inattended stimuli, however, differed from influences of the synthetic analog in that they did not affect a rather wide latency range but concentrated on the latency range of the P200 component.

  19. Reflections on cultural influences on aging and old-age suicide in Germany.

    PubMed

    Schmitz-Scherzer, R

    1995-01-01

    The limited attention paid to old-age suicide in Germany is likely related to society's lack of interest in the specific problems of old people. This is despite the fact that over half of all German suicides are committed by persons 65 and older. In reviewing what is known about elderly suicide based on retrospective studies, I submit that suicide in later life is not always based on pathologic mental processes. There may be a number of risk factors unique to elderly suicides, in addition to depressive disorders that involve broader cultural issues among the many motives likely present in any one suicide. Today's emphasis on individualized values may lead to a feeling of meaninglessness in the suicidal elderly. The uncertainty and fear of the inability to influence their own dying a certain weariness of life are also likely unique risk factors for the elderly. Thus the reasons or motives for a suicide may be best considered by understanding the entire life situation and the biographical aspects of the person. Prevention of elderly suicides requires a number of approaches ranging from social assistance and improved training of care providers to more acceptance and valuing of older persons by society.

  20. Influence of local demography on asymptotic and transient dynamics of a yellow-bellied marmot metapopulation.

    PubMed

    Ozgul, Arpat; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Van Vuren, Dirk H

    2009-04-01

    Despite recent advances in biodemography and metapopulation ecology, we still have limited understanding of how local demographic parameters influence short- and long-term metapopulation dynamics. We used long-term data from 17 local populations, along with the recently developed methods of matrix metapopulation modeling and transient sensitivity analysis, to investigate the influence of local demography on long-term (asymptotic) versus short-term (transient) dynamics of a yellow-bellied marmot metapopulation in Colorado. Both long- and short-term dynamics depended primarily on a few colony sites and were highly sensitive to changes in demography at these sites, particularly in survival of reproductive adult females. Interestingly, the relative importance of sites differed between long- and short-term dynamics; the spatial structure and local population sizes, while insignificant for asymptotic dynamics, were influential on transient dynamics. However, considering the spatial structure was uninformative about the relative influence of local demography on metapopulation dynamics. The vital rates that were the most influential on local dynamics were also the most influential on both long- and short-term metapopulation dynamics. Our results show that an explicit consideration of local demography is essential for a complete understanding of the dynamics and persistence of spatially structured populations.

  1. The dynamical influences of cloud shading on simulated supercell thunderstorms

    NASA Astrophysics Data System (ADS)

    Frame, Jeffrey

    2008-10-01

    supercells with radiation because varying surface characteristics alter the amount of frictional drag experienced by the low-level flow. Additionally, the propagation of the rear-flank gust front is heavily modulated by both the strength and the location of the outflow, which are influenced by the choice of the storm-relative wind profile and the microphysics package. If shortwave radiation is excluded from the model, a shallow stable layer forms over the entire domain and the storm becomes elevated and weakens. The direct absorption and emission of radiation by clouds does not significantly affect the simulated supercells. The base-state environment is changed to see under which conditions cloud shading and friction combine to force the undercutting of the updraft. Neither a morning model initialization nor a cold season model initialization prevent this from occurring in any of the simulations which produce an anvil shadow. The ground-relative wind is also varied because the surface fluxes of both heat and momentum are not Galilean invariant. A storm in which both the rear-flank gust front and updraft slowly move along the major axis of the anvil shadow becomes undercut, much like the stationary storm. A fast moving storm, however, does not become undercut because less time exists to cool the model surface and to decouple the surface layer if the storm moves faster. If the gust front moves into the anvil shadow and the updraft moves normal to the shadow (i.e., the northward movement of the updraft for an eastward-extending anvil), cyclic behavior can result, although this is highly dependent on storm motion. If the gust front propagates into the full sun (i.e., southward movement), the storm is relatively unaffected by the presence of radiation because the dynamics that govern gust front propagation remain relatively unchanged.

  2. Analyzing the influence of median cross-section design on highway safety using vehicle dynamics simulations.

    PubMed

    Stine, Jason S; Hamblin, Bridget C; Brennan, Sean N; Donnell, Eric T

    2010-11-01

    Although vehicle dynamics simulations have long been used in vehicle design and crash reconstruction, their use for highway design is rare. This paper investigates the safety of highway medians through iterative simulations of off-road median encroachments. The commercially available software CarSim was used to simulate over one hundred thousand encroachments, representing the entire passenger vehicle fleet and a wide range of encroachment angles, departure speeds, steering inputs, and braking inputs. Each individual simulation output was then weighted using data from previous studies to reflect the probability of each specific accident scenario occurring in a real-life median encroachment. Results of this analysis illustrate the relative influence of median cross-section geometry on the resulting accident outcomes. The simulations indicate that the overall safety of a highway median depends on the occurrence of both vehicle rollover and median crossover events, and the cross-section shape, slope, and width are all shown to greatly affect each of these incidents. An evaluation of the simulation results was conducted with vehicle trajectories from previous experimental crash tests. Further assessment of the aggregate simulation results to actual crash data was achieved through comparison with several databases of crash statistics. Both efforts showed a strong agreement between the simulations and the real-life crash data.

  3. Influence of Structural Flexibility on the Dynamic Precision of a Vehicle-Mounted Equipment System

    DTIC Science & Technology

    2015-05-12

    Paramsothy Jayakumar, Dave Mechergui, Ronald Renke U.S.Army RDECOM TARDEC INFLUENCE OF STRUCTURAL FLEXIBILITY ON THE DYNAMIC PRECISION OF A...with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 12 MAY 2015 2. REPORT TYPE 3. DATES...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE INFLUENCE OF STRUCTURAL FLEXIBILITY ON THE DYNAMIC PRECISION OF A VEHICLE-MOUNTED EQUIPMENT

  4. Influence of Tile Geometry on the Dynamic Fracture of Silicon Carbide (SiC)

    DTIC Science & Technology

    2014-03-01

    Influence of Tile Geometry on the Dynamic Fracture of Silicon Carbide (SiC) by Jacqueline T. Le and Shane D. Bartus ARL-TR-6861 March...Influence of Tile Geometry on the Dynamic Fracture of Silicon Carbide (SiC) Jacqueline T. Le George Washington University Shane D...5a. CONTRACT NUMBER W911NF-10-2-0076 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jacqueline T. Le * and Shane D. Bartus 5d

  5. Reflections on urban science teacher-student self-efficacy dynamics

    NASA Astrophysics Data System (ADS)

    Hagiwara, Sumi; Maulucci, Maria S. Rivera; Ramos, S. Lizette

    2011-12-01

    This forum article consists of commentaries—authored by Sumi Hagiwara, Maria S. Rivera Maulucci and Lizette Ramos—on the feature article by Virginia Jennings Bolshakova, Carla C. Johnson, and Charlene M. Czerniak. We reflect on a series of questions that take retrospective, introspective, and prospective views of self-efficacy in science education. We review selected studies that explore some of the historical developments and methodological approaches in the literature and examine a teacher-student self-efficacy system model that shows the ways in which teachers' and students' self-efficacy judgments are based upon multiple individual and shared components, such as identity and social interaction within the classroom and school. We close with a call for the design of measures of teacher-student self-efficacy systems, so that we can begin to tailor professional development experiences to the goals and motivations of individual and collective groups of teachers and students in ways that accommodate the unique cultural features of their classrooms and foster student self-efficacy.

  6. High temperature far-infrared dynamics of orthorhombic NdMnO3: emissivity and reflectivity.

    PubMed

    Massa, Néstor E; del Campo, Leire; Meneses, Domingos De Sousa; Echegut, Patrick; Martínez-Lope, María Jesús; Alonso, José Antonio

    2013-06-12

    We report on near normal far- and mid-infrared emission and reflectivity of NdMnO3 perovskite from room temperature to sample decomposition above 1800 K. At 300 K the number of infrared active phonons is in close agreement with the 25 calculated for the orthorhombic D(2h)(16)-Pbnm (Z = 4) space group. Their number gradually decreases as we approach the temperature of orbital disorder at ~1023 K where the orthorhombic O' lower temperature cooperative phase coexists with the cubic orthorhombic O. At above ~1200 K, the three infrared active phonons coincide with that expected for cubic Pm-3m (Z = 1) in the high temperature insulating regime. Heating samples in dry air triggers double exchange conductivity by Mn(3+) and Mn(4+) ions and a small polaron mid-infrared band. Fits to the optical conductivity single out the octahedral antisymmetric and symmetric vibrational modes as the main phonons in the electron-phonon interactions at 875 K. For 1745 K, it is enough to consider the symmetric stretching internal mode. An overdamped defect induced Drude component is clearly outlined at the highest temperatures. We conclude that rare earth manganite eg electrons are prone to spin, charge, orbital, and lattice couplings in an intrinsic orbital distorted perovskite lattice, favoring embryonic low energy collective excitations.

  7. Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe).

    PubMed

    Raven, J A; Cockell, C S

    2006-08-01

    Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.

  8. Community, intervention and provider support influences on implementation: reflections from a South African illustration of safety, peace and health promotion

    PubMed Central

    2014-01-01

    Background The development, implementation and evaluation of community interventions are important for reducing child violence and injuries in low- to middle-income contexts, with successful implementation critical to effective intervention outcomes. The assessment of implementation processes is required to identify the factors that influence effective implementation. This article draws on a child safety, peace and health initiative to examine key factors that enabled or hindered its implementation, in a context characterised by limited resources. Methods A case study approach was employed. The research team was made up of six researchers and intervention coordinators, who led the development and implementation of the Ukuphepha Child Study in South Africa, and who are also the authors of this article. The study used author observations, reflections and discussions of the factors perceived to influence the implementation of the intervention. The authors engaged in an in-depth and iterative dialogic process aimed at abstracting the experiences of the intervention, with a recursive cycle of reflection and dialogue. Data were analysed utilising inductive content analysis, and categorised using classification frameworks for understanding implementation. Results The study highlights key factors that enabled or hindered implementation. These included the community context and concomitant community engagement processes; intervention compatibility and adaptability issues; community service provider perceptions of intervention relevance and expectations; and the intervention support system, characterised by training and mentorship support. Conclusions This evaluation illustrated the complexity of intervention implementation. The study approach sought to support intervention fidelity by fostering and maintaining community endorsement and support, a prerequisite for the unfolding implementation of the intervention. PMID:25081088

  9. Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production

    USDA-ARS?s Scientific Manuscript database

    Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations,...

  10. Contact angle and adsorption energies of nanoparticles at the air-liquid interface determined by neutron reflectivity and molecular dynamics.

    PubMed

    Reguera, Javier; Ponomarev, Evgeniy; Geue, Thomas; Stellacci, Francesco; Bresme, Fernando; Moglianetti, Mauro

    2015-03-19

    Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were also calculated via atomistic molecular dynamics (MD) computations, showing excellent agreement with the experimental data. Our method opens the route to quantify the adsorption of complex nanoparticle structures adsorbed at fluid interfaces featuring different chemical compositions.

  11. Quantum dynamics of adsorbed H2 in the microporous framework MOF-5 analyzed using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fitzgerald, S. A.; Allen, K.; Landerman, P.; Hopkins, J.; Matters, J.; Myers, R.; Rowsell, J. L. C.

    2008-06-01

    Diffuse reflectance infrared spectroscopy is used to measure the quantum dynamics of molecular hydrogen adsorbed in the microporous material MOF-5. Low-temperature spectra reveal at least three distinct binding sites. The induced redshifts in the vibrational mode frequencies allow the estimation of site-specific binding energies ranging from 2.5 to 4 kJ/mol. Splittings in the rovibrational sidebands are consistent with the existing theories and indicate that H2 is relatively freely rotating even at temperatures as low as 10 K. Ortho to para conversion of the adsorbed H2 is observed to occur over the course of several hours. A translational sideband of 84cm-1 arises from the center-of-mass motion of H2 at the primary adsorption site and indicates that the zero-point energy is a substantial fraction of the binding energy of this site.

  12. Teleseismic body waves from dynamically rupturing shallow thrust faults: Are they opaque for surface-reflected phases?

    USGS Publications Warehouse

    Smith, D.E.; Aagaard, B.T.; Heaton, T.H.

    2005-01-01

    We investigate whether a shallow-dipping thrust fault is prone to waveslip interactions via surface-reflected waves affecting the dynamic slip. If so, can these interactions create faults that are opaque to radiated energy? Furthermore, in this case of a shallow-dipping thrust fault, can incorrectly assuming a transparent fault while using dislocation theory lead to underestimates of seismic moment? Slip time histories are generated in three-dimensional dynamic rupture simulations while allowing for varying degrees of wave-slip interaction controlled by fault-friction models. Based on the slip time histories, P and SH seismograms are calculated for stations at teleseismic distances. The overburdening pressure caused by gravity eliminates mode I opening except at the tip of the fault near the surface; hence, mode I opening has no effect on the teleseismic signal. Normalizing by a Haskell-like traditional kinematic rupture, we find teleseismic peak-to-peak displacement amplitudes are approximately 1.0 for both P and SH waves, except for the unrealistic case of zero sliding friction. Zero sliding friction has peak-to-peak amplitudes of 1.6 for P and 2.0 for SH waves; the fault slip oscillates about its equilibrium value, resulting in a large nonzero (0.08 Hz) spectral peak not seen in other ruptures. These results indicate wave-slip interactions associated with surface-reflected phases in real earthquakes should have little to no effect on teleseismic motions. Thus, Haskell-like kinematic dislocation theory (transparent fault conditions) can be safety used to simulate teleseismic waveforms in the Earth.

  13. First Selection, Then Influence: Developmental Differences in Friendship Dynamics Regarding Academic Achievement

    ERIC Educational Resources Information Center

    Gremmen, Mariola Claudia; Dijkstra, Jan Kornelis; Steglich, Christian; Veenstra, René

    2017-01-01

    This study concerns peer selection and influence dynamics in early adolescents' friendships regarding academic achievement. Using longitudinal social network analysis (RSiena), both selection and influence processes were investigated for students' average grades and their cluster-specific grades (i.e., language, exact, and social cluster). Data…

  14. Movement dynamics reflect a functional role for weak coupling and role structure in dyadic problem solving.

    PubMed

    Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T

    2015-11-01

    Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.

  15. A Dual Operator View of Habitual Behavior Reflecting Cortical and Striatal Dynamics

    PubMed Central

    Smith, Kyle S.; Graybiel, Ann M.

    2014-01-01

    SUMMARY Habits are notoriously difficult to break, and, if broken, are usually replaced by new routines. To examine the neural basis of these characteristics, we recorded spike activity in cortical and striatal habit sites as rats learned maze tasks. Over-training induced a shift from purposeful to habitual behavior. This shift coincided with the activation of neuronal ensembles in the infralimbic neocortex and the sensorimotor striatum, which became engaged simultaneously but developed changes in spike activity with distinct time-courses and stability. The striatum rapidly acquired an action-bracketing activity pattern insensitive to reward devaluation but sensitive to running automaticity. A similar pattern developed in the upper layers of the infralimbic cortex, but it formed only late during over-training and closely tracked habit states. Selective optogenetic disruption of infralimbic activity during over-training prevented habit formation. We suggest that learning-related spiking dynamics of both striatum and neocortex are necessary, as dual operators, for habit crystallization. PMID:23810540

  16. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  17. Influence of dynamic inflow on the helicopter vertical response

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.

    1986-01-01

    A study was conducted to investigate the effects of dynamic inflow on rotor-blade flapping and vertical motion of the helicopter in hover. Linearized versions of two dynamic inflow models, one developed by Carpenter and Fridovich and the other by Pitt and Peters, were incorporated in simplified rotor-body models and were compared for variations in thrust coefficient and the blade Lock number. In addition, a comparison was made between the results of the linear analysis, and the transient and frequency responses measured in flight on the CH-47B variable-stability helicopter. Results indicate that the correlations are good, considering the simplified model used. The linear analysis also shows that dynamic inflow plays a key role in destabilizing the flapping mode. The destabilized flapping mode, along with the inflow mode that the dynamic inflow introduces, results in a large initial overshoot in the vertical acceleration response to an abrupt input in the collective pitch. This overshoot becomes more pronounced as either the thrust coefficient or the blade Lock number is reduced. Compared with Carpenter's inflow model, Pitt's model tends to produce more oscillatory responses because of the less stable flapping mode predicted by it.

  18. Spatial asymmetries in connectivity influence colonization-extinction dynamics.

    PubMed

    Acevedo, Miguel A; Fletcher, Robert J; Tremblay, Raymond L; Meléndez-Ackerman, Elvia J

    2015-10-01

    Movement has broad implications for many areas of biology, including evolution, community and population ecology. Movement is crucial in metapopulation ecology because it facilitates colonization and reduces the likelihood of local extinction via rescue effects. Most metapopulation modeling approaches describe connectivity using pair-wise Euclidean distances resulting in the simplifying assumption of a symmetric connectivity pattern. Yet, assuming symmetric connectivity when populations show net asymmetric movement patterns may result in biased estimates of colonization and extinction, and may alter interpretations of the dynamics and conclusions regarding the viability of metapopulations. Here, we use a 10-year time series on a wind-dispersed orchid Lepanthes rupestris that anchors its roots in patches of moss growing on trees or boulders along streams, to test for the role of connectivity asymmetries in explaining the colonization-extinction dynamics of this orchid in a network of 975 patches. We expected that wind direction could highly alter dispersal direction in this orchid. To account for this potential asymmetry, we modified the connectivity measure traditionally used in metapopulation models to allow for asymmetric effective distances between patches and subsequently estimated colonization and extinction probabilities using a dynamic occupancy modeling approach. Asymmetric movement was prevalent in the L. rupestris metapopulation and incorporating potential dispersal asymmetries resulted in higher colonization estimates in larger patches and more accurate models. Accounting for dispersal asymmetries may reveal connectivity effects where they were previously assumed to be negligible and may provide more reliable conclusions regarding the role of connectivity in patch dynamics.

  19. In situ probing of pulsed laser melting and laser-induced periodic surface structures formation by dynamic reflectivity

    NASA Astrophysics Data System (ADS)

    Huynh, T. T. D.; Semmar, N.

    2017-09-01

    The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm‑2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm‑2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.

  20. SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF A REFLECTING LONGITUDINAL WAVE IN A CORONAL LOOP

    SciTech Connect

    Kumar, Pankaj; Innes, D. E.; Inhester, B.

    2013-12-10

    We report high resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) of intensity oscillations in a hot, T ∼ 8-10 MK, loop. The AIA images show a large coronal loop that was rapidly heated following plasma ejection from one of the loop's footpoints. A wave-like intensity enhancement, seen very clearly in the 131 and 94 Å channel images, propagated ahead of the ejecta along the loop, and was reflected at the opposite footpoint. The wave reflected four times before fading. It was only seen in the hot, 131 and 94 Å channels. The characteristic period and the decay time of the oscillation were ∼630 and ∼440 s, respectively. The phase speed was about 460-510 km s{sup –1} which roughly matches the sound speed of the loop (430-480 km s{sup –1}). The observed properties of the oscillation are consistent with the observations of Dopper-shift oscillations discovered by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation and with their interpretation as slow magnetoacoustic waves. We suggest that the impulsive injection of plasma, following reconnection at one of the loop footpoints, led to rapid heating and the propagation of a longitudinal compressive wave along the loop. The wave bounces back and forth a couple of times before fading.

  1. Timing of breeding and reproductive performance in murres and kittiwakes reflect mismatched seasonal prey dynamics

    USGS Publications Warehouse

    Shultz, M.T.; Piatt, J.F.; Harding, A.M.A.; Kettle, Arthur B.; van Pelt, Thomas I.

    2009-01-01

    Seabirds are thought to time breeding to match the seasonal peak of food availability with peak chick energetic demands, but warming ocean temperatures have altered the timing of spring events, creating the potential for mismatches. The resilience of seabird populations to climate change depends on their ability to anticipate changes in the timing and magnitude of peak food availability and 'fine-tune' efforts to match ('Anticipation Hypothesis'). The degree that inter-annual variation in seabird timing of breeding and reproductive performance represents anticipated food availability versus energetic constraints ('Constraint Hypothesis') is poorly understood. We examined the relative merits of the Constraint and Anticipation Hypotheses by testing 2 predictions of the Constraint Hypothesis: (1) seabird timing of breeding is related to food availability prior to egg laying rather than the date of peak food availability, (2) initial reproductive output (e.g. laying success, clutch size) is related to pre-lay food availability rather than anticipated chick-rearing food availability. We analyzed breeding biology data of common murres Uria aalge and black-legged kittiwakes Rissa tridactyla and 2 proxies of the seasonal dynamics of their food availability (near-shore forage fish abundance and sea-surface temperature) at 2 colonies in Lower Cook Inlet, Alaska, USA, from 1996 to 1999. Our results support the Constraint Hypothesis: (1) for both species, egg laying was later in years with warmer sea-surface temperature and lower food availability prior to egg laying, but was not related to the date of peak food availability, (2) pre-egg laying food availability explained variation in kittiwake laying success and clutch size. Murre reproductive success was best explained by food availability during chick rearing. ?? 2009 Inter-Research.

  2. About compensation the electronic beam dynamic stratification influence in super-power relativistic Cherenkov oscillators

    SciTech Connect

    Kurayev, Alexander A.; Rak, Alexey O.; Sinitsyn, Anatoly K.

    2011-07-01

    On the basis of the exact nonlinear theory relativistic TWT and BWO on irregular hollow waveguides with cathode filters-modulators with the account as propagating, and beyond cut-off waves, with the account of losses in walls of a waveguide and inhomogeneity directing an electronic beam magnetostatic fields finds out influence of dynamic stratification influence on efficiency of the generator. Possibility of almost fill compensation the electronic beam dynamic stratification influence on efficiency by optimization of an electronic beam arrangement in inhomogeneous high frequency and magnetic fields and characteristics of the irregular corrugated waveguide is shown. (author)

  3. Walking in simulated Martian gravity: influence of the portable life support system's design on dynamic stability.

    PubMed

    Scott-Pandorf, Melissa M; O'Connor, Daniel P; Layne, Charles S; Josić, Kresimir; Kurz, Max J

    2009-09-01

    With human exploration of the moon and Mars on the horizon, research considerations for space suit redesign have surfaced. The portable life support system (PLSS) used in conjunction with the space suit during the Apollo missions may have influenced the dynamic balance of the gait pattern. This investigation explored potential issues with the PLSS design that may arise during the Mars exploration. A better understanding of how the location of the PLSS load influences the dynamic stability of the gait pattern may provide insight, such that space missions may have more productive missions with a smaller risk of injury and damaging equipment while falling. We explored the influence the PLSS load position had on the dynamic stability of the walking pattern. While walking, participants wore a device built to simulate possible PLSS load configurations. Floquet and Lyapunov analysis techniques were used to quantify the dynamic stability of the gait pattern. The dynamic stability of the gait pattern was influenced by the position of load. PLSS loads that are placed high and forward on the torso resulted in less dynamically stable walking patterns than loads placed evenly and low on the torso. Furthermore, the kinematic results demonstrated that all joints of the lower extremity may be important for adjusting to different load placements and maintaining dynamic stability. Space scientists and engineers may want to consider PLSS designs that distribute loads evenly and low, and space suit designs that will not limit the sagittal plane range of motion at the lower extremity joints.

  4. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection

    PubMed Central

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-01-01

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013. PMID:27051997

  5. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection

    NASA Astrophysics Data System (ADS)

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-04-01

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013.

  6. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection.

    PubMed

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-04-07

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013.

  7. Using directed information for influence discovery in interconnected dynamical systems

    NASA Astrophysics Data System (ADS)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  8. Influence of Small Scale Yielding on Dynamic Fracture.

    DTIC Science & Technology

    1980-05-01

    MAT-16. 10 10. CHEVERTON, R.D. and ISKANDER, S.K., "Application of Static and Dynamic Crack Arrest Theory to Thermal Shock Experiment TSE-4," NUREG /CR...0767, ORNL/ NUREG -57, June 1979. 11. KANNINEN, M.P., MUKHERJEE, A.K., ROSENFIELD, A.R. and HAHN, G.T., "The Speed of Ductile-Crack Propagation and the

  9. Influence of rubbing on rotor dynamics, part 1

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    The results of analytical and experimental research on rotor-to-stationary element rubbing in rotating machines are presented. A characterization of physical phenomena associated with rubbing, as well as a literature survey on the subject of rub is given. The experimental results were obtained from two rubbing rotor rigs: one, which dynamically simulates the space shuttle main engine high pressure fuel turbopump (HPFTP), and the second one, much simpler, a two-mode rotor rig, designed for more generic studies on rotor-to-stator rubbing. Two areas were studied: generic rotor-to-stator rub-related dynamic phenomena affecting rotating machine behavior and applications to the space shuttle HPFTP. An outline of application of dynamic stiffness methodology for identification of rotor/bearing system modal parameters is given. The mathematical model of rotor/bearing/seal system under rub condition is given. The computer program was developed to calculate rotor responses. Compared with experimental results the computed results prove an adequacy of the model.

  10. Spectral reflectance patterns and temporal dynamics of common understory types in hemi-boreal forests in Järvselja, Estonia

    NASA Astrophysics Data System (ADS)

    Nikopensius, Maris; Raabe, Kairi; Pisek, Jan

    2014-05-01

    The knowledge about spectral properties and seasonal dynamics of understory layers in boreal forests currently holds several gaps. This introduces severe uncertainties while modelling the carbon balance of this ecosystem, which is expected to be prone to major shifts with climate change in the future. In this work the seasonal reflectance dynamics in European hemi-boreal forests are studied. The data for this study was collected at Järvselja Training and Experimental Forestry District (Estonia, 27.26°E 58.30°N). Measurements were taken in three different stands. The silver birch (Betula Pendula Roth) stand grows on typical brown gley-soil and its understory vegetation is dominated by a mixture of several grass species. The Scots pine (Pinus sylvestris) stand grows on a bog with understory vegetation composed of sparse labrador tea, cotton grass, and a continuous Sphagnum moss layer. The third stand, Norway spruce (Picea abies), grows on a Gleyi Ferric Podzol site with understory vegetation either partially missing or consisting of mosses such as Hylocomium splendens or Pleurozium schreberi [1]. The sampling design was similar to the study by Rautiainen et al. [3] in northern European boreal forests. At each study site, a 100 m long permanent transect was marked with flags. In addition, four intensive study plots (1 m × 1 m) were marked next to the transects at 20 m intervals. The field campaign lasted from May to September 2013. For each site the fractional cover of understory and understory spectra were estimated ten times i.e. every 2 to 3 weeks. Results from Järvselja forest were compared with the seasonal profiles from boreal forests in Hyytiälä, Finland [2]. References [1] A. Kuusk, M. Lang, J. Kuusk, T. Lükk, T. Nilson, M. Mõttus, M. Rautiainen, and A. Eenmäe, "Database of optical and structural data for validation of radiative transfer models", Technical Report, September 2009 [2] M. Rautiainen, M. Mõttus, J. Heiskanen, A. Akujärvi, T. Majasalmi

  11. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    NASA Astrophysics Data System (ADS)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    influence of mycorrhizal fungi on plant N supply, and 3) 15N content of mycorrhizal fungi may be a marker of proteolytic capabilities, and may therefore indicate the importance of organic nitrogen cycling to plant nitrogen supply.

  12. Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies.

    PubMed

    Horváth, Gábor; Gál, József; Labhart, Thomas; Wehner, Rüdiger

    2002-11-01

    Using imaging polarimetry, we have measured some typical reflection-polarization patterns of plant surfaces (leaves and flowers) under different illuminations. Using a quantitative model to determine photon absorptions in the weakly polarization-sensitive (PS approximately 2) photoreceptors of Papilio butterflies, we have calculated the influence of reflection polarization on the colours of leaves and flowers perceived by PAPILIO: Compared with a retina containing polarization-blind colour receptors, the colour loci of specularly reflecting and, thus, strongly polarizing areas on a plant are slightly shifted, which could cause the perception of false colours. However, the colour of specularly reflecting surfaces is strongly masked by white glare, which may prevent the perception of polarization-induced hue shifts. Although the perception of polarizational false colours by Papilio butterflies was previously demonstrated with artificial, strongly colour-saturated and totally linearly polarized stimuli, we expect that the weak polarization sensitivity of Papilio photoreceptors hardly influences colour perception under natural conditions.

  13. Behavioral dynamics and influence in networked coloring and consensus.

    PubMed

    Judd, Stephen; Kearns, Michael; Vorobeychik, Yevgeniy

    2010-08-24

    We report on human-subject experiments on the problems of coloring (a social differentiation task) and consensus (a social agreement task) in a networked setting. Both tasks can be viewed as coordination games, and despite their cognitive similarity, we find that within a parameterized family of social networks, network structure elicits opposing behavioral effects in the two problems, with increased long-distance connectivity making consensus easier for subjects and coloring harder. We investigate the influence that subjects have on their network neighbors and the collective outcome, and find that it varies considerably, beyond what can be explained by network position alone. We also find strong correlations between influence and other features of individual subject behavior. In contrast to much of the recent research in network science, which often emphasizes network topology out of the context of any specific problem and places primacy on network position, our findings highlight the potential importance of the details of tasks and individuals in social networks.

  14. Social Influence and the Collective Dynamics of Opinion Formation

    PubMed Central

    Moussaïd, Mehdi; Kämmer, Juliane E.; Analytis, Pantelis P.; Neth, Hansjörg

    2013-01-01

    Social influence is the process by which individuals adapt their opinion, revise their beliefs, or change their behavior as a result of social interactions with other people. In our strongly interconnected society, social influence plays a prominent role in many self-organized phenomena such as herding in cultural markets, the spread of ideas and innovations, and the amplification of fears during epidemics. Yet, the mechanisms of opinion formation remain poorly understood, and existing physics-based models lack systematic empirical validation. Here, we report two controlled experiments showing how participants answering factual questions revise their initial judgments after being exposed to the opinion and confidence level of others. Based on the observation of 59 experimental subjects exposed to peer-opinion for 15 different items, we draw an influence map that describes the strength of peer influence during interactions. A simple process model derived from our observations demonstrates how opinions in a group of interacting people can converge or split over repeated interactions. In particular, we identify two major attractors of opinion: (i) the expert effect, induced by the presence of a highly confident individual in the group, and (ii) the majority effect, caused by the presence of a critical mass of laypeople sharing similar opinions. Additional simulations reveal the existence of a tipping point at which one attractor will dominate over the other, driving collective opinion in a given direction. These findings have implications for understanding the mechanisms of public opinion formation and managing conflicting situations in which self-confident and better informed minorities challenge the views of a large uninformed majority. PMID:24223805

  15. Social influence and the collective dynamics of opinion formation.

    PubMed

    Moussaïd, Mehdi; Kämmer, Juliane E; Analytis, Pantelis P; Neth, Hansjörg

    2013-01-01

    Social influence is the process by which individuals adapt their opinion, revise their beliefs, or change their behavior as a result of social interactions with other people. In our strongly interconnected society, social influence plays a prominent role in many self-organized phenomena such as herding in cultural markets, the spread of ideas and innovations, and the amplification of fears during epidemics. Yet, the mechanisms of opinion formation remain poorly understood, and existing physics-based models lack systematic empirical validation. Here, we report two controlled experiments showing how participants answering factual questions revise their initial judgments after being exposed to the opinion and confidence level of others. Based on the observation of 59 experimental subjects exposed to peer-opinion for 15 different items, we draw an influence map that describes the strength of peer influence during interactions. A simple process model derived from our observations demonstrates how opinions in a group of interacting people can converge or split over repeated interactions. In particular, we identify two major attractors of opinion: (i) the expert effect, induced by the presence of a highly confident individual in the group, and (ii) the majority effect, caused by the presence of a critical mass of laypeople sharing similar opinions. Additional simulations reveal the existence of a tipping point at which one attractor will dominate over the other, driving collective opinion in a given direction. These findings have implications for understanding the mechanisms of public opinion formation and managing conflicting situations in which self-confident and better informed minorities challenge the views of a large uninformed majority.

  16. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities.

    PubMed

    Fey, Samuel B; Mertens, Andrew N; Cottingham, Kathryn L

    2015-07-01

    While ecologists primarily focus on the immediate impact of ecological subsidies, understanding the importance of ecological subsidies requires quantifying the long-term temporal dynamics of subsidies on recipient ecosystems. Deciduous leaf litter transferred from terrestrial to aquatic ecosystems exerts both immediate and lasting effects on stream food webs. Recently, deciduous leaf additions have also been shown to be important subsidies for planktonic food webs in ponds during autumn; however, the inter-seasonal effects of autumn leaf subsidies on planktonic food webs have not been studied. We hypothesized that autumn leaf drop will affect the spring dynamics of freshwater pond food webs by altering the availability of resources, water transparency, and the metabolic state of ponds. We created leaf-added and no-leaf-added field mesocosms in autumn 2012, allowed mesocosms to ice-over for the winter, and began sampling the physical, chemical, and biological properties of mesocosms immediately following ice-off in spring 2013. At ice-off, leaf additions reduced dissolved oxygen, elevated total phosphorus concentrations and dissolved materials, and did not alter temperature or total nitrogen. These initial abiotic effects contributed to higher bacterial densities and lower chlorophyll concentrations, but by the end of spring, the abiotic environment, chlorophyll and bacterial densities converged. By contrast, zooplankton densities diverged between treatments during the spring, with leaf additions stimulating copepods but inhibiting cladocerans. We hypothesized that these differences between zooplankton orders resulted from resource shifts following leaf additions. These results suggest that leaf subsidies can alter both the short- and long-term dynamics of planktonic food webs, and highlight the importance of fully understanding how ecological subsidies are integrated into recipient food webs.

  17. Influence of magnetic anisotropy on dynamic magnonic crystals created by surface acoustic waves in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2017-03-01

    Experimental results on the investigation of the influence of magnetic crystallographic anisotropy onto parameters of dynamic magnonic crystals arising at surface acoustic wave (SAW) propagation in yttrium iron garnet (YIG) films are presented. The main features of such an influence, as we have shown, are: 1) appearance of extra magnonic band gaps together with the normal magnonic band gap existing without anisotropy, 2) the absence of reflections of the incident surface magnetostatic wave at the frequency of these extra gaps, 3) the same depth for the extra gaps was achieved with a relatively small SAW power, almost by the order of magnitude less than in the case of normal magnonic gaps caused by SAW. A possible explanation of the features is given on the base of inelastic scattering of surface magnetostatic waves by SAW with the transformation of the reflected surface wave to the anisotropic direct volume magnetostatic wave existence of which is due to cubic crystallographic anisotropy in YIG. These results may be useful in designing new devices of information processing.

  18. Wind dynamics' influence on south Spain airborne olive-pollen during African intrusions.

    PubMed

    García-Mozo, H; Hernández-Ceballos, M A; Trigo, M M; Galán, C

    2017-12-31

    Given its proximity to northern Africa, southern Spain is regularly affected by high-altitude African intrusions. This determines a well-defined wind dynamics at surface levels. Although this weather event-mainly recorded in spring and summer-coincides with the flowering season of many wind pollinated species, its potential influence on long term airborne pollen transport has been not investigated in detail. We analyse their influence on olive pollen transport at surface level in south Spain. Daily and bi-hourly olive pollen data from 2010 to 2015, recorded at two sites 150km apart, Málaga (coast) and Córdoba (inland), were analysed together with 1) air masses at 300m above ground level (m.a.g.l.), 2) surface wind direction and 3) surface wind speed over the same period. Air masses at 3000m.a.g.l. were used to identify the periods under the influence of African intrusions. The combined analysis has enabled the identification of different pollen patterns and source contributions. In Málaga, hourly pollen peaks were recorded during the early morning coinciding with the arrival of north-westerly winds (developing sea-land breezes), with a minimal impact of local pollen sources; in Córdoba, by contrast, pollen concentrations reflected the joint contribution of local and long term sources, being the maximum concentrations associated with the arrival of southerly air masses in the afternoon. These results help to understand the potential distant sources and back-trajectories of olive pollen detected. In our case pollen from sources located at the west-northwest areas in the case of Malaga, and from the south in Cordoba. These results reinforce the idea that combined studies between synoptic meteorological and aerobiological data together with different atmospheric height air masses data, offer us a better explanation and understanding of the behaviour and the potential sources of recorded airborne data in a given place. Copyright © 2017 Elsevier B.V. All rights

  19. Influence of the 3D inverse dynamic method on the joint forces and moments during gait.

    PubMed

    Dumas, R; Nicol, E; Chèze, L

    2007-10-01

    The joint forces and moments are commonly used in gait analysis. They can be computed by four different 3D inverse dynamic methods proposed in the literature, either based on vectors and Euler angles, wrenches and quaternions, homogeneous matrices, or generalized coordinates and forces. In order to analyze the influence of the inverse dynamic method, the joint forces and moments were computed during gait on nine healthy subjects. A ratio was computed between the relative dispersions (due to the method) and the absolute amplitudes of the gait curves. The influence of the inverse dynamic method was negligible at the ankle (2%) but major at the knee and the hip joints (40%). This influence seems to be due to the dynamic computation rather than the kinematic computation. Compared to the influence of the joint center location, the body segment inertial parameter estimation, and more, the influence of the inverse dynamic method is at least of equivalent importance. This point should be confirmed with other subjects, possibly pathologic, and other movements.

  20. Opinion dynamics on interacting networks: media competition and social influence

    PubMed Central

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    The inner dynamics of the multiple actors of the informations systems – i.e, T.V., newspapers, blogs, social network platforms, – play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist. PMID:24861995

  1. Influence of Opinion Dynamics on the Evolution of Games

    PubMed Central

    Gargiulo, Floriana; Ramasco, José J.

    2012-01-01

    Under certain circumstances such as lack of information or bounded rationality, human players can take decisions on which strategy to choose in a game on the basis of simple opinions. These opinions can be modified after each round by observing own or others payoff results but can be also modified after interchanging impressions with other players. In this way, the update of the strategies can become a question that goes beyond simple evolutionary rules based on fitness and become a social issue. In this work, we explore this scenario by coupling a game with an opinion dynamics model. The opinion is represented by a continuous variable that corresponds to the certainty of the agents respect to which strategy is best. The opinions transform into actions by making the selection of an strategy a stochastic event with a probability regulated by the opinion. A certain regard for the previous round payoff is included but the main update rules of the opinion are given by a model inspired in social interchanges. We find that the fixed points of the dynamics of the coupled model are different from those of the evolutionary game or the opinion models alone. Furthermore, new features emerge such as the independence of the fraction of cooperators with respect to the topology of the social interaction network or the presence of a small fraction of extremist players. PMID:23166600

  2. Opinion dynamics on interacting networks: media competition and social influence.

    PubMed

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-27

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  3. Richtmyer-Meshkov unstable dynamics influenced by pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Bhowmick, A. K.; Abarzhi, S. I.

    2016-11-01

    We theoretically study the effect of pressure fluctuations on the Richtmyer-Meshkov (RM) unstable interface in approximation of ideal incompressible immiscible fluids and two-dimensional flow. Pressure fluctuations are treated as an effective acceleration directed from the heavy to light fluid with inverse square time dependence. The group theory approach is applied to analyze large-scale coherent dynamics, solve the complete set of the governing equations, and find regular asymptotic solutions describing RM bubbles. A strong effect is found, for the first time to our knowledge, of pressure fluctuations on the interface morphology and dynamics. In the linear regime, a nearly flat bubble gets more curved, and its velocity increases for strong pressure fluctuations and decreases otherwise. In the nonlinear regime, solutions form a one-parameter family parameterized by the bubble front curvature. For the fastest stable solution in the family, the RM bubble is curved for strong pressure fluctuations and is flattened otherwise. The flow is characterized by the intense motion of the fluids in the vicinity of the interface, effectively no motion away from the interface, and presence of shear at the interface leading to formation of smaller scale vortical structures. Our theoretical results agree with and explain existing experiments and simulations and identify new qualitative and quantitative characteristics to evaluate the strength of pressure fluctuations in experiments and simulations.

  4. Opinion dynamics on interacting networks: media competition and social influence

    NASA Astrophysics Data System (ADS)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-01

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  5. Dynamics of public opinion under the influence of epidemic spreading

    NASA Astrophysics Data System (ADS)

    Wu, Junhui; Ni, Shunjiang; Shen, Shifei

    2016-02-01

    In this paper, we propose a novel model with dynamically adjusted confidence level of others to investigate the propagation of public opinion on whether to buy chicken in the case of avian influenza infection in humans. We study how people adjust their confidence level in other people’s opinions according to their perceived infection risk and how the opinion evolution and epidemic spreading affect each other on different complex networks by taking into account the spreading feature of avian influenza, that is, only people who buy chicken are possible to be infected. The simulation results show that in a closed system, people who support buying chicken and people who are infected can achieve a dynamic balance after a few time-steps, and the final stable state is mainly dependent on the level of people’s risk perception, rather than the initial distribution of the different opinions. Our results imply that in the course of the epidemic spread, transparent and timely announcement of the number of infections and the risk of infection can help people take the right self-protection actions, and thus help control the spread of avian influenza.

  6. Modelling of snow avalanche dynamics: influence of model parameters

    NASA Astrophysics Data System (ADS)

    Bozhinskiy, A. N.

    The three-parameter hydraulic model of snow avalanche dynamics including the coefficients of dry and turbulent friction and the coefficient of new-snow-mass entrainment was investigated. The 'Domestic' avalanche site in Elbrus region, Caucasus, Russia, was chosen as the model avalanche range. According to the model, the fixed avalanche run-out can be achieved with various combinations of model parameters. At the fixed value of the coefficient of entrainment me, we have a curve on a plane of the coefficients of dry and turbulent friction. It was found that the family of curves (me is a parameter) are crossed at the single point. The value of the coefficient of turbulent friction at the cross-point remained practically constant for the maximum and average avalanche run-outs. The conclusions obtained are confirmed by the results of modelling for six arbitrarily chosen avalanche sites: three in the Khibiny mountains, Kola Peninsula, Russia, two in the Elbrus region and one idealized site with an exponential longitudinal profile. The dependences of run-out on the coefficient of dry friction are constructed for all the investigated avalanche sites. The results are important for the statistical simulation of avalanche dynamics since they suggest the possibility of using only one random model parameter, namely, the coefficient of dry friction, in the model. The histograms and distribution functions of the coefficient of dry friction are constructed and presented for avalanche sites Nos 22 and 43 (Khibiny mountains) and 'Domestic', with the available series of field data.

  7. The influence of demographic stochasticity on evolutionary dynamics and stability.

    PubMed

    Shpak, Max; Orzack, Steven Hecht; Barany, Ernest

    2013-09-01

    We derive the frequency-dependent selection coefficient caused by "demographic" stochasticity resulting from the random sampling of opponents an individual faces during behavioral "contests" with other individuals. The mean, variance, and higher moments of fitness all influence the direction and strength of selection. A frequency-dependent trait can be stable when an individual's fitness depends upon an infinite number of contests with other individuals and unstable when it depends upon a finite number of contests. Conversely, unstable equilibria for an infinite number of contests can be stable when there is a finite number of contests. At stable equilibria for a finite number of contests, higher moments of fitness can outweigh the joint influence of the first two moments so that natural selection favors "within-generation" or developmental-trait variation (also known as phenotypic plasticity) contrary to the claim that natural selection always acts against such variation. We use second-moment estimates of the fitness functions in a diffusion approximation to compute fixation probabilities of competing strategies. These estimates are shown to be qualitatively consistent with those derived from simulations when population sizes are sufficiently large to ignore the contribution of higher-moment terms. We also show that explicit solutions to the diffusion approximation only exist for pair-wise interactions that lead to positive frequency-dependent selection. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Behavioral dynamics and influence in networked coloring and consensus

    PubMed Central

    Judd, Stephen; Kearns, Michael; Vorobeychik, Yevgeniy

    2010-01-01

    We report on human-subject experiments on the problems of coloring (a social differentiation task) and consensus (a social agreement task) in a networked setting. Both tasks can be viewed as coordination games, and despite their cognitive similarity, we find that within a parameterized family of social networks, network structure elicits opposing behavioral effects in the two problems, with increased long-distance connectivity making consensus easier for subjects and coloring harder. We investigate the influence that subjects have on their network neighbors and the collective outcome, and find that it varies considerably, beyond what can be explained by network position alone. We also find strong correlations between influence and other features of individual subject behavior. In contrast to much of the recent research in network science, which often emphasizes network topology out of the context of any specific problem and places primacy on network position, our findings highlight the potential importance of the details of tasks and individuals in social networks. PMID:20696936

  9. Dynamic buckling of containments: The influence of damping

    SciTech Connect

    Farrar, C.R.; Duffey, T.A.; Goldman, P.A.; Bennett, J.G.

    1993-02-01

    The seismic buckling capacities of representative thin, unstiffened elastic containment shells are investigated to evaluate the sensitivity of buckling to the damping level. The finite element method with transient time integration is utilized with both actual earthquake acceleration-time signals and artificial time histories generated from regulatory spectra. The dynamic response and subsequent buckling of the selected containment shells are found to be highly dependent on both damping level and the degree to which the input signal excites the fundamental shear-bending mode of the shell. Transient stresses and buckling levels for the two containment shells induced by the seismic inputs were reduced in the range of 12% to 111% by increasing the damping level from 1% to 4% of critical.

  10. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.

    PubMed

    Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo

    2010-04-06

    In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.

  11. Climate variance influence on the non-stationary plankton dynamics.

    PubMed

    Molinero, Juan Carlos; Reygondeau, Gabriel; Bonnet, Delphine

    2013-08-01

    We examined plankton responses to climate variance by using high temporal resolution data from 1988 to 2007 in the Western English Channel. Climate variability modified both the magnitude and length of the seasonal signal of sea surface temperature, as well as the timing and depth of the thermocline. These changes permeated the pelagic system yielding conspicuous modifications in the phenology of autotroph communities and zooplankton. The climate variance envelope, thus far little considered in climate-plankton studies, is closely coupled with the non-stationary dynamics of plankton, and sheds light on impending ecological shifts and plankton structural changes. Our study calls for the integration of the non-stationary relationship between climate and plankton in prognostic models on the productivity of marine ecosystems.

  12. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift

  13. The interplay of self-reflection, social interaction and random events in the dynamics of opinion flow in two-party democracies

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Klaus; Hadzibeganovic, Tarik

    2016-01-01

    We propose a continuous process opinion formation model to study the dynamics of a multi-level relationship between voters, political parties, and facts in two-party democratic elections. In our model, opinions can take any real value between two extremes and an unaligned, moderate opinion state without a preference. Starting with a random opinion configuration, individual voter opinions evolve and change over time due to self-reflection, inter-personal communication, external media influence, and noise. Parties are influenced by their own ideologies, facts, and voters’ opinions. Elections are held periodically and the party that is closer in opinion to the majority of voters forms the new government. The government policy is then expected to be in proximity to the voter opinions and the policies of the currently ruling political party. We analyze the tension of opinions as a measure of how dramatically opinions can disagree within a given sample of voters and the success of the government and parties as the degree of coincidence between the policies and facts. Our model generates realistic quasi-periodic alternations between incumbents and challengers that are typical for two-party systems. Moreover, our model shows that relative to other voters’ strategies, conscious voting can lead to more successful governments of not only fact-oriented but also pragmatic and balanced political parties, irrespective of the strategies of the competing opposition parties. In addition, our simulations uncover several interesting features including less victories for strictly ideological or fact-oriented parties unless they include some aspects of populism or pragmatism. In this sense, our model can also describe situations where election outcomes are not necessarily based on votes for the current programs of competing parties and their placement on relevant issues, but instead result from voters’ dissatisfaction with the previous government and the votes against it.

  14. On the influence of dynamic stress variations on strain accumulation in fault zones

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. S.; Shilko, E. V.; Astafurov, S. V.; Dimaki, A. V.; Vysotsky, E. M.; Psakhie, S. G.

    2015-10-01

    In this paper, a numerical study of the influence of the stress state of interface of the block medium structural elements on the deformation response of interface to the dynamic impacts. It is shown that the basic characteristics of the stress state determining the deformation response of the interface are the values of shear stress and mean stress. It is found that the dependence of the irreversible displacement at the interface zone initiated by dynamic impact on the reduced shear stress is described by the logistic function. Herewith, the influence of the mean stress and dynamic impact energy on the value of displacement initiated by dynamic impact can be taken into account by dependence of the logistic function numerator on these parameters.

  15. Static versus dynamic loads as an influence on bone remodelling

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1983-01-01

    Bone remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulna preparation is made by two submetaphyseal osteotomies, the cut ends of the bone being covered with stainless steel caps which, together with the bone they enclosed, are pierced by pins emerging transcutaneously on the dorsal and ventral surfaces of the wing. The 110 mm long undisturbed section of the bone shaft can be protected from functional loading, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression by engaging the pins in an Instron machine. Similar loads (525 n) were used in both static and dynamic cases engendering similar peak strains at the bone's midshaft (-2000 x 10-6). The intermitent load was applied at a frequency of 1 Hz during a single 100 second period per day as a ramped square wave, with a rate of change of strain during the ramp of 0.01 per second.

  16. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    PubMed

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  17. Functionally dissociable influences on learning rate in a dynamic environment

    PubMed Central

    McGuire, Joseph T.; Nassar, Matthew R.; Gold, Joshua I.; Kable, Joseph W.

    2015-01-01

    Summary Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data, but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals. PMID:25459409

  18. Does the organizational structure of health care systems influence care-seeking decisions? A qualitative analysis of Danish cancer patients' reflections on care-seeking

    PubMed Central

    Andersen, Rikke Sand; Vedsted, Peter; Olesen, Frede; Bro, Flemming; Søndergaard, Jens

    2011-01-01

    Objective The absence of a more significant improvement in cancer survival in countries such as the UK and Denmark may be partly rooted in delayed care-seeking among cancer patients. Past research on patient delay has mainly focused on patient characteristics (e.g. sociodemographic and psychological factors and symptom recognition) as causes of delayed care-seeking, while few studies have examined how the organizational structure of health care systems may influence patients’ reflections on seeking care. The aim of this study was to explore this relationship. Design The analysis presented is based on semi-structured interviews with 30 cancer patients and their families. Results The article raises two hypotheses on the relationship between structural elements of a health care system and people's reflections on seeking health care: (1) Gatekeeping introduces an asymmetrical relationship between the patient and the GP which potentially results in self-restricting care-seeking, (2) Continuity in the doctor–patient relationship may negatively influence patient reflections on access to health care, as the focus shifts from the medical issues of the consultation to reflections on how to properly interact with the GP and the system in which she/he is situated. Conclusion It is concluded that these hypotheses form a sound basis for further primary care research on how the organizational structure of health care systems influences patient reflections on access to medical care. PMID:21861597

  19. Is the Calcite-Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Data

    SciTech Connect

    Fenter, Paul; Kerisit, Sebastien N.; Raiteri, Paolo; Gale, Julian D.

    2013-04-01

    New insights into the structure of the calcite-water interface are obtained through direct model-independent comparison of multiple classical molecular dynamics (MD) simulations with high-resolution specular X-ray reflectivity (XR) data. This set of comparisons, with four different state-of-the-art force fields (including two non-polarizable, one polarizable, and one reactive force field), reveal new insights into the absolute accuracy of the simulated structures and the uniqueness of the XR-derived structural results. These four simulations, while qualitatively similar, have visibly distinct interfacial structure, and are distinguished through a quantitative comparison of the XR signals calculated from these simulations with experimental XR data. The results demonstrate that the simulated calcite-water interface structures, as a whole, are not consistent with the XR data (i.e., within their precision and accuracy). This disagreement is largely due to the simulation of the calcite lattice. The simulated interfacial water profiles show substantially different levels of agreement with the XR data. Of these, the rigid-ion model (RIM) simulations show the best consistency with the experimental XR data. Further model-dependent comparisons of the structural parameters that describe the interfacial structure (derived from both the MD simulations and the XR data) provide further insight into the sources of differences between these two approaches. Using the new insights from the RIM simulations, new structures of the calcite-water interface consistent with both the experimental data and the simulation are identified and compared to recent results.

  20. Hydration structure of the barite (001)–water interface: Comparison of x-ray reflectivity with molecular dynamics simulations

    DOE PAGES

    Bracco, Jacquelyn N.; Lee, Sang Soo; Stubbs, Joanne E.; ...

    2017-05-11

    The three-dimensional structure of the barite (001)-water interface was studied using in situ specular and non-specular X-ray reflectivity (XR). Displacements of the barium and sulfate ions in the surface of a barite crystal and the interfacial water structure were defined in the analyses. The largest relaxations (0.13 Å lateral and 0.08 Å vertical) were observed for the barium and sulfate ions in the topmost unit cell layer, which diminished rapidly with depth. The best fit structure identified four distinct adsorbed species, which in comparison with molecular dynamics (MD) simulations, reveals that they are associated with positions of adsorbed water, eachmore » of which coordinates one or two surface ions (either barium, sulfate, or both). These water molecules also adsorb in positions consistent with those of bariums and sulfates in the bulk crystal lattice. These results demonstrate the importance of combining high resolution XR with MD simulations to fully describe the atomic structure of the hydrated mineral surface. As a result, the agreement between the results indicates both the uniqueness of the structural model obtained from the XR analysis and the accuracy of the force field used in the simulations.« less

  1. Species composition and infection dynamics of ascaridoid nematodes in Barents Sea capelin (Mallotus villosus) reflecting trophic position of fish host.

    PubMed

    Levsen, Arne; Paoletti, Michela; Cipriani, Paolo; Nascetti, Giuseppe; Mattiucci, Simonetta

    2016-11-01

    Capelin (Mallotus villosus) is among the most abundant fish species in the Barents Sea, and represents a critical food source for many predators in the area including Atlantic cod and harp seal. In Norway, the fish is of economic importance since whole capelin and roe are valuable export products. Despite its economic and ecological importance, the parasites of Barents Sea capelin are poorly known. However, the presence of parasites in the edible parts may adversely affect product quality and consumer safety. During the main annual catching seasons of 2009-2012, we investigated the diversity and infection dynamics of ascaridoid nematodes in capelin (n = 620) from the southern Barents Sea. Three anisakid species were identified by genetic or molecular methods; Anisakis simplex (s.s.), Contracaecum osculatum sp. B, and Hysterothylacium aduncum, with C. osculatum sp. B as the most prevalent and abundant species. The present findings suggest that the ascaridoid species composition in capelin reflects its trophic position in the Barents Sea ecosystem. There appears to be a link between infection level of the nematode species and the preferred prey organisms of the different developmental phases of capelin. Thus, the higher abundance of C. osculatum sp. B compared to A. simplex (s.s.) and H. aduncum may be related to more extensive feeding on calanoid copepods over a wider ontogenetic size range including adolescence, while the main intermediate hosts of the latter nematode species, i.e. euphausiids and amphipods, appear to be the preferred prey of larger capelin.

  2. Know yourself and you shall know the other... to a certain extent: multiple paths of influence of self-reflection on mindreading.

    PubMed

    Dimaggio, Giancarlo; Lysaker, Paul H; Carcione, Antonino; Nicolò, Giuseppe; Semerari, Antonio

    2008-09-01

    Social and neurocognitive research suggests that thinking about one's own thinking and thinking about the thinking of others-termed 'mindreading', 'metacognition', 'social cognition' or 'mentalizing' are not identical activities. The ability though to think about thinking in the first person is nevertheless related to the ability to think about other's thoughts in the third person. Unclear is how these phenomena influence one another. In this review, we explore how self-reflection and autobiographical memory influence the capacity to think about the thoughts and emotions of others. We review studies suggesting that the more individuals are able to reflect on and retrieve episodes from their life narratives, the more they are likely to grasp others' thoughts and emotions. We discuss evidence supporting this possibility including studies of the neurocognitive bases of empathy and self-awareness and how different aspects of self-reflection may impact on mindreading. We also draw from clinical reports how improved self-reflection may result in a more nuanced mindreading, namely persons suffering from schizophrenia and narcissistic personality disorder. We finally discuss the implications for research and practice and consider whether there are conditions in which the reverse is true, where self-reflection might impair mindreading or in which mindreading may facilitate self-reflection.

  3. Influence of solid-liquid interactions on dynamic wetting: a molecular dynamics study.

    PubMed

    Bertrand, Emilie; Blake, Terence D; Coninck, Joël De

    2009-11-18

    Large-scale molecular dynamics (MD) simulations of liquid drops spreading on a solid substrate have been carried out for a very wide range of solid-liquid interactions and equilibrium contact angles. The results for these systems are shown to be consistent with the molecular-kinetic theory (MKT) of dynamic wetting, which emphasizes the role of contact-line friction as the principal channel of energy dissipation. Several predictions have been confirmed. These include a quantitative link between the dynamics of wetting and the work of adhesion and the existence of an optimum equilibrium contact angle that maximizes the speed of wetting. A feature of the new work is that key parameters (κ(0) and λ), normally accessible only by fitting the MKT to dynamic contact angle data, are also obtained directly from the simulations, with good agreement between the two sources. This validates the MKT at some fundamental level. Further verification is provided by contact angle relaxation studies, which also lend support to the interfacial tension relaxation process invoked in Shikhmurzaev's hydrodynamic model of dynamic wetting.

  4. Influence of solid-liquid interactions on dynamic wetting: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bertrand, Emilie; Blake, Terence D.; De Coninck, Joël

    2009-11-01

    Large-scale molecular dynamics (MD) simulations of liquid drops spreading on a solid substrate have been carried out for a very wide range of solid-liquid interactions and equilibrium contact angles. The results for these systems are shown to be consistent with the molecular-kinetic theory (MKT) of dynamic wetting, which emphasizes the role of contact-line friction as the principal channel of energy dissipation. Several predictions have been confirmed. These include a quantitative link between the dynamics of wetting and the work of adhesion and the existence of an optimum equilibrium contact angle that maximizes the speed of wetting. A feature of the new work is that key parameters (κ0 and λ), normally accessible only by fitting the MKT to dynamic contact angle data, are also obtained directly from the simulations, with good agreement between the two sources. This validates the MKT at some fundamental level. Further verification is provided by contact angle relaxation studies, which also lend support to the interfacial tension relaxation process invoked in Shikhmurzaev's hydrodynamic model of dynamic wetting.

  5. Influence of gender on muscle fatigue during dynamic knee contractions

    PubMed Central

    FUJISAWA, Chiharu; TAMAKI, Akira; YAMADA, Eiji; MATSUOKA, Hirofumi

    2017-01-01

    Purpose: The purpose was to compare quadriceps muscle fatigue and change in surface electromyogram (sEMG) spectral power, muscle thickness, and peak torque (normalized by body weight) in men and women during isokinetic knee contractions. Methods: Nineteen healthy volunteers (10 men, 9 women) participated. The volunteers performed 32 consecutive maximal isokinetic knee contractions for peak torque and muscle fatigue index (FI). The sEMG data were analyzed using wavelet analysis for median frequency (MF). Muscle thickness was measured using ultrasonography. Results: Men had a significantly higher FI, peak torque (Nm/kg), muscle thickness than women (p<0.05). A significant linear decreased MF slope in the vastus lateralis was observed (p<0.05) in men than in women. There was no significant difference in MF slope in the vastus medialis between men and women. Conclusion: During muscle fatigue assessment, men had a significantly greater muscle thickness, knee extension peak torque, and a higher decrease of MF slope than women. Our results indicate that specific muscle fatigue observed during repeated muscle knee contractions is significantly influence by gender and affects MF slope, knee extension peak torque, and muscle thickness. PMID:28781931

  6. Technology in postgraduate medical education: a dynamic influence on learning?

    PubMed

    Bullock, Alison; Webb, Katie

    2015-11-01

    The influence of technology in medical workplace learning is explored by focusing on three uses: m-learning (notably apps), simulation and social media. Smartphones with point-of-care tools (such as textbooks, drug guides and medical calculators) can support workplace learning and doctors' decision-making. Simulations can help develop technical skills and team interactions, and 'in situ' simulations improve the match between the virtual and the real. Social media (wikis, blogs, networking, YouTube) heralds a more participatory and collaborative approach to knowledge development. These uses of technology are related to Kolb's learning cycle and Eraut's intentions of informal learning. Contentions and controversies with these technologies exist. There is a problem with the terminology commonly adopted to describe the use of technology to enhance learning. Using learning technology in the workplace changes the interaction with others and raises issues of professionalism and etiquette. Lack of regulation makes assessment of app quality a challenge. Distraction and dependency are charges levelled at smartphone use in the workplace and these need further research. Unless addressed, these and other challenges will impede the benefits that technology may bring to postgraduate medical education.

  7. Technology in postgraduate medical education: a dynamic influence on learning?

    PubMed Central

    Bullock, Alison; Webb, Katie

    2015-01-01

    The influence of technology in medical workplace learning is explored by focusing on three uses: m-learning (notably apps), simulation and social media. Smartphones with point-of-care tools (such as textbooks, drug guides and medical calculators) can support workplace learning and doctors’ decision-making. Simulations can help develop technical skills and team interactions, and ‘in situ’ simulations improve the match between the virtual and the real. Social media (wikis, blogs, networking, YouTube) heralds a more participatory and collaborative approach to knowledge development. These uses of technology are related to Kolb's learning cycle and Eraut's intentions of informal learning. Contentions and controversies with these technologies exist. There is a problem with the terminology commonly adopted to describe the use of technology to enhance learning. Using learning technology in the workplace changes the interaction with others and raises issues of professionalism and etiquette. Lack of regulation makes assessment of app quality a challenge. Distraction and dependency are charges levelled at smartphone use in the workplace and these need further research. Unless addressed, these and other challenges will impede the benefits that technology may bring to postgraduate medical education. PMID:26341127

  8. Adaptation to fragmentation: evolutionary dynamics driven by human influences.

    PubMed

    Cheptou, Pierre-Olivier; Hargreaves, Anna L; Bonte, Dries; Jacquemyn, Hans

    2017-01-19

    Fragmentation-the process by which habitats are transformed into smaller patches isolated from each other-has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal traits are likely to experience especially strong selection, as dispersal both enables migration among patches and increases the risk of landing in the inhospitable matrix surrounding them. We highlight that suites of associated traits are likely to evolve together. Importantly, we show that adaptation will not necessarily rescue populations from the negative effects of fragmentation, and may even exacerbate them, endangering the entire metapopulation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  9. Influence of volume fraction on the dynamics of granular impact

    NASA Astrophysics Data System (ADS)

    Umbanhowar, Paul; Yang, Ding; Goldman, Daniel

    2008-11-01

    Variation of the volume fraction φ of non-cohesive granular media causes disproportionate changes in the forces exerted on impacting objects and, consequently, the impact kinematics. In our experiments, a computer controlled air fluidized granular bed is used to vary φ from 0.58 (low) to 0.62 (high) for 0.3 mm diameter glass spheres and 1̃ mm poppy seeds. An accelerometer attached to a 4.0 cm diameter steel sphere measures collision forces for initial impact velocities ranging from 0.5 to 3.5 m/s. As an example of the dramatic changes produced by varying φ, time series of the force during impact with poppy seeds at an impact velocity of 1 m/s change from monotonically increasing with slope 100 N/s at φ=0.59 to monotonically decreasing with slope -100 N/s at φ=0.62; glass beads show similar behavior. Increasing φ from low to high at fixed collision velocity causes the penetration depth to decrease monotonically by approximately 50%. However, for the same parameters, the collision duration changes little, decreasing by 10% as φ is increased from 0.58 to 0.6 and then increasing by about 3% as φ is increased to 0.63. Our impact simulations exhibit the same collision dynamics vs. φ and reveal qualitative differences in grain velocity fields and local volume fraction changes between low and high φ states. Support by the Burroughs Wellcome Fund and the Army Research Lab MAST CTA.

  10. Cultivating Critical Reflection: Educators Making Sense and Meaning of Professional Identity and Relational Dynamics in Complex Practice

    ERIC Educational Resources Information Center

    Morgan, Ann

    2017-01-01

    Critical reflection underpins socially just and inclusive practices that are distinguishing features of democratic learning communities. Critical reflection supports educators' interrogation of the underlying assumptions, intentions, values and beliefs that shape their worldview and sociocultural standpoint. Dominant sociocultural norms…

  11. Cultivating Critical Reflection: Educators Making Sense and Meaning of Professional Identity and Relational Dynamics in Complex Practice

    ERIC Educational Resources Information Center

    Morgan, Ann

    2017-01-01

    Critical reflection underpins socially just and inclusive practices that are distinguishing features of democratic learning communities. Critical reflection supports educators' interrogation of the underlying assumptions, intentions, values and beliefs that shape their worldview and sociocultural standpoint. Dominant sociocultural norms…

  12. What's in Your Box? Promoting Self-Reflection and Analysis of External Influences on Gender Expression and Sexual Orientation Attitudes

    ERIC Educational Resources Information Center

    Priest, Hannah M.

    2014-01-01

    This lesson plan is designed to stimulate awareness and reflection on personal attitudes toward gender expression and sexual orientation. Participants are guided to identify and analyze how external influences from various socialization agents shape gender and sexual orientation norms and, consequently, personal attitudes about gender expression…

  13. Influence of the Difficulty of the Matching Familiar Figures Test-20 on the Assessment of Reflection-Impulsivity: An Item Analysis

    ERIC Educational Resources Information Center

    Carretero-Dios, Hugo; Macarena, De los Santos-Roig; Buela-Casal, Gualberto

    2008-01-01

    This study is an item analysis of the Matching Familiar Figures Test-20. We examined error scores in the Matching Familiar Figures Test-20 to determine the influence of the difficulty of the test on the assessment of reflection-impulsivity. The sample included 700 participants aged between 6 and 12 years. The results obtained from the corrected…

  14. What's in Your Box? Promoting Self-Reflection and Analysis of External Influences on Gender Expression and Sexual Orientation Attitudes

    ERIC Educational Resources Information Center

    Priest, Hannah M.

    2014-01-01

    This lesson plan is designed to stimulate awareness and reflection on personal attitudes toward gender expression and sexual orientation. Participants are guided to identify and analyze how external influences from various socialization agents shape gender and sexual orientation norms and, consequently, personal attitudes about gender expression…

  15. The Influence of Reflective Opposite-Sex Norms and Importance of Opposite-Sex Approval on Adjudicated Student Drinking: Theoretical Extensions and Implications

    ERIC Educational Resources Information Center

    Hummer, Justin F.; LaBrie, Joseph W.; Lac, Andrew; Louie, Brian

    2013-01-01

    This study examines the salience and influence of reflective norms regarding opposite- sex friends, dating, and sexual partners on drinking behaviors of heterosexual college students sanctioned for violating the campus alcohol policy (i.e., adjudicated students). Results revealed that the level of importance placed on approval from the opposite…

  16. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    NASA Astrophysics Data System (ADS)

    Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.

    2017-04-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  17. Influences of large height differences and overhangs on the dynamic scaling behavior of discrete models

    NASA Astrophysics Data System (ADS)

    Xun, Zhi-Peng; Zhang, Zhe; Chen, Yi-Li; Wu, Ling; Tang, Gang

    2017-04-01

    In order to investigate the influences of large height differences and overhangs on the dynamic scaling behavior of discrete models, meanwhile reducing the finite-size effects, the Etching model is modified to reduce large height differences, and the overhangs in Ballistic Deposition surfaces are removed under certain principles. Numerical simulations are carried out for the modified models, and the results show that the modified surfaces lead to good dynamic scaling behavior even on small system length scales. The values of the dynamic scaling exponents are in excellent agreement with theoretical predictions of the Kardar-Parisi-Zhang equation in (1 + 1) dimensions.

  18. Reflection of curved shock waves

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2017-09-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  19. Reflection of curved shock waves

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2017-03-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  20. Influence of indexing errors on dynamic response of spur gear pairs

    NASA Astrophysics Data System (ADS)

    Inalpolat, M.; Handschuh, M.; Kahraman, A.

    2015-08-01

    In this study, a dynamic model of a spur gear pair is employed to investigate the influence of gear tooth indexing errors on the dynamic response. This transverse-torsional dynamic model includes periodically-time varying gear mesh stiffness and nonlinearities caused by tooth separations in resonance regions. With quasi-static transmission error time traces as the primary excitation, the model predicts frequency-domain dynamic mesh force and dynamic transmission error spectra. These long-period quasi-static transmission error time traces are measured using unity-ratio spur gear pairs having certain intentional indexing errors. A special test setup with dedicated instrumentation for the measurement of quasi-static transmission error is employed to perform a number of experiments with gears having deterministic spacing errors at one or two teeth of the test gear only and random spacing errors where all of the test gear teeth have a random distribution of errors as in a typical production gear.

  1. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  2. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  3. Macular pigment optical density measurements by one-wavelength reflection photometry--influence of cataract surgery on the measurement results.

    PubMed

    Komar, Bogdana; Rauscher, Franziska Georgia; Wiedemann, Renate; Dawczynski, Jens

    2014-11-01

    The main objective of the present study was the investigation of possible influence of lens opacification on macular pigment optical density (MPOD) measurements. Eighty-six eyes of 64 patients (mean age 73.4 ± 8.3 years) were included in the study. MPOD was prospectively measured using the one-wavelength reflection method (Visucam500, Carl Zeiss Meditec AG) before and after cataract extraction, with implantation of a blue-light filtering intraocular lens (AlconSN60WF). The median of the maximum optical density (MaxOD) and the median of the mean optical density (MeanOD) measurements of macular pigment across the subject group were evaluated. Statistically significant differences were noticed between pre-operative and post-operative measurements, the absolute values were generally lower after cataract extraction. The following median (lower/upper quartile) differences across the group were determined: MaxOD -33.8 % (-46.2 to -19.1 %), MeanOD -44.0 % (-54.6 to -26.6 %). Larger changes were observed in elderly patients [<70 years of age (n = 25 eyes): MaxOD -13.4 % (-20.5 to 3.6 %), MeanOD -23.6 % (-30.5 to -15.3 %) versus patients ≥70 years (n = 61 eyes) MaxOD -40.5 % (-53.2 to -30.1 %), MeanOD -47.2 % (-57.8 to -40.1 %)] and in patients with progressed stage of cataract. MaxOD for lens opacification grade 1 (n = 9 eyes): -27.4 % (-42.1 to -19.6 %), grade 2 (n = 26 eyes): -35.0 % (-44.2 to -25.3 %), grade 3 (n = 21 eyes): -34.4 % (-45.4 to -11.4 %), grade 4 (n = 25 eyes): -32.6 % (-53.2 to -6.4 %), and grade 5 (n = 5 eyes): -53.5 % (-61.7 to -38.7 %) and MeanOD for cataract stage 1 (n = 9 eyes): -42.6 % (-46.0 to -26.0 %), stage 2 (n = 26 eyes): -44.1 % (-51.8 to -26.2 %), stage 3 (n = 21 eyes): -45.7 % (-54.7 to -24.7 %), stage 4 (n = 25 eyes): -39.5 % (-59.4 to -26.1 %), and stage 5 (n = 5 eyes): -57.0 % (-66.1 to -51.4 %). As established by comparison of pre- to post-operative measurements, cataract presented a

  4. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    NASA Astrophysics Data System (ADS)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  5. "To be taken seriously" : women's reflections on how migration and resettlement experiences influence their healthcare needs during childbearing in Sweden.

    PubMed

    Robertson, Eva K

    2015-06-01

    To use an intersectional approach to analyze women's reflections on how their migration and resettlement experiences to Sweden influenced their health and healthcare needs during childbearing. Focus-group discussions, pair interviews and individual interviews were conducted in southern Sweden between 2006 and 2009, with 25 women originating from 17 different countries with heterogeneous backgrounds that had experienced childbirth in Sweden. Qualitative content analysis was used with an intersectional approach, taking into consideration intersections of ethnicity, socio-economic status (SES) and gender. The hardships of migration, resettlement, and constraints in the daily life made the women feel overstrained, tense, and disembodied. Being treated as a stranger and ignored or rejected in healthcare encounters was devaluing and discriminating. The women stressed that they felt stronger and had fewer complications during pregnancy and labor when they were "taken seriously" and felt that they had a confident, caring relationship with caregivers/midwives. This, therefore, enabled the women to boost their sense of self, and to recognize their capabilities, as well as their "embodied knowledge". Caregivers/midwives should be aware of the hardships the women face. Hardships stem from experiences of migration and resettlement as well as from structural constraints such as the "triple jeopardy" of ethnicity, SES and gender, which increase women's needs of support in childbearing. Such awareness is necessary when promoting health and reducing the unnecessary suffering and victimization of women, their children, and their families. It is a matter of patient safety and equity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Influence of land-use dynamics on natural hazard risk

    NASA Astrophysics Data System (ADS)

    Piazza, Giacomo; Thaler, Thomas; Fuchs, Sven

    2016-04-01

    In the recent past the magnitude and frequency of natural hazard events has increased notably worldwide, along with global GDP. A higher number of elements are exposed to natural events, therefore the risk is higher. Both estimated losses and understanding about natural hazards have increased during the past decades, which is contradictory as we may logically think. Risk is increasing, due to climate change and societal change: more severe hazards are happening due to changing climatic patterns and conditions, while society is concentrating assets and people in punctual places leading to a higher exposure. Increasing surface of settled area and the concentration of highly valuable assets (e.g. technology) in exposed areas lead to higher probability of losses. Human use of land resources, namely landuse, is the product of human needs and biophysical characteristics of the land. Landuse involves arrangements, activities and inputs people undertake in a certain land cover type to produce, change or maintain it. These changes are due to many reasons, or driving factors: socio-economical, environmental, accessibility to land, land-tenure, etc. The change of those factors may cause many effects and impacts, at various levels and at different time spans. The relation between driving factors and impacts is not straight. It is although a complex interrelation that turns around two central questions: (1) what drives landuse changes and why and (2) what are the impacts on the environment and on the human society of these changes, regarding to natural hazards. The aim of this paper is to analyse the spatio-temporal environmental changes referring to exposure as well as to test the possibilities and limitations of the land use change model Dyna-CLUEs in a mountain region taking parts of the Republic of Austria as an example, and simulating the future landuse dynamics until 2030. We selected an area composed by eighteen municipalities in the Ill-Walgau in the Austrian federal

  7. Downstream Amazon river dynamics under oceanic tide influence

    NASA Astrophysics Data System (ADS)

    Kosuth, P.; Larque, A.; Soussa da Silva, M.; Filizola, N.

    2003-04-01

    Effect of oceanic tide over downstream Amazon river dynamics has been monitored between 1999 and 2001. River topography and bathymetry has been determined, tide induced water levels fluctuations have been monitored at eleven gauging stations along a 1100 km long fluvial reach, water discharges fluctuations along a tide cycle have been measured at 9 sections during low, medium and high river stages measurement campaigns. Specific measurement campaigns have been organised on northern and southern branch of Amazon river near Macapa at various river stages, including suspended sediment determination along a tide cycle. Hydrodynamic modelling has been initiated along this downstream reach. Results show an upwards propagation of oceanic tide waves along Amazon river, semi-diurnal water level fluctuations being eventually observed 1100 km from the estuary at low river stage and 530 km from the estuary at high river stage. At low river stage (November 1997) river water level at Parintins, 1100 km from the estuary, was 3.13m above mean sea level, revealing a 3 mm/km mean slope along the downstream reach of Amazon river. Mean upwards celerity of semi-diurnal tide waves is 40 km/hour with an amplitude damping and wave profile modification : as the wave moves upwards falling phase gets longer and rising phase shorter. Inversion of water discharge during a tide cycle (i.e. negative water discharge) has been observed along the Northern branch up to its divergence with Canal do Gurupa (Southern branch), 444 km from the estuary. In front of Macapa, 200 km from the estuary, Amazon water discharge during a tide cycle (16/03/2000) fluctuated from 580 000 m3/s to - 290 000 m3/s with an average 209 000 m3/s, representative of the Amazon river mean flow. Suspended sediments concentration during a tide cycle stays constant at river surface while it shows a low tide pulse at the lower part of the profile, when water velocity increase generates a sediment re-suspension. Tributaries of the

  8. Influence of dynamic topography on the evolution of the eastern Australian landscape since the Upper Jurassic Epoch

    NASA Astrophysics Data System (ADS)

    Salles, Tristan; Flament, Nicolas; Müller, Dietmar

    2017-04-01

    Australia is an outstanding natural laboratory to study the influence of dynamic topography on landscape evolution, having been largely unaffected by tectonic deformation since the Jurassic. Recent studies of the past eastern Australian landscape from present-day longitudinal river profiles and from mantle flow models suggest that the interaction of plate motion with mantle convection accounts for the two phases of large-scale uplift of the region since 120 Ma. We coupled the dynamic topography predicted by one of these mantle flow models (using the finite element code for thermochemical mantle convection CitcomS) to a surface process model (using the finite volume code for geomorphological and stratigraphic evolution Badlands) to quantify the feedbacks between mantle flow, landscape dynamics and sediment transport at continental scale. Here we apply the approach to the evolution of the Australian landscape over the last 150 Myr. The mantle flow model predicts that Australia was dynamically tilted down to the east 150 Myr ago due to long-lived subduction along the eastern border of the continent. Subduction rolled back 100 Myr ago and the eastward migration of eastern Australia over sinking ancient Gondwanaland slabs caused it to rebound from being drawn down. Following a period of absolute plate motion stagnation, renewed uplift of the eastern highlands occurred during the Cenozoic, as the Australian plate migrated over the Pacific Superswell. We forced Badlands models with this predicted evolution of dynamic topography, varying rainfall regime, erodibility, long-term sea level variations, dynamic topography magnitude and elastic thickness across a series of experiments. The Badlands models quantify the time dependence of erosion and deposition, as well as the evolution of catchment dynamics, drainage capture and drainage network reorganisation. The predicted temporal and spatial changes in longitudinal river profiles as well as erosion and deposition maps show

  9. Biometrics Technology: Understanding Dynamics Influencing Adoption for Control of Identification Deception within Nigeria

    ERIC Educational Resources Information Center

    Nwatu, Gideon U.

    2011-01-01

    One of the objectives of any government is the establishment of an effective solution to significantly control crime. Identity fraud in Nigeria has generated global attention and negative publicity toward its citizens. The research problem addressed in this study was the lack of understanding of the dynamics that influenced the adoption and…

  10. Acculturation and Latino Family Processes: How Cultural Involvement, Biculturalism, and Acculturation Gaps Influence Family Dynamics

    ERIC Educational Resources Information Center

    Smokowski, Paul R.; Rose, Roderick; Bacallao, Martica L.

    2008-01-01

    This study investigated how adolescent and parent acculturation (culture-of-origin and U.S. cultural involvement, biculturalism, acculturation conflicts, and parent-adolescent acculturation gaps) influenced family dynamics (family cohesion, adaptability, familism, and parent-adolescent conflict) in a sample of 402 Latino families from North…

  11. Understanding the Influence of Organizational Culture and Group Dynamics on Organizational Change and Learning

    ERIC Educational Resources Information Center

    Lucas, Colleen; Kline, Theresa

    2008-01-01

    Purpose: The purpose of this study is to investigate the relationship between organizational culture, group dynamics, and organizational learning in the context of organizational change. Design/methodology/approach: A case study was used to examine cultural and group level factors that potentially influence groups' learning in the context of…

  12. Acculturation and Latino Family Processes: How Cultural Involvement, Biculturalism, and Acculturation Gaps Influence Family Dynamics

    ERIC Educational Resources Information Center

    Smokowski, Paul R.; Rose, Roderick; Bacallao, Martica L.

    2008-01-01

    This study investigated how adolescent and parent acculturation (culture-of-origin and U.S. cultural involvement, biculturalism, acculturation conflicts, and parent-adolescent acculturation gaps) influenced family dynamics (family cohesion, adaptability, familism, and parent-adolescent conflict) in a sample of 402 Latino families from North…

  13. Biometrics Technology: Understanding Dynamics Influencing Adoption for Control of Identification Deception within Nigeria

    ERIC Educational Resources Information Center

    Nwatu, Gideon U.

    2011-01-01

    One of the objectives of any government is the establishment of an effective solution to significantly control crime. Identity fraud in Nigeria has generated global attention and negative publicity toward its citizens. The research problem addressed in this study was the lack of understanding of the dynamics that influenced the adoption and…

  14. Understanding the Influence of Organizational Culture and Group Dynamics on Organizational Change and Learning

    ERIC Educational Resources Information Center

    Lucas, Colleen; Kline, Theresa

    2008-01-01

    Purpose: The purpose of this study is to investigate the relationship between organizational culture, group dynamics, and organizational learning in the context of organizational change. Design/methodology/approach: A case study was used to examine cultural and group level factors that potentially influence groups' learning in the context of…

  15. Influence of two-photon absorption on the dynamic behaviors of microring resonators.

    PubMed

    Li, Qiliang; Chen, Haowen; Xu, Jie; Hu, Miao; Zeng, Ran; Zhou, Xuefang; Li, Shuqin

    2017-04-01

    In this paper, we have investigated the influence of two-photon absorption (TPA) on the dynamic behaviors of all-pass and add-drop microring resonators by using two iterative methods along with the linear stability analysis method. While the incident field is above a certain value, the TPA coefficient has greater influence on the steady state for all-pass and add-drop microring resonators. We use the linear stability analysis method to analyze the stability of the steady state solutions and obtain stability conditions. Results obtained have shown that the change of TPA coefficient will lead to different dynamic behaviors; in addition, while the TPA coefficient is small and its change is slight, the dynamic behaviors of the microring resonators will not change much for most regions. At last, we observe the period windows and route from chaotic to period-N in some original chaotic regions due to the fluctuation of the TPA coefficient.

  16. Analysis of discontinuities influence on the differences between static and dynamic elastic modulus of composite materials

    NASA Astrophysics Data System (ADS)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    The influence of discontinuities is important for a correct determination of static and dynamic elastic characteristics of the material. In this paper we presented differences arising between the elastic modulus static and dynamic, laminated composite materials reinforced with carbon fiber, aramid and carbon-aramid, depending on the non-uniformity coefficient. For the study were determined static elastic modulus by carrying out traction tests and dynamic elastic modulus by determining the vibration frequency, on specimens of each type of material with and without discontinuities [1]. The elastic properties of composite materials resistance and can be influenced by various defects that arise from technological manufacturing process. This is important for the production of large series of parts of fiber-reinforced composite material, the fibers in the matrix distribution is not uniform. Studies on the mechanical behavior of composites with random distribution of fabrics are made in [2].

  17. The Influence of Video Reflection on Preservice Music Teachers' Concerns in Peer- and Field-Teaching Settings

    ERIC Educational Resources Information Center

    Powell, Sean R.

    2016-01-01

    The purpose of this study was to investigate preservice music teacher concerns as stated in written reflections before and after video feedback. Nineteen preservice music teachers enrolled in instrumental methods courses wrote free-response reflections of peer- and field-teaching episodes. Statements were coded utilizing the Fuller and Bown…

  18. The Influence of Video Reflection on Preservice Music Teachers' Concerns in Peer- and Field-Teaching Settings

    ERIC Educational Resources Information Center

    Powell, Sean R.

    2016-01-01

    The purpose of this study was to investigate preservice music teacher concerns as stated in written reflections before and after video feedback. Nineteen preservice music teachers enrolled in instrumental methods courses wrote free-response reflections of peer- and field-teaching episodes. Statements were coded utilizing the Fuller and Bown…

  19. The Influence of Sun Position and Clouds on Reflectance and Vegetation Indices of Greenhouse-Grown Corn

    USDA-ARS?s Scientific Manuscript database

    The reflectance characteristics of plants and plant canopies far from solar noon or with cloudy skies are not well known. This is an obstacle to making real-time variable-rate N fertilizer applications based on canopy reflectance because such a system must work under cloudy skies and at all times of...

  20. Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity

    PubMed Central

    van den Berge, Maarten; Steiling, Katrina; Timens, Wim; Hiemstra, Pieter S; Sterk, Peter J; Heijink, Irene H; Liu, Gang; Alekseyev, Yuriy O; Lenburg, Marc E; Spira, Avrum; Postma, Dirkje S

    2014-01-01

    Background A core feature of chronic obstructive pulmonary disease (COPD) is the accelerated decline in forced expiratory volume in one second (FEV1). The recent Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD) study suggested that particular phenotypes of COPD benefit from fluticasone±salmeterol by reducing the rate of FEV1 decline, yet the underlying mechanisms are unknown. Methods Whole-genome gene expression profiling using the Affymetrix Gene ST array (V.1.0) was performed on 221 bronchial biopsies available from 89 COPD patients at baseline and after 6 and 30 months of fluticasone±salmeterol and placebo treatment in GLUCOLD. Results Linear mixed effects modelling revealed that the expression of 138 genes decreased, whereas the expression of 140 genes significantly upregulated after both 6 and 30 months of treatment with fluticasone±salmeterol versus placebo. A more pronounced treatment-induced change in the expression of 50 and 55 of these 278 genes was associated with a lower rate of decline in FEV1 and Saint George Respiratory Questionnaire, respectively. Genes decreasing with treatment were involved in pathways related to cell cycle, oxidative phosphorylation, epithelial cell signalling, p53 signalling and T cell signalling. Genes increasing with treatment were involved in pathways related to focal adhesion, gap junction and extracellular matrix deposition. Finally, the fluticasone-induced gene expression changes were enriched among genes that change in the airway epithelium in smokers with versus without COPD in an independent data set. Conclusions The present study suggests that gene expression in biological pathways of COPD is dynamic with treatment and reflects disease activity. This study opens the gate to targeted and molecular phenotype-driven therapy of COPD. PMID:23925644

  1. Reach-Scale Hydraulic Influence on Sediment Dynamics and Morphological Development in a Bedrock Influenced River

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.; Tooth, S.

    2014-12-01

    Many large rivers in southern Africa are characterised by a macro-channel cut 10 - 20 m into the ancient planation surface. This has resulted in a variable channel morphology strongly influenced by bedrock outcrops. The influence of bedrock upon flow hydraulics and sediment transport often results in a repeat sequence of alluvial channel types behind bedrock obstructions. This study investigates the hydraulic controls on channel type sequencing on the Sabie River, which drains a 6500 km2 semi-arid catchment of the Lowveld of South Africa and Mozambique. Aerial LIDAR data within the Kruger National Park was interrogated to isolate a bedrock influenced anastomosing reach, together with its associated alluvial sequences up- and downstream. These data were used to create a 2m DEM and a 2D flow model (JFLOW) was used to simulate a sequence of flows from 20 m3s-1 to 5000 m3s-1, with spatial data on water surface, flow depth and channel velocity extracted from the model. Water surface data revealed the strong gradient control exerted by the bedrock influenced anastomosed channel, creating hydraulic conditions suitable for deposition upstream and restricting sedimentation downstream. Steepening of the gradient through the anastomosing reach resulted in altered hydraulics and a changed pattern of sedimentation. At moderate discharges, flow is distributed efficiently across numerous interconnected channels, over low berms and islands, promoting sedimentation. Similarly the backwater effect encourages deposition of fine sediments upstream to create and maintain the alluvial sequence. Under higher flows, water levels rise significantly in the confined upstream reach and shear stress exceeds the threshold necessary to strip stored sediment. In contrast, conditions within the anastomosed reach remain less energetic due to the continued effect of flow distribution. Under extreme flow conditions the bedrock influence is drowned out resulting in dramatically increased energy levels

  2. Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts

    NASA Astrophysics Data System (ADS)

    Tiani, R.; Rongy, L.

    2016-09-01

    The nonlinear dynamics of A + B → C fronts is analyzed both numerically and theoretically in the presence of Marangoni flows, i.e., convective motions driven by surface tension gradients. We consider horizontal aqueous solutions where the three species A, B, and C can affect the surface tension of the solution, thereby driving Marangoni flows. The resulting dynamics is studied by numerically integrating the incompressible Navier-Stokes equations coupled to reaction-diffusion-convection (RDC) equations for the three chemical species. We show that the dynamics of the front cannot be predicted solely on the basis of the one-dimensional reaction-diffusion profiles as is the case for buoyancy-driven convection around such fronts. We relate this observation to the structure of Marangoni flows which lead to more complex and exotic dynamics. We find in particular the surprising possibility of a reversal of the front propagation direction in time for some sets of Marangoni numbers, quantifying the influence of each chemical species concentration on the solution surface tension. We explain this reversal analytically and propose a new classification of the convective effects on A + B → C reaction fronts as a function of the Marangoni numbers. The influence of the layer thickness on the RDC dynamics is also presented. Those results emphasize the importance of flow symmetry properties when studying convective front dynamics in a given geometry.

  3. The influence of extractable organic matter on vitrinite reflectance suppression: A survey of kerogen and coal types

    USGS Publications Warehouse

    Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J.

    2007-01-01

    The vitrinite reflectance suppression literature shows that while bitumen impregnation of the vitrinite group is often invoked as a significant contributor to suppression, its existence is not often supported by petrological evidence. This study examines bitumen impregnation as a factor in vitrinite suppression by comparing the vitrinite reflectance of source rock and coal samples before and after solvent-extraction. Bitumen, often defined as organic matter soluble or extractable in certain organic solvents, should be removed by Soxhlet method solvent extraction using chloroform. Removing the extractable bitumen should restore the suppressed reflectance to its true higher value. However, the solvent extracted samples averaged 0.014% Rv less than that of the unextracted samples. We conclude from these results and from other published data that reflectance suppression by bitumen impregnation in the vitrinite maceral group, above the huminite stage of gelification, is seemingly a rare phenomenon and whose effect on suppressing vitrinite reflectance is typically negligible. ?? 2006.

  4. Influence of wheel-rail contact modelling on vehicle dynamic simulation

    NASA Astrophysics Data System (ADS)

    Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf

    2015-08-01

    This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.

  5. Influence of pressure on the low-frequency vibrational modes of lysozyme and water: a complementary inelastic neutron scattering and molecular dynamics simulation study.

    PubMed

    Lerbret, Adrien; Hédoux, Alain; Annighöfer, Burkhard; Bellissent-Funel, Marie-Claire

    2013-02-01

    We performed complementary inelastic neutron scattering (INS) experiments and molecular dynamics (MD) simulations to study the influence of pressure on the low-frequency vibrational modes of lysozyme in aqueous solution in the 1 atm-6 kbar range. Increasing pressure induces a high-frequency shift of the low-frequency part (<10 meV = 80 cm(-1)) of the vibrational density of states (VDOS), g(ω), of both lysozyme and water that reveals a stiffening of the interactions ascribed to the reduction of the protein and water volumes. Accordingly, high pressures increase the curvature of the free energy profiles of the protein quasiharmonic vibrational modes. Furthermore, the nonlinear influence of pressure on the g(ω) of lysozyme indicates a change of protein dynamics that reflects the nonlinear pressure dependence of the protein compressibility. An analogous dynamical change is observed for water and stems from the distortion of its tetrahedral structure under pressure. Moreover, our study reveals that the structural, dynamical, and vibrational properties of the hydration water of lysozyme are less sensitive to pressure than those of bulk water, thereby evidencing the strong influence of the protein surface on hydration water.

  6. Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations

    PubMed Central

    Calabro, Katherine W.; Bigio, Irving J.

    2014-01-01

    Abstract. Diffuse reflectance spectroscopy, which has been demonstrated as a noninvasive diagnostic technique, relies on quantitative models for extracting optical property values from turbid media, such as biological tissues. We review and compare reflectance models that have been published, and we test similar models over a much wider range of measurement parameters than previously published, with specific focus on the effects of the scattering phase function and the source-detector distance. It has previously been shown that the dependence of a forward reflectance model on the scattering phase function can be described more accurately using a variable, γ, which is a more predictive variable for reflectance than the traditional anisotropy factor, g. We show that variations in the reflectance model due to the phase function are strongly dependent on the source-detector separation, and we identify a dimensionless scattering distance at which reflectance is insensitive to the phase function. Further, we evaluate how variations in the phase function and source-detector separation affect the accuracy of inverse property extraction. By simultaneously fitting two or more reflectance spectra, measured at different source-detector separations, we also demonstrate that an estimate of γ can be extracted, in addition to the reduced scattering and absorption coefficients. PMID:25027000

  7. Remote sensing study of the influence of herbicides on the spectral reflectance of pea plant leaves (Pisum sativum L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, D.; Alexieva, V.; Yanev, T.; Ivanov, S.

    Results from a remote sensing study of spectral reflectance of leaves of pea plants Pisum sativum L treated by the herbicides atrazine 2 4-D glyphosate fluridone and chlorsulfuron are reported According to the classification of the Herbicide Action Committee reflecting their mode of action they belong to different groups photosystem II bloker - C1 atrazine synthetic auxins - O 2 4-D inhibition of EPSP synthase - G glyphosate photobleaching - F1 fluridone and inhibition of acetoctate synthase - B chlorsulfuron The plants studied were grown hydroponically in a growth chamber in a nutritious medium to which every herbicide was added at three low concentrations 1 mu M 0 1 mu M and 0 01 mu M with respect to the field dose applied in the agricultural practice The spectral measurements of the leaf spectral reflectance were carried out in laboratory using a multichannel spectrometer in the visible and near infrared regions of the spectrum 480 div 810 nm Data was registered in 128 channels at a high spectral resolution of 2 6 nm halfwidth and a spatial resolution of 2 mm 2 The reflectance spectra were obtained from the leaf-reflected radiation referenced against a standard white screen To assess the changes arising in the leaf spectral reflectance under the herbicide action the developed by us approach based on discriminant analysis and other statistical methods was applied The spectral reflectance characteristics SRC were investigated in three spectral intervals 520 div 580 nm region of maximal

  8. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Falahat, Saeed; Stehlikova, Jirina; Oguri, Kazumasa; Glud, Ronnie N.; Middelboe, Mathias; Kitazato, Hiroshi; Wenzhöfer, Frank; Ando, Kojiro; Fujio, Shinzou; Yanagimoto, Daigo

    2014-08-01

    In addition to high hydrostatic pressure, scarcity of food is viewed as a factor that limits the abundance and activity of heterotrophic organisms at great ocean depths, including hadal trenches. Supply of nutritious food largely relies on the flux of organic-rich particulate matter from the surface ocean. It has been speculated that the shape of hadal trenches helps to ‘funnel' particulate matter into the deeper parts of the trench, leading to sediment ‘focussing' and improved benthic food supply. Here we investigate for five Northwest Pacific trenches the efficiency of sediment focussing by evaluating ratios of measured (sediment-derived) and expected (water-column-derived) sedimentary inventories of the naturally occurring and radioactive particulate-matter tracer 210Pbxs. The sites comprise a broad range of surface-ocean productivity and physical-oceanographic regimes. Across the five trench-axis settings the inventory ratio varies between 0.5 and 4.1, with four trench-axis settings having ratios>1 (sediment focussing) and one trench-axis setting a ratio<1 (sediment winnowing). Although the fluid- and sediment-dynamical forcing behind sediment focussing remains unclear, this study finds evidence for another mechanism that is superimposed on, and counteracts, the focussing mechanism. This superimposed mechanism is related to higher-frequency (tidal, near-inertial) fluid dynamics. In particular, there is evidence for a strong and negative relation between the intensity of propagating internal tides and the extent of sediment focussing in the trench-axis. The relation can be approximated by a power function and the most intense drop in sediment focussing already occurs at moderate internal-tide intensities. This suggests that propagating internal tides may have a subtle but significant influence on particulate-matter dynamics and food supply in hadal trenches in particular, but possibly also in the deep seas in general. A mechanism for the influence of

  9. Remote sensing of temperate coniferous forest lead area index - The influence of canopy closure, understory vegetation and background reflectance

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.

  10. Remote sensing of temperate coniferous forest lead area index - The influence of canopy closure, understory vegetation and background reflectance

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.

  11. Influence of the leaving group on the dynamics of a gas-phase SN2 reaction

    NASA Astrophysics Data System (ADS)

    Stei, Martin; Carrascosa, Eduardo; Kainz, Martin A.; Kelkar, Aditya H.; Meyer, Jennifer; Szabó, István; Czakó, Gábor; Wester, Roland

    2016-02-01

    In addition to the nucleophile and solvent, the leaving group has a significant influence on SN2 nucleophilic substitution reactions. Its role is frequently discussed with respect to reactivity, but its influence on the reaction dynamics remains unclear. Here, we uncover the influence of the leaving group on the gas-phase dynamics of SN2 reactions in a combined approach of crossed-beam imaging and dynamics simulations. We have studied the reaction F- + CH3Cl and compared it to F- + CH3I. For the two leaving groups, Cl and I, we find very similar structures and energetics, but the dynamics show qualitatively different features. Simple scaling of the leaving group mass does not explain these differences. Instead, the relevant impact parameters for the reaction mechanisms are found to be crucial and the differences are attributed to the relative orientation of the approaching reactants. This effect occurs on short timescales and may also prevail in solution-phase conditions.

  12. Influence of the leaving group on the dynamics of a gas-phase SN2 reaction.

    PubMed

    Stei, Martin; Carrascosa, Eduardo; Kainz, Martin A; Kelkar, Aditya H; Meyer, Jennifer; Szabó, István; Czakó, Gábor; Wester, Roland

    2016-02-01

    In addition to the nucleophile and solvent, the leaving group has a significant influence on SN2 nucleophilic substitution reactions. Its role is frequently discussed with respect to reactivity, but its influence on the reaction dynamics remains unclear. Here, we uncover the influence of the leaving group on the gas-phase dynamics of SN2 reactions in a combined approach of crossed-beam imaging and dynamics simulations. We have studied the reaction F(-) + CH3Cl and compared it to F(-) + CH3I. For the two leaving groups, Cl and I, we find very similar structures and energetics, but the dynamics show qualitatively different features. Simple scaling of the leaving group mass does not explain these differences. Instead, the relevant impact parameters for the reaction mechanisms are found to be crucial and the differences are attributed to the relative orientation of the approaching reactants. This effect occurs on short timescales and may also prevail in solution-phase conditions.

  13. The dynamical influence of the Atlantic Multidecadal Oscillation on continental climate

    NASA Astrophysics Data System (ADS)

    O'Reilly, Christopher; Woollings, Tim; Zanna, Laure

    2017-04-01

    The Atlantic Multidecadal Oscillation (AMO) in sea surface temperature (SST) has been shown to influence the climate of the surrounding continents. However, it is unclear to what extent the observed impact of the AMO is related to the direct thermodynamical influence of the SST variability or the more complex changes in large-scale atmospheric circulation. Here we use an analog method to decompose the observed impact of the AMO into dynamical and residual components of surface air temperature (SAT) and precipitation over the adjacent continents. Over Europe the decomposition exhibits strong seasonal dependence, with SAT anomalies being primarily dynamically driven in winter and spring, whereas in the summer the SAT anomalies are primarily thermodynamically driven. The overall precipitation response to the AMO is generally less significant than the SAT but is mostly dynamically driven in all seasons. The decomposition is also applied to the North American summer and the Sahel rainy season. Both dynamical and residual influences on the anomalous precipitation over the Sahel are substantial, with the former dominating over the western Sahel region and the latter being largest over the eastern Sahel region. The results have implications for understanding the spread in AMO variability in coupled climate models and decadal prediction systems.

  14. Influence of a custom foot orthotic intervention on lower extremity dynamics in healthy runners.

    PubMed

    MacLean, Christopher; Davis, Irene McClay; Hamill, Joseph

    2006-07-01

    To investigate the influence of a custom foot orthotic intervention on the lower extremity dynamics in healthy runners. Three-dimensional kinematics and kinetics were collected on 15 female runners (>15 miles per week) while each performed the over-ground running trials in either a shoe only or a shoe+custom foot orthotic condition. Kinematic and kinetic variables were analyzed using Paired Sample t-tests. Custom foot orthotics are frequently prescribed treatment modality for the management of overuse running injuries. Although it is generally accepted that a custom foot orthotic intervention produces positive clinical outcomes, it remains unclear what influence this therapeutic modality has on the dynamics of the lower extremity. Each subject performed five acceptable over-ground running trials (3.6 m s(-1) +/-5%) with and without the custom foot orthotic intervention in a running shoe. Selected maximum ankle and knee joint angles and moments were measured during the stance phase. While wearing the custom foot orthotic, subjects exhibited significantly decreased maximum values in rearfoot eversion angle, rearfoot eversion velocity and internal ankle inversion moment. In this sample of healthy female runners, the custom foot orthotic intervention led to significant decreases in maximum values for ankle dynamics in the frontal plane and in the sagittal plane of the knee joint. Relevance It remains unclear how a custom foot orthotic intervention influences lower extremity dynamics to produce positive clinical outcomes. Furthering our understanding of the dynamic influence will not only inform improved prescription and manufacturing practices but may provide insight into the mechanisms that cause overuse injuries.

  15. EO-1 Hyperion reflectance time series at calibration and validation sites: stability and sensitivity to seasonal dynamics

    Treesearch

    Petya K. Entcheva Campbell; Elizabeth M. Middleton; Kurt J. Thome; Raymond F. Kokaly; Karl Fred Huemmrich; David Lagomasino; Kimberly A. Novick; Nathaniel A. Brunsell

    2013-01-01

    This study evaluated Earth Observing 1 (EO-1) Hyperion reflectance time series at established calibration sites to assess the instrument stability and suitability for monitoring vegetation functional parameters. Our analysis using three pseudo-invariant calibration sites in North America indicated that the reflectance time series are devoid of apparent spectral trends...

  16. The influence of time of day on static and dynamic postural control in normal adults.

    PubMed

    Kwon, Yong Hyun; Choi, Yong Won; Nam, Seok Hyun; Lee, Myoung Hee

    2014-03-01

    [Purpose] We attempted to determine whether static and dynamic postural control ability fluctuated depending on the influence of the time of day (9 am, 1 pm, and 5 pm), and at which time point postural balance performance was best in healthy individuals. [Subjects and Methods] Twenty-four healthy subjects participated in this study. The static and dynamic postural balance test was conducted during three sessions (i.e., at 9 am, 1 pm, and 5 pm) with a counterbalanced order for prevention of learning effects. As outcome measurements, AP distance, ML distance, and velocity moment were adopted in the static balance test, and the performance time and total distance were measured in the dynamic balance test. [Results] For the static postural balance test, COP distance was shorter and COP velocity was slower at 9 am compared with those at 1 and 5 pm. In particular, the COP distance at 9 am was statistically different from that at 13 pm. During the dynamic postural balance test, performance time and total distance were influenced by the time of day, as the best performance was observed in the morning. [Conclusion] This study found that static and dynamic postural balance abilities were greatest in the morning and worst at 1 pm. Understanding of the mechanism of the time-of-day effect on postural balance will be helpful for assessment and treatment of postural balance by physical therapists and in making desirable clinical decisions.

  17. Potential force dynamics of heart rate variability reflect cardiac autonomic modulation with respect to posture, age, and breathing pattern.

    PubMed

    Mahananto, Faizal; Igasaki, Tomohiko; Murayama, Nobuki

    2015-09-01

    Various physiological and pathological conditions are correlated with cardiac autonomic function. Heart rate variability is a marker of cardiac autonomic modulation and can be measured by several methods. However, the available methods are sensitive to breathing patterns. To quantify cardiac autonomic modulation by observing the potential force dynamics of the R-R interval time series in healthy individuals. We propose two "potentials of unbalanced complex kinetic" (PUCK) parameters to quantify the characteristics of the potential force dynamics of R-R interval time series: potential strength (slope) and fluctuation size (slope standard deviations [SSD1, SSD2]). We applied this method to the series of R-R intervals obtained from 30 healthy subjects in an experimental condition that elicited cardiac autonomic (i.e., sympathetic and vagal) activation (in supine, sitting, and standing positions). Subjects were categorized into three groups by decade (i.e., 20 s, 30 s, and 40 s) to verify the cardiac autonomic differences by age. Two respiration patterns were introduced to check the influence of the pattern into the analytical results. Sympathetic modulation activation significantly increased the slope and reduced SSD1 and SSD2; these trends were confirmed in all groups. The slope is concordant with the result of the low frequency/high frequency (LF/HF) ratio in frequency components as an indicator of sympathetic modulation. No trend was observed in slope among age groups. However, SSD1 and SSD2 in the 40 s group were significantly decreased in the supine and sitting positions. The results with respect to respiration frequency showed lower sympathetic modulation as shown in the LF/HF ratio and slope, whereas higher vagal modulation as shown in the HF appeared with a longer breathing rate. PUCK can quantify the cardiac autonomic modulation in the experimental conditions of different postures. SSD1 and SSD2 are more sensitive to age than frequency components and are

  18. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations.

    PubMed

    Grouleff, Julie; Irudayam, Sheeba Jem; Skeby, Katrine K; Schiøtt, Birgit

    2015-09-01

    The plasma membrane, which encapsulates human cells, is composed of a complex mixture of lipids and embedded proteins. Emerging knowledge points towards the lipids as having a regulating role in protein function. Furthermore, insight from protein crystallography has revealed several different types of lipids intimately bound to membrane proteins and peptides, hereby possibly pointing to a site of action for the observed regulation. Cholesterol is among the lipid membrane constituents most often observed to be co-crystallized with membrane proteins, and the cholesterol levels in cell membranes have been found to play an essential role in health and disease. Remarkably little is known about the mechanism of lipid regulation of membrane protein function in health as well as in disease. Herein, we review molecular dynamics simulation studies aimed at investigating the effect of cholesterol on membrane protein and peptide properties. This article is part of a Special Issue entitled: Lipid-protein interactions. Copyright © 2015. Published by Elsevier B.V.

  19. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  20. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Astrophysics Data System (ADS)

    Flowers, George T.

    1995-02-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  1. Influence of temperature on spin polarization dynamics in dilute nitride semiconductors—Role of nonparamagnetic centers

    SciTech Connect

    Baranowski, M.; Misiewicz, J.

    2015-10-21

    We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.

  2. Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress1[W][OPEN

    PubMed Central

    Chambers, Jeffrey; Alves, Eliane G.; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D.; Nielsen, Lars K.; Torn, Margaret S.; Vickers, Claudia E.

    2014-01-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. PMID:25318937

  3. Liberating Moral Reflection

    ERIC Educational Resources Information Center

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  4. Liberating Moral Reflection

    ERIC Educational Resources Information Center

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  5. In Search of Multi-Peaked Reflective Spectrum with Optic Fiber Bragg Grating Sensor for Dynamic Strain Measurement

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2006-01-01

    In a typical optic fiber Bragg grating (FBG) strain measurement, unless in an ideal static laboratory environment, the presence of vibration or often disturbance always exists, which often creates spurious multiple peaks in the reflected spectrum, resulting in a non-unique determination of strain value. In this report we attempt to investigate the origin of this phenomenon by physical arguments and simple numerical simulation. We postulate that the fiber gratings execute small amplitude transverse vibrations changing the optical path in which the reflected light traverses slightly and non-uniformly. Ultimately, this causes the multi-peak reflected spectrum.

  6. The influence of grain shape, friction and cohesion on granular compaction dynamics.

    PubMed

    Vandewalle, N; Lumay, G; Gerasimov, O; Ludewig, F

    2007-03-01

    This article is a review of our recent and new experimental works on granular compaction. The effects of various microscopic parameters on the compaction dynamics are addressed, in particular the influence of the grain shape, the friction and the cohesion between the grains. Two dimensional and three dimensional systems are analysed. And the role of dimensionality will be emphasized. Theoretical and numerical investigations provide additional informations about that phenomenon. Indeed numerical models permit us to study the influence of some parameters not easily accessible experimentally. Our results show that the above mentioned parameters have a deep impact on the compaction dynamics. Anisotropic grains lead to two different compaction regimes separated by a "burst" of the packing fraction. Friction is observed to modify how the grains are arranged in the pile. This is confirmed by numerical simulations. Cohesive forces between particles inhibit compaction and lead to extremely low values of the packing fraction.

  7. Does thermal ecology influence dynamics of side-blotched lizards and their micro-parasites?

    PubMed

    Paranjpe, Dhanashree A; Medina, Dianna; Nielsen, Erica; Cooper, Robert D; Paranjpe, Sharayu A; Sinervo, Barry

    2014-07-01

    Hosts and parasites form interacting populations that influence each other in multiple ways. Their dynamics can also be influenced by environmental and ecological factors. We studied host-parasite dynamics in a previously unexplored study system: side-blotched lizards and their micro-parasites. Compared with uninfected lizards, the infected lizards elected to bask at lower temperatures that were outside their range of preferred temperatures. Infected lizards also were not as precise as uninfected lizards in maintaining their body temperatures within a narrow range. At the ecological scale, areas with higher infection rates coincided with more thermally heterogeneous microhabitats as well as with the areas where lizards tended to live longer. Thermal heterogeneity of lizards' microhabitats may provide important clues to the spatial and temporal distribution of infections.

  8. Attention and awareness each influence amygdala activity for dynamic bodily expressions—a short review

    PubMed Central

    de Gelder, Beatrice; Hortensius, Ruud; Tamietto, Marco

    2012-01-01

    The amygdala (AMG) has long been viewed as the gateway to sensory processing of emotions and is also known to play an important role at the interface between cognition and emotion. However, the debate continues on whether AMG activation is independent of attentional demands. Recently, researchers started exploring AMG functions using dynamic stimuli rather than the traditional pictures of facial expressions. Our present goal is to review some recent studies using dynamic stimuli to investigate AMG activation and discuss the impact of different viewing conditions, including oddball detection, explicit or implicit recognition, variable cognitive task load, and non-conscious perception. In the second part, we sketch a dynamic dual route perspective of affective perception and discuss the implications for AMG activity. We sketch a dynamic dual route perspective of affective perception. We argue that this allows for multiple AMG involvement in separate networks and at different times in the processing streams. Attention has a different impact on these separate but interacting networks. Route I is engaged in early emotion processing, is partly supported by AMG activity, and is possibly independent of attention, whereas activity related to late emotion processing is influenced by attention. Route II is a cortical-based network that underlies body recognition and action representation. The end result of route I and II is reflexive and voluntary behavior, respectively. We conclude that using dynamic emotion stimuli and a dynamic dual route model of affective perception can provide new insights into the varieties of AMG activation. PMID:22876223

  9. Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables

    NASA Astrophysics Data System (ADS)

    Letellier, Christophe; Aguirre, Luis A.

    2002-09-01

    When a dynamical system is investigated from a time series, one of the most challenging problems is to obtain a model that reproduces the underlying dynamics. Many papers have been devoted to this problem but very few have considered the influence of symmetries in the original system and the choice of the observable. Indeed, it is well known that there are usually some variables that provide a better representation of the underlying dynamics and, consequently, a global model can be obtained with less difficulties starting from such variables. This is connected to the problem of observing the dynamical system from a single time series. The roots of the nonequivalence between the dynamical variables will be investigated in a more systematic way using previously defined observability indices. It turns out that there are two important ingredients which are the complexity of the coupling between the dynamical variables and the symmetry properties of the original system. As will be mentioned, symmetries and the choice of observables also has important consequences in other problems such as synchronization of nonlinear oscillators.

  10. Estimates and influences of reflective opposite-sex norms on alcohol use among a high-risk sample of college students: Exploring Greek-affiliation and gender effects

    PubMed Central

    Hummer, Justin F.; LaBrie, Joseph W.; Lac, Andrew; Sessoms, Ashley; Cail, Jessica

    2012-01-01

    Reflective opposite sex norms are behavior that an individual believes the opposite sex prefers them to do. The current study extends research on this recently introduced construct by examining estimates and influences of reflective norms on drinking in a large high-risk heterosexual sample of male and female college students from two universities. Both gender and Greek-affiliation served as potential statistical moderators of the reflective norms and drinking relationship. All participants (N = 1790; 57% female) answered questions regarding the amount of alcohol they believe members of the opposite sex would like their opposite sex friends, dates, and sexual partners to drink. Participants also answered questions regarding their actual preferences for drinking levels in each of these three relationship categories. Overall, women overestimated how much men prefer their female friends and potential sexual partners to drink, whereas men overestimated how much women prefer their sexual partners to drink. Greek-affiliated males demonstrated higher reflective norms than non-Greek males across all relationship categories, and for dating partners, only Greek-affiliated males misperceived women’s actual preferences. Among women however, there were no differences between reflective norms estimates or the degree of misperception as a function of Greek status. Most importantly, over and above perceived same-sex social norms, higher perceived reflective norms tended to account for greater variance in alcohol consumption for Greeks (vs. non-Greeks) and males (vs. females), particularly within the friend and sexual partner contexts. The findings highlight that potential benefits might arise if existing normative feedback interventions were augmented with reflective normative feedback designed to target the discrepancy between perceived and actual drinking preferences of the opposite sex. PMID:22305289

  11. Influence of external magnetic field on dynamics of open quantum systems

    SciTech Connect

    Kalandarov, Sh. A.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.

    2007-03-15

    The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.

  12. Influence of Pretreatment Factors on Two-dimensional Correlation Dynamic Mechanical Spectroscopy Features

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoan; Xiang, Kewei; Zhang, Dian; Wu, Jinrong; Huang, Guangsu

    The practical computation process of 2D correlation spectra and the influence of pretreatment factors such as noise reduction, peak position shift have been discussed in this paper. The excessive noise reduction and peak position shift would lead to erroneous interpretation of 2D spectra. Two-dimensional correlation dynamic mechanical spectroscopy is suitable for the analysis of relaxation processes if with appropriate external perturbation.

  13. Dynamical modeling of serial manipulators with flexible links and joints using the method of kinematic influence

    NASA Technical Reports Server (NTRS)

    Graves, Philip L.

    1989-01-01

    A method of formulating the dynamical equations of a flexible, serial manipulator is presented, using the Method of Kinematic Influence. The resulting equations account for rigid body motion, structural motion due to link and joint flexibilities, and the coupling between these two motions. Nonlinear inertial loads are included in the equations. A finite order mode summation method is used to model flexibilities. The structural data may be obtained from experimental, finite element, or analytical methods. Nonlinear flexibilities may be included in the model.

  14. Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter

    SciTech Connect

    Kodera, K.

    1994-01-20

    Volcanic eruptions contribute significant quantities of aerosols into the stratosphere which may create strong polar wind anomalies, particularly in the winter stratosphere. This article examines the idea that the influence of volcano-derived aerosols may produce changes in winter atmospheric circulation in the northern hemisphere. Changes in atmospheric circulation following three recent volcanic eruptions are monitored and possible mechanisms for the production of tropospheric effects through dynamic stratospheric process are discussed. 21 refs., 9 figs.

  15. Influence of external magnetic field on dynamics of open quantum systems.

    PubMed

    Kalandarov, Sh A; Kanokov, Z; Adamian, G G; Antonenko, N V

    2007-03-01

    The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.

  16. The influence of compliant chassis components on motorcycle dynamics: an historical overview and the potential future impact of carbon fibre

    NASA Astrophysics Data System (ADS)

    Lake, Kelvin; Thomas, Richard; Williams, Owen

    2012-07-01

    This paper details the influence of compliant chassis components on motorcycle dynamics. Initially, research which has previously been carried out in terms of motorcycle dynamics and in particular the impact of compliant chassis components on motorcycle dynamics is discussed. This paper then considers the consequences of these findings with regard to the use of modern materials such as carbon fibre reinforced plastics and the impact they will potentially have on motorcycle dynamics and its simulation.

  17. Superfluid {sup 3}He, a two-fluid system, with the normal-fluid dynamics dominated by Andreev reflection

    SciTech Connect

    Pickett, G. R.

    2014-12-15

    As a specific offering towards his festschrift, we present a review the various properties of the excitation gas in superfluid {sup 3}He, which depend on Andreev reflection. This phenomenon dominates many of the properties of the normal fluid, especially at the lowest temperatures. We outline the ideas behind this dominance and describe a sample of the many experiments in this system which the operation of Andreev reflection has made possible, from temperature measurement, particle detection, vortex imaging to cosmological analogues.

  18. Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Yan, Dapeng; Xiong, Songsong; Huang, Bao; Li, Cheng

    2017-01-01

    The effects of large-mode-area (LMA) fiber Bragg gratings (FBGs) with different reflective bandwidths on bi-directionally pumped ytterbium-doped single-mode all-fiber laser oscillator have been investigated experimentally. The forward laser output power and the backward signal leakage were measured and analyzed. It was found that the laser output power and efficiency depended on the bandwidth of the high-reflection (HR) FBG used in the laser cavity. The broader bandwidth gives higher laser efficiency, especially at high power level.

  19. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; ...

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces andmore » enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.« less

  20. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; Kolesnikov, Alexander I.; Cheng, Yongqiang; Meyer, III, Harry M.; Cummings, Peter T.; Gogotsi, Yury G.

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  1. Could the dynamics of the Universe be influenced by what is going on inside black holes?

    SciTech Connect

    Avelino, P.P.

    2015-04-01

    We investigate the potential impact of mass inflation inside black holes on the dynamics of the Universe, considering a recent reformulation of general relativity, proposed in [1], which prevents the vacuum energy from acting as a gravitational source. The interior dynamics of accreting black holes is studied, at the classical level, using the homogeneous approximation and taking charge as a surrogate for angular momentum. We show that, depending on the accreting fluid properties, mass inflation inside black holes could influence the value of the cosmological constant and thus the dynamics of the Universe. A full assessment of the cosmological role played by black holes will require a deeper understanding of the extremely energetic regimes expected inside real astrophysical black holes, including their relation with the physics of the very early Universe, and may eventually lead to an entirely new paradigm for the origin and evolution of the Universe.

  2. The new car following model considering vehicle dynamics influence and numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Liu, Hui; Zhang, Geng; Zhao, Min

    2015-12-01

    In this paper, the car following model is investigated by considering the vehicle dynamics in a cyber physical view. In fact, that driving is a typical cyber physical process which couples the cyber aspect of the vehicles' information and driving decision tightly with the dynamics and physics of the vehicles and traffic environment. However, the influence from the physical (vehicle) view was been ignored in the previous car following models. In order to describe the car following behavior more reasonably in real traffic, a new car following model by considering vehicle dynamics (for short, D-CFM) is proposed. In this paper, we take the full velocity difference (FVD) car following model as a case. The stability condition is given on the base of the control theory. The analytical method and numerical simulation results show that the new models can describe the evolution of traffic congestion. The simulations also show vehicles with a more actual acceleration of starting process than early models.

  3. Long-range correlations improve understanding of the influence of network structure on contact dynamics.

    PubMed

    Peyrard, N; Dieckmann, U; Franc, A

    2008-05-01

    Models of infectious diseases are characterized by a phase transition between extinction and persistence. A challenge in contemporary epidemiology is to understand how the geometry of a host's interaction network influences disease dynamics close to the critical point of such a transition. Here we address this challenge with the help of moment closures. Traditional moment closures, however, do not provide satisfactory predictions close to such critical points. We therefore introduce a new method for incorporating longer-range correlations into existing closures. Our method is technically simple, remains computationally tractable and significantly improves the approximation's performance. Our extended closures thus provide an innovative tool for quantifying the influence of interaction networks on spatially or socially structured disease dynamics. In particular, we examine the effects of a network's clustering coefficient, as well as of new geometrical measures, such as a network's square clustering coefficients. We compare the relative performance of different closures from the literature, with or without our long-range extension. In this way, we demonstrate that the normalized version of the Bethe approximation-extended to incorporate long-range correlations according to our method-is an especially good candidate for studying influences of network structure. Our numerical results highlight the importance of the clustering coefficient and the square clustering coefficient for predicting disease dynamics at low and intermediate values of transmission rate, and demonstrate the significance of path redundancy for disease persistence.

  4. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-03-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft's control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland's continuing study of active wing load control.

  5. Femoral rotation influences dynamic alignment of the lower extremity in total knee arthroplasty.

    PubMed

    Zhao, Zhongyuan; Wang, Weiguang; Wang, Shijun; Jiang, Limin; Zhang, Shudong; Zhao, Yuchi

    2015-01-01

    Besides the long-leg standing X-ray film focusing on static standing mechanical alignment of the lower extremity, dynamic alignment from full extension to 90° flexion after total knee arthroplasty (TKA) is rarely mentioned. Computer-assisted surgical technology enables surgeons to measure and assess knee behaviour during surgery. This study was designed to analyse the influences of femoral rotation on dynamic alignment of the lower extremity in TKA. Seventy-six consecutive patients with end-stage knee osteoarthritis were enrolled. External rotation osteotomy of the distal femur during TKA was completed according to the pre-operative external rotation angle (ERA), intra-operative transepicondylar axis (TEA) and anteroposterior (AP) line. Passive dynamic alignment of the lower extremity during knee flexion was recorded. The variation trend of hip-knee-ankle (HKA) alignment and the influences of femoral external rotation osteotomy were analysed. Postoperative deviation of HKA alignment from 0° to 90° flexion was associated with the rotational alignment of the femoral component (r = -0.769, p < 0.001). Variation trend of HKA alignment during knee flexion tended to be varus, valgus and neutral according to the selected angle of external rotation osteotomy of the distal femur. External rotation osteotomy of the distal femur played a crucial role in determining dynamic HKA alignment in TKA.

  6. The influence of the dynamic transformation of a sliding lever on aiming errors.

    PubMed

    Heuer, H; Sülzenbrück, S

    2012-04-05

    Human movements are quickly adjusted to variations of inertial load. However, this adjustment does not always imply a full compensation, so that kinematic movement characteristics vary. The present experiment served to explore the consequences of a complex dynamic transformation, implemented by a sliding first-order lever, on the endpoint distributions of goal-directed movements. Whereas the endpoint distributions were clearly affected by the inertial anisotropy of the arm, there was no effect of the dynamic transformation of the lever, neither on the parameters of endpoint distributions nor on the covariations of endpoints of successive movements (error propagation). However, when the lever was used, the effect of the inertial anisotropy of the arm on movement amplitudes was reduced, accompanied by a longer movement time overall, in particular for movements with higher inertial load of the arm. These observations suggest an interaction of the use of internal models and impedance control in the presence of variable inertial loads. Most likely the influence of the dynamic transformation of the sliding lever is absorbed by increased joint impedance, which also reduces the influence of the inertial anisotropy of the arm which otherwise is (incompletely) compensated based on an internal model of the dynamic transformation of the arm. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Remote Sensing Study of the Influence of Different Herbicides on the Leaf Spectral Reflectance and Fluorescence of Pea Plants (Pisum sativum L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Yanev, Tony; Iliev, Ilko; Alexieva, Vera; Tsaneva, Mariana

    The effective use of airborne and satellite-based remote sensor systems in resource management, agriculture, mineral exploration and environmental monitoring requires an understanding of the nature and limitations of the high-resolution remote sensing data and of various strategies for processing and interpreting it. In developing the necessary knowledge base, ground-based measurements are the expedient source of information. In this study, remote sensing techniques were applied in laboratory for detection of the influence of herbicides 2.4-D, glyphosate, fluridone and acifluorfen on the leaf spectral reflectance and fluorescence of pea plants (Pisum sativum L.). According to the classification of the Herbicide Resistance Action Committee with reference to their mode of action they belong to different groups: synthetic auxins - O (2.4-D), inhibition of EPSP synthase - G (glyphosate), photobleaching - F1 (fluridone), and inhibition of PPO - E (acifluorfen). During the last 40 years, these herbicides are among the ones used most widely in agriculture worldwide. The plants studied were grown hydroponically in a growth chamber in a nutritious medium to which every herbicide was added at two low concentrations (1 µM, 0.1 µM) with respect to the field dose applied in the agricultural practice. High-resolution spectral data for leaf spectral reflectance and fluorescence were collected from freshly detached leaves using three multichannel spectrometers. Spectral reflectance characteristics were obtained from the leaf reflectance referenced against a standard (white diffuse screen) in the visible and near infrared ranges of the electromagnetic spectrum (450÷850 nm). Fluorescence spectra were taken in the spectral range 650-850 nm. To assess the changes arising in leaf spectral reflectance under the herbicide action we developed and applied an analytical approach based on discriminant analysis and other statistical methods. The spectral characteristics were analyzed in

  8. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis.

    PubMed

    Abiodun, Gbenga J; Maharaj, Rajendra; Witbooi, Peter; Okosun, Kazeem O

    2016-07-15

    Malaria continues to be one of the most devastating diseases in the world, killing more humans than any other infectious disease. Malaria parasites are entirely dependent on Anopheles mosquitoes for transmission. For this reason, vector population dynamics is a crucial determinant of malaria risk. Consequently, it is important to understand the biology of malaria vector mosquitoes in the study of malaria transmission. Temperature and precipitation also play a significant role in both aquatic and adult stages of the Anopheles. In this study, a climate-based, ordinary-differential-equation model is developed to analyse how temperature and the availability of water affect mosquito population size. In the model, the influence of ambient temperature on the development and the mortality rate of Anopheles arabiensis is considered over a region in KwaZulu-Natal Province, South Africa. In particular, the model is used to examine the impact of climatic factors on the gonotrophic cycle and the dynamics of mosquito population over the study region. The results fairly accurately quantify the seasonality of the population of An. arabiensis over the region and also demonstrate the influence of climatic factors on the vector population dynamics. The model simulates the population dynamics of both immature and adult An. arabiensis. The simulated larval density produces a curve which is similar to observed data obtained from another study. The model is efficiently developed to predict An. arabiensis population dynamics, and to assess the efficiency of various control strategies. In addition, the model framework is built to accommodate human population dynamics with the ability to predict malaria incidence in future.

  9. Reflections in the Mirror of Reggio Emilia's Soul: John Dewey's Foundational Influence on Pedagogy in the Italian Educational Project

    ERIC Educational Resources Information Center

    Lindsay, Gai

    2015-01-01

    This paper articulates John Dewey's socio-political and historical influence upon the foundation and evolution of the world-renowned Reggio Emilia approach to early childhood education. It proposes that the pedagogical depth, influence and endurance of the Italian project are grounded in Dewey's philosophies of education, aesthetics and democracy.…

  10. Reflections in the Mirror of Reggio Emilia's Soul: John Dewey's Foundational Influence on Pedagogy in the Italian Educational Project

    ERIC Educational Resources Information Center

    Lindsay, Gai

    2015-01-01

    This paper articulates John Dewey's socio-political and historical influence upon the foundation and evolution of the world-renowned Reggio Emilia approach to early childhood education. It proposes that the pedagogical depth, influence and endurance of the Italian project are grounded in Dewey's philosophies of education, aesthetics and democracy.…

  11. Kaolin-based foliar reflectant and water deficit influence Malbec leaf and berry temperature, pigments, and photosynthesis

    USDA-ARS?s Scientific Manuscript database

    The effects of a kaolin-based foliar reflectant on traits of commercial interest in the red-skinned wine grape cultivar Malbec (Vitis vinifera L.) were evaluated over three growing seasons by measuring the surface temperatures of leaves and clusters, leaf-level assimilation, leaf and berry pigment c...

  12. The Influence of Cooperative Education and Reflection upon Previous Work Experiences on University Graduates' Vocational Self-Concept

    ERIC Educational Resources Information Center

    Drewery, David; Nevison, Colleen; Pretti, T. Judene

    2016-01-01

    Purpose: The purpose of this paper is to assess the relative effects of participation in cooperative education (co-op) and engagement in reflection upon previous work experiences on undergraduate students' vocational self-concept (VSC) at graduation. Design/methodology/approach: A cross-sectional survey of graduating students (n = 1,483) from a…

  13. Investigation of the influence of leaf thickness on canopy reflectance and physiological traits in upland and Pima cotton populations

    USDA-ARS?s Scientific Manuscript database

    Field-based, high-throughput phenotyping (FB-HTP) methods are becoming more prevalent in plant genetics and breeding because they enable the evaluation of large numbers of genotypes under actual field conditions. Many systems for FB-HTP quantify and characterize the reflected radiation from the crop...

  14. The Influence of Cooperative Education and Reflection upon Previous Work Experiences on University Graduates' Vocational Self-Concept

    ERIC Educational Resources Information Center

    Drewery, David; Nevison, Colleen; Pretti, T. Judene

    2016-01-01

    Purpose: The purpose of this paper is to assess the relative effects of participation in cooperative education (co-op) and engagement in reflection upon previous work experiences on undergraduate students' vocational self-concept (VSC) at graduation. Design/methodology/approach: A cross-sectional survey of graduating students (n = 1,483) from a…

  15. Epistemic Beliefs in Action: Spontaneous Reflections about Knowledge and Knowing during Online Information Searching and Their Influence on Learning

    ERIC Educational Resources Information Center

    Mason, Lucia; Ariasi, Nicola; Boldrin, Angela

    2011-01-01

    In the present study it was investigated whether high school students are spontaneously able to reflect epistemologically during online searching for information about a controversial topic. In addition, we examined whether activating epistemic beliefs is related to individual characteristics, such as prior knowledge of the topic and argumentative…

  16. Fluorescence correlation spectroscopy in thin films at reflecting substrates as a means to study nanoscale structure and dynamics at soft-matter interfaces

    NASA Astrophysics Data System (ADS)

    Täuber, Daniela; Radscheit, Kathrin; von Borczyskowski, Christian; Schulz, Michael; Osipov, Vladimir Al.

    2016-07-01

    Structure and dynamics at soft-matter interfaces play an important role in nature and technical applications. Optical single-molecule investigations are noninvasive and capable to reveal heterogeneities at the nanoscale. In this work we develop an autocorrelation function (ACF) approach to retrieve tracer diffusion parameters obtained from fluorescence correlation spectroscopy (FCS) experiments in thin liquid films at reflecting substrates. This approach then is used to investigate structure and dynamics in 100-nm-thick 8CB liquid crystal films on silicon wafers with five different oxide thicknesses. We find a different extension of the structural reorientation of 8CB at the solid-liquid interface for thin and for thick oxide. For the thin oxides, the perylenediimide tracer diffusion dynamics in general agrees with the hydrodynamic modeling using no-slip boundary conditions with only a small deviation close to the substrate, while a considerably stronger decrease of the interfacial tracer diffusion is found for the thick oxides.

  17. Dynamics of learning new postural patterns: influence on preexisting spontaneous behaviors.

    PubMed

    Faugloire, Elise; Bardy, Benoît G; Stoffregen, Thomas A

    2006-07-01

    In stance, rotations around the hips and ankles typically exhibit a relative phase close to 20 degrees or 180 degrees . In 2 experiments, the authors studied the reciprocal influence of those coordination tendencies with learning an ankle-hip relative phase of 135 degrees . Before, during, and after learning a new mode of coordination, they assessed participants' (N = 24 in each experiment) spontaneous postural patterns with a tracking task in which no specific coordination was required. Learning the 135 degrees phase relation led to persistent modifications of the spontaneous in-phase and antiphase modes. Contrary to the theoretical predictions of the dynamical approach, the initial stability of the preexisting patterns did not influence the difficulty of producing the new mode or the improvement in performance during learning. Initial stability did, however, influence the rate and type of modification of spontaneous patterns. The authors discuss the results in relation to conclusions drawn from bimanual studies.

  18. Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity

    NASA Astrophysics Data System (ADS)

    Tárraga, Marta; Cruz-Reyna, Servando; Mendoza-Rosas, Ana; Carniel, Roberto; Martínez-Bringas, Alicia; García, Alicia; Ortiz, Ramon

    2012-06-01

    The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.

  19. Influence of family dynamics on burden among family caregivers in aging Japan.

    PubMed

    Kusaba, Tesshu; Sato, Kotaro; Fukuma, Shingo; Yamada, Yukari; Matsui, Yoshinori; Matsuda, Satoshi; Ando, Takashi; Sakushima, Ken; Fukuhara, Shunichi

    2016-10-01

    Long-term care for the elderly is largely shouldered by their family, representing a serious burden in a hyper-aging society. However, although family dynamics are known to play an important role in such care, the influence of caring for the elderly on burden among caregiving family members is poorly understood. To examine the influence of family dynamics on burden experienced by family caregivers. We conducted a cross-sectional study at six primary care clinics, involving 199 caregivers of adult care receivers who need long-term care. Participants were divided into three groups based on tertile of Index of Family Dynamics for Long-term Care (IF-Long score), where higher scores imply poorer relationships between care receivers and caregiving family: best, <2; intermediate, 2 to <5; worst, ≥5. The mean differences in burden index of caregivers (BIC-11) between the three groups were estimated by linear regression model with adjustment for care receiver's activity of daily living and cognitive function. Mean age of caregivers was 63.2 years (with 40.7% aged ≥ 65 years). BIC-11 scores were higher in the worst IF-Long group (adjusted mean difference: 4.4, 95% confidence interval: 1.2 to 7.5) than in the best IF-Long group. We also detected a positive trend between IF-Long score and BIC-11 score (P-value for trend <0.01). Our findings indicate that family dynamics strongly influences burden experienced by caregiving family members, regardless of the care receiver's degree of cognitive impairment. These results underscore the importance of evaluating relationships between care receivers and their caregivers when discussing a care regimen for care receivers. © The Author 2016. Published by Oxford University Press.

  20. Influence of family dynamics on burden among family caregivers in aging Japan

    PubMed Central

    Kusaba, Tesshu; Sato, Kotaro; Fukuma, Shingo; Yamada, Yukari; Matsui, Yoshinori; Matsuda, Satoshi; Ando, Takashi; Sakushima, Ken; Fukuhara, Shunichi

    2016-01-01

    Background. Long-term care for the elderly is largely shouldered by their family, representing a serious burden in a hyper-aging society. However, although family dynamics are known to play an important role in such care, the influence of caring for the elderly on burden among caregiving family members is poorly understood. Objective. To examine the influence of family dynamics on burden experienced by family caregivers. Methods. We conducted a cross-sectional study at six primary care clinics, involving 199 caregivers of adult care receivers who need long-term care. Participants were divided into three groups based on tertile of Index of Family Dynamics for Long-term Care (IF-Long score), where higher scores imply poorer relationships between care receivers and caregiving family: best, <2; intermediate, 2 to <5; worst, ≥5. The mean differences in burden index of caregivers (BIC-11) between the three groups were estimated by linear regression model with adjustment for care receiver’s activity of daily living and cognitive function. Results. Mean age of caregivers was 63.2 years (with 40.7% aged ≥ 65 years). BIC-11 scores were higher in the worst IF-Long group (adjusted mean difference: 4.4, 95% confidence interval: 1.2 to 7.5) than in the best IF-Long group. We also detected a positive trend between IF-Long score and BIC-11 score (P-value for trend <0.01). Conclusion. Our findings indicate that family dynamics strongly influences burden experienced by caregiving family members, regardless of the care receiver’s degree of cognitive impairment. These results underscore the importance of evaluating relationships between care receivers and their caregivers when discussing a care regimen for care receivers. PMID:27450988

  1. Determination of blood oxygenation in the brain by time-resolved reflectance spectroscopy: influence of the skin, skull, and meninges

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.

    1994-07-01

    Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.

  2. Pigment particles analysis with a total reflection X-ray fluorescence spectrometer: study of influence of instrumental parameters

    NASA Astrophysics Data System (ADS)

    Coccato, Alessia; Vekemans, Bart; Vincze, Laszlo; Moens, Luc; Vandenabeele, Peter

    2016-12-01

    Total reflection X-ray fluorescence (TXRF) analysis is an excellent tool to determine major, minor and trace elements in minuscule amounts of samples, making this technique very suitable for pigment analysis. Collecting minuscule amounts of pigment material from precious works of art by means of a cotton swab is a well-accepted sampling method, but poses specific challenges when TXRF is to be used for the characterization of the unknown material.

  3. Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements.

    PubMed

    Howarth, Samuel J; Graham, Ryan B

    2015-04-13

    Application of non-linear dynamics analyses to study human movement has increased recently, which necessitates an understanding of how dependent measures may be influenced by experimental design and setup. Quantifying local dynamic stability for a multi-articulated structure such as the spine presents the possibility for estimates to be influenced by positioning of kinematic sensors used to measure spine angular kinematics. Oftentimes researchers will also choose to constrain the spine's movement by physically restraining the pelvis and/or using targets to control movement endpoints. Ten healthy participants were recruited, and asked to perform separate trials of 35 consecutive cycles of spine flexion under both constrained and unconstrained conditions. Electromagnetic sensors that measure three-dimensional angular orientations were positioned over the pelvis and the spinous processes of L3, L1, and T11. Using the pelvic sensor as a reference, each sensor location on the spine was used to obtain a different representation of the three-dimensional spine angular kinematics. Local dynamic stability of each kinematic time-series was determined by calculating the maximum finite-time Lyapunov exponent (λmax). Estimates for λmax were significantly lower (i.e. dynamically more stable) for spine kinematic data obtained from the L3 sensor than those obtained from kinematic data using either the L1 or T11 sensors. Likewise, λmax was lower when the movement was constrained. These results emphasize the importance of proper placement of instrumentation for quantifying local dynamic stability of spine kinematics and are especially relevant for repeated measures designs where data are obtained from the same individual on multiple days.

  4. Two-season study of the influence of regulated deficit irrigation and reflective mulch on individual and total phenolic compounds of nectarines at harvest and during storage.

    PubMed

    Pliakoni, Eleni D; Nanos, George D; Gil, Maria I

    2010-11-24

    The influence of deficit irrigation (Deficit) and reflective mulch (Reflective) of Caldesi 2000 nectarines on the content of individual phenolic compounds was studied at harvest and during storage for 2, 4, and 6 weeks at 2 °C during two consecutive years (2007 and 2008). Individual phenolic groups in the edible fruit part consisted mainly of proanthocyanidins (200 mg/100 g fw), lower content of phenolic acids (17 mg/100 g fw), and minor content of flavonols (5 mg/100 g fw) and anthocyanins (1.2 mg/100 g fw). Deficit irrigation increased the content of total phenolics, including proanthocyanidins and phenolic acids, reaching similar amounts in both years. Sun-exposed fruit (upper part of canopy) showed higher content than shaded fruit (lower part of canopy). However, Reflective significantly increased the content of total phenolics, particularly phenolic acids and proanthocyanidins, of fruit located in the lower part of the canopy. During storage, Deficit and Reflective did not affect the content of phenolic acids, flavonols, and proanthocyanidins when compared to the content at harvest. Optimizing cultural practices can be a way to increase the phenolic content of nectarines.

  5. Influence of the kink effect on the dynamic performance of short-channel InAlAs/InGaAs high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Vasallo, B. G.; Mateos, J.; Pardo, D.; González, T.

    2005-09-01

    A semiclassical two-dimensional ensemble Monte Carlo simulator is used to perform a microscopic study of the influence of the kink effect on the dynamic behaviour of short-channel InAlAs/InGaAs lattice-matched high electron mobility transistors (HEMTs). To this end, the transient behaviour of the kink onset and the degradation introduced in some elements of the small signal equivalent circuit are analysed. According to our results, the pile-up of holes (generated by impact ionization) which is at the origin of the kink effect, jointly with the higher electron density in the channel, causes an increase of the gate-source capacitance. The drain conductance also increases because the accumulated hole density depends significantly on the drain-source voltage. In addition, the frequency dependence of the drain conductance reflects the influence of the hole recombination processes taking place in the accumulation zone.

  6. Augmentation pressure is influenced by ventricular contractility/relaxation dynamics: novel mechanism of reduction of pulse pressure by nitrates.

    PubMed

    Fok, Henry; Guilcher, Antoine; Li, Ye; Brett, Sally; Shah, Ajay; Clapp, Brian; Chowienczyk, Phil

    2014-05-01

    Augmentation pressure (AP), the increment in aortic pressure above its first systolic shoulder, is thought to be determined mainly by pressure wave reflection but could be influenced by ventricular ejection characteristics. We sought to determine the mechanism by which AP is selectively reduced by nitroglycerin (NTG). Simultaneous measurements of aortic pressure and flow were made at the time of cardiac catheterization in 30 subjects (11 women; age, 61±13 years [mean±SD]) to perform wave intensity analysis and calculate forward and backward components of AP generated by the ventricle and arterial tree, respectively. Measurements were made at baseline and after NTG given systemically (800 μg sublingually, n=20) and locally by intracoronary infusion (1 μg/min; n=10). Systemic NTG had no significant effect on first shoulder pressure but reduced augmentation (and central pulse pressure) by 12.8±3.1 mm Hg (P<0.0001). This resulted from a reduction in forward and backward wave components of AP by 7.0±2.4 and 5.8±1.3 mm Hg, respectively (each P<0.02). NTG had no significant effect on the ratio of amplitudes of either backward/forward waves or backward/forward compression wave energies, suggesting that effects on the backward wave were largely secondary to those on the forward wave. Time to the forward expansion wave was reduced (P<0.05). Intracoronary NTG decreased AP by 8.3±3.6 mm Hg (P<0.05) with no significant effect on the backward wave. NTG reduces AP and central pulse pressure by a mechanism that is, at least in part, independent of arterial reflections and relates to ventricular contraction/relaxation dynamics with enhanced myocardial relaxation.

  7. Dynamic Camouflage in Benthic and Pelagic Cephalopods: An Interdisciplinary Approach to Crypsis Based on Color, Reflection, and Bioluminescence

    DTIC Science & Technology

    2012-09-30

    photosynthesis in millions of endosymbiotic microalgae . The mantel tissue of giant clams, continually exposed to sunlight to facilitate that photosynthesis...photosynthetic endosymbiotic microalgae ; cf. Figure 15: bottom center). This back-reflection from the Bragg-stacks of reflectin-filled lamellae thus protects the

  8. First Selection, Then Influence: Developmental Differences in Friendship Dynamics Regarding Academic Achievement.

    PubMed

    Gremmen, Mariola Claudia; Dijkstra, Jan Kornelis; Steglich, Christian; Veenstra, René

    2017-04-10

    This study concerns peer selection and influence dynamics in early adolescents' friendships regarding academic achievement. Using longitudinal social network analysis (RSiena), both selection and influence processes were investigated for students' average grades and their cluster-specific grades (i.e., language, exact, and social cluster). Data were derived from the SNARE (Social Network Analysis of Risk behavior in Early adolescence) study, using 6 waves (N = 601; Mage = 12.66, 48.9% boys at first wave). Results showed developmental differences between the first and second year of secondary school (seventh and eighth grade). Whereas selection processes were found in the first year on students' cluster-specific grades, influence processes were found in the second year, on both students' average and cluster-specific grades. These results suggest that students initially tend to select friends on the basis of similar cluster-based grades (first year), showing that similarity in achievement is attractive for friendships. Especially for low-achieving students, similar-achieving students were highly attractive as friends, whereas they were mostly avoided by high-achieving students. Influence processes on academic achievement take place later on (second year), when students know each other better, indicating that students' grades become more similar over time in response to their connectedness. Concluding, this study shows the importance of developmental differences and specific school subjects for understanding peer selection and influence processes in adolescents' academic achievement. (PsycINFO Database Record

  9. Influence of ligand substitution on excited state structural dynamics in Cu(I) bisphenanthroline complexes.

    PubMed

    Lockard, Jenny V; Kabehie, Sanaz; Zink, Jeffrey I; Smolentsev, Grigory; Soldatov, Alexander; Chen, Lin X

    2010-11-18

    This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu(I) diimine complexes. Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu(I)(detp)(2)](+) are measured using femtosecond transient absorption spectroscopy. The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline), [Cu(I)(phen)(2)](+), and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu(I)(dmp)(2)](+), model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states. Similarities between the [Cu(I)(detp)(2)](+) and [Cu(I)(phen)(2)](+) excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions. The solution-phase X-ray absorption spectra of [Cu(I)(detp)(2)](+), [Cu(I)(phen)(2)](+), and [Cu(I)(dmp)(2)](+) are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region.

  10. The von Hippel-Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery.

    PubMed

    Lolkema, Martijn P; Mehra, Niven; Jorna, Anita S; van Beest, Moniek; Giles, Rachel H; Voest, Emile E

    2004-12-10

    The von Hippel-Lindau (VHL) protein protects microtubules (MTs) from destabilization by nocodazole treatment. Based on this fixed-cell assay with static end points, VHL has been reported to directly stabilize the MT cytoskeleton. To investigate the dynamic changes in MTs induced by VHL in living cells, we measured the influence of VHL on tubulin turnover using fluorescence recovery after photobleaching (FRAP). To this end, we engineered VHL-deficient renal cell carcinoma cells to constitutively incorporate fluorescently labeled tubulin and to inducibly express VHL. Induction of VHL in these cells resulted in a decrease of tubulin turnover as measured by FRAP at the cell periphery, while minimally influencing MT dynamics around the centrosome. Our data indicates that VHL changes the behavior of MTs dependent on their subcellular localization implying a role for VHL in cellular processes such as migration, polarization, and cell-cell interactions. Here we propose a complementary method to directly measure VHL-induced subcellular changes in microtubule dynamics, which may serve as a tool to study the effect of MT binding proteins such as VHL.

  11. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels.

    PubMed

    Bryant, Stephanie J; Chowdhury, Tina T; Lee, David A; Bader, Dan L; Anseth, Kristi S

    2004-03-01

    In approaches to tissue engineer articular cartilage, an important consideration for in situ forming cell carriers is the impact of mechanical loading on the cell composite structure and function. Photopolymerized hydrogel scaffolds based on poly(ethylene glycol) (PEG) may be synthesized with a range of crosslinking densities and corresponding macroscopic properties. This study tests the hypothesis that changes in the hydrogel crosslinking density influences the metabolic response of encapsulated chondrocytes to an applied load. PEG hydrogels were formulated with two crosslinking densities that resulted in gel compressive moduli ranging from 60 to 670 kPa. When chondrocytes were encapsulated in these PEG gels, an increase in crosslinking density resulted in an inhibition in cell proliferation and proteoglycan synthesis. Moreover, when the gels were dynamically loaded for 48 h in unconfined compression with compressive strains oscillating from 0 to 15% at a frequency of 1 Hz, cell proliferation and proteoglycan synthesis were affected in a crosslinking-density-dependent manner. Cell proliferation was inhibited in both crosslinked gels, but was greater in the highly crosslinked gel. In contrast, dynamic loading did not influence proteoglycan synthesis in the loosely crosslinked gel, but a marked decrease in proteoglycan production was observed in the highly crosslinked gel. In summary, changes in PEG hydrogel properties greatly affect how chondrocytes respond to an applied dynamic load.

  12. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks.

    PubMed

    Aral, Sinan; Muchnik, Lev; Sundararajan, Arun

    2009-12-22

    Node characteristics and behaviors are often correlated with the structure of social networks over time. While evidence of this type of assortative mixing and temporal clustering of behaviors among linked nodes is used to support claims of peer influence and social contagion in networks, homophily may also explain such evidence. Here we develop a dynamic matched sample estimation framework to distinguish influence and homophily effects in dynamic networks, and we apply this framework to a global instant messaging network of 27.4 million users, using data on the day-by-day adoption of a mobile service application and users' longitudinal behavioral, demographic, and geographic data. We find that previous methods overestimate peer influence in product adoption decisions in this network by 300-700%, and that homophily explains >50% of the perceived behavioral contagion. These findings and methods are essential to both our understanding of the mechanisms that drive contagions in networks and our knowledge of how to propagate or combat them in domains as diverse as epidemiology, marketing, development economics, and public health.

  13. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks

    PubMed Central

    Aral, Sinan; Muchnik, Lev; Sundararajan, Arun

    2009-01-01

    Node characteristics and behaviors are often correlated with the structure of social networks over time. While evidence of this type of assortative mixing and temporal clustering of behaviors among linked nodes is used to support claims of peer influence and social contagion in networks, homophily may also explain such evidence. Here we develop a dynamic matched sample estimation framework to distinguish influence and homophily effects in dynamic networks, and we apply this framework to a global instant messaging network of 27.4 million users, using data on the day-by-day adoption of a mobile service application and users' longitudinal behavioral, demographic, and geographic data. We find that previous methods overestimate peer influence in product adoption decisions in this network by 300–700%, and that homophily explains >50% of the perceived behavioral contagion. These findings and methods are essential to both our understanding of the mechanisms that drive contagions in networks and our knowledge of how to propagate or combat them in domains as diverse as epidemiology, marketing, development economics, and public health. PMID:20007780

  14. Reflective Teaching

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2013-01-01

    Thomas Farrell's "Reflective Teaching" outlines four principles that take teachers from just doing reflection to making it a way of being. Using the four principles, Reflective Practice Is Evidence Based, Reflective Practice Involves Dialogue, Reflective Practice Links Beliefs and Practices, and Reflective Practice Is a Way of Life,…

  15. Influence of the rotor-stator interaction on the dynamic stresses of Francis runners

    NASA Astrophysics Data System (ADS)

    Guillaume, R.; Deniau, J. L.; Scolaro, D.; Colombet, C.

    2012-11-01

    Thanks to advances in computing capabilities and Computational Fluid Dynamics (CFD) techniques, it is now possible to calculate realistic unsteady pressure fields in Francis turbines. This paper will explain methods to calculate the structural loads and the dynamic behaviour in order to optimize the turbine design and maximize its reliability and lifetime. Depending on the operating conditions of a Francis turbine, different hydraulic phenomena may impact the mechanical behaviour of the structure. According to their nature, these highly variable phenomena should be treated differently and specifically in order to estimate the potential risks arising on submerged structures, in particular the runner. The operating condition studied thereafter is the point at maximum power with the maximum head. Under this condition, the runner is excited by only one dynamic phenomenon named the Rotor-Stator Interaction (RSI). The origin of the phenomenon is located on the radial gap of the turbine and is the source of pressure fluctuations. A fluid-structure analysis is performed to observe the influence of that dynamic pressure field on the runner behaviour. The first part of the paper deals with the unsteady fluid computation. The RSI phenomenon is totally unsteady so the fluid simulation must take into account the entire machine and its rotation movement, in order to obtain a dynamic pressure field. In the second part of the paper, a method suitable for the RSI study is developed. It is known that the fluctuating pressure in this gap can be described as a sum of spatial components. By evaluating these components in the CFD results and on the scale model, it is possible to assess the relevance of the numerical results on the whole runner. After this step, the numerical pressure field can be used as the dynamic load of the structure. The final part of the paper presentsthe mechanical finite element calculations. A modal analysis of the runner in water and a harmonic analysis of its

  16. Surface-water dynamics and land use influence landscape connectivity across a major dryland region.

    PubMed

    Bishop-Taylor, Robbi; Tulbure, Mirela G; Broich, Mark

    2017-01-24

    Landscape connectivity is important for the long-term persistence of species inhabiting dryland freshwater ecosystems, with spatiotemporal surface-water dynamics (e.g., flooding) maintaining connectivity by both creating temporary habitats and providing transient opportunities for dispersal. Improving our understanding of how landscape connectivity varies with respect to surface-water dynamics and land use is an important step to maintaining biodiversity in dynamic dryland environments. Using a newly available validated Landsat TM and ETM+ surface-water time series, we modelled landscape connectivity between dynamic surface-water habitats within Australia's 1 million km2 semi-arid Murray Darling Basin across a 25-year period (1987 to 2011). We identified key habitats that serve as well-connected 'hubs', or 'stepping-stones' that allow long-distance movements through surface-water habitat networks. We compared distributions of these habitats for short- and long-distance dispersal species during dry, average and wet seasons, and across land-use types. The distribution of stepping-stones and hubs varied both spatially and temporally, with temporal changes driven by drought and flooding dynamics. Conservation areas and natural environments contained higher than expected proportions of both stepping-stones and hubs throughout the time series; however, highly modified agricultural landscapes increased in importance during wet seasons. Irrigated landscapes contained particularly high proportions of well-connected hubs for long-distance dispersers, but remained relatively disconnected for less vagile organisms. The habitats identified by our study may serve as ideal high-priority targets for land-use specific management aimed at maintaining or improving dispersal between surface-water habitats, potentially providing benefits to biodiversity beyond the immediate site scale. Our results also highlight the importance of accounting for the influence of spatial and temporal

  17. Investigation of the Influence of Leaf Thickness on Canopy Reflectance and Physiological Traits in Upland and Pima Cotton Populations.

    PubMed

    Pauli, Duke; White, Jeffrey W; Andrade-Sanchez, Pedro; Conley, Matthew M; Heun, John; Thorp, Kelly R; French, Andrew N; Hunsaker, Douglas J; Carmo-Silva, Elizabete; Wang, Guangyao; Gore, Michael A

    2017-01-01

    Many systems for field-based, high-throughput phenotyping (FB-HTP) quantify and characterize the reflected radiation from the crop canopy to derive phenotypes, as well as infer plant function and health status. However, given the technology's nascent status, it remains unknown how biophysical and physiological properties of the plant canopy impact downstream interpretation and application of canopy reflectance data. In that light, we assessed relationships between leaf thickness and several canopy-associated traits, including normalized difference vegetation index (NDVI), which was collected via active reflectance sensors carried on a mobile FB-HTP system, carbon isotope discrimination (CID), and chlorophyll content. To investigate the relationships among traits, two distinct cotton populations, an upland (Gossypium hirsutum L.) recombinant inbred line (RIL) population of 95 lines and a Pima (G. barbadense L.) population composed of 25 diverse cultivars, were evaluated under contrasting irrigation regimes, water-limited (WL) and well-watered (WW) conditions, across 3 years. We detected four quantitative trait loci (QTL) and significant variation in both populations for leaf thickness among genotypes as well as high estimates of broad-sense heritability (on average, above 0.7 for both populations), indicating a strong genetic basis for leaf thickness. Strong phenotypic correlations (maximum r = -0.73) were observed between leaf thickness and NDVI in the Pima population, but not the RIL population. Additionally, estimated genotypic correlations within the RIL population for leaf thickness with CID, chlorophyll content, and nitrogen discrimination ([Formula: see text] = -0.32, 0.48, and 0.40, respectively) were all significant under WW but not WL conditions. Economically important fiber quality traits did not exhibit significant phenotypic or genotypic correlations with canopy traits. Overall, our results support considering variation in leaf thickness as a potential

  18. Investigation of the Influence of Leaf Thickness on Canopy Reflectance and Physiological Traits in Upland and Pima Cotton Populations

    PubMed Central

    Pauli, Duke; White, Jeffrey W.; Andrade-Sanchez, Pedro; Conley, Matthew M.; Heun, John; Thorp, Kelly R.; French, Andrew N.; Hunsaker, Douglas J.; Carmo-Silva, Elizabete; Wang, Guangyao; Gore, Michael A.

    2017-01-01

    Many systems for field-based, high-throughput phenotyping (FB-HTP) quantify and characterize the reflected radiation from the crop canopy to derive phenotypes, as well as infer plant function and health status. However, given the technology's nascent status, it remains unknown how biophysical and physiological properties of the plant canopy impact downstream interpretation and application of canopy reflectance data. In that light, we assessed relationships between leaf thickness and several canopy-associated traits, including normalized difference vegetation index (NDVI), which was collected via active reflectance sensors carried on a mobile FB-HTP system, carbon isotope discrimination (CID), and chlorophyll content. To investigate the relationships among traits, two distinct cotton populations, an upland (Gossypium hirsutum L.) recombinant inbred line (RIL) population of 95 lines and a Pima (G. barbadense L.) population composed of 25 diverse cultivars, were evaluated under contrasting irrigation regimes, water-limited (WL) and well-watered (WW) conditions, across 3 years. We detected four quantitative trait loci (QTL) and significant variation in both populations for leaf thickness among genotypes as well as high estimates of broad-sense heritability (on average, above 0.7 for both populations), indicating a strong genetic basis for leaf thickness. Strong phenotypic correlations (maximum r = −0.73) were observed between leaf thickness and NDVI in the Pima population, but not the RIL population. Additionally, estimated genotypic correlations within the RIL population for leaf thickness with CID, chlorophyll content, and nitrogen discrimination (r^gij = −0.32, 0.48, and 0.40, respectively) were all significant under WW but not WL conditions. Economically important fiber quality traits did not exhibit significant phenotypic or genotypic correlations with canopy traits. Overall, our results support considering variation in leaf thickness as a potential

  19. Influence of the measurement object's reflective properties on the accuracy of array projection-based 3D sensors

    NASA Astrophysics Data System (ADS)

    Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2017-05-01

    In order to increase the measurement speed of pattern projection-based three-dimensional (3-D) sensors, in 2014, we introduced the so-called array projector which allows pattern projection at several 1,000 fps. As the patterns are switched by switching on and off the light sources of multiple slide projectors, each pattern originates from a different projection center. This may lead to a 3-D point deviation when measuring glossy objects. In this contribution, we theoretically and experimentally investigate the dependence of this deviation on the measurement object's reflective properties. Furthermore, we propose a procedure for compensating for this deviation.

  20. Sendai virus intra-host population dynamics and host immunocompetence influence viral virulence during in vivo passage.

    PubMed

    Peña, José; Chen-Harris, Haiyin; Allen, Jonathan E; Hwang, Mona; Elsheikh, Maher; Mabery, Shalini; Bielefeldt-Ohmann, Helle; Zemla, Adam T; Bowen, Richard A; Borucki, Monica K

    2016-01-01

    In vivo serial passage of non-pathogenic viruses has been shown to lead to increased viral virulence, and although the precise mechanism(s) are not clear, it is known that both host and viral factors are associated with increased pathogenicity. Under- or overnutrition leads to a decreased or dysregulated immune response and can increase viral mutant spectrum diversity and virulence. The objective of this study was to identify the role of viral mutant spectra dynamics and host immunocompetence in the development of pathogenicity during in vivo passage. Because the nutritional status of the host has been shown to affect the development of viral virulence, the diet of animal model reflected two extremes of diets which exist in the global population, malnutrition and obesity. Sendai virus was serially passaged in groups of mice with differing nutritional status followed by transmission of the passaged virus to a second host species, guinea pigs. Viral population dynamics were characterized using deep sequence analysis and computational modeling. Histopathology, viral titer and cytokine assays were used to characterize viral virulence. Viral virulence increased with passage and the virulent phenotype persisted upon passage to a second host species. Additionally, nutritional status of mice during passage influenced the phenotype. Sequencing revealed the presence of several non-synonymous changes in the consensus sequence associated with passage, a majority of which occurred in the hemagglutinin-neuraminidase and polymerase genes, as well as the presence of persistent high frequency variants in the viral population. In particular, an N1124D change in the consensus sequences of the polymerase gene was detected by passage 10 in a majority of the animals. In vivo comparison of an 1124D plaque isolate to a clone with 1124N genotype indicated that 1124D was associated with increased virulence.